
OMMENTS:

* Includes a 6 month unfunded flexibility period. \7345

op

n- 	di/Ai o , 	 i c
Rr h .82

6 7(9 9

PROJ LC I ‘101INIS IRA HON DMA NI1LEI

ORIGINAL 	REVISION NO.

G-36-667 (R-5491-1A0 AS of 7/1/82)

 Nancy D. Griffeth
roject Director: 	Nancy

pmnor
 National Science Foundation; Washington, D.C.

'ype Agreement: 	
Grant No. MCS — 8200854

7/1/82 	 12/31/84
ward Period: From 	 To 	iPerformance) 	 (Reports)

'ponsor Amount: 	
$ 84,632 	 Contracted through:

$4,455 (G-36-347 (F-5491- 1A0 AS' of 7/1/82)) :osa Sharing: 	 GTR Off

We: 	Design of Distributed Data Base Systems

kDMINISTRAT1VE DATA

) Sponsor Technical Contact:

Thomas A. Keenan

OCA Contact Leamon R. Scott

2) Sponsor Admin/Contractual Matters:

Shirley P. Greene

roject No.

x I
DATE 6/4/82

I & CS

Software Systems Science Program

Computer Science Section

MPS/STIR Branch

Division of Grants & Contracts

Division of Mathematical& Computer Sciences
	

Directorate for Administration

Directorate for Math & Physical Sciences
	

NSF

NSF
	

Washington, D. C. 20550

Washington, D.C. 20550
	

202-357-7375 	 202-357-9671

)efense Priority Rating: 	N/A Security Classification: N/A

ESTRICTIONS

ee Attached 	NSF 	Supplemental Information Sheet for Additional Requirements.

ravel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of S500 or 125% of approved proposal budget category.

quipment: Title vests with 	GIT

Reseal. r.,i 	E R

owice

OPIES TO:

dministrative Coordinator

esearch Property Management

ccounting

ocurement/EES Supply Services
RM OCA 4:781

Research Security Services

Reports Coordinator (OCA)

Legal Services (OCA)

Library

EES Public Relations (2)

Computer Input

-Project File

Other

Date
	7/22/8 5

Project No. 	G-36-667 	 School/ gg 	ICS

Includes Subproject No.(s)

Project Director(s) N. D. Griffeth
GTRC / lX

\ GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Sponsor 	Nat ional Science Foundation

Title
	 Design of Distributed Database Systems

Effective Completion Date: 	12/31/84
	

(Performance) 	3/31/85
	
(Reports)

Grant/Contract Closeout Actions Remaining:

None

Final Invoice or Final Fiscal Report

E3 Closing Documents

ED Final Report of Inventions

ED Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other 	

Continues Project No. N/A Continued by Project No. N/A

COPIES TO:

Project Director 	 Library
Research Administrative Network 	 GTRC

Research Property Management 	 Research Communications (2)
Accounting 	 Project File

Procurement/GTRI Supply Services 	 Other 	A. Jones; M. Heyser

Research Security Services

eports Coordinator (OCA)

Legal Services

Ell

FORM OCA 69.285

- '6111Mtlith4ONT MTE 0 TECH
A UNIT OF THE UN 	 GEORGIA
SCHOOL OF INFONEINTiON AND CO
ATLANTAfeitonatA 30332

NATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550 FINAL PROJECT REPORT

NSF FORM 98A

PLE •I,ST RI:A I) I.VSTR UCno.vs OA' REt'ERSE BEFORE COMM ETIVO

PART I—PROJECT IDENTIFICATION INFORMATION
I. In,iitution and Address

Georgia Institute of Technology
School of Information and Computer
Atlanta, Georgia 30332 	Science

1. NSI. Program

Software Systems Science
3. NSF Award Number

MCS - 8200854
4. /Ward Period

Fron t ?/1/82 	m12/31/84
S. Cumulative A‘sard Amount

$ 	84,632
6. Proieet 	title

PART II—SUMMARY OF COMPLETED PROJECT (FOR PUB/./• (/SE)

The focus of this research project is the behavior of distributed database
systems in the presence' of failures and concurrent access to the database. 	Several
algorithms for reliable distributed database systems have been developed as part
of the work. 	The techniques employed to study the behavior of the algorithms have
included formal analysis of their properties; simulation studies of their performance;
and a novel method of queuing network analysis, which can be used even when tran-'
sactions are allowed to hold multiple resources simultaneously. 	The algorithms
studied are : 	(1) 	five transaction scheduling algorithms (three are novel, to the
best of our knowledge) which guarantee that each transaction either completes or
has no effect on the database; (2) 	novel logging and roll-back algorithms which
allow localization of the recovery effort to individual levels of abstraction;
(3) 	a novel file migration algorithm for a distributed system -which guarantees that
at least one copy of the file is always available; and (4) 	a novel resource
allocation algorithm (which could be applied to redundant copies of a file) which
is amenable to expect cost analysis and which•provides a very reasonable allocation
of resources to requests. 	Also as part of this work, my colleagues and I have
completed the study of some algorithms for determining an optimal placement of
identical resources in a network structured as a tree and for allocating the resources
to requests arriving in the tree.

PART III-TEC'HNIC'AL INFORMATION /FOR PRO(;R,1,14 MA NA GI:MENT USES)

II I \1 (Check uppmpreute blocks) NONE 1'11ACIIED
PREVIOUSLY
FURNISHED

10 BE FURNISHED
S•PARATFEY TO PROGRAM

Cheek I ✓ 1 Approx. Date

a. 	Abstracts of T heses X

h. 	VublicationCitatum. X

e. 	Data on Scientific Collaborators X

J. Information On Inventions

e. 	Ieclititc.il 	Description sit 	Proleci .intl 	Results \ X<7 	X
t. 	Other i.speci11')

2. Principal Investigator/Project Director Name (Typccil

Dr. Nancy D. Griffeth

NICP c,,,,.. non 	o 	nn t c. 	
r'

3

■

Princinal Invr.stigakir.Ortp,..•t 	nir•t 	r' 	 !it el,. 	 r

	 Z/Vteff:'
4. Date

orm Approved OMB No. 3145-0058 reviotis Etti n ons

Dir,ctor of School 	//' , /7

MIVINIMINI■••■■BriMINW.Y.0.2/0.1M11

AN 2 8 1985 GEORGIA INSTITUTE OF TECHNOLOGY

Office of
Graduate Studies and Research

	
Date
	

January 14, 1985

REQUEST FOR APPROVAL OF THESIS TOPIC

NAME 	Martin 	 Froilan 	 Maldonado

First Middle 	 Last

requests approval to prepare and present a thesis in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Information and Computer Science

Thesis Title: A Comparison of File Allocation Decision-Making Schemes

Brief description:

This thesis addresses the decision--making process for file allocation.

Decentralized and centralized decision-making will be compared. In the

first case, each node in the network decides independently the allocation

of copies of a file, while in the second case, one node performs the decision.

We expect to have tradeoffs between the cost of using the files and the cost

of collection and/or disseminating information about file usage. It is

suspected that decentralized decision-making might produce more costly

allocations than the centralized procedure. However, the centralized

decision-making process incurs additional,costs in order to collect the

required usage information and to divulge the decision. In general, this

corresponds to the situation where. we are forced to make tradeoffs

between the optimality of a solution and the cost of obtaining that solution.

Approvedj

	P
Signature of Graduate Student

33 /...R
Thesis avisor 	J 	 Cnnatill' s P.. CL Pox

Member Reading Coinmittee or Thesis 	 Dean, Office of Graduate Studies and
_Advisory Committee Research

Prepare original only. Graduate Office
Member Reading Committee or 7- "'a4 	 will distribute copies.

GEORGIA INSTITUTE OF TECHNOLOGY

Office of
Graduate Studies and Research 	 Date 	11-19-84

REQUEST FOR APPROVAL OF THESIS TOPIC

NAME
John Alan 	 Miller

First Middle 	 Last

requests approval to prepare and present a thesis in partial fulfillment of the requirements for the

degree of 	Doctor of Philosophy

Thesis Title:
Approximate Queueing Network Analysis of Database Systems

Brief description:
In this work we view a database system as a queueing network consisting of

transactions operatings on data granules. Because the network turns out to be

nonseparable (Lazo 84) (which usually implies intractability), we apply a mean

substitution approximation. A nice property of this approximation is that it

produces simple analytic models, both conceptually and computationally. We then

apply this technique to analyze the performance of database systems. In

particular we study the effect that database protocols have on performance

measures such as throughput and response time. We compare the standard pro-

tocols found in the literature on the basis of these performance measures and

consider the design of optimal protocols.

Approved)/

- 1 17 •

Direr of Scho9,1-, Sig-na re of Graduate Student

37000

Campus P. 0. Box

Member Reading Committee or Thesis 	 Dean, Office of Graduate Studies and
Advisory Committee

Member Reading C• 	ttee or Thesis
Advisory Committee

Research

Prepare original only, Graduate Office
will distribute copies,

Final Project Report 	 March 31, 1985

Dezign ,94 DiztAibuted Databau. Sy4stems

Final Project Report
April 1, 1985

Nancy D. Griffeth
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, GA 30332

Final Project Report 	 March 31, 1985

PubLication Citation4

Refereed Journals

Reliable Scheduling of Transactions on Unreliable Systems, ACM
SIGACT/SIGMOD Symposium on Principles of Database Systems, April
2-4 1984, by Marc H. Graham, Nancy D. Griffeth, and Barbara
Smith-Thomas.

Simulation of Concurrency Control and Recovery Protocols for
Distributed Database Systems, IEEE Infocomm 84, Apr 9-12 1984,
by Nancy D. Griffeth and Magdi Morsi.

Performance Modeling of Database Recovery Protocols, IEEE Sym-
posium on Reliability in Distributed Software and Database Sys-
tems, Oct 15-17 1984, by Nancy D. Griffeth and John A. Miller;
also, to appear in IEEE Transactions on Software Engineering,
June 1985.

Optimal Placement of Identical Resources in a Tree, to appear in
Inlionmation and Contxot, by Michael J. Fischer, Nancy D.
Griffeth, and Nancy A. Lynch.

Probabilistic Analysis of a Network Resource Allocation Al-
gorithm, to appear in InioAmation and Contnot, by Nancy A.
Lynch, Nancy D. Griffeth, Michael J. Fischer, and Leo J.
Guibas.

Non- refereed Reports

A Simulation Tool for Distributed Databases, Georgia Tech Tech-
nical Report GIT-ICS-83/14, by Nancy D. Griffeth and Magdi
Morsi.

Simulation of Concurrency Control and Recovery Protocols for
Distributed Systems, Georgia Tech Technical Report GIT-ICS
83/16, by Nancy D. Griffeth and Magdi Morsi.

Recovery of Actions and Subactions in a Nested Transaction
System, Georgia Tech Technical Report GIT-ICS-84/12, March 1984,
by Marc H. Graham, Nancy D. Griffeth, and J. Eliot B. Moss.

Algorithms for Reliable Scheduling of Database Transactions,
Georgia Tech Technical Report GIT-ICS-84/15, by Marc H. Graham,
Nancy D. Griffeth, and Barbara Smith-Thomas.

File Migration Algorithms for Decentralized File Allocation,
Georgia Tech Technical Report GIT-ICS-85/10, April 1985, by
Nancy D. Griffeth and Martin A. Maldonado.

2

Final Project Report 	 March 31, 1985

Two Approaches to Reducing the Overhead of Recovery from Tran-
saction Failures, to appear in Vatabaze EnginevEing, by Nancy D.
Griffeth.

Final Project Report 	 March 31, 1985

Scientific CottaboAaton4

Co- investigators
Michael J. Fischer
Professor
Yale University

Nancy A. Lynch
Associate Professor
Massachusetts Institute of Technology

Leo J. Guibas
Member of Technical Staff
Xerox Palo Alto Research Center

J. Eliot B. Moss
formerly Captain

U.S. Army
currently Assistant Professor

University of Massachusetts

Marc H. Graham
Assistant Professor
Georgia Institute of Technology

Barbara Smith-Thomas
Assistant Professor
University of North Carolina at Greensboro

Research Assistants and Students

John A. Miller
Research Assistant (funded by this grant)
Georgia Institute of Technology

Martin Maldonado
Graduate Student
Georgia Institute of Technology

Magdi Morsi
Research Assistant (funded by this grant)
Georgia Institute of Technology

4

Final Project Report 	 March 31, 1985

Technicat DuzAiption oi Project and Restata

Introduction

The focus of this research project is the behavior of dis-
tributed database systems in the presence of failures and conc-
urrent access to the database. Several algorithms for reliable
distributed database systems have been developed as part of the
work. The techniques employed to study the behavior of the al-
gorithms have included formal analysis of their properties;
simulation studies of their performance; and a novel method of
queuing network analysis, which can be used even when tran-
sactions are allowed to hold multiple resources simultaneously.
The algorithms studied are: (1) five transaction scheduling al-
gorithms (three are novel, to the best of our knowledge) which
guarantee that each transaction either completes or has no
effect on the database; (2) novel logging and roll-back al-
gorithms which allow localization of the recovery effort to in-
dividual levels of abstraction; (3) a novel file migration al-
gorithm for a distributed system which guarantees that at least
one copy of the file is always available; and (4) a novel
resource allocation algorithm (which could be applied to redun-
dant copies of a file) which is amenable to expected cost anal-
ysis and which provides a very reasonable allocation of
resources to requests. Also as part of this work, my colleagues
and I have completed the study of some algorithms for
determining an optimal placement of identical resources in a
network structured as a tree and for allocating the resources to
requests arriving in the tree.

5

Final Project Report 	 March 31, 1985

The AtgoAithm4 and .theiA PAopeAtie4

Retiabte TAanzaction Scheduting

Several scheduling protocols have been developed which
guarantee "recoverable" execution of transactions in a distrib-
uted database system. These protocols are described in detail
in GGST . Recoverable execution means that a transaction
either runs to completion or has no effect on the database; in
H it is shown that a necessary and sufficient condition for
recoverability is that no transaction commit before any transac-
tion on which it depends. Transaction operations are usually
taken to be "read" and "write". A transaction which reads a
data value then depends on the last transaction that wrote it.
We call a data value dirty if it was written by a transaction
which has not yet committed; any transaction which reads such a
value is reading "dirty" data. (There are some authors who work
with a more general class of operations, with dependency ap-
propriately defined for such classes K , A , SS). The sched-
uling protocols described here apply to transactions which
request read, write, commit, and abort operations; the scheduler
itself may also introduce abort operations. These protocols
are:

(1) the optimistic protocol, which blocks a transac-
tion from committing until all transactions on which
it depends have been committed (reads and writes are
never blocked);
(2) the pessimistic protocol, which blocks reads and
over-writes of dirty data;
(3) the realistic protocol, which blocks only reads of
dirty data (multiple versions of written items must be
maintained when dirty data is over-written, since
blocked reads may be waiting on early versions);
(4) the paranoid protocol, which aborts any transac-
tion which tries to read or over-write dirty data; and
(5) the deferred write protocol, similar to that used
in optimistic concurrency control KR , which post-
pones all writes until a transaction requests a commit
(if this protocol is used, serializability can only be
enforced by checking for it at commit point).

Several questions were raised about the formal properties
of these protocols. First, does the recovery protocol introduce
aborts of transactions that would otherwise have committed?
Second, what is the effect of a recovery protocol on the meaning
of the schedule? In other words, suppose that a schedule is
semantically correct, in that the interleaving of reads and
writes gives a meaningful result (this would usually mean
serializable). Will the recovery protocol change the meaning of
the schedule so that we can no longer be sure that it is seman-
tically correct? Third, if we know that serializability is the
condition for a schedule to be semantically correct, then what
is the effect of the recovery protocol on the serializability of

6

Final Project Report 	 March 31, 1985

the schedule (whether it changes the meaning or not)?

Introduction of Aborts. The paranoid protocol introduces
aborts to enforce recoverability. We would expect the largest
number of transaction aborts from this protocol. The pes-
simistic and realistic protocols introduce them only to break
deadlocks. It is interesting to note that if all reads are
known to precede all writes in transactions, then no deadlock
can occur using the realistic protocol and no aborts will be in-
troduced. Finally, the optimistic protocol cascades aborts.
One result of the performance studies described below was that
aborts rarely cascaded. Crude analysis indicated that this was
at least in part because all reads did precede all writes in the
transactions used .in the simulations. In this case, the
probability of the first cascaded abort is small and the
probability of the second is infinitesimal.

Meaning-preservation. The most obvious change to the
meaning of operations comes with the deferred write protocol.
Since this protocol postpones writes while letting reads
proceed, the value which would have been read may not be
available when the read is executed. The pessimistic and
realistic protocols may also change the meaning of a read
operation. This happens when the write on which a blocked read
waits is rolled back because the transaction requesting the
write has been aborted. The read must then access the previous
value of the data rather than the one it was waiting on. The
paranoid protocol changes the meaning of a read as a result of a
different sequence of events. Suppose that transaction A writes
a value in record 1 which will eventually be read by transaction
B. Suppose also that A must be aborted by the paranoid protocol
because, after writing record 1, it tries to read dirty data.
Then•the the meaning of B's read has been changed. In this case
also, the read will access the previously written data value.
The optimistic protocol does not rearrange operations in any way
and will abort a transaction rather than change the meaning of
any of its operations. Thus the meanings of the operations will
be preserved.

Preservation of Serializability. Although serializability
is preserved only by the optimistic protocol, the class of DSR
schedules P is preserved by the optimistic, pessimistic,
paranoid, and realistic protocols. Only deferred writes fails
to preserve this class. Since this is the largest known class
of schedules which is recognizable in polynomial time, and since
all practical schedulers recognize only schedules in this class,
we view DSR as the most important class to be preserved. It
would seem to be a serious failing of the deferred write
protocol that it does not preserve DSR.

Final Project Report 	 March 31, 1985

Logging and Rottback

Most work on transaction systems has viewed the tran-
sactions as operating on a single level of abstraction. Ad-
ditional knowledge of transaction semantics is savailable in
multi-level systems. This knowledge can be used to reduce the
scope of logging and procedures for rolling back (undoing)
actions. Some examples and formal proofs can be found in GGM .

The central idea is suggested by a trick which can be ap-
plied to dynamic structures such as B-trees. Suppose that a
transaction adds a record to an indexed relation, by adding the
record to . the relation and then adding the record key to the
index. Suppose also that the transaction continues operating on
the database and that other transactions which are executing
concurrently cause changes to the index structure (for example,
by splitting or coalescing nodes). If it eventually becomes
necessary to abort the initial transaction, it might appear that
it will also be necessary to roll back every action that changed
the B-tree structure after the record key was added to the
index. In this way, the B-tree structure is restored to its
state at the time the key was added. As a result, concurrent
operations on the B-tree would usually be prohibited. Of
course, it is not really necessary to be this conservative. We
can simply delete the key from the B-tree to rollback the opera-
tion that added the key. This is enough because we do not
really care about the structure of the B-tree; we only care
about the set of keys it contains.

In GGM , the ideas used in the B-tree trick have been
formalized and can be applied in the general case. We assume
multiple levels of abstraction. At each level of abstraction we
define abstract actions which are implemented by state-dependent
sequences of concrete actions. The concrete actions at one
level are the abstract actions at the next lower level (except
of course at the lowest level). We assume that with every
action, we are supplied a collection of state-dependent undo
actions. (The addition of a key to an index illustrates why
undo actions must be state-dependent. If the key was already in
the index, then the undo is the identity. If the key was not in
the index, then the undo is a delete.)

If actions A and B, both at the same level of abstraction,
do not conflict with each other, then it is possible to roll
back action A without first rolling back a later action B. For
recovery purposes, actions A and B conflict if undo(A), for the
prior state of A, does not commute with B. (This definition is
slightly different from the definition of conflict for the
purpose of serializability, where actions A and B conflict if
they do not commute.) To undo an action, we must first undo all
later actions which conflict with it.

The situation is complicated somewhat if we must consider
the concrete level as well. When an abstract action must be

8

Final Project Report 	 March 31, 1985

rolled back before it has finished executing, that is, before
completion of the sequence of concrete actions which implement
it, then we cannot undo it at the abstract level but we can
abort it. To abort it, we recursively abort incomplete concrete
actions and roll back complete concrete actions in reverse order
to their order of execution. (The concrete actions at the
lowest level must be atomic to halt this recursion.) An abs-
tract action depends on an earlier abstract action if it has a
child (i.e., a concrete action implementing it) which conflicts
with a child of the earlier abstract action. We must not abort
an action before we abort all actions which depend on it, to
guarantee that no action is undone before any later conflicting
action has been undone. We formalize this intuition about the
correctness of an abort in the following definition. A schedule
is bf revokable if every undo action is the child of an abort
action and no action is aborted before every action which
depends on it has been aborted. This definition is symmetric to
the definition of recoverability, that no action can commit
until every action on which it depends has committed.

Using the above algorithm for rolling back has very nice
implications for the size of the log. Once an abstract action
has been completed, we can record its state-dependent undo and
throw away the undo actions for the concrete actions implemen-
ting it. Thus the size of the log could be reduced con- .
siderably.

The above definitions assume that conflicting actions and
dependent actions are ordered. It is possible to interleave the
concrete actions implementing a collection of abstract actions
in such a way that no reasonable order can be defined on the
abstract actions. Such interleavings would be undesirable. The
existence of the required order on the abstract actions can be
guaranteed by a modified form of serializability. First, let us
say that actions A and B conflict if either A or undo(A) does
not commute with B. Next, let us say that a schedule of
concrete actions implementing a schedule of abstract actions is
serializable if the schedule can be transformed to a serial
schedule by swapping non-conflicting actions. (This is a ver-
sion of conflict-preserving serializability.) We require
serializability at each level of abstraction. That is, if we
treat the sequence of actions executed at a level as tran-
sactions and consider the schedule of concrete actions implemen-
ting them, the schedule is serializable. It follows from a
result in BBGLS that this level-by-level form of
serializability guarantees that the top-level state resulting
from an execution is the same as the top-level state resulting
from some serial execution. It also follows from this level-by
level serializability that a partial order can be defined on the
abstract actions at each level. We do this inductively: the
partial order on the abstract actions at the lowest level is
given by the depends on relation. It can be shown that if abs-
tract actions A and B conflict, then so must at least one of
their children, so that conflicting abstract actions will be or-
dered. Thus we can define the depends on relation at the next
higher level.

- 9 -

Final Project Report 	 March 31, 1985

A result in GGM establishes that the abstract state
resulting from a history of operations which is level-by-level
serializable, recoverable, and revokable will be the same as the
abstract state resulting from the - history after all aborted
operations have been deleted. And from the above-cited result
in BBGLS , it follows that the abstract state will be the same
as that resulting from a serial execution of the actions which
were not aborted.

Final Project Report 	 March 31, 1985

The Fite Mignation AtgoAithm

An algorithm described in GM3 guarantees reliable migra-
tion of files, by use of a token scheme in which a site having a
token is prohibited from deleting its copy of the file. We
envision a distributed system in which each site having a copy
of the file may either send a new copy to another site or delete
its own copy. The process of sending a new copy is controlled
by a commit protocol, which guarantees that if both sites are
"up" throughout the execution of the protocol then both sites
will have a copy on completion of the protocol. Otherwise, the
site originally having a copy will still have a copy, but the
other site may or may not have a copy depending on when the
failure occurred.

We assume that the file must be protected from any number
of site failures less than a given number k. To guarantee this,
we guarantee that there are always k copies of the file in the
system (some of which may be at failed sites, but at least one
of which is necessarily at a running site). This is achieved by
giving tokens to k of the sites which have a copy of the file.
No site having a token may delete its own copy of the file
without first sending the token to a site having a copy of the
file but no token. (If all sites having copies also have

• tokens, it will be necessary to make a new copy at a site not
having one.) A commit protocol similar to the protocol for
copying the file is used to send the token. If both sites are
still up when the protocol is complete, then the token has been
copied successfully and the sending site can now delete the
token and the file.

There may eventually be more than k tokens in the system
due to the indeterminate nature of the completion of the commit
protocol if there is a failure while it is running. To
eliminate them, each of the k tokens is given a unique ID and
each recovering site is required to eliminate its token if a
token of the same ID exists at a running site while it is
recovering. No commit is required to accomplish this. Instead,
if any such token is detected, it simply eliminates its own.

Two additional rules are required to guarantee that all
running copies are up-to-date:

(1) A recovering site which has a token gets a copy
from a running site and a recovering site which does
not have a token throws away its copy;

(2) Every write operation writes available all copies
of the file at sites having tokens.

The performance study of file allocation methods, which is disc-
ussed in the next section, assumes that the above algorithm is
used to migrate files while the system is running. Use of such
an algorithm makes decentralized control of file allocation,

Final Project Report 	 March 31, 1985

using heuristics based only on the usage at individual sites,
feasible. We hypothesize that under some circumstances, decen-
tralized control of file allocation will be more effective than
centralized.

Final Project Report 	 March 31, 1985

nacement and Attocation o6 Rezmace4

The placement algorithms described in FGL address the
problem of locating a number t of identical resources (one
example would be redundant copies of a file) at nodes of a tree
so as to minimize the total expected cost of servicing a set of
requests arriving randomly at nodes. The cost of servicing a
single request is defined to be the tree distance from the
requesting node to the node containing the resource satisfying
the request. We bound the cost of optimal placements by finding
simple placements whose total cost differs from optimality by at
most the number of edges in the tree. For any fixed tree T, the
cost of these placements grows as 0(sqrt(t)), where the constant
implicit in the "0" notation dpends on the size and shape of T.
In the case of balanced trees with k leaves, that constant is at
most sqrt(2k/pi).

Even though characterizing the exact cost of optimal
placements appears to be difficult, we show that they can be
found in time 0(mt), where m is the number of edges in the tree.
In the case of a complete (rooted) tree of degree d with a sym-
metric probability of request arrivals, an optimal placement can
be found in time 0(Min l,log t +t) where 1 is the height of the
tree. Moreover, the placement itself is symmetric. A whole
placement (one in which an integral number of resources are
placed at each node), can also be found in the same time.

In LGFG , an algorithm is described which allocates
resources to requests as the requests arrive at random nodes of
the tree. The central feature of the algorithm is its locality.
The algorithm searches certain nearby nodes of the tree first
before proceeding to search for resources at greater distances.
In analyzing this algorithm, we were able to prove a difficult
and surprising result about the expected cost of the allocations
it produces. The allocation of resources occurs as requests
actually arrive in the network and thus may not be optimal since
information about future arrivals is not available.
Surprisingly, however, the expected response time is a non-
decreasing function of request interarrival time. Therefore,
the worst case occurs when requests come in so far apart that
they are processed sequentially. Analysis shows that the ex-
pected response time in this case is bounded by a constant, in-
dependent of the size of the network.

Work is ongoing to extend the methods of analysis used in
the expected cost analysis to concurrency control and recovery
algorithms for distributed systems.

Final Project Report 	 March 31, 1985

Penlionmance Studiu

A system (SORCERER) for simulating distributed database al-
gorithms has been designed, as described in GM2 . The novelty
of SORCERER is that any component of the system may be simulated
at varying levels of detail without altering other components of
the system. For example, the validity of using probability dis-
tributions to model the resources utilized by a commit protocol,
rather than encoding the protocol, may be tested directly.
Database protocols may be encoded in SORCERER as 4cAipt4, which
are a restricted form of procedure. This SORCERER combines
flexibility both simplicity.

The simulation study of the scheduling protocols proposed
in GGST has been carried out, as described in GM1 , with
somewhat surprising results. In comparing the realistic and
optimistic protocols we found that although in many cases the
throughput for the optimistic protocol is slightly higher, it
suffers more performance degradation on an unreliable, low
capacity system. The pessimistic protocol had surprisingly poor
performance. Although its throughput was quite good when there
are a small number of writes compared to the number of reads, it
was normally in a dead heat with the paranoid protocol. When
there are many write operations, the pessimistic protocol is
nearly an order of magnitude worse than the realistic protocol.
Hence if we were to rank protocols in order of throughput, we
would have to say that the realistic protocol edges out the
optimistic protocol for first place, while the pessimistic and
paranoid protocols are in a dead heat for a distant last place.
We might expect :that we would pay for the throughput of the
realistic protocol with the extra space for multiple versions of
written data values. In comparison with the pessimistic
protocol, this is not so: the queues of blocked writes, in the
pessimistic protocol, will require about the same amount of
space as the multiple versions in the realistic protocol.

A queuing network model of the execution of database tran-
sactions has been studied and validated against the simulation.
The most interesting feature of this model is that it can be
used even when transactions (i.e., the customers) must hold mul-
tiple resources simultaneously. It is shown in GM1 that the
only assumptions necessary to use this analysis are (1) that the
number of locks held and the waiting time of a blocked transac-
tion can be closely approximated by their means and (2) that the
service rate increases linearly with the number of transactions.
The result gives a close approximation to the steady state of
the system, where the state is a vector n1,...,nk,b1,...,bk ,
ni is the number of transactions executing their ith operation,
and bi is the number of transactions blocked before their ith
operation. From the steady state, we can compute all of the in-
teresting measures such as throughput, number of blocked tran-
sactions, number of locks held, space required for queues or
versions, and so forth.

- 14 -

Final Project Report 	 March 31, 1985

Finally, a simulation study has been designed to compare
decentralized to centralized control of file allocation. A
single central site which has full knowledge of usage of the
copies of a file can often come close to an optimum allocation,
but the heuristics for doing so are relatively expensive.
Furthermore, the central site incurs extra communication costs
when it gathers usage information and controls file movement.
while the system is running. The latter method is made possible
by the algorithms described above for dynamic migration of files
in a distributed system.

Final Project Report 	 March 31, 1985

BibZiogAaphy

A Allchin, James E. An AAchitecturte Lox Retiabte DatAibuted
Sy4tem4, Ph. D. dissertation, Georgia Tech Technical Report
GIT-ICS-82-23, 1983.

BBGLS Beeri, C., P.A. Bernstein, N. Goodman, M. Y. Lai, and
D. Shasha. "A Concurrency Control Theory for Nested Tran-
sactions", PAoceeding4 o6 the 1983 ACM SIGACT/SIGOPS Sympo4ium
on PAincipte4 of Di4tAibuted Computing, August 1983.

FGL Fischer, Michael J., Nancy D. Griffeth, and Nancy A.
Lynch. "Optimal Placement of Identical Resources in a Tree", to
appear in InioAmation and Contnot.

GGM Graham, Marc H., Nancy D. Griffeth, and J. Eliot B. Moss.
"Recovery of Actions and Subactions in a Nested Transaction
System", Georgia Tech Technical Report GIT-ICS-84/12, March
1984.

GGST Graham, Marc H., Nancy D. Griffeth, and Barbara Smith
Thomas. Reliable Scheduling of Transactions on Unreliable Sys-
tems, PAoceeding4 oi the ACM-SIGACT/S1GMOD Sympozium on
PAincipte4 oi Database Sy4tem4, April 1984.

G Griffeth, Nancy D. "Two Approaches to Reducing the Overhead
of Recovery from Transaction Failures", to appear in Databa4e
Engineening.

GM3 Griffeth, Nancy D., and Martin Maldonado. "File Migration
Algorithms for Decentralized File Allocation", Georgia Tech
Technical Report GIT-ICS-85/10, April 1985.

GM1 Griffeth, Nancy D. and John. A. Miller. "Performance
Modeling of Database Recovery Protocols", PAoceeding4 o6 the
IEEE Sympo4ium on RetiabiLity in Di4tAibuted Soitwalce and
Databa4e Sy4tem4, Oct 15-17 1984; also, to appear in IEEE
TAan4action4 on Sotitwane Engineening, June 1985.

GM2 Griffeth, Nancy D., and Magdi Morsi. "Simulation of Concur-
rency Control and Recovery Protocols for Distributed Database
Systems", Pnoceeding4 ofi IEEE Iniocomm 84, Apr 9-12 1984. H
Hadzilacos, Vassos. "An Operational Model of Database System
Reliability", PAoceeding4 o6 the 1983 SIGACT/SIGOPS SympOdiUm on
PAincipte4 o6 Di4tAibuted Computing, August 1983.

K Korth, H. F. "Locking primitives in a Database System",
JouAna o6 the ACM, vol. 30 no. 1, January 1983.

KR Kung, H. T., and J. T. Robinson. "On Optimistic Methods
for Concurrency Control", ACM TAan4action4 on Database Sy4temz,
Vol. 6 No. 2, June 1981.

LGFG Lynch, Nancy A., Nancy D. Griffeth, Michael J. Fischer,

- 16 -

Final Project. Report 	 March 31, 1985

and Leo J. Guibas. "Probabilistic Analysis of a Network
Resource Allocation Algorithm",, to appear in InimMatiOh and
Contxo.e.

P Papadimitriou, Cristos H. "The Serializability of Concurrent
Database Updates", JOuhha 06 the ACM, vol. 26 no. 4, 1979.

SS Schwartz, Peter M., and Alfred Z. Spector. "Synchronizing
Shared Abstract Types", ACM Tnansactions on Computers Sy4tem4,
vol. 2 no. 3, August 1984.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

