
GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

11:0.1 	th ■ IINISTRATION DATA SHEET

ORIGINAL 	REVISION NO. 	

Project No. G-36-661 (continuation of 0-36-636) 	 DATE 	10/29/81

x

ICS R. A. Demillo 	 School/Lab Project Director: 	

Sponsor: Office of Naval Research; Arlington, VA

Type Agreement: Contract No. N00014-79-C-0231, Modification No. P00002

Award Period: From 	9/1/81 	To 1/31/Bir

Sponsor Amount: 	$489,887 (Mod. 2 only)

Cost Sharing: 	N/A

Title: Software Test and Evaluation Study Phases I and II: Survey and Analysis

(Performance) 3/31/83 	(Reports)

Contracted through:

GTRUCIER

OCA Contact 	Leamon R. Scott ADMINISTRATIVE DATA

1) Sponsor Technical Contact:

Dr. Robert Grafton

ONR 715

Broadway

New York, N.Y. 10003

Defense Priority Rating: DO—C9

2) Sponsor Admin/Contractual Matters:

Office of Naval Research

206 O'Keefe Bldg.

Georgia Tech

Atlanta, GA 30323

Attn: Tom Bryant

Security Classification: 	N/A

RESTRICTIONS

See Attached Government 	Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel requires sponsor

approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with Government; except that: items costing less than $1K vest w/GIT

upon acquisition if prior approval to purchase is obtained from C.O. items costing $1K
or more may vest w/GIT as determined by the ACO (ONR).

COMMENTS:

COPIES TO:

Administrative Coordinator
Research Property Management
Accounting
Procurement/EES Supply Services
FORM OCA 4:781

Research Security Services
Reports Coordinator (OCA)
Legal Services (OCA)
Library

EES Public Relations (2)
Computer Input
Project File
Other

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date June 12, 1985

Project No. 	G-36-661 	 School/KIM ICS

Includes Subproject No.1s) A-2568 (Established Under Prior Project G-36-636)

Project DirectorIs) 	Dr, R.A. Demillo GTRC / GON

Sponsor 	Office of Naval Research

Title 	Software Test and Evaluation Study Phases I and II: Survey and Analysis

Grant/Contract Closeout Actions Remaining:

n None

rn Final Invoice or Final Fiscal Report

Closing Documents

Final Report of Inventions

Govt. Property Inventory & Related Certificate

ri Classified Material Certificate

1::=I Other

Continues Project No. G-36-636 	Continued by Project No.

COPIES TO:

Project Director 	 Library
Research Administrative Network 	 GTRC
Research Property Management 	 Research Communications 12)
Accounting 	 Project File
Procurement/GTRI Supply Services 	 Other 	Heyser
Research ecuritv Services
,eports Coordinator 	 Jones

Legal Services

Effective Completion Date: 1/31/84

Ix J

(Performance) 3/31/84 (Reports)

FORM OCA 69.285

FTWA

SUBMITTED TO
THE OFFICE OF THE SECRETARY OF DEFENSE

DIRECTOR DEFENSE TEST AND EVALUATION
= AND 	-

E OFFICE OF NAVAL RESEARCH
ONR CONTRACT NUMBER N00014-79-C -0231

NFORMAT1ONAND MPUTER at:waft/at,'
INSTITUTE fTECHNOLOGY

4TLANTA,

OSD/DDT&E
SOFTWARE TEST AND EVALUATION PROJECT

PHASES I AND II
FINAL REPORT

Volume 1
Final Report and Recommendations

by

R. A. DeMillo
and

R. J. Martin

SUBMITTED BY
GEORGIA INSTITUTE OF TECHNOLOGY

TO

THE OFFICE OF THE SECRETARY OF DEFENSE
DIRECTOR DEFENSE TEST AND EVALUATION

AND

THE OFFICE OF NAVAL. RESEARCH

FOR

ONR CONTRACT NO. N00014-79-C-0231
Subcontract 2G36661

June, 1983

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director Defense Test and
Evaluation under Office of Naval Research Contract N00014-79-C-0231.

Comments should be directed to: 	Director Defense Test and
Evaluation (Strategic, Naval, and C3 I Systems), OSD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Volume 1: Final Report and Recommendations
Volume 2: Software Test and Evaluation:

State-of-the-Art Overview
Volume 3: Software Test and Evaluation:

Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and

Evaluation
Volume 6: Tactical Computer System Applicability Study

PREFACE AND ACKNOWLEDGEMENTS

This series of documents represents the final report and
recommendations for the Software Test and Evaluation Project support
contract. This contract is funded by the Office of the Secretary of
Defense/Director Defense Test and Evaluation and administered by the
Office of Naval Research. The prime contractor is the Georgia
Institute of Technology. Subcontracts to support this effort have
been let to Control Data's Atlanta Research Facility, Clemson
University, and a number of independent consultants. The contractors'
efforts began in the Fall of 1981 and were completed in the Spring of
1983.

Admiral Isham Linder, Director Defense Test and Evaluation, Mr.
Charles Watt, Deputy Director Defense Test and Evaluation, Mr. Donald
Greenlee of DDT&E, and Dr. Robert Grafton of ONR have provided support
and encouragement. Dr. Edith Martin, Deputy Under Secretary of
Defense for Research and Advanced Technology, not only participated in
the initial planning for STEP, but has made the resources of her
office available.

In addition to these individuals, several organizations have made
generous contributions to the progress of STEP. The National Security
Industrial Association (NSIA) has been an essential partner. General
Wallace Robinson and the staff of NSIA headquarters provided support
and sponsorship of a National Conference on Software Test and
Evaluation. Mr. Ralph San Antonio of NSIA and Dynamics Research
Corporation served as chairman of the conference. Mr. San Antonio
also played a key role in coordinating NSIA participation in the data
gathering phase.

A number of industrial organizations made important contributions
by opening their facilities to the study team surveying contractor
practices. A guarantee of anonymity prevents acknowledgement of these
organizations and individuals by name. However, it is unlikely that
our goals could have been met without the collegial and professional
cooperation of these groups. We thank them for their time and
patience. In addition, dozens of DoD and military personnel and
civilian professionals were interviewed during the data gathering
effort. Their hospitality and spirit of cooperation eased a difficult
task for the survey teams.

Dr. Richard A. DeMillo, Principal Investigator

Volume 1

Final Report and Recommendations

Table of Contents

Page

Executive Summary 	 1

1. Introduction 	 8

2. Rationale 	 10

3. The Software Test and Evaluation Project 	 15

4. State-Of-The-Art Assessment 	 16

4.1. Test Methodologies 	 17
4.1.1. Test Strategies 	 17
4.1.2. Testing Techniques 	 17

4.2. Testing Tools 	 21

4.3. New Technology 	 23

4.4. Summary of the State-of-the-Art 	 24

5. Assessment Of Current Defense Practices 	 25

5.1. Survey Methodology 	 26

5.2. Survey Results 	 27
5.2.1. HQ and Development Commands 	 27
5.2.2. Project Offices 	 28
5.2.3. OT&E Agencies 	 29
5.2.4. Defense Contractors 	 29

5.3. Summary of Current Defense Practices 	 33

6. Findings And Recommendations 	 34

6.1. Modification of DoDD 5000.3 	 35

6.2. Other Recommendations to DDT&E 	 38

6.3. Recommendations Addressed to the Military Services 	39
6.3.1. State-of-the-Art Improvements 	 39
6.3.2. Lifecycle Integration 	 41
6.3.3. Test Planning 	 41
6.3.4. The Testing Process 	 44
6.3.5. Test Evaluation 	 50

6.4. Tri-Service Recommendations 	 55

7. Concluding Remarks 	 56

Appendix: Project Organization and Milestones 	 58

STEP - Final Report and Recommendations

EXECUTIVE SUMMARY

The Software Test and Evaluation Project (STEP) was initiated in
1981 by the Director Defense Test and Evaluation. The primary objec-
tive of STEP is to develop new DoD guidance and policy for the test
and evaluation of computer software for mission-critical applica-
tions. A number of subsidiary goals have also been established for
STEP. Principal subgoals include the stimulation of tool development,
the support of policy development, and the identification of research
issues and directions in the area of software testing.

STEP is conceived in four phases: information gathering, analysis,
assessment of feasibility, and policy development. The chief goal of
Phases I and II has been to determine the feasibility of modifying and
reformulating Defense policy for the test and evaluation (T&E) of
software. In support of the feasibility assessment, a broad overview
of the state-of-the-art and the current state of Defense practices in
software T&E was constructed. Input was sought from DoD components,
industrial representatives, selected experts and consultants, and spe-
cially convened workshop and symposium participants. In addition,
extensive surveys of both the software T&E literature and vendors of
automated software T&E tools were prepared. These sources provided a
consistent view of software T&E needs and capabilities. Phases III
and IV of STEP are yet to be completed. Phase III consists primarily
of the assessment of whether new policy guidance can be formulated.
Phase IV represents the actual development of policy statements and
implementation strategies.

RECOMMENDATIONS

We propose 28 specific recommendations for improvements in soft-
ware test and evaluation. These recommendations have been formulated
by the information gathering and analysis mechanisms described above
and have been influenced by the widest possible participation from
industry, academia and the Military Services.

MODIFICATIONS OF DODD 5000.3

The first three recommendations below address modifications to
DoDD 5000.3 and the Test and Evaluation Master Plan (TEMP). The
effects of the recommendations are to (1) establish a chain of T&E
plans and evaluation criteria that begins at the level of system test
objectives and proceeds through the detailed testing of software
components within development organizations, (2) insert existing
technology into the T&E process using software that represents the
highest decision risk as the focus of the software test plan, and (3)

1

STEP - Final Report and Recommendations

establish the TEMP as the major planning document for software testing
and ensure the early incorporation of software test issues into the
overall test program.

1. DoDD 5000.3 (Section D, POLICIES AND RESPONSIBILITIES, Part 6
"Test and Evaluation of Computer Software") should be modified to
include the following requirements:

a. Software components implementing critical functions shall be
identified. 	These components shall be tested throughout the
development/integration portion of the software lifecycle. 	Re-
sults of tests shall be objective, repeatable, available to subse-
quent test groups, and interpretable in terms of overall system
objectives. -

b. The level of test of software components that implement criti-
cal functions shall be sufficient to demonstrate that the appro-
priate software evaluation criteria goals for that component are
met or exceeded. The level of tests for these components should
be sufficient to achieve a balanced risk with the hardware on
which they are implemented in an operational environment.

2. DoDD 5000.3 (Enclosure 2) should be modified to require the incor-
poration of software-specific test and evaluation issues in the TEMP
for systems with mission-critical software components. Deviations
from the software-specific portion of the TEMP should be subjected to
critical review. The portions of the TEMP which should include
software-specific information are:

Part I - Description, 2. System, a. Key functions: Should also
include a mission/function matrix relating the primary functional
capabilities of each critical software component that must be
demonstrated by testing to the mission(s) to be performed and
concept(s) of operation.

Part I - Description: 	Should include a new section entitled
Required Software Characteristics following Required Operational
and Technical Characteristics (Items 3 and 4). 	This section
should contain a list of the key software characteristics, goals,
and thresholds.

Part I - Description, 5. Critical T&E Issues: Should include a
new sub-section, c. Software Issues. This sub-section should
briefly describe key software issues that must be addressed by
testing.

Part II - Program Summary, 1. Management: Should also highlight
arrangements between participants for software test data sharing.

1

2

STEP - Final Report and Recommendations

Part II - Program Summary, 2. Integrated Schedule: Events to be
displayed on the schedule should also include key software sub-
system demonstrations and software testing tools availability
dates.

Software T&E Outline: This new part should follow Part IV - OT&E
Outline. This part should discuss all planned software T&E, for
software components which implement critical functions, in similar
format and detail as that described in the DT&E Outline (Part
III). The Software T&E to Date section, which sets the stage for
discussion of the planned software T&E, should summarize the soft-
ware T&E already conducted and emphasize software events and re-
sults related to required software characteristics and critical
software issues. This section and the Future Software T&E section
should discuss the degree to which the test environment is repre-
sentative of the expected operational environment. The section on
Software T&E Objectives should present the major objectives that,
when achieved, will demonstrate that the software development
effort is progressing satisfactorily. The objectives either
should be presented in terms of, or related to, the software char-
acteristics. The Software T&E Events/Scope of Testing/Basic
Scenarios section should relate the testing to be performed to -57
Software T&E Objectives. The Critical Software T&E Items section
should highlight all items the availability of which are critical
to the conduct of adequate software T&E prior to the next decision
point. If appropriate, these critical items should be displayed
on the Integrated Schedule. When the required software T&E infor-
mation is contained in Parts III and/or IV, references may be made
to those sections, as appropriate.

Part VI - Special Resource Summary, 1. Test Articles: Should
also identify as test articles each software component that is
identified in the mission/function matrix and key software sub-
systems shown in the Integrated Schedule.

Part VI - Special Resource Summary, 2. S ecial Su ort Require-
ments: Should a so identify software test too s Inc u nig
iiiiiTators) required, justify each tool identified (describe how
the tool supports the software test objectives, achieves a speci-
fied level of test, etc.), and briefly describe the steps being
taken to acquire each tool.

3. DoDD 5000.3 (Enclosure 1) should be modified to include the
following terms and concepts:

Software Lifecycle. 	Extends from requirements definition and
design through operation and maintenance.

3

STEP - Final Report and Recommendations

Level of Test. Used in conjunction with a systematic software
test methodology and is used to rank the thoroughness of a test
with respect to the goals set for the evaluation criteria (e.g.,
95% statement coverage vs. 50% statement coverage).

Software Evaluation Criteria. Standards by which achievement of
required software characteristics, or resolution of software
issues may be judged.

Required Software Characteristics. Software parameters that are
primary indicators of conformance to written requirements/specifi-
cations and operational suitability and effectiveness.

OTHER RECOMMENDATIONS TO DDT&E

Whereas the implementation of the recommendations presented above
can be accomplished in the near-term with few changes in the TWA'
process and only slight modification of the TEMP, the next three
recommendations address issues that cannot be resolved so easily.
However, if we are to realize the full benefits of the modifications
to DoDD 5000.3, these recommendations must also be implemented .

4. DDT&E should initiate or participate in an on-going program of
software testing tools development, packaging, evaluation, distribu-
tion, and support to provide a warehouse, catalog, or test environment
of approved testing tools which can be referenced in the software
portion of TEMP without acquisition or further approval.

5. DDT&E should define a model of the software testing process which
is well-integrated with the software development lifecycle. In the
event that software T&E cannot be accommodated by the DT&E/OT&E/PAT&E
structure, a separate software T&E program should be developed.

6. DDT&E should define software evaluation criteria for software in
the following categories: (1) necessary testing on support software,
(2) risk reduction on software that is required for system operation
but does not directly implement mission-critical functions, (3) test-
ing of other software design components. This definition should form
the basis for a quantitative risk model of the software T&E process to
be used in the evaluation of the overall software testing effort.

RECOMMENDATIONS ADDRESSED TO THE MILITARY SERVICES

Implementation of the recommendations listed above requires a co-
ordinated examination of software T&E technology and practice by:DDT&E
and the Military Services.

4

STEP - Final Report and Recommendations

The following additional recommendations are intended to (1) im-
plement DD&TE recommendations, (2) support DDT&E recommendations in
areas that are not addressed directly by DoDD 5000.3, and (3) improve
the software testing process.

State-of-the-Art Improvements

7. Major initiatives to improve software technology should include
early provisions for software test and evaluation.

8. The Services should continue research funding at an accelerated
pace for software test and evaluation methodologies and the tools to
support these methodologies. 	Research should also concentrate on
establishing usage contexts for the methodologies, cost/benefit
analyses, 	and experimental 	determination of error detection
capabilities.

A

9. A major focus of military organizations responsible for software
development environments should be the identification, qualification,
and distribution of tools which implement state-of-the-art testing
techniques.

10. AJPO And the affected Military Services should begin now to modify
and expand, APSE development plans to include substantial provisions
for test support environments. Test support tools should be made
available in the first generation of APSE's that are used to develop
software-intensive systems.

Test Planning

11. Program Offices should encourage and support the development of
written test plans for tests to be conducted during early phases of
software development. These plans should (1) contain a specification
of what constitutes an acceptable approach to testing, (2) explain how
the approach adopted supports objectives of the higher level tests,
(3) be adhered to rigorously by Program Managers, (4) be critically
reviewed for deficiencies, and (5) reflect a realistic, worst-case
estimate of the scope and extent of the required testing effort.

12. Project offices should require documentation of unit and module
tests. Documentation requirements should include resource require-
ments, simulation requirements for inputs, analysis requirements for
outputs, test case ,ross references to system requirements and suffi-
cient supporting information to allow the reconstruction and repeti-
tion of tests.

5

STEP - Final Report and Recommendations

13. Project offices should ensure that provisions are made for regres-
sion testing in all test plans. In the absence of a major improvement
in the state-of-the-art in regression testing, auditing and retesting
procedures for all software, specification, and requirements modifica-
tions and updates should be required.

14. When IV&V is required by the project office, the involvement of
the IV&V contractors should be planned and integrated into the overall
testing effort. Project offices should ensure that test plans contain
provisions for IV&V involvement.

The Testing Process

15. Project offices should set goals for the testing of the total
software system, including those components not specified in the
TEMP. These goals should be incorporated into a written test plan as
a set of software test objectives. The nature and extent of the test-
ing required for these components should be sufficient to achieve a
balanced risk with mission-critical components.

16. Development test organizations should resolve major software
deficiencies before the start of dedicated OT&E.

17. Operational test documentation and results should be an integral
part of the overall software test database.

18. Project offices should ensure that unit and module tests exercise
critical functions with a systematic test methodology. In selecting a
test methodology, primary considerations should be the appropriateness
of the methodology, known cost/benefit ratios, established error
detection capabilities of the methodology, and the extent to which
test results are interpretable in terms of software test objectives
set forth in the TEMP. The relationship between tests performed and
the errors to be discovered must be explicit in the test methodology.
This relationship should be a principal consideration in determining
the appropriateness of the test.

19. The Military Services should encourage and support the development
of testing techniques that take into account quality measurements
other than correctness.

20. Implementation of effective practices for software T&E require the
Military Services to initiate on-going programs to develop, package,
evaluate and maintain testing tools. Included in this effort should
be a program to identify and qualify tools for early use in the
development cycle. 	The qualification requirements should specify
usage contexts for specific tools and comparative analyses of costs
and effectiveness of individual tools should be provided. Provisions
should be made for generalizing and improving tools which implement
state-of-the-art test techniques and strategies.

6

STEP - Final Report and Recommendations

21. The Military Services through their project offices should consid-
er reevaluating contract funding patterns to allow special purpose
tools developed in support of the contract deliverables to become
deliverable items under the same contract.

22. DDT&E in coordination with the management of STARS and the Mili-
tary Services should investigate the possibility of including the
software T&E tools warehouse in one or more STARS task areas. In
particular, the process of identifying, packaging, qualifying and
distributing test tools for use in support of test plan requirements
should be a key role for the STARS Software Enginerring Institute or
its functional equivalent.

Test Evaluation

23. The Military Services and DOTE should develop quantitative in-
dices of software testing progress during development. Quantification
should treat both costs and risk: (1) Reliable cost/benefit measures
for testing software should be developed and the cost/effectiveness of
testing tools should be established. (2) Quantitative risk analysis
techniques for software errors should be developed. (3) Cost and risk
should be used as essential factors in determining quantitative
indices.

24. Military labs should expand their efforts to provide an improved
data gathering, reduction, and measurement capability to project
offices and developers. Automated data logging and data base systems
should be developed to track and record errors on software-intensive
systems. 	The relationship between measurable characteristics of
software products and the processes used to produce them should be
validated. Measurable characteristics which are reliable predictors
of software quality should be applied to enhance the evaluation
process.

25. An effective software quality assurance standard should be
developed.

26. The Military Services should determine the cost/benefit aspects of
IV&V and recommend the conditions under which IV&V should be required.

27. DOM and the Service Program Offices should begin now to develop
an integrated decision support system for software T&E that combines
functionally organized test information and evaluations with data that
is required for major programmatic decision points.

Tri-Service Recommendations

28. The Military Services should develop tri-service standards to make
unified approaches to software development, testing and evaluation
possible.

7

STEP - Final Report and Recommendations

CHAPTER 1

INTRODUCTION

The Software Test and Evaluation Project (STEP) was initiated in
1981 by the Director Defense Test and Evaluation. The primary objec-
tive of STEP is to develop new DoD guidance and policy for the test
and evaluation of computer software for mission-critical applica-
tions. A number of subsidiary goals have also been established for
STEP. Principal subgoals include the stimulation of tool development,
the support of policy development, and the identification of research
issues and directions in the area of software testing.

STEP is conceived in four phases: information gathering, analysis,
assessment of feasibility, and policy development. This report is
Volume 1 of a six volume series prepared under a contract to the
Georgia Institute of Technology in support of the first two phases.
The remaining volumes in the series are the following:

Volume 2: Software Test and Evaluation:
State-of-the-Art Overview

Volume 3: Software Test and Evaluation:
Current Defense Practices Overview

Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and Evaluation
Volume 6: Tactical Computer System Applicability Study

The organization and contents of the overall report will be discussed
in the sequel.

In this volume, we will present the rationale for seeking improved
DoD guidance in software test and evaluation, the organization of STEP
and its support contracts, a summary of our data and information
gathering efforts, and Phase I and II findings and recommendations.

The chief goal of Phases I and II has been to determine the feasi-
bility of modifying and reformulating Defense policy for the test and
evaluation (T&E) of software. In support of a feasibility assessment,
a broad overview of the state-of-the-art and the current state of
Defense practices in software T&E was constructed. Georgia Tech and
its subcontractors, Control Data and Clemson University, sought input
from DoD components, industrial representatives, selected experts and
consultants, and specially convened workshop and symposium partici-
pants. In addition, extensive surveys of both the software T&E
literature and vendors of automated software T&E tools were prepared.
These sources provided a consistent view of software T&E needs and
capabilities.

STEP - Final Report and Recommendations

Our findings support the view that there is a need for modified
and improved policy guidance for the testing of software systems
destined for embedded and mission-critical military applications.
Test and evaluation is a risk reducing activity. The Director Defense
Test and Evaluation (DDT&E) is charged with overall responsibility for
testing in the Department of Defense. DDT&E reviews the results of
testing on major weapon and support systems, assesses the adequacy of
tests and planned tests and conveys these assessments to decision
makers in the DoD. The assessment of test adequacy is translated into
statements of risk that are used to determine whether a system is
ready to advance from one programmatic phase to the next. Assessing
the adequacy of tests of more traditional system components is already
a difficult activity. Software -- a critical system component for
which there is no accepted quantitative test/risk model -- presents
even more fundamental problems in planning tests to comply with
guidance and reducing the results of tests to an objective body of
information which can be used to assess past and planned testing.

Improved technology makes a more systematic and rigorous approach
to software testing feasible. In order to be most effective, this
approach must be applied in a planned and coordinated fashion at all
phases of the software development process, beginning at the earliest
design stages and proceeding through operational testing of the inte-
grated system. On the other hand, like all of the software sciences,
software T&E is in its infancy. With appropriate attention and
support, the state-of-the-art in software testing can be improved
considerably. Finally, the acquisition environment in which software
components are developed can be improved. Like most T&E activities,
software testing is subjected to budget and schedule constraints that
often compress testing unrealistically. Alternative development
cycles and acquisition strategies that force the examination of soft-
ware components in proportion to their importance to the overall
objectives of the system will give some near-term relief in these
areas.

We recommend below that principal DoD guidance policy, and
associated standards, regulations, and Service practices be modified
along these lines, and that appropriate support be considered for a
major technology upgrade to implement these modifications.

9

STEP - Final Report and Recommendations

CHAPTER 2

RATIONALE

The role of software in escalating the cost and driving down the
reliability of military systems has been very visible in recent
years. Virtually every major defense system planned or fielded over
the last decade has at least one subsystem consisting of an embedded
computer controlling some mission-critical function. The applications
literally cover the domain of computer applications. Critical func-
tions of the F/A-18 aircraft are controlled by an avionics suite and
the M-1 tank by a fire control system. Complex information gathering,
processing and retrieval networks are major components of the AEGIS
fleet air defense system and the TACFIRE ground tactical system. The
guidance and control functions of such systems as the MAVERICK air-to-
ground missile are driven by embedded computers. The range of tech-
nology spanned by these applications is also broad. PATRIOT contains
microprocessors, while WWMCCS consists of distributed mainframe
computers suitable for general purpose computation. In each of these
instances, the computer subsystems contain two components of equal
importance to the overall operation of the system: hardware and
software.

Although hardware and software contribute in equal measure to the
successful implementation of system functions, there are relative
imbalances in their treatment during system development. In 1974, the
Defense Science Task Force on Test and Evaluation observed: "Whereas
the hardware development was ... monitored, tested, and regularly
evaluated, the software development was not." Since software is
essential to the overall objectives of so many important Defense
systems, inadequacies in evaluating software components -- especially
when the failure of a software component contributes to the failure of
a major system -- tend to be highly visible. So visible, in fact,
that the test and evaluation of software has attracted attention at
the highest levels. For example, the Secretary of Defense has
directed the services to "... give priority to development of tools
and techniques for testing of embedded computers and software...
Testing of software should be sufficient to achieve a balanced risk
with the hardware of the same system ..." The Secretary has also
stated that "These advances are required if the activities are to
provide realistic assessments of system operational capability ..."

Current estimates of increased software costs arising from incom-
plete testing help to illustrate the dimensions of the problem (see
Figure 1). Averaged over the operational lifecycle of an embedded
computer system, development costs comprise approximately 30% of the
total costs. The remaining 70% of the lifecycle costs are absorbed in
maintenance. Maintenance activities can include both system enhance-
ments and the repair of errors. These are errors that might have been

10

MANTINANCE
70%

SPECIFICATION
10% DOWN

REQUIREMENTio: 	 S%

DEVEIDPMENT
30%

TUT k INTEGRATE
4as

CODE
• 20%

STEP - Final Report and Recommendations

SOFTWARE
	

SOFTWARE
OPERATIONAL LIFECYCLE 	 DEVELOPMENT LIFECYCLE

FIGURE 1
EMBEDDED SOFTWARE LIFECYCLE COST DISTRIBUTION

11

STEP - Final Report and Recommendations

uncovered by more complete testing during earlier phases. In general,
observers agree that the cost of finding and fixing errors is an
increasing function of the elapsed time from the start of the develop-
ment process. As shown in Figure 2, the relative cost of repairing
errors in software rises dramatically between requirements and speci-
fication phases and the maintenance phase. One investigator estimates
the cost multiplier to be 10**(2d), where d is the elapsed time of the
development effort expressed as a percentage of total development time.

According to the data in Figure 1, costs in the development phase
are distributed as follows: requirements and specification develop-
ment, 20%; design and coding, 35%; test and integration, 45%. Thus,
assuming that half of all maintenance costs are incurred in the repair
of previously undetected errors, approximately one half of the opera-
tional lifecycle costs for embedded applications can be traced
directly to testing activities; that is, either these costs are
incurred by testing or are due to errors left undiscovered by
testing. Of course, there are other cost implications of undetected
errors in military systems. The mission-critical nature of software
in many modern systems means that software which fails during system
operation can pose considerable risk to both the success of the
mission and the safety of personnel.

Primary DoD guidance for test and evaluation derives from DoD
Directive 5000.3. This directive applies to both hardware and soft-
ware components of military systems and sets forth the framework
within which more specific military regulations and standards must
operate. Three provisions of DoDD 5000.3 are particularly relevant to
software testing. First, DoDD 5000.3 states that "Quantitative and
demonstrable performance objectives and evaluation criteria shall be
established for computer software during each system acquisition phase
... Decisions to proceed from one phase of software development to the
next will be based on quantitative demonstration of adequate software
performance through appropriate test and evaluation." Second, DoDD
5000.3 requires that software be operationally tested using "typical
operator personnel." Third, DoDD 5000.3 requires that operational
test and evaluation (OT&E) agencies "participate in software planning
and development to ensure consideration of the operational environment
and early development of the operational test objectives."

For a variety of reasons, existing guidance statements have not
had the desired effect. For example, a key factor is the vagueness of
the concept of "adequate software performance" and the perceived
unavailability of techniques which provide the requisite "quantitative
demonstration." While testing of hardware components may result in a
database of quantitative test results against which reliability and
risk models may be applied, software components are seldom accompanied
by objective evidence of the effectiveness of the testing effort. The
critical issue of "how much testing is enough?" for software and how
that testing should be conducted, reported, and integrated into the
key phases of a major system development has simply not been resolved
to a useful degree. The difficulties in planning tests to comply with

12

cIEP - Pinal Canom+ mnA De......,rnmn...A.,44.........
. .ow 	1....rue i. caieu r■ c ,61Jiiillci MICA t. 10113

RELATIVE COST

RELATIVE COST OF
CORRECTING DESIGN ERA
IN AN OPERATIONAL SYS

I

•

I I I

16

14

12

10

B

6

4

2

0
REQ/SPEC 	DESIGN

	
CODING 	INTEGRATE 	OPERATION

UFECYCLE PHASES

FIGURE 2

RELATIVE COST OF ERROR CORRECTION
13

STEP - Final Report and Recommendations

existing guidance, standards and regulations increase with the number
and complexity of embedded software systems. These difficulties are
highlighted in acquisition environments in which schedules and budgets
squeeze the T&E effort.

In recognition of these problems and the developing software
technology which can address them, STEP was initiated by the Director
Defense Test and Evaluation.

1

14

STEP - Final Report and Recommendations

CHAPTER 3

THE SOFTWARE TEST AND EVALUATION PROJECT

STEP consists of four phases intended to lead to improved DoD
guidance for software test and evaluation. The current report
represents the results of the primary support contracts for STEP
Phases I and II. Phase I was an information gathering effort aimed at
assessing the state-of-the-art and the state of current practice in
software T&E. During Phase I, an extensive survey of known techniques
and tools was compiled. The assessment of the state of current
practice was made by surveying DoD agencies, the Military Services,
program offices, independent test organizations, and selected Defense
contractors. Phase II consisted of an analysis of the information
gathered in Phase I and the formulation of the recommendations which
appear in this report. Phases III and IV of STEP are yet to be
completed. Phase III consists primarily of the assessment of whether
new policy guidance can be formulated. Phase IV represents the actual
development of policy statements and implementation strategies. Thus,
the overall structure of STEP may be represented as shown in the
diagram below.

PHASE I
INFORMATION GATHERING

PHASE II
ANALYSIS

PHASE III
FEASIBILITY ASSESSMENT

Feasible 	 Not Feasible

PHASE IVa
	

PHASE IVb
hORMULATE POLICY
	

TERMINATE PROJECT

The Appendix describes the organization of the support contracts,
the principal milestones of the Phase I and II support efforts, and
the contents of the remaining volumes of this report.

15

STEP - Final Report and Recommendations

CHAPTER 4

STATE-OF-THE-ART ASSESSMENT

Current research in software testing centers almost solely on
testing for correctness; that is, on techniques that raise the users'
confidence that the software functions in accordance with its specifi-
cations. "Testing" refers specifically to the activity of executing
software on data (the test sets) designed to either reveal the
presence of errors or ensure their absence. Therefore, software
testing is distinguished from other activities aimed at increasing
software reliability (such as structured design techniques, formal
program proving, and statistical reliability modelling).

Three aspects of extant research efforts in software testing are
relevant for assessing the state-of-the-art: testing methodologies
(i.e., methodologies for either generating tests or determining the
quality of previously generated test sets), testing tools (i.e.,
automated systems which implement one or more testing methodologies),
and new hardware and software technologies which impact system relia-
bility. In the subsections below, we will briefly outline the state-
of-the-art in each of these three areas. A more detailed treatment of
each of these topics can be found in Volume 2.

16

STEP - Final Report and Recommendations

4.1. TEST METHODOLOGIES

A test methodology consists of two (not always distinct) compo-
nents. The first is a strategy which guides the overall testing
effort, while the second is a testing technique which is applied
within the framework of a test strategy.

4.1.1. TEST STRATEGIES

Module testing is the process of testing logical units of a
program and integrating the individual module tests to evaluate the
overall system. Main considerations in module testing are the design
of test cases and the coordination of testing multiple modules. Test
cases may be constructed from specifications or by analyzing the
module code. Testing strategies corresponding to these approaches are
called black-box and white-box strategies, respectively. There are
two approaches to combining module analysis: incremental and non-
incremental. 	Top-down and bottom-up testing are two incremental
approaches. 	Thread testing is another strategy based on system
requirements. Strategies have also been proposed for testing software
throughout its development. Finally, several new strategies have been
proposed based on an "evolutionary" view of the software lifecycle.
In one approach, systems are constructed as working subsystems
corresponding to critical functions, and these subsystems are subjec-
ted to development and operational tests.

4.1.2. TESTING TECHNIQUES

A variety of testing techniques have been proposed in the litera-
ture (see, e.g., Volume 2). These techniques can be classified as
follows: static analysis, symbolic testing, program instrumentation,
program mutation, input space partitioning, functional program test-
ing, algebraic program testing, random testing, grammar-based testing,
data-flow guided testing, and real-time testing.

STATIC ANALYSIS. In static analysis, the requirements, design docu-
ments, and program code are analyzed without actually executing the
code. Only limited analysis of programs containing dynamic data types
and structures is possible using static analysis. Experimental evalu-
ation of code inspections and walk-throughs has found these techniques
to be effective in detecting from 30% to 70% of the logic design and
coding errors in typical programs.

17

STEP - Final Report and Recommendations

SYMBOLIC TESTING. To test a program symbolically, input data and
program variable values are given formal or "symbolic" values. The
possible executions of a program are also characterized formally. The
execution of the program is then simulated by a symbolic evaluator
which interprets the formal representation of the program and data.
The techniques for building expressions which describe the state of
the symbolic execution of a program lean heavily on techniques
developed for proving program correctness. Studies describing the
effectiveness of symbolic analysis for detecting errors indicate that
it may be an effective technique for moderately large modules.

PROGRAM INSTRUMENTATION. Programs can be instrumented by statements
or routines that do not affect the functional behavior of the program,
but record properties of the executing program. Additional output
statements, assertion statements, monitors, and history-collecting
subroutines may be used to instrument programs. Experimental evalua-
tions of instrumentation techniques indicate that experienced testers
can decrease the debugging time for even complex programs using these
techniques.

PROGRAM MUTATION. Program mutation is a technique for the measurement
of test data adequacy. Test adequacy refers to the ability of the
data to ensure that certain errors are not present in the program
under test. In mutation testing, test data is applied to the program
being tested and its "mutants" (i.e., programs that contain one or
more likely errors). If a program passes a mutation test, then either
the program is correct or it contains an improbable error. Experimen-
tal evaluation of mutation testing indicates that the results of
mutation testing are good predictors of operational reliability.

INPUT SPACE PARTITIONING. A path in a program consists of a possible
flow of control. In path analysis techniques, the input space of a
program is partitioned into path domains: those subsets of the
program input domain that cause execution of the paths. Path analysis
can detect computation, path, and missing path errors. Domain testing
detects many path selection errors by considering test data on or near
the boundaries of path domains. In partition analysis, the specifica-
tion of a program is partitioned into subspecifications. The subspec-
ifications are then matched with domain partitions to increase the
sensitivity of the test. All of these techniques have been shown
theoretically and experimentally to be generators of high quality test
data, although current technology limits their use to programs which
have a small number of input variables.

18

STEP - Final Report and Recommendations

FUNCTIONAL TESTING. In functional testing, the specification of a
program is viewed as an abstract description of its design. Function
and data abstractions are used as guides to identify the abstract
functions of a program and to generate the functional test data.
Functional testing requires the specification of domains for each
input and output variable of the program. Extremal and special values
are the most important values in the domain of a variable. In a study
of errors that occurred in a release of a major software package,
functional testing was effective in detecting 38 out of 42 known
errors.

ALGEBRAIC TESTING. 	In algebraic testing, program correctness is
viewed as an equivalence problem. 	Since the general equivalence
problem is undecidable, programs to which this technique is applicable
must fall in a restricted class of programs for which execution on a
small test set is sufficient to infer equivalence. Applications of
algebraic testing to array manipulation programs, polynomial evalua-
tion programs, and other mathematical programs have appeared in the
literature. Monte Carlo methods exist for algebraic testing proce-
dures which make the technique tractable for many problems.

RANDOM TESTING. Random testing is essentially a black-box testing
technique in which a program is tested by randomly sampling inputs.
Depending on the sensitivity of the analysis desired, the sampling
technique may be independent of the actual distribution of inputs or
may attempt to accurately reflect the distribution of the operational
environment. Random testing is useful in making operational estimates
of software reliability and has some connection to problems arising in
operational testing.

GRAMMAR-BASED TESTING. Formal specifications of some software systems
can be given by state diagrams. By considering the state diagram to
be a description of an automaton, classical machine identification
experiments can be conducted to determine whether or not a program
implementing the automaton does so correctly.

DATA-FLOW GUIDED TESTING. Data-flow analysis is a method for obtain-
ing structural information about programs which has found wide appli-
cability in compiler design and optimization. One result of data-flow
analysis is a set of dynamically meaningful relationships among
program variables. Control flow information about the program is then
used to construct test sets for the paths to be tested.

19

STEP - Final Report and Recommendations

REAL-TIME TESTING. The characteristic phases of real-time software
testing occur during development (on the development "host") and
operational testing (on the operation "target"). Systematic tech-
niques for testing real-time software during development, for the most
part, do not make essential use of the fact that the software is
real-time. Testing an integrated system on a development host re-
quires an environment simulator and devices for controlling on-going
processes. In testing real-time software on target machines, overall
test objectives for the hardware/software system are used, and per-
formance becomes a key observable factor in assessing the result of
the tests. While the literature contains very few systematic tech-
niques for real-time testing, some studies of large-scale, real-time
software systems tests have been published, and these experiences may
generalize to other applications.

20

STEP - Final Report and Recommendations

4.2. TESTING TOOLS

Testing tools may be classified by whether they carry out static
or dynamic analysis of the program under test. Static analyzers are
systems that manipulate source code to reveal global aspects of
program logic, structural errors, syntactic errors, variations in
coding style, and interface consistency. Static analyzers consist of
front end language processors, data bases, error analyzers, and report
generators. Basic operations include data collection, error analysis,
and error report generation. Existing static analyzers differ in
terms of their scope of error analysis, the flexibility of user
command languages, and the nature of error descriptions. Static
analyzers have been used in many reported software development
efforts. Dynamic analyzers, in addition to implementing many of the
techniques described above, are used to generate test data, provide a
convenient test environment, and compare program test output with
expected output.

SYMBOLIC EVALUATORS. 	Symbolic evaluators implement the symbolic
evaluation testing technique. They provide the user with the ability
to input loop and control point assertions and symbolic values for
input variables. They also allow the user to monitor the symbolic
execution of the program.

TEST DATA GENERATORS. A test data generator is a tool which assists
the user in the preparation of test sets. Three types of generators
have been described in the literature: pathwise test generators,
specification-based generators, and random generators. Pathwise test
generators have four basic operations: program construction, path
selection, symbolic execution, and test data generation. Specifica-
tion-based generators provide the user with a language for construct-
ing test case specifications; the system carries out the actual
generation of test files from the test specifications. Random test
generators choose random values from the input domain according to
statistical parameters set by the user.

PROGRAM INSTRUMENTERS. These systems gather execution data to reveal
characteristics of a program's internal behavior and performance. In
practice, instrumentation tools are the principal tools used to detect
errors that cannot be detected by static analysis. Systems exist
which provide coverage analysis, monitor assertions, and detect
data-flow anomalies. In addition, instrumentation subsystems can be
found in several other types of testing tools.

21

4

1

.

1

T

a

STEP - Final Report and Recommendations

MUTATION TOOLS. An automatic mutation system is a test entry, execu-
tion, and data evaluation system that evaluates the quality of test
data based on the results of program mutation. In addition to a
mutation "score" that indicates the adequacy of the test data, a
mutation system provides an interactive test environment and reporting
and debugging operations which are useful for locating and removing
errors.

AUTOMATIC TEST DRIVERS. Automatic test drivers are software systems
that simulate an environment for running module tests. They may
provide standard notation for specifying test cases and automating the
testing process. Some systems also compare the resulting output with
the expected output and report discrepancies. Some test drivers
operate on object modules, while others operate on source modules.
Since the automation of the testing process is an integral part of
most test tools, automatic test drivers appear in some form in most
systems.

COMPARATORS. A comparator is a system that compares two versions of
data to identify differences. Comparators are used in the validation
process to limit the scope of re-testing of revised software. The
main differences among comparators lie in the form of the data and the
flexibility in specifying tolerances for each comparison.

Volume 2 contains a catalog of existing tools in each of these
categories and a summary of their availability and support. General-
ly, however, it appears that testing tools which are available as
supported, nonproprietary packages are rare. It is more common that
testing tools are systems that are constructed and customized to a
single software development project. Generalization, documentation,
marketing, and support of such custom tools is capital intensive and
seldom carried out.

22

I
I
I
I
I
[

STEP - Final Report and Recommendations

4.3. NEW TECHNOLOGY

Two aspects of new technological developments are relevant to
software testing. First, there are new technologies that hold some
hope for improving the programming process. New languages such as
Adal, new views of the software lifecycle, prototyping, and reusable
software all give software developers new tools and concepts to work
with. Modern operating systems and programmer support environments
give programmers collections of tools which will aid in the testing
effort. Standard architectures ease the transition from host environ-
ments to target environments. It has also become possible to "freeze"
certain critical system components in custom hardware. While the
problems of determining correctness of design remain in transitions to
hardware implementation, the static nature of hardware and the
visibility of hardware interfaces may reduce the severity of many
testing problems.

Second, new technology presents many new reliability problems.
New applications such as distributed computing and communications rely
on complex interactions of concurrent processes. These systems have
thus far been as resistent to systematic testing techniques as older,
real -time applications. Since many of these systems come equipped
with stringent reliability requirements, new testing techniques are
clearly needed. Customized hardware designs, in addition to providing
benefits such as those mentioned above, also present new difficul-
ties. As the density of functions that can be placed on a single chip
increases, so does the complexity of the testing effort needed to
determine that the designs are correctly implemented in the hardware.
Existing hardware design verification techniques do not appear to be
mature.

1 Ada is a Registered Trademark of the Ada Joint Program Office - U.S.
Government

23

STEP - Final Report and Recommendations

4.3. NEW TECHNOLOGY

Two aspects of new technological developments are relevant to
software testing. First, there are new technologies that hold some
hope for improving the programming process. New languages such as
Adal, new views of the software lifecycle, prototyping, and reusable
software all give software developers new tools and concepts to work
with. Modern operating systems and programmer support environments
give programmers collections of tools which will aid in the testing
effort. Standard architectures ease the transition from host environ-
ments to target environments. It has also become possible to "freeze"
certain critical system components in custom hardware. While the
problems of determining correctness of design remain in transitions to
hardware implementation, the static nature of hardware and the
visibility of hardware interfaces may reduce the severity of many
testing problems.

Second, new technology presents many new reliability problems.
New applications such as distributed computing and communications rely
on complex interactions of concurrent processes. These systems have
thus far been as resistent to systematic testing techniques as older,
real-time applications. Since many of these systems come equipped
with stringent reliability requirements, new testing techniques are
clearly needed. Customized hardware designs, in addition to providing
benefits such as those mentioned above, also present new difficul-
ties. As the density of functions that can be placed on a single chip
increases, so does the complexity of the testing effort needed to
determine that the designs are correctly implemented in the hardware.
Existing hardware design verification techniques do not appear to be
mature.

1 Ada is a Registered Trademark of the Ada Joint Program Office - U.S.
Government

23

STEP - Final Report and Recommendations

CHAPTER 5

ASSESSMENT OF CURRENT DEFENSE PRACTICES

The testing and evaluation performed on software developed for DoD
applications is influenced by a variety of organizations and guidance
documents. The primary guidance which exists with respect to software
T&E resides in DoDD 5000.3. The Services implement this directive in
regulations which provide further guidance to their activities. In
addition, the Development Commands of the Services may supplement the
Headquarters' guidance in regulations, instructions, or pamphlets with
which their subordinate Commands must comply. The final responsibili-
ty for adherence to the guidance rests with the project offices which
monitor the activities of the Defense contractors. The Services'
independent test and evaluation organizations are responsible for the
operational test and evaluation of the systems produced. In order to
assess the current Defense practices, the functional groups mentioned
above were surveyed on subjects related to software test and
evaluation.

25

STEP - Final Report and Recommendations

5.1. SURVEY METHODOLOGY

The survey methodology consisted of conducting interviews with
selected representatives of the military and industrial sectors.
These groups included the HQ and Development Commands for the Army,
Navy, and Air Force, project offices for selected programs, OT&E
agencies, and Defense contractors. The subjects discussed during the
interviews spanned the areas of military regulations and standards,
reviews and inspections, testing techniques, tools, quality assurance,
independent verification and validation, and risk assessment.
Although the interviews covered a variety of topics, all were related
to the software development process, and therefore, the quality of the
final software product.

The survey was not a random sampling of Defense organizations and
no attempt has been made to give statistical interpretations to the
results. Rather, the study team was guided to selected project
offices by the HQ and Development Commands and by OSD. Defense
contractors were selected by the study team in consultation with
NSIA. Several considerations helped to determine the mix of
organizations selected for interviews. These considerations included
the size of the organization and the type of software activity. The
overall goal of the interview selection process was to give the most
representative picture possible of current contractor practices. The
interview results showed a high degree of similarity. The lack of
significant deviation in the responses of these organizations is
evidence that if, in some cases, current practices do differ signifi-
cantly from what is described, those differences are most likely
unique to the specific circumstances of the program or contractor
involved rather than representative of the norm in the testing and
evaluation being performed on military software systems today.

To aid in the data gathering effort, a set of data gathering
guides was developed, consisting of one guide for each functional
group being interviewed. The guides ensured that the same basic
information was gathered during interviews with representatives of
each functional group. The use of personal interviews rather than the
mass mailing of questionnaires helped circumvent the problems of
differing terminologies and low response rates.

26

STEP - Final Report and Recommendations

5.2. SURVEY RESULTS

In the following subsections, we will describe the information
requested from each of the functional groups during the interview
process, and present highlights of the information gathered.

5.2.1. HQ & DEVELOPMENT COMMANDS

Interviews were conducted with representatives of the Headquarters
and Development Commands for the Army, Navy, and Air Force. The
primary purpose of these interviews was to determine what guidance the
Headquarters receive from the Department of Defense with respect to
software T&E, what guidance they pass on to the Development Commands,
and how the Development Commands assist the individual project offices.

The primary guidance given
ware test and evaluation is
Services has implemented DoDD
their specific circumstances.
are Army Regulation 70 -10, the
tions 80-14 and 800-14.

to the DoD components regarding soft-
DoDD 5000.3. Each of the Military
5000.3 in regulations applicable to
The key regulations of interest to us
Navy TADSTAND's, and Air Force Regula-

Military Standards also exist for use by contractors who are
developing software for military applications. These include:

MIL-STD-1679 (Navy) 	Weapons Systems Software Development
MIL-S-52779A 	 Software Quality Assurance Program

Requirements
MIL-STD-1521A (USAF) 	Technical Reviews and Audits
MIL-STD-490 	 Specification Practices
MIL-S7-483 (USAF) 	Configuration Management Practices

For a summary of these standards and other guidance documents, see
Volume 3.

In addition to the existing standards, the Joint Logistics
Commanders have been directing efforts to produce tri-service
standards. This has resulted, in part, in MIL-STD-SDS on "Defense
System Software Development". MIL-STD•SDS establishes requirements
with respect to software requirements analysis, design, code, test,
configuration management, quality programs, and project planning and
control. It should be noted that although MIL-STD-SDS is currently in
the review process, some contractors are requesting waivers to use it
as an alternative to other standards. The potential benefits of
MIL-5TD-SDS include that it addresses the entire software lifecycle,
provides uniform terminology and definitions, and is for use by all of
the Military Services.

27

r
I

STEP - Final Report and Recommendations

5.2.2. PROJECT OFFICES

Interviews were also conducted with representatives of specific
project offices for major systems which are currently under develop-
ment. During these interviews, information was gathered on project
status and history, military regulations and standards invoked,
reviews conducted, development test and evaluation, acceptance
testing, quality assurance programs, independent verification and
validation activities, operational test and evaluation, and risk
assessment.

One result of these interviews was the discovery of the complete
faith which the military acquisition organizations place in their
contractors. This is evidenced by the lack of formal procedures for
tracking progress during the coding, module testing, and integration
testing phases of the software development life cycle, and a lack of
effective government involvement in the software development process.
The distance maintained between the software development contractors
and the project offices may, in fact, be due to the shortage of
personnel in the project offices who are "software-qualified". In
addition, the turnover of personnel creates problems with continuity
in the knowledge of projects. In some cases, IV&V contractors are
hired as an extension of the project offices to support their efforts.

Although it is recognized that software development is expensive,
the resources allocated to development and testing are seldom suffi-
cient. When problems arise, activities compressed relate to testing
and quality assurance.

To compound these problems, contracts levy few reasonable require-
ments for software testing and evaluation. With no objective evidence
to indicate an effective testing strategy for a given application, it
is unrealistic to specify any particular testing strategy. Problems
have also been attributed to the apparent weakness of MIL-S-52779A,
"Software Quality Assurance Program Requirements".

Many of the difficulties encountered can be traced to inadequacies
in the requirements definition process. When adequate requirements
are provided, experience suggests that systems can be developed within
cost and schedule constraints. However, given the complexity of
today's systems and the susceptability of the requirements to change,
complete, accurate requirements are rare.

The government's primary involvement with the system development
prior to acceptance takes the form of the Preliminary and Critical
Design Reviews (PDR's and CDR's). The usefulness of these reviews for
the software has been questioned since, in many cases, there are 100
cr more participants. When software acceptance tests are finally
performed, they are often a combination of selected tests previously
conducted by the contractor. Government personnel may witness these
tests, however, care must be exercised since the contractor has
advance access to the tests.

L

L

28

STEP - Final Report and Recommendations

Detailed assessments of the potential risks when software failures
occur are only conducted when the application has nuclear implica-
tions. In other cases, past experience dictates the amount of testing
considered to be necessary and sufficient for a given software
application.

5.2.3. OT&E AGENCIES

Each of the Military Services has an organization which has been
given the mission to operationally test and evaluate new and modified
systems. These OT&E Agencies are the Operational Test and Evaluation
Agency (OTEA - Army), the Operational Test and Evaluation Force
(OPTEVFOR - Navy), and the Air Force Test and Evaluation Center
(AFTEC). Due to the special section in DoDD 5000.3 on Test and
Evaluation of Computer Software, groups which specialize in software
T&E have been formulated within each organization.

Early and continued involvement of OT&E Agency software special-
ists in the software development process is encouraged and empha-
sized. When possible, this involvement includes attending Computer
Resource Working Group Meetings, PDR's, and CDR's. In some cases,
acceptance testing is witnessed.

There is a widespread belief that the "real" problems with soft-
ware are best found in the operational environment. OT&E personnel
are interested in software quality measures other than correctness,
i.e., the software's operational effectiveness and suitability. Along
those lines, the Software Evaluation Element of AFTEC has developed a
set of handbooks to aid in this type of assessment.

Unfortunately, during operational testing, the software is usually
only singled out on an exception basis. In addition, since OT&E takes
place after the completion of software development, any errors detec-
ted may be extremely expensive to correct. The desired early and
continued involvement is not always possible due to personnel
shortages similar to those which constrain the project offices. In
any case, the effectiveness of PDR's, CDR's, and acceptance testing
was discussed earlier.

5.2.4. DEFENSE CONTRACTORS

Interviews were conducted with twelve Defense contractors. These
contractors are involved in the development of applications software,
the development of support software, and the independent verification
and validation of military software systems.

29

STEP - Final Report and Recommendations

APPLICATIONS SOFTWARE DEVELOPERS. Six contractors were interviewed
with respect to their efforts toward developing applications software
for embedded or mission-critical computer systems. The customers
dealt with spanned the Military Services and many other DoD
components. The subjects discussed included military and internal
standards; requirements, design, and code analysis techniques; the
levels of testing performed; tools; quality assurance; independent
verification and validation; and risk assessment.

Changing requirements are a constant frustration to Defense con-
tractors. Orderly, structured approaches to software development are
easily frustrated by the modifications which are requested throughout
the life cycle. Baselining and configuration management techniques
are essential for dealing with fluid requirements. Moreover, contract
performance seems to be tightly coupled to the effectiveness of these
techniques.

Plans for testing begin early in the software development life
cycle, usually prior to or during the design phase. Unfortunately,
these planning activities often fall victim to the pressures of the
immediate development phase.

Similar to the faith which the government places in its con-
tractors is the faith which the contractors demonstrate in their
programmers. The greatest opportunity for thorough testing of the
software exists at the unit or module level. This testing is seldom
subjected to formal requirements for coverage or documentation. A
module is tested until the programmer is "satisfied" that it is ready
for integration. The prevalent testing strategy is one which tests
each functional requirement. Tests which may be necessary due to
design or implementation peculiarities are often neglected.

Some contractors implement internal testing standards and prac-
tices. However, audit procedures to ensure that the contractors'
standards and practices are followed and effective are lacking. The
documentation which is delivered is often inadequate. Though very
important, it is usually produced after the fact, rather than as the
software development process progresses.

The concept of endurance testing as espoused by MIL-STD-1679,
"Weapons System Software Development", is criticized by some Defense
contractors. The most common complaints center on the cost and appro-
priateness of endurance testing for software. In addition, although
acceptable occurences of errors are assigned according to the criti-
cality of failure, testing requirements do not differentiate between
software modules which do or do not implement critical functions.

L

I

I

30

STEP - Final Report and Recommendations

Regression testing is also an area of concern for many contract-
ors. The need for human intervention during software system level
tests makes regression testing time consuming and expensive. "How
much is enough?" is a question of primary importance. The complete-
ness and correctness of test sets used during regression testing is
maintained as a by-product of the software trouble reporting system.
Although this method may ensure that new functionality will be tested,
it is not necessarily effective for recognizing the existence of
obsolete and incorrect test cases.

Contractors recognize the influence that tools and people have on
the success of a software testing effort. Unfortunately, testing
tools have traditionally suffered due to a lack of investment. Those
which are developed and used are predominately project-specific and
rarely examined for possible application on other programs. Extensive
waste of resources occurs as a result of the repeated "reinvention of
the wheel". In addition, the talented, creative personnel needed for
testing are often assigned to and prefer development activities.

Finally, some Defense contractors question the value of software
quality assurance (SQA) as it is currently practiced. SQA is viewed
as a non-technical function which could be much more useful if it were
enchanced to meet the technical need of evaluating the effectiveness
of the development and testing techniques employed.

SUPPORT SOFTWARE DEVELOPERS. Two organizations which develop support
software were also interviewed. Although the subject areas discussed
were identical to those discussed with the applications software
developers, the interviews conducted with these contractors centered
upon the development and certification of compilers. The major dif-
ference between the testing of applications software and support
software is the degree of automation used. In each case, a standard
and extensive set of certification tests are run prior to each
release. Very little human intervention is needed either when running
these tests or when checking the results.

IV&V ORGANIZATIONS. Independent verification and validation (IV&V) is
a risk reducing technique which is applied to many major programs
under development today. Four industry contractors whose primary
function is to conduct an independent evaluation of the software
development efforts of another contractor were interviewed. Due to
the high cost of IV&V, the activities described were usually only
performed for a portion of any software system. The information
gathered during these interviews pertained to military regulations and
standards, the scope of the IV&V effort and the time of initial
involvement, the relationship to the project office and development
contractors, requirements, design, and code analysis techniques,
independent testing, tools, metrics, and risk assessment.

31

STEP - Final Report and Recommendations

The IV&V organizations stressed the importance of early involve-
ment. Their role is that of a technical resource reporting directly
to the project office. Since, requirements analysis and risk
assessment are the most critical activities performed by the IV&V
organizations, their effectiveness is limited if they are brought on
board a project "after the fact". As the development effort
progresses, IV&V involvement typically decreases due more to the
expense of continued involvement rather than a lack of need.

1

1'

32

STEP - Final Report and Recommendations

5.3. SUMMARY OF CURRENT DEFENSE PRACTICES

Many problems combine to limit the effectiveness of current
Defense practices in software test and evaluation. First of all, the
resources allocated to software development and testing may fall short
of what is necessary to ensure required operational capabilities.
Second, the project offices, tasked with tracking Defense contractor
progress, may lack sufficient software-qualified personnel. Third,
there is little objective evidence available to aid Defense
contractors in selecting the testing strategy which is best suited to
a given application. Fourth, few testing tools which could help
ensure the quality of the final software product are readily available
for use. Fifth, the evaluation of early development testing is
difficult since the results of these tests are rarely documented or
reported. All of these shortcomings are amplified by frequent
modifications to requirements. And, of course, when budgets are cut
or schedules slip, testing and quality assurance activities are the
first casualties.

33

STEP - Final Report and Recommendations

CHAPTER 6

FINDINGS AND RECOMMENDATIONS

This section proposes 28 specific recommendations for improvements
in software test and evaluation. These recommendations have been
formulated by the information gathering and analysis mechanisms de-
scribed above and have been influenced by the widest possible partici-
pation in the STEP support contractors' activities. While these
recommendations do not represent a consensus of the data and opinions
solicited, there are multiple sources of support for each recommenda-
tion. The recommendations have been organized as follows:

1. Recommendations to DDT&E for Modification of DoDD 5000.3.

2. Other Recommendations to DDT&E.

3. Recommendations addressed to the Military Services.

4. Tri-Service Recommendations.

The central areas of concern addressed by these recommendations
include the following:

1. Test Planning: recommendations which relate to the planning
and reporting of test activities and the setting of test
goals and objectives for software.

2. Test Technology: recommendations which exploit or aim at
developing the technical aspects of testing at each program-
matic stage of development.

3. Test Tools and Environments: recommendations which relate to
the development, qualification, packaging and distribution of
automated tools for software T&E.

4. Test Evaluation: recommendations which relate to the trans-
lation of test results into quantitative statements of
decision risk and software quality.

5. Technology Improvement: 	recommendations for support of
development and basic research which have long-term benefits
for software T&E.

34

STEP - Final Report and Recommendations

6.1. MODIFICATION OF DODD 5000.3

The state-of-the-art in software testing has progressed to a stage
of maturity in which systematic testing of software can be planned,
documented, and evaluated. DoDD 5000.3 gives little specific guidance
in this regard, and the inclusion of test issues which are peculiar to
mission-critical software components is not common. Modifications to
DoDD 5000.3 are clearly needed. The recommendations below can be
incorporated into DoDD 5000.3 with few changes in the T&E process and
with only slight modification of the Test and Evaluation Master Plan
(TEMP). The effects of the modifications recommended here are to (1)
establish a chain of T&E plans and evaluation criteria that begins at
the level of system test objectives and proceeds through the detailed
testing of software components within development organizations, (2)
insert existing technology into the T&E process using software that
represents the highest decision risk as the focus of the software test
plan, and (3) establish the TEMP as the major planning document for
software testing and ensure the early incorporation of software test
issues into the overall test program.

DoDD 5000.3 (Section D, POLICIES AND RESPONSIBILITIES, Part 6
"Test and Evaluation of Computer Software") should be modified to
include the following requirements:

a. Software components implementing critical functions shall be
identified. 	These components shall be tested throughout the
development/integration portion of the software lifecycle.
Results of the tests shall be objective, repeatable, available to
subsequent test groups, and interpretable in terms of overall
system objectives.

b. The level of test of software components that implement
critical functions shall be sufficient to demonstrate that the
appropriate software evaluation criteria goals for that component
are met or exceeded. The level of tests for these components
should be sufficient to achieve a balanced risk with the hardware
on which they are implemented in an operational environment.

DoDD 5000.3 (Enclosure 2) should be modified to require the
incorporation of software-specific test and evaluation issues in the
TEMP for systems with mission-critical software components. Devia-
tions from the software-specific portion of the TEMP should be
subjected to critical review. The portions of the TEMP which should
include software-specific information are:

Part I - Description, 2. System, a. Key functions: Should also
include a mission/function matrix relating the primary functional
capabilities of each critical software component that must be
demonstrated by testing to the mission(s) to be performed and
concept(s) of operation.

35

STEP - Final Report and Recommendations

Part I - Description: 	Should include a new section entitled
Required Software Characteristics following Required Operational

d nrh7if---Clecr isicstems 3 and 4). This section
should contain a list of the key software characteristics, goals,
and thresholds.

Part I - Description, 5. Critical T&E Issues: Should include a
new sub-section, c. Software Issues. This sub-section should
briefly describe key software issues that must be addressed by
testing.

Part II - Program Summary, 1. Management: Should also highlight
arrangements between participants for software test data sharing.

Part II - Program Summary, 2. Integrated Schedule: Events to be
displayed on the schedule should also include key software sub-
system demonstrations and software testing tools availability
dates.

Software T&E Outline: This new part should follow Part IV - OT&E
Outline. This part should discuss all planned software T&E, for
software components which implement critical functions, in similar
format and detail as that described in the DT&E Outline (Part
III). The Software T&E to Date section, which sets the stage for
discussion of the planned software T&E, -should summarize the
software T&E already conducted and emphasize software events and
results related to required software characteristics and critical
software issues. This section and the Future Software T&E section
should discuss the degree to which the test environment is repre-
sentative of the expected operational environment. The section on
Software T&E Objectives should present the major objectives that,
when achieved, will demonstrate that the software development
effort is progressing satisfactorily. The objectives either
should be presented in terms of, or related to, the software
characteristics. The Software T&E Events/Scope of Testing/Basic
Scenarios section should relate the testing to be performed to the
Software T&E Objectives. The Critical Software T&E Items section
should highlight all items the availability of which are critical
to the conduct of adequate software T&E prior to the next decision
point. If appropriate, these critical items should be displayed
on the Integrated Schedule. When the required software T&E infor-
mation is contained in Parts III and/or IV, references may be made
to those sections, as appropriate.

Part VI - Special Resource Summary, 1. Test Articles: Should
also identify as test articles each software component that is
identified in the mission/function matrix and key software sub-
systems shown in the Integrated Schedule.

36

STEP - Final Report and Recommendations

Part VI - Special Resource Summary, 2. Special Support Require-
ments: Should also identify software test tools (including simu-
TiT5FS) required, justify each tool identified (describe how the
tool supports the software test objectives, achieves a specified
level of test, etc.), and briefly describe the steps being taken
to acquire each tool.

DoDD 5000.3 (Enclosure 1) should be modified to include the
following terms and concepts:

Software Lifecycle. 	Extends from requirements definition and
design through operation and maintenance.

Level of Test. Used in conjunction with a systematic software
test methodology and is used to rank the thoroughness of a test
with respect to the goals set for the evaluation criteria (e.g.,
95% statement coverage vs. 50% statement coverage).

Software Evaluation Criteria. Standards by which achievement of
required software characteristics, or resolution of software
issues may be judged.

Required Software Characteristics. Software parameters that are
primary indicators of conformance to written requirements/specifi-
cations and operational suitability and effectiveness.

37

STEP - Final Report and Recommendations

6.2. Other Recommendations to DDT&E

Whereas the implementation of the recommendations presented above
can be accomplished in the near-term with few changes in the T&E
process and only slight modification of the TEMP, the next three
recommendations address issues that cannot be resolved so easily.
However, if we are to realize the full benefits of the modifications
to DoDD 5000.3, these recommendations must also be implemented.

DDT&E should initiate or participate in an on-going program of
software testing tools development, packaging, evaluation, distribu-
tion, and support to provide a warehouse, catalog, or test environment
of approved testing tools which can be referenced in the software
portion of a TEMP without acquisition or further approval. These
tools should be accompanied by usage contexts which can be used to
guide inclusion of tools in the software portion of a TEMP. These
usage contexts should define the applications, programming languages,
software evaluation criteria and level of test interpretations of the
tool output.

Software development and T&E is not correlated with the decision
milestones of the system acquisition process. Furthermore, software
testing activities do not correlate well with the DT&E/OT&E/PAT&E
division of responsibility. DDT&E should define a model of the
software testing process which is well-integrated with the software
development lifecycle. In the event that software T&E cannot be
accomodated by the DT&E/OT&E/PAT&E structure, a separate software T&E
program should be developed. Separate software T&E should not replace
system DT&E/OT&E but should rather support DT&E/OT&E and serve to
focus on the special software testing issues which are not adequately
addressed by either DT&E or OT&E.

The relationship between required T&E on mission-critical compo-
nents and (1) necessary testing on support software, (2) risk reduc-
tion on software that is required for system operation but does not
directly implement mission-critical functions, (3) testing of other
software design components is as yet unspecified. DDT&E should define
software evaluation criteria for software in categories (1), (2), and
(3). This definition should form the basis for a quantitative risk
model of the software T&E process to be used in the evaluation of the
overall software testing effort. Software T&E issues and activities
required to evaluate the complete software system should be mentioned
in the software portion of the TEMP.

38

STEP - Final Report and Recommendations

6.3. RECOMMENDATIONS ADDRESSED TO THE MILITARY SERVICES

Implementation of the recommendations listed above requires a
coordinated examination of software T&E technology and practice by
DDT&E and the Military Services.

The following additional recommendations are intended to (1)
implement DD&TE recommendations, (2) support DDT&E recommendations in
areas that are not addressed directly by DoDD 5000.3, and (3) improve
the software testing process. The arguments which support each
recommendation appear interspersed with the recommendations themselves
(which appear highlighted in upper case text).

6.3.1. STATE-OF-THE-ART IMPROVEMENTS

Software test and evaluation is an integral component of software
technology. In particular, state-of-the-art improvements in software
technology can be expected to improve software quality. New and
enhanced software test methodologies should keep pace with advances in
the field. In recent years, a number of DoD initiatives have been
proposed with a view toward quantum improvements in the state of
software engineering and practice. The focus of these efforts has
been on design-oriented problems, standardization, and problem areas
peculiar to the embedded and mission-critical computer application
environments. The corresponding focus for software T&E improvements
has not been as visible. As discussed in considerable detail in
Volume 3 of this report, software testing issues are frequently given
less than adequate treatment during the early stages of software
project planning and specification. In planning for technological
improvements in software engineering practice, early incorporation of
initiative goals which directly address software T&E would serve two
important purposes. First, it would provide for the improvement in
test and evaluation technology needed to keep pace with advances in
other areas. Second, it would be symbolic of the importance which
adequate software test and evaluation has to overall software system
quality; it would be a signal to the development communities that the
test and evaluation of software for Defense systems is inseparably
linked to the development process. MAJOR INITIATIVES TO IMPROVE
SOFTWARE TECHNOLOGY SHOULD INCLUDE EARLY PROVISIONS FOR SOFTWARE TEST
AND EVALUATION.

The DoD Software Technology for Adaptable, Reliable Systems
(STARS) Program is the most recent such initiative - and the one which
has received the most widespread attention from DoD, industrial, and
academic sectors. At every front, the problems encountered in
improving software test tech , iogy parallel the problems addressed by
the STARS program. Problem . in education, technology insertion, and
leveraging existing R&D res. Ames and technology to improve the soft-
ware development environmeit each have their counterparts in the
software testing.

i9

STEP - Final Report and Recommendations

Research initiatives should concentrate on enhancing the effec-
tiveness of existing test techniques and on developing new techniques
which address central problems in the test and evaluation of mission-
critical software systems. THE SERVICES SHOULD CONTINUE RESEARCH
FUNDING AT AN ACCELERATED PACE FOR SOFTWARE TEST AND EVALUATION
METHODOLOGIES AND THE TOOLS TO SUPPORT THESE METHODOLOGIES. RESEARCH
SHOULD ALSO CONCENTRATE ON ESTABLISHING USAGE CONTEXTS FOR THE
METHODOLOGIES, COST/BENEFIT ANALYSES, AND EXPERIMENTAL DETERMINATION
OF ERROR DETECTION CAPABILITIES.

Most existing and proposed methodologies are directly suited to
automated testing tools. A MAJOR FOCUS OF MILITARY ORGANIZATIONS
RESPONSIBLE FOR SOFTWARE DEVELOPMENT ENVIRONMENTS SHOULD BE THE IDEN-
TIFICATION, QUALIFICATION, AND DISTRIBUTION OF TOOLS WHICH IMPLEMENT
STATE-OF-THE-ART TESTING TECHNIQUES.

A major technology upgrade can result from the continued develop-
ment of a new generation of higher order languages (HOL's) suitable
for use in embedded computer applications. It is a widespread opinion
that HOL development and standardization is not proceeding fast
enough. This opinion is supported by the number and variety of
programming languages encountered in the studies reported in Volumes 2
and 3 of this report. Many languages in use on major systems are
tailored to specific hardware requirements. Others are "standard" for
a class of systems and applications, but are used almost nowhere
else. Language levels range from absolute non-relocatable machine
code to HOL's such as Fortran and JOVIAL. Programming environments
are similarly diverse. They range from environments that include
little more than compilers and linking loaders to UNIX (trademark of
Western Electric) environments with an array of programming support
tools. Tools and support systems generated in one project are seldom
transported to other projects, even within the same development organ-
ization.

There is considerable faith in the development communities,
project offices, and test organizations that Ada will be the catalyst
for broad improvements stemming from a HOL upgrade. In many quarters,
Ada is seen to offer improvements at the language level through its
support of modern design methodologies. The development of Ada
programming environments and run time environments offers the
opportunity for integrating test, simulation, and management
techniques. It may also ease the technology transfer and insertion
problems and make successful support tools available to a broad range
of Ada user environments, resulting in standardized tools and
techniques for certain classes of programming tasks. The development
of tools for testing, simulation and system integration and the
definition of relationships between development environments and run
time environments have been neglected in current planning. Existing
plans for Ada Programming Support Environments (APSE's) contain vague
provisions for "debugging" tools and systems, suggestions for

40

STEP - Final Report and Recommendations

inclusion of data gathering and automatic metrics calculation
facilities, and support of simulations of run time environments at the
development level. Detailed plans for substantial support subsystems
to aid in T&E have not been forthcoming,. Existing APSE development
efforts do not address T&E issues at all, and AJPO does not project
the inclusion of such facilities in the first generation of APSE's.
It is unlikely that usable test support environments will be available
until well after Ada adoption by the Services. AJPO AND THE AFFECTED
MILITARY SERVICES SHOULD BEGIN NOW TO MODIFY AND EXPAND APSE
DEVELOPMENT PLANS TO INCLUDE SUBSTANTIAL PROVISIONS FOR TEST SUPPORT
ENVIRONMENTS. TEST SUPPORT TOOLS SHOULD BE MADE AVAILABLE IN THE
FIRST GENERATION OF APSE'S THAT ARE USED TO DEVELOP SOFTWARE-INTENSIVE
SYSTEMS.

6.3.2. LIFECYCLE INTEGRATION

The most costly software errors are those that are created early
and discovered late. Therefore, quality assessments of software
should be performed during all phases of the software lifecycle. As
yet, there is no acceptable model for integrating software test
activities into the various phases of software development. During
the earliest stages of software development, test teams will have
access to the software that is not possible during later stages of
development. Systematic attempts should be made to identify errors
while the software is still available for direct manipulation.

As we have already noted, the division of software testing activi-
ties into the standard DT&E/OT&E/PAT&E framework is at best an artifi-
cal one. The correspondence between critical stages of software
development and programmatic milestones will certainly be clarified
with further study. In the meantime, however, the Services should
refine and investigate approaches to software T&E. Techniques should
be identified and practices established to allow assessments of risk
due to critical software components that are useful predictors of
overall software system reliability and effectiveness. Such problems
can be approached without assuming any particular lifecycle testing
model by concentrating on the following aspects of the T&E process:
(1) test planning, (2) testing, (3) test evaluation and risk
assessment.

6.3.3. TEST PLANNING

The effectiveness of software T&E depends in large measure on
thorough test planning and adherence to written test plans. In the
development of software-intensive Defense systems, software testing is
frequently the victim of inadequate planning. When programs do not
include specific plans for the test and evaluation of software,
program offices, independent test organizations and contractors are

41

STEP - Final Report and Recommendations

left to interpret the goals and objectives of software-oriented
tests. Although test plans and procedures exert a strong influence on
the quality of the overall software test program, a number of factors
combine to make detailed planning for and evaluation of software tests
especially difficult. One factor is the perception in acquisition,
development, and test communities that T&E is given inadequate time
and dollar resources. While other phases of system development also
feel squeezed by schedules and budgets, testing is often viewed as the
phase which is most compressible. One reason for this perception is
the nature of testing; since testing examines the product it is often
viewed as not contributing to the devir-7—ropmen. Another reason is that
testing activities usually fall toward the end of the design and
implementation effort. This part of the problem can be approached
through the acquisition cycle. Acquisition agencies should ensure
that the time and money allocated to test and evaluation are
protected. This may be especially difficult in light of current
methods of allocating resources to the overall system development.
However, in recent policy memos to the Services, 0S0 has directed that
certain test resources be protected; these concepts should be widened
to include test resources for software T&E.

Another contributing factor is the that test planners often use
optimistic assumptions about the nature and extent of the software
testing effort. Slippage in schedules or budgetary shortfalls are
therefore not accommodated gracefully. This problem can, however, be
solved by planning according to more realistic or worst-case scenarios.

Finally, another significant problem is that written software test
plans are seldom required until software system integration. Yet the
most productive software testing typically occurs during development
and integration. Furthermore, the test results from the earliest
stages of software system development are often the most essential
element in evaluating the progress of the testing effort. These tests
should be guided by a software test plan which spells out test
criteria and objectives and sets goals for software T&E.

The test approaches ultimately adopted should relate to and
support the objectives of the TEMP. If the TEMP specifies a fixed set
of software test objectives then the results of early testing should
lead to evaluations in terms of these objectives. By the same token,
if the TEMP provides for test criteria, environments and tools that
can be applied during early software testing, the requirements of the
TEMP will determine the technical nature of the early software tests.
Allowing development teams to improvise in the choice of test
approaches, to change the objectives of early tests, and to conduct
tests without reasonable accountability, frustrates the overall test
program. Therefore, PROGRAM OFFICES SHOULD ENCOURAGE AND SUPPORT THE
DEVELOPMENT OF WRITTEN TEST PLANS FOR TESTS TO BE CONDUCTED DURING
EARLY PHASES OF SOFTWARE DEVELOPMENT. THESE PLANS SHOULD (1) CONTAIN
A SPECIFICATION OF WHAT CONSTITUTES AN ACCEPTABLE APPROACH TO TESTING,

42

STEP - Final Report and Recommendations

(2) EXPLAIN HOW THE
LEVEL TESTS, (3) BE
CRITICALLY REVIEWED
WORST-CASE ESTIMATE
EFFORT.

APPROACH ADOPTED SUPPORTS OBJECTIVES OF THE HIGHER
ADHERED TO RIGOROUSLY BY PROGRAM MANAGERS, (4) BE
FOR DEFICIENCIES, AND (5) REFLECT A REALISTIC,
OF THE SCOPE AND EXTENT OF THE REQUIRED TESTING

An important implication of assessing quality throughout the
software lifecycle is that early testing during software design and
implementation is critical. The earliest software testing activities
occur during unit and module testing. It is common practice for the
development team to conduct unit and module tests according to inter-
nal standards and procedures - frequently, under the direct and
exclusive control of the programmers. Since these tests are seldom
conducted under the guidance of a written test plan, the objective of
unit and module tests may be to "get by" rather than to uncover
errors. In the typical waterfall lifecycle, there is little upward
flow of test information from the development groups to later test
teams. By the same token, there are few audit trails which can be
applied to evaluate the effectiveness and progress of these tests.
The accountability is hampered by a lack of emphasis on documentation
during unit and module tests. The results of early testing can be a
valuable resource to later testing phases and should constitute the
initial component of a test support data base which contains results
of software testing activites. STRi-707i7isults of these testing
phases should be interpretable in terms of the TEMP and written test
plans for early software testing, PROJECT OFFICES SHOULD REQUIRE
DOCUMENTATION OF UNIT AND MODULE TESTS. DOCUMENTATION REQUIREMENTS
SHOULD INCLUDE RESOURCE REQUIREMENTS, SIMULATION REQUIREMENTS FOR
INPUTS, ANALYSIS REQUIREMENTS FOR OUTPUTS, TEST CASE CROSS REFERENCES
TO SYSTEM REQUIREMENTS AND SUFFICIENT SUPPORTING INFORMATION TO ALLOW
THE RECONSTRUCTION AND REPETITION OF TESTS.

Another implication of testing throughout the software lifecycle
is that during later project milestones, much of the software is
actually in its maintenance phase. Therefore, software testing during
later phases of system development, integration and test is actually
retesting or regression testing of the software. PROJECT OFFICES
SHOULD ENSURE THAT PROVISIONS ARE MADE FOR REGRESSION TESTING IN ALL
TEST PLANS. IN THE ABSENCE OF A MAJOR IMPROVEMENT IN THE STATE-OF-
THE-ART IN REGRESSION TESTING, AUDITING AND RETESTING PROCEDURES FOR
ALL SOFTWARE, SPECIFICATION, AND REQUIREMENTS MODIFICATIONS AND
UPDATES SHOULD BE REQUIRED.

43

STEP - Final Report and Recommendations

In some cases, independent verification and validation (IV&V)
organizations are involved in the test and evaluation effort. WHEN
IV&V IS REQUIRED BY THE PROJECT OFFICE, THE INVOLVEMENT OF THE IV&V
CONTRACTORS SHOULD BE PLANNED AND INTEGRATED INTO THE OVERALL TESTING
EFFORT. Effective IV&V efforts require the validation of user needs
and verification of the design and implementation. This is turn
requires that the technical focus of the IV&V be incorporated into
test plans and that an efficient transferral of project information
takes place. PROJECT OFFICES SHOULD ENSURE THAT TEST PLANS CONTAIN
PROVISIONS FOR IV&V INVOLVEMENT.

6.3.4. THE TESTING PROCESS

Test planning should be conducted with a view toward achieving
technical goals. Technical goals are in turn set by combining soft-
ware test objectives with a balanced and informed evaluation of the
state-of-the-art. The following findings and recommendations are
addressed to these issues. In order to plan the testing effort and
evaluate results, it is necessary to decide what software is to be
tested, the test technology to be applied, and the degree of automa-
tion desired in the test.

The recommendations for modification of DoDD 5000.3 include provi-
sions for system level test planning for software that implements one
or more mission-critical functions. Therefore, in a typical TEMP,
non-critical software components will not be addressed at all.
However, test plans should address the testing effort for the total
software system.

In addition to software components specified in a TEMP there may
be other components of an embedded software system that are trans-
parent to the critical system functions. An example of such a compo-
nent is a system monitor which is responsible for achieving timely
response to operator commands. Such components are necessary to
correct and reliable system operation but are seldom tested against
overall system requirements. There are also components that are
necessary to meet certain operational goals. For instance, logistic
support may require the availability of support software (e.g., a
specialized compiler or telecommunications package). In such cases,
the operational availability of the mission-critical software depends
on the correctness and reliability of software that is not strictly
part of the system. When such components are tested at all, they are
usually tested as "black boxes" which deliver services to critical
functions. PROJECT OFFICES SHOULD SET GOALS FOR THE TESTING OF THE
TOTAL SOFTWARE SYSTEM, INCLUDING THOSE COMPONENTS NOT SPECIFIED IN THE
TEMP. THESE GOALS SHOULD BE INCORPORATED INTO A WRITTEN TEST PLAN AS
A SET OF SOFTWARE TEST OBJECTIVES. THE NATURE AND EXTENT OF THE
TESTING REQUIRED FOR THESE COMPONENTS SHOULD BE SUFFICIENT TO ACHIEVE
A BALANCED RISK WITH MISSION-CRITICAL COMPONENTS.

44

STEP - Final Report and Recommendations

Development test and evaluation (DT&E) tests system components
against requirements and specifications. Operational test and evalua-
tion (OT&E) tests overall system capabilities. Since the development
cycle for software spans the DT&E/OT&E activities in unexpected ways,
the relationship between DT&E and OT&E is especially critical. Since
they are both testing activities, DT&E and OT&E are subject to many of
the same pressures. DT&E is an essential prerequisite to OT&E.
Without careful contingency planning, slippages, failures and inade-
quacies in DT&E can negatively affect OT&E. Test environments for
DT&E and OT&E must be coordinated. During DT&E operational environ-
ments are generally simulated and the use of prototype systems is
acceptable. During OT&E, simulated run time environments are some-
times used, but the nature of an operational test requires that the
simulated environment be faithful to the characteristics of the actual
environment. Even though concurrent DT&E and OT&E is sometimes con-
ducted, operational test groups are sensitive to the fact that soft-
ware problems left unresolved during DT&E can be masked or untraceable
during OT&E. DEVELOPMENT TEST ORGANIZATIONS SHOULD RESOLVE MAJOR
SOFTWARE DEFICIENCIES BEFORE THE START OF DEDICATED OT&E.

OT&E does not evaluate the software by itself but rather as part
of the total system. In OT&E, the focus is on operational
characteristics, and test scenarios are designed against operational
test objectives. It is important to note that operational tests are
user-oriented and operational failures may be decided by users. This
is contrasted with DT&E; during DT&E, failures are decided by
conformance to requirements and specifications. Nevertheless,
software components may present special problems during operational
testing, and efforts to ensure that software is thoroughly tested in
an operational environment may be desirable. Early OT&E involvement
in software test planning, carefully drawn test plans, test management
which avoids deviation from plans, simulated hardware failures and
tests of user interfaces can all be accommodated within existing test
organizations if adequate resources are made available. As a further
step toward isolating software errors that are incompatible with
actual operating conditions, OT&E organizations could adopt
alternative approaches which would essentially operationally test
software subsystems in simulated operational environments.
Evolutionary development, rapid prototyping, and build-test-build
lifecycles have been proposed as techniques for ensuring early
involvement of OT&E in the development process. Furthermore,
operational tests can reveal the presence of design errors and
inefficiences that can form the basis for the redesign and modifi-
cation of software. Therefore, OPERATIONAL TEST DOCUMENTATION AND
RESULTS SHOULD BE AN INTEGRAL PART OF THE OVERALL SOFTWARE TEST DATA-
BASE.

45

STEP - Final Report and Recommendations

Major improvements in the testing process can be achieved by
addressing the early phases of development. This is critical since
detailed software testing does not occur throughout the total system
development effort for most embedded applications. Special problems
arising from software errors that may be masked after system
integration should be identified and addressed. Therefore, extensive
testing at the unit and module levels must occur before system
integration.

Detailed test plans for all critical software components should
include provisions for testing at the unit and module levels. Unit
and module tests should be complete enough to ensure that critical
functions have been exercised. At the unit and module levels,
exercising critical functions is complicated along two dimensions.
First, the test methodology must be sensitive to the system-critical
errors that are most likely to be encountered in operation. Second,
units and modules must be "driven" by simulated test environments
since actual operational inputs are probably not available until after
system integration. The expense incurred in these tests should be
balanced with the criticality of the components being tested.
However, the record of software failures during system integration,
operational testing, and post-deployment operations is filled with
examples of expensive errors that would have been uncovered by almost
any systematic test strategy applied at the unit or module level.
PROJECT OFFICES SHOULD ENSURE THAT UNIT AND MODULE TESTS EXERCISE
CRITICAL FUNCTIONS WITH A SYSTEMATIC TEST METHODOLOGY. IN SELECTING A
TEST METHODOLOGY, PRIMARY CONSIDERATIONS SHOULD BE THE APPROPRIATENESS
OF THE METHODOLOGY, KNOWN COST/BENEFIT RATIOS, ESTABLISHED ERROR
DETECTION CAPABILITIES OF THE METHODOLOGY, AND THE EXTENT TO WHICH
TEST RESULTS ARE INTERPRETABLE IN TERMS OF SOFTWARE TEST OBJECTIVES
SET FORTH IN THE TEMP.

The issue of appropriateness of the test to the current test
objective is an especially important one - it is often this issue
alone that determines the test methodology. For example, if the
purpose of a test is to determine the behavior of a system under
stress or heavy load conditions, it is essential that the softwaare
test produce extreme values, boundary values, and special values for
affected parameters. Random testing is, therfore, not appropriate to
that test objective. In many instances, appropriateness of a test
depends on the application. Furthermore, neglecting the specialized
needs of an application may result in extreme test requirements that
do little to meet test objectives. For example, MIL-STD-1679 requires
endurance testing of software. Endurance testing is motivated by
system reliability requirements, especially when operational reliabil-
ity estimates are stated in time dependent form. Mathematical formu-
lations of these estimates are derived from material failures, and
their applicability to software failures is unclear. It should be
determined whether endurance testing of software is necessary to test
functionality or whether shorter tests of greater variety can be

46

STEP - Final Report and Recommendations

substituted without sacrificing test quality. 	THE RELATIONSHIP
BETWEEN TESTS PERFORMED AND THE ERRORS TO BE DISCOVERED MUST BE
EXPLICIT IN THE TEST METHODOLOGY. THIS RELATIONSHIP SHOULD BE A
PRINCIPAL CONSIDERATION IN DETERMINING THE APPROPRIATENESS OF THE TEST.

A number of formal testing methodologies which are potentially
valuable in unit and module testing are not applied in practice. The
most common complaint about systematic test methodologies is that they
do not concentrate on the system objectives and errors which are
critical. For instance, a test methodology which requires statement
coverage (execution of all statements) with little or no regard for
the cost/benefit aspects of the tests is viewed with suspicion by a
number of development groups. This situation is most apparent at
later stages of testing, particularly software integration testing and
regression testing. In these areas, there is relatively little pub-
lished documentation on the effectiveness and cost of techniques.

Most approaches to integration and regression testing are based on
experience with similar applications. Principles to support evalua-
tions of the tests are not well-established, and test approaches
encourage improvisation. Integration testing is hampered by the lack
of an underlying theory of functional testing that treats the total
system. Military research organizations should encourage software
testing research that offers near-term solutions to this problem.
Regression testing occurs at all stages of the software development
process, and is widely recognized to be inadequately treated by
current methodologies and practices. Regression testing is frequently
expensive, labor-intensive, and is not easily evaluated. Regression
errors are common and difficult to detect. A major effort is
necessary to develop an effective regression testing methodology.

Part of the problem with developing test methodologies that are
applicable above the unit and module level is that the current
emphasis in systematic testing methodologies is on testing for
correctness. In embedded computer applications operational reliabili-
ty, performance, conformance to user requirements, robustness, fault-
tolerance, and the ability to respond to real-time inputs are fre-
quently more important than correctness. The state-of-the-art in this
area should be advanced. THE MILITARY SERVICES SHOULD ENCOURAGE AND
SUPPORT THE DEVELOPMENT OF TESTING TECHNIQUES THAT TAKE INTO ACCOUNT
QUALITY MEASUREMENTS OTHER THAN CORRECTNESS.

Virtually all systematic software test techniques require consid-
erable computational resources. Furthermore, automated data manipula-
tion is required for archiving and managing test results and documen-
tation. The goal of rigorous software test and evaluation is only
attainable with an array of testing tools appropriate to the test
methodology and test reporting set forth in the test plan. The most
obvious barrier to applying state-of-the-art technology in development
testing is the lack of usable testing tools and environments. Lack of

47

STEP - Final Report and Recommendations

critical tools is also a contributing factor to many of the inadequa-
cies in integration testing, quality assurance, data gathering and
operational testing. Of the tools surveyed in Volume 2 of this
report, only a small fraction are marketed, supported package software
tools. Testing tools are typically developed in university or
research settings or as support tools for specific software projects.
Research tools generally enter the public domain and are in principle
available to all interested users. However, these tools are not
supported, are poorly documented, present poor user interfaces and are
not easily transportable. Tools developed in support of other
software development efforts usually do not become available to the
general public. Some organizations consider testing tools developed
in this way to be proprietary software for use in support of internal
testing standards and practices, but not to be marketed. In other
organizations, the tools are under the control of a programming group
(usually, an individual). When the project disappears, the incentive
for generalizing, documenting, and distributing the tools also
disappears. In gathering the data for Volume 2, the most common
situation was that the person responsible for a tool had either been
reassigned or had left the organization; in either case it was rare
for a tool to be supported by new personnel.

There is also a widespread opinion that existing tools (even when
they are available) are not likely to be suitable to a given develop-
ment testing effort. Unsuitability can arise in a variety of ways.

1. The candidate tools may not match the development environment
(e.g., the source language supported by the tools is not the
source language of the intended project).

2. The tool may implement a testing technique or strategy which
matches neither the internal test procedures of the developer
nor the test procedures set forth in the test plan for the
project.

3. The tool may be inconvenient to use. That is, the extra
overhead involved in invoking and using the tool may be
greater than the perceived loss of effectiveness in using no
tool at all.

4. The tool may be so uncomfortable that test teams and program-
mers will not use it under any circumstances.

5. The tool may force accountability and visibility to the
development testing process that the developer wants to avoid.

6. The use of tools may not be justifiable to project and con-
tract managers. Tool usage involves an investment of time
and personnel on the part of the developer, and it is usually
not possible to justify the investment on economic grounds.

48

STEP - Final Report and Recommendations

7. 	The development organization may delegate development level
testing to the development teams. 	If development teams
consider testing to be part and parcel of program development
and debugging, they will find any tool unsuitable since there
is no systematic testing taking place at all.

(5) - (7) address deeper issues than the availability of
appropriate tools. (1) - (4) can either be addressed by the Services
through their development labs or by tri-service cooperation through
STARS or other umbrella programs. IMPLEMENTATION OF EFFECTIVE
PRACTICES FOR SOFTWARE T&E REQUIRE THE MILITARY SERVICES TO INITIATE
ON-GOING PROGRAMS TO DEVELOP, PACKAGE, EVALUATE AND MAINTAIN TESTING
TOOLS. INCLUDED IN THIS EFFORT SHOULD BE A PROGRAM TO IDENTIFY AND
QUALIFY TOOLS FOR EARLY USE IN THE DEVELOPMENT CYCLE.

The qualification problem for testing tools is especially severe.
Development groups will need guidance in selecting tools which are
suited to the testing task at hand. Furthermore, for efficient
implementation of TEMP requirements (e.g., for tools referred to in
the test articles portion of the TEMP), qualified tools should be
warehoused in an effective manner. There are essentially two routes
that a test team can take in selecting a tool to meet test plan
requirements. The first is to select a warehoused tool that has
already been qualified for use; the justification for tool usage then
reduces to justifying the appropriateness of the tool.

The second route is to use a tool not in the warehouse. Not only
must the appropriateness of the tool be established, but a separate
justification for tool selection must take place which establishes the
technical characteristics of the tool and presents data to support all
technical claims. The second route is clearly the more expensive
one. The only reason a developer would choose it is that he has a
proprietary testing tool. In such instances, the developer has
commercial disincentives for not offering the tool for inclusion in
the warehouse. Since he chooses this route for commercial reasons, he
should carry the financial burden of qualifying the tool. In most
foreseeable instances, the developer will not need to recreate his
qualification data for each inclusion of the tool, so the incremental
cost of choosing the second route when averaged over a number of
contracts is likely to be small. THE QUALIFICATION REQUIREMENTS
SHOULD SPECIFY USAGE CONTEXTS FOR SPECIFIC TOOLS AND COMPARATIVE
ANALYSES OF COSTS AND EFFECTIVENESS OF INDIVIDUAL TOOLS SHOULD BE
PROVIDED.

Implementation of such a program could have the adverse effect of
freezing the technology unless mechanisms are introduced for inserting
promising new technologies into the warehouse and phasing out obsolete
technology and tools that are superceded by more advanced ones. There
are likely to be two main sources for this new technology. Research
organizations will contribute prototype designs for qualification and

49

STEP - Final Report and Recommendations

packaging. Development organizations can also be expected to produce
tools that genuinely advance the state-of-the-art. As noted above,
however, these are usually tools tailored to a parent project. To be
useful in this setting, those tools must also be generalized to apply
to a variety of applications, environments, and test groups. PROVI-
SIONS SHOULD BE MADE FOR GENERALIZING AND IMPROVING TOOLS WHICH IMPLE-
MENT STATE-OF-THE-ART TEST TECHNIQUES AND STRATEGIES.

To address the problem of generalizing and distributing tools,
there needs to be a reevaluation of tool production which recognizes
the high cost of tool development and marketing. THE MILITARY
SERVICES THROUGH THEIR PROJECT OFFICES SHOULD CONSIDER REEVALUATING
CONTRACT FUNDING PATTERNS TO ALLOW SPECIAL PURPOSE TOOLS DEVELOPED IN
SUPPORT OF THE CONTRACT DELIVERABLES TO BECOME DELIVERABLE ITEMS UNDER
THE SAME CONTRACT. This will initially require additional government
investments in software contracts, although the incremental cost of
tool development should decrease in time as the available library of
testing tools becomes rich enough to support the range of software
technology projected for the next decade. Additional consideration
should also be given to integrating testing tools into general support
environments. Proliferation at both the hardware and software levels
have become severe problems for all of the Military Services. In
addition to cost increases, difficulties in training personnel, and
the obvious transportability problems, proliferation impacts such
critical areas as logistic support and system availability.

Many of these problems are shared by other key aspects of software
development for mission-critical applications. The issues of tech-
nology insertion and integration with standard support environments
are key aspects of the STARS program, and an effective long range
solution to the problem of identifying, packaging, qualifying, dis-
tributing and supporting test tools may well be handled through
STARS. DDT&E IN COORDINATION WITH THE MANAGEMENT OF STARS AND THE
MILITARY SERVICES SHOULD INVESTIGATE THE POSSIBILITY OF INCLUDING THE
SOFTWARE T&E TOOLS WAREHOUSE IN ONE OR MORE STARS TASK AREAS. IN
PARTICULAR, THE PROCESS OF IDENTIFYING, PACKAGING, QUALIFYING AND
DISTRIBUTING TEST TOOLS FOR USE IN SUPPORT OF TEST PLAN REQUIREMENTS
SHOULD BE A KEY ROLE FOR THE STARS SOFTWARE ENGINEERING INSTITUTE OR
ITS FUNCTIONAL EQUIVALENT.

6.3.5. TEST EVALUATION

Test and evaluation in the Department of Defense is used to
support the acquisition of systems designated for operational use,
identifying and reducing risk, and assessing the operational potential
and reliability of those systems. DoD decision makers and system
developers use the results of tests at various levels to formulate
estimates of risk and opinions about progress and probable operational
characteristics as programs proceed through the acquisition mile-
stones. Thus, the problem of evaluating test results is an especially

50

STEP - Final Report and Recommendations

critical one for DDT&E and the acquisition communities at large. The
results of this study indicate that major improvements are needed to
allow decision making for software-intensive acquisitions to balance
hardware and software issues. The following findings and recommenda-
tions address the areas of the evaluation process which are most
significant for software T&E and in which the most improvement can be
gained.

In practice, the decision to proceed from one stage of testing to
the next is frequently based on externally imposed schedule milestones
rather than test status, even though current policy states that tran-
sitions should be based on accountable completion criteria. The
primary guidance given to the Military Services with respect to soft-
ware test and evaluation resides in DoDD 5000.3. For example, DoDD
5000.3 states that, "Decisions to proceed from one phase of software
development to the next will be based on quantitative demonstration of
adequate software performance through appropriate T&E". The level of
software testing conducted during a previous phase should form the
basis of the accountable completion criteria. The overall effect of
current practice is to make the critical programmatic decisions more
subjective than is desirable, supporting neither the quantitative
measures of testing progress nor the quantitative demonstrations
required by DoDD 5000.3.

An area in which significant improvement in current practice can
be gained is the assessment of risk. The risks involved in the
development and deployment of mission-critical and embedded computer
systems can be associated with system production, the success of the
mission, and the consequences of system failure. When testing is used
as a risk reducing activity for software, the purpose of a test is to
uncover software errors or to build the testers' confidence that no
errors of a given type remain to be uncovered. As we have remarked
elsewhere, there currently exists a wide variety of testing strategies
and techniques from which test planners can choose. However, there is
little evidence available as to which test approaches are most effec-
tive in a given situation. In addition, the decision as to how much
testing is enough is of necessity a subjective one.

One approach to test evaluation is economic. 	If the cost of
testing to find residual software errors exceeds the cost incurred if
the errors occur, then further testing is clearly not cost effective.
The real problem with justification on narrow economic grounds is that
the concept of error cost takes into account undesirable events which
cannot be easily associated with dollar costs.

51

STEP - Final Report and Recommendations

Another approach is to quantify the elements of risk in the
software system. It is widely recognized that not all software errors
are of equal significance. The occurence of certain errors (e.g., in
a function controlling the release mechanism for a nuclear weapon)
have more serious implications than others (e.g., misspelled words on
a user display). Test requirements should take these observations
into account and attempt to achieve a balance between the extent and
cost of a test and the criticality of failure. Testing requirements
for software, as well as other software development requirements are
passed to developers by military standards and specifications.
Currently, MIL-STD-1679 provides the most detailed requirements
relative to software development and testing. In the view of many
developers, however, MIL-STD-1679 levies extreme test requirements
without regard to the impact of potential software failures. If
testing is to be proportional to the cost of failure, a risk analysis
should be performed on potential software errors.

THE MILITARY SERVICES AND DDT&E SHOULD DEVELOP QUANTITATIVE
INDICES OF SOFTWARE TESTING PROGRESS DURING DEVELOPMENT. QUANTIFICA-
TION SHOULD TREAT BOTH COSTS AND RISK: (1) RELIABLE COST/BENEFIT
MEASURES FOR TESTING SOFTWARE SHOULD BE DEVELOPED AND THE
COST/EFFECTIVENESS OF TESTING TOOLS SHOULD BE ESTABLISHED. (2) QUAN-
TITATIVE RISK ANALYSIS TECHNIQUES FOR SOFTWARE ERRORS SHOULD BE
DEVELOPED. (3) COST AND RISK SHOULD BE USED AS ESSENTIAL FACTORS IN
DETERMINING QUANTITATIVE INDICES.

Ultimately, the most usable source of quantitative information
about software quality is error data collected from current projects.
The observation, classification, and analysis of error data can be of
considerable help in planning the cost and effectiveness of tests. In
addition, expected improvements in the state-of-the-art in software
T&E will certainly require more exact classification of error data
than is currently available. It will be necessary to improve the data
gathering procedures considerably to support error and defect
discovery rates. Furthermore, the Services should develop a mechanism
for the careful review of significant (i.e., mission-threatening)
software failures, determining error distributions for errors
discovered in requirements documents, and categorizing design errors.

Software quality assessments during critical early program phases
require the measurement of software characteristics and processes that
affect quality. Measurements and data gathering procedures that
support reliable quality assessments are rarely applied and expensive
to develop. For near-term support of quantitative techniques, the
calculation of metrics based on currently identified software quality
factors is needed. However, existing metrics have not been throughly
validated as predictors of software quality. They should be applied
only when supporting error data and documentation are used for
cross-validation and redundancy.

52

STEP - Final Report and Recommendations

MILITARY LABS SHOULD EXPAND THEIR EFFORTS TO PROVIDE AN IMPROVED
DATA GATHERING, REDUCTION, AND MEASUREMENT CAPABILITY TO PROJECT
OFFICES AND DEVELOPERS. AUTOMATED DATA LOGGING AND DATA BASE SYSTEMS
SHOULD BE DEVELOPED TO TRACK AND RECORD ERRORS ON SOFTWARE-INTENSIVE
SYSTEMS. THE RELATIONSHIP BETWEEN MEASURABLE CHARACTERISTICS OF
SOFTWARE PRODUCTS AND THE PROCESSES USED TO PRODUCE THEM SHOULD BE
VALIDATED. MEASURABLE CHARACTERISTICS WHICH ARE RELIABLE PREDICTORS
OF SOFTWARE QUALITY SHOULD BE APPLIED TO ENHANCE THE EVALUATION
PROCESS.

Quality assurance (QA) is concerned with evaluating the process of
software development. Experience has suggested that independent QA
organizations are helpful, but they are by no means commonplace. In
order to be effective, QA must have scheduled, budgeted and planned
involvement throughout the development process. Written audit reports
must be provided. As with all transitions between phases of the
testing effort, the lack of effective flow of materials and informa-
tion is a major roadblock to effective QA. Plans, scripts, and
results of previous testing phases should be made available to QA
organizations. MIL-S-52779A describes the general concepts for
software quality assurance but gives few specific requirements. AN
EFFECTIVE SOFTWARE QUALITY ASSURANCE STANDARD SHOULD BE DEVELOPED.

Several organizations have found that independent verification and
validation (IV&V) teams can supply significant support to project
offices. Air Force policy requires that IV&V be considered for use on
all software-intensive systems. However, opinions on the value of
IV&V are divided and many consider the technique to be needlessly
expensive. The best counterbalance to costly IV&V activities is
likely to be a sharp focus on validation of user needs and verifica-
tion of the design and implementation. In particular, there is no
need for IV&V tasks focus on the development process. When IV&V is
indicated, special efforts should be undertaken to ensure that the
IV&V effort is an independent V&V effort. IV&V cannot be effective
unless there is an overt atmosphere of objectivity in the IV&V organi-
zation. THE MILITARY SERVICES SHOULD DETERMINE THE COST/BENEFIT
ASPECTS OF IV&V AND RECOMMEND THE CONDITIONS UNDER WHICH IV&V SHOULD
BE REQUIRED.

A problem common to all of the above areas - and a problem noted
in several independent studies of program assessments at production
decision points - is the inadequacy of information flow during the
development cycle. Ineffective or untimely communication between
development organizations, test organizations, project offices and
other DoD management structures and the relative absence of essential
T&E information in advance of major program decision points results in
schedule restrictions, resource allocations not matched to the
scheduled tasks, and higher decision risks. When quantifiable T&E
characteristics are not made available well in advance of decisions
and used as a basis for reviews and resource adjustments, expensive

53

STEP - Final Report and Recommendations

corrective actions are the only alternative. DDT&E AND THE SERVICE
PROGRAM OFFICES SHOULD BEGIN NOW TO DEVELOP AN INTEGRATED DECISION
SUPPORT SYSTEM FOR SOFTWARE T&E THAT COMBINES FUNCTIONALLY ORGANIZED
TEST INFORMATION AND EVALUATIONS WITH DATA THAT IS REQUIRED FOR MAJOR
PROGRAMMATIC DECISION POINTS.

54

STEP - Final Report and Recommendations

6.4. TRI-SERVICE RECOMMENDATIONS

Many of the previous findings and recommendations encourage
Service participation in formulating policy, guidelines, and standards
for use by development, management, and test organizations. Response
to DoD and Service actions in implementing these recommendations will
certainly require additional investments on the part of contractors.
It is important that further investments in software T&E be channeled
into those areas in which improvements are likely to have the most
effect. In the current T&E environment, military standards and speci-
fications which are applied on contracts vary from Service to Ser-
vice. Contractors who do business with two or more Services cannot,
in general, develop a unified approach to software T&E.

In the recommended environment in which early software testing is
planned and monitored, tools are qualified for project use, test
evaluation is made more objective, uncoordinated requirements by the
Services could result in undesirable splintering of resources by the
development communities. Furthermore, uncoordinated responses by the
Services could irritate an already noticeable problem: the prolifera-
tion of development and support software environments. There is a
clear danger that the existing technology for implementing improved
software T&E will be interpreted differently by each of the Services
resulting in policies, standards, and test environments that are
tailored to each Service. It is likely that this would lead to the
same problems that have arisen in the development of HOL's and hard-
ware, e.g., increased development costs, difficult logistic support,
problems in transportability, and overall decreased performance and
reliability.

A more desirable approach is to allow development organizations to
attack the software quality problem in a unified way. This can be
accomplished only by extensive cooperation on the part of the Services
in developing a common approach to software T&E. THE MILITARY SER-
VICES SHOULD DEVELOP TRI-SERVICE STANDARDS TO MAKE UNIFIED APPROACHES
TO SOFTWARE DEVELOPMENT, TESTING AND EVALUATION POSSIBLE.

55

STEP - Final Report and Recommendations

CHAPTER 7

CONCLUDING REMARKS

Revision of DoDD 5000.3 and the attendant modifications to more
specific regulations and standards will have a significant impact on
the quality of Defense system software. However, the usefulness of
new guidance in software T&E will be mediated by how rapidly the
research, development and acquisition communities move toward state-
of-the-art application of existing technology. One of the most signi-
ficant needs is support for tool development. This may involve modi-
fying contract funding patterns, and may initially increase project
costs. However, there seems to be a consensus that testing cannot be
justified on narrow economic grounds. Total lifecycle costs must be
taken into account. Along the same lines, incentives must be provided
for improved testing throughout the development/integration portion of
the lifecycle. This may require revisions of the development process.

New guidance and regulations must also be realistic. If develop-
ers and testers find themselves too constrained by regulations, they
will not have the desired effect. It has been noted, for example,
that not all software components are created equal: some implement
critical functions and others do not. To require the same level of
testing and, therefore, the same resources for all components is
probably not realistic and may actually serve to reduce the effective-
ness of tests in critical components.

Software developers and requirements writers must eventually
strike an accord. On one hand, development groups should recognize
that neither requirements nor specifications are likely to remain
static - they must learn to cope with change. On the other hand,
those who formulate requirements cannot assume that software is arbi-
trarily malleable: software changes may be as expenseive and far-
reaching as changes to any other system component. System retests and
budget/schedule shortages are currently victims of the tension between
requirements and development groups.

Finally, basic research is needed. There is no quantitative risk
model for software. Software measurement techniques are still at an
early stage of development so that objective data is still only a
goal. Testing techniques, methodologies and tools need further
development. The cost-quality tradeoffs for various techniques must
be quantified if developers and testers are to make a choice from
among the available techniques.

56

STEP - Final Report and Recommendations

It is certainly feasible to formulate new DoD guidance for soft-
ware T&E. New guidance must address the most pressing problems,
either directly or indirectly, by encouraging new technology and
acquisition procedures. With such encouragement, the technological
"window" will move to provide more effective techniques for software
T&E. New guidance should be general; development testers and
operational test groups should not feel bound by mandated test
procedures that fit neither their application nor their environment.
The exact form that such guidance will take and its ultimate effect on
the reliability of future military systems awaits further study.

57

STEP - Final Report and Recommendations

APPENDIX

PROJECT ORGANIZATION AND MILESTONES

The prime contractor for the support contract was the Georgia
Institute of Technology. Tasked with overall responsibility for the
information gathering and analysis phases of STEP, a study team from
the School of Information and Computer Science concentrated its
efforts on the development of an overview of the state-of-the-art and
projected technology in software T&E. The Georgia Tech team also
provided management and project support for several other activities.
Dr. Richard A. DeMillo served as director of the Georgia Tech team as
well as Principal Investigator for the prime contract. The task of
compiling an overview of the state of military and industrial practice
in software T&E was executed by a study team from Control Data's
Atlanta Research Facility under a subcontract from Georgia Tech. The
Control Data study team was under the direction of Project Manager,
R.J. Martin. Control Data's team was also tasked with overall
responsibility for retaining consultants and managing report
preparation and distribution. A third subcontract was let to Clemson
University. This project, under the supervision of Dr. James F.
Leathrum, was designed to provide a study of a particular tactical
computer system for the U.S. Army. The results of this subcontract
demonstrated the value of early testing and modelling procedures for a
typical military acquisition effort.

In carrying out the tasks for Phases I and II, a key consideration
has been the breadth of input from academic, military and industrial
sectors. Wide participation was important for gathering information
which would simultaneously: (1) give a balanced overview of current
capabilities and practices, (2) ensure that expert opinions from
Defense circles most involved with software development were included
in the assessments, and (3) solicit suggestions for improvements in
current T&E practices and policies. A secondary benefit of wide
participation was its validating effect: the study teams found wide-
spread agreement on the nature of the fundamental problems to be
resolved along the way to an adequate policy for software T&E. The
various mechanisms used to solicit this participation are described
below.

58

STEP - Final Report and Recommendations

PHASE I MILESTONES

The major milestone tasks for Phase I of the STEP support contract
were the following:

1. Orientation Workshop: 	In March of 1982, a workshop for
selected military, DoD, and industrial participants was held
at the Defense Systems Management College in Fort Belvoir,
Virginia. The purpose of this workshop was to brief the
organizations which would be most directly involved with
information gathering efforts on the aims and status of
STEP. At the same time, workshop participants were given the
opportunity to present summaries of individual and organiza-
tional views on STEP. These sessions were useful for direct-
ing the attention of the study teams to an initial set of
concern areas, setting the stage for more intensive individ-
ual discussions and defining a community of interest for the
duration of STEP. The talks and discussions which took place
at the workshop were recorded, transcribed, and edited. The
edited workshop transcript and copies of all available pre-
sentation materials appear in Volume 4.

2. Overview Compilation: 	Overviews of current and planned
technology and practices were compiled with attention to the
following areas:

a. assessing the scope and effectiveness of systematic test
methodologies and techniques,

b. assessing the cost, effectiveness, and availability of
automatic test tools,

c. identifying existing and planned policy, standards and
regulations which guide software T&E activities,

d. assessing the nature and effectiveness of government
procedures which implement the items identified in (c),

e. assessing the nature and effectiveness of contractors'
responses to the procedures identified in (d).

The results of these overview compilations form the bulk
of the data used to support the findings, conclusions and
recommendations reported herein. The overviews themselves
appear as Volumes 2 and 3. Volume 2 is devoted to an
assessment of the state-of-the-art, while Volume 3 reports
the state of current practices. An integral part of Volume 2
is a section dealing with currently available tools for
software T&E. This section contains detailed descriptions of

59

STEP - Final Report and Recommendations

tool characteristics, operational strategies and evaluations
of performance. Volume 2 also contains a comprehensive
bibliography to the literature in software T&E.

PHASE II MILESTONES

The major milestones for Phase II of the STEP support contract
were the following:

	

1. 	Reports of Consultants and Experts: A number of consultants
and other experts in the field of software T&E were selected
from academic, industrial and DoD organizations. This group
constituted an expert panel tasked with providing input to
the support contractors in 14 targeted areas:

. assessment of the state-of-the-art

. assessment of the state of tool development

. applications of reliability theory to software T&E

. applications of metrics to software T&E

. software error studies

. large system test experience

. the economics of software T&E

. the impact of new software technology on testing

. the impact of new hardware technology on testing

. standardization issues

. quality assurance and acquisition policy

. test procedures and project management

. the relationship between development and operational testing

. the impact of improved software quality on future military
systems.

The panel met twice. The first meeting, held in September of
1982, served to introduce the panel to the goals and progress
of STEP up to that point and to expose the central issues
which would eventually form the basis for the panelists'
reports. The panelists reported their findings and recommen-
dations at a national symposium held in February, 1983 (see 2
below). The written reports of the panelists appear in
Volume 5. In addition, many of the recommendations of the
panelists have been incorporated into the recommendations and
conclusions appearing in this volume.

	

2. 	National Conference on Software Test and Evaluation: The
National Security Industrial Association (NSIA) in coopera-
tion with the Office of the Secretary of Defense sponsored a
national symposium on software T&E during the first week in
February, 1983. The principal goal of the symposium was to
provide a national forum for the reports of the expert panel-
ists (see 1 above) and the preliminary findings of the STEP

60

STEP - Final Report and Recommendations

support contractors. During this meeting, extensive ques-
tion-and-answer sessions were conducted, taped, and tran-
scribed. Edited versions of these transcripts appear in
Volume 5. In addition to the presentations of the panelists
and support contractors, presentations were made by represen-
tatives of each of the services, the Office of the Director
Defense Test and Evaluation, and the Office of the Deputy
Undersecretary of Defense for Research and Advanced Tech-
nology. Besides offering a forum for the STEP preliminary
recommendations, this conference - along with the orienta-
tion workshop described in Phase I - helped to further expand
the base of information from which the final set of
recommendations was eventually distilled.

3. Applicability Study: A subcontract to Clemson University
under the direction of Dr. James F. Leathrum was let in early
1982. The goal of this effort was to conduct an applicabili-
ty study for a specific tactical computer system. A major
finding of this subcontract related to a modelling strategy
which predicted an over-designed software component of the
system. This system component subsequently failed during an
operational test. This study is reproduced as Volume 6:
Tactical Computer System Applicability Study.

4. Recommendations: The final stage of assessment in Phase II
has been the development of a set of recommendations pointing
toward improved policy guidance for software T&E. 	The
results of the information gathering efforts, the recommenda-
tions of the panelists, the recommendations and concerns of
the attendees of the orientation workshop and NSIA/OSD con-
ference, and the conclusions of the contractors and sub-
contractors were organized, analyzed and cast into the form
of specific recommendations. 	Each recommendation is
supported by results obtained during Phase I data gathering
or Phase II evaluation. 	The complete list of specific
recommendations appears in Chapter 6 of this volume. Based
on a preliminary prioritization of these recommendations, a
list of general recommendations concerning improved software
T&E guidance was prepared and submitted to DDT&E. These
recommendations also appear in Chapter 6 of this volume. It
is implicit in making these recommendations that improvements
in DoD policy for software T&E are technically feasible. The
recommendations themselves address only the goals of policy
improvement and do not address mechanisms or implementation
strategies (although possible strategies can be inferred from
the supporting arguments in Chapter 6).

61

`gAre ri•

T 'A 	EVALUAT1

SUBMITTED TO
THE OFFICE OF THE SECRETARY OF :DEFENSE
:DIRECTOR DEFENSE TEST AND EVALUATION

AND
E OFFICE OF NAVAL RESEARCH

ONR CONTRACT NUMBER N00014-79 -C 0231

N ORMATI
0RGIA

NTA,rtGEORRGIA ;303

OSD/DDT&E
SOFTWARE TEST AND EVALUATION PROJECT

PHASES I AND II
FINAL REPORT

Volume 2
Software Test and Evaluation:

State-of-the-Art Overview

SUBMITTED BY
GEORGIA INSTITUTE OF TECHNOLOGY

TO

THE OFFICE OF THE SECRETARY OF DEFENSE
DIRECTOR DEFENSE TEST AND EVALUATION

AND

THE OFFICE OF NAVAL RESEARCH

FOR

ONR CONTRACT NO. N00014-79-C-0231
Subcontract 2G36661

June, 1933

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director Defense Test and
Evaluation under Office of Naval Research Contract N00014-79-C-0231.

Comments should be directed to: 	Director Defense Test and
Evaluation (Strategic, Naval, and C 3I Systems), OSD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Volume 1: Final Report and Recommendations
Volume 2: Software Test and Evaluation:

State-of-the-Art Overview
Volume 3: Software Test and Evaluation:

Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and

Evaluation
Volume 6: Tactical Computer System Applicability Study

Volume 2

Software Test and Evaluation:

State-of-the-Art Overview

Table of Contents

1.

2.

Definitions and Theory of Testing

	

1.1. 	Program Specification and Correctness

	

1.2. 	Reliability and Validity
1.3. _Deductive Approaches -- Proofs of Correctness
1.4. ' Mathematical Terminology

	

1.5. 	Statistical Reliability Models

Software Testing

Page

1

1
5
8

13
15

21

2.1. Testing Strategies 21

2.2. Testing Techniques 31
2.2.1. 	Static Analysis Techniques 32
2.2.2. 	Symbolic Testing 36
2.2.3. 	Program Instrumentation 45
2.2.4. 	Program Mutation Testing 50
2.2.5. 	Input Space Partitioning 58
2.2.6. 	Functional Program Testing 63
2.2.7. 	Algebraic Program Testing 67
2.2.8. 	Random Testing 70
2.2.9. 	Grammar-based Testing 72
2.2.10. Data-flow Guided Testing 75
2.2.11. Compiler Testing 78
2.2.12. Real-time Software and Testing 81

2.3. Other Strategies for Constructing Reliable Software 89

2.4. Comparative Evaluation of Testing Techniques 92

3. Testing and Evaluation Tools 95

3.1. Introduction 95
3.1.1. 	General Views on Testing Tools 95
3.1.2. 	Classification 97

3.2. Static Analysis Tools 99
3.2.1. 	Static Analysis Tool Classification 99
3.2.2. 	Static Analyzers 101

Page

3.3. Dynamic Analysis Tools
	

115
3.3.1. Dynamic Tool Classification
	

115
3.3.2. Symbolic Evaluators
	

117
3.3.3. Test Data Generators
	

128
3.3.4. Program Instrumenters
	

141
3.3.5. Mutation Testing Tools
	

159

3.4. Test Supporting Tools 	 169
3.4.1. Automatic Test Drivers 	 169
3.4.2. Comparators 	 175

4. Comprehensive Bibliography 	 179

Appendix A: Information Sources for Testing Tools 	 274

Appendix B: Alphabetical Listing of Cataloged Tools 	 276
and Testing Tool Data Sheets

STEP - State-of-the-Art Overview

CHAPTER 1

DEFINITIONS AND THEORY OF TESTING

1.1. PROGRAM SPECIFICATION AND CORRECTNESS

When asked to give a reason for testing a computer program,
typical programmers respond, "To see if it works." In practice, the
notion of a "working" program is a complex one which takes into
account not only the technical requirements of the programming task
but also economics, maintainability, ease of interface to other
systems and many other less easily quantifiable program
characteristics. As these characteristics become more complex,
testing to see if a particular piece of software has those
characteristics becomes more difficult. The technical literature on
program testing tends to deal with "working" in one simplified
disguise: correctness.

For most of this overview, we will consider the following
(simplified) model of the program development cycle (see Figure 1).

At the start of the programming task, the programmer is supplied
with a specification of the program. The specification may be as
formalized as a document which details the intended behavior of the
program in all possible circumstances or it may be as informal as a
few instances of what the program is intended to do. In practice, the
programmer has available to him several sources of information which
comprise the specification. These may include a formal specification
document, a working prototype, instances of program behavior, and a
priori knowledge about similar software. All of these sources
aTi --Fibute to the programmer's understanding of the task.

Working from his specification, the programmer develops the
software. The test -- or, more generally, validation -- of the
software lies in the comparison of the software product with the
specification of intended behavior.

For most of this overview, we will not be concerned with the
exact nature of specifications. The examples we give will be small
and understandable. For instance, the specification of a sorting
program might be the following:

1

M
ai

AJ
OA
O

1.
4
-
8
0
-1

0-
a4

e4
S

TEST DATA

PROGRAM

ii

IN 	OUT

X Y OR

SPECIFICATION KNOWN INPUT/OUTPUT

FIGURE 1
TESTING FOR* CORRECTNESS

COMPARE
OUTPUT

•

STEP - State-of-the-Art Overview

INPUT:
	up to 10,000 input records in the format (KEY1, KEY2,

VALUE).

OUTPUT: 	a re-ordering of the input records
properties:
(1) the primary (KEY1) keys should

order,
(2) if two records R1 and R2 have

and if R1 precedes R2 in the i
R1 precedes R2 in the output.

Additional information could have been added to this specification.
It could be required, for example, that the sorting program satisfy
some performance criteria or that some standard interface conventions
be followed.

Practical situations hardly ever give rise to such "clean"
specifications. Much research has been devoted to the problem of
specifying large and complex software systems [1,2,6,8,12,15]. For a
discussion of software testing research, we will not need to be more
precise with the nature of program specification.

A specification provides a description of the input data for the
program. This input data is called the domain of the program and is
usually represented by D. The specification also provides a
description of the intended behavior of the program on D. We will
represent the intended behavior on input data d by f(d). In practice,
f(d) may be quite complex.

Similarly, a program P represents some computational actions which
will take place when the program is supplied with input data. Even
though these actions may be quite complex, we will simplify things
considerably by representing the behavior of program P by P. Thus,
P (d) is a mathematical idealization of the behavior of program P on
data item d.

The shorthand notation f(D) and P *(D) is used to represent the
intended behavior on all input data and the behavior of P on all input
data, respectively.

The program P is said to be correct with respect to a
specification f if

f(D) = P*(D),

that is, if P's behavior matches the intended behavior on all input
data.

with the following

appear in ascending

equal primary keys
nput sequence, then

3

STEP - State-of-the-Art Overview

A problem arises in practical applications of the mathematical
theory. How is it possible to determine whether or not f(d) = P (d)
for some particular datum d in the domain? If the specification
document is completely formal, then it should also answer this
question. However, specification documents are hardly ever completely
formalized (even when they are, determining f(d) may be infeasible).
When the specification is not formalized, f(d) may be obtained by hand
calculation, textbook requirements or by application of estimates
obtained from simulations.

Usually, these problems are not dealt with in program testing
theory. Rather, we assume that an oracle exisq. This oracle can
judge for any specific d, whether or no (d). The idealiza-
tion of an oracle is essential for software testing. Various testing
strategies have handled the oracle problem in different ways. For
example, in some strategies, the specification is required to be
uniform. That is, the specification document must provide a method
Tr3F—EaEputing f(d). In some cases, this is ensured by requiring that
the specification itself be executable. Other strategies, on the
other hand, make no assumptions at all about how the oracle is to
operate. These strategies simply present the tester with P * (d).
The determination of whether P *(d)=f(d) is left to the oracle.

4

STEP - State-of-the-Art Overview

1.2. RELIABILITY AND VALIDITY

The correctness problem is to determine whether or not
P*(D)=f(D). In program testing, this determination is made on the
basis of a finite number of program executions on test data
d0,di,...dn . If

f(d0) = P* (do)
f(dl) = P (d1)

f(dn) = Plr(dn)

then we would like to be able to conclude, in general, that
P* (D)=f(D). Clearly, this is not possible without some restriction
on the test data. For example, since D may be infinite, V -may
simply be "rigged" to mimick f on the test data but deliver erroneous
results elsewhere. The concept of reliable test data is due to Howden
[7]. A set of test data T is said to be reliable for P if

P* (T) = f(T) implies P *(D) = f(D).

That is, a set of test data is reliable if, by observing the results
of executing P on the test data allows one to conclude that P is, in
fact, correct.

How does one select reliable test data? This question was
addressed in an influential paper [13] by Gerhart and Goodenough. Let
C be a procedure that, for a program P, selects (possibly many) sets
of test data. In order for C to seleTriable test data, the
procedure must satisfy two conditions: C must be reliable and valid.
C is said to be reliable if, whenever C selects test data land
12, P either matches its specification on Ti and 12 together or
fails to match its specifications on Ti and 12 together. That is,

P*(Ti) = f(T1) if and only if P*(T2) = f(T2).

A selection procedure is said to be valid if, whenever P is not
correct, C selects at least one test datum on which P fails to match
its specification. More precisely, if P*(d) .NE. f(d) for some d,
then C selects test data T such that P*(T) .NE. f(T) 1 .

1 Throughout this document, for printing purposes, FORTRAN symbols
will at times be used to represent relational and logical operations.

5

STEP - State-of-the-Art Overview

Reliable and 	valid 	selection 	procedure 	restate 	program
correctness. That is, there is a valid and reliible test data
procedure C for P selecting test data T such that P (T) = f(T) if
and only if P (D) = f(D). To lee this, first assume that P is
correct, that is, suppose that P (D) = f(D). Since the selection
procedure that selects the empty set of test data is valid and
reliable, the require procedure exists. Conversely, suppose that C
with the required properties exist. Then P must be correct, for
assume that it is not. If P is incorrect, then for some d,
P (d).NE. f(d). Since C is valid, it will select test data T such
that P*(T) .NE. f(T). Since C is reliable it will then choose only
test data on which P fails. This contradicts our choice of C, so we
conclude that P*(D) = f(D).

Notice that reliable and valid selection procedures select
reliable test data sets. That is, if C is reliable and valid, then
any test data set selected by C is reliable. On the other hand, if T
is a reliable test data set and T is selected by procedure C, then C
is valid.

There are a number of conceptual problems with these definitions.
The first, and most notable, is that the existence of reliable and
valid selection procedures is equivalent to program correctness.
Thus, if P is correct, showin9 articular C is valid and
reliable is that same as showing that the program is correct (see
section 1.3). By the same token, if P is already correct, then valid
and reliable procedures can give rise to test sets which offer no
empirical evidence at all that P is correct, since P will work
properly on any test set [5]. Finally, validity and reliability are
not independent concepts. It was observed by Weyuker and Ostrand [25]
that, every selection procedure is either reliable or valid.

In many circumstances, one might search for conditions on test
data that allow the tester to conclude correctness which are,
nevertheless, not formally equivalent to correctness. The concept of
adequate test data is due to DeMillo, Lipton and Sayward [11]. A test
data set T is adequate for P if P *(T) = f(T) and for all Q such that
Q* (D) .NE. f(D), Q*(T) .NE. f(T). In other words, T is adequate
if P behaves correctly on T but all incorrect program behave
incorrectly. It is a simple consequence of the definitions that if T
is adequate then it is reliable. On the other hand, reliability does
not imply adequacy since if P is correct, any test set is reliable.

There are no general-purpose valid and reliable test selection
procedures. In technical terms, no valid and reliable test selection
procedure is computable [12]. The goal of testing research, then is
to limit attention to specific categories of errors for which
selection procedures are valuable. For example, we might construct
test data that is adequate, relative to a set of programs A. We say
that T is adequate for P relative to A if P (T) = f(T) and for all

6

STEP - State-of-the-Art Overview

program Q in A, Q*(D) .NE. f(D) implies Q *(T) .NE. f(T). 	For
example, A might represent a certain set of errors which might be
introduced into a program. Then the existence of an adequate set of
test data demonstrates that P does not contain A-type errors. To see
why, it is only necessary to observe that if T is adequate relative to
A, then either T is reliable or P is not in A. If T is adequate for P
relative to A, and T is reliably there is nothing to show. Suppose
that T is not reliable. Then P (D) .NE. f(D). But for all Q in A,
if Q is not correct, then Q *(T) .NE. f(T). Since P *(1) = f(T), P
cannot be in A.

7

STEP - State-of-the-Art Overview

1.3. DEDUCTIVE APPROACHES -- PROOFS OF CORRECTNESS

An approach to determining whether or not P*(D) = f(D) is to
Prove 	the equation holds. The general strategy is as follows:

is correct, then by a rigorous mathematical analysis of P and its
specifications, it is to be proved that for all input data x in D
(1.e., data meeting P's input specifications) if P operates on x, then
P (x)=f(x) (i.e., P meets its output specifications). If P, on the
other hand, is incorrect, then in attempting to develop such a proof,
the error will be uncovered.

There is a distinction between proving a program correct and
testing to see if it works. 	Proving correctness is a deductive
activity, while testing is an inductive activity. 	In proofs of
correctness one argues about all input that satisfy a program's input
specifications, and the conMsion of the argument -- that P is
correct -- is mathematically valid. In testing, one observes
instances of program execution, and from this observation draws the
conclusion that P is correct. However, the conclusion is not
mathematically valid unless the set of observations are drawn from a
reliable test set. Since reliable test sets may not be practical to
obtain, the tester may have to choose test data which is not as
strong. One may observe program execution over an adequate test set.
In this case, however, it can only be concluded thatP—Trarrect with
high probability (either the test set is reliable or P is not in A, an
event of low probability). Even though proving a program correct
offers the hope of certainty that P is correct, it is seldom applied
in practice (we will sketch some reasons for this at the end of this
section). Nevertheless, the theoretical basis of correctness is so
closely tied to program proving that it will be helpful to present a
brief sketch of the theory.

The following diagram illustrates the process of proving a program
correct.

Formal Specification
of P

"Unable to complete proof"

The proof system is a set of rules that allow the formal derivation of
the proof of correctness, if one exists. These rules may be simply a
description of how a proof is to be developed by a human being, or may
actually be implemented in a mechanical proof system, so that a proof
is automatically constructed. Hybrid systems have also been proposed
in which a human operator gives "help" to a mechanical system. The
advantages of each approach have been extensively argued in the
literature [3,4,7,16,20,21]. All of these systems share some common
characteristics.

8

STEP - State-of-the-Art Overview

The first requirement is that the input and output specifications
be expressed in a suitably formalized way. Such a formalization
serves two ends. First, the specifications can be uniformly and
exactly stated. Second, the formalization itself can be used to carry
out the necessary logical inferences. The overwhelming majority of
work in program proving is carried out in a language called the first
order predicate calculus or FOPC. FOPC is essentially the language of
elementary formal mathematics. In adapting FOPC to serve as a tool
for correctness proofs, it may be enriched with some additional
devices oriented toward programming. The basic language of FOPC has
provisions for the following:

variables (x,Y,x1,Y1,•••),
constants (a,0,7.6, ...),
7--—ictiiii—urls(f(x),g(s,y),+,...), and
pre icates (A(x,y),x=y,x.LE.O, ...).

Statements involving individuals (i.e., constants, variables, and
values of functions) are constructed by combining names for
individuals with predicates (e.g., f(0).LE.xty is a statement).
Statements may be combined with the boolean operations .AND., .OR.,
.NOT., and 7 (implies) to form compound statements (e.g., x=y+z .AND.
y=0 2) x=z). FOPC also allows quantification over individual
variables using the symbols V (for all) and 3 (there exists). Thus,
the statement that every integer has an additive inverse may be
expressed in FOPC as V x 3 y (xty=0).

FOPC is frequently used as the basic language of To ical
theories. A statement of FOPC is a theorem if it is derivable rom a
iTiTMT axioms by a list of rules which a proof system.
Some axioms are essentially formalizations of logical truths (i.e.,
for any predicate A(x) either an individual has that property or not,
so an axiom of FOPC is V x(A(x) .0R. .NOT.A(x)). Other axioms may
specify specific properties of some mathematical system (e.g., the
statement that every integer has an additive inverse).

In a proof of correctness of a program P with input specifications
A(x) and output specifications B(x), the idea is to use the proof
systems for program correctness and for FOPC to prove that whenever
A(x) is true before P is execute, then B(x) is true after P is
executed. This situation is sometimes illustrated with the notation
A(x) [P] B(x). By defining the effects of language features on input
and output predicates, a procedure which defines the proof system can
be obtained. For example, if we combine two program segments P and Q
into a single program P;Q, then the output specifications for P become
the input specifications for Q, so if A [P] B and C [Q] D can be
proved and if B C, then A [P;Q] D can be proved.

9

STEP - State-of-the-Art Overview

Looping constructs must be handled fairly carefully. Essentially
a proof system must allow for the possibility of arbitrarily many
interations through a WHILE loop. In the most commonly used proof
systems, the method of inductive assertions is used. The basic idea
is to find input and output specifications for the loop (e.g., A(x)
for the input and B(x) for the output) so that A(x) is true when the
loop is entered for the first time. Furthermore,_-- and this is the
inductive part -- if A(x) is true after some nth iteration through
the loop (i.e., before the n+lst itgiT5n), then A(x'), where x' is
possibly a new value of x assigned during one iteration of the loop,
is true after the n+lst iteration. In addition, if the loop ever
terminates, it terminates with B(x) true.

The following example illustrates the main ideas in proofs of
correctness. The literature in this area is extensive, and the reader
should consult such sources as [11,20] to examine the possible
variations. The program to be proved computes the quotient q and
remainder r on dividing integer x by integer y. The axioms of FOPC
are assumed along with the axioms of elementary arithmetic. The
program is:

r:=x; q:=0;
WHILE y.LE.r DO

BEGIN r:=r-y; q:=q+1 END.

The proof is broken into two parts.

TRUE [r:=x;q:=0] x=r+y*q

x=r+y*q [WHILE y.LE.r DO BEGIN r:=r-y;q:=q+1 END] x=r+y*q r.LT.y.

The input specification TRUE indicates that no additional assumptiOns
about the input variable x and y are needed. If both of these program
segments can be proved, then they can be combined to prove the program
using the rule A [P] B and B [Q] C implies A [P;Q] C. The proof
system is responsible for converting these A [P] B expressions into
FOPC statements. The first results in

TRUE .AND. r=x .AND. q=0 	x=r+y*q

The loop generates two FOPC statements. The first corresponds to
continued execution of the loop (i.e., y.LE.r) and the second
corresponds to loop termination.

x=r+y*q .AND. y.LE.r .AND. r'=r-y .AND. q'=q+1)x=r'+y*q

x=r+y*q .AND. y.LE.r 2) x=r+y*q .AND. r.LT.y.

10

STEP - State-of-the-Art Overview

These FOPC statements are sometimes called verification conditions.
To complete the proof of the program, it is necessary to construct a
FOPC proof of the verification conditions. This may be very easy
(e.g., in the first verification condition above, the proof follows by
simple substitution and manipulation). In general, however, the
verification conditions are lengthy statements whose proofs are not
apparent.

Formal proofs of correctness constitute analyses of programs.
Several authors have also suggested that synthetic tools can be based
on the deductive approach. That is, T57 717Hing a proof system
backward one can derive a program that meets its input and output
specifications [7,14].

The issue of whether or not complex software can be proved correct
is not yet settled. Proponents of correctness proofs argue in the
following way. Properties of program are subject to mathematical
proof (that is, by analyzing the program and its specifications, one
obtains a mathematical statement that may be proved using the usual
laws of logic and mathematics). Provided the symbolic analysis and
proofs are flawless, one can then conclude that the program when
started in an acceptable state, will, if it terminates, produce an
acceptable output state. The statement that the program is correct
has been proved for all possible test cases. The technique is
applicable in principle to all programs. Its application to complex
software awaits only advance automated systems to aid in the process
of proof [24].

Opponents of program proving argue that proofs of correctness
seriously misinterpret

(1) the concept of proof,
(2) the nature of software specifications, and
(3) the notion of reliability.

The interested reader may consult [10] for detailed discussions of (1)
and (2).

Point (3) is of special importance for program testing.
Presumably, a program that is sufficiently large and complex will
never be correct in the sense given above (i.e., it will always
contain errors and therefore there will never be a correctness
proof). That does not mean that the program is unreliable. The
problem is that the deductive approach treats reliability as a
two-valued function (either the program is correct or it is not). For
software this assumption is unacceptable. What is needed is not a
two-valued criteria, but a theory that orders uncertain events (i.e.,
the error-free operation of a piece of software).

11

STEP - State-of-the-Art Overview

Even though we will not explicitly consider deductive approaches
in the remainder of this overview, the terminology and viewpoints have
infused the field of program testing, and the reader may wish to
consult one of the survey articles in the field or any of the more
recent textbooks C20,21,24] for more details.

12

STEP - State-of-the-Art Overview

1.4. MATHEMATICAL TERMINOLOGY

We collect here some terminology that is common
research.

A graph is a collection of nodes connected by
arcs. For example, the illustration below shows
for a graph G.

to program testing

directed lines or
one representation

a < d
Mathematically, a graph G is defined by a set of nodes N(G) and a set
A(G) of ordered pairs of nodes which represent the arcs. For tie
example above N(G) = [a,b,c,d] and A(G)=[(a,b),(a,c),(b,c),(c,b),
(b,d),(c,d)). A path through a graph G is a sequence of nodes that
can be traversed by following the arcs in the proper direction. For
the graph given above (a,b,c,b,d) is a path while (d,b,c,b,d) is not a
path. A path is a cycle if the start and end nodes along the path are
the same. A cycle is simple if it contains no other cycle. A set of
nodes is a cutset for the graph if the removal of that set of nodes
(and their incident arcs) breaks the graph into two pieces GI and
G2 so that there are no paths from nodes in GI to nodes in G2.
A graph is strongly connected if for any two nodes x and y, there are
paths leading from x to y and from y to x. Notice that the graph
given above is not strongly connected.

If a graph has a unique node h (the header) so that every other
node in the graph can be reached from h and-i-Ulque node f (the final
node) so that there is a path from every node in the graph to f, --thWi
the graph is called a flow graph. Flow graphs are abstract
representations of program flow charts. The nodes of the graph
correspond to program statements and the arcs correspond to control
paths. A node of the form

corresponds to a decision branch, and we assume that the arcs are
labelled so that the YES/NO branches correspond to the two sides of
the conditional branch.

13

STEP - State-of-the-Art Overview

A program path is any path through the associated flowgraph (i.e.,
from h to f). A branch is any path from decision point to decision
point. In other words (xi,...,x n) is a branch if xi is either h
or a decision node, xn is either f or a decision node, and none of
the nodes x2, ..., xn_i are decision nodes.

14

STEP - State-of-the-Art Overview

1.5. STATISTICAL RELIABILITY MODELS

In practice a program may be judged reliable if it has been
formally proven correct, if it has been run against a reliable and
valid test data, or it has been developed according to a special
discipline. But these approaches fail to quantify the extent to which
software meets its operational objectives.

To evaluate a system's behavior in quantitative terms, when direct
measurement is impossible, one needs a reliability model. A key
requirement for such a model is that tun time and number of errors
revealed during testing be recorded. Since, in most projects, the
earliest time one can start gathering accurage software reliability
data is after the start of integration test, the focus is on the
integration test phase of software development.

A number of software reliability measures have been defined, and
they have been used in software reliability analyses. The most
important reliability measures are:

- Failure rate
- Reliability functions

In general, software reliability is measured by identifying
successful runs (S) among a predetermined total number of runs (N).
The index of software reliability is then the ratio of successful runs
to total, or

R = S/N

The failure or unreliability rate can be expressed as

U = F/N

where F is the number of failed runs. This definition is applicable
to conventional batch processing environments and real-time systems
dealing with discrete operations. For real-time systems dealing with
continuous streams of data, a more realistic index is mean time
between failures (MTBF). It is expressed as

MTBF = t/F

where t is the predetermined total running time and F is the total
number of failures in the interval [0,t]. The failure rate is then

u = 1/MTBF

The failure rate measure is used to build error models (which will be
discussed later).

15

STEP - State-of-the-Art Overview

The reliability function is another software reliability measure.
It results from extensive classical statistical reliability theory to
software. Experience in the hardware area suggests that reliability
must be defined as the probability of satisfactory performance of the
system in the time interval [0,t], [18,23]. Another factor which must
be specified is the hardware environment. For instance, if a program
is written to run on a particular system will probably be modified to
run on a different system. A common definition of software
reliability which takes into account the factors mentioned above is as
follows:

Software reliability is the probability that a
given software system operates for some time period
without software error, on the machine for which it
was designed given that it is used within design
limits.

When this definition is mathematically expressed, we obtain the
following reliability function

t
R(t) = exp [-f Z(t) dt

where Z(t) is the estimated error rate. MTBF can then be expressed as

MTBF =1 R(t)dt
These reliability measures have been used in about 15 reliability
models. Some of these models have been investigated in detail and
app led to actual software projects [19,22,23]. These models differ
mainly in the assumptions they make to characterize the failure
rates. Two types models derived from the different measures of
reliability are error models and reliability models. They can be used
independently or together in assessment of reliability to a project.

Error models are mainly used to predict the remaining number of
errors (Er) by assuming that the total number of errors (Et) in the
program is known before it enters the integration test and errors are
immediately corrected as they are found. Then, after integration
testing for time t the remaining number of errors is

Er(t) = Et(t) - Ec(t)

where Ec is the number of errors corrected [18,23]. Realistic error
models can be constructed by using collecred error data to get some
idea about the error distribution for the type of software being
tested. For examples of collected error data and the variations of
the basic model described above see [18,22,23].

CO

16

STEP - State-of-the-Art Overview

Reliability models are used to predict the number of errors left
uncovered after integration testing has been completed. Similar to
error models, realistic reliability models are constructed with
reference to collected reliability data. Shooman [23] describes how
to build such a reliability model from experimental data and how to
estimate the parameters of the model. The underlying assumptions of
Shooman's model include: errors are detected randomly and independent
of each other, errors are corrected as soon as they are detected, and
error rate is constant the detection of two subsequent errors and is
proportional to the number of remaining faults [19]. The reliability
models that employ the assumptions mentioned above are also know as
exponential reliability models.

Exponential reliability models can lead to serious errors when the
underlying distribution corresponds to failures that do not occur
randomly or that depend on the history of the system. The Weibull
reliability model circumvents the deficiencies of the exponential
reliability model. In this model, the error rate is a function of
time and is defined as follows:

Z(t) = a-b-tb -1

Obviously, the error rate is decreasing or increasing depending on the
value of b.

There are other types of software reliability models, i.e.,
truncated normal distribution model, Kelinski and Moranda models, and
Shooman model. For a discussion of these models see [19,23].

Experimental evidence gained by the applications of these models
mentioned above shows that these models seem to be better applied to a
posteriori reliability assessment than to reliability prediction.
There also do not exist data which can be analyzed reliably by these
models at the same time. Therefore, it is hard to make comparisons
regarding the usefulness and the accuracy of these models [19].

Even if there may be some experimental data fitting the
appropriate error rate functions of these models, the underlying
assumptions of their reliability distribution forces them to make
questionable assumptions concerning errors in software. We mentioned
some of the assumptions of exponential distribution models above.
Other assumptions include: (1) the number of initial program errors
can be reliably estimated and, (2) the size of the program is constant
over its lifetime. These two assumptions have been tested and found
to support the exponential rate. There is also considerable evidence
that, for large systems, most remaining errors lie in unexecuted
portions of code, which means that for these systems error rates
cannot depend on either the number of remaining errors or debugging
effort [22].

17

STEP - State-of-the-Art Overview

REFERENCES

[1] A. L. Ambler, et al.
GYPSY: 	A Language for Specification and Implementation of
Verifiable Programs.
Proceedings of an ACM Conference on Language Design for Reliable
Software, SIGPLAN Notices, Vol.12(3), March 1977.

[2] D. E. Bell and L. J. LaPadula.
Secure Computer Systems.
Report ESD-TR-73-278, Mitre Corporation, Beford, MA.
November 1973.

[3] H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher.
Formal Methods of Program Verification and Specification.
Prentice-Hall, Inc.

[4] R. S. Boyer and J. S. Moore.
A Computational Logic.
Academic Press, New York, 1979.

[5] T. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
The Design of a Prototype Mutation System for Program Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:623-7,
1 -9/8.

[6] R. H. Campbell and A. N. Haberman.
The Specification of Process Synchronization by Path Expressions.
Lecture Notes on Computer Science, Vol.16, 1974.

[7] Chin-Liang Chang and R. Char-Tung Lee.
Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

[8] R. M. Cohen.
Formal Specifications for Real-time Systems.
Proceedings of the Seventh Texas Conference on Computing
Systems, October 1978.

[9] R. A. DeMillo.
Program Mutation: An Approach to Software Testing.
Report GIT/ICS-83-03, Georgia Institute of Technology,
January 1983.

[10] R. A. DeMillo, R. J. Lipton, and A. J. Perlis.
Social Processes and Proofs of Theorems and Programs.
Communications of the ACM, May 1979.

18

STEP - State-of-the-Art Overview

[11] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on Test Data Selection: 	Help for the Practicing
Programmer.
Computer, Vol.11(4):34-41, April 1978.

[12] L. Flon and A. N. Habermann.
Towards the Construction of Verifiable Software Systems.
Proceedings of Conference on Data: Abstraction, Definition, and
Structure, SIGPLAN Notices, V01.8(2):141-8, 1976.

[13] J. B. Goodenough and S. L. Gerhart.
Toward a Theory of Test Data Selection.
IEEE Transactions on Software Engineering, Vol.SE-1(2): 156-73,
June 1975.

[14] D. Gries.
The Science of Programming.
Springer-Verlag, New York, 1981.

[15] J. V. Guttag.
The Specification and Application to Programming of Abstract
Data Types.
Ph.D. Thesis, University of Toronto, Report CSRG-59, 1975.

[16] S. L. Hantler and J. C. King.
An Introduction to Proving the Correctness of Programs.
ACM Computing Surveys, September 1978.,

[17] W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, Vol.SE-2(3):208-14,
September 1976.

[181 Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and History.
InfotecrInternational, 1979.

[19] Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers.
Infotech In ernational, 1979.

[20] Z. Manna.
Mathematical Theory of Computation.
McGraw-Hill, 1974.

[21] Z. Manna and R. Waldinger.
The Logic of Computer Programming.
IEEE Transactions on Software Engineering, Vol.SE-4:199-229,
19/b.

19

STEP - State-of-the-Art Overview

[22] A. J. Perlis, F. G. Sayward and M. Shaw.
Software Metrics: An Analysis and Evaluation.
THE MIT Press, Cambridge, MA, 1981.

[23] M. L. Shooman.
Managing Software Testing Using Reliability Estimates.
National Conference on Software Test and Evaluation, February
198J.

[24] P. Wegner.
Research Directions in Software Technology.
The MIT Press, Cambridge, MA, 1979.

[25] E. J. Weyuker and T. J. Ostrand.
Theories of Program Testing and the Application of Revealing
Subdomains.
IEEE Transactions on Software Engineering, Vol.SE-6(3): 236-46,
May 1980.

20

STEP - State-of-the-Art Overview

CHAPTER 2

SOFTWARE TESTING

2.1. TESTING STRATEGIES

SUMMARY

Module testing is the process of testing logical units of a
program individually, and integrating the individual module tests to
evaluate the overall system. Main considerations in performing module
testing are the design of test cases and the coordination of testing
multiple modules. Test cases may be constructed from specifications
or by analyzing the module code. Testing strategies corresponding to
these approaches are called black-box and white-box, respectively.
There are two approaches to combining module analysis: nonincremental
and incremental. Top-down and bottom-up are two incremental testing
strategies. Thread testing is another such strategy based on system
requirements specification. A final strategy requires testing
software throughout its development.

INTRODUCTION

Module testing involves the process of testing the logical units
of a program (e.g., procedures or subprograms) individually, and
integrating the individual module tests to test the overall system.
The objective of module testing is to determine whether the module
meets its specifications [4,11].

In order to perform module testing two things need to be
considered: the design of test cases and the coordination of testing
multiple modules. Test cases may be constructed from specifications
or by analyzing the module code. The testing strategies corresponding
to these two approaches are called black-box and white-box testing,
respectively [8,9]. There are two approaches to combining module
analysis: nonincremental and incremental. In the nonincremental
approach, a program is tested by testing modules independently and
then combining them to form the program without further testing. In
the incremental approach, a module is tested in combination with the
set of previously tested modules. The incremental approach allows
earlier detection of errors. Two strategies to incremental testing
are top-down and bottom-up: both strategies assume that the calling
sequence of modules is a directed acyclic graph [11].

21

STEP - State-of-the-Art Overview

Thread testing is an incremental strategy based on a system
verification diagram derived from the requirements specification [4].
Another strategy suggests that testing should start in the early
stages of the development of software. Two methods proposed by Fagan
and Miller [9] are introduced.

BLACK-BOX TESTING

In black-box (or functional) testing, the internal structure and
behavior of the program is not considered. The objective is to find out
solely when the input-output behavior of the program does not agree with
its specifications. In this approach, test data for a program are
constructed from its specifications [9,11].

In order to minimize the number of test cases, the input space of a
program is partitioned into equivalence classes with respect to the
program's input specifications, i.e., each equivalence class is a "case"
covered by an input specification. Identifying the equivalence classes
usually requires a heuristic approach. Myers gives a set of heuristics
in [9] to identify the equivalence classes. If the specification of a
program is described by a formal specification language, the
specification of a program can be partitioned into equivalence classes
(subspecifications). An example of such a partitioning is given in
section 2.2.5.

Another methodology is to pick test data that lie on and near the
boundaries of input equivalence classes. Test data can be selected
similarly on a partitioning of the output space of a program. The number
of combinations of input data is generally very large with these
approaches. Thus, a systematic way of selecting high-yield test cases is
needed. Cause-effect graphing is one such technique, in which the casual
relationships between distinct input and output conditions are described
by Boolean operators. The cause-effect graph is then converted into a
decision table. Each column of that decision table corresponds to a test
case [11].

Error guessing is another test data generation technique in which
possible errors are listed and test cases based on this list are
constructed. Since it is a largely intuitive and ad hoc process, a
procedure for test data generation cannot be given [11].

Random testing is another black-box testing strategy in which a
program is tested by randomly selecting some subset of all possible input
values. As indicated by Duran [5], there has been strong disagreement
about its value. Myers [11] considers the random testing as "probably
the poorest" test case design methodology. On the other hand, Thayer, et
al [13], recommend the use of random testing for final testing of a
program by selecting test data from an "expected run-time distribution"
of its inputs. The methodology of generating random test data can also
be employed for real-time testing (see section 2.2.12). Experimental
results confirming the viability of random testing have been obtained by
Duran in [5].

STEP - State-of-the--Art Overview

Test data can also be generated automatically. Test data generation
tools are the topic of section 3.3.3.

The major drawbacks of black-box testing are its dependence on the
specification's correctness (which usually is not the case in practice)
and the necessity of using every possible input as test case in order to
be assured of module correctness [9,11].

WHITE-BOX TESTING

In this approach, the structure of the program is examined and test
data are derived from the program's logic. There are criteria to
determine the coverage of a program's logic. One such criterion is to
require every statement in a program to be executed at least once. This
criterion is necessary, but it is in no way sufficient since some errors
may go undetected [11].

Another criterion requires partitioning the input space of a program
into path domains and constructing test cases by picking some test data
from each of these path domains to exercise every path in a program at
least once. In practice, there may be an infinite number of paths in a
program. Thus, a procedure is needed to select a subset of the total set
of paths, but exercising every path in a program is not guaranteed to
detect all possible errors [8,11].

Branch (or decision) coverage is a stronger criterion than statement
coverage. It requires every possible outcome of all decisions to be
exercised at least once. It includes statement coverage since every
statement is executed if every branch in a program is exercised once.
The problems associated with this criterion are that a program may
contain no decision statements, a program may contain multiple entry
points, some statements may only be executed if the program is entered at
a particular entry point, and if a program contains exception handling
routines, these routines may not by be executed at all. Thus the
requirement of this criteria must be extended to handle these cases [11].

Another criterion is condition coverage, which requires each
condition in a decision statement to take on all possible outcomes at
least once. The problems of decision criterion also apply to this
criterion; therefore, the requirements of this criterion must be extended
similarly. In the case of IF statements, condition coverage is sometimes
better than decision coverage since it may cause every individual
condition in a decision to be executed with both outcomes. Condition
coverage criterion does not include decision coverage since test data
exercising every condition value may not cover all decision outcomes [11].

23

STEP - State-of-the-Art Overview

Sometimes the decision and the condition criteria are applied
together (decision/condition). But even this approach has a weakness;
the errors in logical expressions may go undetected since some conditions
may mask out other conditions [11]. 	A criterion that handles this
problem is called multiple condition criteria. 	In addition to the
requirement of a decision/condition criterion, a multiple condition
criterion requires construction of test cases to exercise all
combinations of condition outcomes in every decision statement [11].

Domain testing is a modified form of path analysis testing. 	It
attempts to reveal the errors in a path domain by picking test data on
and slightly off of a given closed border (see section 2.2.5).

TOP-DOWN TESTING

A top-down testing strategy starts with the top module in a program
and then proceeds to test modules at lower levels progressively. In
order to simulate the function of the modules subordinate to the one
being tested, some dummy modules, called stub modules, are required
[4,8,14].

Although there is no formal criterion for choosing an order among
subordinate modules for testing, there are some guidelines to obtaining a
good module sequence for testing. If there are critical modules (a
critical module might be a module suspected to be error prone), these
modules should be added to the sequence as early as possible, and
input-output modules should be added to the sequence as early as possible
El 1].

Major advantages of top-down testing are that it eliminates separate
system testing and integration, it allows one to see a preliminary
version of the system and it serves as evidence that the overall design
of the program is correct. One result may be an improvement of
programmer morale [9,11].

Major disadvantages of a top-down strategy are that stub modules are
required and the representation of test data in stubs may be difficult
until input-output modules are added. Test data for some modules may be
difficult to create if data flow among modules is not organized into a
directed acyclic graph, since stub modules cannot simulate the data flow,
and observation and interpretation of test output may be difficult [6].

BOTTOM-UP TESTING

Bottom-up strategies start with modules at the lowest level (modules
that do not call any other modules) in a program. Driver modules are
needed in order to simulate the function of a module superordinate to the
one being tested [4,9,11,14]. Modules at higher levels are tested after
having tested all of their subordinate modules at lower levels [11].

24

STEP - State-of-the-Art Overview

An advantage of bottom-up testing is that there is no difficulty of
creating test data, since driver modules simulate all the calling
parameters even if the data flow is not organized into a directed acyclic
graph. If the critical modules are at the bottom of the calling sequence
graph, a bottom-up strategy is advantageous [11].

Major disadvantages of bottom-up testing are that a preliminary
version of the system does not exist until the last module is tested, and
design and testing of a system cannot overlap since one cannot start
testing before the lowest level modules are designed [11].

THREAD TESTING

Thread testing is based on the "system verification diagram" (SVD)
derived directly from the program requirements specification. Deutsch
[4] describes the testing procedure as follows:

In this approach, software test and construction
are intertwined; they do not occur separately and
sequentially. The order in which the software is
coded, tested, and synthesized is essentially
determined by the SVD that defines the test procedure.
The SVD has segmented the system into demonstrable
functions called threads. The development of the
threads are calendarized. The modules associated with
each thread are coded and tested in an order that is
commensurate with this calendarization. The threads
are synthesized into higher order sections called
builds; each build incrementally demonstrates a
significant partial capability of the system. This
culminates in a demonstration of the full system, which
occurs as a natural concluding step of integrating the
last build to the accumulation of previous builds ...

Thread testing is well-suited to real-time system testing.
Real-time systems implement critical functions that require immediate
responses in real time. The implementation of these functions can be
scheduled early in the development of a such system [4] (also see
section 2.2.12).

TESTING IN SOFTWARE DEVELOPMENT

In practice, software testing is usually performed after code has
been produced. But, it has been observed that the later an error has
been detected, the more expensive it is to correct. This observation
encourages testing early in the development of software [2,9].

25

STEP - State-of-the-Art Overview

Two methods are proposed by Fagan and Miller in [9] for testing
software early in its development lifecycle. Fagan considers software
development as consisting of a statement of objectives, design,
coding, testing, and shipment. The inspection of objectives: design
plans, and code is performed before the code is actually tested.
Design, code, and test stages can be repeated until it is believed
that the software meets its requirements. Miller describes the
development of software in three phases with an optional fourth phase
by assuming a stable program. The first phase is manual analysis in
which the requirements specification, design and implementation plans,
the program itself, and all other available information is analyzed.
The second stage is static analysis in which the requirements and
design documents, and code are analyzed, either manually or
automatically (see section 2.2.1). Dynamic analysis is the third
stage in which the software is tested with a set of test data (see
section 2.2.2 - 2.2.7). The optional fourth stage is that of proving
the program correct. It may be reserved for critical modules.

Recently, there have been discussions about the utility of the
development cycle process [1,3,6,7,10]. Blum [1] considers the life
cycle model with respect to two factors: problem comprehension and
ease of implementation. Problem comprehension refers to the
completeness of problem understanding before implemention begins. He
points out that if the project has a high technical risk, then
considerable analysis is required before the design is complete.
Furthermore, he indicates that "throwaway" prototypes [12] in
alternate programming languages can be used as analytic tools for such
projects [1].

Ease of implementation refers to the availability of tools which
support the deferred binding of requirements. He points out that the
implementation cycle is too slow to incorporate changes reflecting new
knowledge [l].

The first, system architecture, implies that all
necessary information is available prior to the start
of implementation. The second model, system sculpture,
supports the implementation of applications in which
knowledge of the system - requirements is refined or
generated during the implementation process. It
requires tools which allow the binding of new
requirements into the final system. As the title
suggests, the designer begins with a rough functional
model and, through interaction with user and model,
modifies it to create the final system.

He then compares the two approaches with respect to high technical
risk, high application risk, the model of life cycle (classical or
dynamic), requirements, tools, prototypes, test (against requirements
or subjective acceptance), maintenance, response to new requirements,
and applicability to large projects [1].

26

STEP - State-of-the-Art Overview

Blum suggests the categorization of different types of systems
which are being developed, the consideration of the alternate life
cycle models which are applicable to each, and the identification and
the development of the tools and methods which facilitate the
implementation of these different application classes Cl].

The effect of the alternate models on the development of new
methodologies for testing software in its development is yet to be seen.

27

STEP - State-of-the-Art Overview

REFERENCES

[1] B. I. Blum.
The Life Cycle -- A Debate For Alternative Models
Software Engineering Notes, Vol.7(12), 1982.

[2] B. W. Boehm.
Software Engineering.
IEEE Transactions on Computers, Vol.C-25(12), December 1976.

[3] Command and Control Software Development and Acquisition Study,
NSIA, 1983.

[4] M. S. Deutsch.
Software Verification and Validation Realistic Project Approaches.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[5] J. W. Duran and S. Ntafos.
A Report on Random Testing.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 179-83.

[6] G. R. Gladden.
Stop the Life Cycle, I Want to Get Off.
Software Engineering Notes, Vol.7(10), 1982.

[7] P. A. V. Hall.
In Defense of Life Cycles.
Software Engineering Notes, Vol.7(11), 1982.

[8] W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions of Software Engineering, Vol.SE-2(3), September
1976.

[9] Infotech State of the Art Report, Software Testing Volume 1:
Analysis and Bibliography.
Infotech International, 1979.

[10] D. D. McCracken and M. A. Jackson.
Life Cycle Concept Considered Harmful.
Software Engineering Notes, Vol.7(10), 1982.

[11] G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

[12] S. L. Squires, M. Zelkowitz and M. Branstad.
Rapid Prototyping Workshop: An Overview.
Software Engineering Notes, Vol.7(11), 1982.

28

STEP - State-of-the-Art Overview

[13] R. A. Thayer, M. Lipow and E. C. Nelson.
Software Reliability.
North-Holland, Amsterdam, 1978.

[14] E. Yourdon and L. L. Constantine.
Structured Design Fundamentals of a Discipline of Computer Program
and Systems Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ.

REFERENCES NOT CITED IN TEXT

E. M. Boehm, R. K. McClean, and D. D. Urfrig.
Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software.
IEEE Transactions on Software Engineering, Vol.SE-1:125-33, 1975.

E. B. Daily.
Software Development.
Proceedings of European Computing Review, Infotech International,
Ltd., 1978.

R. Dunn and R. Ullman.
Quality Assurance for Computer Software.
McGraw Hill- Book Company, New York, 1982, pages 166-168.

M. E. Fagan.
Design and Code Inspections to Reduce Errors in Program Development.
IBM Systems Journal, Vol.15(3), pages 182-211, 1976.

R. E. Fairley.
Tutorial: Static Analysis and Dynamic Testing of Computer Software.
Computer, pages 14-23, April 1978.

M. S. Fugi.
Independent Verification of Highly Reliable Programs.
Proceedings of COMPSAC 77, pages 38-44, IEEE, 1977.

R. L. Glass.
Software Reliability Guidebook.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979, pages 86-95

W. E. Howden and E. Miller.
A Survey of Static Analysis Methods.
In Tutorial: Software Testing and Validation Techniques, IEEE,
1981, pages 101-15.

29

STEP - State-of-the-Art Overview

G. J. Myers.
A 	Controlled 	Experiment 	in 	Program 	Testing 	and 	Code
Walkthroughs/Inspections.
Communications of the ACM, Vol.21(9):760-88, 1978.

M. P. Perriens.
An Application of Formal Inspections to Top-Down Structured Program
Development.
RADC-TR-77-212, IBM Federal Systems Division, Gaithersburg, MD,
1977, (NTIS AD/A-041645).

D. Teichrow and E. A. Hershey, III.
PSL/PSA: A Computer Aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Translations on Software Engineering, Vol.SE-3:41-8, 1977.

30

STEP - State-of-the-Art Overview

2.2. TESTING TECHNIQUES

Software quality should be a primary concern in software develop-
ment efforts. The traditional methods of assessing software quality are
software testing and software evaluation.

Software evaluation examines the software and the processes used
during its development to see if stated requirements and goals are met.
Static analysis techniques employ this method of software quality
assessment. In these techniques, the requirements and design documents
and the code are analyzed, either manually or automatically, without
actually executing the code.

Software testing assesses software quality by exercising the
software on representative test data under laboratory conditions to see
if it meets stated requirements. One testing approach consists of
demonstrating that all paths of the software have been traversed
successfully. An analogous approach is to test a program for possible
input cases to see if the correct outputs are produced. Since these
approaches are clearly prohibitive, more pragmatic approaches are
considered, e.g., the input space of a program is partitioned into path
domains, i.e., subsets of the program input domain that cause execution
of each path, and the program is executed on test cases which are
constructed by picking test data from these domains. Examples of such
techniques are input space partitioning, symbolic testing, random
testing, algebraic program testing, grammar-based testing and data-flow
guided testing. Another approach is to instrument the program by
recording processes which do not affect the functional behavior, but
record properties of the executing program.

Real-time software testing and functional program testing employ
different approaches than the ones mentioned above.

In mutation testing, test data is applied to the program being
tested and its mutants, i.e., programs that contain one or more likely
errors. If a program passes a mutation test, then either the program is
correct or it contains an improbable error. Strictly speaking, mutation
testing is a metric device for evaluating the adequacy of test data
rather than a testing technique.

31

STEP - State-of-the-Art Overview

2.2.1. STATIC ANALYSIS TECHNIQUES

SUMMARY

In static analysis, the requirements and design documents and the
code are analyzed, either manually or automatically, without actually
executing the code. Only limited analysis of programs containing array
references, pointer variables, and other dynamic constructs is possible
using this technique. Experimental evaluation of code inspections and
code walk throughs has found these static analysis techniques to be very
effective in finding from 30% to 70% of the logic design and coding
errors in a typical program.

REQUIREMENTS ANALYSIS

The users of a system define its requirements in terms of their
needs. Traditionally, the requirements are analyzed using a checklist of
correctness conditions, including such properties of the requirements as
consistency, their necessity to achieve the goals of the system, and the
feasibility of their implementation with existing resources. Different
properties may require different methods to check for correctness [7].

Requirements can be defined by a requirements specification
language and then checked by an analyzer. Teichrow's [14] problem
statement language/problem statement analyzer (PSL/PSA) is such a
system. In this system, the user models the system in PSL and PSA checks
for the consistency of the model [9].

DESIGN ANALYSIS

The elements of a software system design, e.g. the algorithms, the
data flow diagrams, and the module interfaces, can be analyzed by using a
checklist similar to the one used in requirements analysis. Each
property specified in the checklist may be checked by a different
method. For instance, the consistency of module interfaces can be
determined by comparing the common parts of different design elements
[9]. Modelling and simulation can be used to determine if the design
meets the performance requirements [9,13].

An inductive assertions method, e.g. symbolic t_sting, can be used
for formal analysis of some design elements. For instance, this method
has been used prove the correctness of algorithms included in the program
design. The method has also been employed by TKW's Design Analysis
Consistency Checker (DACC) for checking the consistency of module
interfaces [1].

32

STEP - State-of-the-Art Overview

CODE INSPECTIONS AND WALKTHROUGHS

Code inspections and walkthroughs involve the visual inspection of a
program by a group of people, first individually, then as a group, in
order to detect deviations from specifications.

A code inspection is a set of procedures to detect errors during
group code reading [3,5,8,10]. Two things take place during a code
inspection session: the programmer narrates the logic of the program
statement by statement, and the program is analyzed with respect to a
checklist for common programming errors, e.g. computation and comparison
errors, and unexplored branches [4]. A checklist of historically common
programming errors can be found in [10].

A walkthrough is similar to an inspection but the procedures and
error detection techniques are slightly different. During the group
meeting, a small set of test cases are walked through the logic of the
program by the participants.

Code analysis of the program can be performed with the assistance of
a static analyzer. Static analyzers analyze the control and data flow of
the program, and record in a database such problems as uninitialized
variables, inconsistent interfaces among modules, and statements which
can never be executed. Other properties are then inferred from the data
base. (See Section 3.2 on Static Analysis Tools.)

EXPERIMENTAL EVALUATION

A major practical limitation of static analysis involves array
references and the evaluation of pointer variables. The elements of an
array and the data items referenced by a pointer variable cannot be
distinguished by static analysis of the code. Symbolic testing (see
section 2.2.2) may be employed for evaluation of array references and
pointer variables [6].

Experimental evaluation of code inspections and walkthroughs have
shown these methods to be effective in finding from 30% to 70% of the
logic design and coding errors in typical programs [10]. Myers [11] has
found that walkthroughs and code inspections detected an average of 38%
of the total errors in the programs studied. Uses of code inspections by
IBM [5,12] have shown error-detection rates of about 80% of the total
errors. Daily [2]`is compared the effectiveness of code inspections and
design analysis to her validation methods and estimated that 90% of the
errors found by siMLlator testing can be found by code inspections and
design analysis.

1 '

33

STEP - State-of-the-Art Overview

REFERENCES

[1] E. M. Boehm, R. K. McClean, and D. B. Urfrig.
Some Experience with Automated Aids to the Design of Large-scale
Reliable Software.
IEEE Transactions on Software Engineering, Vol.SE-1:125-33, 1975.

[2] E. B. Daily.
Software Development.
Proceedings of European Computing Review, Infotech International,
1978.

[3] M. S. Deutsch.
Software Verification and Validation Realistic Project Approaches.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982, pages 271-3.

[4] R. Dunn and R. Ullman.
Quality Assurance for Computer Software.
McGraw Hill Book Company, New York, 1952, pages 166-8.

[5] M. E. Fagan.
Design and Code Inspections to Reduce Errors in Program Development.
IBM Systems Journal, Vol.15(3):182-211, 1976.

[6] R. E. Fairley.
Tutorial: Static Analysis and Dynamic Testing of Computer Software.
Computer, pages 14-23, April 1978.

[7] M. S. Fuji.
Independent Verification of Highly Reliable Programs.
Proceedings of COMPSAC 77, pages 38-44, IEEE, 1977.

[8] R. L. Glass.
Software Reliability Guidebook.
Prentice-HaT1, Inc., Englewood Cliffs, NJ, 1979, pages 86-95.

[9] W. E. Howden.
A Survey of Static Analysis Methods.
In Tutorial: Software Testing & Validation Techniques, pages
101-15. E. Miller and W. E. Howden, Editors, IEEE, 1981.

[10] G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, New York, 1979.

[11] G. J. Myers.
A Controlled Experiement in Program Testing and Code
Walkthroughs/Inspections.
Communications of the ACM, Vol.21(9):760-8, 1978.

34

STEP - State-of-the-Art Overview

[12] M. P. Perriens.
An Application of Formal Inspections to Top-down Structured Program
Development.
RADC-TR-77-212, IBM Federal Systems Division, Gaithersburg, MD,
1977, (NTIS AD/A-041645).

[13] Static Analysis Techniques.
In Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography.
Infotech International, 1979, pages 107-23.

[14] D. Teichrow and E. A. Hershey, III.
PSL/PSA: A Computer-aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Transactions on Software Einineering, Vol.SE-3:41-8, 1977.

35

STEP - State-of-the-Art Overview

2.2.2. SYMBOLIC TESTING

SUMMARY

During symbolic testing, input data and program variable values
are given symbolic values. The symbolic values may be elementary

symbolic values or expressions. The possible executions of a program
are characterized by an execution tree. The execution state of a
program consists of the PC, an accumulator of the properties which the
inputs must satisfy in order to execute the associated path. The
execution is performed by a system called a symbolic evaluator whose
major components are a symbolic interpreter and an expression
simplifier.

Symbolic execution can be used , to prove the correctness of a
program. A program may be thought of as a finite set of assertion-to-
assertion paths. If each path is shown to be correct, then the
program is correct. When a program contains loops, the execution tree
may contain infinite branches. Two possible methods for analyzing
loops are informal inductive assertions and recurrence relations
describing the behavior of each variable affected by the loop.
Experimental evaluation results of symbolic execution are given.

INTRODUCTION

Symbolic testing derives its name from the fact that during
testing the values of program variables and data are symbolic. The
usual approach to testing programs is to execute the program on a set
of input values and to examine the output of the program by some
external mechanism, most likely by the programmer, to determine the
correctness of the program behavior. In contrast to the usual
approach, the input values may be "symbolic" constants, and the output
values may consist of "symbolic formula" or "symbolic predicates".
Thus, "symbolic testing is a natural extension of normal execution,
providing the normal computations as a special case" [19].

The symbolic inputs may correspond to a class of actual data
values. For example, the symbolic input X might represent an actual
data value within the range 1 to 500; therefore, one may think that
testing a program once symbolically is equivalent to a large number of
tests with actual data.

Symbolic execution of a program can be characterized by an
execution tree. It consists of the nodes associated with the
statements executed and directed arcs indicating program flow.

36

STEP - State-of-the-Art Overview

The symbolic execution of a program may make proving program
correctness easier, if the source program is considered as a set of path
conditions which the symbolic data values must satisfy [5,19,20]. Some
program errors are easily identified by examining the symbolic output of
a program if the program is supposed to compute a mathematical formula.
In such a case, the output is checked against the formula to see if they
match [15].

Symbolic testing has some difficulties with programs containing
either loops or array variables. Also, symbolic execution trees
associated with large programs may create problems [20]. These problems
are discussed further below. Systems that perform symbolic testing,
called symbolic evaluators, are discussed in Section 3.3.2.

Aside from program testing, symbolic execution has another potential
use. Current trends in programming methodology and in programming
language design have been increasing the need for good code optimization
tools. The use of data abstraction and encapsulation facilities have
changed the nature of the code optimization. The programmer's attention
is directed to improving the clarity and the maintainability of the code
rather than the efficiency. Optimizers must therefore detect
inefficiencies that might in the past have been ignored by assuming that
no "reasonable" programmer would create them [3]. As a result, more
reasoning power is needed in optimization tools. The symbolic evaluator
may well serve as a basis of such an optimizer.

SYMBOLIC EVALUATION AND TESTING

Symbolic Execution

The symbolic value may be an elementary symbolic value or an
expression. An elementary symbolic value is any string that is used by
the programmer as the value of a variable. An expression is any
combination of numbers, arithmetic operators, and symbolic values. In
Figure 1, the symbolic values of the variables of procedure SAMPLE are
given.

Procedure SAMPLE (X,Y)
S = 2*X + 3*Y
T = S - Y
RETURN
END

The value of a program variable is denoted as v(variable name)
Assume v(X) = a, v(Y) = b, then S = 2*a + 3*b
T = 2*a + 3*h - b
T is simplified to T = 2*a + 2*b

Figure 1. Procedure SAMPLE and the symbolic value of its variables.

37

STEP - State-of-the-Art Overview

The execution of the program starts with the assignment of symbolic
values to the variables. The execution of the arithmetic expressions
used in the assignment statements and IF statements requires the
introduction of a capability for path selection [13,20]. When an
assignment statement is executed, the value of the variables on the
right-hand side of the statement is substituted into the left-hand side.
In order to select a path in an IF statement, the evaluation of a "path
condition" (PC) is required.

A PC is a Boolean expression which computes to "true" or "false",
such as (al.GE.0 .AND. a2+a3.GE.0). As indicated in [19], the PC is an
accumulator of the properties which the inputs must satisfy in order to
execute the associated path. The PC is initialized to TRUE when the
execution of the program starts. The execution of an IF statement starts
with the evaluation of the Boolean expression. If the result of this
evaluation is Q, and the current PC contains Q, the THEN part is taken,
otherwise the ELSE part is taken. This type of execution of the IF
statement is called "nonforking" execution. If the PC contains neither Q
nor .NOT.Q, the symbolic execution forks into two executions; one is
assumed to follow the THEN part, the other is assumed to follow the ELSE
part, since both alternatives are possible. This type of execution of
the IF statement is called a "forking" execution in [19,20]. Each
forking execution of the IF statement adds a condition to the PC. The
nonforking execution does not cause any change in the PC.

The "execution state" of a program consists of the PC, statement
counter, and values of the variables. As we will see below, the
execution state of a program is used in the construction of a symbolic
execution tree.

Symbolic Execution Tree

The execution of a program is characterized by an execution tree
[5,19], sometimes called an evolution tree [4]. It consists of nodes
associated with the statements executed and directed arcs indicating
program control flow. The current PC is stored in each node. The nodes
that are associated with each forking IF statement execution have two
outgoing arcs labeled T (true) and F (false) for the THEN and ELSE
branches. All other statements have only one outgoing directed arc. In
Figure 2, a function procedure ABSOLUTE and its execution tree are
given. This example is essential that given in [8].

The execution tree of large programs cannot always be easily
processed. An advantage of symbolic testing over conventional testing is
that the testing of a program symbolically is equivalent to a large
number of tests with actual data. But this may not be an advantage if
the program considered is a large one, as the execution tree becomes so
large that the entire tree cannot be examined, and the programmer may not

38

STEP - State-of-the-Art Overview

1. ABSOLUTE:
2. PROCEDURE (X);
3. DECLARE X, Y INTEGER;
4. IF X .LT. 0
5. THEN Y := -X;
6. ELSE Y := X;
7. RETURN (Y);
8. END;

Figure 2. Function Procedure ABSOLUTE and its execution tree.

know which subtrees to examine [20]. Thus, symbolic testing may not
provide substantial confidence of correctness in the case of large
programs.

Structured programs may be easy to test symbolically, because they
can be decomposed into modules. Then the execution tree of each module
can be handled separately [20].

If a program is executed normally with a specific set of integers as
inputs, one will get the same results when the program is executed
symbolically and integers are assigned to the symbolic results [19].
Thus symbolic execution is an extension of the conventional execution.

39

STEP - State-of-the-Art Overview

Symbolic Execution and Program Correctness

Symbolic Execution is used by some researchers to prove program
correctness [1,2,3,4,18,19,21]. As indicated by Darringer [20], the
program is annotated with assertions at the input, output, and at every
loop. Therefore, a program may be thought as composed of a finite set of
assertion-to-assertion paths. Correctness of the program is shown by
performing the following actions for each path:

1. Assume the assertion at the beginning of the path holds.
2. Execute the statements in the path symbolically.
3. If 1 and 2 implies the end assertion of the path, then

the path is correct; otherwise, it is not.

If all the paths are shown to be correct, then the program is said to be
"correct".

King [19] uses Floyd's method [7] to prove program correctness.
Deutsch independently developed the notion of symbolic execution in
exploiting this proof technique in his interactive verifier [6]. In his
system, the user indicates the correct path interactively at each program
branch; the system then checks the consistency of that choice with the
current PC value, and conjoins it to the PC if it is consistent.
Inconsistency indicates the presence of an error.

Difficulties associated with this technique for proving program
correctness are the creation of assertions and the requirement of human
interaction. The automated generation of assertions is possible in only
simple cases as indicated in Chapter 1.

When a program contains a loop, another difficulty arises [14]; the
number of iterations depends on the value of the loop variable, and the
execution tree may contain infinite branches. Hence, since symbolic
testing cannot be exhaustive, concluding program correctness by symbolic
execution is not always achievable.

Informal inductive loop predicates [5,20] provide an aid in executing
the infinite branches of such an execution tree. Symbolic values are
assigned to the variables affected by the loop at the body beginning to
analyze the loop behavior. By executing the loop once, the observed
variable values are used to formulate inductive formal assertions.

Another approach in analyzing the behavior of the loops has been
taken by Cheatham, et al [3], in which an iteration counter K is
associated with each loop. Then, for a variable whose value may be
changed in the loop a function (K), denoting the value of X at the
beginning of the K-th cycle, is determined. Secondly XL, the number of
cycles taken by the loop, is determined.

40

STEP - State-of=t -Art Overview

The underlying idea in this approach is to describe the behavior of
each variable affected by the loop as a recurrence relation. Associated
with each variable whose value might change in the loop body, Xk, a
"Possible Induction Value" (PIV in short) is installed at the beginning
of the loop body. After executing the body symbolically, the following
values are computed:

1. X(K+1): The value of X as X would be affected in the
next cycle.

2. The symbolic expression pi: The value of each exit
condition Pj. 	(It is assumed that explicit exit
conditions Pi,...,P n are given in the loop body.)

In addition to these, the value of X prior to the first cycle of
the loop, denoted as X(1), is determined. Then, X(K+1) and X(K) with
the boundary value X(1) are treated as a recurrence relation. The
solution to this recurrence is the desired value X(K).

Each Xk occurring in exit condition Pj is substituted with its
solution X(K) in order to compute XL. Thus, a solution for P i ,
denoted pj, is obtained. If the upper limit of the range of the
loop is given explicitly, then its successor is called lim, otherwise
it is called "infinity", a unique value. Then the following formula
gives the number of cycles taken by the loop:

least(j,l,lim,p1(j) or...or p n (j))

The symbolic values of data items are occasionally undefined as
when the program contains an array reference, say X(I). The
particular element of this array is identified by the value of the
variable I. If the value of I is a symbolic expression, one cannot
distinguish the elements of the array X. Some possible approaches for
solutions to this problem are as follows [19,20]:

1. Exhaustive case analysis as in the case of an
unresolved IF statement.

2. Leaving the ambiguity unresolved but preserved by
storing conditional values for variables. 	This is
called partial symbolic execution in [20].

EXPERIMENTAL EVALUATION AND RELIABILITY OF SYMBOLIC TESTING

Symbolic execution has been used in several symbolic evaluation
and program proof systems such as DISSECT [13], SELECT [1], and EFFIGY
[19]. These systems are introduced in Chapter 3. The main uses of
this technique have been for generating test data as explained in
Section 3.3.3 and for proving program correctness.

41

STEP - State-of-the-Art Overview

The effectiveness of symbolic execution for uncovering program errors
has been studied by Howden [9,10,11,12]. He applied DISSECT to the
programs in error cited in Kernighan and Plauger [16]. According to his
results, 15 out of 22 errors may possibly be detected by symbolic
execution.

42

STEP - State-of-the-Art Overview

REFERENCES

[1] R. S. Boyer, B. Elpas, and K. N. Levitt.
SELECT - A Formal System for Testing and Debugging Programs by
Symbolic Execution.
SIGPLAN Notices, Vol.10(6):234-45, June 1975.

[2] R. M. Burstall.
Proving Correctness as Hand Simulation with a Little Induction.
Proceedings of the International Federation of Information
Processin Societies, North HaTinT--AFiTiFEIT775FliiiiiT

, pages 	- .

[3] T. E. Cheatham, Jr., C. H. Holloway, and J. A. Townley.
Symbolic Evaluation and the Analysis of Programs.
IEEE Transactions on Software Engineering, Vol.SE-5(4):402-17,
July T979.

[4] L. A. Clarke.
A System to Generate Test Data and Symbolicly Execute Programs.
IEEE Transactions on Software En ineerin , Vol.SE-2(3):215-22,
eptem er

[5] J. A. Darringer and J. C. King.
Application of Symbolic Execution to Program Testing.
Computer, Vol.11(4):51-60, April 1978.

[6] L. P. Deutsch.
An Interactive Program Verifier.
Ph.D. Thesis, University of California, Berkeley, May 1973.

[7] R. W. Floyd.
Assigning Meanings to Programs.
Proceedings of the Symposium on Applied Mathematics, Vol.19:19-32,
American Mathematical Society, Providence, RI, 196/.

[8] S. L. Hantler and J. C. King.
An Introduction to Proving the Correctness of Programs.
ACM Computing Surveys, Vol.8(3):332-53, September 1976.

[9] W. E. Howden.
An Evaluation of the Effectiveness of Symbolic Testing.
Software Practice and Experience, Vol.8(4):381-97, July-August 1978.

[10] W. E. Howden.
Experiments with a Symbolic Evaluation System.
National Computer Conference, AFIPS Proceedings, June 1976, pages
13797973B.

43

STEP - State-of-the-Art Overview

[11] W. E. Howden.
Reliability of Symbolic Evaluation.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL, pages
442-7.

[12] W. E. Howden.
Symbolic Testing - Design Techniques, Costs and Effectiveness.
NBS Report GCR77-89, National Bureau of Standards, Springfield, VA,
1977, (NTIS PB268517).

[13] W. E. Howden.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering, Vol.SE-3(4):266-78,
July 1977.

[14] J. C. Huang.
An Approach to Program Testing.
ACM Computing Surveys, Vol.7(3):113-28, September 1975.

[15] Infotech State of the Art Report, Software Reliability, Volume 1:
Analysis and Bibliography.
Infotech International, 1977.

[16] B. W. Kernighan and P. J. Plauger.
The Elements of Programming Style.
McGraw Hill BooK Company, New York, 1974.

[17] J. C. King.
A New Approach to Program Testing.
SIGPLAN Notices, Vol.10(6):228-33, June 1975.

[18] J. C. King.
Proving Programs to be Correct.
IEEE Transactions on Computers, Vol.C-20(11):1331-6, November 1971.

[19] J. C. King.
Symbolic Execution and Program Testing.
Communications of the ACM, Vol.19(7):385-94, July 1976.

[20] Symbolic Testing.
In Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography, pages 125-137.
Infotech International, 1979.

[21] R. W. Topor and R. M. Burstall.
Verification of Programs by Symbolic Execution - Progress Report.
Unpublished Report, Department of Machine Intelligence,
University of Edinburg, Scotland, December 1972.

44

STEP - State-of-the-Art Overview

2.2.3. PROGRAM INSTRUMENTATION

SUMMARY

Programs can be instrumented by recording processes that do not
affect the functional behavior, but record properties of the executing
program. Additional output statements, assertion statements,
monitors, and history-collecting subroutines may be used to instrument
a program. There exist various tools to automatically insert these
into a program. Experimental evaluation of dynamic assertions
indicates that programmers who are familiar with the use of assertions
can decrease the debugging time for complex programs.

INTRODUCTION

In program instrumentation, each time the software under test
performs a significant event, the occurrence of that event is
recorded. The nature of the recording process depends on the
measurements desired and the type of event performed [13].
Ramamoorthy [11] describes a method to place a minimum number of such
processes into a program and still adequately instrument the program.
The events recorded may be the range of some particular variables, the
number of times some statements are executed, or whether a condition
on a statement is violated. The recording processes are sometimes
called "probes", "monitors", or "software instruments" [6,7].

One type of recording process is the "history-collecting
subroutine" in which the number of events recorded may vary. In a
system implemented by Fairley [3], a program is automatically
instrumented with history-collecting subroutines by an instrumenting
compiler. Execution of an instrumented program on test cases selected
produces a history of the behavior of a program which is recorded in a
data base. The behavior information of a program can then be used to
construct new sets of test data and to determine the compatibility of
the program's behavior with its specifications. For other types of
program instrumentation tools see the section on Dynamic Analysis
Tools, Section 3.3.

In an interpretive system no history of the program behavior is
available , since instrumenting interpreters generally display only the
current behavior of a program.

45

STEP - State-of-the-Art Overview

THE ASSERT STATEMENT

A well-known method of program instrumentation is the manual
insertion of additional output statements into a program. Once a
program is completely debugged, it is necessary to remove these
statements. This may be tedious and time consuming in the case of
large programs [6]. Thus, the idea of using special recording
processes, called assertions, in the program has been developed.

The general format of the assertion statement found in some
programming languages is as follows:

ASSERT boolean expression statement.

Semantically, if the boolean expression evaluates to FALSE, then the
associated statement is executed and the program is terminated [9].
Some programming languages have built-in assertion statements, e.g.
PLAIN and EUCLID. In other languages a pre-processor, called the
"dynamic assertion processor", implements the assertions inserted by
the user in the form of a comment. By recompiling the output of the
pre-processor, these comments can be removed from the program [6].
Monitors are assertions that check whether the value of a variable is
within the range specified by the assertion. The Program Evaluator
and Tester system, PET [12,13] is an automated tool implementing
MONITOR and ASSERT commands.

In conjunction with testing, program instrumentation can be used
to measure the coverage of program paths. However, this usage is
usually limited to decision paths (DDP's) [10]. The program Test
Coverage Analyzer instruments each DDP by counting the number of times
it is executed [4]. DDP analysis is available at the commercial level
[2,15].

EXPERIMENTAL EVALUATION

Examples of simple errors that cannot be detected by the DDP
method have been reported [5]. Performance evaluation of dynamic
assertions has been performed by L.G. Stucki [14] and J.M. Adams [1].
These results indicate that programmers who are familiar with the use
of assertions can significantly decrease debugging time for complex
programs.

46

STEP - State-of-the-Art Overview

INSTRUMENTING COMPILERS AND INTERPRETERS

A 	program 	can 	be 	automatically 	instrumented 	with
history-collecting subroutines by an instrumentating compiler to
record statement execution counts, ranges of variables, and timing
estimates such as CPU time and relative time in each routine. A
computation state of a program at any point in an execution is
determined by the values of currently accessible variables and the
control flow information necessary to continue execution from that
point. An execution history, the sequence of changes in the
computational states of an instrumented program, is recorded in a
database as the program executes on the selected test cases. The
entire execution history of the program can be analyzed after its
termination [3].

Instrumenting interpreters maintain a current computation state
and update that state at each step as the execution advances. Thus,
no history of execution is available [3].

The execution history information can be used to construct new
sets of test cases and to determine if a program functions correctly
with respect to its specification [8]. An advantage of having a
history execution available in a database is that it is possible to
perform analysis and history collecting seperately. This enables one
to use existing batch compilers, loaders, and library routines. It is
also possible to observe how a particular computation is influenced by
the previous ones [3,8].

The disadvantages of analyzing the program behavior from a
database are that the noise introduced by history collecting sub-
routines prevents one from obtaining appropriate timing information,
and the execution history of a program is potentially large in size.
To limit the execution history size one either selects some regions of
a program and events to be recorded in these regions or carefully
constructs test cases and integrates a top-down and bottom-up approach
into the instrumenting compiler (see Section 2.1). Furthermore,
unlike the interpretive systems, users can make a change beyond the
current statement in a program by stopping execution and observing the
effects of the change by continuing the execution from the halt point
[3,8].

47

STEP - State-of-the-Art Overview

REFERENCES

[1] J. M. Adams.
Experiments on the Utility of Assertions for Debugging.
Proceedings Eleventh Hawaii International Conference on System
Science, Ronolulu, HI, January 197b, pages J1 -9.

[2] Automated Testing Analyzer for Cobol.
Software Technology Center, Science Applications, Inc., San
Francisco, CA, April 1976.

[3] R. E. Fairley.
Tutorial: Static Analysis and Dynamic Testing of Computer
Software.
Computer, pages 14-23, April 1978.

[4] R. L. Glass.
Software Reliability Guidebook.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

[5] J. B. Goodenough and S. L. Gerhart.
Toward a Theory of Test Data Selection.
IEEE Transactions on Software Engineering, Vol.SE-1(2):156-73,
June 1975.

[6] J. C. Huang.
Program Instrumentation.
In Infotech State of the Art Report, Software Testing,
Volume 1: Analysis and Bibliography, pages 144-50.
Infotech International, 1919.

[7] J. C. Huang.
Program Instrumentation: A Tool for Software Testing.
In Infotech State of the Art Report, Software Testing,
Volume 2: Invited Papers, pages 147-59.
Infotech International, 1979.

[8] Infotech State of the Art Report, Software Testing Volume 1:
Analysis and Bibliography.
Infotech International, 1979.

[9] G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

[10] M. R. Paige.
Program Graphs, an Algebra, and Their Implication for
Programming.
IEEE Transactions on Software Engineering, Vol.SE-1:286-91,
September 115.

48

STEP - State-of-the-Art Overview

[11] C. V. Ramamoorthy, K. H. Kim, and W. T. Chen.
Optimal Placement of Software Monitors Aiding Systematic
Testing.
IEEE Transactions on Software Engineering, Vol.SE-1(4):403-11,
Ilecember 1975.

[12] L. G. Stucki and G. L. Foshee.
New Assertion Concepts for Self-Metric Software Validation.
Proceeding of the 1975 International Conference on Reliable
Software, April 1975.

[13] L. G. Stucki.
New Directions in Automated Tools for Improving Software
Quality.
In 	Current Trends in Pro rammin 	Methodolo y, Volume II:
Program 	'a 	a Ion, 	. 'e , .1 or, pages
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

[14] L. G. Stucki.
Tutorial on Program Testing Techniques.
Slide masters, COMPSAC-77, November 8-11, 1977, Chicago, IL.

[15] Fortran Automated Verification System (FAVS), Volume 1. User's
Manual.
General Research Corporation, Santa Barbara, CA, January 1979.

:1

49

STEP - State-of-the-Art Overview

2.2.4. PROGRAM MUTATION TESTING

SUMMARY

Program mutation is a technique for the measurement of test data
adequacy. Test adequacy refers to the ability of the data to insure
that certain errors are not present in the program under test. In
mutation testing, test data is applied to the program being tested and
its "mutants" (i.e., programs that contain one or more likely
errors). If a program passes a mutation test, then either the program
is correct or it contains an improbable error.

Weak mutation testing and trace mutation testing are variations of
mutation testing. Experimental evaluation of mutation testing
indicates that the results of mutation testing are good predictors of
operational reliability.

INTRODUCTION

Program mutation is a technique for measuring of test data
adequacy. Recall from Chapter 1 that a test data set is adequate if
the program runs successfully on the data set and if al incorrect
programs run incorrectly. Furthermore, a test data set is adequate
relative to a set of programs A if the program under test runs
correctly and all incorrect programs in A fail on at least one point
in the test set.

In mutation testing, the set A in the definition of relative
adequacy is taken to be a set of programs which are "close" to the
program being tested. In this context, "close" refers to the
potential errors which could have occurred in the program being
tested: either the program under test is error-free or it contains
one or more of the most likely errors. The test data should be strong
enough to distinguish a correct program P from those versions of P
that contain the most likely errors.

More precisely, suppose that a correct program P is to be tested
using test data D. A set of mutants of P consists of a set of
programs which differ from P in containing a single error chosen from
a given list of error types. Call this set M(P). Some of the mutant
programs in M(P) will turn out to be (functionally) equivalent to P --
that is, they will be indistinguishable from P under all test data.
For example, the "error" that replaces the GO TO statement in the
Fortran subroutine shown below by a RETURN has no effect on the logic
of the subroutine, and therefore, gives rise to an equivalent mutant.

50

STEP - State-of-the-Art Overview

SUBROUTINE F(X,Y,Z)
IF (X.EQ.0) GO TO 10
Z=(X+Y)/X

10 RETURN
END

=3>
SUBROUTINE F(X,Y,Z)
IF (X.EQ.0) RETURN
Z=(X+Y)/X
RETURN
END

Let E(P) represent the set of equivalent mutants of P. Finally, when
the programs in M(P) are executed on 0, some will return results which
differ from the results which P delivers on D. Call this set of
mutants DM(P,D).

A mutation score is defined to the fraction of the nonequivalent
mutants of P which are distinguished by the test set D. That is, if
m, e, and dm represent the number of elements in M(P), E(P), and
DM(P), respectively, then the mutation score of D and P is defined:

ms(P,D) = dm/(m-e).

A mutation score is a number in the interval [0,1]. A high score
indicates that D is very close to being adequate for P relative to the
set of mutants of P. A low score indicates a weakness in the test
data of the following kind: the test data does not distinguish P from
the program P', which contains an error. Mutation scores can be
calculated automatically once a method for determining the mutants has
been defined.

Mutation testing is an error-based testing technique. 	In
error-based testing, the goal is to construct test cases that reveal
the presence or absence of specific errors. Error based testing is
present in nearly all heuristic approaches to testing. For example,
informal debugging sessions frequently include checks on extreme
values of variables. In addition, the folklore of many applications
areas consist of heuristic rules (e.g., in testing compilers, one of
the first test cases tried is usually the "null" program). More
formalized attempts at error-based testing include Howden's study of
errors in algebraic programs [19], the revealing subdomain strategy
[25], the strategies for uncovering domain errors [26], and the
Budd-Miller study of typographical errors in numerical software [8].

FORMS OF MUTATION TESTING

In many respects, mutation testing is to software what fault
analysis is to digital circuits. In digital circuit testing, the
errors to be eliminated are drawn largely from experience and physical
theory of how circuits are most likely to fail. In mutation testing
the errors result from logical failures in a program rather than
failures of physical components.

51

STEP - State-of-the-Art Overview

EVALUATION OF MUTATION TESTING

Experimental 	and theoretical 	evaluation are available in
[1,2,7,9]. Principle results for mutation testing have centered
around the complexity of mutation testing and the coupling effect.
The results for weak mutation testing have deal with complexity and
example of useful test cases. For trace mutation testing [5], the key
results have been theoretical.

The coupling effect has been investigated from a number of points
of view. Just as in the case of digital circuit faults, there are
restricted programming languages for which error coupling can be
proved mathematically. In addition, there is a body of experimental
evidence supporting some sort of error coupling. In [7], single
subject experiments were performed to determine whether errors can be
detected. In [1,2], statistical results support with high confidence
the coupling of simple and complex errors.

The complexity of mutation testing has been examined experi-
mentally. In [1], a number of observations of mutation complexity are
derived. Furthermore, the weak mutation metric introduced by Howden
[20] provides still more information on the expected cost of
mutation. The expected cost of a mutation score calculation is
determined by the number of mutants executed and the expected running
time of a mutant program. This is not the same as the running time of
a program under test, since the running time of a program with n
errors is E(t) = c/n. The expected number of mutants depends on the
set of error operators, but for a typical Fortran system, this number
is approximately the number of distinct variable names times the
number of variable references.

Practical experience with mutation systems has led some
investigators to consider heuristics for speeding up the calculation
of mutation scores (such as limiting the number of mutation operators
[24] and random sampling of mutants [1,2]).

54

STEP - State-of-the-Art Overview

REFERENCES

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton and F. G.
Sayward.
Mutation Analysis.
Report GIT/ICS-79-08, Georgia Institute of Technology, 1979.

[2] A. T. Acree.
On Mutation.
Ph.D. Thesis, Georgia Institute of Technology, 1980.

[3] V. K. Agarwall and G. M. Masson.
Recursive Coverage Projection of Test Sets.
IEEE Transactions on Computers, Vol.C-28(11): 865-70,
November 1979.

[4] D. Baldwin and F. Sayward.
Heuristics for Determining Equivalence of Program Mutations.
Technical Report 161, Yale University, 1979.

[5] M. Brooks.
Testing, Tracing, and Debugging Recursive Programs Having Simple
Errors.
Ph.D. Thesis, Stanford University, 1980.

[6] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
The Design of a Prototype Mutation System for Program Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:623-27,
T978. Also reprinted in Tutoriii7 Automated Tools for Software
Engineering, E. F. Miller:TT-For. IEEE Computer Society, 1979.

[7] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Theoretical and Empirical Studies on Using Program Mutation to
Test the Functional Correctness of Program.
7th ACM Symposium on Principles of Programming Languages,
January 1980.

[8] T. A. Budd and W. C. Miller.
Detecting Typographical Errors in Numerical Programs.
University of Arizona, Tuscon, AZ, 1982.

[9] T. A. Budd.
Mutation Analysis of Program Test Data
Ph.D. Thesis, Yale University, T78157-

[10] T. A. Budd.
Mutational Analysis: Ideas, Examples, Problems and Prospects.
In Computer Program Testing, B. Chandrasekaran and S. Radicchi,
Editors. North-Holland, 1981.

55

STEP - State-of-the-Art Overview

[11] J. Burns.
Stability of Test Data from Program Mutation.
Digest for the Workshop on Software Testing and Test
Documentation, Ft. Lauderdale, FL, 1978, pages 324-334.

[12] R. A. Demillo.
Mutation Analysis as a Tool For Software Quality Assurance.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL.

[13] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on Test Data Selection: 	Help for the Practicing
Programmer.
Computer, Vol.11(4):34-41, April 1978.

[14] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Program Mutation: A New Approach to Program Testing.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 107-26.
Infotech International, 1979.

[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Program Mutation as a Tool for Managing Large-Scale Software
Development.
1978 ASQC Technical Conference Transactions, American Society
for Quality Control Engineers, Chicago, 1978.

[16] R. A. DeMillo, D. Hocking, and M. J. Merritt.
A Comparison of Some Reliable Test Data Generation Procedures.
Report GIT/ICS-81-08, Georgia Institute of Technology, 1981.

[17] J. Gourlay.
Theory of Testing Computer Programs.
Ph.D. Thesis, University of Michigan, 1981.

[18] J. M. Hanks.
Testing Cobol Programs by Mutation: Volume I - Introduction to
the CMS.1 System, Volume II - CMS.1 System Documentation.
Report No. GIT/ICS-80-04, Georgia Institute of Technology, 1980.

[19] W. E. Howden.
Algebraic Program Testing.
Acta Informatica, Vol.10, 1978.

[20] W. E. Howden.
Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering, Vol.SE-8(4):371-79,
July 1982.

56

STEP - State-of-the-Art Overview

[21] R. J. Lipton and F. G. Sayward.
The Status of Research on Program Mutation.
Digest for the Workshop on Software Testin 	and Test
Documentation, Ft. Lauderdale, FL, 	, pages 	- .

[22] S. C. Ntafos.
On Required Element Testing.
Proceedings of COMPSAC 81.

[23] D. L. Ostapko and S.-J. Hong.
Fault Analysis and Test Generation for Programmable Logic Arrays
(PLA's).
IEEE Transactions on Computers, Vol.C-28(9):617-27,
September 1979.

[24] I. J. Riddle, J. A. Hennel, M. R. Woodward, and D. Hedley.
Practical Aspects of Program Mutation.
University of Nottingham, Nottingham, UK.

[251 E. J. Weyuker and T. J. Ostrand.
Theories of Program Testing and the Application of Revealing
Subdomains.
IEEE Transactions on Software Engineering, Vol.SE-6(3):236-46,
May 198U.

[261 L. White and E. A. Cohen.
A Domain Strategy for Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-6, 1980.

[271 M. R. Woodward, M. A. Hennell, and D. Hedley.
A Limited Mutation Approach to Program Testing.
University of Nottingham, Nottingham, UK, 1980.

57

STEP - State-of-the-Art Overview

2.2.5. INPUT SPACE PARTITIONING

SUMMARY

A path in a program consists of some possible flow of control. In
path analysis testing techniques the input space of a program is
partitioned into path domains: those subsets of the program input
domain that cause execution of each path. The program is then
executed on test cases that are constructed by selecting test data
from these domains.

Path analysis is meant to detect computation, path, and missing
path errors. Domain testing detects many path selection errors by
selecting test data on and near the boundary of a path domain. In
partition analysis, the specification of a program written in a formal
specification language is partitioned into subspecifications. This
partition is then intersected with that on the input space to obtain a
new partition, whose elements are called "procedure subdomains",
specifying a set of input data for which a subspecification and a path
are applicable. Then the test cases are constructed by selecting some
test data from each procedure subdomain. One major problem of these
techniques is that current technology limits their use to programs
which have a small number of input variables since the number of
required test cases is exponential in the number of input variables.

INTRODUCTION

A path in a program consists of some possible flow of control.
The paths in a program partition the input space of the program into
path domains: those subsets of the input domain of the program that
cause execution of each path. Each path corresponds to a path domain
and a path computation function. The path computation function is the
function computed on the input domain by the execution of the
statements along the path. Conditional branches on a path determine
the boundary of the path domain. Symbolic evaluation of branch
predicates can be used to construct path domains and paths in terms of
input variable values [2,3,4,8,10].

The underlying idea of the path analysis testing techniques is to
partition the program input space into path domains. The program is
then executed on test cases that are constructed by choosing test data
from these domains. Partition analysis utilizes the formal
specification of the program to produce a similar partition that can
be compared to that determined by the program [5].

58

STEP - State-of-the-Art Overview

PATH ANALYSIS AND TESTING

Path analysis testing involves the selection of test data to
execute chosen paths. A test case is constructed by choosing one test
point from each path domain so that each path through a program is
executed at least once. In practice, a program may contain an
infinite number of paths. Thus, a practical path analysis testing
strategy has to use a procedure to select a subset of the total set of
paths [4]. Woodward suggests a hierarchy of structural test metrics
to guide the choice and monitor the coverage of test paths [9].

Howden [4] classifies the types of errors that path analysis is
meant to detect: computation, path selection, and missing path
errors. A computation error occurs when a computation statement along
a path is computed incorrectly. Path selection errors occur when the
branching predicates are incorrect, and missing path errors are those
in which the required branch predicate does not exist in a program.

The general problem of determining the paths of a program and the
selection of test data to execute the chosen paths is intractable.
However, by restricting the features of the language in which the
programs are written, it is possible to select finite subsets of test
data for the chosen paths to detect certain types of errors [8,10].

DOMAIN ANALYSIS

Domain testing detects many path selection errors by selecting
test data on and near the boundary of a path domain. One underlying
assumption of domain testing is that a test oracle is available which
determines if the execution of a program on the selected test data
produces correct output. Other assumptions are such that coincidental
correctness cannot occur, the input space is continuous, and the
predicate interpretations are simple linear inequalities [2,8].

Two domain testing strategies have been proposed by White and
Cohen [8], and by Hassell, et al [2]. In testing the programs in two
dimensions, that is with two input variables, White and Cohen propose
to select two test points ON and one test point slightly OFF of the
given closed border. Thus, each OFF point is in the adjacent domain.
The two ON points are chosen close to the ends of the given border.
The OFF point is chosen so that its projection lies in between the two
ON points. This 2 by 1 strategy can be extended to N dimensions to
give an N by 1 strategy [8].

Alternatives to the 2 by 1 and N by 1 domain testing strategies
are two ON - two OFF (2 by 2), and its generalizations N by N and E by
E, where E is the number of edges of the given border. In the 2 by 2
strategy, two ON points are chosen as in [8], two OFF points are
chosen so that one is at each end of the border being tested. The 2

59

STEP - State-of-the-Art Overview

by 2 strategy does not detect all path selection errors, but it may
detect more shifts than the 2 by 1 strategy. Of these strategies, the
E by E strategy provides guidance for choosing the best set of test
data and is completely sensitive to changes in the path domain shape,
but requires the largest number of test cases [2].

The major drawbacks of domain testing are its limitation to simple
linear predicates, and the difficulty of selecting test cases for a
program which has large number of input variables. Moreover, domain
testing concentrates on path selection errors; therefore, other
testing methods must be employed to thoroughly test a program. The
domain testing strategies can be modified to handle equality and
nonequality predicates, but in order to handle a wider range of
applications, the linearity assumption must be dropped [2].

PARTITION ANALYSIS

In partition analysis, the specification of a program is assumed
to be correct and to be described in a formal specification language.
This specification is at such a low level that it is almost itself a
program. The input domain and the specification of a program are then
partitioned into path domains and subspecifications respectively by
using a symbolic evaluation technique. These two partitions are then
intersected to get a new partition specifying a set of input data for
which a subspecification and a path are applicable. The elements of
this new partition are called "procedure subdomains" [5].

The process of examining these partitions to determine how closely
an implementation and specification agree is called partition analysis
verification. In partition analysis verification, the implementation
and the specification are checked first for input-output compatibility
to see if they have the same number and type of inputs and outputs,
and that the inputs come from the same domain. Once input-output
compatibility is established, symbolic representations of the sub-
specification and path computation, for each procedure subdomain, are
compared.

Partition analysis employs symbolic testing to establish the
computational equivalence of.a subspecification and a subdomain and
their corresponding computations. Equivalence of symbolic
representations of all subspecifications and path computations over
their associated procedure subdomains implies the correctness of
implementation with respect to the specification. Inequality of a
subspecification and a subdomain, or of their corresponding
computations, probably indicates the presence of an error in the
implementation. Furthermore, when consistency cannot be determined
(as the problem is undecidable [4]), testing is necessary to attempt
to show either the equivalence of the computations or the presence of
errors. This is carried out in partition analysis testing, in which

60

STEP - State-of-the-Art Overview

test data are constructed by choosing one or more test points from
each procedure subdomain [5].

Partition analysis testing may employ the techniques of domain
analysis and extremal and special values testing to show the existence
of missing path and the computation errors, respectively (for extremal
and special values see Functional Program Testing, Section 2.2.6). A
missing path error which occurs when a subspecification is forgotten
in the implementation will likely be detected by partition analysis
testing, because each subspecification is contained in some procedure
subdomain in the partition analysis [5].

In related work [6], a similar comparison of the implementation
and specification partitions is discussed, but the problem of
obtaining the specification partition is not addressed. In this
approach, after taking the intersection of these two partitions, the
user refines each subset of this intersection by considering the
classes of errors which intuitively are likely to occur in that
subset, and chooses data from each domain in the refined partition [6].

EXPERIMENTAL EVALUATION

In an experiment performed by Howden, path analysis testing
revealed the existence of nine out of twelve computation errors, one
out of three path selection errors, but it could not detect a missing
path error [4]. Domain analysis has been examined for programs with
two input variables [8] and has been evaluated for a program with
three input variables [1]. Partition analysis was applied to a sample
program in [S] and it showed the existence of a fairly subtle error in
this program. It has been examined for three programs in [6] and it
enabled the detection of some errors in these programs.

The testing techniques mentioned in this section are based on path
analysis. They try to overcome the problems of path analysis by
considering information other than the program itself to construct
test cases. But, they have their own drawbacks. Major problems
associated with path analysis are that in practice a program may
contain an infinite number of paths, determining the domains may not
be possible, and it does not detect all of the path selection,
computation, or missing path errors. Domain analysis imposes certain
restrictions on a language in which the program is written. For all
restricted classes of programs, domain testing detects many path
selection errors. Partition analysis considers the specification of a
program, and the specification is assumed to be correct. In practice,
a specification is incomplete and contains errors; both faults
undermine the reliability of partition analysis.

61

STEP - State-of-the-Art Overview

REFERENCES

[1] R. A. DeMillo, E. D. Hocking, and M. J. Merritt.
A Comparison of Some Reliable Test Data Generation Procedures.
Report GIT/ICS-81-08, Georgia Institute of Technology,
April 1981.

[2] J. Hassell, L. A. Clarke, and D. J. Richardson.
A Close Look at Domain Testing.
IEEE Transactions on Software Engineering, Vol.SE-8(4):380-90,
July 1982.

[3] W. E. Howden.
Methodology for the Generation of Program Test Data.
IEEE Transactions on Computers, Vol.C-24(5):208-14, May 1975.

[4] W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, Vol.SE-2(3):208-14,
September 1976.

[5] D. J. Richardson and L. A. Clarke.
A Partition Analysis Method to Increase Program Reliability.
Proceedings of the 5th International Conference on Software
Engineering, pages 244-53. IEEE, 1981.

[6] E. J. Weyuker and T. J. Ostrand.
Theories of Program Testing and the Application of Revealing
Subdomains.
IEEE Transactions on Software Engineering, Vol.SE-6(3):236-46,
May 198U.

[7] L. J. White, F. C. Teng, H. Kuo, and D. Coleman.
An Error Analysis of the Domain Testing Strategy.
Technical Report 78-2, Computer Information Science Research
Center, Ohio State University, Columbus, September 1978.

[8] L. J. White and E. K. Cohen.
A Domain Strategy for Computer Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-6(3):247-57,
May 1980.

[9] M. R. Woodward, D. Hedley, and M. A. Hennell.
Experience with Path Analysis and Testing of Programs.
IEEE Transactions on Software Engineering, Vol.SE-6(3):278-85,
May 1980.

[10] S. J. Zeil and L. J. White.
Sufficient Test Sets for Path Analysis Testing Strategies.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, T981, San Diego, CA, pages 184-91.

62

STEP - State-of-the-Art Overview

2.2.6. FUNCTIONAL PROGRAM TESTING

SUMMARY

In functional program testing, the design of a program is viewed
as an abstract description of its design and requirements
specifications. Function and data abstractions are used as guides to
identify the abstract functions of a program and to generate the
functional test data respectively.

Functional testing requires the specification of domains of each
input and output variable for a program. Extremal and special values
are the most important values in the domain of a variable. 38 out of
a collection of 42 errors known in advance were discovered during the
study of the errors that occurred in a release of a major software
package.

FUNCTION, DATA ABSTRACTIONS AND TEST DATA SELECTION

Functional program testing is a design-based approach to program
testing in which the design of a program is viewed as an abstract
description of its design and requirements specifications [5].

There are two steps in functional testing. 	The first step
involves the decomposition of the program into functional units,
guided by functional abstraction methods used to design the program.
The second step involves the generation of test data used to test the
functional units independently, using data abstraction as a guide.

Function abstraction is a program design strategy in which
programs are viewed as a heirarchy of abstract functions. This
hierarchy is used to identify the functions to be tested. A function
at one level of this hierarchy is defined from the functions at a
lower level. Figure 1, taken from [5], describes the function
abstraction of the text-string processor in [2]. The input to the
program is a string of text consisting of aphabetic characters (a's),
blanks (b's), new-line indicators (n's), and a string termination
character (t). The output is the texf- printed on separate lines. The
maximum length of the output lines is specified in advance. The n
characters in the input string do not necessarily indicate the end of
the output line and are treated as blanks. The maximum length of a
word is the length of a line and no word should be broken up between
lines. Each line may contain as many words as possible.

63

STEP - State-of-the-Art Overview

Fps 1. Function abstraction design for toot firocassor.

There are two kinds of functions which may be implemented:
requirements functions and design functions. Requirements functions
describe the expected behavior of a program and can be identified by
examining the requirements specifications of the program, e.g., the
text-string processor in Figure 1. A requirements function for a
program may require the invention of some other functions called
design functions. They are called "general design functions" or
"detailed functions" according to the generality of the behavior they
implement. Word Extractor and Word Length are general and detailed
design functions respectively in Figure 1 [5].

In data abstraction, the structure of data may be modeled by a
diagram as a hierarchy of abstract data types, each of which is a "set
of values". The set of allowable values for each input and output
variable for a program is specified by using data abstraction as a
guide. The set of all possible values of a variable is called the
domain of the variable M.

Extremal and special values are the most important values in the
domain of a variable. Extremal values are the ones that lie on the
edges of a variable domain interval. Special values have special
mathematical properties, e.g., zero, one, a very small value, a very
large value.

The domain of a numeric variable is usually either a finite set of
discrete points or an interval of the form [a,b]. In the former case,
numeric values at discrete points are considered as the extremal
values. In the latter, a and b are the extremal values. Some
examples of extreme valuq . test cases for the text-string processor of
Figure i are n, bk, and bkn, for 2.LT.k.

64

STEP - State-of-the-Art Overview

The combinations of values in the domain of a variable create a
combinatorial explosion problem; if a program has m input/output
variables, each of which can take on k values, then there are km
possible combinations of values [3]. In order to avoid this problem,
less exhaustive "test set" combination rules are used. Howden [5]
describes an informal procedure to construct a sequence of test sets
which identifies the important classes and combinations of test data,
using less exhaustive test set combination rules.

EXPERIMENTAL EVALUATION

Functional testing based on state-of-the-art design analysis
techniques was developed by Howden during a study of the errors that
occurred in a release of a major software package [4]. 38 out of a
collection of 42 errors known in advance were discovered by functional
testing. Twenty of the errors were associated with requirements
functions, nine with general design functions, and nine with detailed
design functions. The use of data abstractions was critical to the
discovery of four errors for which functional testing was effective.

Function and data abstraction are generic methods; they may be
employed with other software engineering methodologies. For example,
structured design [7] and the Jackson design methodology [6] are
function and data abstraction approaches to design. The functional
testing approach which uses both data and function abstraction as
guides may also be used with the SREM requirements analysis system for
real-time systems [1], as described in [5].

65

STEP - State-of-the-Art Overview

REFERENCES

[1] M. W. Alford.
A Requirements Engineering Methodology for Real-time Processing
Requirements.
IEEE Transactions on Software Engineering, Vol.SE-3:60-8, 1977.

[2] J. Goodenough and S. L. Gerhart.
Toward a Theory of Test Data Selection.
IEEE Transactions on Software Engineering, Vol.SE-1(2):156-73,
June 1975.

[3] W. E. Howden.
Functional Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-6(2):162-9,
March 198U.

[4] W. E. Howden.
An Analysis of Software Validation Techniques for Scientific
Programs.
Report No. DM-171-IR, Department of Mathematics, University of
Victoria, March 1979.

[5] W. E. Howden.
Functional Testing and Design Abstractions.
The Journal of Systems and Software, Vol.l(4):307-13,
January 1980.

[6] M. Jackson.
Principles of Program Design.
Academic, London, 1975.

[7] E. Yourdan and L. L. Constantine.
Structured Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

66

STEP - State-of-the-Art Overview

2.2.7. ALGEBRAIC PROGRAM TESTING

SUMMARY

In algebraic program testing, program correctness may be thought
of as a program equivalence problem. Since the equivalence of two
programs written in a powerful enough programming language is
undecidable, in this approach programs are restricted to lie in some
restricted class for which testing on a small set of test data is
sufficient to prove program equivalence. Applications of algebraic
program testing to a restricted class of array manipulation programs,
classes of multinomials, and a class of recursive mathematical
subprograms are given. Therefore, algebraic program testing provides
a theoretically sound way of determining program correctness for
restricted classes of programs.

PROGRAM EQUIVALENCE TESTING

In algebraic program testing, testing is used to show the
correctness of a program P by showing its equivalence to a
"hypothetical correct version Q" of P. Since the equivalence problem
for powerful programming languages is undecidable, the power of the
language must be restricted, e.g., removing the branch statements and
allowing only integer type variables. Thus, in this approach,
programs are restricted to lie in some class for which testing on a
small set of test data is sufficient to prove the program equivalence.

When given a program P, in the approach taken by [4], P's t
 correctness is shown by testing as follows: A class of programs P

and associated sets of test uses T" are defined by a set of
properties. The definition of P requires that the programmer know
certain computational properties of the "correct program" in P'
which we denote by Q. The definition of T requires that the
programmer have a good understanding of the execution properties of
Q. If P and Q generate identical symbolic outputs for any T in T
then they are computationally equivalent.

There are two problems in this approach. The first is that ,tt is
difficult to define sufficiently general classes of programs P and
related classes of test cases T *. The second problem is related to
the assumptions about the properties of Q that the programmer should
know. Those assumptions about Q must be made before using the method
to prove the correctness of P. There are two kinds of assumptions
that must be made about Q. The first is that there is a correct Q
with the properties of the class P. The second is that it is
possible to generate sets of test cases in T which satisfy the
computational properties of Q [4].

67

STEP - State-of-the-Art Overview

EXPERIMENTAL EVALUATION

Algebraic program testing has been applied in [4] to a program
which carries out polynomial division. This program contains arrays
and variables for indexing these arrays. There are two types of
operations carried out in this program: operations on array elements
and operations on the array indices. Programs involving these types
of operations are referred to as array manipulation programs.

A class of array manipulation programs is defined in which all
loops are FOR-loops, programs do not contain branch statements and the
only variable types are computational and index types. The class is
further restricted to create P by limiting the computational
assignments, array index expressions and loop bounds, e.g., all loop
bounds in FOR-loops are linear functions of the input index variables
and of the loop indices of containing loops.

Some restrictions on T* are then the number of times a loop is
executed by the data and the algebraic structure of a set of test
cases T, e.g., the union of the values of each test case in T form a
cascade set [1] of degree 2.

Computational equivalence of the programs I) and Q in the
restricted class of array manipulation programs P

*
 , with identical

output for any T in T*, is proven by a "Computational Equivalence
Theorem". It is assumed in the proof of the theorem that the programs
P and Q generate identical symbolic outputs.

As a further indication of the limitations of the restricted class
of array programs, the outputs of the programs in this class contain
structural information about the programs.

Some of Howden's ideas have been investigated independently by
Geller [3], and some other algebraic results which are not used in
"Computational Equivalence Theorem" have been proven by [5].

DeMillo and Lipton [2] have extended Howden's work to a restricted
class PP' in which programs compute multinomials with certain
limitations on their degree and number of variables. The/ have shown
that a given program P can be shown equivalent to Q in P by testing
on small sets of test data if some (small) probability of error is
allowed.

Rowland and Davis have applied algebraic program testing to
classes of polynomials, multinomials, and rational functions [6] and
to a class of recursive mathematical subroutines [7]. Applications of
these results assume that both functions are in one of the classes
mentioned above. Test data are then chosen that uniquely identify
members of that class [6,7].

68

STEP - State-of-the-Art Overview

REFERENCES

[1] B. F. Caviness.
On Canonical Forms and Simplification.
Ph.D. Thesis, Carnegie-Mellon University, 1968.

[2] R. A. DeMillo and R. J. Lipton.
A Probabilistic Remark on Algebraic Program Testing.
Information Processing Letters (Netherlands), Vol.7(4):193-5,
June 19/8.

[3] 	M. Geller.
Test Data as an Aid in Proving Program Correctness.
Proceedin s of Second Sym.osium on Princi les of Pro ramming

1916.
anguages, pages 	 u' nations, ew or , • ,

[4] W. E. Howden.
Algebraic Program Testing.
Acta Informatica (Germany), Vol.10(1):53-66, 1978.

[5] W. E. Howden.
Elementary Algebraic Program Testing Techniques.
Computer Science Technical Report 12, Applied Physics and
Information Sciences, University of California, San Diego, CA,
1976.

[6] J. H. Rowland and P. J. Davis.
On the Use of Transcendentals for Program Testing.
Journal of the Association for Computing Machinery,
Vol.28(1):181-90, January 1981.

[7] J. H. Rowland and P. J. Davis.
On the Selection of Test Data for Recursive Mathematical
Subroutines.
SIAM Journal Computers, Vol.10(1):59-72, February 1981.

69

STEP - State-of-the-Art Overview

2.2.8. RANDOM TESTING

SUMMARY

Random Testing is essentially a black-box testing strategy in
which a program is tested by randomly choosing a subset of all
possible input values. The distribution may be arbitrary, or may
attempt to accurately reflect the distribution of inputs in the
application environment.

SAMPLING STRATEGY

Random testing is essentially a black-box testing strategy in
which a program is tested by randomly selecting some subsets of all
possible input values. Since the results compiled by Duran and Ntafos
[l] indicate that random testing can be cost-effective for many
programs, it may be employed to generate test data for real-time
software.

Program testing may be viewed as sampling for errors, i.e., a
program is executed for a subset of input data and errors, if any, are
detected by observed failures of the expected behavior of a program.
Most testing techniques aim at increasing the probability that given
sampling instances reveal (existing) errors. Currently there does not
exist a technique which can assure that a tested program will perform
correctly. A measure of program correctness is "the proportion of
elements in the program's input domain for which it fails to execute
correctly". This measure is directly related to the test results,
since a test case either succeeds or fails. The number of failures in
a set of test cases is related to the measure mentioned via some
probability distribution function P. P depends on the way one chooses
test data.

Test data may be chosen randomly or by a sampling procedure
reflecting "the actual probability distribution on the input
sequences". This allows one to estimate the "operational reliability"
[2]. Experiments performed by Duran and Ntafos [1] to study the
effectiveness of random testing have shown that the sets of randomly
generated test data for their sample programs have provided near total
branch coverage. The branches uncovered have tended to be the ones
that handle exceptional cases. This suggests that random testing may
be used in conjunction with extremal/special values testing.

70

STEP - State-of-the-Art Overview

REFERENCES

[1] 	J. W. Duran and S. Ntafos.
A Report on Random Testing.
Proceedin s of the 5th International Conference on Software
ngineering, Marc , San Diego, CA, pages •

[2] 	J. W. Duran and J. J. Wiorkowski.
Quantifying Software Validity by Sampling.
IEEE Transactions on Reliability, Vol.R-29:141-4, June 1980.

71

STEP - State-of-the-Art Overview

2.2.9. GRAMMAR-BASED TESTING

SUMMARY

A formal specification of some systems, e.g., airline reservation
systems and the call processing component of telephone switching
systems can be modeled by a finite-state automaton (FSA). A regular
grammar for the language accepted by the FSA can be constructed. A
testing strategy can be based on the grammar to generate inputs and
outputs of a system under consideration. The strategy is extended to
test a wider class of programs by using attribute context-free
grammars. The description of an automated test system implementing
this strategy is discussed.

GRAMMAR-BASED TESTING STRATEGIES

The components of a grammar-based testing system are the
Requirements Language Processor (RLP), the Test Plan Generator (TPG),
and the Automatic Test Executer (ATE). Input to the RLP is a formal
specification of the system under test. The output of the RLP is a
state-transition matrix (STM) representation of a FSA. Since the RLP
may assure that there are no inconsistencies in the requirements, it
is assumed that the STM represents a deterministic FSA. The
reachability of each state is assured by computing the transitive
closure of the STM [2,3]. Using a result from automata theory a
regular grammar for the language accepted by a FSA can be constructed
[5]. The regular grammar is manually augmented to take into account
the relevant system information for each state transition and to
indicate the observable outputs of the FSA, e.g., "the observable
outputs from the finite-state machine must be terminal symbols" in the
grammar [1].

Input to the TPG is an augmented FSA. The TPG then outputs a set
of test scripts. Each script is a sequence of executable inputs and
corresponding outputs expected from the system under consideration.
The ATE executes each test script and reports whether the system
responds in a desired manner or not [1].

Another grammar-based strategy is described in [4]. This strategy
is based on attribute context-free grammars and it addresses a more
general class of programs. Theoretically, using the results obtained
in [6], this strategy can be applied to any program.

72

STEP - State-of-the-Art Overview

EVALUATION

An important consideration associated with these strategies is
that it is necessary to employ a criterion for choosing the
productions in the grammar to prevent loops. One such criterion is to
limit the number of times a production is used.

Grammar-based testing strategies have been applied for testing
nested conditional statements in Ada, testing a sort program, and a
testing text reformatter [4].

Another application of grammar-based test data generation
strategies involves generating test programs for input to a compiler
under test [71.

73

STEP - State-of-the-Art Overview

REFERENCES

[1] J. A. Bauer and A. B. Finger.
Test Plan Generation Using Formal Grammars.
Proceedings of the 4th International Conference on Software
Engineering, September 1979.

[2] A. M. Davis and W. J. Pataj.
Requirements Language Processing for the Effective Testing of
Real-Time Systems.
ACM Software Engineering Notes, Vol.3(5), November 1978.

[3] A. M. Davis and T. G. Rauscher.
Formal Techniques and Automatic Processing to Ensure Correctness
in Requirements Specifications.
Proceedings of the Specifications of Reliable Software
Conference, April 3-5, 1979, Cambridge, MA.

[4] A. G. Duncan and J. S. Hutchison.
Using Attribute Grammars to Test Designs and Implementations.
Proceedings of the 5th International Conference on Software
'Engineering, March 1981.

[5] J. E. Hoperoft and J. D. Ullman.
Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[6] D. R. Milton and D. N. Fischer.
LL(k) Parsing for Attribute Grammars.
Proceedings of the 6th International Colloquium on Automata,
Languages and Programming, July 19/9.

[7] A. J. Payne.
A Formalized Technique for Expressing Compiler Exercisers.
SIGPLAN Notices, Vol. 13(1), January 1978.

74

STEP - State-of-the-Art Overview

2.2.10.

SUMMARY

DATA-FLOW GUIDED TESTING

Data-flow analysis is a technique used in optimizing compilers to
analyze certain structural properties of programs. In data-flow
guided testing, data-flow analysis is used to extract program variable
relationships from a flow graph. Three data-flow guided techniques
are block testing, which treats single-entry single-exit blocks as the
basic unit of data transformation, the definition-tree strategy, and
data-space testing. The effectiveness of these techniques has only
been established for data transformation errors.

INTRODUCTION

Data-flow analysis is a technique for obtaining structural
information about programs. In this approach, a program is considered
as establishing meaningful relationships among program variables.
Then a testing strategy may be defined in terms of data transformation
paths for some or all program variables. Control flow information
about the program is then used to define a set of paths to be
exercised [1].

A variable in an instruction is said to be used (defined) when it
is referenced (assigned a new value). A definition of a variable is
live at an instruction I, if there exists a control path from where
the variable is defined to I along which the variable is not
redefined. The arguments of an instruction are those variables whose
values are used by the instruction to perform the computation
specified. An elementary data context of an instruction is a "tuple
of definitions of all arguments of that instruction that can possibly
be used" by the instruction if a particular control path is
exercised. Data context of an instruction is "the set of all its
elementary data contexts". A block in a program is a sequence of
instructions executed together. For testing purposes, it is more
convenient to deal with blocks rather than instructions. Therefore,
the notion of liveness is extended to block level. The counterparts
of the arguments and results of an instruction are the input and
output variables of a block, respectively. A variable is an input
(output) variable of a block, if it is used before it is defined tlt
it is defined) within the block [11.

A path in a program is said to be error-sensitive (error-
revealing) if an error might be (is always] detected whence s
exercised. A testing strategy is viable if it guarantees at least one
error-sensitive path will be exercise-F.—

75

STEP - State-of-the-Art Overview

TESTING STRATEGIES

One strategy is called block testing, and it is described by Laski
[1] as follows:

Each tuple of definitions from the data context of
every block in the program is to be tested at least
once.

In order to perform a complete block test, a set of paths that
activate all elementary data contexts of every instruction needs to be
exercised. A data flow analyzer can be used to find a complete test.
A major drawback of this strategy is that it exercises blocks of a
program independently, therefore failing "to force the control flow to
activate more complex use-definition chains".

A definition-tree strategy has been proposed for meeting this
weakness of block testing. In this approach, a programmer can specify
a set of variables whose final values are of interest to him rather
than the instructions which define them. These variables are
generally output variables appearing in the specification of a
program. Laski [l] describes the strategy as follows:

The next step is to determine the data context of the
exit instruction, i.e., the set of all tuples of
simultaneously live definitions of the output
variables. Each tuple becomes then the root of a
definition tree (d-tree). The immediate sons of a
root are the elementary contexts of the root ...

Next, the definitions of output variables are traced backwards from
the exit instruction until "either an input, first block context is
reached or a cyclic use of a context appears". As before, test data
are generated to exercise each tuple in the tree at least once.

Another strategy similar to the definition-tree strategy is data-
space testing. In contrast to the definition-tree strategy, this
approach traces the definitions of all data items, e.g., variables and
constants [2].

EVALUATION

Laski indicates that these strategies are more difficult to apply
in practice than control oriented strategies, since finding data
contexts of a block for a program of considerable size is almost
impossible without software assistance (some algorithms which can be
used for this purpose are referenced in [1]).

These strategies are conjectured to be viable for "data
transformation errors" i.e., misspelled variables and incorrect values
but they do not detect missing paths.

76

STEP - State-of-the-Art Overview

REFERENCES

[1] J. Laski.
On Data Flow Guided Program Testing.
SIGPLAN Notices, Vol.17(9), September 1982.

[2] M. Paige.
Data Space Testing.
Performance Evaluation Review, Vol.10(1):117-27, Spring 1981.

77

STEP - State-of-the-Art Overview

2.2.11. COMPILER TESTING

SUMMARY

Compiler testing has been studied extensively since the
requirements of compilers are stable and languages such as FORTRAN and
COBOL have been around for a long time. Grammar-based approaches and
the approach used by the Federal Compiler Testing Center (FCTC) for
testing compilers are introduced. An experimental evaluation of
strategies is given.

COMPILER TESTING STRATEGIES

Grammar-based testing strategies (see Section 2.2.9) can be
employed to test compilers. In these strategies, a compiler is
exercised by a set of compilable programs, automatically generated by
a test generator. The generator is driven by a description of the
source language. This description is in a formalism which extends
context-free grammars in a context-sensitive direction. The output of
the test generator is a set of programs covering all syntactical units
of the source language [1,9]. In addition to the automatic generation
mode, the system in [1] provides the users with a set of directives to
generate incorrect programs in a controlled way. This allows compiler
implementers to hypothesize the type of errors and verify that the
compiler accepts programs if and only if they are correct M.

Another strategy to determine the degree to which the compiler
under consideration conforms to a standard language definition (as
defined by the National Bureau of Standards for example) is employed
by the Federal Compiler Testing Center (Office of Software Development
General Services Administration). A Compiler Validation System for a
particular language consists of audit routines containing features of
the language, their related data, and a preprocessor routine which
prepares the audit routines for compilation. The testing of a
compiler is performed as follows [2,3,4,5,6,7,8].

The testing of a compiler in a particular
hardware/operating system environment is accomplished
by compiling and executing each audit routine. The
report produced by each routine tells whether the
compiler passed or failed the tests in the routine.
If the compiler rejects some language elements by
terminating compilation, giving fatal diagnostic
messages, or terminating execution abnormally, then
the test containing the code the compiler was unable
to process is deleted and the audit routine
compilation and execution repeated.

78

STEP - State-of-the-Art Overview

The compilation listing and the output reports of the audit routines
are then analyzed to produce a validation summary report.

A different approach is being adopted by the implementers of the
Ada (Registered Trademark of the Ada Joint Program Office, U.S.
Government) programming language. Ada compilers must be "validated"
against a test suite of 350 Ada programs and constructs [10]. At
present, there are no Ada compilers which have been validated, so no
experimental evidence is available on the effectiveness of this
approach.

EXPERIMENTAL EVALUATION

The system described in [1] has been
Pascal subset, three PLZ compilers, and
languages. The system has been successful
syntactical, and semantical errors. Some
compiler have been revealed.

The system of the Federal Compiler Testing Center has been used
successfully to test different implementations of FORTRAN and COBOL.

tested intensively on a
on some of the other
for discovering lexical,
design errors of a PLZ

79

STEP - State-of-the-Art Overview

REFERENCES

[l] 	F. Bazzichi and A. Spadafora.
An Automatic Generator for Compiler Testing.
IEEE Transactions on Software Engineering, Vol.SE-8(4):343-53,
July 1982.

[2] Federal Compiler Testing Center.
Report FCTC-81-40, Falls Church, VA.

[3] Federal Compiler Testing Center.
Report FCTC-81-106, Falls Church, VA.

[4] Federal Compiler Testing Center.
Report FCTC-81-112, Falls Church, VA.

[5] Federal Compiler Testing Center.
Report FCTC-81-115, Falls Church, VA.

[6] Federal Compiler Testing Center.
Report FCTC-81-118, Falls Church, VA.

[7] Federal Compiler Testing Center.
Report FCTC-81-135, Falls Church, VA.

[8] Federal Compiler Testing Center.
Report FCTC-81-146, Falls Church, VA.

[9] A. J. Payne.
A Formalized Technique for Expressing Compiler Exercisers.
SIGPLAN Notices, Vol.13(1), 1978.

[l]] J. B. Goodenough.
Ada Compiler Validation Implementer's Guide.
SofTech, Inc., Waltham, MA, October 1980.

80

STEP - State-of-the-Art Overview

2.2.12. 	REAL-TIME SOFTWARE AND TESTING

SUMMARY

The characteristic phases of typical real-time software testing
are host and target testing. Most of the testing techniques that are
used for host computer testing are the same as for non-real time
applications. The testing of an integrated system on a host requires
running an environment simulator and controlling ongoing processes
appropriately. In target testing, first module testing, then system
integration and full system testing is performed.

Techniques for testing a ballistic missile defense system, an
embedded-microprocessor command and control system, nuclear protection
system, the NASA Space Shuttle Program, and material acquisition
systems are presented.

INTRODUCTION

Real-time software is defined by Glass [5] as follows:

Real-time software is software that drives a computer
which interacts with functioning external devices or
objects. It is called real-time because the software
actions control activities that are occurring in an
ongoing process. For example, real-time software may
drive an acceleration/ deceleration controller in a
rapid transit system vehicle; or it may capture data
from other physical devices in a nuclear physics
experiment; or it may interpret radar data onboard an
antisubmarine aircraft and translate it into displays
for a military operator at console.

An embedded computer system is defined as a computer and its software
embedded in some larger system. "Real-time" and "embedded" are
sometimes used interchangeably except that the embedded computer is
physically included in the system that it serves [5].

The typical attributes of real-time software that makes the
testing more difficult are the large number of modules that have to be
integrated and tested, the same sequence of test cases, when input at
slightly different times, may produce different outputs, the inherent
logical complexity, e.g., large number of decision statements, many
modules sharing the same computer at the same time, and many modules
accessing the memory randomly which makes the isolation of problems
difficult [6]. Glass [5] observes that real-time testing is still a
"lost-world" compared to "civilization" developed in other areas of
software, reflecting the little work done in the area.

81

STEP - State-of-the-Art Overview

The computers involved in real-time software testing are host and
target computers. A target computer is the real-time computer which
controls the activities of an ongoing process. A host computer is
used to construct programs for the target and is usually a
commercially available computer. It usually contains a cross compiler
or a cross assembler or both, a linkloader for the target, and an
instruction level simulator. An instruction level simulator is a
program that allows a host to simulate the behavior of the target [5].

The characteristic phases of typical real-time software testing
can be characterized as host and target computer testing. The goal of
host computer testing is to reveal errors in the modules of software.
Most of the testing techniques that are used for testing on a host
computer are the same as for non-real-time applications. The testing
of the full system is rarely done on the host. If it is done it
requires running an environment simulator on the host and controlling
ongoing processes appropriately. An environment simulator is an
"automated replication of external system world" built for testing.
Some target dependent errors and errors in the support software e.g.,
the compiler target code generator or assembler may be detected on the
host by using an instruction level simulator [6].

In target testing, module testing is performed first. Software
system integration testing may be performed by hooking the environment
simulator to the target. Finally, full system testing is performed in
the real world by removing the environment simulator. In all these
phases of the target testing virtually no tools are available to
support the real-time tester [5].

Glass proposes a methodology and presents a list of solutions for
real-time software testing in [5].

Real-time software typically requires the generation of a large
number of test cases. Since random generation of test data (see
Section 2.2.8) is cost effective, techniques for random generation of
test data may be employed.

In the following, techniques for testing a ballistic missile
defense system, an embedded-microprocessor command and control
software, nuclear protection systems, the NASA Space Shuttle Program,
and material acquisition systems are discussed.

ADAPTIVE TESTING

Adaptive testing is an automated technique for testing using an
adaptive tester in an interactive testbed consisting of the process
under test and an environment simulator. In such an adaptive tester,
test data selection is based on a performance criterion and automated
techniques are used for test data generation, data gathering and
reduction, and "intelligent" test case perturbation [2].

82

STEP - State-of-the-Art Overview

Performance criteria are used to select test data by determining
the acceptable performance boundary of the system under test. For
this purpose, the input space of the system is partitioned into
acceptable and unacceptable domains of performance. This approach
also allows stress sensitivity analysis of the system e.g., for
obtaining stress parameters [2].

Automated aids for the generation of test cases, and data
reduction and analysis involve the use of an algorithm called
"Parameter Perturbation Algorithm" (PPA). PPA searches a performance
surface to provide an intelligent perturbation of the input
parameters. PPA performs the search in such a way that testing must
proceed toward the stress boundary of the system. In order to decide
which parameters to perturb, PPA uses the knowledge about previous
test cases and a set of heuristics. Davis describes the heuristics
that have been used to test a Ballistic Missile Defense (BMD) system
as follows:

The heuristics range from the known relationships that
exist between an increase in the number of threatening
objects and the expected number of objects to
penetrate the defense to more detailed relations
between software parameters at a lower level ...

Adaptive testing continues until a point on the stress boundary is
reached [2].

AN EMBEDDED-MICROPROCESSOR COMMAND AND CONTROL SOFTWARE TEST TECHNIQUE

This technique takes into account the fact that embedded-micro-
processor real-time software which monitors natural processes
typically compute continuous functions. The inherent continuity of
the functions computed by these monitor programs require them to have
continuous inputs, outputs, or both. Watkins [7] describes the
technique as follows:

The software testing method presented here identifies
potential errors by incrementally varying one (or
more) input parameter's values over its (their)
domain, usually by indexing on its (their) least
significant value. Simultaneously, one (or more)
output parameter's values are measured against an
automatically calculated curve (surface). Potential
errors are just those input-output combinations that
result in an output which does not lie "close" to this
curve. The curve is calculated from the immediately
preceding output's value(s), the change in value(s),
and the rate of change in value(s). Thus, this
technique predicts the program's future behavior from
its past behavior and flags as potential errors
exactly those outputs which are not predictable.

83

STEP - State-of-the-Art Overview

For an implementation and an application for the technique to a
piecewide linear function with 12-bit binary fraction input parameter,
see [7].

TESTING TECHNIQUES FOR NUCLEAR PROTECTION SYSTEMS

After software of the reactor protection system has been coded,
the source code is analyzed statically. Then, the source code is
instrumented. Later, the code is executed on test data. Test data
are selected either by analyzing the structure of the code and its
specifications or from the estimated statistical distribution of
data. All of the steps can be performed by a testing tool, e.g.,
SADAT and RXVP [4].

After this phase of software testing, the complete reactor system
is tested under real-time conditions by performing specification-
related tests followed by application-related tests. In the
specification-related test, the unmodified software is tested and all
possible input cases of the specifications are attempted to be
covered. To specify the test data, the specifications are first
analyzed to identify all elementary conditions e.g., the conditions in
which the temperature is greater than the limit temperature. Then a
subset of the possible combinations of these elementary conditions is
selected by analyzing the results of the static analysis on
"segmentation and the internal structure of algorithms". This subset
is converted into decision table-like tables called combination tables
whose columns correspond to distinct test cases [4].

During application-related testing, test data representing
"frequently occurring situations and critical cases of the
application" are generated by a test computer. Test computer then
sends test data to the test object, and reads in the test results. It
also documents the test results after checking them. In order to
check the test results ...

a functional model of the test object is derived
from the specifications. The test data are also
processed by the model. Then, the test results of the
real system and the model are compared. To avoid
identical errors in the real system and the model, the
model is implemented by an independent team and in a
high-level language.

A pilot experiment of protection system software and related work in
the nuclear field are also included in [4].

84

STEP - State-of-the-Art Overview

A TESTING TECHNIQUE DEVELOPED FOR THE NASA SPACE SHUTTLE PROGRAM

The following technique has been used by IBM during the
verification of the NASA Space Shuttle Project. The object of the
Flight Software Verification Project was "an independent test,
analysis and evaluation of the Space Shuttle flight program to ensure
conformity to specifications and satisfaction of user needs" [l].

During the development cycle the modules 	were 	tested
individually. At the completion of the development cycle, the
software was released to a verification organization which was formed
independently from the software development organization. Members of
the verification organization participated in the design and code
reviews conducted by the software development organization. During
this phase, testing checklists were developed to design test cases [1].

The development and verification of the flight software were
performed in an IBM-developed simulation testbed which provided "a
sophisticated array of user capabilities" e.g., real-time flight
software patching. The verification project involved two distinct and
complementary phases: detailed and performance testings [1].

For detailed testing, the requirements specifications were divided
into functional units. An individual analyst was responsible for
developing a test plan to exercise each defined requirements path and
a "sufficient" number of path combinations for each such unit.
Additionally, " a level of requirements validation and user need
testing" which was based on "the analyst's observations of the flight
software response and knowledge of the intent of the requirements" was
planned [11.

Detailed testing analysis which followed the acceptance of the
test plan involves explicit testing of all requirements defined in the
requirements specifications, explicit testing of I/O compatibility of
modules, and each detailed test case was executed with the entire
operating software. Each test case which revealed the existence of
problems was executed again on the corrected software [1].

Performance testing involves testing flight software under "normal
operation, 'reasonable' failures, and severely degraded conditions".
Test cases were constructed in such a way that the components of
software were stressed selectively. The criteria for performance
success were "to operate successfully across the range of the
customer's flight performance envelope" and "to satisfy a set of
software design constraints" e.g., cpu utilization [1].

This approach to testing software for the NASA Space Shuttle
Project resulted in 550 discrepancy reports and also revealed some
specification discrepancies [11.

85

STEP - State-of-the-Art Overview

A METHODOLOGY FOR TESTING IN THE MATERIAL ACQUISITION PROCESS

The testing and evaluation methodology introduced in this section
can be applied to software for complex material systems, e.g.,
tactical and weapon systems. The fundamental features of the
methodology are "early involvement and activity participation by the
tester-evaluator" during software development, "integration of test
requirements", consideration of both functional and processing
requirements throughout the development of software, and the provision
for adequate data collection" by instrumenting software under
consideration [3].

The methodology employs the methods of documentation analysis,
software test-live environment, software test simulated environment,
software/computer system simulation, and co-development
participation. These methods are categorized as static and dynamic
test methods. Each category is further subcategorized with respect to
functional and process control, e.g., resource management and task
management aspects of software under consideration.

Documentation analysis is a static analysis technique (see Section
2.2.1) which has applications to both functional and process control
aspects of software. It does not require the availability of target
computer hardware but requires the target software to perform code
analysis.

Software test simulated environment and software test-live
environment (also known as field testing) are both dynamic test
methods having applications to functional and process control aspects
of software. Simulated environment testing is performed throughout
the development of software starting with module testing and
proceeding through module integration testing and functional
("hardware-software") integration. Functional integration involves
testing in both simulated and live environments, and possibly in a
partially simulated environment. Live environment testing is
necessary to demonstrate system capabilities for acceptance.

Data collection from simulated and live environments is performed
by instrumenting the target software/computer system. Software
monitors and hardware monitors are two basic methods used for
instrumentation. A hardware monitor is a "physical device attached to
the computer itself or to a data link to the computer (e.g., the
computer-radar interface)." Data collection can also be done by a
dedicated microprocessor rather than by instrumenmtation.

Software/Computer system is a static test method having
application to test and evaluation of the process control aspects of
software. Ellis [3] describes the simulation as follows:

86

STEP - State-of-the•Art Overview

A simulation of the performance of the software/
computer system defined by the devices and jobs
specified is carried out under given workload or
scenario conditions, and statistics relative to both
devices are collected.

Package simulators or simulation languages, e.g., Extendable Computer
System Simulator (ECSS) can be used for simulating software/computer
systems.

This approach involves the participation of a tester during the
software/system development process. The aim of this co-development
participation is to reduce overall testing and development costs, and
to have an improved final product.

87

STEP - State-of-the-Art Overview

REFERENCES

[1] J. F. Clemons.
Verification of the Onboard Flight Software Developed for the
NASA Space Shuttle Program.
Proceedings of the Eighth Texas Conference on Computing Systems,
19/9.

[2] C. G. Davis.
The Testing of Large, Real Time Software Systems.
Proceedings of the Seventh Texas Conference on Computing
Systems, October 30 - November 1, 1978, Houston, TX.

[3] J. O. Ellis.
A Methodology for Software Testing in the Material Acquisition
Process.
Proceedings of the Sixth Texas Conference on Computing Systems,
November 14-15,197/, University of Texas, Austin, TX.

[4] W. Geiger, L. Gmeiner, H. Trauboth, and U. Voges.
Program Testing Techniques for Nuclear Protection Systems.
Computer, Vol.12(8):10-8, August 1979.

[5] R. L. Glass.
Real-Time: The "Lost World" of Software Debugging and Testing.
Communications of the ACM, Vol.23(5):264-71, May 1980.

[6] R. V. Head.
Testing Real-time Systems. Part 1: Development and Management.
Datamation, page 42, July 1964.

[7] M. L. Watkins.
A Technique for Testing Command and Control Software.
Communications of the ACM, Vol.25(4):228-32, April 1982.

88

STEP - State-of-the-Art Overview

2.3. OTHER STRATEGIES FOR CONSTRUCTING RELIABLE SOFTWARE

SUMMARY

A number of strategies which can be used to augment formalized
testing efforts have been proposed and successfully applied. These
strategies usually take the form of policy and guidelines used to
manage development efforts. These include the use of independent test
organizations, team development approaches, and constructive methods
for software development. Independent test organizations are separate
from development organizations and may often be third party
contractors. Team development approaches are based on organizational
theories designed to establish effective communication patterns within
software development organizations. Constructive methods include the
application of advanced design methodologies and the use of support
tools.

INTRODUCTION

In addition to formalized methodologies for testing, there are
heuristics and guidelines used by software development management to
improve the reliability of software under development. These include
having an independent software organization test software, organizing
teams to achieve better utilization of human resources and employing a
hierarchical-decomposition design approach.

INDEPENDENT TEST ORGANIZATIONS

One approach to improving software reliability is the utilization
of an independent test organization. Separate from the development
organization, such 1F-Tist organization performs analysis of software
requirements, develops system test plans and scenarios, and evaluates
software performance against the performance requirements of the
system. The independence of the testing organization from the
development organization is important to ensure an unbiased and
independent evaluation. Independent test organizations are often
contractors outside the project organization [3,4].

Independent testing has been standard for highly critical realtime
software contracts of the U.S. Air Force and other Federal agencies.
For instance, independent testing of the Viking Lander Flight Software
has been done by TRW Systems [3].

89

STEP - State-of-the-Art Overview

TEAM DEVELOPMENT APPROACHES

These approaches are intended to establish "simpler communication
patterns within the software development organization" and to permit
"the concentration of collective mental resources on
design/programming problems" [2].

IBM's chief programmer team was the earliest of team concepts. A
team consists of chief and back-up programmers. The chief is
responsible for "designing, coding, and integrating the top-level
control structure as well as the key components of the team's
product". A back-up programmer assists the chief [1,2].

Variations of the chief programmer team approach are dual-member
design team and thread integration team (for a discussion see Section
2.1). These differ in the way the teams are organized. The overall
features of team approaches include continuous verification and
validation, simpler communication paths, and better integration of
efforts of individual team members [2].

CONSTRUCTIVE METHODS

Constructive methods of design and programming involve the
application of structured techniques. These techniques include a
structured (hierarchical-decomposition) design approach, "guided by
formalized sets of principles" (e.g., modularity, abstraction, and
uniformity), "processes" (e.g., purpose and mechanism), and "goals"
(e.g., modularity, efficiency, and reliability) [1].

These methods "improve the testability of the system and furnish
verification and validation assistance in parallel to the basic design
and construction activities" [2].

Some automated tools are developed to aid in the structured design
process. Weriiii1T-The designer Hin recognizing erroneous and weak
areas in the design that are in need of revision". Examples of such
tools include a structure chart graphics system and a design quality
metrics system developed at Hughes Aircraft Company [2].

90

STEP - State-of-the-Art Overview

REFERENCES

[1] B. W. Boehm.
Software Engineering.
IEEE Transactions on Computers, Vol.C-25(12), December 1976.

[2] M. S. Deutsch.
Software 	Verification 	and 	Validation 	Realistic 	Project
pproac es.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[3] R. L. Glass.
Modern Programming Practices, A Report from Industry.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

[4] G. J. Myers.
The Art of Software Testing.
John Wiley a sons, New TorK, 1979.

91

STEP - State-of-the-Art Overview

2.4. COMPARATIVE EVALUATION OF TESTING TECHNIQUES

SUMMARY

Problems associated with the selection of an appropriate testing
methodology from the existing ones are explained. Comparative
evaluation results of some of the testing techniques on sample
programs are given.

COMPARATIVE STUDIES

The selection of an appropriate testing methodology from the
existing ones is not an easy task. This was stated in [6] as follows:

In choosing testing methods suitable for his own
application, the software tester must weigh the
particular advantages of each method against the
resources it consumes and its shortcomings. The
balance must meet the overall standard of testing
required and still fall within the capabilities of the
resources available - or else these constraints must
be amended.

One problem that a tester must keep in mind is that testing is not
conclusive; that is, it is never known how many errors in the software
remain undetected.

Another problem associated with the selection of appropriate
testing techniques is that there are no means of quantitatively
assessing the effectiveness of a testing technique (and a tool). But,
two approaches to measuring the effectiveness of testing techniques
have been studied by Howden [4]: theoretical and empirical. He
describes the two approaches as follows:

In the theoretical approach, situations are charac-
terized in which it is possible to use testing to
formally prove the correctness of programs or the
correctness of properties of programs. In the
empirical approach, statistics are collected which
record the frequency with which different testing
strategies reveal the errors in a collection of
programs.

The results obtained by theoretical measurements only provide
insight into the reliability of software testing but have limited
practical application. The difficulty associated with the empirical
approach is that it is difficult to consolidate the information gained
from empirical measurements since reliable error data is rare, even in
small organizations [4,6,9].

92

STEP - State-of-the-Art Overview

Since there are no formal test effectiveness measures, a tester
usually relies on the results obtained from practical experiences of
different testing techniques. Several researchers have produced
quantitative reports on the effectiveness of various testing
techniques based on their experiments [1,2,3,4,5,8]. The results
obtained in [4] indicate that path testing was reliable for 18 of the
28 errors. Branch analysis was reliable for 6 of the 28 errors.
Structured testing was reliable for 12 of the 28 errors. Symbolic
testing was found to be 10-20 percent more reliable than structured
testing. The combined use of the structured and extremal values was
reliable for 25 of the 28 errors. The combined use of all the
techniques mentioned above was reliable for 26 of the 28 errors.
Howden [3] found that path testing was "almost reliable" for about 65
percent of the program errors in the small survey of 11 programs in
Kernighan and Plauger [7]. Howden [5] also found that symbolic
testing and static analysis can be used to raise the error detection
rate from 11 out of 22 for conventional testing to 17 out of 22 for
the programs in [7]. The results obtained by Gannon [2] showed that
path testing was more effective than static analysis at detecting
logic, computational, and data base errors. Path testing alone
detected 25 percent of the seeded errors. DeMillo [1], for a single
program studied, found that domain testing was more effective than
statement analysis, specification analysis, and branch analysis. Most
of the results are mentioned in the experimental evaluation sections
of each testing technique explained in this report. There is no
published data available on comparative evaluation of test
methodologies for large-scale software development efforts.

93

STEP - State-of-the-Art Overview

REFERENCES

[1] R. A. DeMillo, D. E. Hocking, and M. J. Merritt.
A Comparison of Some Reliable Test Data Generation Procedures.
Report GIT/ICS-81-08, Georgia Institute of Technology, 1981.

[2] C. Gannon.
Error Detection Using Path Testing and Static Analysis.
Computer, Vol.12(8):26-32, August 1979.

[3] W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, Vol.SE-2(3):208-14,
September 1976.

[4] W. E. Howden.
Theoretical and Empirical Studies of Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-4(4):293-7,
July 1978.

[5] W. E. Howden.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering, Vol.SE-3(4):276-8,
July 1977.

[6] Infotech State of the Art Report, Software Testing Volume 1:
Analysis and Bibliography.
Infotech International, 1979.

[7] B. W. Kernighan and P. J. Plauger.
The Elements of Programming Style.
McGraw Hill Book Company, New York, 1974.

[8] K.-C. Tai.
Program Testing Complexity and Test Criteria.
IEEE Transactions on Software Engineering, Vol.SE-6(6):531-8,
November 1980.

[9] R. Thibodeu.
GRC Report to AIRMICS, 1981.

94

STEP - State-of-the-Art Overview

CHAPTER 3

TESTING AND EVALUATION TOOLS

3.1 INTRODUCTION

With the possible exception of certain static analysis techniques,
testing techniques require controlled execution of programs. During
program development, such controlled execution may be as uncomplicated
as standard debugging runs against test data in which the programmer
initiates, observes, and logs all testing activities. Even during
early stages of development, however, automated aids are frequently
required. For example, to test a free-standing subroutine, a driver
must be used which simulates the actions of the calling sequence which
will invoke the subroutine in its eventual run time environment. As
logical units are assembled into larger modules, the possible
interactions become more numerous and complex. Programs which will
control these interactions and allow programmers and testers to
simulate the intended actions of modules are common.

3.1.1. GENERAL VIEWS ON TESTING TOOLS

The application of systematic testing techniques also frequently
requires automated help. Many techniques call for massive clerical
operations such as developing verification conditions from an
annotated program or determining variable liveness by data flow
analysis. These operations are tedious and error-prone when carried
out by hand and are best left to special purpose programs. Similarly,
several testing techniques have considerable overhead in the number
and size of test cases. Execution from a development environment of
dozens -- perhaps hundreds -- of test cases under direct programmer
control is so labor-intensive that in most cases the natural approach
is to develop special software that retrieves test cases, initiates
program execution, and logs test results. The development of the test
data itself may involve processes which are combinatorially explosive
when expressed as functions of the number of program components so
that hand calculation is out of the question. For many applications,
checking calculated results against expected results is not feasible
manually. Output files may be too large for hand inspection, expected
output may be derived by independent execution of an executable
specification, correctness of output may be determined by performance
constraints, or the number of executions required may be excessively
large. In such cases, special programs are required to examine the
results of execution and determine automatically the correctness of
execution on test cases. The maintenance of test files, logs, and
documentation may also be automated for similar reasons. Finally,
execution of an integrated system in an environment which is subject
to real time inputs and constraints or which controls physical events
and processes may require software which simulates physical systems.

95

STEP - State-of-the-Art Overview

A testing tool is a piece of software which implements one or more
of these functions. Rather than write special purpose programs for
each software module under test, a software developer may find it more
cost effective to obtain a generalized program which can perform its
function in a variety of test situations. The borderline between a
true tool and special purpose (throw-away) testing software is
necessarily vague, but the following appear to be characteristics of
testing tools:

- Generalized Interfaces
A true tool should allow the user flexibility in
specifying both the testing requirements and the
program under test.

- Sharability
A tool should be general enough in its formulation
that it can be shared among a community of users.

- Reusability
A tool should be able to successfully survive the
first use. That is, the lifecycle of a tool should
span the lifecycles of several applications.

The development of effective testing tools seems to be a prerequisite
for successful application of systematic testing methodologies. The
state-of-the-art in tools for software testing is surveyed in this
chapter. The functions which these tools carry out have been
classified to correspond to testing techniques whenever possible.

Information concerning existing tools has been extracted from the
sources listed in Appendix A and by direct contacts with the
developers. Readers should be aware that many of the published
sources of tool-related information are woefully out of date. Tool
development is frequently not carried out in an organized fashion and
is frequently the responsibility of an individual. In addition, many
tools are designed in response to a specific Government contract.
Thus, access to an announced tool may be restricted because of poor
documentation, unavailability of the individual responsible for the
tool, and abandonment of the tool after contractual requirements are
met.

Another pitfall in surveying testing tools is the proliferation of
attributes describing the tools. Such questions as to what
information is essential for the selection of a tool, how portable is
a tool, what background is needed to successfully apply a tool, and
how is the performance of the tool judged are frequently answered
inadequately. For example, claims that a tool uncovered 20 errors in
20 programs or that the number of errors uncovered was significant are
common. These evaluations amount to little more than testimonials and
are not helpful in tool selection. Cost considerations are almost
never announced, and cost along with performance appears to be the
most important comparative attribute in determining tool selection.

96

STEP - State-of-the-Art Overview

In an attempt to back up published studies with more current data
concerning tools, tool classification data sheets were sent to tool
developers. A small fraction of these were returned with useful
data. These data sheets are included in Appendix B and are summarized
in tables following each major subsection below.

3.1.2. CLASSIFICATION

Testing tools can be classified into two groups according to the
analysis they perform: static analysis tools and dynamic analysis
tools. In addition, there is a family of related tools that neither
perform direct tests nor use any specific testing technique. Such
tools are called test support tools. This classification allows the
grouping of tools using similar operations and components. A
representative member of each grouping can then be used as a basis for
explaining the underlying operational principles of all tools in the
group.

Within each grouping, the tools may be further classified
according to specific functions performed. The National Bureau of
Standards has started to catalog tool features and classify software
development tools in NBS Special Publications 500-75 and 500-88.
Since many of the NBS terms are not yet well accepted, other sources
have also been consulted in order to define the scope of a tool
classification.

Comprehensive testing systems are combinations of analysis
techniques and do not fall directly under any one category. These
tools are listed in several classifications in the sequel. Some of
them are summarized in the testing tool data sheets and at the end of
the sections which are most applicable to their main functions. The
information concerning other tools which are not summarized can be
found in NBS Publication 500-88 and the other sources referred to
above (see Appendix A).

Thus, each major subsection below contains an extended catalog of
tools pertaining to that subsection. This catalog is organized as
follows:

(1) Catalog Listing of Tools: an alphabetical listing of tools
cited in the references of Appendix A which pertain to the
current subsection.

(2) Listing According to Function: for each major function
implemented by the tools cataloged in (1), an alphabetical
listing of tools having that function.

97

STEP - State-of-the-Art Overview

(3) Data Sheet Summary Tables: an alphabetized set of summary
descriptions for a subset of the cataloged tools.
Information in these tables is taken from the testing tool
data sheets in Appendix B. The data sheets were obtained by
direct contact with the developers and sources obtained from
Appendix A (of (1) above). The absence of a data sheet for a
particular tool does not in itself imply that the tool is
unavailable. However, in following up many of the cataloged
tools, it was determined that the published availiability of
a tool is no guarantee that it is actually available. A
number of the data sheets were not returned because (a) the
tool is proprietar ► , (b) the contact person has left the
developing organization, (c) the organization does not market
the tool, (d) the tool is not available for distribution and
(e) the tool no longer exists.

98

STEP - State-of-the-Art Overview

3.2. STATIC ANALYSIS TOOLS

Static analysis techniques provide limited analysis of programs.
The focus of static analysis is on requirements and design documents
and on structural aspects of programs, i.e., on those characteristics
of a program that are discernable without actually executing it. The
tools that implement static analysis techniques are varied in scope
and functionality. They range from systems which simply enforce
coding standards to systems which carry out sophisticated structural
error analyses.

3.2.1. STATIC ANALYSIS TOOL CLASSIFICATION

Static Analysis testing tools analyze characteristics obtainable
from program structure without regard to the executability of the
program under test.

Static analysis of programs may include any combination of the
functions listed below. The tools that perform these functions are
usually classified by function.

Code Auditing: Code auditing refers to the examination of source
code to determine whether or not specified programming practices and
rules have been followed. Typical rules and practices include
adherence to structured design and coding, use of portable language
subsets, or use of a standard coding format. Tools that implement
such functions are called code auditors or standards enforcers.

Consistency Checking: A consistency check determines whether or
not units of program text are internally consistent in the sense that
they implement a uniform notation or terminology and are consistent
with a specification. Such tools are usually used to check adherence
to design specifications and are called consistency checkers.

Cross Referencing: Cross references are dictionaries relating
entities by logical name. Cross referencing tools are frequently
features of high level language compilers, although they also appear
in debugging tools.

Interface Analysis: 	Interface analysis checks the
between program elements for consistency and adherence to
rules or axioms. Typical interface checks may include
parameters passed to subroutines and the completeness
blocks. These tools are called interface checkers.

I/O Specification Analysis: 	The goal of I/O specification
analysis is the generation of input data by analysis of I/O
specifications.

interfaces
predefined
checks on
of common

99

STEP - State-of-the-Art Overview

Data Flow Analysis: Data flow analysis originated in compiler
optimization studies. It consists of the graphical analysis of
collections of (sequential) data definition and reference patterns to
determine constraints which can be placed on data values at various
points of execution of the source program. Tools that perform such
functions are called data flow analyzers.

Error checking: Error checkers determine discrepancies, their
importance and causes.

Type Analysis: 	Type analysis involves the determination of
correct use of named data items and operations. 	Usually, type
analysis is used to determine whether or not the domain of values
(functions, etc.) attributed to an entity are done so in a correct and
consistent manner.

Units Analysis: Units analysis determines whether or not the
units or physical dimensions attributed to an entity are correctly
defined and consistently used.

100

STEP - State-of-the-Art Overview

3.2.2. 	STATIC ANALYZERS

SUMMARY

Static analyzers are programs that analyze source code to reveal
global aspects of program logic, structural errors, syntactic errors,
coding styles, and interface consistency. They consist of a front end
language processor, a data base, an error analyser, and a report
generator. The basic operation includes data collection, which
creates necessary tables and graphs, error analysis, and error report
generation. The existing static analyzers differ in terms of their
scope of error analysis, the flexibility of user command languages,
and the nature of error descriptions. Static analyzers have been used
in many software development efforts.

GENERAL DESCRIPTION

Static analyzers are programs that analyze source code to reveal
errors or dangerous constructs without actually executing the code [71.

E. F. Miller views a static analyser as, "a program analysis
system that 'proves' static allegations about the programs it is asked
to process [111." An allegation here refers to a statement of a
program property known to be desirable such as:

- all variables are type-declared in an explicit type
declaration,

- each variable used in some statement is set before being
referred to,

• no explicit type conversions are made in expressions
evaluation, etc.

These allegations involve features of the programs that are actually
legal in the programming language but are not good programming
practice [12].

Static analyzers as described include many different types of
tools using various techniques. In this section, we are concerned
with those tools which use dataflow analysis as the main technique in
extracting information from a source program.

Static analyzers are mainly used to check certain global aspects
of program logic, syntactic errors, coding styles, and interface
consistency. The information revealed by static analyzers include:

1) 	syntactic error messages;

101

STEP - State-of-the-Art Overview

2) number of occurences of source statements by type;

3) cross-reference maps of identifier usages;

4) analysis of how the identifiers are used in each statement
(data source, data sink, calling parameter, dummy parameter,
subscript, etc.);

5) subroutines and functions called by each routine;

6) uninitialized variables;

7) variables set but not used;

8) isolated code segments that cannot be executed under any set
of input data;

9) departures from coding standards (both languages standards
and local practice standards);

10) misuses of global variables, common variables, and parameter
lists (incorrect number of parameters, mismatched types,
uninitialized input parameters, output parameters not
assigned, output parameters assigned but never used,
parameters never used for either input or output, etc.) [7].

Control flow graphs and call graphs are created and analyzed to
derive this information. In addition, variable usages in each
statement must be investigated. For detailed information concerning
dataflow analysis, see Section 2.2.10 and [1,2,3,7,8].

BASIC OPERATION

Static analyzers generally consist of four main components: a
front end language processor, a data base, an error analyzer, and a
report generator.

The front end language processor incorporates a lexical analyzer
and a parser.- In the DAVE system, there is a statement recognizer to
classify different types of statements. A source program is
subdivided into program units (e.g., main program, subroutines). Each
program unit is further broken into statements, then tokens [15]. In
this phase, a number of tables containing information such as variable
usages, types, labels, and control flow are created and stored in a
data base.

102

STEP - State-of-the-Art Overview

The data base used in most tools is specifically designed to store
a large amount of information recorded during the lexical analysis
phase. The query language is, therefore, not very flexible and is
usually in the form of a command language. The FAST system uses a
commercially available data management system as its data handler and
data correlator along with the FACES source program parser and the
BOBW parser generator [5].

The error analyzer performs error checking under the direction of
a user who uses a provided command language or a query language to
communicate with the system. The level of flexibility of the command
language varies from system to system. The FACES system has the
Automated Interrogation Routine (AIR) to interpret queries and
automatically search the data base. The user may query the entire
program, or an individual routine, by variable names or by lists of
attributes. In the FAST system, the command/query language allows a
user to request displays of statements or variables which satisfy
specified attributes or a logical expression of attributes. The range
of the analysis can be limited to within specified program lines or
intra-module or the entire program.

The effectiveness of a static analyzer relies on the clarity of
the error report that the system provides to a user. Most of the
older static analyzers operate in batch mode and the report generation
is done at the end of the analysis. The output may contain cross
reference tables, calling sequence tables, common block versus
subroutine cross reference table or program graphs. The DAVE system
prints a description of each anomaly located; the description is
designed to simplify the difficult task of identifying the cause.
However, it does not attempt to positively identify the exact nature
of every error in a program. Instead, the program is probed for
suspicious and elusive constructs. The programmer must then use the
messages and warnings produced by DAVE to improve the program [6].

The FACES system provides a trace routine to trace local variables
within a module. The JOYCE system provides flowlists in the form of
microfilm Fortran listings. Newer static analyzers such as FAST, the
improved version of FACES, operate in the interactive mode, allowing a
user to modify the direction of his testing and to see the results on
a terminal right away.

The differences among static analyzers are the scope of error
analysis, the power of the command languages provided, the nature of
the error descriptions and the output tables produced. Some of the
existing static analyzers are described individually at the end of
this section.

103

STEP - State-of-the-Art Overview

Most of the static analyzers are designed mainly for Fortran and
its dialects, as Fortran is a widely used language and there are many
pitfalls associated with the language and its compiler. Normally, a
Fortran compiler is structured to process one module at a time and
does not check the compatibility of parameter interfaces and common
blocks [18]. Another problem is the lack of type checking. Newer
languages require explicit type declaration and their compilers
enforce type checking for consistent usage of variables. Ada allows
separate compilation and also requires type checking of the parameters
of subprograms [4].

Although a compiler and a static analyzer have many common
functions, there is a basic difference. The primary goal of a
compiler is to produce object code efficiently. It is designed for
maximum compilation speed and is constructed to forget source code
details as quickly as possible. In contrast, the main function of a
static analyzer is to locate structural errors and suspicious code
practices. As the result, it has to record as many source code
features as possible to facilitate anomaly discovery [18].

TOOL EVALUATIONS

Although there is no serious effort to evaluate static analysis
tools, some experience has been gained in using many of the systems.
Two static analyzers, DAVE and JOYCE, were evaluated by Leon G.
Stucki. On the scale of 1 = low to 5 = high, the operating costs of
DAVE and JOYCE were rated at 5 and 2, respectively. In term of ease
of uses (1 = easy to 5 = difficult), both systems were rated at 2 [17].

The FACES system was used to analyze itself and three instances of
misspelling errors and two subtle keypunch errors were found [16]. In
an initial application at NASA, FACES found approximately 1 error per
200 statements in a large Fortran program. In an analysis of software
associated with NASA's space shuttle, FACES found problems in 6.5% of
the statements [13,14].

Brown and Johnson state that DAVE represents one of the best
Fortran validation tools available. However, it does not provide a
full range of analyses [6].

LIMITATIONS

All static analysis tools are limited by the problem of
decidability. Static analyzers also face the problem of array element
identification when the subscript is a variable. Since the exact
value of the variable may not be known until the execution time, one
cannot generally know which array element is being referenced or
defined in a statement. The DAVE system treats all elements of the
same array as a single variable [15].

104

STEP - State-of-the-Art Overview

REFERENCES

[1] W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

[2] F. E. Allen.
Interprocedural Data Flow Analysis.
Proceedings of the IFIP Congress 1974, pages 398-402. North
Holland Publishers, Amsterdam, 19/4.

[3] F. E. Allen and J. Cocke.
A Program Data Flow Analysis Procedure.
Communications of the ACM, Vol.19(3):137-47, March 1976.

[4] J. G. P. Barnes.
Programming in Ada.
Addisson-Wesley Publishing Company, 1982.

[5] J. C. Brown and D. B. Johnson.
FAST: A Second Generation Program Analysis System.
Proceedings of the 3rd International Conference of Software
Engineering, May 10-12, 1978, Atlanta, GA, pages 142-8.

[6] J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

[7] R. E. Fairley.
Tutorial - Static Analysis and Dynamic Testing of Computer
Software.
Computer, Vol.l1(4):14-23, April 1978.

[8] R. E. Fairley.
Proceedings, Infotech State of the Art Conference on Program
Testing, September 1978, London.

[9] R. C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 500-88, National Bureau of Standards,
1982.

[10] W. E. Howden.
A Survey of Static Analysis Methods.
In Tutorial: Software Testing & Validation Techniques,
E. Miller and W. E. Howden, Editors, pages 101-15. IEEE, 1981.

105

STEP - State-of-the-Art Overview

[11] Infotech State of the Art Report, Software Reliability,
Volume 1: Analysis and Bibliography.
Infotech International, 49//.

[12] Infotech State of the Art Report, Software Reliability,
volume 2: Invited Papers.
Infotech International, 1977.

[13] G. J. Myers.
The Art of Software Testing, pages 149-51.
John Wiley & Sons, Inc., New York, 1979.

[14] NASA Software Specification and Evaluation System, Final Report.
Science Applications, Huntsville, AL, 1977 (NTIS N77-26828).

[15] L. J. Osterweil and L. D. Fosdick.
DAVE: A Validation Error Detection and Documentation System for
Fortran Programs.
Software Practice and Experience, Vol.6(4):473-86, October-
December 1976.

[16] C. V. Ramamoorthy and S-B. F. Ho.
Testing Large Software with Automated Software Evaluation
Systems.
IEEE Transactions on Software Engineering, Vol.SE-1(1):46-58,
March 1975.

[17] L. G. Stucki.
Software Development Tools - Acquisition Considerations - A
Position Paper.
National Computer Conference, AFIPS Proceedings, Vol.46:267-8,
1977.

[18] I. K. Wendel and R. L. Kleir.
Fortran Error Detection through Static Analysis.
Software Engineering Notes, Vol.2(3):22-8, April 1977.

106

STEP - State-of-the-Art Overview

CATALOG LISTING OF STATIC ANALYSER TOOLS

The following tools have been listed as static analysis tools by
one or more of the sources in Appendices A or B.

STATIC TOOLS 	 SOURCE OF INFORMATION

1.
2.
3.
4.
5.
6.
7.

ADF
ADS/CERL
AFFIRM
ARTS
ASSET
ATDG
AUDIT

[1,10] [
[1,10]
[1,10,11] [
[1]
[1,2,10]

SEE APPENDIX B
[1,10,11]

8. AUDITOR [1 	10,11]
9. AUTO-D80 [11
10. AUTOFLOW [1,10]
11. CADSAT [1]
12. CALLREF [1,10]
13. CARA [1,10]
14. CAVS [1 	10,11]
15. CCA [11
16. CCREF [1 	10]
17. CICS COMP ANALY [11
18. COBOL/DV SEE APPENDIX B
19. COBOL/QDM [1]
20.
21.

COBOL STRUCT
COBOL/SP

Cl

22. COMGEN [1]
23. COMGEN/TRW [1,10]
24. COMLIST [l]
25. COMLIST/TRW [1,10]
26. COMMAP SEE APPENDIX B
27. COMSCAN [1]
28. COMSORT [1,10]
29. COMSORT [1,19]
30. CONFIG [1 	10,11]
31. CONFIGURATOR [11
32. CORE [1]
33. CPA-ADR [1,10]
34. CRO-REF [1,10]
35. DA [1,10]
36. DATAMACS SEE APPENDIX B
37. DAS [1,10]
38. DARTS [1]
39. DAVE SEE APPENDIX B
40. DCD [1,10]
41. DDPM [1]
42. DPECHT [1,10]

107

STEP - State-of-the-Art Overview

STATIC TOOLS 	 SOURCE OF INFORMATION

43. DICTANL/LOCATE [1]
44. DOCUTOOL SEE APPENDIX B
45. DPNDCY [1,10]
46. ECA Automation [1]
47. ENFORCE [1]
48. FACES SEE APPENDIX B
49. FADEBUG-I SEE APPENDIX B
50. FASP [1,11]
51. FAST SEE APPENDIX B
52. FAVS SEE APPENDIX B
53. FCA SEE APPENDIX B
54. FLOBOL [1]
55. FORAN SEE APPENDIX B
56. FORREF [1,10]
57. FORTRAN AUDITOR SEE APPENDIX B
58. FORTREF [1,10]
59. FTNXREF [1,10]
60. GAYS [1]
61. GENTESTS [1]
62. GIRAFF [1 	10]
63. GOTO-ANALYZER [.1
64. HAWKEYE [1,10]
65. INFORM/REFORM [1,11]
66. INTERFACE DOCUM SEE APPENDIX B
67. ISUS [1,10,11]
68. JAYS SEE APPENDIX B
69. JIGSAW [1,10,11]
70. JOVIAL/VS [1]
71. JOYCE SEE APPENDIX B
72. LEXICON [1,10]
73. LIBREF [1]
74. LOGICFLOW [1,11]
75. LOGOS [1,10]
76.
77.

MED-SYS
MEDL-R

[1 	1
[11

0]

78. PBASIC [1]
79. PDL [1,10]
80. PDL/PSA
81. PET SEE APPENDIX B
82. PFORT SEE APPENDIX B
83.
84.

PREF HDR GEN
PSL

[1
[11

11]

85.
86. QU

ICK-DRAW [1 	1
[11

0]

87. RADC/FCA [1,10]
88. REFER [1,10]
89. REFTRAN [1,10]

108

STEP - State-of-the-Art Overview

STATIC TOOLS 	 SOURCE OF INFORMATION

90.
91.

RISOS TOOLS
RTT

[1
[1i

10]

92. RXVP80 SEE APPENDIX B
93. SADAT SEE APPENDIX B
94. SARA [1,10]
95. SCAN/370 [1,11]
96. SCG/DQM [1]
97. SDL [1]
98. SDP/MAYDA [1]
99. SEF [1,2,10,11]
100. SIGS
101. SNOOP [1,10,11]
102. SOFTOOL80 [1,10,11]
103. SPECLE/DARS [1]
104. SPELL [1,10]
105. SREM [1,10]
106. SREP [1,10]
107. SRIMP [1]
108. SSA [1]
109. STAG/TWMS [1,10]
110. STRUCT [1,10]
111. STRUCTURE(S) [1,10]
112. SUBCRS [1,10]
113. SURVAYOR [1,10,11]
114. SYDIM [1,10]
115. SYDOC [1]
116.
117.

SYMCRS
SYSXREF

[1 	1
[11

0]

118. TAPS/AM [1,10]
119. TOOLPAK [1,10]
120. TPT [1]
121. UCA [1,10]
122. VIRTUAL [11

109

STEP - State-of-the-Art Overview

STATIC ANALYSIS TOOLS LISTED ACCORDING TO FUNCTIONS

The following list classifies the static analysis tools cataloged
above by function.

DATA FLOW ANALYSIS
ADF

ATDG 	 AUDIT 	 CAVS
DARTS 	 DAVE 	 DCD
DDPM 	 FACES 	 FAST
FAVS 	 ISUS 	 PREF HDR GEN
RXVP80 (TM) 	SADAT 	 SARA
SNOOP 	 SOFTOOL 80 (TM) 	SRIMP
SURVAYOR 	 TOOLPACK 	 TPT

INTERFACE ANALYSIS
AUTO-DBO

DAVE 	 FAST 	 FORAN
INFORM/REFORM 	JAYS 	 PREF HDR GEN
RXVP80 (TM) 	SEF 	 SOFTOOL 80 (TM)
SYDIM

CROSS REFERENCE
ADS/CERL

AUTOFLOW (TM) 	CALLREF 	 GAYS
CCREF 	 CICS DUMP ANALY 	COBOL/SP
COMGEN/TRW 	COMGEN 	 COMLIST/TRW
COMLIST 	 COMMAP 	 COMSORT
CONFIG 	 CORE 	 CPA-ADR
CRO-REF 	 DA 	 DAVE
DCD 	 DDPM 	 DEPCHT
DICTANL/LOCATE 	DPNDCY 	 FASP
FAVS 	 FLOBOL 	 FORAN
FORREF 	 FORTREF 	 FTNXREF
GIRAFF 	 INTERFACE DOCUM 	JOYCE
LEXICON 	 LIBREF 	 LOGOS
PBASIC 	 PDL 	 PSL/PSA
QUICK-DRAW 	REFER 	 REFTRAN (TM)
RISOS TOOLS 	RTT 	 RXVP80 (TM)
SARA 	 SCAN/370 	 SCG/DQM
SDL 	 SDP/MAYDA 	 SNOOP
STAG/TEMS 	 STRUCTURE(S) 	SUBCRS
SYDOC 	 SYMCRS 	 SYSXREF
TAPS/AM 	 TOOLPACK 	 VIRTUAL OS

110

STEP - State-of-the-Art Overview

COMPLETENESS CHECKING
AUTO-DBO

CADSAT 	 CONFIGURATOR 	MEDL-R
PSL/PSA 	 PWB FOR VAX/VMS 	RA
RXVP80 (TM) 	SARA 	 SIGS
SOFTOOL 80 (TM) 	SPECLE/DARS 	SREM

CONSISTENCY CHECKING
AFFIRM

ARTS 	 ASSET 	 AUTO-DBO
CARA 	 CONFIGURATOR 	DAS
FAST 	 FORAN 	 MED-SYS
MEDL-R 	 MEDL-D 	 PSL/PSA
RA 	 RXVP80 (TM) 	SARA
SCG/DQM 	 SREM 	 SREP
SRIMP

UNIT ANALYSIS

RSVP80 (TM)
	

UCA

TYPE ANALYSIS

AFFIRM
	

FAVS 	 RXVP80 (TM)

AUDITING
ADS/CERL

AUDITOR 	 AUDIT 	 CA
CCA 	 COBOL/QDM 	 COBOL STRUCT
COMSCAN 	 CPA-ADR 	 DAS
ECA AUTOMATION 	ENFORCE 	 FACES
FCA 	 GOTO-ANALYZER 	HAWKEYE (TM)
JIGSAW 	 JOVIAL/VS 	 LOGICFLOW
PBASIC 	 PET 	 PFORT
PSL 	 RACD/FCA 	 SADAT
SCG/DQM 	 SOFTOOL 80 (TM) 	SPELL
SSA 	 STRUCT

ERROR CHECKING

ATDG 	 AUDITOR 	 COMMAP

111

STEP - State-of-the-Art Overview

I/O SPECIFICATION ANALYSIS

COBOL/DV 	 DATAMACS
	

FADEBUG-I
GENTESTS 	 PREF HDR GEN

112

STEP - State-of-the-Art Overview

STATIC ANALYZERS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 2)

TOOL NAME/ACRONYM
	

TOOL.TYPE . 	FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

COMMON BLOCK MAP/
COMMAP

Static Analyzer Cross Reference
Error Checking

A/t/5 CDC

-

FORTRAN 77 FORTRAN 66
FORTRAN 77

YES N/A

.

Boeing
Computer
Services

-
/DAVE Static Analyzer Data Flow Analysis

Interface Analysis
Cross Reference

A/P/N CDC 6400
IBM
UNIVAC
DFCAVAX

FORTRAN 66 FORTRAN YES $250 University of
Colorado

/DOCUTOOL Static Analyzer Automatic Code
Documentor 	'

A/L/S CDC Pascal FORTRAN 66
FORTRAN 77

YES N/A Boeing
Computer
Services

FORTRAN Analyzer
Program/FORAN

I 'Cross

Static Analyzer Consistency Checker
Interface Analysis

Reference .

A/P/S CDC 6000
CDC 7000

FORTRAN FORTRAN YES

i

N/A . U.S. Army Adv.

I
Res. 	Ctr.

FORTRAN AUDITOR/ Static Analyzer 'Auditing
Error Checking

A/L/S I DEC
Data Gen.
IBM
GolarkcFL

FORTRAN FORTRAN YES $16,000 Softool Corp.

FORTRAN Automated
Code Evaluation
System/FACES

Static Analyzer Data Flow Analysis
Auditing

. 	.

A/-/N UNIVAC
CDC 6400
IBM 360

FORTRAN FORTRAN YES N/A University of
Georgia
(COSMIC)

FORTRAN Code
Auditor/FCA

Static Analyzer Auditing A/P/N Honeywell

i

FORTRAN IV FORTRAN Y YES N/A TRW

STATUS 1/2/3 1.
A a Available
N s Not Available
- No Information Supplied

2.
L License Agreement
P - Public Domain

a No Information Supplied

3.
S . Supported
N a Not Supported
- . No Information Supplied

N/A a No Information Available

113

STEP - State-of-the-Art Overview

STATIC ANALYZERS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 2 of 2)

TOOL NAME/ACRONYM
	

TOOL TYPE . 	FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

FORTRAN Analysis
System/FAST

Static Analyzer Consistency Checking
Data Flow Analysis
Interface Analysis

-/L/- System
2000

(MRI System
Irnrp) ,

FORTRAN FORTRAN N/A N/A Information
Research
Associates
(IRA)

INTERFACE
DOCUMENTER/

Static Analyzer Interface Analysis A/L/S DEC, DG,
IBM

Gould-SEL

FORTRAN FORTRAN, COBOL,
any object code

YES $7,000 Softool Corp.

/JOYCE Static Analyzer Cross Reference A/-/S CDC 6X00/
7X00

FORTRAN FORTRAN N/A N/A McDonnell

PFORT Verifier/
PFORT

...

Standard Enforcer Auditing A/P/- N/A FORTRAN FORTRAN N/A N/A Jet Propulsion
Laboratory

/RXFP -80 Static Analyzer
Test Driver
Assertion Pro-

cessor
Instrumenter
Coverage Analyzer

Data Flow Analysis
Interface Analysis
Cross Reference
Completeness Check-

ing
Consistency Checking
Type Analysis

A/L/S CDC, IBM
UNIVAC

N/A FORTRAN, IFTRAN
(TM), or
V -IFTRAN (TM)

YES $26,000 General
Research
Corporation

'

STATUS 1/2/3
	

1.
A ■ Available
N ■ Not Available
- ■ No Information Supplied

N/A ■ No Information Available

2 .
L ■ License Agreement
P • Public Domain
- ■ No Information Supplied

3.
S • Supported
N • Not Supported
- ■ No Information Supplied

114

STEP - State-of-the-Art Overview

3.3 DYNAMIC ANALYSIS TOOLS

Dynamic analysis tools provide support for testing by direct
execution of the program being tested. The range of functions
supported by dynamic tools is broad. Systems which generate and
evaluate test data using any one (or a combination) of the testing
techniques listed in Chapter 2 have been implemented and used in a
variety of settings. In addition, tools which provide run-time
statistics through program instrumentation are in fairly widespread
use. The tools that are discussed below fall roughly into one of four
categories: symbolic evaluators, test data generators, program
instrumenters, and program mutation analyzers.

3.3.1 DYNAMIC TOOL CLASSIFICATION

Dynamic analysis tools are the tools that collect information from
the execution of the tested program. According to the report NBS
500-88, this group includes symbolic execution tools which could be
considered either static or dynamic tools.

Dynamic analysis includes the following operations:

Coverage Analysis - determining and assessing measures associated
with the invocation of program structural elements to determine the
adequacy of a test run. A tool for this function is called a coverage
analyzer.

Tracin 	- tracing the historical record of execution of a
program. 	racing can be further divided to path flow tracing,
breakpoint control, logic flow tracing, and data flow tracing. A tool
for this function is called a tracer.

Tuning - determining what parts of a program are being executed
the most.

Simulation - representing certain features of the behavior of a
physics or abstract system by means of operations performed by a
computer.

Timing - reporting actual CPU times associated with a program or
its parts.

Resource Utilization - analysis of resource utilization associated
with system hardware or software.

Symbolic Execution - reconstructing logic and computations along a
program path by executing the path with symbolic, rather than actual
values of data. A tool for this function is called a symbolic
evaluator.

115

STEP - State-of-the-Art Overview

Assertion Checking - checking of user-embedded statements that
assert relationships between elements of a program. An assertion is a
logical expression that specifies a condition or relation among the
program variables. Checking may be performed with symbolic or
run-time data. A tool that performs this function is called a dynamic
assertion processor or an assertion checker.

Constraint Evaluation - generating and/or solving path input or
output constraints for determining test input or for proving programs
correct. This function is generally a part of the symbolic evaluator
and test data generators.

116

STEP - State-of-the-Art Overview

3.3.2. SYMBOLIC EVALUATORS

SUMMARY

Symbolic Evaluators are programs that accept symbolic values and
execute them according to the expression in which they appear in a
program. They are used to support test data generation, assertion
checking, path analysis, and detection of data flow anomalies. The
basic operation consists of symtax analysis, path selection,
evaluation of path constraints, constraint simplification, and
inequality solving. Problems concerning loop iteration and array
reference are the main limitations of symbolic evaluators. Some of
the well-known systems include SELECT, EFFIGY, ATTEST, DISSECT, and
SMOTL.

GENERAL DESCRIPTION

Symbolic evaluators or symbolic executors are programs that accept
symbolic values for some of the inputs and algebraically manipulate
these symbols according to the expressions in which they appear.
These tools perform operations symbolically as if the program were
executing and derive output values as symbolic expressions involving
the input variables [4].

The primarj, use of symbolic evaluators has been to support test
data generation. Secondary applications include symbolic debugging,
assertion checking, path analysis, detection of unreachable code,
array boundary errors, and potential overflow or underflow.

As described in Chapter 2, the basic idea in symbolic evaluation
is to allow numeric variables to take on symbolic as well as numeric
values. A program is interpreted on symbolic values without
compilation.

BASIC OPERATION

The basic operation of symbolic evaluators consists of syntax
analysis, path selection, evaluation of paths symbolically, constraint
simplification, and inequality solving. The typical system flow of
symbolic evaluation is shown in Figure 1. A syntax analyzer converts
the source program into an internal representation. This
representation is combined with values saved in a file and executed
symbolically on designated paths. In path selection, a user may have
to make the decision as to which path is to be analyzed. For
instance, if a program is executed on actual data, predicates in

117

	OP
constraint

file

STEP - State-of-the-Art Overview

branch statements such as the if-statement can be evaluated to either
true or false, and the system can select the appropriate control-
path. On the other hand, if a predicate contains symbolic values, it
may not be evaluated. In this case, a user decides which path he
wants to select or the system selects all possible paths. To give his
decision to the system, the user may designate paths to be followed
interactively, or by supplying a list of paths in a batch approach.

After the evaluation on a path, variables and constraints (a set
of predicates or inequalities) might be simplified automatically by a
simplifier. Clarke used Atlan, a language designed for algebraic
manipulations by Bell Labs, to transform and simplify nonlinear
constraints into linear constraints [2].

Figure 1. System Flow of a Symbolic Evaluator

Each constraint generated by the system and simplified by the
simplifier is passed to an inequality solver to check its consistency
with the existing constraints saved in a constraint file. If the
constraint is inconsistent, the path is infeasible. The system will
inform the user of this fact. If the constraint is consistent, the
symbolic execution of the path continues. Techniques to obtain a
solution employed by the inequality solver are linear-programming,
trial-and-error, and a fast segment algorithm used in SMOTL [1].
Techniques employed by existing tools are summarized in Table I and in
Appendix B.

118

STEP - State-of-the-Art Overview

There are some differences among symbolic evaluation systems.
ATTEST, SMOTL, and CASEGEN function mainly as test data generators.
EFFIGY is mainly used as an interactive debugging tool. It provides
features such as tracing, breakpoints, state saving, and assertion
checking. DISSECT analyzes ANSI Fortran program to determine the
computations along selected paths, the set of symbolic values which
cause the path to be executed, and the symbolic values of the output
variables. However, DISSECT does not provide automated test data
generation. The SELECT system provides static analysis, path
structure analysis, assertion checking, and test data generation.
Except SMOTL, which is oriented towards data-processing application,
all systems mentioned above are research tools.

119

STEP - State-of-the-Art Overview

Table I: Summarized Features of Current Symbolic Evaluators and Test Data Generators

TOOL NAME 	'
SOURCE

LANGUAGE
MODE OF
OPERATION

FORMULA
OUTPUT

TEST DATA
GENERATION

ASSERTION
VALIDATION

PATH
SELECTION

ARRAY
REFERENCE

LOOP
ITERATION.

INEQUALITY
SOLVER

(First Pub-:
lication)

AMPIC FORTRAN
ASSEMBLY

YES AUTOMATIC
(all segments)

ATTEST
(1975)

ANSI
FORTRAN

INTERACTIVE
O.

BATCH

YES MAIN
FUNCTION

NO USER DEFINED AMBIGUITY
is

UNDEFINED

USER DEFINED LINEAR
PROG.

CASEGEN
(1976)

FORTRAN BATCH NO YES NO AUTOMATIC
(All branches)

FIXED TRIAL &
ERROR

DISSECT
(1976)

FORTRAN BATCH YES NO YES USER DEFINED or selected
automatically if max. 	.
number 	of loop execu-
tions specified

COLON
EXPRESSION

USER DEFINED NON-
LINEAR

-

EFFIGY
(1975)

PL/I subset
(integer
variables &
one dimen-
sional array)

INTERACTIVE YES NO YES USER DEFINED
interactively

USER DEFINED NO
SOLUTIOI

SELECT
(1975)

QLISP
(LISP SUBSET)

INTERACTIVE
or

BATCH

YES YES YES USER DEFINED or selected
automatically if max.
path lengths specified

ALL CASES FIXED LINEAR
PROG.

SMOTL
(1977)

SMOD
(COBOL
subsetl

BATCH NO YES NO AUTOMATIC

120

STEP - State-of-the-Art Overview

TOOL EVALUATIONS

The main limitations of symbolic evaluation systems are problems
concerning loop iteration and array reference as mentioned in Chapter
2. There have been many evaluations on symbolic systems. Some of the
evaluations of well-known systems are summarized below.

EFFIGY is limited in practical use. It only applies to programs
written in a simple PL/I style language that is restricted to integer
variables and one dimensional arrays and the array reference problem
is left unresolved [3,6].

SELECT is an effective tool for rapidly revealing program errors
but needs additional manipulative powers beyond inequalities and
algebraic simplification. It does not have some useful features such
as the detection of potential overflow and underflow, division by
zero, and reference of unitialized variables. The system is better
suited to analysis of moderate sized data-processing programs than to
complex algorithms [3].

The ATTEST system has difficulties in handling Fortran arrays and
does not have file implementation. Its inequality solver is limited
to systems of linear predicates [2,3].

Howden evaluated the effectiveness of symbolic execution using
his tool DISSECT [5]. In his experience, six programs which contain a
total of 28 errors were selected. One of two heuristic strategies
utilizing DISSECT was functional testing with symbolic values, which
examines each functional module decomposed from a program as a
separate program. The other approach used was symbolic integrated
testing in which functional modules are examined within the context of
the entire program. Of 28 errors, the former approach, functional
testing, detected 14 errors and the latter approach, integrated
testing, detected 15 errors. With the six sample programs, he found
the use of symbolic testing resulted in an increase in reliability
10-20 percent over the conventional testing. In addition, he also
indicated that symbolic evaluation was very useful in four of the six
sample programs for eliminating infeasible paths. Stucki [7] rated
DISSECT's operation cost at 4 in a scale of 1 = low to 5 = high, and
its ease of use was rated at 3 in a scale of 1 = easy to 5 = difficult.

121

STEP - State-of-the-Art Overview

REFERENCES

[1] J. Bicevskis, J. Borozovs, U. Straujums, A. Zarins, and
E. F. Miller, Jr.
SMOTL - A System to Construct Samples for Data Processing
Programming Debugging.
IEEE Transactions on Software Engineering, Vol.SE-5(1):60-6,
January 1979.

[2] L. A. Clarke.
A System to Generate Test Data and Symbolically Execute
Programs.
IEEE Transactions on Software Engineering, Vol.SE-2(3):215-22,
September 1976.

[3] J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
Feburary 1980.

[4] H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transactions of the American Nuclear Society and the Euro ean
uc ear ociety, •:$ nterna Iona 	on erence, ovem 	-21,

1980, Washington, DC, pages 253-4.

[5] W. E. Howden.
An Evaluation of the Effectiveness of Symbolic Testing.
Software Practice and Experience, Vol.8(4):381-97, July - August
1978.

[6] J. C. King.
Symbolic Execution and Program Testing.
Communication of the ACM, Vol.19(7):385-94, July 1976.

[7] L. G. Stucki.
Software Development Tools - Acquisition Considerations - A
Position Paper.
National Computer Conference, AFIPS Proceedings, Vol.46:267-8,
19/1.

REFERENCES NOT CITED IN THE TEXT

T. E. Cheatham, Jr., G. H. Holloway, and J. A. Townley.
Symbolic Evaluation and the Analysis of Programs.
IEEE Transactions on Software Engineering, Vol.SE-5(4):402-17,
July 1979.

122

er

N.

STEP - State-of-the-Art Overview

L. A. Clarke.
Testing - Achievements and Frustrations.
Proceeding of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 310-4.

Infotech State of the Art Report, Software Reliability, Volume
2: Invited Papers, pages 184-215.
Infotech International, 1977.

Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography, pages 125-37.
Infotech International, 1979.

W. E. Howden.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering, Vol.SE-3(4):266-78,
duly 19//.

I. Myamoto.
Automated Testing-Aid Tools Survey.
Information Processing Society of Japan (Joho Shori) (Japan),
Vol.20-(8):688-93, August 1979.

123

STEP - State-of-the-Art Overview

CATALOG LISTING OF SYMBOLIC EVALUATORS

The following tools have been listed as symbolic evaluators by
one or more of the sources in Appendices A or B.

SYMBOLIC EVALUATORS SOURCE OF INFORMATION

1. ATDG SEE APPENDIX B
2. ATTEST SEE APPENDIX B
3. CASEGEN SEE APPENDIX B
4. COBOL/DV SEE APPENDIX B
5. DISSECT SEE APPENDIX B
6. EFFIGY SEE APPENDIX B
7. GENTEXTS SEE APPENDIX B
8. SELECT SEE APPENDIX B
9. SMOTL SEE APPENDIX B
10. TEVERE-1 SEE APPENDIX B

124

STEP - State-of-the-Art Overview

SYMBOLIC EVALUATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 3)

TOOL NAME/ACRONYM
	

* TOOL TYPE
	

FUNCTION PERFORMED STATUS HARDWARE . IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

Automated Test Data
/ATDG

Test Data Genera-
tion

Symbolic Evalua-
for

Test Data Generatior
Path Structure

Analysis 	•
Anomaly Detection
Variable Analysis

-/-/- UNIVAC FORTRAN N/A N/A N/A

.._ 	.

TRW for NASA
in Houston

Automatic Test
Enhancement System
/ATTEST

Test Data Genera-
tion

Symbolic Evalua-
for

Test Data Generatior
Data Flow Analysis
Automatic Path

Selection
Constraint Simplifi-

cation
.

-/P/N

•

-
VAX

•

FORTRAN 77 FORTRAN 66

.

YES N/A

.

Software
Development
Laboratory
University of
MA.

/CASEGEN Test Data Genera-
tion

Symbolic Evalua-
for

Path Generation
Automatic Test Data

Generation 	•
Path Constraint

Generation

-/-/ N/A

•

-

FORTRAN FORTRAN N/A N/A N/A

STATUS 1/2/3
	

1.
A • Available
N ■ Not Available
- ■ No Information Supplied

N/A ■ No Information Available

2 .
L ■ License Agreement
P ■ Public Domain
- ■ No Information Supplied

3 .
S ■ Supported
N ■ Not Supported
- ■ No Information Supplied

125

STEP - State-of-the-Art Overview

SYMBOLIC EVALUATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 2 of 3)

TOOL NAME/ACRONYM
	

TOOL TYPE . 	FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

/COBOL/DV Test Data Genera-
tion

Symbolic Evaluator

Documentation Aid
Test Data Generation
Run-Time Debugging

Aid
I/O Specification
Analysis

A/L/S N/A COBOL COBOL N/A N/A Applied Data
Research

/DISSECT Symbolic Evaluator Path Structure
Analysis 	.

Documentation
Assertion Checking
Static Analysis

•

A/P/- PDP-10
LISP

System

LISP ANSI FORTRAN

• •

YES N/A

.

_

 N/A

- 	•

-
/EFFIGY Symbolic Evaluator

•
Assertion Checking
Interaction Debug
Tools

•

-/-/- IBM/370
Model 168

PL/1 PL/1 restricted
to integer
valued variables
and one dimen-
sional arrays

N/A N/A IBM

STATUS•1/2/3
	

1.
A • Available
N ■ Not Available
- ■ No Information Supplied

N/A ■ No Information Available

2. 	 3.
L ■ License Agreement 	 S ■ Supported
P • Public Domain 	 N • Not Supported
- al No Information Supplied 	 - - No Information Supplied

126

STEP - State-of-the-Art Overview

SYMBOLIC EVALUATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 3 of 3)

TOOL NAME/ACRONYM
	

TOOL. TYPE . 	FUNCTION PERFORMED . STATUS HARDWARE . IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE 	COST
	

SOURCE

/GENTEXTS Test Data Genera-
for for Compilers

Test Data Generator
for Compilers

A/L/S CIT-Hil PL/1
Pascal
SIMULA 67

N/A YES $2,000 IRISA,
University of
Rennes,
France

Symbolic Evaluation
Language to Enable
Comprehensive
Testing/SELECT

Symbolic Evaluator
Test Data Genera-

for
Assertion Proces-

sor

Static Analysis
Path Structure
Analysis

Assertion Checking
Test Data Generation

• 	•

-/-/- PDP-11

.

LISP LISP Subset N/A N/A

.

SRI Interna-
tional
Advanced
Computer
Systems Dept.

/SMOTL Test Data Genera-
for

Symbolic Evaluator

Test Data Generator
Regression Testing
Run-Time Error De-

tecting
Coverage Analysis

-/-/- MINSK-32 SMOG N/A N/A N/A N/A

-

A Software System
for Programs Test-
ing and Evaluation
/TEVERE-1

Test Data Genera-

Symbolic Evaluator
.

Symbolic Evaluation

' 	
. 	.

	

. 	.

A/P/N PDP-11
tor

LISP 1.4 IFTRAN YES N/A S. Bologna,
R. Taylor,

ENEA CRE-
CASACCIA

STATUS 1/2/3
	

1.
A Available
N ■ Not Available
" a No Information Supplied

N/A ■ No Information Available

2. .
L ■ License Agreement
P ■ Public Domain
- ■ No Information Supplied

3.
S 0 Supported
N • Not Supported
- ■ No Information Supplied

127

STEP - State-of-the-Art Overview

3.3.3. 	TEST DATA GENERATORS

SUMMARY

A test data generator is a tool which assists a user in the
generation of test data. Three types of test data generators are
pathwise test data generators, data specification systems and random
test data generators. Pathwise test data generators have four basic
operations: program digraph construction, path selection, symbolic
execution, and test data generation. Difficulties with the use of the
test data generator are the computational efforts wasted in computing
infeasible paths and in array reference problems. A data
specification system provides a user with a special language to
specify his data files. The system then generates test data from a
specification program written in the provided language. Random test
data generators simply pick random values from input domains. Some of
the existing test data generators are the ATTEST, SETAR, SMOTL,
CASEGEN, and ADG systems.

GENERAL DESCRIPTION

A test data generator is a tool which assists a user in the
generation of test data for a program or module. The purpose is to
relieve the effort required in generating a large volume of test data,
and in the case of automatic test data generation, to avoid
programmer's bias in preparing his own test data.

A test data generator only assists a user in generating test
cases, since a test case consists of both test data and expected
output [16]. The expected output is usually determined by hand
calculation, simulation, or with the aid of a test specification
system such as REVS to be a test oracle responding to the output [1].

CLASSIFICATION AND BASIC OPERATION

Test data generators can be classified into three types:

1) pathwise test data generators,
2) data specification systems, and
3) random test data generators.

128

STEP - State-of-the-Art Overview

1. Pathwise Test Data Generators

One approach to generate input data that is a comprehensive
representation of the input space is to select input data from the
input domains associated with program paths. The inputs are selected
to exercise a specified set of program paths. Systems that generate
test data in this manner are known as pathwise test data generators.
This is the most common type of test data generator. Its basic
operation consists of four main steps: program digraph construction,
path selection, symbolic execution, and test data generation. The
primary differences among these types of systems are in the techniques
of test path selection and in early detection of infeasible test
paths. Other differences include the breadth of their symbolic
execution capability and capacity for symbolic simplification of
algebraic expressions [14].

Program Digraph Construction

The source program is preprocessed to create a digraph
representation of control flow in the program. Other relevant
information is collected for later analysis.

Path Selection

Path selection is concerned with selecting program paths that
satisfy testing criteria. The test criteria may be a level of test
coverage as mentioned in [9,191. Frequently implemented examples are
total path coverage, statement coverage, and branch coverage. In
these criteria, either every feasible path, or every statement, or
every branch statement must be executed at least once. The ATTEST
system [71 provides a choice among these three coverage criteria as
well as a loop boundary condition in which the system creates path
descriptions that will execute a program's loops a minimum and maximum
number of times [8]. The SMOTL system [13] utilizes a coverage
criterion which requires that every program segment be executed at
least once; the path selection is completely automatic. In the SETAR
system, a new path is selected by altering one or more of the
contraints in the path conditions gained from executing previous data
[14].

The path selection process can be manual or automatic, static or
dynamic. Manual dynamic path selection requires a user to select the
next statement whenever a decision point is encountered. This is very
tedious, inefficient, and difficult. Manual static path selection
requires a user to completely specify program paths before analysis is
initiated. However, users tend to inadvertently select a large
portion of non-executable paths. In automatic static selection, paths
are automatically selected prior to symbolic execution. This method

129

STEP - State-of-the-Art Overview

is usually based on the graph structure of the program; without
additional semantic information, it has the same drawbacks as the
previous two methods. Automatic total selection requires all the
feasible paths, and therefore, has the disadvantage of inundating the
user with paths [13].

The number of program paths is very large and the path length is
usually unbounded. Most systems must select the paths by one of the
following techniques:

(1) a user specifies all the paths to be analyzed in advance;

(2) a user specifies in advance the maximum path length to be
traced to the maximum number of loop executions;

(3) a user interactively selects the path to be analyzed and
executes it statement by statement;

(4) automatic selection by the system to satisfy a level of test
coverage [4,19].

Table I in Section 3.3.2 summarizes selection methods used by some
well-known systems.

Symbolic Execution

Once a path is selected, symbolic execution is used to generate
path constraints. Path constraints consist of equalities and
inequalities describing program input variables; input data satisfying
these constraints will result in the execution of that path.

Test Data Generation

This step involves selecting data that will cause the execution of
the selected paths. Most systems use linear programming algorithms to
find numerical solutions to the inequalities of path constraints.
SELECT initially used two linear programming algorithms, GOMORY [10]
and BENDERS [2], and later switched to a gradient algorithm which
solves a wider class of inequality systems but must be run
interactively [5]. Clarke [7] uses F. Glover's linear programming
algorithm [4].

There are two other approaches. CASEGEN uses a trial and error
method in conjunction with a random number generator [17]. SMOTL uses
a fast segment algorithm [3].

The weaknesses associated with pathwise test data generators are
the significant computational effort wasted in analyzing infeasible
paths, loop and array reference problems in symbolic execution [4,17].

130

STEP - State-of-the-Art Overview

2. Data Specification Systems

A data specification system assists a user in the generation of a
test case by providing a data specification language to describe the
input data. The ustem then uses the description to generate the
desired input data [16].

An example of such a system is the automatic data generating
program (ADG). It is a compiler which translates the ADG code, an
English-like language, describing the characteristics of a data file
into a PL/1 program which will generate the specified data file C15].

GENTEXTS is another system with a similar basic operation. It is
designed to prepare test programs for compiler testing. Its data
specification language is in the form of command grammars describing
the desired test programs. The system processes the grammar to
generate SIMULA programs which are then compiled and executed to
generate the actual test programs [11].

File generators can be considered as data specification systems in
the sense that they generate test files by using special command
languages to describe the data structure of the files. E. F. Miller,
however, points out that while test data generators are concerned with
the values of data to cause the execution of program segments, file
generators are more concerned with the form of the data structure and
in some cases also generate typical values for the content of chosen
fields within the generated files [12].

DATAMACS is a flexible file generator for COBOL programs. It
generates all types of files, creates hierarchical record structures,
and changes field values automatically. The data specification
language is in the form of special control cards interspersed in the
environment and data divisions. Data is created using both the
control commands and information from the file definition [11,18].

3. Random Test Generators

Test data is generated by simply selecting a random point from the
domain of each input variable of a program. For the randomness to be
meaningful, it must be applied to both the selection of data within a
path domain and the selection of different path domains. If a uniform
distribution is chosen, the method is equivalent to a black-box
approach as mentioned in Section 2.1. Moranda comments that usage of
random test data is more stressing to a program than those constructed
by analysts as test cases. The main advantage of random testing is
its simplicity; it is also the easiest way to introduce some program
independence into the testing process [13]. However, the value of the
test is yet to be established as discussed in Section 2.2.8.

131

STEP - State-of-the-Art Overview

TOOL EVALUATIONS

Most of the existing test data generators are still in the
development stage. Detailed information concerning their performance
and effectiveness is not available in the literature. However, the
remainder of this section discussed details of some existing tools.
The year in parentheses indicates how current this information is.

ATTEST (1979)

The ATTEST system is a pathwise test data generator. It has
difficulties with arrays and file manipulation. I/O specification is
partially implemented. The test data generation component is
restricted to systems of linear predicates. ATTEST's testing criteria
include recognizing two types of structural subcases: loop boundary
conditions and language dependent conditions such as index range
check, division by zero; and three methods of path selections:
statement coverage, branch coverage, and total path coverage. The
current system is under development [8].

SETAR (1979)

The SETAR system is a manual and dynamic pathwise test data
generator. The method of selecting program paths is somewhat
different from those previously described. New data is generated by
negating one or more constraints in the path conditions gained from
executing previous data. The new path is then used to generate the
new input. The main benefit from this approach is that it helps to
generate test cases that are relevant to the problem, since a user can
use his knowledge of the problem to constrain the input domain by
manipulating path conditions during the process of generating a new
path. The user also has the control of the dependency of the test
cases on the detailed structure of the program [14]. The main
drawbacks of the system are that the system requires user's assistance
for effective test data generation and there is no system-provided
measure of coverage. The user must have knowledge of the functional
specification of the program to be tested. The system is in the
research phase, and no assessment of the system's performance is
available.

SMOTL (1979)

The system is for batch processing of programs written in SMOD, a
COBOL-like language without means of direct access to secondary
storage. The current implementation shows that for data-processing-
style programs, it is possible to construct a complete test set (for
branch coverage) in acceptable time on widely used computers. Claims
of 85% automatic generation of test data are made. A system for
programs written in PL/1 is being developed [13].

132

STEP - State-of-the-Art Overview

CASEGEN (1976)

The system is a pathwise test data generator for programs written
in Fortran. It consists of about 10,000 Fortran statements. Data
base generation and path selection are processed at a rate of about 10
statements/CPU second on the CDC 6400. The processing time required
for symbolic execution and test data generation is about half a second
per constraint up to ten constraints. Experience shows that a large
portion of execution is spent in backtracking within the test data
generation phase. In order to improve efficiency, a user-oriented
language has been designed to allow a user to specify additional
information about the range of input variables, the number of loop
iterations and relations among program variables. The final system
will be integrated into the FACES system [17].

133

STEP - State-of-the-Art Overview

REFERENCES

El] 	W. R. Adrion. M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

[2] J. F. Benders.
Partitioning Procedures for Solving Mixed-Variables Programming
Problems.
Numerical Math, Vol.4:238, 1962.

[3] J. Bicevskis, J. Borozovs, U. Straujums, A. Zarins, and E. F.
Miller, Jr.
SMOTL - A System to Construct Samples for Data Processing
Program Debugging.
IEEE Transactions on Software Engineering, Vol.SE-5(1):60-6,
January 19/9,

[4] Y. V. Borzov.
Program Testing Using Symbolic Execution.
Programming and Computer Software, Vol.16:39-45, 1980.

[5] R. S. Boyer, B. Elspas, and K. N. Levitt.
SELECT - A Formal System for Testing and Debugging Programs by
Symbolic Execution.
SIGPLAN Notices, Vol.10(6):234-45, June 1975.

[6] B. Chandrasasekaran.
Test Tools: Usefulness Must Extend to Everyday Programming
Environment.
Computer, Vol.12(3):102-3, March 1979.

[7] L. A. Clarke.
A System to Generate Test Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering, Vol.SE-2(3):215-22,
September 1976.

EU 	L. A. Clarke.
Automatic Test Data Selection Techniques.
In Infotech State of the Art Report, Software Testing, Volume
2: Invited Papers, pages 44 -b3.
Infotech International, 1979.

134

STEP - State-of-the-Art Overview

[9] J. A. Darringer.
The Use of Symbolic Execution in Program Testing.
In Infotech State of the Art Re ort, Software Testing, Volume
2: 	nvite 	apers, pages 	- .
Infotech International, 1979.

[10] R. E. Gomory.
An Algorithm for Integer Solutions to Linear Programs.
In Recent Advances in Mathematical Programming, R. L. Graves and
P. Wolfe, Editors. McGraw-Hill, New York, 1963.

[11] R. C. Houghton, Jr.
Software Development Tools
NBS Special Publication 500-88, National Bureau of Standards,
1982.

[12] Infotech State of the Art Report, Software Reliability, Volume
2: Invited Papers, pages 184-215.
Infotech International, 1977.

[13] Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography, pages 167-79 and 229-43.
Infotech international, 1979.

[14] S. Kundu.
SETAR - New Approach to Test Case Generation.
In Infotech State of the Art Report, Software Testing, Volume
2: Invited Papers, pages 163-87. Infotech International, 1979.

[15] N. R. Lyons.
An Automatic Data Generation System for Data Base Simulation and
Testing.
Data Base, Vol.8(4):10-3, 1977.

[16] G. J. Myers.
The Art of Software Testing
John Wiley & Sons, New York, 1979.

[17] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen.
On the Automated Generation of Program Test Data.
IEEE Transactions on Software Engineering, Vol.SE-2(3):293-300,
December 1976.

[18] Software Engineering Automated Tools Index.
Software Research Associates, P. O. Box 2432, San Francisco, CA,
94126.

[19] Test Coverage.
In Infotech State of the Art Report, Software Testing, Volume
1: 	Analysis 	and Bibliography, 	pages 	68-/a. 	Infotech
International, 1979.

135

STEP - State-of-the-Art Overview

REFERENCES NOT CITED IN THE TEXT

L. A. Clarke, J. Hassell and D. J. Richardson.
A Close Look at Domain Testing.
IEEE Transactions on Software Engineering, Vol.SE-8(4):380-90,
July 1982.

L. A. Clarke and D. J. Richardson.
A Partition Analysis Method to Increase Program Reliability.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 244-53.

D. W. Fife.
Test Data Generation: Three Approaches Prevail.
Computer, Vol.12:103-4, March 1979.

W. E. Howden.
Methodology for the Generation of Program Test Data.
IEEE Transactions on Computers, Vol.C-24(5):554-9, May 1975.

R. J. Peterson.
TESTER/1: An Abstract Model for the Automatic Synthesis of
Program Test Case Specifications.
Proceedings of the Symposium of Computer Software Engineering,
pages 629-35, IEEE, New York, 19/6.

Proceedings of the Specifications of Reliable Software
Lonterence.
IEEE Catalog No. CH1401-9c, IEEE, New York, 1979.

C. V. Ramaoorthy.
Techniques for Automated Test Data Generation.
Conference Record of the Ninth Asilomar Conference on Circuits,
systems and Computers, November 19/5.

D. Teichroew and F. A. Hershey, III.
PSL/PSA: A Computer-Aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering, Vol.SE-3(1):41-8,
I9//.

136

STEP - State-of-the-Art Overview

CATALOG LISTING OF TEST DATA GENERATORS

The following tools have been listed as test data generators by
one or more of the sources in Appendices A or B.

TEST DATA GENERATORS SOURCES OF INFORMATION

1. AMPIC SEE APPENDIX B
2. ASSIST-1 [1,10,11]
3. ATDG SEE APPENDIX B
4. ATTEST SEE APPENDIX B
5. CASEGEN SEE APPENDIX B
6. COBOL/DV SEE APPENDIX B
7. DATAMACS SEE APPENDIX B
8. DISSECT SEE APPENDIX B
9. ECA AUTOMATION [1]
10. EFFIGY SEE APPENDIX B
11. GENTESTS [1]
12. GENTEXTS SEE APPENDIX B
13. NASA-VATS [1,10,11]
14. RXVP80 SEE APPENDIX B
15. SADAT SEE APPENDIX B
16. SELECT SEE APPENDIX B
17. SETAR [1]
18. SMOTL SEE APPENDIX B
19. TEST PREDICTOR [1,10,11]
20. TEVERE-1 SEE APPENDIX B
21. TPT [1]

137

STEP - State-of-the-Art Overview

TEST DATA GENERATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 3)

TOOL NAME/ACRONYM
	

* T001-TYPE . 	FUNCTION PERFORMED STATUS. HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE
-

/AMPIC Symbolic Evalua-
for

Symbolic Execution
Path Predicate

Calculation
Global Cross-Ref.
Structured and Un-

Structured Flow
Charts 	•

-/-/- IBM 360,
370

SNOBOL

.

WSC FORTRAN
Assembly (WSC,
Litton L45160

N/A N/A LOGICON, Inc.

Automated Test Data
/ATDG

Test Data Genera-
tion 	.

Test Data Generation
Path Structure
Analysis 	•

Variable.Analysis

-/-/- UNIVAC

Anomaly Detection

FORTRAN N/A

•
,

N/A N/A TRW for NASA
in Houston

-
Automatic Test
Enhancement System
/ATTEST

-
Test Data Genera-

tion
Test Data Generation
Data Flow Analysis
Automatic Path

Selection
Constraint Simplifi-

cption
Symbolic Evaluation

-/P/N VAX

•

—
FORTRAN 77 FORTRAN 66 YES N/A

.
.

Software
Development
Laboratory
University of
MA.

/CASEGEN Test Data Genera-
tion

Path Generation
Automatic Test Data

Generation
Path Constraint
Generation

-/-/ N/A

.

•

FORTRAN FORTRAN

•

N/A N/A N/A

A • Available
N ■ Not Available
- • No Information Supplied

N/A ■ No Information Available

2 .
L ■ License Agreement
P ■ Public Domain
- ■ No Information Supplied

3 .
S ■ Supported
N • Not Supported
- • No Information Supplied

STATUS 1/2/3
	

1 .

STEP - State-of-the-Art Overview

TEST DATA- GENERATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 2 of 3)

TOOL NAME/ACRONYM
	

TOOL TYPE • 	FUNCTION PERFORMED STATUS HARDWARE . IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE - COST
	

SOURCE .

/COBOL/DV Test Data Genera-
tion

.

Documentation Aid
Test Data Generation
Run-Time Debugging

Aid
I/O Specification
Analysis

Tracing

A/L/S N/A COBOL COBOL N/A N/A Applied Data
Research

/DATAMACS Test Data Genera-
for

I/O Specification
Analyzer

Software Management
Control and

Maintenance

Test File Generation
I/O Specification
Analysis

Regression Testing
File Structure
Testing

.

-/-/- IBM 360,
370

.

BAL COBOL . N/A $16,000

.

Management and
Computer
Services, Inc.

•

/DISSECT Symbolic Evaluator Path Structure
Analysis

Symbolic Execution
Assertion Checking
Static Analysis

. 	• 	•

A/P/- I PDP-10
 LISP

System

- 	•

LISP

•

ANSI FORTRAN N/A N/A N/A

/EFFIGY Symbolic Evaluator

. 	.

Assertion Checking
Interactive Symbolic

Execution
Proof of Correctness

•

-/-/- IBM/370
Model 168

PL/1

•

PL/1 restricted
to integer
valued variables
and one dimen-
sional arrays

N/A N/A

•

IBM

.

STATUS . 1/2/3
	

1.
A ■ Available
N ■ Not Available
- ■ No Information Supplied

N/A ■ No Information Available

2 .
L ■ License Agreement
P ■ Public Domain
• ■ No Information Supplied

3.
S ■ Supported
N • Not Supported
- ■ No Information Supplied

139

STEP - State-of-the-Art Overview

TEST DATA GENERATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 3 of 3)

TOOL NAME/ACRONYM . 	• TOOL. TYPE . 	FUNCTION PERFORMED STATUS HARDWARE . IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

/GENTEXTS Test Data Genera-
tor for Compilers

•

Test Data Genera-
tion to test some
particular aspects
of a compiler

A/L/S CIT-HB PL/1
Pascal
SIMULA 67

N/A YES N/A

.._

IRISA,
University of
Rennes,
France

.
Symbolic Evaluatio
Language to Enabl
Comprehensive
Testing/SELECT

Symbolic Evaluator
Test Data Genera-

for
Assertion Proces-

sor

Static Analysis
Path Structure
Analysis

Assertion Checking
Test Data Generation
Symbolic Execution

-

-/-/- PDP-11 LISP LISP Subset N/A N/A

.

- .

SRI Interne-
tional

A Software System
for Programs Test-
ing and Evaluation
/TEVERE-1

Test Data Genera-
for

Test Data Genera-
for

•

Symbolic Evaluation
Path Structure
Analysis

Test Data Generator
Regression Testing
Run-Time Error De-

tecting
Coverage Analysis
Batch Operation

A/P/N

-/-/-

PDP-11

M1NSK-32

-
LISP 1.4

SMOG

IFTRAN

N/A

•

YES

N/A

N/A

N/A

-

S. Bologna,
J. R. Taylor,
ENEA CRE-
CASACCIA, S.P
ANGUILLARESE
IN1 300,00060
Roma-Italy

Software
Research
Associates

/SMOTL

STATUS 1/2/3
	

1.
A • Available
N ■ Not Available
- • No Information Supplied

N/A • No Information Available

2 .
L • License Agreement
P ■ Public Domain
- ■ No information Supplied

3.
S ■ Supported
N • Not Supported
• ■ No Information Supplied

STEP - State-of-the-Art Overview

3.3.4. PROGRAM INSTRUMENTERS

SUMMARY

Program instrumenters are systems that insert software probes into
source code in order to reveal its internal behavior and performance.
Their main applications are coverage analysis, assertion checking, and
detection of data flow anomalies. There are three types of program
instrumenters: dynamic execution verifiers, self-metric
instrumenters, and dynamic assertion processors. The basic operation
of instrumenters consists of a preprocessing phase, a compilation and
execution phase, and a post-processing phase. Instrumenters are found
to be effective tools in evaluating the coverage of test cases. Some
extensive instrumenters include PET, FAVS, JAYS, and PACE.

GENERAL DESCRIPTION

Program 	instrumenters 	gather 	execution 	data 	to 	reveal
characteristics of a program's internal behavior and performance by
inserting monitoring statements into the source code.

Instrumentation is the principal dynamic analysis tool used to
detect errors that cannot or may not economically be found by static
analysis. The main applications of program instrumentation in
software testing can be divided into three groups:

1. Coverage Analysis

The determination and assessment of measures associated with the
invocation of program structural elements is used to determine the
adequacy of a test run El]. This information is useful to evaluate
the success of test cases and to design a better set of test data to
improve the test coverage.

2. Monitors and Assertions

To aid debugging, instrumentation is used to trace the change of
variable values. Assertion statements are inserted at critical points
in a program to check that certain conditions must be true for a valid
operation. An assertion is a statement that specifies a condition or
relation about certain program variables and is placed in a program in
the form of a comment [6]. Assertion checking techniques allow a
programmer to express validation requirements in a way that reflects
the program's intended function [2].

141

STEP - State-of-the-Art Overview

3. Detection of Data Flow Anomalies

Data flow instrumention records the minimum and maximum values of
each variable, so the violations of predefined range conditions can be
detected. When combined with a state transition table,
instrumentation can also detect errors concerning references to
uninitialized variables and variables that are defined but are not
used [7,8,9]. Although these errors can also be detected by static
analyzers, it may be more economical to use program instrumentation
because a program will be tested in its construction and, with
instrumentation, the useful information is obtained as the by-product
of a test [9].

CLASSIFICATION OF PROGRAM INSTRUMENTERS

Program instrumenters can be classified, according to their main
functions, into three categories:

1. Dynamic Execution Verifiers

These systems are sometimes also called coverage analyzers or
automated verification systems. Dynamic verifiers are programs that
evaluate the effectiveness of individual tests in terms of some
constant measure of the degree each test exercises portions of a
program [11].

Downs defines automated verification systems as programs that
instrument the source code by generating and inserting counters at
strategic points to provide measures of test effectiveness. They
provide data that details how thoroughly the source code has been
exercised [3].

In general, test coverage is interpreted in terms of the number of
times a program segment is exercised during a test. A program is
grouped into segments in the form of decision-to-decision (D-D)
graphs. A counter is placed at each D-D path to count the frequency
of execution of that segment. After the modified program is compiled
and executed, the post-processor analyzes the collected data to
present the result in terms of the relative percentage of time spent
executing particular segments, the list of unexercised segments, etc.
There has been research on methods to minimize the execution overheads
by using a minimal number of counters in deriving the coverage
analysis. For more information, see Section 2.2.3 and [8,13].

142

STEP - State-of-the-Art Overview

2. Self-Metric Instrumenters

These systems have the capability to instrument programs to report
information concerning their internal behavior. A user specifies a
list of variables and the scope of the instrumentation with provided
user commands. The system automatically inserts probe statements at
appropriate locations.

Self-metric instrumenters provide more general information than
dynamic execution verifiers. The information provided by full
self-metric instrumentation varies with the statement type. Typical
information includes the number of times executed, the initial, final,
maximum, minimum, and average value assigned to a variable, the number
of times a condition of a branch statement is true or false, and the
number of words that an input or an output statement transfers.

The advantage of this type of tool is the comprehensiveness of the
information provided. However, the execution-time overhead costs tend
to be high; between 50% and 200% additional processing time and
approximately 50% additional execution space [11].

3. Assertion Checkers

Assertion checkers are programs that convert assertions into
modifications of the source program that issue warnings whenever the
assertions are false [11].

The assertions are transparent to the normal language compilers
and must be preprocessed in order for dynamic execution checking to
occur. The assertion checker will replace an assertion with
corresponding probe statements to instrument the program [14].

The main advantage of automated assertion processing is the
simplification of the process of removing the assertions once they are
no longer needed [ll]. These assertions are entered as comments in
program code and are meant to be permanent. They provide both
documentation and means for regression testing [1].

Assertion checking is used for program validation, error
detection, dynamically checking critical parameters for range, val ue,
and order violations based on the prescribed bounds of the assertions
[2]. This technique is also used to aid in proving program
correctness. This application is covered in Section 1.3 and [5,10,12].

Some programming languages such as EUCLID, PLAIN, Ada, ALGOL-W,
and PL/CS provide assertional capability. Most of them provide only
elementary assertional capability. EUCLID, however, provides
extensive assertion statements [9].

143

STEP - State-of-the-Art Overview

The capability provided by an assertion checker is usually more
powerful and flexible than that provided in programming languages. A
user specifies the scope of the assertion statement to certain
statements or to any part of a data structure such as a portion of a
column of an array. Once the testing is completed, these assertions
have no functional effect on the execution of the program since they
are completely ignored as comments.

BASIC OPERATION

The operation of all instrumenters can be divided into three
phases:

1. Preprocessing Phase

The main operation of this phase is to insert appropriate
instrument statements into a source program. In a self-metric system,
the run-time data base is also updated and the probe statements are
mapped into the compile file using templates. For an assertion
checker, an assertion is checked to determine whether it is active.
The active assertions are then replaced by corresponding statements.
In the case of an execution verifier, the source program is first
processed by a program syntax recognizer before the probes can be
inserted.

2. Compilation and Execution Phase

The augmented program is then compiled and executed. During the
execution of a self-metric system, a run-time package accesses the
stored descriptions of internal information to produce reports that
describe the computation performed. Similarly in an assertion checker
system, when a condition of an assertion is violated, a report is
generated and execution continues.

3. Post-processing Phase

Statistics generated during program execution are matched with
individual source program statements to produce an annotated program
listing and summary report. For an execution verifier, the
post-processing activities analyze the contents of the trace file and
produce coverage reports.

TOOL DESCRIPTIONS AND EVALUATIONS

Most available tools are integrated systems, employing both static
and dynamic analysis. The descriptions here are concerned with the
instrumentation features provided.

144

STEP - State-of-the-Art Overview

PET (Program Evaluator and Tester)

PET is a dynamic tool which combines the features of a self-metric
instrumenter, a dynamic execution verifier, assertion checker, and
also some static analysis. The PET system provides MONITOR commands
of the form:

MONITOR [NUMERIC/CHARACTER] [RANGE] FIRST [n VALUES]
LAST En VALUES] [(List of variables) / ALL]

MONITOR SUBSCRIPT RANGE [(List of array names) / ALL].

These commands will cause the instrumention of the specified variables
or all variables to report the first, last, maximum, and minimum
values [14].

The PET system provides extensive assertional capabilities. There
are two types of assertions: global and local. Global assertions and
monitor commands are located with the declarations and have effect
over the length of their enclosing module or block. Local assertions
are position dependent and consist of any legal logical expression of
the host language. Examples of PET's assertions are:

Global assertions:

ASSERT RANGE (List of variables) (min, max)
- This assertion examines each specified variable and
reports the new values that fall outside the range.

ASSERT VALUES (List of variables) (List of legal values)
- This assertion inspects and reports the new values that
are not of the specified legal values.

Local assertions:

ASSERT (extended logical expression) [HALT on n [VIOLATION]]
- The HALT option will stop the program if n violations
occur.

ASSERT ORDER (array cross-section) [ascending/descending]
[HALT ON n [VIOLATIONS]]

- This assertion checks the array cross-section values to
verify that they are in the selected sequence.

The ease of use of the system was evaluated at 1 in a scale of 1 =
easy to 5 = difficult. The operating cost was evaluated at 2 or 3,
depending on the options used, in a scale of 1 = low to 5 = high. PET
was recommended for use in situations where operating cost is not a
major factor in selection [2,15]. PET has been used to analyze the
test coverage of an operational system of 40,269 program statements

145

STEP - State-of-the-Art Overview

along with test data that had been used to test the system prior to
release. It showed that the test data covered only 44.5% of the
executable source statements and only 35.1% of branches. The increase
in execution time of the instrumented program varies from 25% to 150%
depending on the options used [2,4].

FAVS (Fortran Automated Verification System)

FAVS produces reports indicating which modules, D-D paths and
program statements have been exercised, the number of times each
statement was executed and each D-D path that was transversed. The
reports are generated for the current test and cumulatively for all
past test cases, for a single module or a group of modules. D-D paths
not transversed for the current test case and for all test cases are
also identified [2].

JAVS (Jovial Automated Verification System)

The JAVS system performs coverage analysis and produces
comprehensive reports identifying the paths remaining to be
exercised. Execution analysis indicates which modules, decision
paths, and statements have been exercised, including the number of
times each statement was executed and the execution time spent in each
module. The program provides tracing capabilities to monitor the
invocations and returns of all modules, values of variables, and
important events, such as overlay link loading. The system also
provides assertional capability to check logic expression and an
EXPECT directive to check the boundaries of expected variables [2].

TRW researchers report that JAYS is an advance automated
verification system with well-organized, documentation but the output
report is D-D path oriented and requires manual correlation to
interpret the meaningful results [2,16]. In general, the execution of
a JAVS-instrumented program requires 1.5 times the execution time of
an uninstrumented program and approximately twice the load core size.
The TRW group points out that the overhead caused by recording
execution monitoring data on a mass storage trace file would be
unacceptable for the instrumentation of an entire medium to large
scale system [2].

PACE (Product Assurance Confidence Evaluator)

PACE is a collection of tracing and managerial tools which assist
in assessing test coverage for Fortran programs. In testing and
maintenance of the Houston Operations Predictor/Estimator (HOPE)
program, the system helped to save $8,000 per year. It revealed that
the existing test file consisting of 33 test cases covered only 85% of

146

STEP - State-of-the-Art Overview

the program and that one-half of this number were exercised by almost
every test case. The test results evaluation required 4.5 hours of
computer time and 35-50 manhours. From the statistics provided by
PACE, a more effective test file, consisting of six test cases, was
generated. With the test cases, 43% of the subprograms were exercised
and required less than 24 manhours of test examination.

147

STEP - State-of-the-Art Overview

REFERENCES

[1] W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

[2] J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

[3] H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transactions of the American Nuclear Society and the European
Nuclear Society, 1980 International Conference, November 16-21,
1980, Washington, DC, pages 253-4.

[4] T. Gilb.
Software Metrics.
Winthrop Publishers, Inc., Cambridge, MA, 1977, page 282.

[5] C. A. Hoare.
Proof of a Program: FIND.
Communications of the ACM, Vol.14(1), January 1971.

[6] R. C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 500-88, National Bureau of Standards,
1982.

[7] J. C. Huang.
Instrumenting Programs for Data Flow Analysis.
Technical Report TR-UH-CS-77-4, University of Houston, May 1977.

[8] J. C. Huang.
Program Instrumentation: A Tool for Software Testing.
In Infotech State of the Art Report, Software Testing,
Volume 	2: 	Invited 	Papers, 	pages 	144-59. 	Infotech
International, 1979.

[9] Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography.
Infotech International, 1979.

[10] R. L. London
Proof of Algorithms: A New Kind of Certification.
Communications of the ACM, Vol.13(6), June 1970.

148

STEP - State-of-the-Art Overview

[11] E. F. Miller, Jr.
Program Testing Tools and Their Use.
In Infotech State of the Art Report, Software Testing,
Volume 	2: 	Invited 	Papers, 	pages 	184-215. 	Infotech
International, 19/9.

[12] Proceedings of an ACM Conference on Provin•Assertions about
rograms. 	• ,1 'otices, 	o . 	anuary 	A so

reprinted in SIGACT News, Vo1.14, January 1972.

[13] C. V. Ramamoorthy, K. H. Him, and W. T. Chen.
Optimal Placement of Software Monitors Aiding Systematic Testing.
IEEE Transactions on Software Engineering, Vol.SE-1(4):403-11,
December 1975.

[14] L. G. Stucki and G. L. Foshee.
New Assertion Concepts for Self-Metric Software Validation.
Proceedings of IEEE Conference on Reliable Software, April 1975,
Los Angeles, CA, pages 59-65.

[1S] L. G. Stucki.
Software Development Tools - Acquisition Consideration - A
Position Paper.
National Computer Conference, AFIPS Proceedings, Vol.46:267-8,
1977.

[16] TRW Systems and Space Group.
NSW Feasibility Study, Final Technical Report.
RADC-TR-78-23, February 1978.

REFERENCES NOT CITED IN TEXT

J. M. Adams.
Experiments on the Utility of Assertions for Debugging.
Proceedings Eleventh Hawaii International Conference on System
Science, Honolulu, HI, January 19/8, pages iI-9.

S. H. Saib.
Executable Assertions - An Aid to Reliable Software.
Proceedings Eleventh Annual Asilomar Conference on Circuits,
Systems and Computers, November 1977, Pacific Grove, CA, pages
Z/1-81.

Software Engineering Automated Tools Index.
Software Research Associates, P.O. Box 2432, San Francisco, CA,
94126.

149

STEP - State-of-the-Art Overview

CATALOG LISTING OF PROGRAM INSTRUMENTERS

The following tools have been listed as program instrumenters by
one or more of the sources in Appendices A or B.

PROGRAM INSTRUMENTERS 	SOURCE OF INFORMATION

1.
2.
3.
4.

ADS
AFFIRM
AISIM
AMPIC

[1]
[1 	10,11]
[11

SEE APPENDIX B
5. ARGUS/MICRO [1,11]
6. ASSIST-1 [1,10 11]
7. ATA-FASP [1,10]
8. ATA-SAI [1,11]
9. ATDG SEE APPENDIX B
10. ATTEST SEE APPENDIX B
11. BEST/1 [MO]
12. CADA [1]
13. CAPTURE/MVS [1]
14. CASEGEN [1,2,11]
15. CAVS [1,10,11]
16. CGJA [1,10,11]
17. COBOL/ADE [1]
18. COBOL OPTIMIZER SEE APPENDIX B
19. COBOL TESTING SEE APPENDIX B
20. COBOL TRACING SEE APPENDIX B
21. CONFIGURATION [1]
22. COTUNE II [1,10 11]
23. CRYSTAL [1,10
24. CUE [1 	10]
25. DARTS
26. DDPM [1]
27. DPAD [1,10]
28. DYNA SEE APPENDIX B
29. EAVS [1,10,11]
30. EFFIGY SEE APPENDIX B
31. EXPEDITER SEE APPENDIX B
32. FASP [1,11]
33. FAYS SEE APPENDIX B
34. FORTRAN OPTIMIZER SEE APPENDIX B
35. FORTRAN TESTING SEE APPENDIX B
36. FORTRAN TRACING SEE APPENDIX B
37. FTN-77 ANALYZ [1,11]
38. FTN ANALYZER [1]
39. HARDWARE SIM [1,11]
40. IFTRAN [1,10]
41. INSERT [1,10]

150

STEP - State-of-the-Art Overview

PROGRAM INSTRUMENTERS SOURCE OF INFORMATION

42. INSTRU [1,10]
43. IPDS [1,10,11]
44. ITB [1,11]
45. JAYS SEE APPENDIX B
46. JIGSAW [1,10,11]
47. JOVIAL TCA [1,11]
48. LOGIC [1,10,11]
49. LOOK [1 	10]
50. MEDL-P [11
51. MONITOR [1,10]
52. NASA-VATS [1,10,11]
53. NODAL [1,10,11]
54. 0CM SEE APPENDIX B
55. PACE SEE APPENDIX B
56. PACE-C [1,10]
57. PDS [1,10]
58. PERCAM [1,10,11]
59. PET SEE APPENDIX B
60. POD [1]
61. PPE [1,10]
62. PROGLOOK [1]
63. PRONET [1]
64. QMC [1]
65. REFLECT II El]
66. RXVP 80 SEE APPENDIX B
67. SADAT SEE APPENDIX B
68. SALSIM [1,10,11]
69. SARA [1,10]
70. SARA-H [1,10]
71. SARA-U [1]
72. SARA-III [1,11]
73. SARA-IV [1]
74. SCAN/370 [1,11]
75. SCERT [1]
76. SDVS [1,10,11]
77. SELECT SEE APPENDIX B
78. SLIM [1,10]
79. SMT [1,10]
80. SOFTOOL 80 [1,10,11]
81. SPRINT [1,10]
82. SREM [1,10]
83. SYSTEM MONITOR [1,2]
84. TAFIRM [1,10,11]
85. TAPS/AM [1,10]
86. TATTLE [1,10,11]
87. TCAT [1,10,11]
88. TDEM [1,10,11]

-

151

STEP - State-of-the-Art Overview

PROGRAM INSTRUMENTERS SOURCE OF INFORMATION

89. TEST PREDICTOR [1,10]
90. TEVERE-1 SEE APPENDIX B
91. TFA [1,10]
92. THE ENGINE [1]
93. TIMECS [1]
94. TOOLPAK [1,10]
95. TPT [1]
96. TRAILBLAZER [1 	113
97. TSA/PPE n I
98. XPEDITER SEE APPENDIX B

152

STEP - State-of-the-Art Overview

PROGRAM INSTRUMENTERS USED ACCORDING TO FUNCTION

The following list classifies, by function, the program
instrumenter tools cataloged above.

COVERAGE ANALYSIS 	 ARGUS/MICRO
ASSIST-I 	 ATA-FASP 	 ATA-SAI
ATTEST 	= 	CADA 	 CAVS
CGJA 	 COBOL TESTING 	COTUNE II
DYNA 	 EAVS 	 FASP
FAVS 	 FORTRAN TESTING 	FTN-77 ANALYZER
FTN ANALYZER 	IFTRAN (TM) 	ITB
JAYS 	 JIGSAW 	 JOVIAL TCA
LOGIC 	 NODAL 	 PACE
PACE-C 	 PDS 	 PET
RXVP80 (TM) 	SADAT 	 SOFTOOL 80 (TM)
TATTLE 	 TCAT 	 TDEM
TEST PREDICTOR 	TFA 	 THE ENGINE
TOOLPACK 	 TPT 	 TRAILBLAZER

ASSERTION CHECKING 	 AFFIRM
ATA-SAI 	 CAVS 	 EFFIGY
FTN-77 ANALYZER 	IFTRAN (TM) 	IPDS
RXVP80 (TM) 	SELECT

SYMBOLIC EXECUTION 	 AMPIC
ASSIST-I 	 ATTEST 	 CASEGEN
EFFIGY 	 NASA-VATS 	 RXVP80 (TM)
SADAT 	 SELECT 	 TEVERE-1

SIMULATION 	 AISIM
BEST/1 (TM) 	CONFIGURATOR 	CRYSTAL (TM)
DARTS 	 DDPM 	 DPAD
HARDWARE SIMULA 	MEDL-P 	 PERCAM
POD 	 SALSIM 	 SARA
SCAN/370 	 SCERT 	 SDVS
SLIM 	 SREM 	 TAPS/AM

153

STEP - State-of-the-Art Overview

TUNING
COBOL OPTIMIZER
FAVS
FTN ANALYZER
JAYS
POD
RXVP80 (TM)
SARA-U
SCAN/370
SPRINT
TSA/PPE

RESOURCE UTILIZATION
CAPTURE/MVS (TM)
DDPM
PPE
REFLECT II
SARA-III
TSA/PPE

TIMING
COBOL/ADE
DDPM
LOGIC
PROGLOOK
SOFTOOL 80 (TM)
TIMECS

TRACING
ASSIST-I
COBOL/DV
EAVS
FORTRAN TRACING
INSERT
J AVS
RXVP80 (TM)
SELECT
THE ENGINE
TRAILBLAZER

CUE
FORTRAN OPTIMIZER
IFTRAN (TM)
MONITOR
PROGLOOK
SADAT
SARA-IV
SMT
SYSTEM MONITOR

CUE
HARDWARE SIMULA
PRONET
SARA-H
SARA-U

COTUNE II
FASP
MONITOR
REFLECT II
SPRINT

ATA-FASP
COBOL TRACING
EFFIGY
FTN-77 ANALYZER
INSTRU
LOGIC
SADAT
SOFTOOL 80 (TM)
TOOLPACK
XPEDITER

CAVS
FASP
FTN-77 ANALYZER
INSERT
NODAL
QCM
SARA-H
SARA-III
SOFTOOL 80 (TM)
TIMECS

BEST/1 (TM)
DARTS
LOOK
QCM
SARA-IV
SPIT

CADA
DARTS
HARDWARE SIMULA
PPE
SMT
TFA

ADS
ATA-SAI
COBOL/ADE
EXPEDITER
IFTRAN (TM)
ITB
MONITOR
SCAN/370
TAFIRM
TPT

BREAKPOINT CONTROL 	 ADS
EFFIGY

154

STEP - State-of-the-Art Overview

PATH FLOW TRACING 	 COBOL TRACING
EAVS 	 FORTRAN TRACING 	INSERT
INSTRU 	 JAYS 	 LOGIC
MONITOR 	 SADAT 	 SCAN/370
SELECT 	 TAFIRM 	 TRAILBLAZER

DATA FLOW TRACING
	

INSTRU

LOGIC FLOW TRACING
	

ASSIST-I
INSTRU

CONSTRAINT EVALUATION 	 ATDG
RXVP80 (TM) 	TEST PREDICTOR

155

STEP - State-of-the-Art Overview

PROGRAM INSTRUMENTERS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 3)

TOOL NAME/ACRONYM
	

TOOL TYPE
	

FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE
COBOL Optimization
Instrumenter/

Instrumenter Tuning. A/L/S DEC
DG
IBM
Gou14-SEL

FORTRAN COBOL YES $7,000 Softool
Corporation

COBOL Testing/ Instrumenter COBOL Testing A/L/S DEC
DG
IBM
Gould-SEL

FORTRAN

.

COBOL YES $7,000 Softool
Corporation

CO:01. Tracing
Instrumenter/

Instrumenter Tracing
Path Flow Tracing

A/L/S 	"DEC
DG

Gould-SEL
IBM

FORTRAN
•

IDOL YES $7,000 Softool
. Corporation

Dynamic Analyzer for
FORTRAN/DYNA

Dynamic Analyzer Coverage Analysis
Tuning

A/L/S CDC(EKSTI]
VAX (UNIX,

VMS
IBM (VMS

FORTRAN 77 FORTRAN 66
or
FORTRAN 77

YES NJA Boeing
Computer
Services

FORTRAN Automated
Verification
System/FAVS

Source Program
Analysis

Testing Static
Analyzer

Coverage Analyzer
Self-metric

Instrumenter
Documenter

Coverage Analysis
Tuning
Static Analysis
Dynamic Analysis

A/P/N Honeywel
HG180

UNIVAC 1100

.

DMATRAN OMATRAN or
FORTRAN IV

YES $850 General
Research
Corporation

Softool
Corporation

FORTRAN
Optimization
Instrumenter/

Instrumenter Tuning
Tracing
Data Flow Tracing

A/L/S DEC
DG
IBM
Gould-SEL

FORTRAN FORTRAN YES $7,000

STATUS 1/2/3
	

1.
A ■ Available
N • Not Available
- ■ No Information Supplied

N/A ■ No Information Available

2 .
L • License Agreement
P ■ Public Domain
- ■ No Information Supplied

3.
S ■ Supported
N • Not Supported

No Information Supplied

STEP - State-of-the-Art Overview

PROGRAM INSTRUMENTERS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 2 of 3)

TOOL NAME/ACRONYM
	

TOOL. TYPE . 	FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE 	COST
	

SOURCE

FORTRAN
Testing
Instrumenter/

nstrumenter overage 	na ys s
DG
IBM
Anuld-SFL

I' 	'M. i ' 	'l' III o 	00
Corporation

FORTRAN
Tracing
Instrumenter/

Instrumenter Tracing
Path FloW Tracing

A/L/S DEC
DG
IBM
Gould-SEL

FORTRAN FORTRAN YES $7,000 Softool
Corporation

JOVIAL Automated
Verification
System/JAVS

Static Analyzer
Instrumenter
Coverage Analyzer
Assertion Checker
Automatic Docu-

menter

.

Test Completion
Analysis 	•

Test Data Generation
Aid

Path Flow Analysis
Path Structure

Analysis
Reachability .
Analysis

Interface Checking
Assertion Checking
Automatic Documenta-

tion
Debug Tools

.

-/-/- HIS 6180
CDC 6400

. 	. 	.

JOVIAL J3 JOVIAL

I

N/A N/A

'

General
. 	Research

Corporation

STATUS 1/2/3
	

1.
A ■ Available
N • Not Available
- ■ No Information Supplied

N/A • No Information Available

2.
L ■ License Agreement
P • Public Domain
- No Information Supplied

3.
S • Supported
N ■ Not Supported
- • No Information Supplied

157

STEP - State-of-the-Art Overview

PROGRAM INSTRUMENTERS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 3 of 3)

TOOL NAME/ACRONYM
	

TOOL TYPE . 	FUNCTION PERFORMED . STATUS HARDWARE . IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

Product Assurance
Confidence
Evaluator/PACE

Static Analyzer
Instrumenter
Test Completion
Analyzer

Path Structure
Analyzer

Coverage Analyzer

Coverage Analysis
Path Flow Analysis
Instrumentation
Optimization Aid
Test Case Selection
Aid .

Regression Testing

-/-/- CDC 6500/
7600

UNIVAC
1800

FORTRAN N/A N/A N/A TRW, SLID
Software
Product
Assurance

Program Evaluator
and Tester/PET

.

Instrumenter
Dynamic Assertion

Processor
Coverage Analyzer

—Static Analysis
Instrumentation
Statistical Analyses
Profile Generation
Coverage Analysis
Assertion Checking

.

A/L/S

.

18M
CDC
Honeywell
UNIVAC

FORTRAN FORTRAN YES N/A McDonnell-
. Douglas Corp.

Static and Dynamic
. Analysis and Test/

SADAT

Static Analyzer
Instrumenter
Test Data Genera-

for
Symbolic Evalua-
for

Instrumentation
Statistical Analysis
Coverage Analysis
Symbolic Execution
Tuning, Tracing,
Path Flow Tracing
Auditing
Data Flnw Analysi4

-/-/- IBM 370/
168

IBM 3033
PL/1 FORTRAN N/A N/A Kernforschungs-

zentrum,
Karlsruhe
GMBH

STATUS 1/2/3
	

1.
A ■ Available
N • Not Available
- • No Information Supplied

N/A • No Information Available

2 .
L ■ License Agreement
P ■ Public Domain
- ■ No Information Supplied

3 .
S • Supported
N • Not Supported
• ■ No Information Supplied

STEP - State-of-the-Art Overview

3.3.5. MUTATION TESTING TOOLS

SUMMARY

An automatic mutation system is a test entry, execution, and data
evaluation system that evaluates the quality of test data based on the
results of program mutation. In addition to a mutation "score" that
indicates the adequacy of the test data, a mutation system provides an
interactive test environment and reporting and debugging operations
which are useful for locating and removing errors.

TOOL DESCRIPTION

Program Mutation tools are interactive test harnesses that compute
the mutation score of test data for a given program (see also Section
2.2.4). The mutation score is a number in the interval [0,1]: high
scores indicate high quality test data and low scores indicate low
quality test data.

Program mutation assumes that the programs to be tested have been
written by experienced programmers ("competent" programmers in the
terminology of [1]). Such programs, if they are not correct, are
"almost" correct. That is, if such a program is not correct, then it
is a mutant of a correct program -- it differs from a correct program
only TIT—Fintaining simple errors. A mutation analyzer subjects a
program P which is correct on test data 0 to a series of mutant
operators to produce mutant programs which differ from P in simple
ways. The mutant programs are then executed by the analyzer on D. If
all mutants give incorrect results on execution (they are said to
"die"), then it is highly likely that D is adequate and therefore, P
is very likely to be correct. On the other hand, if some mutants also
give correct results (i.e., they are "live"), then either the live
mutants are functionally equivalent to P or D is not adequate. In the
latter case, D should be augmented by examination of the
non-equivalent live mutants. This procedure forces the tester to
closely examine P with respect to the mutants that are still live. If
D is determined to be adequate (i.e., if the mutation score is 1),
then there still might be complex errors in P which are not simple
mutants and have not been explicitly examined in the analysis. This,
however, is unlikely since there is a coupling effect which states
that test data causing all simple mutants to die is so sensitive that
with high probability complex mutants also die on the test data.

There is a variation of mutation, known as weak mutation [11] in
which the conditions for killing mutants are modified to improve
performance.

159

STEP - State-of-the-Art Overview

Mutation analyzers include tools for Fortran and Cobol programs.
The tools vary with respect to scope of language coverage, amount of
statistical information returned to the user, and extent of mutation
coverage. Language coverage ranges from simple subsets -- useful only
in prototype systems -- to complete ANSI subsets. Statistical
information and other features available to users include the
following:

1) results of executing P on test data
2) instrumentation reports (number of lines executed,

etc.)
3) test case handlers
4) raw counts of live/dead mutants
5) accounting of methods of mutant failure (incorrect

output, illegal operation, etc.)
6) listing of live mutants
7) listing of dead mutants
8) selected mutants (randomly, by type, etc.)
9) listing of equivalent mutants
10) commands for declaring mutants to be equivalent
11) graphical representations of live/dead mutants
12) test report generators
13) commands for selecting/augmenting available mutant

operators
14) commands for selecting the percentage of mutants to be

executed
15) commands for automatic equivalent mutant detection
16) predicates for comparing program/mutant output
17) commands for selecting portions of program text to test
18) archive commands

In addition to these features, some analyzers allow redefinition
of mutant operators so that tests can be "fine-tuned" to particular
applications and environments. One Fortran system accepts multi-
module systems.

BASIC OPERATION AND ORGANIZATION

The Fortran mutation analyzers PIMS [4], EXPER [1,6,7], and FMS.3
[12] (as well as TEC/1, the commercial version of EXPER and FMS.3) and
the Cobol mutation analyzer CMS.1 [1,2,10] have similar operations
(see Figure 1). The subject program is input, parsed into an internal
form, test data is accessed and mutant description records are created
during a prerun phase. The user may then execute the program on the
test data, checking results manually or by means of a preprogrammed
"predicate." During the mutation phase, the mutant description
records are used to modify the internal form and the resulting mutants
are executed interpretively with appropriate accounting during the
mutation phase. During the post run phase results and standard
reports are displayed.

160

PRERUN PHASE
1. Parse Program
2. Access test data
3. Create Mutants

PROGRAM EXECUTION
1. Execute Program

on Test Data
2. Check Output

MUTATION PHASE
1. Execute Mutants
2. Gather Statistics

POST RUN PHASE
1. Display Results
2. Generate Reports
3. Return of Prior Phase

FILES

Internal Forms

Test Data

Mutant Information

STEP - State-of-the-Art Overview

Figure 1. Operational Flow of Mutation Analyzer

The organization of these systems is shown in Figure 2.

4

*

*
*
*

Fit e
Manager

"ft■

*

*
*
* User

Interface
Report
Generator

*
*
*

*
*

Interpreter) * *
Itleiritir******-Irirklrirk*

Figure 2. Organization of Mutation Analyzers

Mutant `N

161

STEP - State-of-the-Art Overview

A limited mutation system in use at the University of Nottingham
[13] has a slightly different structure, since the mutants are induced
in the subject program by test editing operations and the resulting
mutants are recompiled.

Mutant operators are mappings between the subject program and
descriptions of mutants. Mutants operators can change control flow,
or any of the objects a program manipulates (constants, scalars,
arrays in Fortran, and additionally, files, records and elementary
data items in Cobol). At each point of reference to an object, or at
each control transfer point, a different, syntactically correct
program is constructed by applying a single mutation operator. In
addition to control mutations and object replacements, operators are
replaced with all other operators of the same type, relational and
logical expressions are replaced by true or false.

The following is a list of the mutant operators provided by EXPER,
FMS.3, and TEC/1:

1. Constant Replacement
2. Scalar Variable Replacement
3. Scalar Variable for Constant Replacement
4. Constant for Scalar Variable Replacement
5. Array Reference for Constant Replacement
6. Array Reference for Scalar Variable Replacement
7. Constant for Array Reference Replacement
8. Scalar Variable for Array Reference Replacement
9. Array Reference for Array Reference Replacement

10.* Source Constant Replacement
11. Data Statement Alteration
12. Comparable Array Name Replacement
13. Arithmetic Operator Replacement
14. Relational Operator Replacement
15. Logical Connector Replacement
16. Absolute Value Insertion
17. Unary Operator Insertion
18. Statement Analysis
19. Statement Deletion
20. Return Statement Replacement
21. GOTO Target Replacement
22. DO Statement End Replacement

Additionally, CMS.1 offers a number of mutation operators which are
unique to the Cobol language. For details of all mutant operators,
see [1,2,7].

EXPER and FMS.3 offer a limited facility for automatic detection
of equivalent mutants. In the EXPER systems, it is possible to assert
properties of variables that hold at specific control points in the
programs. The assertions constitute invariant properties which can be
used to detect equivalence. The underlying theory for equivalence

162

STEP - State-of-the-Art Overview

detection is described in [1,3] and essentially rests on the observa-
tion that many mutations are actually equivalence preserving
optimizing/deoptimizing transformations. In FMS.3 the extraction of
properties of variable (e.g., liveness) is carried out by a dataflow
analyzer. Automatic equivalence detection is especially useful in
detecting such mutants as absolute value replacements, which typically
account for up to 75% of the equivalent mutants.

Reporting and display features vary from system to system. All
mutation analyzers offer a method to display the remaining live and
equivalent mutants. In addition, EXPER and FMS.3 offer several
user-oriented features such as a histogram of remaining live mutants
by statement (in either textual or sorted order). All systems offer a
means for archiving test runs for later resumption.

PERFORMANCE AND EVALUATIONS

Mutation Analyzers have been used in several controlled field
tests of production programs (see, e.g., [1,9,10]). Although the
number of mutants grows nonlinearly in program size, a number of
efficiencies have been incorporated to reduce the total cost of
operation. It is not necessary to "turn on" all mutant operators
simultaneously. For example, the statement mutants (which provide
basic statement coverage) are usually the easiest and least costly to
kill. In addition, it is possible to select a fixed percentage of the
substitution mutants. These mutants are then sampled and the mutation
score provided for the randomly chosen subset. Results in [2]
indicate that this technique is well over 95% as effective as complete
analysis.

In terms of testing time, the most reliable estimates relate to
the usual size measures. In one report study [10], roughly 1000 lines
of Fortran source code were completely analyzed in five person days.
This represents testing rates that are 2-3 times faster than the code-
debug rates for the same code.

Several studies [1,8,9] have compared mutation systems to other
testing techniques (see also Section 2.2.4). Since there are explicit
mutations for statement coverage and branch coverage, mutation tools
provide a strictly more powerful test environment than those coverage
tools. On the other hand, mutation tools provide only primitive
instrumentation facilities.

LIMITATIONS

Mutation analyzers require significant memory and processor
speed. For systems with inefficient memory management, the creation
of large numbers of mutant description may cause thrashing or other
memory management problems.

163

STEP - State-of-the-Art Overview

Running large programs at 100% of the substitution mutants can
create mutant description files of a million or more mutants. In slow
processors, this may create unacceptably long compute-bound tasks. On
the other hand, 100% mutation execution actually overtests the program
and high quality test data can be obtained 3Tal--nping a small
percentage of the mutants. It may be more advantageous to use
mutation analyzers at the unit test level, when test units are less
than 1000 lines of source code, combining units and testing interfaces
at integration stages.

164

STEP - State-of-the-Art Overview

REFERENCES

[1] A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G.
Sayward.
Mutation Analysis.
Report GIT/ICS-79-08, Georgia Institute of Technology, 1979.

[2] A. T. Acree.
On Mutation.
Ph.D. Thesis, Georgia Institute of Technology, 1980.

[3] D. Baldwin and F. Sayward.
Heuristics for Determining Equivalence of Program Mutations.
Technical Report 161, Yale University, 1979.

[4] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
The Design of a Prototype Mutation System for Program Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:623-7,
I9/ b. Also reprinted in Tutorial: Automated Tbols for Software
Engineering, E. F. Miller, Editor, IEEE Computer Society, 1979.

[5] T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Theoretical and Empirical Studies on Using Program Mutation to
Test the Functional Correctness of Program.
7th ACM Symposium on Principles of Programming Languages,
January 1980.

[6] T. A. Budd, R. Hess, and F. G. Sayward.
EXPER Implementor's Guide.
Department of Computer Science, Yale Univeristy.

[7] T. A. Budd.
Mutation Analysis of Program Test Data.
Ph.D. Thesis, Yale University, 19807--

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on Test Data Selection: 	Help for the Practicing
Programmer.
Computer, Vol.11(4):34-43, April 1978.

[9] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Program Mutation: A New Approach to Program Testing.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 107-26.
Infotech International, 1979.

165

STEP - State-of-the-Art Overview

[10] J. M. Hanks.
Testing Cobol Programs by Mutation: Volume I - Introduction to
the CMS.1 System, Volume II - CMS.1 System Documentation.
Report GIT/ICS-80-04, Georgia Institute of Technology, 1980.

[11] W. E. Howden.
Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering, Vol.SE-8(4):371-9,
July 1982.

[12] A. Tanaka.
Equivalence Testing for Fortran Mutation System Using Data Flow
Analysis.
Department of Information and Computer Science, Georgia
Institute of Technology, 1981.

[13] M. R. Woodward, M. A. Hennell, and D. Hedley.
A Limited Mutation Approach to Program Testing.
University of Nottingham, Nottingham, UK, 1980.

166

STEP - State-of-the-Art Overview

CATALOG LISTING OF MUTATION TESTING TOOLS

The following tools have been listed as mutation testing tools by
one or more of the sources in Appendices A or B.

MUTATION TESTING TOOLS 	 SOURCE OF INFORMATION"

1.PORTABLE FORTRAN MUTATION 	 SEE APPENDIX B
2.TEC/1 	 SEE APPENDIX B

167

STEP - State-of-the-Art Overview

MUTATION TESTING TOOLS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 1)

TOOL NAME/ACRONYM
	

. TOOL.TYPE
	

FUNCTION PERFORMED STATUS. HARDWARE . IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE
...

FORTRAN Mutation Automatic Test Harness and A/./N PRIME 550 FORTRAN FORTRAN YES. N/A Georgia
System/TEC/I Mutation System Driver Institute of

Computes Mutation Technology
Scores

Produces Test
Reports and
Statistics

.. ,

Portable FORTRAN Automatic Test Harness and A/P/N N/A N/A FORTRAN YES N/A T. A. Budd
Mutation System/ Mutation System Driver

Computes Mutation • •

University of
Arizona

Scores •

. . .

STATUS•1/2/3
	

1 .

A • Available
N • Not Available
- ■ No Information Supplied

N/A • No intonation Available

2 .

L • License Agreement
P ■ Public Domain
- ■ No Information Supplied

3 .

S • Supported
N ■ Not Supported
- ■ No Information Supplied

STEP - State-of-the-Art Overview

3.4. TEST SUPPORTING TOOLS

Some testing tools have the main function of test execution
coordination, rerunning test cases for a modified program (regression
testing), or comparing the resulting output. More sophisticated
system provide test environment and documentation aid to support other
testing techniques. In this section only test drivers and comparators
are described.

3.4.1. AUTOMATIC TEST DRIVERS

SUMMARY

Automatic test drivers are software systems that simulate an
environment for running module tests. They provide standard notation
for specifying test cases and automate the testing process. Some
systems also compare the resulting output to the expected output and
report any discrepancy. There are systems that operate on object
modules and others that operate on high level languages. Benefits of
using automatic test drivers include standardization of test case
description and ease of regression testing. The main drawback is the
difficulty in learning and writing a test language. Experience using
automatic test drivers indicates that they are effective debugging
tools and help improve productivity of programmers.

GENERAL DESCRIPTION

Automatic test drivers, test harnesses, or testbeds are systems
that provide an environment for running software component tests,
simulating missing modules or sub-systems [5].

In order to test an individual module, a testbed must provide a
driver and stubs. A driver is auxiliary code that sets up an
appropriate environment and calls the tested module [1]. Stubs
replace low-level subprograms called by the module that are not
available at the time of testing. The testbed must also provide data
interfaces such as input/output parameters, files, messages, and
common blocks. This means that the system must have the ability to
allocate storage, bind the external references from the test module to
it and initialize the data values prior to each execution of the test
module. Furthermore, the system must satisfy all of the data requests
made by the module upon its parallel processes, peripheral devices and
its subordinate modules [5,9].

169

STEP - State-of-the-Art Overview

Automatic software test drivers provide a standard notation for
specifying software tests, a standard set-up for verifying software
tests, automate the verification of test results, and eliminate the
need for writing separate drivers and stubs for the module and
subsystems testing [7].

Although all test drivers perform the same basic function, they
differ in their level of sophistication. Simple test drivers merely
reinitiate the program with various input sets and save the output.
The more sophisticated testbeds accept data inputs, expected outputs,
the name of routines to be executed, values to be returned by called
routines, and other parameters. These systems also compare the actual
output with the expected output and issue concise reports of the
performance [1]. Others also provide facilities for static and
dynamic testing.

CLASSIFICATION AND BASIC OPERATION

Automatic software test drivers can be classified into two main
categories according to the type of the target modules:

1) The first type operates on object modules and is
independent of the language of the target module. An
example is the Automatic Unit Test (AUT) developed at
IBM. The AUT provides a formal language that is used
to code the test cases and the stubs. The driver
controls the execution of the target module and
generates a test-execution report listing errors in
the target program outputs. Drawbacks of this tool
include the difficulty of learning the low-level
language and the lack of facilities for simulating I/O
devices and files [3,7].

2) The second type of driver operates at the source code
level. Source-level testing offers dual advantages:
(1) test cases may be specified in terms of the
internal structure of the target program and (2)
measures of testing thoroughness, based on the
program's source representation, may be taken while a
test procedure is executing [7]. However, this type
of module drivers is highly dependent on the language
of the target module. 	It is more difficult to
implement and requires language translators for
different target languages.

170

STEP - State-of-the-Art Overview

Examples of this type are the TPL/F, TPL/2.0 systems developed at
General Electric Corporation Research and Development Center. TPL/F
is the first generation system which operates on Fortran Software.
Its test procedure requires three steps: initialization, execution,
and verification of the results. The main drawback of the system is
its lengthy and difficult to read test procedure. TPL/2.0 is the
improved version. It provides a more concise form of environment
definition and significantly reduces the labor required for coding and
maintaining test procedures by automating the initial generation and
subsequent revision of the module outputs [2,7].

Benefits and Drawbacks

The benefits of module drivers can be summarized as follows:

1) reduction in testing effort,
2) standardization of test cases,
3) ease of regression testing (see
4) the automatic verification of

programmer to state explicitly
and therefore lessens the "eye
to see" problem [6].

Section 2.1), and
results forces the

the expected outputs
seeing what it wants

However, there are many drawbacks that should be considered:

1) Additional work and difficulty associated with
learning a specific testing language.

2) Test procedures of some drivers are lengthy and
difficult to read. 	As the result, programmers
sometimes feel that writing test procedures is
tedious, lacking the challenge and interest of
coding a program. 	However, sophisticated test
drivers usually simplify the environment definition
process, especially those interactive systems such
as PRUFSTAND and TESTMANAGER.

3) The language dependent nature of the module drivers
that operate on source-level code makes it
difficult to test multiple target languages.

TOOL EVALUATIONS

Automatic test drivers are very effective debugging tools and
improve productivity. TESTMANAGER users have claimed a 30% reduction
in debugging time, and considerably reduced maintenance due to better
tested programs [5]. The EXPEDITER system, which provides facilities
for unit testing, problem isolation, and verification is responsible
for improving productivity in a COBOL environment from 10 lines of
procedure division code per programmer per day to 45 lines [4].

171

STEP - State-of-the-Art Overview

REFERENCES

[1] W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

[2] J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RACS-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

[3] C. A. Heuerman, G. J. Myers, and J. H. Winterton.
Automated Test and Verification.
IBM Technical Disclosure Bulletin , Vol.17(7):2030-5,
December 1974.

[4] R. C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 500-88, National Bureau of Standards,
1982.

[5] Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography, pages 212-28.
Infotech International, 1979.

[6] G. J. Myers
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

[7] D. J. Panzl.
A Language for Specifying Software Tests.
National Computer Conference, AFIPS Proceedings„ Vol.47:609-19,
1978.

[8] H. M. Sneed.
Prufstand - A Testbed for Systems Software Components.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 246-70. Infotech International, 1979.

REFERENCES NOT CITED IN THE TEXT

D.J. Panzl.
Test Procedures: A New Approach to Software Verification.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages
477-8b.

172

STEP - State-of-the-Art Overview

CATALOG LISTING OF AUTOMATIC TEST DRIVERS

The following tools have been listed as automatic test drivers by
one or more of the sources in Appendices A or B.

AUTOMATIC TEST DRIVERS SOURCE OF INFORMATION

1. AUTORETEST SEE APPENDIX B
2. DATAMACS SEE APPENDIX B
3. DRIVER [1,10,11]
4. EXPEDITER SEE APPENDIX B
5. PRUFSTAND SEE APPENDIX B
6. SEF [1,2,10,111
7. TESTMANAGER SEE APPENDIX B
8. XPEDITER SEE APPENDIX B

173

STEP - State-of-the-Art Overview

AUTOMATIC TEST DRIVERS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 1)

psi 	TOOL NAME/ACRONYM
	

TOOL TYPE . 	FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE
	

COST
	

SOURCE

AUTOMATED UNIT TEST
/AUT

Test Driver Regression Testing
Simulation of Test

Environment

-/L/- IBM 360,
370

N/A BAL
PL/q
COBOL

N/A $1,200 IBM

/EXPEDITER Test Driver Tracing A/L/S N/A BAL N/A YES N/A Application
Regression Testing Development

System, Inc.

/TESTMANAGER Test Driver Regression Testing WV- IBM 360,370 N/A Assembly N/A $ 9,000 MSP
30XX, 43XX COBOL to Incorporated
ICL 1900 CORAL - $14,000

The Programmer Pro-
ductivity Tool for
the 80's/XPEDITOR

Test Driver
Test Bed

Regression Testing
Test Environment

.

A/-/S IBM 360,370 N/A N/A NO $45,000 Application
Development
System, Inc.

I. 	 2. 	 3.
A ■ Available 	 L • License Agreement 	 S ■ Supported
N ■ Not Available 	 P ■ Public Domain 	 N • Not Supported
- • No Information Supplied • 	- ■ No Information Supplied 	 - ■ No Information Supplied

N/A ■ No Information Available

STATUS 1/2/3

STEP - State-of-the-Art Overview

3.4.2. COMPARATORS

SUMMARY

A comparator is a program that compares two versions of data to
identify their differences. It is used in the validation process to
limit the scope of reverification of revised software. The main
differences among comparators are the form of the data and the
flexibility in specifying tolerance for each comparison.

GENERAL DESCRIPTION

A comparator is a program that compares two versions of data to
identify the differences between the two versions. The data may be
program code, output of an execution, or data files [1,2,3,4].

Comparators serve primarily as tools for validating modified
software to assure that the revised software contains only particular
modifications. The use of a comparator helps limit the scope of
reverification that must be performed on modified programs.

Other than the form of data to be compared, comparators differ in
the level of flexibility in specifying some tolerance, i.e., allowing
a certain number of differences in comparisons. AUTO-RETEST provides
an automated comparison between selected old and new test parameters.
The system also provides flexibility in specifying a tolerance
criterion for each comparison [5].

DIFFS is a file comparator that compares files of fixed-length
records with user selectable options to omit portions of the record
from the comparison. The system can detect and recover from missing
or extra records in either files [5].

TDBCOMP compares and summarizes the difference between two data
bases, where one data base is on tape and the other is active on disk
[5].

Output comparators are usually included in automatic test
drivers. FADEBUG-I is an integrated system which performs the
function of a test driver, an output comparator, and a static
analyzer. The system initiates execution of a module using the user
provided input data. After the execution, it compares the actual
output data against the desired output data and reports discrepancies
El].

175

STEP - State-of-the-Art Overview

REFERENCES

[1] J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980, pages 4-88 to 4-91.

[2] H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transaction of the American Nuclear Society and the European
Nuclear Society, 198U international Conterence,
November 16-21, 1980, Washington, DC, pages 253-4.

[3] Infotech State of the Art Report, Software Reliability,
Volume 2: Invited Papers, pages 184-215.
Infotech International, 1977.

[4] D. J. Reifer and S. Trattner.
A Glossary of Software Tools and Techniques.
Computer, Vol.10(7):52-60, July 1977.

[5] Software Engineering Automated Tools Index.
Software Research Associates, P. 0. Box Z432, San Francisco,
CA 94126.

176

STEP - State-of-the-Art Overview

CATALOG LISTING OF COMPARATORS

The following tools have been listed as comparators by one or
more of the sources in Appendices A or B.

COMPARATORS SOURCE OF INFORMATION

1. AUTORETEST SEE APPENDIX B
2. COMPARISON [1]
3. CCS [1,2,10]
4. COMPARE DBCOMP [1]
5. DECKBOY COMPAR [1]
6. DIFFS SEE APPENDIX B
7. DRIVER [1,10,11]
8. FADEBUG-1 SEE APPENDIX B
9. FASP [1,11]
10. MSEF [1]
11. PROG COMP ANAL [11
12. PWB FOR VAX/VMS [1]
13. SCAN/370 [1,11]
14. SOFTOOL 80 [1,10,11]
15. TBDCOMP SEE APPENDIX B
16. TRAILBLAZER [1

	11] 17. VIRTUAL OS [11

177

STEP - State-of-the-Art Overview

COMPARATORS
TESTING TOOL DATA SHEETS SUMMARIES

(Table 1 of 1)

TOOL NAME/ACRONYM
	

TOOL. TYPE 	FUNCTION PERFORMED STATUS HARDWARE IMPLEMENT LANGUAGE TARGET LANGUAGE PORTABLE 	COST
	

SOURCE

/AUTORETEST Comparator
Test Driver

Test Data Management
Regression Testing
Automatic Comparison
between selected
old and new test
parameters

-/L/- IBM 360,
370

FORTRAN IV
Assembly

N/A N/A N/A TRW, Defense
Systems
Software
Department

/DIFFS (TM) File Comparator File Comparison ANS

•

N/A COBOL
SCOBOL

N/A YES
.

$500 Software
Consulting
Services

FACOM Automatic
Debug/FADEBUG-I

Output Comparator
Anomaly Detector

Comparison
I/O Specification
Analysis

Debug Aid '

A/L/S FACOM 230-

'

Assembly N/A N/A N/A . Fujitsu, Ltd.

TDBCOMP Program/
TDBCOMP

Comparator
Maintenance Tool

Automatic Data
Comparison

-/L/- CDC 3XXX JOVIAL J4 N/A N/A N/A TRW, Operation.
al Software
Operations

STATUS 1/2/3 	 1. 	 2. 	 3.
A ■ Available 	 L . License Agreement 	 S ■ Supported
N ■ Not Available 	 P • Public Domain 	 N ■ Not Supported
- ■ No Information Supplied 	- • No Information Supplied 	 - ■ No Information Supplied

N/A ■ No Information Available 	'

STEP - State-of-the-Art Overview

CHAPTER 4

COMPREHENSIVE BIBLIOGRAPHY

This bibliography is intended to give the reader a comprehensive
guide to the current literature on software test and evaluation. Also
included are references on the related areas of reliability, software
metrics, program proving, and software development methodology. The
bibliography is organized to follow the topics in Chapters 1-3. If a
cited source treats multiple topics, the source is listed under all
relevant subsections. Each subsection is divided into three parts.
The first part consists of textbooks, reference books, and book-length
reports treating the current topic. The next two sections list
articles and shorter reports on the current topic; these are classi-
fied according to whether the articles are survey or detailed. Survey
articles are generally those which are suitable for an introduction to
the topic, listing important definitions, issues, and techniques.
Detailed articles give the reader a research -level view of the field
and require considerably more background in the topic than the survey
articles.

The reader should note that not all the sources cited in this
bibliography have appeared in formally refereed media. Many present
work in progress that will be reported in more polished form elsewhere.

179

STEP - State-of-the-Art Overview

1. THEORY OF TESTING

Books

H. K. Berg, W. E. Boebert, W. R. Franta, and T. G. Moher.
Formal Methods of Program Verification and Specification.
Prentice -Hall, Inc., Englewood Cliffs, NJ.

R. S. Boyer and J. S. Moore.
A Computational Logic.
Academic Press, New York, 1979.

C-L. Chang and R. C-T. Lee.
Symbolic Logic and Mechanical Theorem Proving.
Academic Press, New York, 1973.

R. A. DeMillo.
Program Mutation: An Approach to Software Testing.
Report GIT/ICS-83-03, Georgia Institute of Technology,
January 1983.

L. P. Deutsch.
An Interactive Program Verifier.
Ph.D. Thesis, University of California, Berkeley, May 1973.

T. Gilb.
Software Metrics.
Winthrop -Publishers, Inc., Cambridge, MA, 1977.

J. Gourlay.
Theory of Testing Computer Programs.
Ph.D. thesis, University of Michigan, 1981.

D. Gries.
The Science of Programming.
Springer-Verlag, New York, 1981.

J. V. Guttag.
The Specification and Application to Programming of Abstract
Data Types.
Ph.D. Thesis, University of Toronto, Report CSRG-59, 1975.

Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and bibilography.
Infotech International, 1979.

Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers.
Infotech International, 1979.

180

STEP - State-of-the-Art Overview

Z. Manna.
Mathematical Theory of Computation.
McGraw-Hill, 19/4.

G. J. Myers.
Software Reliability: Principles and Practices.
Wiley Publishers, 1976.

A. J. Perlis, F. G. Sayward and M. Shaw.
Software Metrics: An Analysis and Evaluation.
MIT Press, Cambridge, MA, 1981.

R. A. Thayer, M. Lipow and E. C. Nelson.
Software Reliability.
North-Holland, Amsterdam, 1978.

P. Wegner.
Research Directions in Software Technology.
MIT Press, Cambridge, MA, 1979.

Survey Articles

L. A. Belady.
On Software Complexity.
Proceedings of the IEEE Workshop on Quantitative Software Models,
pages 9U-94. IEEE, Piscataway, NU, 19/9.

B. Curtis.
Measurement and Experimentation in Software Engineering.
Proceedings of the IEEE, Vol.68(9):1144-57, September 1980.

R. A. DeMillo.
Validating Computer Software - Two Views.
Transactions of the American Nuclear Society, Vol.35:251-2,
November 1980.

R. A. DeMillo, R. J. Lipton, and A. J. Perlis.
Social Processes and Proofs of Theorems and Programs.
Communications of the ACM, May 1979.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on Test Data Selection: Help for the Practicing
Programmer.
Computer, Vol.11(4):34-41, April 1978.

S. L. Gerhart and L. Yelowitz.
Observations of Fallibility in Applications of Modern
Programming Methodologies.
IEEE Transactions on Software Engineering, Vol.SE-2(3):195,
September I9/b.

181

STEP - State-of-the-Art Overview

J. B. Goodenough.
A Survey of Program Testing Issues.
In Research Directions in Software Technology, Peter Wegner,
Editor, pages 316-42. MIT Press, Cambridge, MA, 1979.

J. B. Goodenough and S. L. Gerhart.
Toward a Theory of Test Data Selection.
IEEE Transactions on Software Engineering, Vol.SE-1(2):156-73,
June 19/5.

S. L. Hantler and J. C. King.
An Introduction to Proving the Correctness of Programs.
ACM Computing Surveys, Vol.8(3):332-53, September 1976.

D. Levy, D. Guy, and J. Ronback.
A Place for Metrics in Software Development.
Telesis (Canada), Vol. 6(5):17-22, October 1979.

E.F. Miller, Jr.
Notes on the Theoretical Foundations of Testing.
In Tutorial: Program Testing Techniques, pages 51-4. IEEE
Computer Society, Piscataway, NJ, 1977.

Z. Mital.
Software Reliability.
Informatyka (Poland), Vol.14(11):7-9, November 1979.

Proceedings of an ACM Conference on Proving Assertions about
Programs. SIGPLAN Notices, Vol.7(1), January 1972. Also
reprinted in SIGACT News, Vol.14, January 1972.

F. R. Richards.
Computer Software Testing, Reliability Models, and Quality
Assurance.
Naval Postgraduate School, Monterey, CA, July 1974.

R. J. Rubey.
Quantitative Aspects of Software Validation.
SIGPLAN Notices, Vol.10(6):246-51, June 1975.

R. J. Rubey, J. A. Dana, and P. W. Biche.
Quantitative Aspects of Software Validation.
IEEE Transactions on Software Engineering, Vol.SE-1(2):150-5,
June 19/b.

A. S. Tanenbaum.
In Defense of Program Testing or Correctness Proofs Considered
Harmful.
SIGPLAN Notices, Vol.11(5):64-8, May 1976.

182

STEP - State-of-the-Art Overview

Detailed Articles

A. L. Ambler, et al.
GYPSY: A Language for Specification and Implementation of
Verifiable Programs.
Proceedings of an ACM Conference on Language Design for Reliable
Software, SIGPLAN Notices, Vol.12(3), March 1977.

A. Ballard and D. Tsichritzis.
System Correctness.
SIGPLAN Notices, Vol.8(9):38-41, September 1973.

D. E. Bell and L. J. LaPadula.
Secure Computer Systems.
Report ESD-TR-73-278, MITRE Corporation, Beford, MA.
November 1973.

R. G. Bennetts.
A Comment on Reliability Evaluation of Software.
Proceedings of the NATO Advanced Study Institute on Generic
Techniques in Systems Reliability Assessment, JuTy 1/-28, 1973,
Liverpool, England, pages 55-9.

P. I. P. Boulton and M. A. R. Kittler.
Estimating Program Reliability.
Computer Journal (GB), Vol.22(4):328-31, November 1979.

J. B. Bowen.
Standard Error Classification to Support Software Reliability
Assessment.
National Computer Conference, AFIPS Proceedings, May 19-22,
1980, Anaheim, CA, pages 697-705.

T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
The Design of a Prototype Mutation System for Program Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:623-7,
1978.

R. M. Burstall.
Proving Correctness as Hand Simulation with a Little Induction.
Proceedings of the International Federation of Information
Processing Societies, North Holland, Amsterdam, The Netherlands,
1974, pages 308-12.

R. H. Campbell and A. N. Haberman.
The Specification of Process Synchronization by Path Expressions.
Lecture Notes on Computer Science, Vol.16, 1974.

183

STEP - State-of-the-Art Overview

J. C. Cherniaysky.
On Finding Test Data Sets for Loop Free Programs.
Information Processing Letters (Netherlands), Vol.8(2):106-7,
February 15, 1979.

R. M. Cohen.
Formal Specifications for Real-time Systems.
Proceedings of the Seventh Texas Conference on Computing
Systems, October 1978.

A. De Luca and A. Restivo.
On Some Properties of Local Testability.
Automata, Languages and Programming, Seventh Colloquium, July
14-18, 1980, Noordwijkerhout, Netherlands, pages 385-93.

R. W. Elliott, M. P. Marchbanks, Jr., M. G. McWilliams,
L. J. Ringer, and D. B. Simmons.
Measuring Computer Software Reliability.
Computers and Industrial Engineering (GB), Vol.2(3):141-51, 1978.

L. Flon and A. N. Habermann.
Towards the Construction of Verifiable Software Systems.
Proceedings of Conference on Data: Abstraction, Definition, and
Structure, SIGPLAN Notices, Vol.B(2):141 -8, 1976.

R. W. Floyd.
Assigning Meanings to Programs.
Proceedings of the Symposium on Applied Mathematics,
Vol.19:19-32, American Mathematical Society, Providence, RI,
1967.

E. H. Forman.
Statistical Models and Methods for Measuring Software
Reliability.
George Washington University, Washington, DC.

M. Geller.
Test Data as an Aid in Proving Program Correctness.
Communications of the ACM, Vol.21(5):368-75, May 1978.

S. L. Gerhart.
Program Validation.
Computing Systems Reliability, pages 66-108, 1979.

A. L. Goel.
A Software Error Detection Model with Applications.
Second Software Life Cycle Management Workshop, August 21-22,
1978, Atlanta, GA, pages 133 -9.

184

STEP - State-of-the-Art Overview

A. L. Goel.
Software Error Detection Model with Applications.
Journal of Systems and Software, Vol.1(3):243-9, 1980.

J. D. Gould and P. Drongowski.
An Exploratory Study of Computer' Program Debugging.
Human Factors, Vol.16(3):258-77, June 1974.

R. Hamlet.
Test Reliability and Software Maintenance.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages ilb=CU.

R. Hamlet.
Testing Programs with Finite Sets of Data.
Computer Journal, Vol.20(3):232-7, March 1977.

S. L. Hantler.
The Relation Between Symbolic Program Testing and Program
Verification.
Computer Science Conference, February 18 -20, 1975, Washington,
DC, page 41.

M. A. Hennell, D. Hedley, and M. R. Woodward.
Quantifying the Test Effectiveness of Algol 68 Programs.
SIGPLAN Notices, Vol.12(6):36-41, June 1977.

M. A. Herndon and A. P. Keenan.
Analysis of Error Remediation Expenditures During Validation.
Proceedings of the 3rd International Conference on Software
Engineering, May 10-12, 1978, Atlanta, GA, pages 202-6.

C. A. Hoare.
Proof of a Program: FIND.
Communications of the ACM, Vol.14(1), January 1971.

W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, Vol.SE-2(3):208-14,
September 1976.

W. E. Howden.
Theoretical and Empirical Studies of Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-4(4):293-7,
July 1978.

J. C. King.
Proving Programs to be Correct.
IEEE Transactions on Computers, Vol.C-20(11):1331-6, November
1971.

185

STEP - State-of-the-Art Overview

P. Knezevic.
Programs for Correctness Testing of Other Programs in a Real
Time Processor System.
Informatica 78 XIII Yugoslav International Symposium on
Information Processing, October 2-7, 19/8, Bled, Yugoslavia.

B. Littlewood.
A Bayesian Differential Debugging Model for Software Reliability.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 511-9.

B. Littlewood.
The Littlewood-Verrall Model for Software Reliability Compared
with Some Rivals.
Journal of Systems and Software, Vol.l(3):251-8, 1980.

B. Littlewood and J. L. Verrall.
Likelihood Function of a Debugging Model for Computer Software
Reliability.
IEEE Transactions on Reliability, Vol.R-30(2):145-8, June 1981.

R. L. London
Proof of Algorithms: A New Kind of Certification.
Communications of the ACM, Vol.13(6), June 1970.

Z. Manna and R. Waldinger.
The Logic of Computer Programming.
IEEE Transactions on Software Engineering, Vol.SE-4:199-229,
1978.

S. N. Mohanty.
Models and Measurements for Quality Assessment of Software.
ACM Computing Surveys, Vol.11(3):251-75, September 1979.

P. B. Moranda.
Limits to Program Testing with Random Number Inputs.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 521-6.

P. B. Moranda.
Prediction of Software Reliability During Debugging.
Proceedings of the 1975 Annual Reliability and Maintainability
Symposium, January 28-30, 1975, Washington, DC, pages 327-32.

P. B. Moranda and Z. Jelinski.
Software Reliability Predictions.
I. Reliability Estimates Based on Failure-Rate Models.
Proceedings of the 6th Triennial World Congress of the
International Federation of Automatic Control, August 24-30,
1975, Boston and Cambridge, MA.

186

STEP - State-of-the-Art Overview

M. Morelli.
Software Reliability - Principles and Criteria for Online
Testing of the Software.
Manage. and Inf. (Italy), Vol.27(5):293-6, May 1978.

J. D. Musa.
Software Reliability Measurement.
Journal of Systems and Software, Vol.l(3):223-41, 1980.

S. C. Ntafos and S. L. Hakimi.
On Structured Digraphs and Program Testing.
IEEE Transactions on Computers, Vol.C-30(1):67-71, January 1981.

M. R. Paige.
Program Graphs, an Algebra, and Their Implication for
Programming.
IEEE Transactions on Software Engineering, Vol.SE-1:286-91,
September T9/5.

F. J. Schick and R. W. Wolverton.
An Analysis of Competing Software Reliability Models.
IEEE Transactions on Software Engineering, Vol.SE-4(2):104-20,
March 19/8.

N. F. Schneidewind.
Application of Program Graphs and Complexity Analysis to
Software Development and Testing.
IEEE Transactions on Reliability, Vol.R-28(3):192-8, August 1979.

M. L. Shooman.
Managing Software Testing Using Reliability Estimates.
National Conference on Software Test and Evaluation, February
1983.

A. N. Sukert.
A Four-Project Empirical Study of Software Error Prediction
Models.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 577-82.

A. N. Sukert.
An Investigation of Software Reliability Models.
Proceedings of the 1977 Annual Reliability and Maintainability
Symposium, January 18-20, 1977, Philadelphia, PA, pages 478-84.

P. K. Suri and K. K. Aggarwal.
Reliability Evaluation of Computer Programs.
Microelectronics and Reliability (GB), Vol.20(4):465-70, 1980.

187

STEP - State-of-the-Art Overview

K.-C. Tai.
Program Testing Complexity and Test Criteria.
IEEE Transactions on Software Engineering, Vol.SE-6(6):531-8,
November 1980.

J. K. Wall and P. A. Ferguson.
Pragmatic Software Reliability Prediction.
Proceedings of the 1977 Annual Reliability and Maintainability
Symposium, January 18-20, 1977, Philadelphia, PA, pages 485-8.

E. J. Weyuker and T. J. Ostrand.
Theories of Program Testing and the Application of Revealing
Subdomains.
IEEE Transactions on Software Engineering, Vol.SE-6(3):236-46,
May 1980.

P. M. Zislis.
Semantic Decomposition of Computer Programs: An Aid to Program
Testing.
Acta Informatica (Germany), Vol.4(3):245-69, 1975.

188

STEP - State-of-the-Art Overview

2. SOFTWARE TESTING

2.1 TESTING STRATEGIES

Books

M. S. Deutsch.
Software Verification and Validation Realistic Project
Approaches.
P'rentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

R. Dunn and R. Ullman.
Quality Assurance for Computer Software.
McGraw Hill Book Company, New York, 1982.

R. Glass.
Software Reliability Guidebook.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

Infotech State of the Art Re ort, Software Reliabilit , Volume
2: Invite apers.
Infotech International, 1977.

Infotech State of the Art Re ort, Software Testing, Volume 1:
na ysis an 	i iograp y.
Infotech International, 1979.

M. Jackson.
Principles of Program Design.
Academic, London, 1975.

G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

R. A. Thayer, M. Lipow and E. C. Nelson.
Software Reliability.
North-Holland, Amsterdam, 1978.

D. Van Tassel.
Program Style, Design, Efficiency, Debugging and Testing.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974.

E. Yourdan and L. L. Constantine.
Structured Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

189

STEP - State-of-the-Art Overview

E. Yourdon and L. L. Constantine.
Structured Design Fundamentals of a Discipline of Computer
Program and Systems Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ.

Survey Articles

W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

M. A. Branstad, J. C. Cherniaysky, and W. R. Adrion.
Validation, Verification, and Testing for the Individual
Programmer.
Computer, Vol.13(12):24-30, December 1980.

J. A. Dobbins and R. D. Buck.
Software Quality in the 80's.
Proceedings of Trends and Applications 1981. Advances in
Software Technology, May 28, 1981, Gaithersburg, MD, pages 31-7.

M. Finfer, et al.
Software Debugging Methodology.
Final Technical Report, RADC-TR-79-57 (three volumes), Rome Air
Development Center, NY, April 1979.

L. Gmeiner and U. Voges.
Methods, Criteria and Automatic Tools for Software Testing.
Practice in Software Adaption and Maintenance. Proceedings for
the SAM Workshop, April 5-6, 1979, Berlin, Germany, pages 183-92.

J. B. Goodenough and C. L. McGowan.
Software Quality Assurance - Testing and Validation.
Proceedings of the IEEE, Vol.68(9):1093-8, September 1980.

W. E. Howden.
Life-Cycle Software Validation.
In Life-Cycle Management, State of the Art Report, pages 101-16,
1980.

W. E. Howden.
Life-Cycle Software Validation.
Computer, Vol.15(2):71-78, February 1982.

W. E. Howden and E. Miller.
A Survey of Static Analysis Methods.
Tutorial: Software Testing and Validation Techniques, IEEE,
1981, pages 101-15.

190

STEP - State-of-the•Art Overview

J. C. Huang.
An Approach to Program Testing.
ACM Computing Surveys, Vol.7(3):113-28, September 1975.

A. Lepper.
Testing Large-Scale Systems.
Computer Weekly (GB), Vol.16(383):6,16, March 7, 1974.

E. F. Miller, Jr.
Program Testing: Art Meets Theory.
Computer, Vol.10(7):42-51, July 1977.

C. V. Ramamoorthy, S. F. Ho, and H. H. So.
The Status and Structure of Software Testing Procedures.
Proceedings of COMPCON 77, February 28 - March 3, 1977, San
Francisco, CA, pages 367-9.

M. Schindler.
Software Practice -- A Scarce Art Struggles to Become a Science.
Electronic Design, pages 85-102, July 22, 1982.

P. Schmitz, R. Van Megen, and H. Bons.
Methods and Techniques of Dynamic Program Testing.
Practice in Software Adaption and Maintenance. Proceedings for
the SAM Workshop, April 5-6, 1979, Berlin, Germany, pages 209-21.

K. Schroeder.
The Ten Deadly Sins Against the Software Test.
Online-Adl-Nachr. (Germany), No.10:822-5, October 1977.

L. G. Stucki.
Tutorial on Program Testing Techniques.
Slide Masters, COMPSAC-77, November 8-11, 1977, Chicago, IL.

Z. Varkonyi.
Program Testing in the Light of Modern Program Development.
Inf. Elektron. (Hungary), Vol.10(2):134-42, 1975.

V. Zsolt.
Up to Date Methods and Means of Program Testing.
Inf. Elektron. (Hungary), Vol.13(5):276-83, 1978.

Detailed Articles

J. Allain.
Reliability Approach to Software.
Second International Conference on Reliability and
Maintainability, September 8-12, 1980, Tregastel, France, pages
60-6.

191

STEP - State-of-the-Art Overview

B. I. Blum.
The Life Cycle -- A Debate For Alternative Models
Software Engineering Notes, Vol. 7(12), 1982.

B. W. Boehm.
Software Engineering.
IEEE Transactions on Computers, Vol.C-25(12), December 1976.

E. M. Boehm, R. K. McClean, and D. D. Urfrig.
Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software.
IEEE Transactions on Software Engineering, Vol.SE-1:125-33, 1975.

B. Brehme, W. Pahlke, and M. Thomas.
Organisation for Testing in an OS/ES Installation.
Rechentech. Datenverarb. (Germany), Vol.13(1):21-4, January 1976.

R. A. Brook.
Progressive Integration of Hardware and Software.
IEEE Colloquium on Bringing Hardware and Software Together in
Microprocessor Systems, March 9, 1981, London, England.

J. C. Caille and J. Heller.
Tests in a Data Base Context.
Convention Informatique, September 20-24, 1976, Paris, France,
pages 26-8.

R. Carey and M. Benedic.
The Control of a Software Test Process.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 327-33.

B. A. Carre.
Software Validation. II. Semantic Analysis.
In Advanced Techniques for Microprocessor Systems, pages 119-25,
1980.

L. A. Clarke.
Testing - Achievements and Frustrations.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 310-4.

M. T. Compton.
Testing with Inspection Procedures (Computer Software).
Conference Digest of the International Electrical, Electronics
Conference and Exposition, October 2-4, 1979, Toronto, Canada,
pages 22-3.

•

192

STEP - State-of-the-Art Overview

L. H. Cooke, Jr.
Express Testing (Programs).
Datamation, Vol.24(9):219-22, September 1978.

D. W. Cooper.
Adaptive Testing.
Proceedin•s of the 2nd International Conference on Software
ngineering
	

cto er •, an rancisco, 	pages 02-5.

E. B. Daily.
Software Development.
P.Proceedings of Euro can Com utin Review, Infotech
nternationa , td., 9 .

R. V. Dmitrishin.
On the Testing of Optimization Programs.
Izv. Vuz Radioelectron. (USSR), Vol.21(6):106-9, June 1978.

E. G. Dupnick.
A Zero-One Integer Programming Solution for Determining the
Minimum Number of Test Cases Required for Fortran Program
Checkout.
Bulletin of the 0•erations Research Societ of America,

o .

J. W. Duran and S. Ntafos.
A Report on Random Testing.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 179-83.

J. O. Ellis.
A Methodology for Software Testing in the Material Acquisition
Process.
Proceedin•s of the Sixth Texas Conference on Com•utin. S stems,
ovem•er 	 niversity o exas
	

ustin,

W. R. Elmendorf.
Computer-Assisted Design of Program Test Libraries.
IBM Technical Disclosure Bulletin, Vol.16(3):804-7, August 1973.

A. Endres and W. Glatthaar.
A Complementary Approach to Program Analysis and Testing.
Information Systems Methodology, October 10-12, 1978, Venice,
Italy, pages 380-401.

The Evaluation and Organization of Software Testing.
Software World (GB), Vol.10(4):2-13, 1979.

193

STEP - State-of-the-Art Overview

M. E. Fagan.
Design and Code Inspections to Reduce Errors in Program
Development.
IBM Systems Journal, Vol.15(3):182-211, 1976.

R. E. Fairley.
Tutorial: Static Analysis and Dynamic Testing of Computer
Software.
Computer, Vol.11(4):14-23, April 1978.

J. Farradane and D. Thompson.
The Testing of Relational Indexing Procedures by Diagnostic
Computer Programs.
Journal of Information Science Principles and Practices
(Netherlands), Vol.Z(6):Z88-9/, December 1980.

L. D. Fosdick.
Detecting Errors in Programs.
Performance Evaluation of Numerical Software, December 11-15,
1978, Baden, Austria, pages 77-87.

W. B. Foss.
A Structured Approach to Computer Systems Testing.
Canadian Datasystems (Canada), Vol.9(8):28-9, 31-2, September
1977.

M. S. Fugi.
Independent Verification of Highly Reliable Programs.
Proceedings of COMPSAC 77, pages 38-44, IEEE, 1977.

J. Gannon, P. McMullin, R. Hamlet, and M. Ardis.
Testing Traversable Stacks.
SIGPLAN Notices, Vol.15(1):58-65, January 1980.

G. R. Gladden.
Stop the Life Cycle, I Want to Get Off.
Software Engineering Notes, Vol. 7(10), 1982.

R. L. Glass.
Persistent Software Errors.
IEEE Transactions on Software Engineering, Vol.SE-7(2):162-8,
March 1981.

A. L. Goel.
When to Stop Testing and Start Using Software?
Performance Evaluation Review, Vol.10(1):131-8, Spring 1981.

194

STEP - State-of-the-Art Overview

B. A. Goldman, R. S. Kilty, and J. J. Johnston.
Installation Testing with Software Systems.
I. Development of Test Software.
Western Electric Engineer, Vol.25(1):44-53, Winter 1981.

P. A. V. Hall.
In Defense of Life Cycles.
Software Engineering Notes, Vol.7(11), 1982.

T. G. Hallin and R. C. Hansen.
Toward a Better Method of Software Testing.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 153-7.

R. Hamlet.
Application of 'Dovetailing' to Program Testing.
SIGACT News, Vol.8(2):25-6, April-June 1976.

W. Harrison.
Testing Strategy (Programs).
Journal System Management, Vol.32(5):34-7, May 1981.

M. A. Hennell.
Management of Validation and Testing.
In Life-Cycle Management, State of the Art Report, pages 85-100,
1980.

M. A. Hennell, M. R. Woodward, and D. Hedley.
On Program Analysis.
Information Processing Letters (Netherlands), Vol.5(5):136-40,
November 1976.

M. A. Hennell, M. R. Woodward, and D. Hedley.
Towards More Advanced Testing Techniques.
Workshop on Reliable Software, September 22-23, 1978, Bonn,
Germany, pages 19-30.

W. Hock and K. Schittkowski.
Test Examples for Nonlinear Programming Codes.
Journal of Optimization Theory and Application, Vol.30(1):127-9,
January 198G.

H. Holighaus.
Direct Production and Testing of Programs.
Elektronik, Vol.26(5):57-8, May 1977.

R. House.
Comments on Program Specification and Testing.
Communications of the ACM, Vol.23(6):324-9, June 1980.

195

STEP - State-of-the-Art Overview

W. E. Howden.
Applicability of
Programs.
ACM Transactions
Vol.2(3):307-20,

Software Validation Techniques to Scientific

in Programming Languages and 5ystems,
July 1980.

W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions of Software Engineering, Vol.SE-2(3):208-14,
September 1976.

K. Kirchhof and H. Neunert.
The Controlled Program Test.
Online-Adl-Nachr. (Germany), Vol.13(6):425-9, June 1975.

J. W. Laski.
A Hierarchical Approach to Program Testing.
SIGPLAN Notices, Vol.15(1):77-85, January 1980.

R. Loeser and E. M. Gaposchkin.
The Second Law of Debugging.
Software Practice and Experience, Vol.6(4):577-8,
October-December 1976.

D. D. McCracken and M. A. Jackson.
Life Cycle Concept Considered Harmful.
Software Engineering Notes, Vol.7(10), 1982.

E. F. Miller, Jr.
Engineering Software for Testability.
10th IEEE Computer Society International Meeting on Computer
Technology to Reach the People, (Digest of Papers), February
Z5-2/, 19/6, San Francisco, CA, pages 1-10.

E. F. Miller, Jr.
Program Testing - An Overview for Managers.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 114-19.

M. Morelli.
Software Engineering Testing.
Manage. and Inf. (Italy), No.5:357-9, May 1980.

M. Morelli.
Software Reliability - Principles and Criteria for Online
Testing of the Software.
Manage. and Inf. (Italy), Vol.27(5):293-6, May 1978.

196

STEP - State-of-the-Art Overview

F. J. Mullin.
Software Test Management.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 321-6.

G. J. Myers.
A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections.
Communications of the ACM, Vol.21(9):760-88, 1978.

M. A. Neighbors.
Assuring Software Reliability.
Computer Decisions, Vol.8(12):44-6, December 1976.

D. Novak.
Detection of Errors in Software.
Mech. Autom. Adm. (Czechoslovakia), Vol.16(10):389, 1976.

D. Novak.
Strategy of Finding Errors in Programs.
Mech. Autom. Adm. (Czechoslovakia), Vol.19(2):55 -6, 1979.

L.M. Ottenstein.
Quantitative Estimates of Debugging Requirements.
IEEE Transactions on Software Engineering, Vol.SE-5(5):504-14,
September 1979.

M. Paige.
Cost-Effective Software Test Methodologies.
Conference Record of the Fourteenth Asilomar Conference on
Circuits, Systems and Computers, Pages 66-71, November 17-19,
1980, Pacific Grove, GA.

M. Paige.
Software Test Metrics.
Conference Record of the Thirteenth Asilomar Conference on
Circuits, Systems and Computers, November 5-7, 1979, Pacific
Grove, CA, pages 320-4.

M. R. Paige.
An Analytical Approach to Software Testing.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 527--32.

M. R. Paige.
Software Design for Testability.
Proceedings of the Eleventh Hawaii International Conference on
System sciences, January b-f), lylZ3, Honotuiu, -Hawali, pages
113-8.

197

STEP - State-of-the-Art Overview

M. R. Paige and M. A. Holthouse.
On Sizing Software Testing for Structured Program.
7th Annual International Conference on Fault-Tolerant Computing,
IEEE, June 28-30, 1977, Los Angeles, CA, page 217.

D. J. Panzl.
Automatic Revision of Formal Test Procedures.
Proceedings of the 3rd International Conference on Software
Engineering, May 1(1-14 19/6, Atlanta, GA, pages JZU-6.

M. P. Perriens.
An Application of Formal Inspections to Top-Down Structured
Program Development.
RADC-TR-77-212, IBM Federal Systems Division, Gaithersburg, MD,
1977, (NTIS AD/A-041645).

Program Writing and Testing.
Manage. and Inf. (Italy), No.7-8:433-8, July-August 1980.

A. Rathsack.
Fundamental Procedures for Program Testing.
Rechentech. Datenverarb. (Germany), Vol.10(12):37-9, December
1973.

J. Ronback.
Test Metrics for Software Quality.
Performance Evaluation Review, Vol.10(1):107, Spring 1981.

W. B. Samson.
Testing Overflow Algorithms for a Table of Variable Size.
Computer Journal (GB), Vol.19(1):92, February 1976.

L. L. Scharer.
Improving System Testing Techniques.
Datamation, Vol.23(9):115,117,120,124,128,132, September 1977.

N. F. Schneidewind.
Analysis of Error Processes in Computer Software.
Naval Postgraduate School, Monterey, CA, July 1974.

B. Shneiderman and D. McKay.
Experimental Investigations of Computer Program Debugging and
Modification.
Proceedings of the 6th Congress of the International Ergonomics
Association - Old World, New World, One World, and Technical
Program of the 29th Annual Meeting of the Human Factors Society,
July 1l-16, 19/6, College Park, MO, pages 55/-63.

198

STEP - State-of-the-Art Overview

M. L. Shooman and M. I. Bolsky.
Types, Distribution, and Test Correction Times for Programming
Errors.
SIGPLAN Notices, Vol.10(6):347-57, June 1975.

J. Simon.
A Comment on Do Traces.
SIGPLAN Notices, Vol.11(10):49-52, October 1976.

A. Smith.
Criteria for System Testing.
Computer Bulletin (GB), Ser.2(7):14-15, March 1976.

I. A. Smith.
Criteria for System Testing.
In Software Engineering Techniques, State of the Art Report,
pages 3I9-Z5, 1977.

R. J. Smolenski.
Test Plan Development.
Journal of System Management, Vol.32(2):32-7, February 1981.

H. M. Sneed.
Systematic Program Testing is a Tedious Business.
Online-Adl-Nachr. (Germany), No.11:904-8, November 1978.

The Software Design and Testing.
Manage. and Inf. (Italy), No.7-8:433-8, July-August 1980.

S. L. Squires, M. Zelkowitz, and M. Branstad.
Rapid Prototyping Workshop: An Overview.
Software Engineering Notes, Vol.7(11), 1982.

D. Teichrow and E. A. Hershey, III.
PSL/PSA: A Computer Aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering, Vol.SE-3(1):41-8,
January 19/I.

H. Trauboth.
Software Testing and Validation Techniques for Highly Reliable
Process-Information Systems.
In Computer Audit and Control - State of the Art Report, pages
203-29, 1980.

Z. Varkonyi.
Problems of Program Quality Testing.
Inf. Elektron. (Hungary), Vol.12(5):258-63, 1977.

199

STEP - State-of-the-Art Overview

D. A. Walsh.
Structured Test Design for More Reliable Structured Cobol
Programs.
Proceedings of the Online Conference on Pragmatic Programming
and Sensible Software, February 1978, London, England, pages
471-89.

D. A. Walsh.
Structured Test Plans for Effective Product Test.
Software World (GB), Vol.9(2):2-8, 1978.

D. A. Walsh.
Structured Testing.
Datamation, Vol.23(7):111-4, 116-8, July 1977.

D. A. Walsh.
The Structured Test of Cobol Programs.
Sist. and Autom. (Italy), Vol.25(196):591-600, September 1979.

J. Warnke.
Diagnostic Functions and Test Programs.
Rechentech. Datenverarg. (Germany), Vol.18(2):28-31, February
1981.

A. I. Wasserman.
Testing and Verification Aspects of Pascal-Like Languages.
Computer Languages (GB), Vol.4(3-4):155-69, 1979.

J. Weinberg.
Attacking those Program Errors.
Datalink (GB), Vol.13, July 30, 1979.

A. Westley.
Software Testing - Planning Your Moves.
Data Processing (GB), Vol.21(5):12-4, May 1979.

T. J. Wheeler.
Embedded System Design with Ada as the System Design Language.
Journal of Systems and Software, Vol.2(1):11-22, February 1981.

B. H. Yin.
Software Design Testability Analysis.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 7Z9-34.

P. M. Zislis.
Semantic Decomposition of Computer Programs: An Aid to Program
Testing.
Acta Informatica (Germany), Vol.4(3):245-69, 1975.

200

STEP - State-of-the-Art Overview

2.2. TESTING TECHNIQUES

2.2.1. STATIC ANALYSIS TECHNIQUES

Books

M. S. Deutsch.
Software Verification and Validation Realistic Project
pproac es.

Prentice-Ffall, Inc., Englewood Cliffs, NJ, 1982.

R. Dunn and R. Ullman.
Quality Assurance for Computer Software.
McGraw Hill Book Company, New York, 1982.

R. Glass.
Software Reliability Guidebook.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

G. J. Myers.
The Art of Software Testing.
John Wiley b Sons, New York, 1979.

Survey Articles

M. E. Fagan.
Design and Code Inspections to Reduce Errors in Program
Development.
IBM Systems Journal, Vol.15(3):182-211, 1976.

R. E. Fairley.
Tutorial: Static Analysis and Dynamic Testing of Computer
Software.
Computer, Vol.11(4):14-23, April 1978.

W. E. Howden and E. Miller.
A Survey of Static Analysis Methods.
Tutorial: Software Testing and Validation Techniques, IEEE,
1981, pages 101-15.

Detailed Articles

V. R. Basili and D. M. Weiss.
Evaluation of a Software Requirements Document by Analysis of
Change Data.
Proceedings of the 5th International Conference on Software
Engineering, March 1981, pages 314-324.

201

STEP - State-of-the-Art Overview

E. M. Boehm, R. K. McClean, and D. D. Urfrig.
Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software.
IEEE Transactions on Software Engineering, Vol.SE-1:125-33, 1975.

S. H. Caine and E. K. Gordon.
PDL -- A Tool for Software Development.
National Computer Conference, AFIPS Proceedings, 1975.

T. E. Cheatham, Jr. and J. A. Townley.
Program Analysis Techniques for Software Reliability.
Workshop on Reliable Software, September 22-23, 1978, Bonn,
Germany, pages 9-17.

E. B. Daily.
Software Development.
Proceedings of European Computing Review, Infotech
International, Ltd., 19/b.

M. E. Fagan.
Design and Code Inspections in the Development of Programs.
1975 International Symposium on Fault-Tolerant Computing.
Digest of Papers, June 18-20, 1975, Paris, France, page 248.

M. E. Fagan.
Design and Code Inspections to Reduce Errors in Program
Development.
IBM Systems Journal, Vol.15(3):182-211, 1976.

M. E. Fagan.
Inspecting Software Design and Code.
Datamation, Vol.23(10):133-44, October 1977.

M. S. Fugi.
Independent Verification of Highly Reliable Programs.
Proceedings of COMPSAC 77, pages 38-44, IEEE, 1977.

C. Gannon.
Error Detection Using Path Testing and Static Analysis.
Computer, Vol.12(8):26-32, August 1979.

F.J. Hill and B. Huey.
A Design Language Approach to Test Sequence Generation.
Computer, Vol.10(6):28-34, June 1977.

M. Ibramsha and V. Rajaraman.
Detection of Logical Errors in Decision Table Programs.
Communications of the ACM, Vol.21(12):1016-25, December 1978.

202

STEP - State-of-the-Art Overview

R. S. Lemos.
An Implementation of Structured Walk-Throughs in Teaching
Cobol Programming.
Communications of the ACM, Vol.22(6):335-40, June 1979.

G. J. Myers.
A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections.
Communications of the ACM, Vol.21(9):760-88, September 1978.

G. J. Myers.
Program Design Validation System.
IBM Technical Disclosure Bulletin, Vol.19(10):3806-8, March 1977.

L. J. Osterweil.
The Detection of Unexecutable Program Paths Through Static Data
Flow Analysis.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 406-13.

M. P. Perriens.
An Application of Formal Inspections to Top-Down Structured
Program Development.
RADC-TR-77-212, IBM Federal Systems Division, Gaithersburg, MD,
1977, (NTIS AD/A-041645).

R. H. Perrott and A. K. Raja.
Quasiparallel Tracing.
Software Practice and Experience, Vol.7(4):483-92, July-August
19/1.

S. Pimont and J. C. Rault.
A Software Reliability Assessment Based on a Structural and
Behavioral Analysis of Programs.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, T916, San Francisco, CA, pages
486-91.

S. K. Robinson and I. S. Torsun.
An Empirical Analysis of Fortran Programs.
Computer Journal (GB), Vol.19(1):56-62, February 1976.

R. N. Taylor and L. J. Osterweil.
Anomaly Detection in Concurrent Software by Static Data Flow
Analysis.
IEEE Transactions on Software Engineering, Vol.SE-6(3):278-285,
May 198U.

203

STEP - State-of-the-Art Overview

D. Teichrow and E. A. Hershey, III.
PSL/PSA: A Computer-aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering, Vol.SE-3(1):41-8,
January 1977.

D. Vitas.
On the Automatic Analysis of the Structure of Fortran Programs.
Informatica 78 XIII Yugoslav International Symposium on
Information Processing, October 2-7, 1978, Bled, Yugoslavia.

I. K. Wendel and R. L. Kleir.
Fortran Error Detection through Static Analysis.
Software Engineering Notes, Vol.2(3):22-8, March 1977.

M. R. Woodward, M. A. Hennell, and D. Hedley.
A Measure of Control Flow Complexity in Program Text.
IEEE Transactions on Software Engineering, Vol.SE-5(1):45-50,
January 1979.

204

STEP - State-of-the-Art Overview

2.2.2. SYMBOLIC TESTING

Survey Articles

T. E. Cheatham, Jr., G. H. Holloway, and J. A. Townley.
Symbolic Evaluation and the Analysis of Programs.
IEEE Transactions on Software Engineering, Vol.SE-5(4):402-17,
July 19/9.

J. A. Darringer and J. C. King.
Application of Symbolic Execution to Program Testing.
Computer, Vol.11(4):51-60, April 1978.

J. C. Huang.
An Approach to Program Testing.
ACM Computing Surveys, Vol.7(3):113-28, September 1975.

Detailed Articles

S. Bologna.
TEVERE-1: A Software System for Program Testing and Verification.
AICA 79 Conference, October 10-13, 1979, Bari, Italy, pages 71-8.

Y. V. Borzov.
Program Testing Using Symbolic Execution.
Programming and Computer Software, Vol.16:39-45, 1980.

R. S. Boyer, B. Elspas, and K. N. Levitt.
SELECT - A Formal System for Testing and Debugging Programs by
Symbolic Execution.
SIGPLAN Notices, Vol.10(6):234-45, June 1975.

L. Clarke.
Test Data Generation and Symbolic Execution as an Aid in
Software Validation.
Computer Science Conference, February 18-20, 1975, Washington,
DC, page 41.

L. A. Clarke.
A System to Generate Test Data and Symbolically Execute Programs.
IEEE Transactions on Software Engineering, Vol.SE-2(3):215-22,
September 1976.

J. A. Darringer.
The Use of Symbolic Execution in Program Testing.
In Infotech State of the Art Report, Software Testing, Volume
2: Invited Papers, pages 67-85.
Infotech International, 1979.

205

STEP - State-of-the-Art Overview

C. Ghezzi and M. Jazayeri.
Syntax Directed Symbolic Execution.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 53g-45.

S. L. Hantler.
The Relation Between Symbolic Program Testing and Program
Verification.
Computer Science Conference, February 18-20, 1975, Washington,
DC, page 41.

J. Horejs.
Finite Semantics - A Technique for Program Testing.
Proceedings of the 4th International Conference on Software
Engineering, September 11-29, 1919, Munich, Germany, pages
433-40.

W. E. Howden.
An Evaluation of the Effectiveness of Symbolic Testing.
Software Practice and Experience, Vol.8(4):381-97,
duly - August 1915.

W. E. Howden.
Experiments with a Symbolic Evaluation System.
National Computer Conference, AFIPS Proceedings, June 1976,
pages 899-908.

W. E. Howden.
Lindenmayer Grammars and Symbolic Testing.
Information Processing Letters (Netherlands), Vol.7(1):36-9,
January 12, 1978.

W. E. Howden.
Reliability of Symbolic Evaluation.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 44Z-1.

W. E. Howden.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering, Vol.SE-3(4):276-78,
July 1977.

W. E. Howden.
Symbolic Testing - Design Techniques, Costs and Effectiveness.
NBS Report GCR77-89, National Bureau of Standards, Springfield,
VA, 1977, (NTIS PB268517).

206

STEP - State-of-the-Art Overview

J. C. Huang.
A Method for Program Analysis and
Program-Correctness Problems.
International Journal of Computer
June 1916.

Its Applications to

Mathematics, Vol.5(3):203-27,

J. C. King.
A New Approach to Program Testing.
SIGPLAN Notices, Vol.10(6):228-33, June 1975.

J. C. King.
Program Testing by Symbolic Execution.
Computer Science Conference, February 18-20, 1975, Washington,
DC, page 41.

J. C. King.
Symbolic Execution and Program Testing.
Communications of the ACM, Vol.19(7):385-94, July 1976.

D. Matuszek.
The Case for the Assert Statement.
SIGPLAN Notices, Vol.11(8):36-7, August 1976.

R. W. Topor and R. M. Burstall.
Verification of Programs by Symbolic Execution - Progress Report.
Unpublished Report, Department of Machine Intelligence,
University of Edinburg, Scotland, December 1972.

207

STEP - State-of-the-Art Overview

2.2.3. PROGRAM INSTRUMENTATION

Books

R. Glass.
Software Reliability Guidebook.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography.
I nfotech International, 1979.

G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

Survey Articles

J. B. Goodenough and S. L. Gerhart.
Toward a Theory of Test Data Selection.
IEEE Transactions on Software Engineering, Vol.SE-1(2):156-73,
June 1975.

J. C. Huang.
Program Instrumentation.
In Infotech State of the Art Report, Software Testing,
Volume 1: Analysis and Bibliography, pages 144-50.
intotech International, 19/9.

J. C. Huang.
Program Instrumentation and Software Testing.
Computer, Vol.11(4):25-31, April 1978.

L. G. Stucki.
Tutorial on Program Testing Techniques.
Slide Masters, COMPSAC-77, November 8-11, 1977, Chicago, IL.

Detailed Articles

J. M. Adams.
Experiments on the Utility of Assertions for Debugging.
Proceedings Eleventh Hawaii International Conference on System
Science, Ronolulu, HI, January 1978, pages 31-9.

D. M. Andrews.
Using Executable Assertions for Testing and Fault Tolerance.
Ninth Annual International Symposium on Fault-Tolerant
Computing, June 20 -2Z, 19/9, Madison, WI, pages 102 - b.

208

STEP - State-of-the-Art Overview

D. M. Andrews and J. P. Benson.
Using Executable Assertions for Testing.
Conference Record of the Thirteenth Asilomar Conference on
Circuits, Systems and Computers,75iiber 5-7, 1979, Pacific
Grove, CA, pages 302-b.

Automated Testing Analyzer for Cobol.
Software Technology Center, Science Applications, Inc.,
San Francisco, CA, April 1976.

T. L. Booth, R. Ammar, and R. Lenk.
An Instrumentation System to Measure User Performance in
Interactive Systems.
Journal of Systems and Software, Vol.2(2):139-46, June 1981.

T. S. Chow.
A Generalized Assertion Language.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages 392-9.

R. E. Fairley.
Tutorial: Static Analysis and Dynamic Testing of Computer
Software.
Computer, Vol.11(4):14-23, April 1978.

J. C. Huang.
Detection of Data Flow Anomaly Through Program Instrumentation.
IEEE Transactions on Software Emineerina, Vol.SE-5(3):226-36,
May 1979.

J. C. Huang.
Instrumenting Programs for Symbolic-Trace Generation.
Computer, Vol.13(12):17-23, December 1980.

J. C. Huang.
Program Instrumentation: A Tool for Software Testing.
In Infotech State of the Art Report, Software Testing,
Volume 2: Invited Papers, pages 147-59. Infotech
International, 19/9.

M. A. Malik.
An Assertion Language for the Annotation of Program Modules.
Australian Computer Science Community (Australia),
VoT.2(2):217-38, March 1980.

D. Matuszek.
The Case for the Assert Statement.
SIGPLAN Notices, Vol.11(8):36-7, August 1976.

209

STEP - State-of-the-Art Overview

R. L. Probert.
Optimal Insertion of Software Probes in Well-Delimited Programs.
IEEE Transactions on Software Engineering, Vol.SE-8(1):34-42,
January 1982.

C. V. Ramamoorthy and K. H. Kim.
Software Monitors Aiding Systematic Testing and Their Optimal
P1 acement.
Proceedings of the 1st National Conference on Software
Engineering, September 11-12, 1975, Washington, DC, pages 21-6.

C. V. Ramamoorthy, K. H. Kim, and W. T. Chen.
Optimal Placement of Software Monitors Aiding Systematic Testing.
IEEE Transactions on Software Engineering, Vol.SE-1(4):403-11,
December 1975.

S. H. Saib.
Executable Assertions - An Aid to Reliable Software.
Proceedings Eleventh Annual Asilomar Conference on Circuits,
Systems, and Computers, November 1977, Pacific Grove, CA, pages
27/-281.

L. G. Stucki.
New Directions in Automated Tools for Improving Software
Quality.
In Current Trends in Programming Methodology, Volume II:
Program Validation, R. T. Yeh, Editor, pages 80-111.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1977.

L. G. Stucki and G. L. Foshee.
New Assertion Concepts for Self-Metric Software Validation.
Proceedings of IEEE Conference on Reliable Software, April 1975,
Los Angeles, LA, pages b9-bb.

R. N. Taylor.
Assertions in Programming Languages.
SIGPLAN Notices, Vol.15(1):58-55, January 1980.

User's Manual, Fortran Automated Verification System (FAVS),
Volume 1.
General Research Corporation, Santa Barbara, CA, January 1979.

210

STEP - State-of-the-Art Overview

2.2.4. PROGRAM MUTATION TESTING

Books

A. T. Acree.
On Mutation.
Ph.D. Thesis, Georgia Institute of Technology, 1980.

T. A. Budd.
Mutation Analysis of Program Test Data.
Ph.D. Thesis, YaTe University, 1980.

R. A. DeMillo.
Program Mutation: An Approach to Software Testing.
Report GIT/ICS-83-03, Georgia Institute of Technology,
January 1983.

J. Gourlay.
Theory of Testing Computer Programs.
Ph.D. Thesis, University of Michigan, 1981.

Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography.
Infotech International, 1979.

Survey Articles

T. A. Budd.
Mutation Analysis: Ideas, Examples, Problems and Prospects.
In Computer Program Testing, B. Chandrasekaran and S. Radicchi,
Editors. North-Holland, 1981.

R. A. DeMillo.
Mutation Analysis as a Tool For Software Quality Assurance.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on Test Data Selection: Help for the Practicing Programmer.
Computer, Vol.11(4):34-41, April 1978.

R. J. Lipton and F. G. Sayward.
The Status of Research on Program Mutation.
Digest for the Workshop on Software Testing and Test
Documentation, Ft. Lauderdale, FL, 1978, pages 355-73.

211

STEP - State-of-the-Art Overview

Detailed Articles

A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton and F. G.
Sayward.
Mutation Analysis.
Report GIT/ICS-79-08, Georgia Institute of Technology, 1979.

V. K. Agarwall and G. M. Masson.
Recursive Coverage Projection of Test Sets.
IEEE Transactions on Computers, Vol.C-28(11): 865-70, November
1979.

D. Baldwin and F. Sayward.
Heuristics for Determining Equivalence of Program Mutations.
Technical Report 161, Yale University, 1979.

M. Brooks.
Testing, Tracing, and Debugging Recursive Programs Having Simple
Errors.
Department of Computer Science, Stanford University, 1980.

T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
The Design of a Prototype Mutation System for Program Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:623-7,
1978. Also reprinted in Tutorial: Automated Tools for Software
Engineering, E. F. Miller, Editor, IEEE Computer Society, 1979.

T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Theoretical and Empirical Studies on Using Program Mutation to
Test the Functional Correctness of Program.
7th ACM Symposium on Principles of Programming Languages,
January 1980.

T. A. Budd and W. C. Miller.
Detecting Typographical Errors in Numerical Programs.
University of Arizona, Tuscon, AZ, 1982.

J. Burns.
Stability of Test Data from Program Mutation.
Digest for the Workshop on Software Testing and Test
Documentation, Ft. Lauderdale, 1978, pages 324-34.

R. A. DeMillo, D. Hocking, and M. J. Merritt.
A Comparison of Some Reliable Test Data Generation Procedures.
Report GIT/ICS-81-08, Georgia Institute of Technology, 1981.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Program Mutation: A New Approach to Program Testing.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 107-26.
Infotech International, 1979.

212

STEP - State-of-the-Art Overview

R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Program Mutation as a Tool for Managing Large-Scale Software
Development.
1978 ASQC Technical Conference Transactions, American Society
for Quality Control Engineers, Chicago, 1978.

K. A. Foster.
Error Sensitive Test Cases Analysis (ESTCA).
IEEE Transactions on Software Egaineering, Vol.SE-6(3):258-64,
RiYTWO.

R. G. Hamlet.
Testing Programs with the Aid of a Compiler.
IEEE Transactions on Software Engineering, Vol.SE-3(4):279-90,
July 1977.

J. M. Hanks.
Testing Cobol Programs by Mutation: Volume I - Introduction to
the CMS.1 System, Volume II - CMS.1 System Documentation.
Report GIT/ICS-80-04, Georgia Institute of Technology, 1980.

W. E. Howden.
Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering, Vol.SE-8(4):371-9,
ITITTg82.

M. Morelli.
Software Engineering Testing.
Manage. and Inf. (Italy), No.5:357-9, May 1980.

S. C. Ntafos.
On Required Element Testing.
Proceedings of COMPSAC 81.

D. L. Ostapko and S-J. Hong.
Fault Analysis and Test Generation for Programmable Logic Arrays
(PLA's).
IEEE Transactions on Computers, Vol.C-28(9):617-27, September
19/9.

I. J. Riddle, J. A. Hennel, M. R. Woodward, and D. Hedley.
Practical Aspects of Program Mutation.
University of Nottingham, Nottingham, UK.

A. Tanaka.
Equivalence Testing for Fortran Mutation System Using Data Flow
Analysis.
Department of Information and Computer Science, Georgia
Institute of Technology, 1981.

213

STEP - State-of-the-Art Overview

E. J. Weyuker and T. J. Ostrand.
Theories of Program Testing and the Application of Revealing
Subdomains.
IEEE Transactions on Software Engineering, Vol.SE-6(3):236-46,
May 1980.

M. R. Woodward, M. A. Hennell, and D. Hedley.
A Limited Mutation Approach to Program Testing.
University of Nottingham, Nottingham, UK, 1980.

214

STEP - State-of-the-Art Overview

2.2.5. INPUT SPACE PARTITIONING

Detailed Articles

B. A. Carre.
Software Validation. I. Control Flow and Data Flow Analysis.
Advanced Techniques for Microprocessor Systems, pages 112-8,
1980.

J. C. Cherniaysky.
On Finding Test Data Sets for Loop Free Programs.
Information Processing Letters (Netherlands), Vol.8(2):106-7,
February 15, MY.

L. A. Clarke, J. Hassell, and D. J. Richardson.
A Close Look at Domain Testing.
IEEE Transactions on Software Engineering, Vol.SE-8(4):380-90,
July 1982.

R. A. DeMillo, E. D. Hocking, and M. J. Merritt.
A Comparison of Some Reliable Test Data Generation Procedures.
Report GIT/ICS-81-08, Georgia Institute of Technology, April
1981.

H. N. Gabow, S. N. Maheshwari, and L. J. Osterweil.
On Two Problems in the Generation of Program Test Paths.
IEEE Transactions on Software Engineering, Vol.SE-2(3):227-31,
September Mb.

C. Gannon.
Error Detection Using Path Testing and Static Analysis.
Computer, Vol.12(8):26-32, August 1979.

W. E. Howden.
Applicability of Software Validation Techniques to Scientific
Programs.
Transactions on Pro mom Lan ua es and S stems,
o. 	 , u y

W. E. Howden.
Methodology for the Generation of Program Test Data.
IEEE Transactions on Computers, Vol.C-24(5):208-14, May 1975.

W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, Vol.SE-2(3):208-14,
September 1976.

215

STEP - State-of-the-Art Overview

S. C. Ntafos and S. L. Hakimi.
On Path Cover Problems in Digraphs and Applications to Program
Testing.
IEEE Transactions on Software Engineering, Vol.SE-5(5):520-9,
September 1979.

S. C. Ntafos and S. L. Hakimi.
On Structured Digraphs and Program Testing.
IEEE Transactions on Computers, Vol.C-30(1):67-71, January 1981.

D. J. Richardson and L. A. Clarke.
A Partition Analysis Method to Increase Program Reliability.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 244-53.

E. J. Weyuker and T. J. Ostrand.
Theories of Program Testing and the Application of Revealing
Subdomains.
IEEE Transactions on Software Engineering, Vol.SE-6(3):236-46,
May 1980.

L. J. White and E. I. Cohen.
A Domain Strategy for Computer Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-6(3):247-57,
May 1-9E1U.

L. J. White, F. C. Teng, H. Kuo, and D. Coleman.
An Error Analysis of the Domain Testing Strategy.
Technical Report 78-2, Computer Information Science Research
Center, Ohio State University, Columbus, September 1978.

G. R. Wilmot.
Wrong Branch, Wrong Store Program Error Detection.
IBM Technical Disclosure Bulletin, Vol.16(7):2122, December 1973.

M. R. Woodward, D. Hedley, and M. A. Hennell.
Experience with Path Analysis and Testing of Programs.
IEEE Transactions on Software Engineering, Vol.SE-6(3):278-85,
May T980.

S. J. Zeil and L. J. White.
Sufficient Test Sets for Path Analysis Testing Strategies.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 184-91.

216

STEP - State-of-the-Art Overview

2.2.6. FUNCTIONAL PROGRAM TESTING

Books

M. Jackson.
Principles of Program Design.
Academic, London, 1975.

E. Yourdan and L. L. Constantine.
Structured Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

Survey Articles

J. Goodenough and S. L. Gerhart.
Toward a Theory of Test Data Selection.
IEEE Transactions on Software Engineerim, Vol.SE-1(2):156-73,
unnee 1975.

W. E. Howden.
Functional Program Testing.
IEEE Transactions on Software Engineerm, Vol.SE-6(2):162-9,
March 1980.

Detailed Articles

M. W. Alford.
A Requirements Engineering Methodology for Real-time Processing
Requirements.
IEEE Transactions on Software Engineering, Vol.SE-3(1):60-8,
January 19/I.

W. E. Howden.
An Analysis of Software Validation Techniques for Scientific
Programs.
Report No. DM-171-IR, Department of Mathematics, University of
Victoria, March 1979.

W. E. Howden.
Applicability of
Programs.
ACM Transactions
Vol.2(3):307-20,

Software Validation Techniques to Scientific

in Programming Languages and Systems,
July 1980.

W. E. Howden.
Completeness Criteria for Testing Elementary Program Functions.
Proceedings of the 5th International Conference on Software
Engineering, March 9T2, 1981, San Diego, CA, pages 235-43.

217

STEP - State-of-the-Art Overview

W. E. Howden.
Functional Testing and Design Abstractions.
The Journal of Systems and Software, Vol.l(4):307-13, January
1980.

M. Karpovsky.
Testing for Numerical Computations.
IEEE Proceedings, Vol.127(2):69-76, March 1980.

G. E. Miller.
Functional Test Completeness.
New Electronics (GB), Vol.12(2):30,33-4, December 23, 1979.

J. J. More, B. S. Garbow, and K. E. Killstrom.
Testing Unconstrained Optimization Software.
ACM Transactions Mathematical Software, Vol.7(1):17-41, March
1981.

L. J. Osterweil and L. D. Fosdick.
Simulated Program Execution as a Strategy for Error Detection
and Validation.
Proceedingsof the 1976 Summer Computer Simulation Conference,
July 12-14, 1976, Washington, DC, pages 704-7.

R. H. Wampler.
Problems Used in Testing the Efficiency and Accuracy of the
Modified Gram-Schmidt Least Squares Algorithm.
National Bureau of Standards, Washington, DC, August 1980.

218

STEP - State-of-the-Art Overview

2.2.7. ALGEBRAIC PROGRAM TESTING

Books

B. F. Caviness.
On Canonical Forms and Simplification.
Ph.D. Thesis, Carnegie-Mellon University, 1968.

Detailed Articles

J. C. Cherniaysky.
On Finding Test Data Sets for Loop Free Programs.
Information Processin Letters (Netherlands), Vol.8(2):106-7,
ebruary

R. A. DeMillo and R. J. Lipton.
A Probabilistic Remark on Algebraic Program Testing.
Information Processing Letters (Netherlands), Vol.7(4):193-5,
June 19/8.

M. Geller.
Test Data as an Aid in Proving Program Correctness.
Proceedings of Second Symposium on Principles of Programming
Languages, pages 209-T8. ACM Publications, New York, 1976.

R. Hamlet.
Testing Programs with Finite Sets of Data.
Computer Journal, Vol.20(3):232-7, March 1977.

W. E. Howden.
Algebraic Program Testing.
Acta Informatica (Germany), Vol.10(1):53-66, 1978.

W. E. Howden.
Elementary Algebraic Program Testing Techniques.
Computer Science Technical Report 12, Applied Physics and
Information Sciences, University of California, San Diego, CA,
1976.

Y. Isomoto and Y. Goto.
Test Method of a Computer Program for Eigenvalue Equations.
Information Processing Society of Japan (Joho Shori) (Japan),
1/01.16011:957-7J, 19/5.

J. H. Rowland and P. J. Davis.
On the Selection of Test Data for Recursive Mathematical
Subroutines.
SIAM Journal Computers, Vol.10(1):59-72, February 1981.

219

STEP - State-of-the-Art Overview

J. H. Rowland and P. J. Davis.
On the Use of Transcendentals for Program Testing.
Journal of the Association for Computing Machinery,
Vol.28(1):181-90, January 1981.

220

STEP - State-of-the-Art Overview

2.2.8. RANDOM TESTING

Detailed Articles

J. M. Barzdin, J. J. Bicevskis, and A. A. Kalninsh.
Construction of Complete Sample System for Correctness Testing.
Mathematical Foundations of Computer Science, September 1-5,
19/b, Marianske Lazne, Lzecnosiovakia, pages 1-12.

J. W. Duran and S. Ntafos.
A Report on Random Testing.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 179-83.

J. W. Duran and J. J. Wiorkowski.
Capture-Recapture Sampling for Estimating Software Error Content.
IEEE Transactions on Software Engineering, Vol.SE-7(1):147-8,
January 1981.

J. W. Duran and J. J. Wiorkowski.
Quantifying Software Validity by Sampling.
IEEE Transactions on Reliability, Vol.R-29(2):141-4, June 1980.

E. H. Forman and N. D. Singpurwalla.
Optimal Time Intervals for Testing Hypotheses on Computer
Software Errors.
IEEE Transactions on Reliability, Vol.R-28(3):250-3, August 1979.

S. F. Lundstrom.
Adaptive Random Data Generation for Computer Software Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:505-12,
1978.

P. B. Moranda.
Limits to Program Testing with Random Number Inputs.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 521-6.

P. B. Moranda.
Prediction of Software Reliability During Debugging.
Proceedings of the 1975 Annual Reliability and Maintainability
Symposium, January 28-30, 1975, Washington, DC, pages 327-32.

221

STEP - State-of-the-Art Overview

2.2.9. GRAMMAR-BASED TESTING

Detailed Articles

J. A. Bauer and A. B. Finger.
Test Plan Generation Using Formal Grammars.
Proceedings of the 4th International Conference on Software
Engineering, September 19/9.

T. S. Chow.
Testing Software Design Modeled by Finite State Machines.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 58-64. Also printed in IEEE Transactions on Software
Engineering, Vol.SE-4(3):178-8b, May 19/d.

A. M. Davis and W. J. Rataj.
Requirements Language Processing for the Effective Testing of
Real-Time Systems.
Software Engineering Notes, Vol.3(5), November 1978.

A. M. Davis and T. G. Rauscher.
Formal Techniques and Automatic Processing to Ensure Correctness
in Requirements Specifications.
Proceedings of the Specifications of Reliable Software
Conference, April 3-5, 1979, Cambridge, MA.

A. G. Duncan and J. S. Hutchison.
Using Attribute Grammars to Test Designs and Implementations.
Proceedings of the 5th International Conference on Software
Engineering, March 1981.

D. R. Milton and D. N. Fischer.
LL(k) Parsing for Attribute Grammars.
Proceedings of the 6th International Colloquium on Automata,
Languages and Programming, July 1979.

A. J. Payne.
A Formalized Technique for Expressing Compiler Exercisers.
SIGPLAN Notices, Vol. 13(1), January 1978.

222

STEP - State-of-the-Art Overview

2.2.10. DATA-FLOW GUIDED TESTING

Survey Articles

L. D. Fosdick and L. J. Osterweil.
Data Flow Analysis in Software Reliability.
ACM Computer Surveys, Vol.8(3):305-330, September 1976.

W. E. Howden.
A Survey of Static Analysis Methods.
In Tutorial: Software Testing & Validation Techniques, E.
Miller and W. E. Howden, Editors, pages 101-15.
IEEE, 1981.

Detailed Articles

F. E. Allen.
Interprocedural Data Flow Analysis.
Proceedings of the IFIP Congress 1974, pages 398-402, North
Holland Publishers, Amsterdam, 1974.

F. E. Allen and J. Cocke.
A Program Data Flow Analysis Procedure.
Communications of the ACM, Vol.19(3):137-47, March 1976.

B. A. Carre.
Software Validation.
I. Control Flow and Data Flow Analysis.
Advanced Techniques for Microprocessor Systems, pages 112-8,
I9BU.

P. M. Herman.
A Data Flow Analysis Approach to
Australian Computer Journal, Vol

J. C. Huang.
Instrumenting Programs for Data
Technical Report TR-UH-CS-77-4,

Program Testing.
.8(3):92-6, November 1976.

Flow Analysis.
University of Houston, May 1977.

J. Laski.
On Data Flow Guided Program Testing.
SIGPLAN Notices, Vol.17(9), September 1982.

L. J. Osterweil.
The Detection of Unexecutable Program Paths Through Static Data
Flow Analysis.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 406-13.

223

STEP - State-of-the-Art Overview

L. J. Osterweil and L. D. Fosdick.
Data Flow Analysis as an Aid in Documentation, Assertion
Generation, Validation, and Error Detection.
University of Colorado, Boulder, CO, September 1974.

M. Paige.
Data Space Testing.
Performance Evaluation Review, Vol.10(1):117-27, Spring 1981.

R. N. Taylor and L. J. Osterweil.
Anomaly Detection in Concurrent Software by Static Data Flow
Analysis.
IEEE Transactions on Software Engineering, Vol.SE-6(3):265-76,
May 1980.

224

STEP - State-of-the-Art Overview

2.2.11. COMPILER TESTING

Detailed Articles

P. W. Abrahams and L. A. Clarke.
Compile-Time Analysis of Data List-Format List Correspondences.
IEEE Transactions on Software Engineering, Vol.SE-5(6):612-7,
November 19/9.

F. Bazzichi and I. Spadafora.
An Automatic Generator for Compiler Testing.
IEEE Transactions on Software Engineering, Vol.SE-8(4):343-53,
July 1982.

Federal Compiler Testing Center.
Report FCTC-81-40, Falls Church, VA.

Federal Compiler Testing Center.
Report FCTC-81-106, Falls Church, VA.

Federal Compiler Testing Center.
Report FCTC-81-112, Falls Church, VA.

Federal Compiler Testing Center.
Report FCTC-81-115, Falls Church, VA.

Federal Compiler Testing Center.
Report FCTC-81-118, Falls Church, VA.

Federal Compiler Testing Center.
Report FCTC-81-135, Falls Church, VA.

Federal Compiler Testing Center.
Report FCTC-81-146, Falls Church, VA.

W. H. Harrison.
Compiler Analysis of the Value Ranges for Variables.
IEEE Transactions on Software Engineering, Vol.SE-3(3):243-9,
May 1977.

W. Miller and D. L. Spooner.
Automatic Generation of Floating-Point Test Data.
IEEE Transactions on Software Engineering, Vol.SE-2(3):223-6,
September 197b.

A. J. Payne.
A Formalized Technique for Expressing Compiler Exercisers.
SIGPLAN Notices, Vol.13(1), 1978.

225

STEP - State-of-the-Art Overview

P. A. Pravil-Shchikov and V. S. Shchepin.
Compilation of Structural Programs in a Dialogue Mode with
Concurrent Test Generation.
Avtom. and Telemekh. (USSR), Vol.40(8):129-38, August 1979.

H. Samet.
A Machine Description Facility for Compiler Testing.
IEEE Transactions on Software Engineering, Vol. SE-3(5):343-51,
September P9//.

R. S. Scowen.
Testing the Diagnostic Features of the Babel Compiler.
National Physics Laboratory, Teddington, England, September 1974.

R. P. Seaman.
Testing Compiler Operations.
IBM Technical Disclosure Bulletin, Vol.17(11):3345, April 1975.

A. I. Wasserman.
Some Testing and Verification Issues in the Design of
Pascal-Like Languages.
3rd USA-Japan Computer Conference Proceedings, October 10-12,
1978, San Francisco, CA, pages 280-5.

B. A. Wichmann and B. Jones.
Testing Algol 60 Compilers.
Software Practice and Experience, Vol.6(2):261-70, April-June
1976.

226

STEP - State-of-the-Art Overview

2.2.12. REAL-TIME SOFTWARE AND TESTING

Survey Articles

W. Geiger, L. Gmeiner, H. Trauboth, and U. Voges.
Program Testing Techniques for Nuclear Reactor Protection
Systems.
Computer, Vol.12(8):10-8, August 1979.

R. L. Glass.
Real-Time: The "Lost World" of Software Debugging and Testing.
Communications of the ACM, Vol.23(5):264-71, May 1980.

J. Ludewig.
Computer-Aided Specification of Process Control Systems.
Computer, Vol.15(5):12-20, May 1982.

Detailed Articles

U. Agosti, V. Giannini, and O. Murro.
A Study of the Integrated Environment for the Testing and
Debugging of Interpretative Language.
Annual Conference AICA, October 29-31, 1980, Bologna, Italy,
pages 841-50.

M. W. Alford.
A Requirements Engineering Methodology for Real-time Processing
Requirements.
IEEE Transactions on Software Engineering, Vol.SE-3(1):60-8,
January 197/.

J. J. Bailey, M. Horton, and S. B. Itscoitz.
The Importance of Reproducibility Testing of Computer Programs
for Electrocardiographic Interpretation: Application to the
Automatic Vectorcardiographic Analysis Program (AVA 3.4).
Computers and Biomedical Research, Vol.9(4):307-16, August 1976.

K. Ban, T. Fujima, H. Ota, S. Iikawa, and A. Takubo.
Development and Testing of Software for KDD's Automex System.
Mitsubishi Electrical Engineerin2_(Japan), No.39:1-7, March 1974.

V. R. Basili and R. E. Noonan.
A Testing Tool for a Fire-Control Environment.
Proceedings of COMPCON 76, September 7-10, 1976, Washington, DC,
pages 341-5.

227

STEP - State-of-the-Art Overview

J. D. Baum and J. M. Baca.
Real-Time Event Trace Monitor for Embedded Computer Systems.
Proceedings of the IEEE 1979 National Aerospace and Electronics
Conference, May 15-17, 1979, Dayton, OH, pages 833-9.

F. Beinvogl and H. Siebert.
Switching System Software Test Methods, Aids and Procedures.
Proceedings of the Third International Conference on Software
Engineering for Telecommunication Switching Systems, June Z7-29,
1978, Helsinki, Finland, pages 91-6.

J. P. Benson and R. A. Melton.
A Laboratory for the Development and Evaluation of BMD Software
Quality Enhancements Techniques.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages 106-9.

W. E. Boebert, J. M. Kamrad, and E. R. Rang.
The Analytic Verification of Flight Software - A Case Study.
Proceedings of the IEEE 1978 National Aerospace and Electronics
Conference, May 16-18, 19/8, Dayton, OH, pages Z42-8.

E. M. Boehm, R. K. McClean, and D. D. Urfrig.
Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software.
IEEE Transactions on Software Engineering, Vol.SE-1:125-33, 1975.

D. M. Bradley and C. P. Miller.
The Implementation, Testing and Use of CASPA.
Third International Conference and Exhibition on Computers in
Engineering and Building Design, March 14-16, 1978, Brighton,
England, pages 351 -63.

B. Brehme and J. Rosenpflanzer.
Rationalization of Program Tests in the Application of EDP of
the ESER.
Rechentech. Datenverarb. (Germany), Vol.11(1):8-11, January
1974.

P. Burnett, P. A. Kidd, and A. M. Lister.
Simulation of Real-Time Program Faults.
Computer Journal (GB), Vol.17(1):25-7, February 1974.

A. R. Chandler.
Software Verification and Validation for Command and Control
Systems.
RCA Engineer, Vol.19(5):32-5, Feburary-March, 1974.

228

STEP - State-of-the-Art Overview

T. S. Chow.
Integration Testing of Distributed Software.
Proceedings of COMPCON 80, September 23-25, 1980, Washington,
DC, pages706-10.

J. F. Clemons.
Verification of the Onboard Flight Software Developed for the
NASA Space Shuttle Program.
Proceedings of the Eighth Texas Conference on Computing Systems,
1979.

R. M. Cohen.
Formal Specifications for Real-time Systems.
Proceedings
smbb
_pIoftheSevercasConferenceonComutin

ys ems, c o er -

B. P. Cosell, J. M. McQuillan, and D. C. Walden.
Techniques for Detecting and Preventing Multiprogramming Bugs.
Proceedings of the IFIP Conference on Software for
Minicomputers, September 8-12, 19/5, Keszthely, Hungary, pages

C. G. Davis.
The Testing of Large, Real Time Software Systems.
Proceedings of the Seventh Texas Conference on Computing Sytems,
October 30 - November 1, 1978, Housto67-77

W. E. Ehrenberger and K. P. Plogert.
Nuclear Power Plant Control and Instrumentation, April 24-28,
19/8, Cannes, France, pages 544-63.

W. Ehrenberger, G. Rauch, and K. Okroy.
Program Analysis - A Method for the Verification of Software for
the Control of a Nuclear Reactor.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages 611-6.

F. Erler.
Testing of Interactive Programs for the ES 1020 Computer.
Wiss. Z. Technical Hochsch. Karl-Marx-Stadt (Germany),
Vol.17(6):699-706, 1975.

R. E. Fairley.
Dynamic Testing of Simulation Software.
Proceedings of the 1976 Summer Colter Simulation Conference,
July 12-14, 1976, Washington, DC, pages 708-10.

H. E. Frye and R. L. Hoffman.
Program Event Monitoring Instruction.
IBM Technical Disclosure Bulletin, Vol.18(5):1557-9, October
I9/b.

229

STEP - State-of-the-Art Overview

R. E. Fryer.
The User Interface for a Real-Time Software Debugging System.
Conference Record of the Fourteenth Asilomar Conference on
Circuits, Systems and Computers, November 17-19, 1980, Pacific
Grove, CA, pages 46Z -9.

L. F. Giaccone and L. J. Woodrum.
Test and Debug of Device/Process Control Code.
IBM Technical Disclosure Bulletin, Vol.19(2):609-11, July 1976.

C. Hanisch.
Experience with a Computer Operating System Test Environment.
Rechentech. Datenverarb. (Germany), Vol.17(5):11-3, May 1980.

P. B. Hansen.
Reproducible Testing of Monitors.
Software Practice and Experience, Vol.8(6):721-9, November -
December 19/8.

R. V. Head.
Testing Real-time Systems. Part 1: Development and Management.
Datamation, page 42, July 1964.

M. J. R. Healey.
Generating Test Cases for Percent Include Processors.
IBM Technical Disclosure Bulletin, Vol.16(5):1665-6, October
T173.

C. E. Hughes and C. P. Pfleeger.
Assist-V - An Environment Simulator for IBM 360 Systems Software
Development.
IEEE Transactions on Software Engineering, Vol.SE-4(6):526-30,
November 1978.

E. Husu.
PROSIT - A Tool for the Testing of Proteo Central Control
Software (Electronic Switching Systems).
Telecomunicazioni (Italy), No.71-72:63-8, July-October 1979.

K. Joudu.
Reliability of Real Time Computer Software.
1st IFAC/IFIP Symposium on Software for Computer Control, May
25-28, 1976, Tallina, USSR, pages 105-8.

J. R. Kane and S. S. Yau.
Concurrent Software Fault Detection.
IEEE Transactions on Software Engineering, Vol.SE-1(1):87-99,
March 1915.

230

STEP - State-of-the-Art Overview

R. Katz.
Analysis of the AWACS Passive Tracking Algorithms on the RADCAP
STARAN.
Proceedings of the 1976 International Conference on Parallel
Processing, August 24-2/, 19/6, Walden Woods, MI, pages 117-86.

P. Knezevic.
Programs for Correctness Testing of Other Programs in a Real
Time Processor System.
Informatica 78 XIII Yugoslav International Symposium on
Information Processing, October 2-7, 1978, Bled, Yugoslavia.

H.Kopetz.
Systematic Error Treatment in Real Time Software.
Proceedin•s of the 6th Triennial World Con•ress of the
International Federation of Automatic Control, August 24-30,
1975, Boston and Cambridge, MA.

E. Krieger.
Online Test System and Hardware Experiences on the R40 ES
Computer OS/ES Operating System.
Inf. Elektron. (Hungary), Vol.15(3):150-3, 1980.

J. Larson.
Automatic Error Analysis for Serial and Parallel Algorithms.
High Speed Computer and Algorithm Organization, April 13-15,
1977, Champaign, IL, pages 457-9.

R.Martin and G. Memmi.
Specification and Validation of Sequential Processes
Communicating by FIFO Channels.
IEEE Fourth Internation Conference on Software Engineering for
Telecommunication Switching Systems, July 20-24, 1981, Coventry,
England, pages 54-7.

S. C. McSweeney and A. J. Bass.
A Realization of Automated ECS Software Test.
Proceedings of the IEEE 1979 National Aerospace and Electronics
Conference, May 15-1T, 19/9, Dayton, OH, pages lUt-T2.

I.Miyamoto.
Software Reliability in Online Real Time Environment.
SIGPLAN Notices, Vol.10(6):194•203, June 1975.

M. J. Norton.
Experience in Software Test Techniques for Packet Switching
Exchanges.
Proceedings of the Third International Conference on Software
Engineerin for Telecommunication Switchin S - stems, June 27-29,

e sin 1 	n an , pages 's

231

STEP - State-of-the-Art Overview

W. R. Odgen.
Independent Feedback Method for Program Field Test.
IBM Technical Disclosure Bulletin, Vol.23(8):3824-5, January
1981.

J. A. Painter.
Software Testing in Support of Worldwide Military Command and
Control System ADP.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 316-20.

B. A. Pozin.
A Method of Test Structuring for Debugging Control Programs.
Programmirovanie (USSR), Vol.6(2):62-9, March-April 1980.

C. M. Rader and S. L. Scharf.
Do Not Use a Chirp to Test a DFT Program.
IEEE Transactions on Acoustics, Speech and Signal Processes,
Vol.ASSP-27(4):430-2, August 1979.

P. Schluchtmann.
Efficient Program Testing on Robotron 4200/4201.
Rechentech. Datenverarb. (Germany), Vol.16(3):32-3, March 1979.

K. Soos, A. Szeplaki, and Z. Varkonyi.
Program Testing on R-10 Computer with Stem.
Inf. Elektron (Hungary), Vol.12(1):39-47, 1977.

D. E. Storey.
The Testing of Interactive Micro-Computer Software on a Host
Computer.
Trend in On-Line Computer Control Systems, April 21-24, 1975,
Shettield, Yorkshire, 6ngland, pages a6-11.

R. N. Taylor and L. J. Osterweil.
Anomaly Detection in Concurrent Software by Static Data Flow
Analysis.
IEEE Transactions on Software Engineering, Vol.SE-6(3):278-285,
May 198U.

U. Voges.
Aspects of Design, Test and Validation of the Software for a
Computerized Reactor Protection System.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages
606-10.

M. L. Watkins.
A Technique for Testing Command and Control Software.
Communications of the ACM, Vol.25(4):228-32, April 1982.

232

STEP - State-of-the-Art Overview

C. D. Williams and C. Nemec.
Verification of Operational Flight Programs by Simulation.
Proceedings of the IEEE 1979 National Aerospace and Electronics
Conference, May 15-17, 1979, Dayton:7R, pages 826-8.

J. J. Zelasco, Jr.
An Interactive Debug and Test Program for Avionic Software.
Proceedings of the IEEE 1976 National Aerospace and Electronics
on erence, 'ay 	 ay on, I lo, page

233

STEP - State-of-the-Art Overview

2.3. OTHER STRATEGIES FOR CONSTRUCTING RELIABLE SOFTWARE

Books

M. S. Deutsch.
Software Verification and Validation Realistic Project
Approaches.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

T. Gilb.
Software Metrics.
Winthrop Publishers, Inc., Cambridge, MA, 1977.

R. L. Glass.
Modern Programming Practices, A Report from Industry.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

E. Yourdan and L. L. Constantine.
Structured Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979.

Survey Articles

R. P. Abbott.
Towards the Audit of Computer Software.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 1-12.
Infotech International, 1979.

W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

E. L. Battiste.
Reliable-Warrantable Code.
Performance Evaluation of Numerical Software, December 11-15,
1978, Baden, Austria, pages 151-1.

L. A. Belady.
On Software Complexity.
Proceedings of the IEEE Workshop on Quantitative Software Models,
pages 90-94. IEEE, Piscataway, NJ, 1979.

234

STEP - State-of-the-Art Overview

G. D. Bergland.
A Guided Tour of Program Design Methodologies.
Computer, Vol.14(10):12-37, October 1981.

J. B. Bowen.
A Survey of Standards and Proposed Metrics for Software Quality
Testing.
Computer, Vol.12(8):37-42, August 1979.

W. L. Bryan, S. G. Siegel, and G. L. Whiteleather.
Auditing Throughout the Software Life Cycle: A Primer.
Computer, Vol.15(3):57-67, March 1982.

B. Curtis.
Measurement and Experimentation in Software Engineering.
Proceedings of the IEEE, Vol.68(9):1144-57, September 1980.

T. C. Jones.
A Survey of Programming Design and Specification Techniques.
IEEE Catalog 79 CH1401, April 1979.

D. Levy, D. Guy, and J. Ronback.
A Place for Metrics in Software Development.
Telesis (Canada), Vol. 6(5):17-22, October 1979.

C. C. Liu.
A Look at Software Maintenance.
Datamation, Vol.22(11):51-5, November 1976.

D.Markham, J. McCall, and G. Walters.
Software Metrics Application Techniques.
Proceedings of Trends and Applications 1981. Advances in
Software Technology, May 28, 1981, Gaithersburg, MD, pages 38-46.

C. V. Ramamoorthy and H. H. Ho.
A Survey of Principles and Techniques of Software Requirements
and Specifications.
In Software Engineering Techniques, Volume 2 -- Invited Papers,
pages 265-318.
Infotech International, 1977.

D.T. Ross.
Reflections on Requirements.
IEEE Transactions on Software Engineering, Vol.SE-3(1):2-5,
January 1977.

B. A. Silverberg.
An Overview of the SRI Hierarchical Development Methodology.
Proceedings of the Symposium on Software Engineering
Environments, June 16-20, 1980, Lahnstein, Germany, pages 235-42.

235

STEP - State-of-the-Art Overview

A. R. Sorkowitz.
Certification Testing: A Procedure to Improve the Quality of
Software.
Computer, Vol.12(8):20-5, August 1979.

L. G. Stucki, et al.
Methodology for Producing Reliable Software.
NASA CR 144769 (two volumes), McDonnel-Douglas Astronautics
Company, March 1976.

Detailed Articles

M. W. Alford.
A Requirements Engineering Methodology for Real-time Processing
Requirements.
IEEE Transactions on Software Engineering, Vol.SE-3(1):60-8,
January 1977.

C. T. Bailey and W. L. Dingee.
A Software Study Using Halstead Metrics.
Performance Evaluation Review, Vol.10(1):189-97, Spring 1981.

E. E. Balkovich and G. P Engelberg.
Research Towards a Technology to Support the Specification of
Data Processing System Performance Requirements.
Proceedin s of the 2nd International Conference on Software
ngineering, October 13-15, 1976, San Francisco, CA, pages 110-5.

P. Barker.
How A Bubble-Sort Can Test Code Efficiency.
Practical Computing (GB), Vol.4(7):125-31, July 1981.

V. R. Basili and D. M. Weiss.
Evaluation of a Software Requirements Document by Analysis of
Change Data.
Proceedings of the 5th International Conference on Software
Engineering, March 1981, pages 314-324.

T. E. Bell, D. C. Bixler, and M. E. Dyer.
An Extendable Approach to Computer-Aided Software Requirements
Engineering.
IEEE Transactions on Software Engineering, Vol.SE-3(1):49-59,
January 19/1.

J. P. Benson.
Adaptive Search Techniques Applied to Software Testing.
Performance Evaluation Review, Vol.10(1):109-16, Spring 1981.

236

STEP - State-of-the-Art Overview

J. P. Bielski and W. H. Blankertz.
The General Acceptance Test System (GATS).
Proceedings of COMPCON 77, February 28 - March 3, 1977, San
Francisco, CA, pages 207-10.

B. W. Boehm.
Software Engineering.
IEEE Transactions on Computers, Vol.C-25(12), December 1976.

E.M. Boehm, R. K. McClean, and D. D. Urfrig.
Some Experience with Automated Aids to the Design of Large-Scale
Reliable Software.
IEEE Transactions on Software Enlimerirm, Vol.SE-1(1):125-33,
March 1975.

V. Breitfeld.
New Methods and Techniques of Programming.
V. Dialogue Program Testing for Cobol Users with Cobol
Interactive Debug.
IBM Nachr. (Germany), Vol.25(226):207-13, July 1975.

F. Buckley.
A Standard for Software Quality Assurance Plans.
Computer, Vol.12(8):43-51, August 1979.

S. H. Caine and E. K. Gordon.
PDL -- A Tool for Software Development.
National Computer Conference, AFIPS Proceeda, 1975.

C. S. Chandersekaran and R. C. Linger.
Software Specification Using the SPECIAL Language.
Journal of Systems and Software, Vol.2(1):31-8, February 1981.

F. Cristian.
Exception Handling and Software-Fault Tolerance.
10th International Symposium on Fault-Tolerant Computing,
October 1-3, 1980, Kyoto, Japan, pages 97-103.

A. M. Davis.
The Design of a Family of Application-Oriented Requirements
Languages.
Computer, Vol.15(5):21-28, May 1982.

J. L. Elshoff.
Measuring Commercial PL/1 Programs Using Halstead's Criteria.
SIGPLAN Notices, Vol.11(5):38-46, May 1976.

E. Fassbinder.
New Methods and Programming Techniques.
III. Fortran Interactive Debug - A New Test Facility.
IBM Nachr. (Germany), Vol.25(224):62-6, February 1975.

237

STEP - State-of-the-Art Overview

K. F. Fischer.
A Test Case Selection Method for the Validation
Maintenance Modifications.
Proceedings of COMPSAC 77, November 8-11, 1977,
pages 421-6.

of Software

Chicago, IL,

A. Fitzsimmons and T. Love.
A Review and Evaluation of Software Science.
ACM Computing Surveys, Vol.10(1):3-18, March, 1978.

A. B. Fitzsimmons.
Relating the Presence of Software Errors to the Theory of
Software Science.
Proceedings of the Eleventh Hawaii International Conference on
System Sciences, January 5-5, 19/8, Honolulu, HI, pages 40-6.

M. S. Fuji.
Independent Verification of Highly Reliable Programs.
Proceedings of COMPCON 77, November 8-11, 1977, Chicago, IL,
pages 38-44.

G. R. Gladden.
Stop the Life Cycle, I Want to Get Off.
Software Engineering Notes, Vol. 7(10), 1982.

A. Grnarov, J. Arlat and A. Avizienis.
On the Performance of Software Fault-Tolerance Strategies.
10th International Symposium on Fault-Tolerant Computing,
October 1-3, 1980, Kyoto, Japan, pages 25-13.

P. A. V. Hall.
In Defense of Life Cycles.
Software Engineering Notes, Vol.7(11), 1982.

K. L. Heninger.
Specifying Software Requirements for Complex Systems: New
Techniques and Their Applications.
IEEE Transactions on Software Engineering, Vol.SE-6(1):2-12,
January 1982.

S. Henry and D. Kafura.
Software Structure Metrics Based on Information Flow.
IEEE Transactions on Software Engineering, Vol.SE-7(5):510-8,
September 1981.

M. A. Herndon.
Cost Effectiveness in Software Error Analysis Systems.
Second Software Life Cycle Management Workshop, August 21-22,
1978, Atlanta, GA, pages 180-1.

238

STEP - State-of-the-Art Overview

F. J. Hill and B. Huey.
A Design Language Approach to Test Sequence Generation.
Computer, Vol.10(6):28-34, June 1977.

H. Holighaus.
Direct Production and Testing of Programs.
Elektronik, Vol.26(5):57-8, May 1977.

T. C. Jones.
Measuring Programming Quality and Productivity.
IBM Systems Journal, Vol.17(1):39-63, 1978.

R. E. Keirstead.
On Software Certification.
Proceedings of COMPCON 76, February 24-26, 1976, San Francisco,
CA, pages 222-4.

R. Lemiere.
The Control of Quality - A Concept to be Practiced During
Development.
Choisir Son Informatique, pages 79-80, September 1979, Paris,
France.

A. A. Levene and G. P. Mullery.
An Investigation of Requirement Specification Languages:
Theory and Practice.
Computer, Vol.15(5):50-9, May 1982.

C. R. Litecky and G. B. Davis.
A Study of Errors, Error-Proneness, and Error Diagnosis in Cobol.
Communications of the ACM, Vol.19(1):33-7, January 1976.

T. E. Matysek.
HOL in Operational Software - From a User's Point of View.
Proceedings of the IEEE 1977 National Aerospace and Electronics
Conference, May 1/-19, 19/I, Dayton, UK, pages 494-501.

T. J. McCabe.
A Complexity Measure.
IEEE Transactions on Software Enlineering SE-2(4):308-320,
December 1976.

D. D. McCracken and M. A. Jackson.
Life Cycle Concept Considered Harmful.
Software Engineering Notes, Vol.7(10), 1982.

E. F. Miller, Jr.
Engineering Software for Testability.
10th IEEE Computer Society International Meeting on Computer
Technology to Reach the People, (Digest of Papers), February
Zb-Z1, 19/6, San Francisco, CA, pages /-1D.

239

STEP - State-of-the-Art Overview

G. J. Myers.
Program Design Validation System.
IBM Technical Disclosure Bulletin, Vol.19(10):3806-8, March 1977.

J. D. Naumann, G. B. Davis, and J. D. McKeen.
Determining Information Requirements: A Contingency Method for
Selection of a Requirements Assurance Strategy.
Journal of Systems and Software, Vol.l(4):273-82, 1980.

L. Ottenstein.
Predicting Numbers of Errors Using Software Science.
Performance Evaluation Review, Vol.10(1):157-67, Spring 1981.

M. R. Paige.
Software Design for Testability.
Proceedings of the Eleventh Hawaii International Conference on
System Sciences, January 5-6, 1978, Honolulu, HI, pages 113-8.

B. Parhami.
The Concept of Self-Checking Programs.
7th Annual International Conference on Fault-Tolerant Com utin

, une
	

os 'nge es, 	page

R. R. Prudhomme.
Software Verification and Validation and SQA.
American Society for Quality Control 34th Annual Technical
Conference Transactions, May 20-22, 1980, Atlanta, GA, pages
397-404.

N. S. Prywes, A. Pnueli, and A. Shastry.
Use of a Nonprocedural Specification Language and Associated
Program Generator in Software Development.
Transactions on Programming Languages and Systems,
Vol.T(2):196-217, October 1979.

J. P. Renault.
Towards A Comprehensive and Homogenous Software Development
Methodology.
1979 International Conference on Communications, June 10-14,
1979, Boston, MA.

D. T. Ross and K. E. Schoman.
Structured Analysis for Requirements Definition.
IEEE Transactions on Software Engineering, Vol.SE-3(1):6-15,
January 197/.

K. Sakata.
Formulation of Predictive Methods in Software Production
Control-Dynamic Prediction: Quality Probe.
Systems Computer Control, Vol.5(3):27-34, 1974.

240

STEP - State-of-the-Art Overview

N. F. Schneidewind.
The Use of Simulation in the Evaluation of Software.
Computer, Vol.10(4):47-53, April 1977.

N. F. Schneidewind and H. M. Hoffmann.
An Experiment in Software Error Data Collection and Analysis.
IEEE Transactions on Software Engineering, Vo1.SE-5(3):276-86,
May 1979.

N. F. Schneidewind and H. M. Hoffman.
Software Error Data Collection and Analysis.
Proceedings of the 1978 Summer Computer Simulation Conference,
July 24-26, 1978, Los Angeles, CA, pages 748-53.

D. N. Shorter.
Requirements for Reliable Software.
IEEE Colloquium on the Engineering of Industrial Microprocessor-
Based Systems - Ine UsersPoint of View, March b, 1981, London,
England.

R. J. Smolenski.
Test Plan Development.
Journal of System Management, Vol.32(2):32-7, February 1981.

I. M. Soi and K. Gopal.
Error Prediction in Software.
Microelectronics and Reliability (GB), No.1-2:39-47,
January-February 1979.

S. L. Squires, M. Zelkowitz, and M. Branstad.
Rapid Prototyping Workshop: An Overview.
Software Engineering Notes, Vol.7(11), 1982.

L. G. Stucki.
Automatic Generation of Self-Metric Software.
Proceedings IEEE Symposium on Computer Software Reliability, New
York, 1973, pages 94-100.

D. Teichrow and E. A. Hershey, III.
PSL/PSA: A Computer-aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering, Vol.SE-3(1):41-8,
January 1977.

K. Terplan.
Measurements for Improving Reliability.
Computer Science Conference, February 18-20, 1975, Washington,
DC, page 30.

241

STEP - State-of-the-Art Overview

L. L. Walker.
Acceptance Testing for Software.
Software World (GB), Vol.4(9):11-5, December 1973.

T. J. Wheeler.
Embedded System Design with Ada as the System Design Language.
Journal of Systems and Software, Vol.2(1):11-22, February 1981.

D. E. Wright and B. D. Carroll.
An Automated Data Collection System for the Study of Software
Reliability.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 571-6.

B. H. Yin.
Software Design Testability Analysis.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 129:34.

P. Zave.
An Operational Approach to Requirements Specification for
Embedded Systems.
IEEE Transactions on Software Engineering, Vol.SE-8(3):253-69,
May 1982.

242

STEP - State-of-the-Art Overview

2.4. COMPARATIVE EVALUATION OF TESTING TECHNIQUES

Books

T. A. Budd.
Mutation Analysis of Program Test Data.
Ph.D. Thesis, Yale University, 1980.

Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and BibTio ra h .
n otecn internationa , 	79.

Survey Articles

W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

J. M. Bilton.
A Survey of Self-Test and Bite Program Generation.
Euromicro Journal (Netherlands), Vol.6(3):168-74, May 1980.

W. E. Howden.
Empirical Studies of Software Validation.
Microelectronics and Reliability (GB), No.1-2:39-47,
January-February 1979.

Detailed Articles

A. T. Acree, T. A. Budd, R. A. DeMillo, R.
Sayward.
Mutation Analysis.
Report GIT/ICS-79-08, Georgia Institute of

J. Lipton and F. G.

Technology, 1979.

R. A. DeMillo, D. Hocking, and M. J. Merritt.
A Comparison of Some Reliable Test Data Generation Procedures.
Report GIT/ICS-81-08, Georgia Institute of Technology, April
1981.

A. B. Fitzsimmons.
Relating the Presence of Software Errors to the Theory of
Software Science.
Proceedings of the Eleventh Hawaii International Conference on
Sys em ciences, January - , 	, ono u u, HI, pages 4U -6.

243

STEP - State-of-the-Art Overview

C. Gannon.
Error Detection Using Path Testing and Static Analysis.
Computer, Vol.12(8):26-32, August 1979.

W. E. Howden.
Reliability of Symbolic Evaluation.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 442-I.

W. E. Howden.
Reliability of the Path Analysis Testing Strategy.
IEEE Transactions on Software Engineering, Vol.SE-2(3):208-14,
September 1976.

W. E. Howden.
Theoretical and Empirical Studies of Program Testing.
IEEE Transactions on Software Engineering, Vol.SE-4(4):293-7,
July 1978.

G. J. Myers.
A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections.
Communications of the ACM, Vol.21(9):760-8, September 1978.

R. Thibodeu.
GRC Report to AIRMICS, 1981.

L. J. White, F. C. Teng, H. Kuo, and Q. Coleman.
An Error Analysis of the Domain Testing Strategy.
Technical Report 78-2, Computer Information Science Research
Center, Ohio State University, Columbus, September 1978.

M. R. Woodward, D. Hedley, and M. A. Hennell.
Experience with Path Analysis and Testing of Programs.
IEEE Transactions on Software Engineering, Vol.SE-6(3):278-86,
May 198U.

244

STEP - State-of-the-Art Overview

3. TESTING AND EVALUATION TOOLS

3.1. GENERAL

Books

Software Engineering Automated Tools Index.
Software Research Associates, P. O. Box 2432, San Francisco, CA
94126.

Survey Articles

T. Budd, M. Majoras, and H. Sneed.
Experiences with a Software Test Factory.
Proceedings of Spring COMPCON 79, February 26 - March 1, 1979,
San Francisco, CA, pages 319-29.

B. Chandrasasekaran.
Test Tools: Usefulness Must Extend to Everyday Programming
Environment.
Computer, Vol.12(3):102-3, March 1979.

J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transactions of the American Nuclear Society and the Euro•ean
uc ear ociety, •:1 nternationa 	on erence, ovem•er

T980, Washington, DC, pages 253-4.

L. Gmeiner and U. Voges.
Methods, Criteria and Automatic Tools for Software Testing.
Practice in Software Ada.tion and Maintenance. Proceedings for
to

, :er in, ermany, pages•2. or s op, pri 111

H. Hecht.
Final Report: A Survey of Software Tools Usage.
NBS Special Publication 500-82, National Bureau of Standards,
November 1981.

E. F. Miller, Jr.
Program Testing Tools and Their Use.
In Infotech State of the Art Report, Software Testin , Volume
2: 	nvite papers, pages 	 otec 	nternationa , 	9. n

245

STEP - State-of-the-Art Overview

I. Miyamoto.
Automated Testing-Aid Tools Survey.
Information Processing Society of Japan (Joho Shori) (Japan),
Vol.20(8):688-93, August 1979.

D. J. Reifer and R. L. Ettenger.
Test Tools: Are They A Cure-All?
Proceedings of the 1975 Annual Reliability and Maintainability
Symposium, January 28-30, 19/5, Washington, DC, pages 492-/.

D. J. Reifer and H. A. Montgomery.
SEATECS Software Tools Survey.
RCI-TR-008 (Compiled for the NOSC SEATECS Project), Reifer
Consultants, Inc., March 1981.

D. J. Reifer and S. Trattner.
A Glossary of Software Tools and Techniques.
Computer, Vol.10(7):52-60, July 1977.

M. Schindler.
Software Practice -- A Scarce Art Struggles to Become a Science.
Electronic Design, pages 85-102, July 22, 1982.

Software Tools: Catalog and Recommendations.
TRW Defense and Space Systems Group, January 1979.

K. Ushijima and K. Harada.
Tools for Analysis and Evaluation of Software.
Information Processing Society of Japan (Joho Shori) (Japan),
Vol.Z0(8):/U3-11, 19/9.

Detailed Articles

R. R. Bate and G. T. Ligler.
An Approach to Software Testing Methodology and Tools.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 47b-8U.

J. P. Bielski and W. H. Blankertz.
The General Acceptance Test System (GATS).
Proceedings of COMPCON 77, February 28 - March 3, 1977, San
Francisco, CA, pages 207-10.

M. E. Boehm, R. K. McClean, and D. B. Urfrig.
Some Experience with Automated Aids to the Design of Large-scale
Reliable Software.
IEEE Transactions on Software Engineering, Vol.SE-1(1):125-33,
March 1975.

246

ircuits, ystems an• omputers, ovem er
Grove, CA, pages JU9-14.

•

STEP - State-of-the-Art Overview

J. C. Cherniaysky, W. R. Adrion, and M. A. Branstad.
The Role of Testing Tools and Techniques in the Procurement of
Quality Software and Systems.
Conference Record of the Thirteenth Asilomar Conference on

aci is

R. E. Fairley.
An Experimental Program Testing Facility.
Proceedings of the 1st National Conference on Software
Engineering, September 11-12, 1975, Washington, DC, pages 47-55.

S. Katz and Z. Manna.
Towards Automatic Debugging of Programs.
SIGPLAN Notices, Vol.10(6):143-55, June 1975.

V. V. Lipaev, L. A. Serebrovskii, and V. V. Filippovich.
A System for the Automation of Programming and Testing of
Complexes of Control Programs, Yauza-6.
Transactions in: Programming and Computer Software,
Vol.3(J):233-9, May-June 1911.

D. J. Panzl.
Experience with Automatic Program Testing.
Proceedings of Trends and Applications 1981. Advances in
Software Technology, May 28, 1981, Gaithersburg, MD, pages 25-8.

W. Pfadler.
Software Engineering-Principles and Tools for Testing and
Measuring.
Data Rep, Vol.12(2):12-6, April 1977.

Progress in Software Engineering.
EDP Analyst, Vol.16(3):1-13, March 1978.

R. R. Prudhomme.
Software Verification and Validation and SQA.
American Societ for Quality Control 34th Annual Technical
Conference ransac ions; may—z0-22, 1980, Atlanta, GA, pages
39T-404.

R. N. Taylor and L. J. Osterweil.
A Facility for Verification, Testing and Documentation of
Concurrent Process Software.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 36-41.

247

STEP - State-of-the-Art Overview

3.2 STATIC ANALYSIS TOOLS

Books

J. G. P. Barnes.
Programming in Ada.
Addisson-Wesley Publishing Company, 1982.

Infotech State of the Art Report, Software Reliability, Volume 1:
Analysis and Bibliography.
infotech International, 1977.

Infotech State of the Art Report, Software Reliability, Volume 2:
invited Papers.
Infotech International, 1977.

G. J. Myers.
The Art of Software Testin9.
John Wiley & Sons, New York, 1979.

Software Engineering Automated Tools Index.
Software Research Associates, P. 0. Box 2432, San Francisco, CA
94126.

Survey Articles

W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

AIAA Technical Committee on Computers.
AIAA/Grumman Survey of Software Development Tools Source Data,
1979.

J. C. Browne and D. B. Johnson.
FAST - A Second Generation Program Analysis System.
Proceedings of the 3rd International Conference on Software ,
Engineering, May 10-12, 1978, Atlanta, GA, pages 142-8.

J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

248

STEP - State-of-the-Art Overview

H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transactions of the American Nuclear Society and the European
Nuclear Society, 1980 International Conference, November 16-21,
1980, Washington, DC, pages 253-4.

R. E. Fairley.
Tutorial - Static Analysis and Dynamic Testing of Computer
Software.
Computer, Vol.11(4):14-23, April 1978.

L. D. Fosdick and L. J. Osterweil.
Data Flow Analysis in Software Reliability.
ACM Computer Surveys, Vol.8(3):305-330, September 1976.

R. C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 300-88, National Bureau of Standards,
1982.

W. E. Howden.
A Survey of Static Analysis Methods.
In Tutorial: Software Testing & Validation Techniques, E.
Miller and W. E. Howden, Editors, pages 101 - lb.
IEEE, 1981.

E. F. Miller, Jr.
Notes on Tools and Techniques of Testing.
In Tutorial: Program Testing Techniques, pages 107-11, IEEE
Computer Society, Piscataway, NJ, 1917.

I. Miyamoto.
Automated Testing-Aid Tools Survey.
Information Processing Society of Japan (Joho Shori) (Japan),
Vol.20(8):688-93, August 1979.

D. J. Reifer and H. A. Montgomery.
SEATECS Software Tools Survey.
RCI-TR-008 (Compiled for the NOSC SEATECS Project), Reifer
Consultants, Inc., March 1981.

Detailed Articles

F. E. Allen.
Interprocedural Data Flow Analysis.
Proceedings of the IFIP Cones 1974., pages 398-402, North
o an 	u is ers, 	s er am,

249

STEP - State-of-the-Art Overview

F. E. Allen and J. Cocke.
A Program Data Flow Analysis Procedure.
Communications of the ACM, Vol.19(3):137-47, Marc

Automated Testing Analyzer for Cobol.
Software Technology Center, Science Applications,
Francisco, CA, April 1976.

J. M. Barzdin, J. J. Bicevskis, and A. A. Kalninsh.
Construction of Complete Sample System for Correctness Testing.
Mathematical Foundations of Computer Science, September 1-5,
19/5, Marianske Lazne, Czechoslovakia, pages 1-12.

M. E. Boehm, R. K. McClean, and D. B. Urfrig.
Some Experience with Automated Aids to the Design of Large-scale
Reliable Software.
IEEE Transactions on Software Engineering, Vo1.SE-1(1):125-33,
March 1975.

S. H. Caine and E. K. Gordon.
PDL -- A Tool for Software Development.
National Computer Conference, AFIPS Proceedings, 1975.

T. E. Cheatham, Jr. and J. A. Townley.
Program Analysis Techniques for Software Reliability.
Workshop on Reliable Software, September 22-23, 1978, Bonn,
Germany, pages 9-1/.

A. M. Davis.
The Design of a Family of Application-Oriented Requirements
Languages.
Computer, Vol.15(5):21-28, May 1982.

Diagnostic and Debugging Aids for Reliable Software.
In Computer Systems Reliability: International State of the Art
Report, W. A. Sampson and C. J. Bunyan (Editors), pages a73-89,
1974.

W. H. Enright.
Using a Testing Package for the Automatic Assessment of
Numerical Methods for Codes.
Performance Evaluation of Numerical Software, December 11-15,
1978, Baden, Austria, pages 199-213.

M. E. Fagan.
Design and Code Inspections in the Development of Programs.
1975 International Symposium on Fault-Tolerant Computing.
Digest of Papers, June 18-20, 1975, Paris, France, page 248.

h 1976.

Inc., San

250

STEP - State-of-the-Art Overview

M. E. Fagan.
Inspecting Software Design and Code.
Datamation, Vol.23(10):133-44, October 1977.

R. E. Fairley.
An Experimental Program Testing Facility.
Proceedin•s of the 1st National Conference on Software

ington, 	pages 47-55.

R. E. Fairley.
Proceedings, Infotech State of the Art Conference on Program
es lng, ep em er 	on on.

B. Flavigny.
A Program for the Detection of Logical Errors in Programs.
Rev. Fr. Autom. Inf. Rech. Oper. (France), Vol.9(B.2):43-59,

uuy1y 1975.

B. J. Frost.
Program Examination Facility.
New Electronics (GB), Vol.12(11):46, May 29, 1979.

N. Fujimura and K. Ushijima.
Experience with a Cobol Analyzer.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 640-5.

Y. Furukawa and S. Otsuki.
Structure Analysis of Fortran Programs and Its Application to
Debugging.
Technology. Rep. Kyushu University (Japan), Vol.49(6):815-21,
December 19/b.

C. Gannon
A Debugging, Testing and Documentation Tool for Jovial J73.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 634-9.

M. A. Hennell, M. R. Woodward, and D. Hedley.
On Program Analysis.
Information Processing Letters (Netherlands), Vol.5(5):136-40,
November 1976.

F. J. Hill and B. Huey.
A Design Language Approach to Test Sequence Generation.
Computer, Vol.10(6):28-34, June 1977.

ngineering, eptem er as

251

STEP - State-of-the-Art Overview

B. C. Hodges.
A System for Automatic Software Evaluation.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages
617-23.

M. Ibramsha and V. Rajaraman.
Detection of Logical Errors in Decision Table Programs.
Communications of the ACM, Vol.21(12):1016-25, December 1978.

W. H. Jessop, J. R. Kane, S. Roy, and J. M. Scanlon.
ATLAS - An Automated Software Testing System.
Proceedings of COMPCON 76, September 7-10, 1976, Washington, DC,
pages 337 -40.

D. Matuszek.
The Case for the Assert Statement.
SIGPLAN Notices, Vol.11(8):36-7, August 1976.

G. J. Myers.
A Controlled Experiment in Program Testing and Code
Walkthroughs/Inspections.
Communications of the ACM, Vol.21(9):760-88, 1978.

G. J. Myers.
Program Design Validation System.
IBM Technical Disclosure Bulletin, Vol.19(10):3806-8, March 1977.

NASA Software Specification and Evaluation System, Final Report.
Science Applications, Huntsville, AL, 1977 (NTIS N77-26828).

A New Generation of Cobol Testing Aids.
Software 73, July 9-11, 1973, Loughborough, Leics, England,
pages 39-44.

K. Ochimizu, J. Toyoda, and K. Tanaka.
On a Construction Method of Systems for Detecting Logical Errors
in Programs.
System Computer Control, Vol.5(2):88-96, March-April 1974.

L.J. Osterweil and L. D. Fosdick.
DAVE: A Validation Error Detection and Documentation System for
Fortran Programs.
Software Practice and Experience, Vol.6(4):473-86,
October-December 1976.

J. T. Panttaja.
Detecting Errors in Basic For/Next Statements.
IBM Technical Disclosure Bulletin, Vo1.20(7):2352, November 1977.

252

STEP - State-of-the-Art Overview

M. P. Perriens.
An Application of Formal Inspections to Top-Down Structured
Program Development.
RADC-TR-77-212, IBM Federal Systems Division, Gaithersburg, MD,
1977, (NTIS AD/A-041645).

S. Pimont and J. C. Rault.
A Software Reliability Assessment Based on a Structural and
Behavioral Analysis of Programs.
Proceedin s of the 2nd International Conference on Software
ngineering, c o er 	- , anrar-FTEi ages

486-91.

C. V. Ramamoorthy and S-B. F. Ho.
Testing Large Software with Automated Software Evaluation
Systems.
IEEE Transactions on Software Engineering, Vol.SE-1(1):46-58,
March 1975.

H. Schneider and M. Schulz.
Debug Program KESP for Robotron 4000.
Rechentech. Datenverarb. (Germany), Vol.14(2):28-9, February

H. Sneed.
Softdoc - A System for
Documentation.
Performance Evaluation

Automated Software Static Analysis and

Review, Vol.10(1):173-7 Spring 1981.

J. E. Stockenberg and A. Van Dam.
Structured Programming Analysis System.
Proceedings of the 1st National Conference on Software
Nineering, September 11-12, 1975, Washington, DC, pages 27-36.

L. G. Stucki.
Software Development Tools - Acquisition Considerations - A
Position Paper.
National Computer Conference, AFIPS Proceedings, Vol.46:267-8,
1977.

R. N. Taylor and L. J. Osterweil.
Anomaly Detection in Concurrent Software by Static Data Flow
Analysis.
IEEE Transactions on Software Engineering, Vol.SE-6(3):265-76,
May 1980.

D. Teichrow and E. A. Hershey, III.
PSL/PSA: A Computer-aided Technique for Structured Documentation
and Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering, Vol.SE-3(1):41-8,
January I91/.

253

STEP - State-of-the-Art Overview

K. Ushijima and T. Shibahara.
Test Programs for Detecting Optimization Techniques in Fortran.
Technol. Rep. Kyushu Univ. (Japan). Vol.47(3):313-7, June 1974.

M. Vierling and P. Ernst.
A Software Aid for Program Testing.
Elektronik (Germany), Vol.28(1):52-6, January 11, 1979.

D. Vitas.
On the Automatic Analysis of the Structure of Fortran Programs.
Informatica 78 XIII Yugoslav International Symposium on
information Processing, October Z-I, 19/8, Bled, Yugoslavia.

I. K. Wendel and R. L. Kleir.
Fortran Error Detection through Static Analysis.
Software Engineering Notes, Vol.2(3):22-8, March 1977.

T. Yamada, Y. Honda, N. Shigematsu, and M. Tomura.
ESS Program Test Methods Using Program Route Tracer.
Electronics Communication Laboratory Technical Journal (Japan),
1/01.JU(1):Zib-49, 19bl.

254

STEP - State-of-the-Art Overview

3.3. DYNAMIC ANALYSIS TOOLS

Books

A. T. Acree.
On Mutation.
Ph.D. Thesis, Georgia Institute of Technology, 1980.

T. A. Budd.
Mutation Analysis of Program Test Data.
Ph.D. Thesis, Yale University, 1980.

R. A. DeMillo.
Program Mutation: An Approach to Software Testing.
Report GIT/ICS-83-03, Georgia Institute of Technology.
January 1983.

Infotech State of the Art Re ort, Software Reliability, Volume
nvite 	apers.

Infotech International, 1977.

Infotech State of the Art Report, Software Testing, Volume 1:
Analysis and Bibliography.
Infotech International, 1979.

G. J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

Proceedings of the Specifications of Reliable Software
Conference.
itht catalog No. CH1401-9c, IEEE, New York, 1979.

Software Engineering Automated Tools Index.
Software Research Associates, P. 0. B67—N32, San Francisco, CA
94126.

Survey Articles

W. R. Adrion, M. A. Branstad, and J. C. Cherniaysky.
Validation, Verification, and Testing of Computer Software.
NBS Special Publication 500-75, National Bureau of Standards,
pages 32-5.

AIAA Technical Committee on Computers.
AIAA/Grumman Survey of Software Development Tools Source Data,
1979.

255

STEP - State-of-the-Art Overview

J. C. Browne and D. B. Johnson.
FAST - A Second Generation Program Analysis System.
Proceedings of the 3rd International Conference on Software
Engineering, May 10-12, 1978, Atlanta, GA, pages 142-8.

T. A. Budd.
Mutation Analysis: Ideas, Examples, Problems and Prospects.
In Computer Program Testing, B. Chardrasekaran and S. Radicchi,
Editors. 	or - o an , 	1.

B. Chandrasasekaran.
Test Tools: Usefulness Must Extend to Everyday Programming
Environment.
Computer, Vol.12(3):102-3, March 1979.

T. E. Cheatham, Jr., G. H. Holloway, and J. A. Townley.
Symbolic Evaluation and the Analysis of Programs.
IEEE Transactions on Software Engineering, Vol.SE-5(4):402-17,
July 1979.

L. A. Clarke.
Automatic Test Data Selection Techniques.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 44-b3.
Infotech International, 1979.

J. A. Darringer and J. C. King.
Application of Symbolic Execution to Program Testing.
Computer, Vol.11(4):51-60, April 1978.

R. A. DeMillo.
Mutation Analysis as a Tool For Software Quality Assurance.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on Test Data Selection: Help for the Practicing Programmer.
Computer, Vol.11(4):34-41, April 1978.

J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transactions of the American Nuclear Society and the European
Nuclear Society, 1980 International Conference, November 16-21,
1980, wasbington, DC, pages 253-4.

256

STEP - State-of-the-Art Overview

R. C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 500-88, National Bureau of Standards,
1982.

J. C. Huang.
Program Instrumentation.
In Infotech State of the Art Report, Software Testing,
r mfLiAnala nirralisandBibilotiVolun 'ah, pages 144-W.
fotec 	nternationa ,

J. C. Huang.
Program Instrumentation and Software Testing.
Computer, Vol.11(4):25-31, April 1978.

R. J. Lipton and F. G. Sayward.
The Status of Research on Program Mutation.
Digest for the Workshop on Software Testin and Test
Documentation, Ft. Lauderdale, FL, 1978, pages 3 - 3.

G. A. Mann.
A Survey of Debug Systems.
Honeywell Computer Journal, Vol.7(3):182-98, 1973.

E. F. Miller, Jr.
Notes on Tools and Techniques of Testing.
In Tutorial: Program Testing Techniques, pages 107-11, IEEE
Computer Society, Piscataway, NJ, Tr77

I. Miyamoto.
Automated Testing-Aid Tools Survey.
Information Processing Society of Japan (Joho Shori) (Japan),
Yol.M(8):66b-9.i, August 15/5.

C. V. Ramamoorthy.
Techniques for Automated Test Data Generation.
Conference Record of the Ninth Asilomar Conference on Circuits,
Systems, and Computers, November 1975.

D. J. Reifer and H. A. Montgomery,.
SEATECS Software Tools Survey.
RCI-TR-008 (Compiled for the NOSC SEATECS Project), Reifer
Consultants, Inc., March 1981.

Detailed Articles

A. T. Acree, T. A. Budd, R. A. DeMillo, R. J. Lipton and F. G.
Sayward.
Mutation Analysis.
Report GIT/ICS-79-08, Georgia Institute of Technology, 1979.

257

STEP - State-of-the-Art Overview

J. M. Adams.
Experiments on the Utility of Assertions for Debugging.
Proceedings Eleventh Hawaii International Conference on System
Science, Honolulu, HI, January 1978, pages 31-9.

D. M. Andrews.
Using Executable Assertions for Testing and Fault Tolerance.
Ninth Annual International Symposium on Fault-Tolerant
Computing, June 20-22, 1979, Madison, WI, pages 102-5.

D. M. Andrews and J. P. Benson.
An Automated Program Testing Methodology and Its Implementation.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 254-61.

D. M. Andrews and J. P. Benson.
Using Executable Assertions for Testing.
Conference Record of the Thirteenth Asilomar Conference on
Circuits, Systems and Computers, November 5-7, 1979, Pacific
Grove, CA, pages 302-5.

J. Arthur and J. Ramanathan.
Design of Analyzers for Selective Program Analysis.
IEEE Transactions on Software Engineering, Vol.SE-7(1):39-51,
January 1981.

D. Baldwin and F. Sayward.
Heuristics for Determining Equivalence of Program Mutations.
Technical Report 161, Yale University, 1979.

V. R. Basili and R. E. Noonan.
A Testing Tool for a Fire-Control Environment.
Proceedings of COMPCON 76, September 7-10, 1976, Washington, DC,
pages 341-5.

J. D. Baum and J. M. Baca.
Real-Time Event Trace Monitor for Embedded Computer Systems.
Proceedings of the IEEE 1979 National Aerospace and Electronics
Conference, May Y5-17, 1979, Dayton, OH, pages 833-9.

A. M. Belyakin, S. F. Zan-Ko, V. I. Medvedev, and V. N.
Yakhontov.
Soneya-A System for Testing Programs Based on the Use of a
Limited Natural Language.
Programmirovanie (USSR), Vol.5(2):84-9, March-April 1979.

J. F. Benders.
Partitioning Procedures for Solving Mixed-Variables Programming
Problems.
Numerical Math, Vol.4:238, 1962.

258

STEP - State-of-the-Art Overview

J. Bicevskis, J. Borzovs, U. Straujums, A. Zarins, and E. F.
Miller, Jr.
SMOTL - A System to Construct Samples for Data Processing
Program Debugging.
IEEE Transactions on Software Engineetm, Vol.SE-5(1):60-6,
January 19/9.

S. Bologna.
TEVERE-1: A Software System for Program Testing and Verification.
AICA 79 Conference, October 10-13, 1979, Bari, Italy, pages 71-8.

S. Bologna and J. Taylor.
SSPTV-A Software System for Program Testing and Verification.
Danish Atomic Energy Commission, Roskilde, Denmark, March 1978.

T. L. Booth, R. Ammar, and R. Lenk.
An Instrumentation System to Measure User Performance in
Interactive Systems.
Journal of Systems and Software, Vol.2(2):139-46, June 1981.

Y. V. Borzov.
Program Testing Using Symbolic Execution.
Programming and Computer Software, Vol.16:39-45, 1980.

R. S. Boyer, B. Elspas, and K. N. Levitt.
SELECT - A Formal System for Testing and Debugging Programs by
Symbolic Execution.
SIGPLAN Notices, Vol.10(6):234-45, June 1975.

T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
The Design of a Prototype Mutation System for Program Testing.
National Computer Conference, AFIPS Proceedings, Vol.47:623-7,
1978. Also reprinted in Tutorial: Automated Tools for Software
Engineering, E. F. MillerTER155TTrErnivuter Society, 1979.

T. A. Budd, R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Theoretical and Empirical Studies on Using Program Mutation to
Test the Functional Correctness of Program.
7th ACM S m osium on Princi les of Programming Languages,
anuary

T. A. Budd, R. Hess, and F. G. Sayward.
EXPER Implementor's Guide.
Department of Computer Science, Yale Univeristy.

J. C. Cherniaysky.
On Finding Test Data Sets for Loop Free Programs.
Information Processin' Letters (Netherlands), Vol.8(2):106-7,
February 15, 1979.

259

STEP - State-of-the-Art Overview

T. S. Chow.
A Generalized Assertion Language.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages 392-9.

J. Cohen and N. Carpenter.
A Language for Inquiring about the Run-Time Behaviour of
Programs.
Software Practice and Experience, Vol.7(4):445-60, July-August
1977.

L. Clarke.
Test Data Generation and Symbolic Execution as an Aid in
Software Validation.
Computer Science Conference, February 18-20, 1975, Washington,
DC, page 41.

L. A. Clarke.
A System to Generate Test Data and Symbolically Execute
Programs.
IEEE Transactions on Software Engineering, Vol.SE-2(3):215-22,
September 1976.

L. A. Clarke.
Testing - Achievements and Frustrations.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages JIU=4.

L. A. Clarke, J. Hassell, and D. J. Richardson.
A Close Look at Domain Testing.
IEEE Transactions on Software Engineering, Vol.SE-8(4):380-90,
July 1982.

J. A. Darringer.
EFFIGY: A System for Symbolic Execution.
Computer Science Conference, February 18-20, 1975, Washington,
DC, page 41.

J. A. Darringer.
The Use of Symbolic Execution in Program Testing.
In Infotech State of the Art Report, Software Testing, Volume
2: Invited Papers, pages 67-8S.
Infotech International, 1979.

R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Program Mutation: A New Approach to Program Testing.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 107-26.
Infotech rnternational, 1979.

260

STEP - State-of-the-Art Overview

Diagnostic and Debugging Aids for Reliable Software.
In Com.uter S stems Reliabilit : International State of the Art
Repor , " 	. ampson an 	:unyan 	•1 ors , pages
1974.

E. G. Dupnick.
A Zero-One Integer Programming Solution for Determining the
Minimum Number of Test Cases Required for Fortran Program
Checkout.
Bulletin of the Operations Research Society of America,
V0.21(2)212, 1973.

R. E. Fairley.
An Experimental Program Testing Facility.
Proceedings of the 1st National Conference on Software
Engineering, September 11-12, 1975, Washington, DC, pages 47-55.

D. W. Fife.
Test Data Generation: Three Approaches Prevail.
Computer, Vol.12:103-4, March 1979.

K. F. Fischer.
A Test Case Selection Method for the Validation of Software
Maintenance Modifications.
Proceedings of COMPSAC 77, November 8-11, 1977, Chicago, IL,
pages 421-6.

H. W. Flanagan.
Program Debugging System.
IBM Technical Disclosure Bulletin, Vol.16(7):2322-9, December
1973.

B. Flavigny.
A Program for the Detection of Logical Errors in Programs.
Rev. Fr. Autom. Inf. Rech. Oper. (France), Vol.9(B.2):43-59,
July 1915.

K. A. Foster.
Error Sensitive Test Cases Analysis (ESTCA).
IEEE Transactions on Software Engineering, Vol.SE-6(3):258-64,
May 1980.

H. E. Frye and R. L. Hoffman.
Program Event Monitoring Instruction.
IBM Technical Disclosure Bulletin, Vol.18(5):1557-9, October
1975.

261

STEP - State-of-the-Art Overview

R. E. Fryer.
The User Interface for a Real-Time Software Debugging System.
Conference Record of the Fourteenth Asilomar Conference on
Circuits, Systems and Computers, November 17-19, 1980, Pacific
Grove, CA, pages 462-9.

N. Fujimura and K. Ushijima.
Experience with a Cobol Analyzer.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages 640-5.

C. Gannon.
JAVS - A Jovial Automated Verification System.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages bJ9-44.

W. Geiger.
Experience with an Automated Test and Documentation System for
Fortran Programs.
Practice in Software Adaption and Maintenance. Proceedings for
the SAM Workshop, pages 143-56, April 5-6, 19/9, Berlin, Germany.

M. Gerisch.
Universal Programming and Test Aids for OS/ES.
Rechentech. Datenverarb. (Germany), Vol.15(2):5-7, February 1978.

C. Ghezzi and M. Jazayeri.
Syntax Directed Symbolic Execution.
Proceedings of COMPSAC 80, October 27-31, 1980, Chicago, IL,
pages b39-4b.

B. Gladstone.
Monitor/Debugger Saves Time when Checking MUP Software.
EDN, Vol.21(17):69-80, September 1976.

L. Gmeiner.
Dynamic Analysis and Test Data Generation in an Automatic Test
System.
Workshop on Reliable Software, September 22-23, 1978, Bonn,
Germany, pages 31-48.

R. E. Gomory.
An Algorithm for Integer Solutions to Linear Programs.
In Recent Advances in Mathematical Programming, R. L. Graves and
P. Wolfe, Editors. McGraw-Hill, New fork, 1963.

A. I. Halsema.
Demons: A Symbolic Debugging Monitor.
BYTE, Vol.6(5):326-58, May 1981.

262

STEP - State-of-the-Art Overview

C. Hanisch.
Experience with a Computer Operating System Test Environment.
Rechentech. Datenverarb. (Germany), Vol.17(5):11-3, May 1980.

J. M. Hanks.
Testing Cobol Programs by Mutation: Volume I - Introduction to
the CMS.1 System, Volume II - CMS.1 System Documentation.
Report GIT/ICS-80-04, Georgia Institute of Technology, 1980.

B. C. Hedfors and B. J. E. Nilsson.
The APA System, An Integrated Software Test System.
International Conference on Software Engineering for
Telecommunication Switching Systems, February 18-20, 1976,
Salzburg, Austria, pages 104-7.

M. A. Hennell.
An Experimental Testbed for Numerical Software.
Computer Journal (GB), Vol.21(4):333-6, November 1978.

F. J. Hill and B. Huey.
A Design Language Approach to Test Sequence Generation.
Computer, Vol.10(6):28-34, June 1977.

W. E. Howden.
An Evaluation of the Effectiveness of Symbolic Testing.
Software Practice and Experience, Vol.8(4):381-97,
July - August I9/U.

W. E. Howden.
DISSECT - A Symbolic Evaluation and Program Testing System.
IEEE Transactions on Software Engineering, Vol.SE-4(1):70-3,
January 1978.

W. E. Howden.
Experiments with a Symbolic Evaluation System.
National Computer Conference, AFIPS Proceedings, June 1976,
pages 899-908.

W. E. Howden.
Methodology for the Generation of Program Test Data.
IEEE Transactions on Computers, Vol.C-24(5):554-9, May 1975.

W. E. Howden.
Symbolic Testing and the DISSECT Symbolic Evaluation System.
IEEE Transactions on Software Engineering, Vol.SE-3(4):276-8,
July 1977.

W. E. Howden.
Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering, Vol.SE-8(4):371-9,
July 19b2.

263

STEP - State-of-the-Art Overview

J. C. Huang.
Detection of Data Flow Anomaly Through Program Instrumentation.
IEEE Transactions on Software Engineering, Vol.SE-5(3):226-36,
May 1979.

J. C. Huang.
Instrumenting Programs for Data Flow Analysis.
Technical Report TR-UH-CS-77-4, University of Houston, May 1977.

J. C. Huang.
Program Instrumentation: A Tool for Software Testing.
In Infotech State of the Art Report, Software Testing,
Volume 2: Invited Papers, pages 141-59. Infotech
International, 19/9.

J. C. Huang and R. T. Yeh.
A Method for Test-Case Generation.
2nd USA-Japan Computer Conference Proceedings, August 26-28,
1975, Tokyo, Japan, pages 585-9.

C. E. Hughes and C. P. Pfleeger.
Assist-V - An Environment Simulator for IBM 360 Systems Software
Development.
IEEE Transactions on Software Engineering, Vol.SE-4(6):526-30,
November 1978.

E. Husu.
PROSIT - A Tool for the Testing of Proteo Central Control
Software (Electronic Switching Systems).
Telecomunicazioni (Italy), No.71-72:63-8, July-October 1979.

J. C. King.
Symbolic Execution and Program Testing.
Communications of the ACM, Vol.19(7):385-94, July 1976.

D. Konig and A. Rink.
PIPS - A Programming System for Interactive Program Testing.
Workshop on Reliable Software, September 22-23, 1978, Bonn,
Germany, pages 89-IUU.

S. Kundu.
A New Program Analysis Technique with Applications to Test Case
Generation.
3rd USA-Japan Computer Conference Proceedings, October 10-12,
19/8, San Francisco, GA, pages 482 -b.

S. Kundu.
SETAR - New Approach to Test Case Generation.
In Infotech State of the Art Report, Software Testing, Volume
2: Invited Papers, pages 163 -87. Infotech International, 1979.

264

STEP - State-of-the-Art Overview

S. F. Lundstrom.
Adaptive Random Data Generation for Computer Software Testing.
National Computer Conference, AFIPS Proceedings, Vo1.47:505-12,
T978.

N. R. Lyons.
An Automatic Data Generation System for Data Base Simulation and
Testing.
Data Base, Vol.8(4):10-3, T977.

K. Malecki.
Using Software Monitor for Evaluation and Measurement of
Computer Systems.
Informatyka (Poland), Vol.12(4):15-8, April 1976.

M. A. Malik.
An Assertion Language for the Annotation of Program Modules.
Australian Computer Science Community (Australia),
Vol.2(2):217-38, March 1980.

H. Marks.
Probe/1, A Tool for Verifying Software.
1979 Summer Computer Simulation Conference, July 16-18, 1979,
Toronto, Canada, pages W5-8.

Y. Matsumoto and T. Torii.
HMTS Intended to Realize High-Efficiency Program Test.
Hitachi Review (Japan), Vol.25(7):263, July 1976.

O. E. Melkonyan.
The Sekont Program Testing System.
Programmirovanie (USSR), Vol.3(3):83-7, May-June 1977.

A. R. Miller.
ZSID, Z-80 Debugger for CP/M.
Interface Age, Vol.5(8):88-90, August 1980.

W. Miller and D. L. Spooner.
Automatic Generation of Floating-Point Test Data.
IEEE Transactions on Software Engineering, Vol.SE-2(3):223-6,
September 1976.

G. J. Myers and D. G. Hocker.
The Use of Software Simulators in the Testing and Debugging of
Microprogram Logic.
IEEE Transactions on Computers, Vol.C-30(7):519-23, July 1981.

A New Generation of Cobol Testing Aids.
Software 73, July 9-11, 1973, Loughborough, Leics, England,
pages 1.39-44.

265

STEP - State-of-the-Art Overview

E. S. Novikov and Ya. A. Khetagurov.
Reliability from a Method of Monitoring and Correcting
Computations.
Programmirovanie (USSR), Vol.5(6):75-82, November-December 1979.

NSW Feasibility Study, Final Technical Report, RADC-TR-78-23,
February 1978.

L. J. Osterweil and L. D. Fosdick.
DAVE -- A Validation and Error Detection System for Fortran
Programs.
Software Practice and Experience, Vol.6:473-86, 1976.

L. J. Osterweil and L. D. Fosdick.
Simulated Program Execution as a Strategy for Error Detection
and Validation.
Proceedings of the 1976 Summer Computer Simulation Conference,
July 12-14, 1976, Washington, DC, pages /U4 - /.

M. R. Paige and J. P. Benson.
The Use of Software Probes in Testing Fortran Programs.
Computer, Vol.7(7):40-7, July 1974.

M. R. Paige and A. H. Tindell.
A System for Test Data Generation.
Proceedings of the IEEE 1979 National Aerospace and Electronics
Conference, May 15-1/, 1979, Dayton, OH, pages 826 -8.

R. J. Peterson.
TESTER/1: An Abstract Model for the Automatic Synthesis of
Program Test Case Specifications.
Proceedings of the Symposium of Computer Software Engineering,
pages 629 -35, IEEE, New York, 1916.

N. M. Petukhova and L. N. Savenko.
Simulator for De-Bugging Program.
Autom. Sist. Upr. (USSR), No.1:76-81, 1974.

P. A. Pravil-Shchikov and V. S. Shchepin.
Compilation of Structural Programs in a Dialogue Mode with
Concurrent Test Generation.
Avtom. and Telemekh. (USSR), Vol.40(8):129-38, August 1979.

R. L. Probert.
Optimal Insertion of Software Probes in Well-Delimited Programs.
IEEE Transactions on Software Engineering, Vol.SE-8(1):34-42,
January 1982.

266

STEP - State-of-the-Art Overview

C. V. Ramamoorthy and K. H. Kim.
Software Monitors Aiding Systematic Testing and Their Optimal
Placement.
Proceedings of the 1st National Conference on Software
Engineering, September 11-12, 1975, Washington, DC, pages 21-6.

C. V. Ramamoorthy, K. H. Kim, and W. T. Chen.
Optimal Placement of Software Monitors Aiding Systematic Testing.
IEEE Transactions on Software Engineering, Vol.SE-1(4):403-11,
December 1975.

C.V. Ramamoorthy, F. Ho Siu-Bun, and W. T. Chen.
On the Automated Generation of Program Test Data.
IEEE Transactions on Software Engineering, Vol.SE-2(4):293-300,
December 1976.

D.J. Richardson and L. A. Clarke.
A Partition Analysis Method to Increase Program Reliability.
Proceedings of the 5th International Conference on Software
Engineering, March 9-12, 1981, San Diego, CA, pages 244-53.

I. J. Riddle, J. A. Hennel, M. R. Woodward, and D. Hedley.
Practical Aspects of Program Mutation.
University of Nottingham, Nottingham, UK.

G. R. Sager.
Emulation for System Measurement/Debugging.
Proceedings of the IFIP Conference on Software for
Minicomputers, September 8-12, 1975, Keszthely, Hungary, pages
I UI -Zi.

S. H. Saib.
Executable Assertions - An Aid to Reliable Software.
Proceedings Eleventh Annual Asilomar Conference on Circuits,
Systems, and Computers, November T977:—FiErfic Grove, CA, pages
277-81.

P. Schmitz, R. Van Megen, and H. Bons.
Methods of Systematic Test Case Determination and Test Case
Preparation.
Practice in Software Adaption and Maintenance. Proceedings for
the SAM Workshop, April 5-6, 1977—Uirlin, Germany, pages 209-21.

L. G. Stucki.
Software Development Tools - Acquisition Considerations - A
Position Paper.
National Computer Conference, AFIPS Proceedings, Vol.46:267-8,
19/1.

267

STEP - State-of-the-Art Overview

L. G. Stucki and G. L. Foshee.
New Assertion Concepts for Self-Metric Software Validation.
Proceedings of IEEE Conference on Reliable Software, April 1975,
Los Angeles, CA, pages 59-65.

A. Tanaka.
Equivalence Testing for Fortran Mutation System Using Data Flow
Analysis.
Department of Information and Computer Science, Georgia
Institute of Technology, 1981.

R. N. Taylor.
Assertions in Programming Languages.
SIGPLAN Notices, Vol.15(1):58-65, January 1980.

D. Teichroew and F. A. Hershey, III.
PSL/PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems.
IEEE Transactions on Software Engineering, Vol.SE-3(1):41-8,
1971.

U. Voges, L. Gmeiner and A. Amschler Von Mayrhauser.
SADAT - An Automated Testing Tool.
IEEE Transactions on Software Engineering, Vol.SE-6(3):286-90,
May 1980.

Chen Wen-Tsuen, Ho Jone-Ping and Wen Chia-Hsien.
Dynamic Validation of Programs Using Assertion Checking
Facilities. 	'
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 533-8.

M. R. Woodward, D. Hedley, and M. A. Hennell.
Experience with Path Analysis and Testing of Programs.
IEEE Transactions on Software Engineering, Vol.SE-6(3):278-86,
May 1980.

M. R. Woodward, M. A. Hennell, and D. Hedley.
A Limited Mutation Approach to Program Testing.
University of Nottingham, Nottingham, UK, 1980.

268

STEP - State-of-the-Art Overview

3.4. TEST SUPPORTING TOOLS

Books

. _,÷Ste(4ftt•tReortInfotect :Soft‘ 77
o ume :Invitedapers.
Infotech International, 1977.

Infotech State of the Art Report, Software Testing, Volume
Analysis and Bibliography.
intotecn International, 1979.

G.J. Myers.
The Art of Software Testing.
John Wiley & Sons, New York, 1979.

Software Engineering Automated Tools Index.
Software Research Associates, P. 0. Box 2432, San Francisco, CA
94126.

Survey Articles

R. P. Abbott.
Towards the Audit of Computer Software.
In Infotech State of the Art Report, Software Testing, Volume 2:
Invited Papers, pages 1-12.
rntotech International, 1979.

W. L. Bryan, S. G. Siegel, and G. L. Whiteleather.
Auditing Throughout the Software Life Cycle: A Primer.
Computer, Vol.15(3):57-67, March 1982.

T. E. Cheatham, Jr.
Comparing Programming Support Environments.
Proceedings of the Symposium on Software Engineering
Environments, June 16-20, 1980, Lahnstein, Germany, pages 11-25.

J. D. Donahoo and D. Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center, NY,
February 1980.

H. R. Downs.
Automated Tools for the Verification of Computer Programs.
Transactions of the American Nuclear Society and the European
Nuclear Society, 1980 International Conference, November 16-21,
1980, Washington, DC, pages 253-4.

269

STEP - State-of-the-Art Overview

R. C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 500-88, National Bureau of Standards,
1982.

E. F. Miller, Jr.
Notes on Tools and Techniques of Testing.
In Tutorial: Program Testing Techniques, pages 107-11, IEEE
Computer Society, Piscataway, NJ, 19/7.

I. Miyamoto.
Automated Testing-Aid Tools Survey.
Information Processing Society of Japan (Joho Shori) (Japan),
Vol.20(8):688-93, August 1979.

D. J. Panzl.
Automatic Software Test Drivers.
Computer, Vol.l1(4):44-50, April 1978.

D. J. Reifer and H. A. Montgomery.
SEATECS Software Tools Survey.
RCI-TR-008 (Compiled for the NOSC SEATECS Project), Reifer
Consultants, Inc., March 1981.

Detailed Articles

S. R. Alpert.
Minicomputer Peripheral Aids Program Debugging.
Computer Design, Vol.15(9):104-8, September 1976.

D. L. Baggi and M. L. Shooman.
An Automatic Driver for Pseudo-Exhaustive Software Testing.
Proceedings of Spring COMPCON 78, February 28 - March 3, 1978,
San Francisco, CA, pages 278-82.

D. G. Bate.
Design and Implementation of an Interactive Test Bed.
Software Practice and Experience, Vol.4(1):91-109, January-March
1974.

J. P. Benson and R. A. Melton.
A Laboratory for the Development and Evaluation of BMD Software
Quality Enhancements Techniques.
Proceedings of the 2nd International Conference on Software
Engineering, October 13-15, 1976, San Francisco, CA, pages 106-9.

J. P. Bielski and W. H. Blankertz.
The General Acceptance Test System (CATS).
Proceedings of COMPCON 77, February 28 - March 3, 1977, San
Francisco, GA, pages zui-I0.

270

STEP - State-of-the-Art Overview

S. H. Caine and E. K. Gordon.
PDL -- A Tool for Software Development.
National Computer Conference, AFIPS Proceedings, 1975.

L. M. Culpepper.
A System for Reliable Engineering Software.
IEEE Transactions on Software Engineering, Vol.SE-1(2):174-8,
June T975.

D. M. Garmer and J. W. Fish.
Automatic Test Equipment Software Testing
Proceedings of Autotestcon '78, November
CA, pages 71-5.

G. J. Guitonneau, J. L. Lemonnier, and J.
A Simulator for Debugging and Evaluating
International Conference on Software Engi
Telecommunication Switching Systems, Febr
Salzburg, Austria, pages 108-11.

D. C. Hart, R. G. Kurkjian, M. Myles, and
A Computer-Independent Arinc Atlas Syntax
Proceedings of Autotestcon '76, November
71, pages 10-8.

C. A. Heuermann, G. J. Myers, and J. H. Winterton.
Automated Test and Verification.
IBM Technical Disclosure Bulletin, Vol.17(7):2030-5,
December 1914.

C. A. Heuermann, G. J. Myers, and J. H. Winterton.
Verification of Test Case Output.
IBM Technical Disclosure Bulletin, Vol.17(7):2034-5, December
T974.

P. P. Howley, Jr. and G. R. Sadow.
Software Verification for Large-Scale ATE Systems.
Proceedings of Autotestcon '78, November 28-30, 1978, San Diego,
CA, pages /b-a.i.

J. G. Kretzschmar.
Microprocessor-Based Testing of Microprocessor Programs.
Neue Technical Buero (Germany), Vol.22(1):2-5, January-February
1978.

L. M. Lemon.
Hardware System for Developing and Validating Software.
Conference Record of the Thirteenth Asilomar Conference on
Circuits, Systems and Computers, November 5-7, 1979, Pacific
Grove, CA, pages 455-9.

28-30, 1978, San Diego,

J. Soulet.
the Ell System.
neering for
uary 18-20, 1976,

A. Greenspan.
Comparator.
10-12, 1976, Arlington,

271

STEP - State-of-the-Art Overview

A. R. Miller.
ZSID, Z-80 Debugger for CP/M.
Interface Age, Vol.5(8):88-90, August 1980.

J. B. Norris.
Component Test Aid.
IBM Technical Disclosure Bulletin, Vol.20(5):1870-2, October
1977.

S. M. Nugent.
Automatic Comparison of Numerical Results Files.
Practice in Software Adaption and Maintenance, Proceedings for
the SAM Workshop, April 5-6, 1979, Berlin, Germany, pages 107-20.

D. J. Panzl.
A Language for Specifying Software Tests.
National Computer Conference, AFIPS Proceedings, Vol.47:609-19,
1978.

D. J. Panzl.
Test Procedures: A New Approach to Software Verification.
Proceedings of the 2nd International Conference on Software
Engineering, October 13 -15, 1976, San Francisco, CA, pages
477-8b.

R. Press and R. K. McClean.
The Flexible Analysis, Simulation, and Test Facility: A
Practical Software-First Capability.
Proceedings of the IEEE 1976 National Aerospace and Electronics
Conference, May 18-ZU, T976, Dayton, OH, pages Z64-8.

N. S. Prywes, A. Pnueli, and A. Shastry.
Use of a Nonprocedural Specification Language and Associated
Program Generator in Software Development.
Transactions on Programming Languages and Systems,
Vol.1(2):196-217, October 1979.

B. G. Ryder.
The PFORT Verifier.
Software Practice and Experience, Vol.4(4):359-77,
October-December 1974.

A. J. Shils.
Creating, Evolving, and Using an Online Large Software System
Test Base.
IBM Technical Disclosure Bulletin, Vol.17(11):3292-7, April 1975.

H. M. Sneed.
Prufstand - A Testbed for Systems Software Components.
In Infotech State of the Art Report, Software Testing, Volume
Invited Papers, pages Z4b-/U. lntotech international, 19/9.

272

STEP - State-of-the-Art Overview

R. A. Stasko.
Test Case Monitor.
IBM Technical Disclosure Bulletin, Vol.17(10):2976, March 1975.

R. N. Taylor and L. J. Osterweil.
A Facility for Verification, Testing and Documentation of
Concurrent Process Software.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages i6-41.

D. E. Wright and B. D. Carroll.
An Automated Data Collection System for the Study of Software
Reliability.
Proceedings of COMPSAC 78, November 13-16, 1978, Chicago, IL,
pages 571 -b.

A. D. Zakrevskii.
Dialog System for Program Debugging and Editing in the Lyapas-M
Language.
Kibernetika (USSR), Vol.10(6):984-5, November-December 1974.

273

STEP - State-of-the-Art Overview

APPENDIX A

INFORMATION SOURCES FOR TESTING TOOLS

1. Raymond C. Houghton, Jr.
Software Development Tools.
NBS Special Publication 500-88, National Bureau of Standards,
1982.

2. John D. Donahoo and Dorothy Swearingen.
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, February 1980, Rome Air
Development Center.

3. Data Analysis Center for Software (DACS).
RADC/ISISI, Griffiss Air Force Base, NY 13441.
Telephone 315-336-0937, AUTOVON 587-3395.

4. Frank S. Lamonica.
RADC/COEE, Griffiss Air Force Base, NY 13441.
Telephone 315-330-3977.

5. M. Finfer, et al.
Software Debugging Methodology, Final Technical Report.
RADC-TR-79-57 (three volumes), April 1979.

6. AIAA Technical Committee on Computers.
AIAA/Grumman Survey of Software Development Tools Source Data,
1979.

7. Applied Systems Design Section, Software Tools: Catalog and
Recommendations.
TRW Defense and Space Systems Group, January 1979.

8. D. J. Reiffer and H. A. Montgomery.
SEATECS Software Tools Survey.
RCI-TR-008 (Compiled for the NOSC SEATECS Project), Reiffer
Consultants, Inc., March 1981.

9. L. G. Stucki, et al.
Methodology for Producing Reliable Software.
McDonnel-Douglas Astronautics Company, NASA CR 144769 (two
volumes), March 1976.

10. Software Engineering Automated Tool Index.
Software Research Associates, P. O. Box 2432, San Francisco, CA
94126, Tel. 415-957-1441, Telex 340-235, March 1982.

274

STEP - State-of-the-Art Overview

11. Max Schindler.
Software Practice -- A Scarce Art Struggles to Become a Science.
Electronic Design, July 22, 1982, pp. 85-102.

12. Herbert Hecht.
Final Report: A Survey of Software Tools Usage.
NBS Special Publication 500-82, Computer Science and Technology.
National Bureau of Standards, November 1981.

275

STEP - State-of-the-Art Overview

APPENDIX B

ALPHABETICAL LISTING OF CATALOGED TOOLS
(Tools described by data sheets marked with *)

1. ADF
2. ADS
3. ADS/CERL
4. AFFIRM
5. AISIM
6. AMPIC
	 *

7. ARGUS/MICRO
8. ARTS
9. ASSETT
10. ASSIST-I
11. ATA-FASP
12. ATA-SAI
13. ATDG
	 *

14. ATTEST
	 *

15. AUDIT
16. AUDITOR
17. AUTO-DBO
18. AUTOFLOW
19. AUTORETEST
	 *

20. BEST/1
21. CADA
22. CADSAT
23. CALLREF
24. CAPTURE/MVS
25. CARA
26. CASEGEN
	 *

27. CAVS
28. CCA
29. CCREF
30. CCS
31. CGJA
32. CICS DUMPN ANALY
33. COBOL/ADE
34. COBOL/DV
	 *

35. COBOL OPTIMIZER
	 *

36. COBOL/QDM
37. COBOL STRUCT
38. COBOL/SP
39. COBOL TESTING
	 *

40. COBOL TRACING
41. COMGEN
42. COMGEN/TRW
43. COMLIST
44. COMLIST/TRW

276

STEP - State-of-the-Art Overview

ALPHABETICAL LISTING OF CATALOGED TOOLS
(Tools described by data sheets marked with *)

45. COMMAP
46. COMPARE DBCOMP
47. COMPARISON
48. COMSCAN
49. COMSORT
50. CONFIG
51. CONFIGURATOR
52. CORE
43. COTUNE-II
54. CPA-ADR
55. CROREF
56. CRYSTAL
57. CUE
58. DA
59. DATAMACS
60. DAS
61. DARTS
62. DAVE
63. DCD
64. DDPM
65. DECKBOY COMPARE
66. DPECHT
67. DICTANL/OCATE
68. DIFFS
69. DISSECT
70. DOCUTOOL
71. DPAD
72. DPNDCY
73. DRIVER
74. DYNA
75. EAVS
76. ECA AUTOMATION
77. EFFIGY
78. ENFORCE
79. EXPEDITER
80. FACES
81. FADEBUG-I
82. FASP
83. FAST
84. FAYS
85. FCA
86. FLOBOL
87. FORAN
88. FORREF
89. FORTRAN AUDITOR
90. FORTRAN OPTIMIZER

*

*
*
*

277

STEP - State-of-the-Art Overview

ALPHABETICAL LISTING OF CATALOGED TOOLS
(Tools described by data sheets marked with *)

91. FORTRAN TESTING
	 *

92. FORTRAN TRACING
	 *

93. FORTREF
94. FTN ANALYZER
95. FTN-77 ANALYZER
96. FTNXREF
97. GAYS
98. GENTESTS
99. GENTEXTS
	 *

100. GIRAFF
101. GOTO-ANALYZER
102. HARDWARE SIMULA
103. HAWKEYE
104. IFTRAN
105. INFORM/REFORM
106. INSERT
107. INSTRU
108. INTERFACE DOCUM
	 *

109. IPDS
110. ISUS
111. ITB
112. JAYS
	 *

113. JIGSAW
114. JOVIAL TCA
115. JOVIAL/VS
116. JOYCE
	 *

117. LEXICON
118. LIBREF
119. LOGIC
120. LOGICFLOW
121. LOGOS
122. LOOK
123. MED-SYS
124. MEDL-P
125. MEDL-R
126. MONITOR
127. MSEF
128. NASA-VATS
129. NODAL
130. OCM
131. PACD
	 *

132. PACD-C
133. PBASIC
134. PDL
135. PDL/PSA

278

STEP - State-of-the-Art Overview

ALPHABETICAL LISTING OF CATALOGED TOOLS
(Tools described by data sheets marked with *)

136. PDS
137. PERCAM
138. PET
139. PFORT
140. POD
141. PORTABLE FORTRAN MUTATION
142. PPE
143. PREF HDR GEN
144. PROGCOMPANAL
145. PROGLOOK
146. PRONET
147. PRUFSTAND
148. PSL
149. PWB FOR VAX/VMS
150. QCM
151. QUICK-DRAW
152. RA
153. RADC/FCA
154. REFER
155. REFLECT II
156. REFTRAN
157. RISOS TOOLS
158. RTT
159. RXVP80
	 *

160. SADAT
	 *

161. SALSIM
162. SARA
163. SARA-H
164. SARA-U
165. SARA-III
166. SARA-IV
167. SCAN/370
168. SCERT
169. SCG/DQM
170. SDL
171. SDP/MAYDA
172. SDVS
173. SEF
174. SELECT
	 *

175. SETAR
176. SIGS
177. SLIM
178. SMOTL
179. SMT
180. SNOOP
181. SOFTOOL80

279

STEP - State-of-the-Art Overview

ALPHABETICAL LISTING OF CATALOGED TOOLS
(Tools described by data sheets marked with *)

182. SPECL/DARS
183. SPELL
184. SPRINT
185. SREM
186. SREP
187. SRIMP
188. SSA
189. STAG/TEMS
190. STRUCT
191. STRUCTURE(S)
192. SUBCRS
193. SURVAYOR
194. SYDIM
195. SYDOC
196. SYMCRS
197. SYSTEM MONITOR
198. SYSXREF
199. TAFIRM
200. TPAS/AM
201. TATTLE
202. TDBCOMP
203. TCAT
204. TDEM
205. TEC/1
206. TEST MANAGER
207. TEST PREDICTOR
208. TEVERE-1
209. TFA
210. THE ENGINE
211. TIMECS
212. TOOLPAK
213. TPT
214. TRAILBLAZER
215. TSA/PPE
216. UCA
217. VIRTUAL OS
218. XPEDITER

Note: The following data sheets were provided by the developers of
the indicated tool. Although these responses were solicited by the
contractor, no attempt has been made to assess the accuracy of the
information.

280

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: AMPIC
Title: AMPIC
Classification (all applicable categories): Symbolic Evaluator
Features: Symbolic execution, path predicate calculation, global

cross-reference, structured and unstructured flow charts.
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): SNOBOL
Implementation Hardware: IBM 360/370
OS (other software required):
Target Languages (of the tested module): WSC FORTRAN, ASSEMBLY (WSC,

LITTON L4516D, SKC-2070)
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):

t ($):
Developer: LOGICON, INC.
Contact (name, address, and telephone no.):

Mike Ikezawa
Logicon, Inc.
P. O. Box 471
San Pedro, CA 90733
(213) 831-0611

Tool summary: AMPIC is a program that structures, translates and
symbolically executes other programs, written in higher order
language (currently implemented for WSC Fortran) or assembly
language (WSC, Litton L4516D, SKC-2070, etc.). A complete AMPIC
run on a given input module consists of four AMPIC phases: 1) the
module is segmented into code groups that can be treated as
individual elements (nodes) of a flowchart; 2) a "structured"
flowchart is created; 3) the input module is translated into
methematical-type statements; 4) the input/output functional
expressions for the entire paths through the input module are
provided and symbolically executed.

Performance and limitations: Primarily an experimental facility
Documentation (type of available documentation): User's guide
References:

Applied Systems Design Section, TRW Defense and Space Systems Group
Software Tools: Catalogue and Recommendations
TRW Automated Software Tools Series, January 1979, U.S. Army TB
22-18

281

STEP - State-of-the-Art Overview

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Software Research Associates
Software Engineering Automated Tools Index
P. O. Box 2432, San Francisco, CA 94126

M. A. Ikezawa.
AMPIC for the Non-Programmer.
Logicon, Inc., Report R-CSS-77004, May 9, 1977.

282

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: ATDG
Title: AUTOMATED TEST DATA GENERATOR
Classification (all applicable categories): Test Data Generator
Features: Test data generation, path structure analysis, anomaly

detection, variable analysis.
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran
Implementation Hardware: UNIVAC 1110
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: TRW for NASA in Houston
Contact (name, address, and telephone no.):

Dr. Barry Boehm
TRW Systems, Inc.
1 Space Park
Redondo Beach, CA 90278
(213)535-2184

Tool summary: The ATDG is an experimental interactive tool with two
different functions: The test data generation (TDG) function
provides automated support to program testing at the unit level
(i.e., a single sub-route, function or main program) by
identification of effective test case paths and the data
constraints which must be satisfied to execute these paths; the
static error analysis (SEA) function provides a diagnostic
capability to supplement the error detection functions of
conventional Fortran compilers by identification of path-dependent
errors (e.g., uninitialized variables, infinite loops, unreachable
code). These two functions are performed by analyzing a logic
network of the software element using the principles of directed
graph theory and dynamic programming. A network is constructed by
defining a software element in terms of segments (logic blocks of
Fortran statements that can be addressed), and by identifying the
transfers and connective properties between these segments.

Performance and limitations: Experimental tool
Documentation (type of available documentation): User information note

283

STEP - State-of-the-Art Overview

References:
L. G. Stucki, et. al.
Methodology for Producing Reliable Software.
McDonnell douglas Astronautics Company, NASA CR 144769, March 76,
Two Volumes

TRW (Catalog)
Software Tools Catalogue and Recommendations
TRW, Defense and Space Systems Group, January 1979.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Software Research Associates
Software Engineering Automated Tools Index
P. O. Box 2432, SanFrancisco, CA 94126

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
February 1980.

284

STEP - State-of-the•Art Overview

TESTING TOOL DATA SHEET

Date: 10/11/82
Acronym: ATTEST
Title: AUTOMATIC TEST ENHANCEMENT SYSTEM
Classification (all applicable categories): Test Data Generator,

Symbolic Evaluator,
Data Flow Analyzer

Features: Symbolic evaluation, test data generation, data flow
analysis, automatic path selection, constraint simplification

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran 77
Implementation Hardware: VAX
OS (other software required): VMS
Target Languages (of the tested module): Fortran 66
Tool portable (yes, no): Yes (requires VM)
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no): Yes
Restrictions (copy rights, licenses, etc.): None
Tool supported (yes, no): No
Cost ($): None
Developer: Software Development Laboratory, U. of MA.
Contact (name, address, and telephone no.):

Lori A. Clarke
Dept. of Computer 8 Information Science
University of Massachusetts
Amherst, MA 01003

Tool summary: ATTEST is a test data generation system that analyzes
programs written in FORTRAN 66. It contains the following
components:

Data Flow Analyzer (DAVE) - Preprocesses the source
statements into internal tables of information used by the
other components. Produces a data flow report.
Path Selector - Path selection can be done manually, either
interactively or statically, or automatically. The automatic
path selection feature selects paths to satisfy user
specified criteria.
Symbolic Evaluator - Creates symbolic representation of each
selected path's domain (path condition) and computations.
Simplifier - Simplifies each constraint in the path condition.
Constraint Manager - Performs simple reductions on the
constraints, handles complex constraints such as OR
conditions, and when necessary calls a linear programming
system to solve the path condition.

Performance and limitations: Not of production quality; unsupported
Documentation (type of available documentation): Limited

285

STEP - State-of-the-Art Overview

References:
W. Miller and D. L. Spooner.
Automatic Generation of Floating-Point Test Data.
IEEE Transaction on Softwaare Engineering, Vol. SE-2, March 1976,
pp 223-226.

Lori A. Clarke and N. R. Ogden.
Top-Down Testing with Symbolic Execution.
DIGEST Workshop on Software Testing and Test Documentation, Ft.
Lauderdale, Florida, Dec. 1978, pp. 191-196.

Automatic Test Data Selection Techniques.
Infotech State of the Art Report, Software Testing, Vol. 2,
Infotech Internation1 Ltd., September 19/8, pp. 43-65.

Lori A. Clarke and J. Woods.
Program Testing Using Symbolic Execution.
Proceedings of the Software Specification and Testing Technology
Conference, Washington, DC, April 1978, pp. 124-144.

Lori A. Clarke and Paul Abrahams.
Compile-Time Analysis of Data List-Format List Correspondences.
IEEE Transactions on Software Engineering, Vol. SE-5,6, November
19/9, pp. 61Z-61/.

Lori A. Clarke and D. J. Richardson.
Symbolic Evaluation Methods - Implementations and Applications.
Computer Program Testing. (B. Chandrasekaran and S. Radicchi,
editors).
North Holland Publishing Company, 1981, pp. 65-102.

286

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: AUT
Title: AUTOMATED UNIT TEST
Classification (all applicable categories): Test Driver
Features: Regression testing, simulation of test environment
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool):
Implementation Hardware: IBM 360/370
OS (other software required):
Target Languages (of the tested module): BAL, PL/q, COBOL
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($): 1,200
Developer: IBM
Contact (name, address, and telephone no.):

IBM Corporation
Data Processing Division
1133 Westchester Avenue
White Plains, NY 10604

Tool summary: AUT is a test harness system for BAL, PL/1 or COBOL
environments. AUT is a productivity aid used to drive test cases
through a unit of code for internal interface testing, monitor
execution of the test cases, verify the performance of the test
cases, and provide diagnostic information about discrepancies.
Also provides capability to simulate uncoded or unfinished units
of code or entire modules while driving test cases. IBM is
publically silent on level of use internally, externally.

Performance and limitations:
Documentation (type of available documentation):
References:

IBM Documentation: Installed User Program, Automated Unit Test
(AUT), For TS0 and BATCH OS/YS, Program Description/Operations
Manual, Program Number 5796-PEC, Manual SH20-1663-0, August 1975.

287

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: AUTORETEST
Title: AUTORETEST
Classification (all applicable categories): Test Driver,

Comparator
Features: Test data management, regression testing, automated compari-

son between selected old and new test parameters
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN IV, ASSEMBLY
Implementation Hardware: IBM 360/370
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: TRW, Defense systems Software Department
Contact (name, address, and telephone no.):

Clarke Lucas
TRW, Defense Systems Dept.
One Space Park
Redondo Beach, CA 90278
(213)535-0426

Tool summary: The principal application of the AUTORETEST program is
the automation of user software test results revalidation. The
system provides an automated comparison between selected old and
new test parameters, thereby allowing invaluable documentation of
the test cases. This system also provides a flexibility in that a
tolerance criterion may be assigned to each comparison and thereby
suppress insignificant differences. This is similar to the driver
tool available for the CDC computers.

Performance and limitations:
Documentation (type of available documentation): Development

Specification, Programmer's Guide
References:

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Applied System Design Section, TRW Defense and Space Systems Group.
Software Tools: Catalogue and Recommendations.
TRW Automated Software Tools Series, January 1979.
U.S. Army TB22-18.

288

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: CASEGEN
Title: CASEGEN
Classification (all applicable categories): Test Data Generator,

Symbolic Evaluator
Features: Path generation, path constraint generation, automatic test

data generation
Stage of Development (concept, design, implemented): Implemented as a

prototype system part of FACES
Implementation Language (used to write the tool): Fortran
Implementation Hardware:
OS (other software required):
Target Languages (of the tested module): Fortran
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer:
Contact (name, address, and telephone no.):
Tool summary: Capture/MVS processes SMF/RMF records produced by

OS/MVS to develop information for determining capture ratios in
CPU sizing studies, for identifying high-overhead areas for tuning
applications, and for developing representative baselines for
capacity planning studies using either benchmarks or models. The
package separates total processing activity during any
user-selected interval into distinct workloads representing batch,
TSO, 'MS CICS, and other categories. Reports produced by
capture/MYS contain such information as (1) overhead loads on
CPU's, I/O devices, and channels for such system functions as
paging, swapping and I/O interrupt handling; (2) per-work-load
breakdowns of overhead time for batch, TSO, and other work-load
categories; (3) capture ratios for each workload with options for
including telecommunications overhead, spooling, and thelike; (4)
activity profiles for each workload that indicate the total
service time per transaction at each device and processor.

Performance and limitations: The system has problems in determining
the number of loop iterations and user assistance is sometimes
necessary

Documentation (type of available documentation):
References:

C. V. Ramamoorthy.
Techniques for Automated Test Data Generation.
Proceedings Ninth Asilomar Conference on Circuits, Systems, and
Computers, November 1975.

289

STEP - State-of-the-Art Overview

C. V. Ramamoorthy, S. F. Ho, and W. T. Chen.
On the Automated Generation of Program Test Data.
IEEE Transaction on Software Engineering, SE-2(3), pp. 215-222,
1976.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

290

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 1982
Acronym: COBOL/DV
Title: COBOL/DV
Classification (all applicable categories): Test Data Generator
Features: Documentation aid, test data generation, run-time debugging

aid, I/O specification analysis, tracing
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): COBOL
Implementation Hardware:
OS (other software required):
Target Languages (of the tested module): COBOL
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no): Yes (Applied Data Research)
Cost ($):
Developer:
Contact (name, address, and telephone no.):

Applied Data Research
Route 206 and Orchard Road, CM-8
Princeton, NJ 08540
(201)874-9100

Tool summary: Programmings aids: High-level functional verbs
- 1) data manipulation 2) file handling, 3) table handling, 4)
report writing, 5) documentation; COBOL short forms-reserved
words, phases and clauses; data-name prefixer: Readable
alternative to dataname qualification. Test data generator: Uses
Cobol file and data descriptions - generates test data in parallel
with program development; complete flexibility over data
generation - 1) fields generated as constants, computed, random
printable, 2) volume of test data under program control;
regeneration of test data following maintenance - data generation
parameters remain in the program as commentary. Run-time
debugging aid: - abnormal termination analysis and reporting -
multiple abends can be trapped, analyzed, located and reported
during a single test; program activity display - input,
intermediate results and output contents displayed in order of
test execution.

Performance and limitations:
Documentation (type of available documentation):
References:

W. Richards Adrion, Martha A. Branstad, and John C. Cherniaysky.
Validation, Verification, and Testing of Computer Software, NBS
Special Publication 500-75
National Bureau of Standards, pp. 32-35.

291

STEP - State-of-the-Art Overview

Applied Data Research Product Description, "COBOL/DV,"
Route 206 and Orchard Road, CN-8
Princeton, NJ 08540
(201) 874-9100

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

292

STEP - State-of-the•Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: COBOL OPTIMIZATION INSTRUMENTERS
Classification (all applicable categories): Instrumenter
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): COBOL
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: There are three tools that automatically generate
program, paragraph, and statement-level execution-time profiles
(i.e., reports) of programs. The profiles quantify optimization
efforts in detail. They show absolute and relative execution
times for pro- grams, paragraphs, and statements, as well as
frequency counts and optimization indices. INSTRUMENTER I
operates at the program level. INSTRUMENTER II operates at the
paragraph level, and INSTRUMENTER III operates at the statement
level. These tools require no modification of any compiler or
application program. They simply accept as input, source programs
and test data, and output clear profiles. These tools permit
top-down optimization in a natural manner. They possess a strong
management orientation and can have much impact in properly
focusing optimization efforts. They serve as an excellent quality
assurance facility which allows management to set, facilitate, and
enforce optimiza- tion standards. The OPTIMIZATION INSTRUMENTERS
are members of SOFTOOL, an integrated set of tools marketed by
Softool Corp.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

293

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: COBOL TESTING INSTRUMENTERS
Classification (all applicable categories): Instrumenters
Features: There are three tools that automatically generate program,

paragraph, and statement-level execution-time profiles (i.e.,
reports) of programs. The profiles quantify test coverage and
test effectiveness in detail. INSTRUMENTER I operates at the
program level. INSTRUMENTER II operates at the paragraph level,
and INSTRUMENTER III operates at the statement level. These tools
require no modification of any compiler or application program.
They simply accept as input source programs and test data, and
output clear profiles. They permit top-down testing in a natural
manner. These products possess a strong management orientation
and can have much impact on minimizing the cost of testing. They
serve as an excellent quality assurance facility which allows
management to set, facilitate, and enforce testing standards. The
TESTING INSTRUMENTERS are members of SOFTOOL, an integrated set of
tools marketed by Softool Corporation.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): COBOL
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: SAME AS "FEATURES" LISTED ABOVE
Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

294

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: COBOL TRACING INSTRUMENTERS
Classification (all applicable categories): Instrumenter
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): COBOL
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: There are three tools that automatically document the
path of program, paragraph, statement control flow from program,
paragraph, statement to program, paragraph, statement.
INSTRUMENTER I operates at the program level. INSTRUMENTER II
operates at the paragraph level, and INSTRUMENTER III operates at
the statement level. These products offer the software
professional a flexible, consistent and easy to use tracing
facility. These tools require no modification of any compiler or
application program. They simply accept as input source programs
and test data, and output clear trace documentation (i.e.,
profiles) which is formatted and indented to facilitate
understanding. They permit top-down tracing in a natural manner.
The TRACING INSTRUMENTERS are members of SOFTOOL, an integrated
set of tools marketed by Softool Corporation.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

295

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/28/82
Acronym: COMMAP
Title: COMMON BLOCK MAP
Classification (all applicable categories): Static Analyzer
Features: A set of four reports containing different information

about the static use of variables within the COMMON blocks. The
user selects which of the reports to display or print.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN-77
Implementation Hardware: CDC
OS (other software required):
Target Languages (of the tested module): FORTRAN-66 or FORTRAN-77
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 3,000 source lines
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Non-exclusive license
Tool supported (yes, no): Yes
Cost ($):
Developer: Boeing Computer Services
Contact (name, address, and telephone no.):

Dr. Leon Stucki
P. O. Box 24346 - Mail Stop 9C-71
Seattle, WA 98124
(206)575-5118

Tool summary: COMMAP is a static analyzer for FORTRAN programs.
Operating on existing source code, it produces a matrix'
cross-referencing variables in common blocks versus the
subroutines that use them. The matrix specifies whether a
variable is referenced or defined within a subroutine. It also
analyzes the information in the matrix and reports on potential
errors in the use of the variable (for example, variables which
are referenced, but never defined).

Performance and limitations: COMMAP is currently available only on
CDC (EKS).

Documentation (type of available documentation): Using ARGUS on EKSII
Module 5

References:

296

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: DATAMACS
Title: DATAMACS
Classification (all applicable categories): A Software Management,

Control and Maintenance Tool,
Test Data Generator,
I/O Specification Analyzer

Features: Test file generation, I/O specification analysis,
regression testing, file structure testing

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): BAL
Implementation Hardware: IBM 360/370 environment and compatible main

frames
OS (other software required):
Target Languages (of the tested module): COBOL
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($): 16,000
Developer:
Contact (name, address, and telephone no.):

Technical/Marketing Representative
Management and Computer Services, Inc.
Great Valley Corporate Center
Valley Forge, PA 19482

Tool summary: DATAMACS is a highly flexible test data generator for
COBOL programs. It generates all types of files (including VSAM
and databases), creates hierarchical record structures, and
changes field values automatically. It can be used in a
load-and-go or stand-alone environment. DATAMACS input basically
consists of a group of instructions inserted in a complete or
partial COBOL program deck or library module. Data is created
using both the test data prarmeters and information from the
select statement and file definition. Options are available for
retrieving data from live files, assigning check digits to
selected fields, and interfacing with IMS, TOTAL, and IDMS
database management systems. IDMS allows users of Cullinane
Corporation's IDMS database management system to modify, unlead,
or reload existing databases. It also provides archival storage
and allows IDSMS users to utilize selective extractions of files
rather than live databases. Maintenance included in
lease/purchase price for first year; thereafter 15% of existing
purchase price at time of renewal. One-half day's training free
with purchase.

Performance and limitations:

297

STEP - State-of-the-Art Overview

Documentation (type of available documentation):
References:

Applied Systems Design Section, TRW Defense and Space Systems Group
Software Tools: Catalogue and Recommendations
TRW Automated Software Tools Series, January 1979, U.S. Army TB
22-18

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Software Research Associates
Software Engineering Automated Tools Index
P. O. Box 2432, San Francisco, CA 94126

•

298

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: DAVE
Title: DOCUMENTATION, ANALYSIS, VALIDATION, and ERROR DETECTION
Classification (all applicable categories): Static Analyzer
Features: Diagnostics, Data Flow Analysis, Interface Analysis, Cross

Reference, Standard Enforcer, Documentation Aid.
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN-66
Implementation Hardware: Available for CDC 6400, IBM, UNIVAC, DEC

11/780 and Others.
OS (other software required):
Target Languages (of the tested module): ANSI FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 20,000 Source

Statements; 50,000 words of CDC 6400
Tool available (yes, no): Yes 	Public domain (yes, no): Yes
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($): 250
Developer: University of Colorado at Boulder
Contact (name, address, and telephone no.):

Leon Osterweil
University of Colorado
Dept. of Computer Science
Boulder, CO 80309
(303)492-7514

Tool summary: DAVE is one of the earlier static analyzers. The
system provides good documentation, reliability, and ease of use
at reasonable cost of operation. It uses data flow analysis to
detect program anomolies such as references to undefined
variables, unreferenced variable definitions, uninitialized
variables (local or common), and interface checking.

Performance and limitations:
Documentation (type of available documentation):
References:

J. C. Browne and David B. Johnson.
FAST: A Second Generation Program Analysis.
Proceedings of the 3rd International Conference of Software
Engineering, March 1U-11, 1918, Atlanta, IEEE, pp 142-T48.

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

299

STEP - State-of-the-Art Overview

Leon J. Osterweil and Lloyd D. Fosdick.
DAVE - A Validation Error Detection and Documentation System for
Fortran Programs.
Software Practice and Experience, Oct.-Dec. 1976, pp 473-486.

Software Research Associates.
Software Engineering Automated Tools Index, P. O. Box 2432, San
Francisco, CA 94126, Tel. (415) 9b/ -1441.

300

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: DIFFS(TM)
Title: DIFFS(TM)
Classification (all applicable categories): File Comparator
Features: File comparison
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): COBOL, SCOBOL
Implementation Hardware:
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no): Yes (distributed in source code form)
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Marketed Product
Tool supported (yes, no): Yes (Software Consulting Services)
Cost ($): 500 (perpetual lease)
Developer:
Contact (name, address, and telephone no.):

Ms. Martha J. Cichelli
Software Consulting Services
901 Whittier Drive
Allentown, PA 18103
(215)797-9690

Tool summary: DIFFS is a software productivity aid for programmers
and auditors which compares two files and shows their
differences. Should either file contain extra records, DIFFS
searches for the point where the files match again, displays the
extra records, and continues comparing. DIFFS' user selectable
options simplify difficult comparison problems. For program
files, sequence number fields and leading and trailing blanks can
be ignored. For report and data files, selected column ranges can
be compared or ignored. Multiple blanks can be treated as one
blank for text file comparisons. Differences in files can be
printed in either character format or in hexadecimal.

Performance and limitations:
Documentation (type of available documentation): User's manual
References:

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Software Research Associates
Software Engineering Automated Tools Index
P. O. Box 2432, San Francisco, CA 94126

D. J. Reifer and H. A. Montgomery.
SEATECS Software Tool Survey, RCI-TR-008
Reifer Consultants, Inc. 810330.

301

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: DISSECT
Title:
Classification (all applicable categories): Symbolic Evaluator
Features: Symbolic execution, static analysis, assertion checking,

path structure analysis (paths are selected by the user),
documentation

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): LISP
Implementation Hardware: PDP-10 LISP SYSTEM
OS (other software required):
Target Languages (of the tested module): ANSI FORTRAN
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.): 4100 lines of LISP

source code, requires at least 70K 36-bit words
Tool available (yes, no): Yes 	Public domain (yes, no): Yes
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer:
Contact (name, address, and telephone no.):
Tool summary: The DISSECT system is a symbolic evaluation tool which

provides a command language to specify the path selection, input
values, and set of output to be generated. Complex programs can
be divided into segments and analyzed using separate cases.
DISSECT analyzes an ANSI Fortran program to determine computations
carried out along the selected paths, predicate constraints of
each executed, and the symbolic values of the output variables.
Since the symbolically evaluated predicate for a path describes
the set of all input values which cause the paths to be executed,
the output can be used as a guideline for the manual preparation
of test data.

Performance and limitations: Howden found that the interactive path
selection process was not satisfying because the choices must be
made more carefully and systematically than as usually possible in
interactive mode. DISSECT when combined with other techniques
found 3-4% more error than the combined use of all techniques
without DISSECT. It was 10-20% more effective than structured
alone and the automatic test data generator was not useful in any
of the six programs tested. The evaluation indicated that no
single program analysis technique should be used to the exclusion
of all others. Stucki rated the tool to be costly to run and the
ease of use was on the average. Automatic test data generation
was not planned for inclusion in DISSECT because of the
unsuccessful development.

Documentation (type of available documentation):

302

STEP - State-of-the-Art Overview

References:
W. E. Howden
DISSECT - A Symbolic Evaluation and Program Testing System.
IEEE Transaction on Software Engineering, Vol. SE-4(1), January
1978, pp. 70-73.

L. G. Stucki, et al.
Methodology for Producing Reliable Software.
McDonnell Douglas Astronautics Company, March 1976, NASA CR144769,
Two Volumes

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

303

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/25/82
Acronym: DOCUTOOL
Title: DOCUTOOL
Classification (all applicable categories): Static Analyzer,

Automatic Code Documentor
Features: The DOCUTOOL produces a file with the preface inserted in

the source as comments. This file may then be edited to add
additional information about each variable. DOCUTOOL can be used
in conjunction with the CDC UPDATE function.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Pascal
Implementation Hardware: CDC(EKS)
OS (other software required):
Target Languages (of the tested module): FORTRAN-66 or FORTRAN-77
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 3,800 lines source
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Non-exclusive license
Tool supported (yes, no): Yes
Cost ($):
Developer: Boeing Computer Services - SAMA Division
Contact (name, address, and telephone no.):

Dr. Leon Stucki
P. O. Box 24346 - Mail Stop 9C-71
Seattle, WA 98124
(206)575-5118

Tool summary: Docutool is a tool which produces a preface for each
module in a FORTRAN program. The preface is produced directly
from the source code. The preface contains information about the
subroutines, parameters, global variables and local variables used
by the module. The information is formatted according to a
predefined template.

Performance and limitations: Docutool is currently available only on
CDC (EKS).

Documentation (type of available documentation): Using ARGUS on EKSII
Module 8

References:

304

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/25/82
Acronym: DYNA
Title: DYNAMIC ANALYZER FOR FORTRAN
Classification (all applicable categories): Dynamic Analyzer
Features: The reports include an Entry Summary, a Program Summary,

Module Summaries and an Annotated Source Listing. The Entry
Summary documents the number of times each module was called while
executing the test data. The Program Summary and Module Summaries
categorize the number of different types of statements in the
program or module and the percentage of each which were executed.
The Annotated Source Listing provides detailed information about
the number of times each statement or branch was executed.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN 77
Implementation Hardware: CDC (EKS II), VAX (UNIX & VMS), IBM (MVS)
OS (other software required): A FORTRAN-77 Compiler
Target Languages (of the tested module): FORTRAN-66 or FORTRAN-77
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 5,600 source lines
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Non-exclusive licenses
Tool supported (yes, no): Yes
Cost ($):
Developer: Boeing Computer Services - SAMA Division
Contact (name, address, and telephone no.):

Dr. Leon Stucki
P. O. Box 24346 - Mail Stop 9C-71
Seattle, WA 98124
(206)575-5118

Tool summary: DYNA is a tool for FORTRAN Programs which allows the
user to see the dynamic behavior of a module while it is executing
on the users test data. No modifications to either the program or
its test data are required. DYNA operates in three steps. During
the preprocessing step, probes (Additional FORTRAN statements) are
automatically inserted in the source code and the "instrumented
source" code is compiled. During the execution step, counts are
made of the number of times each statement is executed by the test
data. The counts may be accumulated with the counts from previous
executions, if desired. During the post processing step, the
execution data is formatted into reports.

Performance and limitations: Instrumented version of source code
increase by 10-25% depending on branching amount in original
source (size and execution time).

Documentation (type of available documentation): Using Argua on EKSII
Module 4. Dyna User's Manual.

305

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: EFFIGY
Title: EFFIGY
Classification (all applicable categories): Symbolic Evaluator
Features: Interactive symbolic execution (with normal execution as a

special case), assertion checking, proof of correctness, standard
interactive debug tools (including trace, break points, and state
saving)

Stage of Development (concept, design, implemented): Implemented 1973
Implementation Language (used to write the tool): PL/1
Implementation Hardware: Runs on CMS under VM/370 on IBM/370,Model 168
OS (other software required):
Target Languages (of the tested module): PL/1 (restricted to integer

valued variables and one dimensional arrays)
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: IBM
Contact (name, address, and telephone no.):
Tool summary: The EFFIGY system is an interactive symbolic execution

tool incorporating standard debug tools and expanded to include
assertion checking, a simple program testing manager and a program
verifier. Normal program execution is provided as a special
case. EFFIGY accepts one statement at a time, building a symbolic
execution tree that defines the paths through the program. A test
manager is available for systematically exploring the alternatives
presented in the symbolic execution tree. The program verifier
generates verification conditions from user supplied assertions in
conjunction with the symbolic execution.

Performance and limitations: The system is a research tool and is
limited in practical use.

Documentation (type of available documentation):
References:

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

306

STEP - State-of-the-Art Overview

J. C. King.
A New Approach to Program Testing.
Proceedings of International Conference on Reliability Software,
Los Angeles, CA, April 1975, pp. 228-233.

307

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: EXPEDITER
Title: EXPEDITER
Classification (all applicable categories): Test Driver
Features: Tracing, regression testing
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): BAL
Implementation Hardware:
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 10K-40K core memory
Tool available (yes, no): Yes 	Public domain (yes, no):
Restrictions (copy rights, licenses, etc.): Availability according to

Air Force Manual (AFM) 300-6, Paragraph 11-7A.
Tool supported (yes, no): Yes (RADC/ISIS)
Cost ($):
Developer: Application Development System, Inc.
Contact (name, address, and telephone no.):

Edward F. Harris
Application Development Systems, Inc.
1530 Meridian Avenue
San Jose, CA 95125
(408)264-2272

Tool summary: EXPEDITER provides facilities for unit testing of
modules and program component testing in the development
environment. It also includes features for problem isolation and
verification of fixes in the maintenance context. No changes to
source programs are required. It is responsible for improving
productivity in a Cobol environment from 10 lines of procedures
division code pr programmer pr day to 45 lines.

Performance and limitations:
Documentation (type of available documentation): User's Guide (125)

Reference Card (4), SPF Tutorial, TSO Help, Programmed Instruction
Course (200).

References:
Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

308

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: FACES
Title: FORTRAN AUTOMATED CODE EVALUATION SYSTEM
Classification (all applicable categories): Static Analyzer
Features: Data flow analysis, Diagnostics, Variables analyzer

(intermodule), Interface checker, Standards enforcer, Reachability -
analyzer.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: Configuration available UNIVAC 1108, CDC

6400, IBM 360/65
OS (other software required):
Target Languages (of the tested module): ANSI Fortran
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): The front-end

consists of 6,000 source statements, and the diagnotic routines
consists of 1,500 source statements.

Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: COSMIC, University of Georgia
Contact (name, address, and telephone no.):

Rex Walker
COSMIC
University of Georgia
Suite 112, Barrow Hall
Athens, GA 30602
(404)542-3265

Tool summary: FACES is developed to detect error prone constructs
such as call to subroutine with constants as parameters, check
type and dimension of variables in COMMON and subroutine
parameters, redundant and unreachable code, loop construction and
termination, code standards, and uninitialized local variables.
The system is comprised of a preprocessor, a processor, and a
report generator. Either unit modules or interrelated modules can
be run as a data set of FACES. FACES is organized into a driver
section with three subsystem components. The main driver is
responsible for file manipulations and interpreting user
commands. One of the components is called the Automatic
Interrogation Routine (AIR). Its purpose is to examine tables
generated by a front-end portion of FACES, and look for types of
coding constructions selected by the user. If the specified
constructions are found, diagnostic messages are recorded on the
flag file. A report generator generates user reports. Area of
coding that cannot be effectively evaluated are also reported to
the user.

309

STEP - State-of-the-Art Overview

Performance and limitations: FACES provides only intra module
initialization checking and variable traces.

Documentation (type of available documentation):
References:

C. V. Ramamoorthy.
Testing Large Software with Automated Software Evaluation Systems
IEEE Transaction on Software Engineering, March 1975, pp 46-58.

J. C. Browne and David B. Johnson.
FAST: A Second Generation Program Analysis.
Proceedings of the 3rd International Conference of Software
Engineering, March 10-11, 19/8, Atlanta, IEEE, pp 142-148.

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

310

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: 	FADEBUG-I
Title: FACOM AUTOMATIC DEBUG
Classification (all applicable categories): Output Comparator,

Anomoly Detector
Features: Comparison, I/O specification analysis, debug aid
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Assembly
Implementation Hardware: FACOM 230-60
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no): Yes (Fugitsu Ltd.)
Cost ($):
Developer: Fujitsu Ltd.
Contact (name, address, and telephone no.):
Tool summary: FADEBUG-I has two primary functions: comparing the set

of output data produced by a program with user-specified output
data is identified as its most important function, and automatic
isolation and definition of all possible execution paths from
entry to exit in a program module. These capabilities aid in
finding and removing program bugs. In the module test stage of
program development the following difficulties are identified:
(1) Examination and verification of output data from module test
execution. (2) Examination of module processing paths for logical
errors. (3) Evaluation of module logic paths for omissions.
FADEBUG-I is designed to reduce or eliminate these difficulties
through its test function or route definition function.

Performance and limitations:
Documentation (type of available documentation):
References:

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Itoh.
Fade-Bug-I, A new Tool for Program Debugging.
Proc. IEEE Symposium, Computer Softw. Reliability, pp. 38-43, 1977.

311

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: FAST
Title: FORTRAN ANALYSIS SYSTEM
Classification (all applicable categories): Static Analyzer
Features: Interaction operation, data flow analysis, interface

checking, consistency checking, error checking, command/query
language.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: The system uses the commercially available

data management system, System 2000 (MRI System Corp.) as its data
handler and data correlator along with the FACES source program
parser and the POBSW parser generator (Univ. of Texas, Austin).

OS (other software required):
Target Languages (of the tested module): Fortran
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer:
Contact (name, address, and telephone no.):

Prof. Jim Browne
Information Research Associates (IRA)
911 West 29th Street
Austin, TX

Tool summary: The fast system creates a data base of the attributes
of modules, statements and names in a Fortran program and
interactively processes a wide range of queries concerning these
attributes. The fast data base is generated from the Fortran
source program by using: (1) the FACES parser (2) a program to
map the output of the parser onto system 2000 load string (3) the
system 2000 data management system. The fast command/query
language, which is used to query the data base, defines
approximately 10 attributes of Fortran names and statements.
These attributes can be combined in logical expressions to qualify
or isolate very broad or very narrow program contexts. The
command language interpreter was implemented through the use of
the BOBSW parser generator.

Performance and limitations:
Documentation (type of available documentation):
References:

J. C. Browne and David B. Johnson.
FAST: A Second Generation Program Analysis.
Proceedings of the 3rd International Conference of Software
Engineering, March 10-11, 1978, Atlanta, IEEE, pp 142-148.

312

STEP - State-of-the-Art Overview

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

313

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: August 1982
Acronym: FAVS
Title: FORTRAN AUTOMATED VERIFICATION SYSTEM
Classification (all applicable categories): Source Program Analysis &

Testing Static Analyzer,
Self-metric Instrumenter,
Coverage Analyzer,
Documenter

Features: Run time analysis, subject, code input, FORTRAN, DMATRAN,
transformation, translation, structure preprocessing,
restructuring, instrumentation, formatting, machine output, source
code output, FORTRAN, user output, diagnostics, user-oriented
text, documentation, tables, static analysis, cross reference,
type analysis, structure checking, dynamic analysis, coverage
analysis, tuning.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): DMATRAN (a

structured FORTRAN)
Implementation Hardware: Honeywell H6180; Univac 1100 Computer Systems
OS (other software required): ECOS and 05110
Target Languages (of the tested module): DMATRAN or FORTRAN V
Tool portable (yes, no): Yes, with minor modifications
Size (no. of source statements, memory size, etc.): 35,000 source

statements; 52K core
Tool available (yes, no): Yes 	Public domain (yes, no): Yes, with

approval
Restrictions (copy rights, licenses, etc.): Air force approval

required for code release
Tool supported (yes, no): No
Cost ($): DMATRAN Precompiler: $650; FAVS: $850
Developer: General Research Corp., Santa Barbara CA
Contact (name, address, and telephone no.):

Frank S. LaMonica
RADC/COEE
Griffiss, AFB NY 13441
(315)330-3977

Tool summary: FAVS, an integrated collection of computer programs,
was developed for the purpose of assuring that software systems
written in FORTRAN are comprehensively tested. FAVS provides (1)
static detection of unreachable statements, set/use errors,
mode-conversion errors, and external reference errors, (2) a means
of measuring the effectiveness of test cases by source code
instrumentation, (3) assistance in the construction of test data
that will thoroughly exercise the software, and (4) automated
documentation. In order to aid in the production of application
software that adheres to modern programming techniques, FAVS also
provides for the translation from DMATRAN (a structured extension
of FORTRAN) to FORTRAN and from FORTRAN to DMATRAN.

314

STEP - State-of-the-Art Overview

Performance and limitations: The FAVS itself is written in the
DMATRAN Programming Language (a structured FORTRAN V). The
DMATRAN Precompiler (in addition to the FORTRAN V Compiler) is
needed to compile the FAVS source code.

Documentation (type of available documentation): DMARTRAN User's
Guide; FAVS User's Manual; FAVS-Generated Documentation leg.
Module Hierarchy Inter-Relationshops, Set/Use Tables, Program
Listings)

References: Documentation available through Federal Software Exchange
Center, 5285 Port Royal Road, Springfield VA, 22161, (703)
487-4655. Order Number: DMATRAN Precompiler FSWEC-81/0002-1
cost: PC $22.50 MF $8.50 FAVS FSWEC-81/0003-1 cost: PC $22.50
MF $8.50.

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

M. Finfer, et. al.
Software Debugging Methodology, Final Technical Report,
NADC-TR-79-5T, Three Volumes, April 1979.

315

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: FCA
Title: FORTRAN CODE AUDITOR
Classification (all applicable categories): Source Program Analysis

and Testing
Features: Subject, Code Input: FORTRAN Y Source Code

User Output: Diagnostics, Program Listings
Static Analysis: Auditing, Structure Checking

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN IV
Implementation Hardware: Honeywell H6180
OS (other software required): GCOS Operating System
Target Languages (of the tested module): FORTRAN Y (Honeywell

Extended Compiler)
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 6300 Source

Statements: 40K Core
Tool available (yes, no): Yes 	Public domain (yes, no): Yes - with

approval
Restrictions (copy rights, licenses, etc.): Air Force approval

required for Code Release
Tool supported (yes, no): No
Cost ($): Contact Federal Software Exchange Control, (703)756-6140
Developer: TRW
Contact (name, address, and telephone no.):

Frank S. Lamonica
RADC/COEE
Griffiss AFB, NY 13441
(314)330-3977

Tool summary: The FORTRAN Code Auditor, an automated test tool, is
used for the cost effective enforcement of FORTRAN programming
standards and conventions appropriate to the Air Force software
environment. It does not modify code. Using predefined coding
standards and conventions, it simply advises the user where these
standards and conventions have not been adhered to. The major
advantage of favoring an automated auditor over manual methods,
besides cost effectiveness, is complete objectivity and
unambiguity. The standards can be viewed as being coding
enforcements in four areas: (1) Documentation Standards -
Standards defining quantity and placement of commentary thus
enhancing program readability and comprehension. (2) Format
Standards - Standards identifying physical placement and grouping
of code elements on the source code listing. (3) Design
Standards - Standards limiting module size and placing
restrictions on the use of certain instructions with the end of
providing an optimization of code relative to execution time.
(4) Structural Standards - Standards requiring

316

STEP - State-of-the-Art Overview

the use of strict rules for the top-down design and implementation
of a system of programs and the requirement that the components
adhere to a heirarchical form as much as possible.

Performance and limitations: Target module, to be analyzed by Code
Auditor, must be written in FORTRAN Y Programming Language.

Documentation (type of available documentation): User's Manual;
Program Maintenance Manual

References:
Manuals in National Technical Information Service Inventory
User's Manual: Reference RADC-TR-76-395, Volume I; Accession #AD

A035-778
Maintenance Manual: Reference RADC-TR-76-395, Volume II, Accession

#AD A035-914

317

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: FORAN
Title: FORTRAN ANALYZER PROGRAM
Classification (all applicable categories): Static Analyzer
Features: Interface analysis, cross reference, consistency checking,

error checking, variable analysis.
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran
Implementation Hardware: CDC 6X00/7X00
OS (other software required):
Target Languages (of the tested module): Any Fortran dialect
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no): Yes
Cost ($):
Developer:
Contact (name, address, and telephone no.):

U.S. Army Advanced Research Center
Huntsville, Alabama

Tool summary: FORAN performs static analysis on source code written
in any dialect of Fortran. Usage of program labels, tags, data
variables, constants, subroutines, and other program elements are
analyzed for a main program and its related subroutine
components. Each item name is listed, showing the statement
numbers where the item is referenced and how it is referenced
(assigned, used, input, output, subroutine call, etc.). FORAN
also identifies symbols defined but not used, discrepancies in
variable type and dimension, and number and type of parameters in
functions and subroutines. Syntax errors are flagged during the
analysis. FORAN's primary use is to determine possible
computation of logic errors from the static analysis of data
usage. It is also valuable in analyzing the effect of a program
modification on data usage.

Performance and limitations: The FORAN analysis is limited to 4095
data items and a total of 24,000 unique references for all named
items. Finfer, et al report that it is easy to use and its output
contains more information and is easier to read than a compiler's
symbolic reference map.

Documentation (type of available documentation):
References:

M. Finfer.
Software Debugging Methodology.
Final Technical Report, RADC-TR-79-57, April 79, Three Volumes.

318

STEP - State-of-the-Art Overview

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

319

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: FORTRAN AUDITOR
Classification (all applicable categories): Code Auditor,

Static Analyzer
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $16,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: The AUDITOR automatically audits FORTRAN programs for
compliance with user programming standards, poor programming
practices, nonportable code and deviations from the American
National Standards Institute (ANSI) definition of the FORTRAN
language. This tool also generates automatic program
documentation. In addition, this product is a powerful error
detector which typically detects many errors that escape
commercial compilers. This tool requires no modification of any
compiler or application program. It simply accepts as input
FORTRAN source programs and outputs various reports. An option is
available that allows FORTRAN programs for 16-bit word machines to
be checked on machines with 32-bit words. This product possesses
a strong management orientation and serves as an excellent quality
assurance tool since it presents simple summaries at the end of
its clear and detailed output. This tool is a member of SOFTOOL,
an integrated set of tools marketed by Softool Corporation.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

320

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: FORTRAN OPTIMIZATION INSTRUMENTERS
Classification (all applicable categories): Instrumenter
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: There are two tools that automatically generate module
and statement level execution-time profiles (i.e., reports) of
program. The profiles quantify optimization efforts in detail.
They show absolute and relative execution times for subsystems,
modules and statements as well as frequency counts and optimiza-
tion indices. INSTRUMENTER I operates at the routine level.
INSTRUMENTER II operates at the statement level. These tools
require no modification of any compiler or application program.
They simply accept as input source programs and test data, and
output clear profiles. These tools permit top-down optimization
in a natural manner. They possess a strong management orientation
and can have much impact in properly focusing optimization
efforts. They serve as an excellent quality assurance facility
which allows management to set, facilitate and enforce optimiza-
tion standards. The OPTIMIZATION INSTRUMENTERS are members of
SOFTOOL, an integrated set of tools marketed by Softool Corp.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

321

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: FORTRAN TESTING INSTRUMENTERS
Classification (all applicable categories): Instrumenter
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: There are two tools that automatically generate module
and statement level execution-time profiles (i.e., reports) of
programs. The profiles quantify test coverage and test
effectiveness in detail. INSTRUMENTER I operates at the routine
level. INSTRUMENTER II operates at the statement level. These
tools require no modification of any compiler or application
program. They simply accept as input source programs and test
data, and output clear profiles. They permit top-down testing in
a natural manner. These products possess a strong management
orientation and can have much impact on minimizing the cost of
testing. They serve as an excellent quality assurance facility
which allows management to set, facilitate and enforce testing
standards. The TESTING INSTRUMENTERS are members of SOFTOOL, an
integrated set of tools marketed by Softool Corporation.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

322

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: FORTRAN TRACING INSTRUMENTERS
Classification (all applicable categories): Instrumenter
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: There are two tools that automatically document the
path of program control flow from module (statement) to module
(statement). INSTRUMENTER I operates at the routine level.
INSTRUMENTER II operates at the statement level. These products
offer the software professional a flexible, consistent and easy to
use tracing facility. These tools require no modification of any
compiler or application program. They simply accept as input
source programs and test data, and output clear trace
documentation (i.e., profiles) which is formatted and indented to
facilitate understanding. They permit top-down tracing in a
natural manner. The TRACING INSTRUMENTERS are members of SOFTOOL,
an integrated set of tools marketed by Softool Corporation.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals
References: Product description from Softool Corp.

323

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 8/20/82
Acronym: GENTEXTS
Title: GENTEXTS
Classification (all applicable categories): Test Data Generator for

Compilers
Features: A grammar, in affix form, is used as input to produce a

program. The output program is systematically generated to test
some particular aspects of a compiler.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): PL/1, PASCAL, SIMULA

67
Implementation Hardware: CIT-HB
OS (other software required): SIRIS
Target Languages (of the tested module):
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 800 P1/1 source

lines
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no): Yes
Cost (S): 2,000
Developer: IRISA, Unoversity of Rennes, France
Contact (name, address, and telephone no.):

B. Houssais
IRISA, Campus de Beaulier
35042 Rennes
Cedex, France
Tel. 99.36.20.00

or
Jeff Rees
Intermetrics Inc.
Boston, MA, USA

Tool summary: Preparing tests for a compiler entails writing a large
number of test programs of a relatively fixed structure. Such a
test program can be described by a particular type of grammar,
which is learned fairly quickly. These grammars, called "command
grammars", are submitted to the generator, which derives the
corresponding test program. the generator automatically
transforms the command grammar into a test generator program.
This program (in simula 67) is then compiled and executed, and
produces the test cases described by the grammar. This output can
then be used (after possible modifications) to test the target
compiler.

Performance and limitations: A test set of 40,000 lines of ALGOL 68
programs have been produced for ALGOL 68 compilers. Input was
about 50 grammars of total length of 3,000 lines. All programs
were compiled and run. The number of errors discovered was
significant.

324

STEP - State-of-the-Art Overview

Documentation (type of available documentation): Users's manual
(French and English); Technical paper

References:
J. Andre, J. Duclov, P. Laforgue, H. Massie, and J. C. Rault.
Catalogue 1980 De Prototypes De Recherche En Logiciel
ADI (AGence De L'Informatique), CNRS, France, 801100

B. Houssais
Production Systematique De Tests.
(Thesis in French), Microfiche from INRIA, BP105, F78153,
Le Chesnay, France

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publicatidn 500-88
National Bureau of Standards

325

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/29/82
Acronym:
Title: INTERFACE DOCUMENTER
Classification (all applicable categories): Static Analyzer
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: DEC, DG, IBM, GOULD-S.E.L.
OS (other software required):
Target Languages (of the tested module): FORTRAN, COBOL, any object

Code
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): Depends on system
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Licensing agreement
Tool supported (yes, no): Yes
Cost($): $7,000, includes one year maintenance; maintenance cost:

1/6th of original price
Developer: Softool Corporation
Contact (name, address, and telephone no.):

Krisse Specht
349 S. Kellogg
Goleta, CA 93717
(805) 964-0560

Tool summary: This software product accepts as input a collection of
object modules and automatically generates clear information
indicating all interfaces between the object modules. It
produces, for each module, an annotated list of the modules it
references as well as a list of all the modules that reference
it. External data items are also documented. This product is
very easy to use. It accepts as inputs the same object modules
that are normally presented to your linker (binder). Thus in
order to generate the interface documentation you simply submit
your inputs to the INTERFACE DOCUMENTER instead of the linker
(binder). This tool is independent of the language in which the
programs being documented are written. It will generate interface
documentation for FORTRAN, COBOL, ASSEMBLER, etc. This produce is
a member of SOFTOOL, an integrated set of tools marketed by
Softool Corporation.

Performance and limitations:
Documentation (type of available documentation): Interactive

tutorials, manuals

326

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: JAYS
Title: JOVIAL AUTOMATED VERIFICATION SYSTEM
Classification (all applicable categories): Static Analyzer,

Instrumenter,
Coverage Analyzer,
Assertion Checker,
Automatic Documenter

Features: Test completion analysis, test data generation aid, path
flow analysis, path structure analysis, reachability analysis,
interface checking, assertion checking, automatic documentation,
debug tools (graphic output, trace, cross-reference, dump,
breakpoint)

Stage of Development (concept, design, implemented): Implemented 1975
Implementation Language (used to write the tool): JOVIAL J3
Implementation Hardware: HIS 6180, CDC 6400
OS (other software required): GCOS, WWMCCS, GOLETA operating systems
Target Languages (of the tested module): JOVIAL
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.): 53,000 words of

primary memory on the HIS 6180 system
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: General Research Corp.
Contact (name, address, and telephone no.):

N. B. Brooks
General Research Corporation
5383 Hollister Avenue
Santa Barbara, CA 93111
(805)964-7724

Tool summary: JAYS is a workable, field-tested system for
systematically and comprehensively software testing. It is a
series of tools which provide a means of measuring the
effectiveness of both individual and cumulative software test
cases, a capability to facilitate the construction of test data
that will thoroughly exercise the soft- ware, and an analysis of
retesting requirements following software modification. The
system performs static analysis on sucessfully compiled JOVIAL
(J3) source modules. Up to 250 invokable modules and an unlimited
number of JOVIAL statements can be analyzed in a single run. The
analysis includes determination of program paths, inter- and
antra- module relationships, unreachable modules, extensive cross
reference of symbols and usage of program variables. In dynamic
analysis, the system determines test coverage and identifies the
unexercises paths. Execution analysis indicates which modules,

327

STEP - State-of-the-Art Overview

decision paths, and statements have been exercised, including the
frequency and the execution time spent in each module. JAVS also
provides tracing capability, regression testing, assertion
checking, and automatic program documentation.

Performance and limitations: Static analysis can be performed on
JOVIAL (J3) source modules after a successful error-free
compilation. Up to 250 invokalbe modules and an unlimited number
of JOVIAL statements can be analyzed in a single process job. In
general, the execution of a JAYS - instrumented program requires
1.5 times the execution time of an uninstrumented program and
approximately twice the load core size. Finfer et. al. reports
that JAVS is a powerful tool that provides the user a good deal of
control over the amount and type of debugging information
produced, but it does require the user to master a rich command
language. Gannon recommends adding identification of
uninitialized variables and physical-units consistency checking in
static analysis, and automatic generation of certain type of
assertions and coverage measurement of program functions in
dynamic analysis. TRW researchers point out some of the JAVS
system disadvantages: 1) The output is difficult for users to
analyze because of its D-D path orientation. Manual correlation
is required to interpret the results at any other working level,
such as statement level, which may be more familiar to users. 2)
The overhead caused by recording execution monitoring data on a
mass storage trace file would be unacceptable for the
instrumentation of an entire medium to large scale programs.

Documentation (type of available documentation): User's guide,
reference manual

References:
John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

M. Finfer, et. al.
Software Debugging Methodology, Final Technical Report,
NADC-TR-79-57, Three Volumes, April 1979.

Compendium of ADS Project Mana ement Tools and Techniques.
it orce 'ata automation gency, unter 	 'ay

TRW Systems and Space Group.
NSW FEASIBILITY STUDY, Find Technical Report, RADC-TR-78-23,
Feburary 1975.

328

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: JOYCE
Title: JOYCE
Classification (all applicable categories): Static Analyzer
Features: Path structure analysis, symbol cross reference, variable

analyzer/interface checking, documentation aid.
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran
Implementation Hardware: CDC 6X00/7X00
OS (other software required):
Target Languages (of the tested module): Fortran
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no): Yes
Cost ($):
Developer: McDonnell
Contact (name, address, and telephone no.):

McDonnt. Douglas Automation Company
P. O. Box 516
St. Louis, MO 63166

Tool summary: JOYCE is an automatic static analysis tool for Fortran
programs. It accepts as primary input Fortran source decks in the
form of card decks or CDC compile files. The source decks are
edited and the edited information is combined to produce several
combinations of descriptive reports. JOYCE compiles tables of
symbols and cross references of symbol usage within each routine
of a program. These symbols include Fortran variable names, the
names of any reference function or module, any entry points, and
all I/C file references. Flowlists are provided in the form of
microfilm Fortran listings with all transfers indicated by arrows
to the right of the statement text and all dd loops indicated by
brac.. . 	to the left.

Performar 	and limitations: JOYCE was evaluated under contract to
NASA Goddard Space Flight Center (GSFC) and was found to have low
open trig cost and quite easy to use. But only the configuration
for CDC is available.

Documentation (type of available documentation):
References:

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

329

STEP - State-of-the-Art Overview

Software Research Associates.
Software Engineering Automated Tools Index.
P. 0. Box 2432, San Francisco, GA 94126, (415)957-1441.

L. G. Stucki.
Methodology for Producing Reliable Software.
McDonnell Douglas Astronautics Company, March 76, NASA CR 144769,
Two Volumes

330

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: PACE
Title: PRODUCT ASSURANCE CONFIDENCE EVALUATOR
Classification (all applicable categories): Static Analyzer,

Instrumenter,
Test Completion Analyzer,
Path Structure Analyzer,
Coverage Analyzer

Features: Path flow analysis, instrumention, optimization aid, test
case selection aid, regression testing, coverage analysis

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran
Implementation Hardware: CDC 6500/7600, UNIVAC 1108
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: TRW, SEID Software Product Assurance
Contact (name, address, and telephone no.):

Frank Ingrassia
TRW, SEID Software Product Assurance
One Space Park
Redondo Beach, CA 90278
(213)536-3140

Tool summary: PACE is a unique quality assurance tool to aid program
developers and testers in the planning, execution and evaluation
of both routine level and program level tests. The object of pace
is to quantitatively assess how thoroughly and rigorously a
program has been tested. PACE is the tool that is used to assure
that every logical and arithmetic instruction of every branch be
subjected to an execution test. Versions of the PACE system have
been developed by TRW which provide special options dictated by a
given user. These PACE versions are Nodal, Anode, and AVS/TDEM.
A highly modular design approach was taken to reduce and isolate
hardware/software dependent characteristics and assure easy
implementation on a variety of computers. Input to PACE consists
of the user's Fortran source code, and a PACE option care. Output
from PACE can be varied by using the option card, but nominally
includes: 1) a listing of the user's source code annotated with
segment numbers, 2) a program structure summary.

Performance and limitations:
Documentation (type of available documentation): User's manual

331

STEP - State-of-the-Art Overview

References:
John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Software Tools: Catalogue and Recommendations
TRW Automated Software Tools Series, Applied Systems Design
Section, TRW Defense and Space Systems Group, January 1979

332

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: PET
Title: PROGRAM EVALUATOR AND TESTER
Classification (all applicable categories): Instrumenter,

Dynamic Assertion Processor,
Coverage Analyzer

Features: Instrumentation, diagnostics, static analysis, statistical
analysis, profile generation, coverage analysis, assertion checking

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran
Implementation Hardware: IBM, CDC, HONEYWELL, UNIVAC, CDC 6000
OS (other software required):
Target Languages (of the tested module): Fortran
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): For sale
Tool supported (yes, no): Yes (McDonnell-Douglas Corp.)
Cost ($):
Developer: McDonnell-Douglas Corp.
Contact (name, address, and telephone no.):

J. B. Churchwell
McDonnell-Douglas Corporation
5301 Bolsa Avenue
Huntington Beach, CA 92647
(714)896-4155

Tool summary: PET accepts Fortran programs as inputs and gathers and
analyzes data in two general areas: 1) the syntactic profile of
the source program showing the number of executable,
nonexecutable, and comment statements, the number of call
statements and total program branches, and the number of coding
standard's violations, and 2) actual program performance
statistics produced by the PET include: the number and percentage
of those executable source statements actually executed; the
number and percentage of those branches and call 's actually taken
or executed; the following specific data associated with each
executable source statement: a detailed execution counts,
detailed branch counts on all if and goto statements, and min/max
data range values on assignment.

Performance and limitations: PET is an early self-metric tool. It
was evaluated to be easy to use and the operating cost was not
high. The system was recommended for use in situation where
operating cost is not the major factor in selection. Gilb reports
that PET was effective in coverage analysis and the increase in
execution time resulting from the PET instrumentation varies from
25% to 150% depending on the options used.

Documentation (type of available documentation): User's manual , system
description

333

STEP - State-of-the-Art Overview

References:
John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Software Tools: Catalogue and Recommendations
TRW Automated Software Tools Series, Applied Systems Design
Section, TRW Defense and Space Systems Group, January 1979

L. G. Stucki.
A Prototype Automatic Program Testing Tool.
AFIPS Fall Joint Computer Conference, 721205.

T. Gilb.
Software Metrics.
Winthrop Publishers, Inc., Cambridge, MA, 1977, page 282.

L. G. Stucki, et.al.
Methodology for Producing Reliable Software, NASA CR 144769
McDonnell-Douglas Astronautics Company, March 1976, Two Volumes

L. G. Stucki and G. L. Foshee.
New Assertion Concepts for Self-Metric Software Validation.
Proceedings of IEEE Conference on Reliable Software, Los Angeles,
CA, April 1975, pages 59 -6b.

334

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: PFORT
Title: PFORT VERIFIER
Classification (all applicable categories): Standard Enforcer
Features: Standard enforcer, documentation aid, interface checking,

cross reference.
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): Fortran
Implementation Hardware:
OS (other software required):
Target Languages (of the tested module): Fortran
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): Yes
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: Jet Propulsion Laboratory
Contact (name, address, and telephone no.):

Irma B. Biren
Bell Lab.
600 Mountain Avenue
Murray Hill, NJ 07974
(201)582-3000

Tool summary: PFORT is a portability checker for Fortran. It
analyzes a Fortran Program and notes the occurrences of
programming practices that are likely to be impediments to
portability.

Performance and limitations:
Documentation (type of available documentation): User's Manual
References:

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
February 1980.

335

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 1/1/83
Acronym:
Title: PORTABLE FORTRAN MUTATION SYSTEM
Classification (all applicable categories): Automatic Mutation System
Features: Test harness and driver, computes mutation scores
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool):
Implementation Hardware:
OS (other software required):
Target Languages (of the tested module): FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): Yes
Restrictions (copy rights, licenses, etc.): Copyright
Tool supported (yes, no): No
Cost (3):
Developer: Dr. T. A. Budd
Contact (name, address, and telephone no.):

Prof. T. A. Budd
University of Arizona
Tucson, AZ 85721
(602)626-0111

Tool summary:
Performance and limitations:
Documentation (type of available documentation):

336

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: RXVP-80
Title: RXVP-80
Classification (all applicable categories): Static Analyzer,

Test Driver,
Assertion Processor,
Instrumenter,
Coverage Analyzer

Features: Static analysis, coverage analysis, assertion checking,
symbolic execution, instrumentation, interface analysis, cross
reference, complexity measurement, ability to analyze very large
source programs.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool):
Implementation Hardware: CDC, IBM, UNIVAC
OS (other software required): Fortran compiler that is compatible with

ANSI X 3.9-1966.
Target Languages (of the tested module): Fortran, IFTRAN (TM), or

V-IFTRAN (TM)
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 50,000 32-bit

memory words
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): License
Tool supported (yes, no): Yes
Cost ($):

Control and input component: $8,000
Static analysis component: $6,000
Execution coverage analysis component: $8,000
Program documentation component: $4,000
Entire system: $26,000

Developer: General Research Corp.
Contact (name, address, and telephone no.):

William R. Dehaan
General Research Corp.
5383 Hollister Avenue, P. O. Box 6770
Santa Barbara, CA 93111
(805)964-7724

Tool summary: The heart of the RXVP80 is a large library capable of
storing the result of analysis of very large programs (10,000
source lines). The system performs much of its analysis on an
internal representation of the program as a directed graph. One
of the primary features of RXVP80 is its ability to analyze only
the new or changed modules of a program, using the stored library
to check interfaces. Its static analysis component performs mode
and type checking, CALL checking, set/use checking, and graph
structure checking. The execution coverage analysis component

337

STEP - State-of-the-Art Overview

performs the Cl coverage checking. The report generated includes
COMMON matrix, input/output report, invocation report, calling
tree, and cross references.

Performance and limitations: Ramamoorthy and Ho report that extensive
man-machine interactions are required for the testing of programs
and the test data preparation.

Documentation (type of available documentation): User manual
References:

T. Gilb.
Software Metrics.
Wintrhop Publishers, Inc., Cambridge, MA, 1977, pp 282.

C. V. Ramamoorthy.
Testing Large Software with Automated Software Evaluation Systems.
IEEE Transaction on Software Engineering, March 1975, pp. 46-58.

E. F. Miller and R. A. Melton.
Automated generation of Test Case Data Sets
Proceedings of International Conference on Reliable Software, Los
Angeles, CA, April 19/5, pp. 51 -58.

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Feburary 1980.

Software Research Associates.
Software Engineering Automated Tools Index.
P. O. Box 2432, San Francisco, CA 94126, (415)957-1441.

TRW Catalogue.
Software Tools Catalogue and Recommendations.
TRW, Defense and Space Systems Group, January 1979.

338

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: SADAT
Title: STATIC AND DYNAMIC ANALYSIS AND TEST
Classification (all applicable categories): Static Analyzer,

Instrumenter,
Test Data Generator,
Symbolic Evaluator

Features: Instrumentation, statistical analysis, profile generation,
coverage analysis, symbolic execution, tuning, tracing, path flow
tracing, auditing, data flow analysis

Stage of Development (concept, design, implemented): Implemented 1978
Implementation Language (used to write the tool): PL/1
Implementation Hardware: IBM 370/168, IBM3033
OS (other software required):
Target Languages (of the tested module): Fortran
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.): 8,000 statements,

requires 1M byte to run programs of some 100 statements
Tool available (yes, no): Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: KERNFORSCHUNGSZENTRUM, KARLSRUHE GMBH
Contact (name, address, and telephone no.):

Udo Voges, Lothar Gmeiner and Anneliese Amschler von Mayrhauser
Tool summary: SADAT consists of six main components: command

processor, static analysis module, test case generation module,
path predicate calculation module, dynamic analysis module, and a
data base which is the means of communication among the modules.
The SADAT is controlled by a set of user commands which activate
different modules to perform appropriate analysis on a user
program. The tested single Fortran modules are assumed to be
compiler error-free. The static analysis consists of lexical
analysis which mainly creates necessary tables and structural
analysis which creates a graph representation of the program. The
errors detected in this analysis include unreachable statements,
labels not declared or not used, variables not declared, not
initialized or not used, and jumps into/out of loops. The test
case generation automatically generates test data to exercise each
d-d path at least once. The user can also specify his own paths
to be exercised. In path predicate calculation, symbolic
execution is used to compute the path predicate of every path in
the selected set. The dynamic analysis performs instrumentation
to determine useful information for identification of dynamical
dead code, control of the correct number of loop iterations, and
optimication of the most frequently executed parts.

339

STEP - State-of-the-Art Overview

Performance and limitations: The system has been in experimental
usage in different projects since 1978. The static and dynamic
analysis modules were found to be valuable and steady tools. The
test data generation (symbolic execution) has some deficiencies
such as requiring too much time and storage for large and complex
programs, problems with loops and subroutine calls.

Documentation (type available): User manual, installation instructions
References:

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

U. Voges, L. Gmeiner, and A. Amschler von Mayrhauser.
SADAT - An Automated Testing Tool.
IEEE Transaction on Software Engineering, Vol. SE-6(3), May 1980.

A. Amschler and L. Gmeiner.
SADAT - A System for Automated Generation, Execution and Eval. of
Tests for FORTRAN Programs, (in German), FKF-EXT. 13/77-2.

A. Amschler.
Test Data Generation as an Integrated Part of a System for the
Automatic Execution and Evaluation of Tests, (in German),
KipTomarbeit, Universit at Karlsruhe, Germany, July 1976.

A. Amschler, L. Gmeiner, and U. Voges.
SADAT - AN Automated Testing.
Presented at the Workshop on Software Testing and Test
Documentation, Ft. Lauderdale, FL, December 18-20, 1978.

L. Gmeiner.
Dynamic Analysis and Test Data Generation in an Automatic Test
System.
Workshop on Reliable Software, September 22, 1978.

M. Seifert.
SADAT-EIN System Zur Automatischen Durchfuhrung and Answertung von
Tests, KFK-EXT, 13/75-05, May 1975.

L. Gmeiner
Installation Instructions, KFK-IDT, 1978, unpublished.

H. Trauboth, W. Geiger, L. Gmeiner, U. Voges.
Program Testing Techniques for Nuclear Protection Systems.
Infotech State of the Art Report - Software Testing, Vol. 2:
Invited Papers.
Infotech International, 1979, pp. 283-305.

340

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: SELECT
Title: SYMBOLIC EXECUTION LANGUAGE TO ENABLE COMPREHENSIVE TESTING
Classification (all applicable categories): Symoblic Evaluator,

Test Data Generator,
Assertion Processor

Features: Symbolic execution, static analysis, path structure
analysis, assertion checking, test data generation

Stage of Development (concept, design, implemented): Implemented 1974
Implementation Language (used to write the tool): LISP
Implementation Hardware: POP-11
OS (other software required):
Target Languages (of the tested module): LISP SUBSET
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no): Yes (Stanford Research Institute)
Cost ($):
Developer:
Contact (name, address, and telephone no.):

SRI International
Advanced Computer Systems Dept.
333 Ravenswood Avenue
Menlo Park, CA 94025
(415)326-6200

Tool summary: SELECT is a symbolic execution tool which is intended
to be a compromise between an automated program proving system and
ad hoc debugging practice experimentally. SELECT includes: 1)
semantic analysis of programs, 2) construction of input data
constraints to cover selected program path, 3) identification of
(some) unfeasible program paths, 4) automatic determination of
actual (real number) input data to drive the test program through
selected paths, 5) execution (actual or symbolic) of the test
program with optimal intermediate assertions and output
assertions, 6) generation of simplified expressions for the values
of all program variables, in terms of symbolic input values, and
7) path analysis for each potentially executable path or for a
user-selected subset of paths. Multiple executions of a loop with
a path are defined as separate paths, producing a potentially
infinite number of distinct paths. The number of loop traversals
may be constrained by the user.

Performance and limitations: An experimental system
Documentation (type of available documentation):

341

STEP - State-of-the-Art Overview

References:
Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

John D. Donahoo and Dorothy Swearingen
A Review of Software Maintenance Technology.
RADC-TR-80-13, Interim Report, Rome Air Development Center
Fehurary 1980.

Software Research Associates
Software Engineering Automated Tools Index
P. O. Box 2432, San Francisco, CA 94126

R. S. Boyer, R. Elspas, and K. N. Levitt.
SELECT - A Formal System for Testing and Debugging Programs by
Symbolic Execution.
Proceedings of 1975 International conference on Reliable Software,
1975. pp. 234-245.

342

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: SMOTL
Title:
Classification (all applicable categories): Test Data Generator
Features: Test data generator, regression testing, run-time error

detection, coverage analysis, batch operation
Stage of Development (concept, design, implemented): Implemented 1976
Implementation Language (used to write the tool): SMOD (a COBOL-like

language without direct access to storage devices)
Implementation Hardware: MINSK-32 (Soviet computer) 180K bytes main

storage, CPU speed approximately 50,000 operations/sec.
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.): 30,000 computer

instructions
Tool available (yes, no): 	Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer:
Contact (name, address, and telephone no.):
Tool summary: The operation of the system consists of six phases:

directed graph construction, static analysis, covering set of
paths con- struction, minimization of the covering set, test data
generation, and report generation. The system uses a concept of
state and standard optimization methods to generata a manageable
number of test data sets for practical programs. In testing with
the con- structed test data, the system demonstrates the function
of all program parts that can be executed without abnormal
termination and also gives diagnostic messages explaining the
reasons of infeasibility of all the remaining untested program
parts.

Performance and limitations: The system is effective for small
programs (fewer than 300 statements containing about 11
conditional statements). But for the larger programs, the system
takes very long processing time and doesn't generate useful
results. The concept of 'state' used was proved to be
insufficient for these programs.

Documentation (type of available documentation):
References:

J.Bicevskis, J.Borozovs, U.Straujums, A.Zarins, and E.F.Miller.
SMOTL - A System to Construct Samples for Data Processing
Programming Debugging, Technical Note RN-415
Software Research Associates, San Francisco, CA, April 1978.

343

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: TDBCOMP
Title: TDBCOMP PROGRAM
Classification (all applicable categories): Maintenance Tool,

Comparator
Features:
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): JOVIAL J4
Implementation Hardware: CDC 3XXX
OS (other software required):
Target Languages (of the tested module):
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): 	 Public domain (yes, no):
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($):
Developer: TRW, Operational Software Operations M
Contact (name, address, and telephone no.):

David E. Heine
TRW, Operational Software Operations M
One Space Park
Redondo Beach, CA 90278
(213)535-3480

Tool summary: TDBCOMP compares and summarizes the differences between
two data bases, where one data base is on tape and the other is
active on disk. The importance of automatic data comparison in
evaluation of the effect of changes (both coding changes and
parametric changes) is that it saves many engineering man-hours
otherwise wasted on manual data comparisons. It provides more
accurate comparison than possible manually, and enables the
engineer to focus his time and attention on analysis of the
differences reported. This capability is needed on practically a
daily basis during a software test process.

Performance and limitations:
Documentation (type of available documentation): User's manual
References:

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

Applied System Design Section, TRW Defense and Space Systems Group.
Software Tools: Catalogue and Recommendations.
TRW Automated Software Tools Series, January 1979.
U.S. Army TB22-18.

344

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 1/1/83
Acronym: TEC/1
Title: FORTRAN MUTATION SYSTEM
Classification (all applicable categories): Automatic Mutation System
Features: Test harness and driver, generates mutants, computes

mutation scores, archives test files, produces test reports and
statistics

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): FORTRAN
Implementation Hardware: PRIME 550, PRIME 450, VAX 11/780
OS (other software required): PRIMOS, UNIX
Target Languages (of the tested module): FORTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): 25,000 lines
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): License required
Tool supported (yes, no): Yes
Cost ($):
Developer:
Contact (name, address, and telephone no.):

Richard A. DeMillo
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, GA 30332
(404) 894-3180

Tool summary: TEC/1 allows entry of Fortran (ANSI 74) programs,
interactive or batch entry of test data and interactive monitoring
of program execution. Multiple modules may be processed. TEC/1
allows selection of specified mutation operators and testing
strategies (e.g. statement coverage, arithmetic errors). Reports
are produced to document the testing process.

Performance and limitations: In unit test of modules up to 2,000
lines, complete mutation testing can be carried out with modest
resources. For larger modules, random sampling of mutants must be
carried out.

Documentation (type of available documentation): Users guide, Internal
maintenance, Installation manual, Specification

345

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: TESTMANAGER
Title: TESTMANAGER
Classification (all applicable categories): Test Driver
Features: Regression testing, operation in batch or interactive mode
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool):
Implementation Hardware: IBM 360, 370, 30XX,43XX, ICL1900 Series,

BS1000 and BS2000
OS (other software required):
Target Languages (of the tested module): Assembly, COBOL, CORAL,

FORTRAN, PLAN, PL/I
Tool portable (yes, no):
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.):
Tool supported (yes, no):
Cost ($): 9,000 to 14,000
Developer:
Contact (name, address, and telephone no.):

Marketing Administrator
MSP Incorporated
21 Worthen Road
Lexington, MA 02173
(617)861-6130

Tool summary: TESTMANAGER is an interactive program and structure
testing system for the development of reliable systems.
TESTMANAGER enables a programmer to test individual modules in
either a batch or interactive environment. Supplied in a version
suitable for the operating system employed, TESTMANAGER supports
modules written in Assembler, COBOL, CORAL, FORTRAN, PLAN and
PL/I. Using a user supplied input stream of command statements to
control the run and provide data to the user's module, TESTMANAGER
executes the module with the data supplied and then displays the
results of the test. Operation of TESTMANAGER involves four
stages: defining the environment; formatting the data; executing
the test run; and displaying the results. Defining the
environment identifies the areas of storage to be used in the
subsequent stages. It requires the specification of names and
associated lengths for each storage area to be used. Formatting
the data places values into the areas of storage defined in the
first stage. Execution of the modules submitted for testing makes
available, as directed, the areas of storage that have been
defined and formatted. This state also provides for the
simulation of test module interaction with non-present modules and
the trapping and diagnosing of hardware program interrupts. The
final stage allows the examination of the contents of areas of

346

STEP - State-of-the-Art Overview

storage after the execution of test modules and permits predefined
expected results to be compared with the actual results. During a
single run, the user can test a single module or a series of
logically associated or unassociated modules.

Performance and limitations:
Documentation (type of available documentation): TESTMANAGER Fact Book

(available from MSP)
References:

Software Research Associates
Software Engineering Automated Tools Index
P. 0. Box 2432, San Francisco, CA 94126

347

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date: 7/27/82
Acronym: TEVERE-1
Title: A SOFTWARE SYSTEM FOR PROGRAMS TESTING AND VERIFICATION
Classification (all applicable categories): Test Data Generator,

Symbolic Evaluator
Features: The program is executed symbolically and the weakest

precondition theory is applied to derive path predicates for a
class of well-structured programs. The tool can be used both to
derive automatically path predicates starting from program
post-condition 'true', or to execute symbolically a program
starting from a given post-condition.

Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool): LISP 1.4
Implementation Hardware: DEC PDP-11
OS (other software required): RSZ 11M
Target Languages (of the tested module): IFTRAN
Tool portable (yes, no): Yes
Size (no. of source statements, memory size, etc.): At least 66K core

memory
Tool available (yes, no): Yes 	Public domain (yes, no): Yes
Restrictions (copy rights, licenses, etc.): Licenses
Tool supported (yes, no): No
Cost (3): Not defined
Developer: S. Bologna - J. R. Taylor
Contact (name, address, and telephone no.):

S. Bologna
ENEA CRE-CASACCIA
S. P. ANGUILLARESE IM1.300
00060 Roma - Italy
Tel. Int (06) 69683708

Tool summary: TEVERE-1 is a software system intended to be used for
validation of well-structured programs written in an ALGOL-like
language which allows the use of only the three basic constructs
of structured programming (assignment, while-do, if-then-else)
plus input-output statements. Both the program used to derive
test cases and the program used to aid program proof are based on

	

the 'weakest precondition' theory applied to well-structured 	-
programs in order to derive 'path-predicates', logical
requirements which must be fulfilled by test data if the program
execution is to follow a particular path. The system is intended
for use as part of the testing and verification of the software
for a reactor safety system.

Performance and limitations: The system becomes very slow when
applied to modules with more than a few hundred paths.

Documentation (type of available documentation): TEVERE-1: A Software
System for Programs Testing and Verification

348

STEP - State-of-the-Art Overview

References:
S. Bologna.
TEVERE-1: A Software system for Programs Testing and Verification
CONGRESSO AICA '79, October 1979.

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

349

STEP - State-of-the-Art Overview

TESTING TOOL DATA SHEET

Date:
Acronym: XPEDITER
Title: THE PROGRAMMER PRODUCTIVITY TOOL FOR THE 80's
Classification (all applicable categories): Test Driver,

Test Bed
Features: Regression testing, test environment preparation, operates

in batch or interactive mode
Stage of Development (concept, design, implemented): Implemented
Implementation Language (used to write the tool):
Implementation Hardware: IBM 360/370
OS (other software required): OS or OS/VS operating system
Target Languages (of the tested module):
Tool portable (yes, no): No
Size (no. of source statements, memory size, etc.):
Tool available (yes, no): Yes 	Public domain (yes, no): No
Restrictions (copy rights, licenses, etc.): Marketed Product
Tool supported (yes, no): Yes (Application Development Systems, Inc.)
Cost ($): Basic system $25,000, with all options $45,000
Developer:
Contact (name, address, and telephone no.):

Mr. Ronald D. Sleiter
Application Development Systems, Inc.
7420 Unity Avenue North
Minneapolis, MN 55443
(612)560-8633

Tool summary: XPEDITER is a testing and debugging tool for COBOL
programmers. It responds to user commands, in batch or
interactively under TSO, SPF or IMS, a) to create a test
environment for any sequence of code from a few instructions to an
entire program; b) to control test execution including
interruption of execution, simulation of uncoded or coded logic
and interception of abnormal terminations; c) to capture relevant
information such as parameter values, working storage contents, or
data that has changed. No change is made to source or object
code. XPEDITER supports code compiled with the CAPEX OPTIMIZER.
It requires no modification to the operating system. On-site
training included with price.

Performance and limitations:
Documentation (type of available documentation): Application

Description Manual (48)
References:

Software Research Associates
Software Engineering Automated Tools Index
P. 0. Box 2432, San Francisco, CA 94126

Raymond C. Houghton, Jr.
Software Development Tools, NBS Special Publication 500-88
National Bureau of Standards

353

FORKAATIQN,7A 	,,U,T,Eik::4:SCIEN
-iTECH- NOLOG

PHASES 1 AND I

SUBMITTED TO
THE OFFICE OF THE SECRETARY OF DEFENSE

DIRECTOR DEFENSE JEST AND EVALUATION
"'AND

. THE OFFICE OF NAVAL RESEARCH
ONR CONTRACT NUMBER N00014779-0O231

OSD/DDT&E
SOFTWARE TEST AND EVALUATION PROJECT

PHASES I AND II
FINAL REPORT

Volume 3
Software Test and Evaluation:

Current Defense Practices Overview

SUBMITTED BY
GEORGIA INSTITUTE OF TECHNOLOGY

TO

THE OFFICE OF THE SECRETARY OF DEFENSE
DIRECTOR DEFENSE TEST AND EVALUATION

AND

THE OFFICE OF NAVAL RESEARCH

FOR

ONR CONTRACT NO. N00014-79-C-0231
Subcontract 2G36661

June, 1983

Volume 3

Software Test and Evaluation:

Current Defense Practices Overview

Table of Contents

Page

1. Overview and Data Gathering Procedure 	 1

2. Findings of the Current Defense Practices Interviews 	 3

2.1. HQ and Development Command Interviews 	 4

2.2. Project Interviews 	 9

2.3. OT&E Agency Interviews 	 37

2.4. Development Organization Interviews 	 48
2.4.1. Applications Software 	 49
2.4.2. Support Software 	 76

2.5. IV&V Organization Interviews 	 88

3. Military Standards and Guidance 	 101

3.1. Department of Defense Directives and Instructions
	

102
3.2. Military Standards
	

111
3.3. Air Force Regulations
	

130
3.4. Army Regulations
	

139
3.5. Navy Regulations and Standards
	

154
3.6. Miscellaneous Documents
	

163

Appendix A: Data Gathering Guides
	

214

Appendix B: Bibliography 	 255

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director' Defense Test and
Evaluation under Office of Naval Research Contract N00014-79-C-0231.

Comments should be directed to: Director Defense Test and
Evaluation (Strategic, Naval, and C 3 I Systems), OSD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Volume 1: Final Report and Recommendations
Volume 2: Software Test and Evaluation:

State-of-the-Art Overview
Volume 3: Software Test and Evaluation:

Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and

Evaluation
Volume 6: Tactical Computer System Applicability Study

STEP - Current Defense Practices Overview

CHAPTER 1

OVERVIEW AND DATA GATHERING PROCEDURE

The testing and evaluation performed on software developed for DoD
applications is influenced by a variety of organizations and guidance
documents. The primary guidance which exists with respect to software
T&E resides in DoDD 5000.3. The Services implement this directive in
regulations which provide further guidance to their activities. In
addition, the Development Commands of the Services may supplement the
Headquarters' guidance in regulations, instructions, or pamphlets with
which their subordinate Commands must comply. The final responsibili-
ty for adherence to the guidance rests with the project offices which
monitor the activities of the Defense contractors. The Services'
independent test and evaluation organizations are responsible for the
operational test and evaluation of the systems produced. In order to
assess the current Defense practices, the functional groups mentioned
above were surveyed on subjects related to software test and
evaluation.

The survey methodology consisted of conducting interviews with
selected representatives of the military and industrial sectors.
These groups included the HQ and Development Commands for the Army,
Navy, and Air Force, project offices for selected programs, OT&E
agencies, and Defense contractors. The subjects discussed during the
interviews spanned the areas of military regulations and standards,
reviews and inspections, testing techniques, tools, quality assurance,
independent verification and validation, and risk assessment.
Although the interviews covered a variety of topics, all were related
to the software development process, and therefore, the quality of the
final software product.

The survey was not a random sampling of Defense organizations and
no attempt has been made to give statistical interpretations to the
results. Rather, the study team was guided to selected project
offices by the HQ and Development Commands and by OSD. Defense
contractors were selected by the study team in consultation with
NSIA. Several considerations helped to determine the mix of
organizations selected for interviews. These considerations included
the size of the organization and the type of software activity. The
overall goal of the interview selection process was to give the most
representative picture possible of current contractor practices. The
interview results showed a high degree of similarity. The lack of
significant deviation in the responses of these organizations is
evidence that if, in some cases, current practices do differ signifi-
cantly from what is described, those differences are most likely
unique to the specific circumstances of the program or contractor
involved rather than representative of the norm in the testing and
evaluation being performed on military software systems today.

1

STEP - Current Defense Practices Overview

To aid in the data gathering effort, a set of data gathering
guides was developed, consisting of one guide for each functional
group being interviewed. The guides ensured that the same basic
information was gathered during interviews with representatives of
each functional group. The use of personal interviews rather than the
mass mailing of questionnaires helped circumvent the problems of
differing terminologies and low response rates.

As experience was gained with the use of the data gathering
guides, they were modified and reorganized to increase their
effectiveness. The final versions appear in Appendix A. Discussions
with representatives of the Operational Test and Evaluation Agencies
were held prior to the development of the data gathering guides;
therefore, no guide is included for use when interviewing that
functional group.

STEP - Current Defense Practices Overview

CHAPTER 2

FINDINGS OF THE CURRENT DEFENSE PRACTICES INTERVIEWS

This chapter reports the findings of the interviews which were
conducted with selected military and industrial personnel. These
results are organized according to the function of the respective
organizations: HQ and Development Commands, Project Offices, OT&E
Agencies, Development Organizations (contractors), and IV&V
Organizations (contractors). Each section describes the organizations
interviewed, the information requested, the purpose of the interviews,
and the data gathered.

3

STEP - Current Defense Practices Overview

2.1 HQ AND DEVELOPMENT COMMAND INTERVIEWS

Interviews were conducted with representatives of the Headquarters
and Development Commands for the Army, Navy, and Air Force. In
addition, since the Air Force Systems Command is organized according
to product divisions, each of which has an Embedded Computer Resources
(ECR) Focal Point, results of interviews with four AF ECR Focal Points
are also reported here.

The primary purpose of these interviews was to determine what
guidance the Headquarters received from the Department of Defense with
respect to software test and evaluation, what guidance they passed on
to the Development Commands, and how the Development Commands were
assisting the individual project offices. Comments on the
effectiveness of the current regulations, etc., and suggestions for
improvement were also solicited. Another area of interest was the
view these offices have of the future of mission critical or embedded
computer resources.

The primary vehicles used to provide the Military Services with
guidance from the Department of Defense are DoD Directives (DoDD) and
DoD Instructions (DoDI). Guidance documents which are relevant to the
acquisition, development, and testing of mission critical or embedded
computer resources include:

DoDD 5000.1 - "Major System Acquisition"

DoDI 5000.2 - "Major System Acquisition Procedures"

DoDD 5000.3 - "Test and Evaluation"

- "Management of Computer Resources in Major
Defense Systems"

In addition, since Program Managers for major systems must report to
the Defense Systems Acquisition Review Council (DSARC), the document
entitled "Embedded Computer Resources and the DSARC Process" provides
further guidance.

The DoD guidance has been implemented in Army Regulations (AR's),
the Army's Development and Readiness Command (DARCOM) Regulations,
Navy Tactical Digital Standards (TADSTAND's), and Air Force
Regulations (AFR's). Those regulations and standards of interest to
us are primarily:

AR 70-1 -
	

"Army 	Research, 	Development, 	and
Acquisition"

AR 70-10 - 	 "Test and Evaluation During Development
and Acquisition of Materiel"

DoDD 5000.29

4

STEP - Current Defense Practices Overview

AR 1000-1 - 	 "Basic Policies for Systems Acquisition"

DARCOM Reg. 70-16 - 	"Management of Computer Resources in
Battlefield Automated Systems"

TADSTAND E -
	

"Software Development, Documentation, and
Testing Policy for Navy Mission Critical
Systems"

AFR 80-14 - 	 "Test and Evaluation"

AFR 800-14 - Vol.I: 	"Management of Computer Resources in
Systems"

AFR 800-14- Vol.II: 	"Acquisition and Support Procedures for
Computer Resources in Systems"

For a description of the contents of these guidance documents, see
Chapter 3.

For multiservice programs, the regulations of the lead service are
usually followed. Procedures for coordinating multiservice test and
evaluation are developed by Joint Program Offices and/or Computer
Resource Working Groups. Agreements are documented via memorandums of
understanding.

Though the documents referred to above outline general policy, few
conclusions can be drawn regarding the actual restrictions imposed on
a specific program. This is due to the latitude which Program
Managers have when tailoring or interpreting the applicable
regulations or standards. In addition, for extreme cases, a program
may be granted a waiver which allows a regulation, standard, or parts
thereof, to be completely ignored.

The strengths of the regulations are perceived to be that they
fill a void where nothing else exists, that they have flexibility, and
that they facilitate early planning for systems. The basic policy of
AFR 80-14 is seen to be completely adequate.

The weaknesses of the regulations are seen in different lights:
AR 1000-1 is too long; DARCOM 70-16 is untested, few Computer Resource
Management Plans (CRMP's) have been submitted, and DARCOM approval of
CRMP's is not required. AFR 800-14 has a good philosophy of testing
but may conflict with the top down development strategy of Adal.
Other perceived weaknesses include the feelings that the regulations
have no "meat" or impact, they are not uniformly or even necessarily
good, and there is no good mechanism to keep them current.

1 Ada is a registered trademark of the Ada Joint Program Office - US
Government

5

STEP - Current Defense Practices Overview

Known enhancement efforts with respect to the regulations include
the following:

- AR 1000-1 is being updated to reflect the new Carlucci
acquisition policy. It may also be shortened in the process.

- AFR 800-14 is being revised to include Air Force policy
regarding Independent Verification and Validation (IV&V), as
well as to reflect recent changes to DoD acquisition policy.

The control which the Headquarters and Development Commands have
over the software test and evaluation process involves the review of
the Test and Evaluation Master Plans (TEMP's) which are developed for
major programs. It should be noted, however, that the testing
described in a TEMP usually refers to system testing rather than
software testing. Thus, the actual control exerted by organizations
outside of the Program Offices may in many instances be minimal. One
exception to this involves the Air Force ECR Focal Points. These
individuals may, in some cases, review proposals and statements of
work to ensure that the software issues are properly addressed. In
addition, they sometimes act as consultants to Program Offices and are
members of Computer Resources Working Groups.

Another area of interest which the Headquarters and Development
Command representatives were questioned about involves the source
selection process and the amount of importance given to a potential
contractor's internal policies and past performance regarding software
test and evaluation. Though no formal guidelines exist, past
performance does have an indirect influence on the source selection
process since it affects how comfortable the source selection board is
with the idea of working with potential contractors. In addition, one
office is in the process of building a database concerning past
performance, with the awareness that there may be legal problems with
using this information.

As an alternative to evaluations based on past performance,
Development Command personnel do evaluate the potential contractor's
employee base, internal software development standards and tools, and
facilities. This is felt to be more beneficial due to changes which
may have occurred within the potential contractor's organization since
the completion of previous government work.

6

STEP - Current Defense Practices Overview

Military standards and specifications have been developed to
ensure that certain minimum requirements are met by the contractors
when developing mission critical or embedded systems for the
government. Those which the Headquarters and Development Command
interviewees were cognizant of include:

MIL-STD-483 (USAF) -

MIL-STD-490 -

MIL-STD-1521A (USAF)

"Configuration Management Practices for
Systems, ,Equipment, Munitions, and
Computer Software"

"Specification Practices"

- "Technical Reviews and Audits for Sys-
tems, Equipments, and Computer Programs"

MIL-STD-1679 (NAVY) -
	

"Weapons System Software Development"

MIL-S-52779A -
	

"Software 	Quality 	Assurance 	Program
Requirements"

These military standards and specifications are described in Section
3.2.

Criticisms of the military standards and specifications include
the feeling that MIL-STD-1679 is too detailed and inappropriate in
places, and MIL-S-52779A cannot be used to tell a contractor how to do
a good job. It is also believed that it will require at least 2-3
years to implement recommended revisions to MIL-STD's 483, 490, and
1521A.

New technology trends relating to embedded computer resources
which were felt to be potentially beneficial include the use of:

- Independent Verification and Validation (IV&V)
- Software Metrics
- Ada and the Ada Programming Support Environment (APSE)
- Reusable Software
- Hardware Facilities to simulate and develop repeatable tests
- Very High Speed Integrated Circuits (VHSIC)

Other new technologies mentioned include program design languages
(PDL's), asynchronous software, the Military Computer Family,
redundant circuit design, built-in testing, and pin electronics for
testing. The use of software metrics for the determination of award
fees on a major program will be described in Section 2.2.

The standardization of ISA's, busses, and interfaces were other
efforts which were discussed that may reduce the significance of some
of the problems we currently face with software test and evaluation.
In contrast to this, VHSIC is seen to greatly complicate problems
encountered during testing.

7

STEP - Current Defense Practices Overview

Although one interviewee feels that it is not the government's job
to push new technologies, preparations are being made for their
application. In particular, efforts which are underway with respect
to Ada include the allocation of resources to allow its development
and use, the search for candidate programs, the teaching of courses,
and the use of Ada as a PDL for systems which are currently under
development. Though much support exists for Ada, there is a strong
feeling that, in order to effectively take advantage of the benefits
it may provide, a gradual introduction of the language is important,
readiness criteria need to be established for its use, and it should
not be required prior to the availability of supporting tools.

Finally, the following general comments were made by the
interviewees.

- When good requirements are provided, systems can be developed
ahead of schedule and under budget.

- Personnel in the Project Offices who are responsible for the
acquisition of software often do not have a software
background.

- There needs to be a definition of adequacy for Program
Reviews.

- The military doesn't know what reasonable contractual terms
with respect to testing are.

- There is a need for the documentation of "lessons learned" so
that old mistakes can be avoided.

8

STEP - Current Defense Practices Overview

2.2. PROJECT INTERVIEWS

OVERVIEW AND BACKGROUND INFORMATION

This section reports the findings which resulted from interviews
with military representatives involved with specific projects.
Information was gathered on the project status and history, military
regulations and standards applied, reviews conducted, development
testing and evaluation, acceptance testing, quality assurance
programs, independent verification and validation activities,
operational testing and evaluation, and risk assessment. Projects
were chosen to achieve a breadth of knowledge concerning the
involvement of the military Services in the software development and
procurement process. Specific projects examined included:

Cruise Missile - This is a joint project being conducted by the
Navy and the Air Force. Personnel from the Joint Cruise Missile
Project Office (JCMPO) and other organizations involved in the
system's development were interviewed. The Cruise Missile Project
includes the development of the following:

Air Launched Cruise Missile (ALCM) - Air Force - Includes nuclear
land attack missiles. ALCM was developed prior to the
establishment of JCMPO.

Ground Launched Cruise Missile (GLCM) - Air Force - Also includes
nuclear land attack missiles.

Sea Launched Cruise Missile (SLCM) - Navy - Includes conventional
and nuclear land attack missiles and conventional anti-ship
missiles.

The primary software systems which must be developed for the Cruise
Missile include the software which resides in the missiles, the Weapon
Control System, and the Mission Planning System.

AEGIS Weapon System, Mark 7 - Navy - AEGIS is an advanced
shipboard weapon system. The software provides functions for display
groups, radar systems, command and decision systems, fire control
systems, and weapon control systems as well as a training control
system. The AEGIS Weapon System can be tailored to a specific ship's
needs by using subsets of the total system.

Combat System Engineering Development Site (CSEDS) - In conjunc-
tion with our AEGIS-related visits, we were given the opportunity to
visit CSEDS. CSEDS provides a land-based engineering facility to
design, develop, integrate and test the AEGIS ship combat system
including the AEGIS Weapon System. Our examination of CSEDS related
specifically to its use in the testing of the AEGIS Weapon System.

9

STEP - Current Defense Practices Overview

Remotely Piloted Vehicle (RPV) - Army - The RPV system is being
developed to fill the requirement for unmanned aerial target acquisi-
tion, target identification and location/laser designation for laser
seeking weapons, artillery adjustment and battlefield reconnaissance.
Software is used in the air vehicle, the ground control station, and
the maintenance shelter to provide functions for air vehicle flight,
tracking, fault isolation, displays, and interfacing.

Data was also gathered on the following Army systems: TACFIRE,
the Battery Computer System (BCS), and Firefinder. Finally,
discussions were held concerning the Naval Tactical Data System (NTDS).

The programs surveyed were in various phases of the software
development life cycle at the time the interviews were conducted.
ALCM was to obtain initial operating capability in December 1982. The
GLCM Weapon Control System was in the coding and testing stage,
although some design modifications were also being performed. The
Mission Planning System was installed at five sites in Europe, two in
the continental U.S., and one in Hawaii. SLCM's conventional missiles
(both anti-ship and land attack) were undergoing operational
evaluation. The AEGIS Weapon System was deployed on its first ship.
The RPV contract was let in 1975 with production planned for 1985 and
the Critical Design Review occuring in the last months of 1982.
TACFIRE was in the maintenance phase with updates scheduled for
release in July, October, and December 1982. BCS had completed its
operational testing and follow-on evaluation, and was to be fielded in
October or November 1982. Firefinder was in production and fielded in
Europe.

1 0

STEP - Current Defense Practices Overview

The programming languages used for these projects were as follows:

PROJECT
	

LANGUAGE

Cruise Missile:
Missile Software
Weapon Control System
Mission Planning System
Automatic Test Software

AEGIS

RPV

TACFIRE

FIREFINDER

BCS

NTDS

Assembly Language
Fortran & Assembly Language
Fortran & Cobol
ATLAS

CMS2 & Assembly Language

Fortran, PLM, & Assembly Language

TACPOLE (derivative of PL/1)

Assembly Language

S IRR

CMS2 & Assembly Language

Due to timing and size constraints, 100% of the ALCM missile
software was written in Assembly Language. AEGIS claimed less than 1%
Assembly Language code.

The only opportunity for the reuse of software occurred in the
Cruise Missile Project. Eighteen out of twenty-five software modules
were common between the various versions of ALCM, GLOM, and SLCM. In
addition, the Mission Planning System was able to reuse two ALCM
modules.

A variety of hardware and operating systems were employed for
these projects. The target machines for weapon systems tend to be
microprocessors or minicomputers. Larger mainframes may be used for
development or mission planning purposes. The Navy's hardware is pro-
scribed in TADSTAND B (see Section 3.5) to be a member of the family
of standard embedded computers and computer peripheral equipment
including the AN/UYK-7, -14, -20, -43, -44 and upgrades to those sys-
tems. Examples of the hardware and operating systems used were:

11

STEP - Current Defense Practices Overview

PROJECT 	 HARDWARE AND OPERATING SYSTEMS

Cruise Missile:

ALCM LC 4516 C microprossor
Litton Inertial Navigation Element
(INE)

IBM 370 (host)

GLCM 	 ROLM 1666D with RMX-RDOS
ROLM 1602 with RTOS

SLCM
anti-ship missiles
	

16K IBM machine
land attack missiles
	

64K Litton machine

Mission Planning System 	VAX 11/780 with VMS

AEGIS 	 AN/UYK-7 & AN/UYK-20 with standard
CMS2 compilers, etc.

RPV 	 Intel 8085A, Norden 11-34M & SKC-312

TACFIRE 	 VAX 11/780

FIREFINDER 	 UYK-15 (Interdata)

BCS 	 4 bit microprocessors which emulate
an Elliot 901 or 908

NTDS 	 AN/UYK-7 with Standard CMS2
compilers, etc.

Some special hardware devices used in the testing process were
identified. ALCM uses an Instruction Level Simulator for module
testing, as well as a subsystem simulator and miscellaneous black
boxes for simulating such data as radar input. CSEDS, which was
described earlier, is a major installation used as an interface
simulator system (wrap around simulator) for AEGIS. For FIREFINDER,
the Radar Environmental Simulator (RES) is used, with test tapes
provided by the contractor. Other simulators will be identified in
the subsection entitled "Testing and Evaluation Tools".

12

STEP - Current Defense Practices Overview

MILITARY REGULATIONS AND STANDARDS

Military regulations and standards invoked on these projects
include the following:

PROJECT 	 REGULATIONS & STANDARDS

Cruise Missile

ALCM Missile Software

GLCM Missile Software

GLCM Weapon Control System

AFR 800-14
MIL-STD's 483 (USAF), 490, 1521A
& 52779A

AFR's 800-14, 122-9, & 122-10
SECNAV Instruction 3560.1
TADSTAND's A-E
MIL-STD-1679 (Navy)

AFR 800-14
MIL-STD's 490, 1679 (Navy), & 52779A
MIL-HDBK•255

SLCM 	 MIL-STD-1679 (Navy)

Mission Planning System 	MIL-STD-1679 (Navy)

AEGIS 	 SECNAV Instruction 3560.1
TADSTAND's A-E
MIL-STD's 490 & 1679 (Navy)

TACFIRE 	 AR's 18-1 & 380-38
DARCOM Reg's 70-10 & 70-16

BCS 	 DARCOM Reg's 70-10, 70-16, & 700-34
MIL-STD's 483 (USAF) & 52779A

NTDS 	 SECNAV Instruction 3560.1
TADSTAND's A-E
MIL-STD-1679 (Navy)

The contents of these military regulations and standards are
summarized in Chapter 3 of this document.

13

STEP - Current Defense Practices Overview

For the multiservice software testing and evaluation effort
conducted for the Cruise Missile, final decisions as to which
regulations and procedures would be followed (Air Force vs. Navy) were
made by the director of the Project Office.

The only waiver granted for any surveyed projects' software was
one for the SLCM anti-ship missile when it was unable to meet the
reserve capacity requirements for memory space.

The only specific positive input received on current military
regulations and standards concerned MIL-STD-1679 (Navy), "Weapons
System Software Development". Its strength is seen to lie in the
approach it takes to documentation and milestones. One office is
hopeful about proposed MIL-STD-SDS, "Defense System Software Develop-
ment". It was felt that this standard will allow the government to
have more control over the software development which it pays for.

Specific negative remarks concerning the regulations and standards
were more numerous. They included:

- Much of the required documentation is useless.

- Too much emphasis is placed on MIL-STD-1679.

The requirement for flow charts should be replaced with one
for the use of a PDL.

- Regulations should require the monitoring of various
statuses; a definition of what a computer is and is not is
needed.

- There is a need for a "good" testing regulation; every
requirement must be tested. Guidance is needed relative to
testing bad inputs, extreme cases, and overload conditions.

- Less specific regulations and more policies are needed;
firmware must be recognized and regulated as software.

- Human engineering standards are needed.

The 20% reserve capacity requirement should only be applied
when the system is fielded for the first time.

- Guidelines should be just that, guidance - not instruction;
the percentage of required reserve capacity should be project
specific.

- Standard ISA's are an unrealistic requirement and will never
be obeyed.

14

STEP - Current Defense Practices Overview

- In general, the regulations and standards are too vague. The
quality of the final product is dependent on the contractors
involved and not the regulations or standards imposed.

More general comments on regulations and standards included:

- An effort is currently underway to rewrite MIL-STD-1679 and
TADSTAND 9 for inclusion in Army SOW's.

- Good software development practices are needed in the first
place; you cannot depend upon MIL-STD-1679 as an instruction-
al tool.

• In spite of the standards, etc., performance specifications
are not consistent in either form or content. 	However,
personnel have learned to live with this as a fact of life.

- Navy standards are completely different from Air Force
standards.

THE SOURCE SELECTION PROCESS

The source selection process used by the project offices and the
related activities of other organizations interviewed varied. Reviews
were performed on almost any combination of the following when rating
potential contractors: the proposal, the software development
approach, the quality assurance program, documentation standards, and
configuration management procedures. Some potential contractors may
be required to agree to the submission of quality reports on module
and integration testing. Finally, in some cases, the evaluators also
verified that IV&V organizations would be allowed to witness and/or
dictate testing. The evaluation of potential IV&V contractors may
include all of the above plus the requirement that the candidate write
technical procedures for review when determining competence.
Descriptions of the source selection process used for some of the
projects examined follow.

For ALCM, one function of the source selection team was to look at
code for structure of design and modularity. They also evaluated
potential contractors based on the existance of an independent test
group, the quality of the test program, and whether the development
methodology follow a requirements - design - code - test pattern.
Additionally, in order to select a contractor for the ALCM guidance
system, a "fly-off" was conducted between two potential contractors'
preliminary versions of the guidance system. The winner of that
fly-off has been the sole source for the guidance system ever since.
One of the primary factors contributing to the decision was the
immaturity of one of the contractor's software.

15

STEP - Current Defense Practices Overview

For the GLCM Weapon Control System, criteria were determined, an
RFP was written, and recommendations were made based on the
responses. For the Cruise Missile Mission Planning System, the
contractor was chosen as a result of proposal analysis. Finally, for
NTDS, one of the Navy's Fleet Combat Directions Systems Support
Activities (FCDSSA's) served a technical selection role by ranking or
grading responders to the RFP on the technical competence
demonstrated, thereby providing approximately 40% of the weight in the
selection decision.

Internal policies and past performance of potential contractors
may be a consideration when letting a contract, if only on an informal
basis. One of the organizations interviewed looks at Contracting
Officers' Reports for information about previous contractors. Another
organization considers this to be a major weakness of the source
selection process because "it does not carry as much weight as it
should". Yet another group, however, does not look at past
performance, and believes that since the government is not known for
providing quality requirements it is not fair to judge previous
contractors on past performance. One specific internal policy which
would have a positive influence on one of the groups interviewed is to
require the use of a PDL.

For the GLCM Weapon Control System, the source selection team
determines the amount of weight to be given past history, and can
request a review of internal policies. The team also reviews the
Computer Program Development Plan. For the Cruise Missile Mission
Planning System, part of the justification for choosing the contractor
was previous experience in the area. For NTDS, there is no direct
examination of past performance, but it is believed that "experience
helps"; the attitude taken is that proposals, including test plans,
are to be believed completely.

SOFTWARE DEVELOPMENT LIFE CYCLE

The acquisition process and, therefore, the software development
life cycles for the programs studied differ depending upon'time and/or
budget constraints, requirements that were poorly defined or changed
in mid-program, etc. As a result of these influences, the acquisition
process frequently deviates from the "textbook" approach. Another
reason for deviation from the standard approach involves new systems
which are very similar to systems which have already been developed.
As was mentioned previously, this was the case with the GLCM and SLCM
missile software. The ALCM missile software provided the base system
which was then modified to meet the unique requirements of GLCM and
SLCM.

16

STEP - Current Defense Practices Overview

Unfortunately, the GLCM Weapon Control System has encountered
various problems as a result of the use of a "non-standard" approach
to software development. That approach involves coding being
completed from Program Performance Specifications with the design
being completed after the fact. In addition, some integration testing
has been performed prior to module testing. When this interview was
conducted, the contractor was being required to perform the neglected
module tests on any modules which were modified. The Cruise Missile
Mission Planning System enjoyed a more typical life cycle, wherein the
government developed requirements and specifications, issued a RFP,
and let the contractor produce the software. No major problems were
reported in this case.

The AEGIS Weapons System's development process included a
competitive systems design procurement, the prototyping of major
software systems, and the issuing of a contract to produce the full
system, followed by the "normal" development cycle including the
Preliminary and Critical Design Reviews and an OPEVAL (operational
evaluation). For NTDS, the FCDSSA developed the top level
requirements and the Interface Design Specification; the Program
Performance Specification was also developed in-house; the Program
Design Specification was developed by the contractor who implemented
and debugged the software. Upon the completion of the functional
testing, the system was delivered to the Navy. The acceptance
testing, performed by a Navy test group onboard ship, was system
integration testing rather than just software testing. There has been
no OPTEYFOR (Operational Test and Evaluation Force) involvement to
date.

Firefinder was an accelerated program and did not follow the
normal acquisition process due to time constraints. TACFIRE, as was
stated previously, is currently in the maintenance phase of the life
cycle. Three new versions of the software (one being tested prior to
release, one being coded for the next release, and one being designed
for the release after that) are under development at any one point in
time with deliveries to the field being accomplished every six months.

One of the interviewees defined a good development plan to be one
which "includes a description of the tasks, the methodology, and the
controls necessary for all phases of the development effort'.

Various reviews and reports may be required to attempt to monitor
and control the software development process. Requirements of the
projects of interest included:

Reviews of test plans, procedures and reports for validation
and acceptance tests. (ALCM)

17

STEP - Current Defense Practices Overview

- Reviews of test specifications, plans, and procedures. In
addition, on-site military personnel witness system level
tests. (GLCM Weapon Control System)

- Test reports from in-plant acceptance tests, as well as
quarterly reports from IV&V organizations. (Cruise Missile
Mission Planning System)

- Monthly test status reports; reviews of programmer notebooks;
element, integration, and operational test plans, procedures,
and reports. (AEGIS)

- Military personnel performing the management function at
field test sites. (TACFIRE)

- Monthly status reports; reviews of test plans, procedures,
and reports. Validation test matrix of requirements versus
test cases is required, as well as specifications reviews and
requirements analysis reports. (BCS)

- Weekly status reports describing the number of test steps
completed and the number of Program Trouble Reports produced;
approval of test plans and procedures for functional and
acceptance tests. (NTDS)

DOCUMENTATION ITEMS

The variety of possible documentation items which may be produced
as a system proceeds from concept to design to the final operational
system is evidenced by the following list of those items produced for
the projects examined.

▪ System Specifications including Part I (the Computer Program
Development Specification), and Part II (the Computer Program
Product Specification); the Interface Control Document; Test
Plans, Procedures, and Reports; and the Version Description
Document. (ALCM)

▪ Prime Item Development Specifications, Program Performance
Specifications, Program Design Specifications, Interface
Specifications, and Program Package and Version Description
Document. (GLCM)

- Program 	Performance 	Specifications, 	Program 	Design
Specifications, a Data Base Design Document, and a Program
Description Document. (SWIM)

18

STEP - Current Defense Practices Overview

- Functional Descriptions, System and Program Specifications,
Design Specifications, a Program Package, User Manuals,
Maintenance Manuals, and Interface Manuals. (Cruise Missile
Mission Planning System)

- A-Level System Specifications, B5 Specifications (Computer
Program Development Specifications), 	C5 Specifications
(Computer Program Product Specifications), 	Data Base
Description Document, Program Description Document, etc.
(AEGIS)

- B5 and C5 Specifications, Version Description Documents, and
a Fielding Package consisting of training manuals and
self-paced training. (TACFIRE)

- Functional Specifications, and B5 and C5 Specifications.
Note: B5 and C5 specifications were rewritten after coding
was complete. (Firefinder)

In the examples above, the Part I, B5, and Program Performance
Specification are essentially the same document. This is also true
for the Part II, C5, and the Program Design Specification.

REQUIREMENTS ANALYSIS

Requirements analysis is the validation of the software
requirements/specificatons prior to implementaton. Analysis
activities may consist of engineers' and analysts' reviews of the
requirements to make sure that they make sense, are needed, and are
not either already implemented or in conflict with something that is.
Simulators may be used to further examine the requirements or a
performance analysis document may be developed. In some cases, the
users may also review the requirements.

The requirements analysis performed for AEGIS included modeling,
simulation of algorithms, and a sensitivity analysis. That conducted
on the GLOM Weapon Control System, the Cruise Missile Planning System,
and BCS benefited from the participation of IV&V organizations. In
addition, the BCS requirements were analyzed specifically for
testability.

DESIGN ANALYSIS

The design for ALCM, the Cruise Missile Mission Planning System,
and BCS were all developed using a PDL. In addition, ALCM and the
Cruise Missile Mission Planning System were the only systems employing
a top-down software development methodology, though this is a
requirement for any new software for GLOM and SLCM.

19

STEP - Current Defense Practices Overview

Activities relating to the validation of software design prior to
implementation include informal comparisons with the requirements;
design reviews (including Preliminary and Critical Design Reviews);
checks for logical sequence and structure, and the accomodation of
growth; and traces of the design into the requirements.

Some design reviews conducted for a program may consist of
informal reviews where "people walk across the hall and talk to each
other" or the hopeful reliance on highly qualified people. However,
formal government design reviews are inevitably required. These
formal reviews are the Preliminary and Critical Design Reviews (PDR's
and CDR's) and they comprise critical milestones in almost all
development efforts. PDR's and CDR's may be conducted by the project
office, the development contractor, or both. MIL-STD-1521A contains
the procedures to be followed during PDR's and CDR's. Only the Cruise
Missile Mission Planning System required strict adherence to this
document. Other Cruise Missile development organizations used it, at
best, as a guideline. Participants in the formal reviews may include
representatives of the Project Office, development contractors, any
IV&V contractors, DT&E agencies, OT&E agencies, and users. It is not
unusual for the attendance to exceed 100 persons. It is difficult not
to question the usefulness of these reviews for the software with such
a large number of persons in attendance.

No specific design-to-test procedures or procedures for the
quantitative assessment of software design maturity and supportability
were found in use on the projects examined. The general opinion
appears to be that if structured design and programming are used,
then, design-to-test procedures are unnecessary.

One purpose of software prototypes is to refine system
requirements/specifications and designs prior to implementation. In
some cases, prototypes may result indirectly from building many
versions of the same system, as with the Cruise Missile, or from the
requirements changing as the government refines its idea of what
exactly is needed from the system. For the Cruise Missile Mission
Planning System, the contractor built a prototype prior to the
receiving the contract. GLCM and AEGIS also used prototypes for the
purpose stated above.

The software design is usually baselined upon successful
completion of the Critical Design Review. In some instances, however,
it is not baselined until after in-plant acceptance has occurred, the
system has been deployed, or never. In cases where the design is not
baselined, the requirements/specifications are.

20

STEP - Current Defense Practices Overview

CODE ANALYSIS

Structured programing was used for the ALCM Missile Software, the
GLCM Weapon Control System, the Cruise Missile Mission Planning
System, and AEGIS. For ALCM, this was accomplished through the use of
code macros (the ALCM missile code was 100% Assembly Language). For
AEGIS, preprocessors were used to enforce programming standards.

Program analysis is the verification that code conforms to the
original software design. Techniques used to accomplish this task
included:

peer walkthroughs. (ALCM)

- reviews by supervisors, and a detailed code analysis by IV&V
organizations on a very limited number of modules. (GLCM)

- internal contractor code reviews with the participation of
the government. (Cruise Missile Mission Planning System)

- code walkthroughs with peers, engineers, and the government.
(AEGIS)

- code walkthroughs and code reviews by the more experienced
programmers. (NTDS)

- comparison of the code with the specifications. (Firefinder)

It should be noted that the activities described above are usually
internal to the development organizations. 	In many cases, the
interviewees did not have an extreme amount of confidence in the
information they were providing.

COMMENTS ON ANALYSIS ACTIVITIES

Major likes and dislikes of the analysis techniques discussed thus
far, as well as perceived strengths and weaknesses, and other comments
included the following:

- Competitive fly-off's can damage the requirements "flow down"
process.

- The structure of the requirements document usually dictates
the structure of the design and the code.

- Technical design reviews are good. Care should be taken to
ensure that they do not become political management reviews.

21

STEP - Current Defense Practices Overview

- It is good to have users present at PDR's so that they can
see what they will be receiving and provide input; however,
they can hinder progress at CDR's.

▪ A better review process including structured walkthroughs is
needed.

TEST PREPARATIONS

It is generally recognized that preparations for software testing
should begin as early as possible in the software development life
cycle. Unfortunately, the realities of time and money constraints
may, in many cases, interfere with good intentions in this area.

For the GLCM Weapon Control System, preparations for integration
testing begin during the coding phase. (Remember that in this case,
module testing has been neglected in the past.) The test group
develops the test cases which are then validated during the actual
testing process. The software system level tests are written by the
same test group, and then reviewed and modified by JCMPO personnel.
Due to the problems that have been encountered, a group of JCMPO
personnel now resides on-site with the contractor to monitor the
software development process.

The Test and Implementation Plans for the Cruise Missile Mission
Planning System were developed at the Preliminary Design Review. For
AEGIS, it was reported that, although the preparations for testing
began "very early, they fell by the wayside". In this case, all test
plans and procedures are written by the contractor.

Preparations for testing NTDS begin once the performance
specification is baselined. The test plans developed trace each
requirement into at least one test case. The goal is "reasonableness"
in terms of testing both nominal and out-of-range inputs - not
exhaustivity. TACFIRE testers interface with the software designers
and coders when preparing for testing.

DEVELOPMENT TESTING AND EVALUATION

The project offices, in general, have very little visibility into
the development testing and evaluation process employed by the
contractors. Therefore, the following information represents the
"suspicions" of the project offices rather than exact data on the
development testing and evaluation conducted.

22

STEP - Current Defense Practices Overview

The software which resides in the ALCM missile, the GLCM Weapon
Control System, the Cruise Missile Mission Planning System, and NTDS
all undergo scenario type testing (as opposed to generic type
testing). The bottom-up and black-box testing strategies are combined
to produce the development testing and evaluation procedures for the
ALCM missile software. The GLCM Weapon Control System software is
exercised using requirements-based tests with nominal values.

In the ideal case, all critical software computational and
decision algorithms and their timing assumptions should be validated.
For ALCM, the timing assumptions were validated through the use of
worst-case tests. At the time of the interviews, no timing tests had
been performed for the GLCM Weapon Control System. Hardware and
software timing statistics are available for AEGIS. No distinction
was made between testing critical and non-critical computational and
decision algorithms.

In addition to the testing and evaluation conducted by the
development organizations, in some cases, an independent assessment of
the software is also performed. This task may be accomplished through
the use of independent test or verification and validation groups
within the contractor's organization, military personnel, or IV&V
organizations. This topic will be discussed in more detail later.

INTEGRATION TESTING

The purposes of integration testing are twofold. The first is to
verify that software modules, subsystems, etc., interface with each
other as required. The second is to verify the interfaces of the
software with the target hardware and system. Whether this testing
consists of multiple distinct phases or just one phase is a function
of the availability of the hardware and other components of the system
under development. In many cases, simulators play a very important
role during integration testing.

For some elements of the Cruise Missile Project, JCMPO personnel
witness the integration testing performed in the contractor's
facility. A six degrees of freedom loop simulator is used during at
least part of the integration testing phase. When available, actual
flight test data is used to update the data bases which reside in the
simulator. Most test cases executed during this testing are based on
nominal inputs. For ALCM, the initial module interface testing was
accomplished by adding one module at a time to the software package
being tested during integration testing.

23

STEP - Current Defense Practices Overview

For the GLCM Weapon Control System software, the initial
integration tests were performed on the developer's build. The
government supplied pre-engineering equipment for use during testing,
as well as system level tests for execution (five no-fault tests;
twelve fault tests). Currently, all builds are performed by a
configuration management organization who also prepares the version
description document. Test procedures are updated as required by any
modifications incorporated into the new versions being tested.

For AEGIS, testing begins at the module level and proceeds
successively through more complex stages. Once a module's
capabilities have been successfully demonstrated during module level
testing, it is integrated into a subprogram build which is an
operational subset of the total software system. The final build
comprises the total software system which, upon completion of its
integration testing, is integrated with the appropriate equipment to
form an operational element in the multi-element environment of the
test site. Operational elements are eventually integrated into an
operational AEGIS Weapons System configured as required to satisfy a
particular ship's mission.

The decision as to how much integration testing is necessary and
sufficient is usually a subjective one. For the integration testing
that is performed, however, the decision that this phase of testing is
complete, in most cases, occurs after portions of the test set have
been executed numerous times to verify the correction of any errors
which were documented via Program Trouble Reports. One method of
measuring progress during integration testing is to compare the core
storage requirements of that portion of the software system which has
satisfactorily completed integration testing with the estimated size
of the total software system.

The perceived strength of integration testing depends upon the
effectiveness of any simulators used. For one program, the lack of
government influence over the testing performed was viewed as a
weakness of integration testing.

ACCEPTANCE TESTING

Acceptance testing is software system level testing. 	In most
cases, the government exercises approval power over the contents of
the acceptance test plans and procedures. A summary of the acceptance
testing performed for some of the projects investigated follows:

- 	Scenario driven tests based upon the requirements including
limited stress testing. (GLCM missile software)

24

STEP - Current Defense Practices Overview

- System level tests written by the contractor's test team.
The tests are reviewed by the on-site military personnel and
JCMPO for adequacy. Also includes government quality testing
which consists, in part, of stress and duration testing.
(GLCM Weapon Control System)

- In-plant testing, demonstrations, and documentation reviews.
(Cruise Missile Mission Planning)

▪ Results from in-plant development and operational tests using
a simulator are evaluated. (Firefinder)

- Formal Qualification Testing. (BCS)

In order to establish the proper execution of the software, all
functions are demonstrated during acceptance testing for the GLCM
Weapon Control System and the Cruise Missile Mission Planning System.
In order to demonstrate that the software will operate correctly in
the user environment, simulators (sometimes in combination with other
system equipment) are often used. This is the case with the GLCM
Weapon Control System. In addition, this project uses acceptance
testing to demonstrate the compliance of the software with any timing
requirements which may exist.

We were not able to identify any procedures for the quantification
of requirements to allow the establishment of threshold values for
acceptance. The name, acceptance testing, can be misleading since
this implies the possibility of non-acceptance. In actuality, very
few rejections occur. In most cases, the software is accepted with
the understanding that any deficiencies identified prior to acceptance
will be corrected. One organization, however, exressed the opinion
that the software should be rejected until the contractor "gets it
right".

The primary strength of the acceptance testing process is seen to
be the variety of personnel involved. In addition, when multiple
testing sites are used, the confidence in the proper performance of
the software increases.

Weaknesses identified relate to the large number of "implicit
tests" involved when demonstrating functional correctness, the large
number of tests executed previously which are reused for acceptance
testing, the small number of errors found during acceptance testing,
and the assumption that sufficient low-level testing has been
completed in advance. Another problem which may arise, if military
personnel on TDY are involved in acceptance testing, is the loss of
concentration if the testing forces them to be away from home for an
extended period of time.

25

STEP - Current Defense Practices Overview

TESTING AND EVALUATION TOOLS

The primary testing and evaluation tools used on the projects
examined were simulators. The importance of the use of simulators
during the testing process is evident from the number which were
identified. Simulators used for the Cruise Missile Project include
the following:

▪ Navigation analysis simulator.

- Six degrees of freedom closed loop simulator.

- Wrap around simulator program (WASP).

- GLCM Lab (GLAB) located at development contractor's site.

- Launch Control Center using a Launch Integration Platform
Simulator which simulates the transporter-erector-launcher
(TEL) and a Digital Weapons System Simulator.

▪ GLCM system 	integration 	lab 	(GSIL) 	at 	integration
contractor's site, where the actual hardware can hook up to
an actual TEL or a simulated TEL, and a simulated missile;

▪ MSDEF simulator which is located onboard the airplane and
simulates missiles.

In addition, AEGIS uses CSEDS, the land-based test site described
previously, and the AEGIS Source Code Processor, a code auditor.

METRICS

Very few instances of the use of metrics to evaluate the quality
of the software produced were identified. One of interest, however,
involved the RPV project. In this case, the development contractor
hired another contractor to evaluate its design and code using
metrics. The methodology was based on the work supported by RADC and
described in RADC-TR-77-369, Volumes I and II. Quality software
incentive awards were to be paid to the development contractor by the
government based on the evaluation of the other contractor.

The metric score was a normalized "goodness" score directly
related to the percentage of compliance with certain pre-defined
standards, etc., where 1 (or 100%) was perfect and 0 (or 0%) was
totally non-compliant. The design quality factors of interest were
defined to be correctness, reliability, flexibility, testability,
maintainability, and intraoperability. The attributes or criteria
related to the quality factors were traceability, completeness,
consistency, accuracy, error tolerance, simplicity, modularity,

26

STEP - Current Defense Practices Overview

communications commonality, and data commonality. 	The actual
measurements were based on a cross reference relating modules to
requirements (traceability); a completeness checklist (completeness);
procedure consistency measures and data consistency measures
(consistency); the sufficiency of numerical methods (accuracy); the
recovery from improper input data, computational failures, and
hardware faults (error tolerance); design structure measures
(simplicity/modularity); protocol standards and single module
interfaces with other systems (communications commonality); and
translation standards (data commonality).

Unfortunately, the use of metrics to evaluate RPV's software has
been discontinued. The decision for cancellation was an economic one
made by the development contractor who was paying the evaluating
contractor.

COMMENTS ON SOFTWARE TESTING

Miscellaneous comments made relative to experiences with the
testing and evaluation performed for the projects examined included:

- It is important to have good people forming a strong team
with a good track record.

- The requirements and their interpretation are not necessarily
consistent between the government and the contractor.

- The amount and quality of testing performed is deficient.
Testers are not independent of the coders and often do not
know how to test.

- The majority of the tests conducted are no-fault tests.

- There is very little human factors testing.

- Testing is terminated to avoid overrunning contracts.

Configuration management is very important during testing.

- The importance of quality simulators cannot be stressed
enough.

- There is an insufficient use of tools during the testing and
evaluation process.

- The documentation delivered is often inadequate.

27

STEP - Current Defense Practices Overview

TEST DOCUMENTATION PROCEDURES AND REGRESSION TESTING

Testing performed is usually documented via the use of test plans,
procedures, and reports. These documents are required for software
system level testing. Lower level testing is usually internal to the
contractor's organization where the documentation procedures may vary
or, for module testing, be nonexistent.

For the Cruise Missile Project, the test plans and procedures are
approved by JCMPO. As the tests are executed, observers check off
each test step as it is completed, record any anomalies, and log any
changes. In some cases, the test plans and procedures are stored on
disk to facilitate changes which may be necessary due to changing
requirements.

The vehicle used to report and track software errors is the
Program Trouble Report. This document describes the failure
conditions and the impact of the error on the requirements, design,
and code.

In most cases, errors are categorized according to severity. The
severity of any error increases when nuclear application are involved,
as is the case for some versions of the Cruise Missile. Users may
become involved in the process of assigning priorities to the errors
in terms of which must be corrected immediately, where workarounds
exist, etc. For the AEGIS project, graphs showing how fast new errors
are being discovered are maintained to track the progress toward a
quality product.

Those regression testing procedures for software that were
described in the interviews include:

▪ Run complete tests. Also use tools to compare versions of
code. All changes must have a comment including a Program
Trouble Report number. (ALCM)

- Run system level functional tests. 	(GLCM Weapon Control
System)

- The testing is scenario-based and performance oriented.
Special tests for modifications are run when appropriate.
(AEGIS)

▪ Test new functions. Use personal judgement to determine what
other areas should be tested. (NTDS)

- Execute benchmark tests to check out old code using an
automated system with manual input for testing the
man-machine interface. 	This is scenario-type testing.
(TACFIRE)

28

STEP - Current Defense Practices Overview

Many projects plan to develop standard test sets, if they do not
already exist, for use during regression testing. Once this occurs,
the problem to be solved involves the determination of whether the
complete set should be executed each time or if a subset of the tests
is sufficient. Maintenance procedures for the test set when
modifications are implemented must also be developed.

QUALITY ASSURANCE PROGRAM

Software quality assurance (QA) programs vary from organization to
organization. Potential elements of a QA program include software
design reviews and audits; the witnessing of acceptance tests and, in
some cases, limited development tests; and the final software
configuration audit prior to the installation of the software in an
operational environment. In addition, some QA organizations track and
sign off on Program Trouble Reports. These activities may be
performed by government QA organizations and/or those maintained
within the corporate structures of the contractors involved. In the
instances where the contractors' QA organizations were responsible for
the activities described, limited information was available during the
interviews conducted.

For ALCM, the software acceptance testing was witnessed by the
government's QA organization; the contractor's configuration manage-
ment organization performed the final software configuration audit
(FCA). Both the physical configuration audit (PCA) and the final
configuration audit were reviewed by the government.

In the case of GLCM, a software engineering practices manual was
developed based on the requirements of MIL-STD-1679. This manual
provides standards and procedures for the QA program. Compliance with
the standards and procedures is ensured by reviews which are conducted
by the contractor's QA organization. The software QA organization
must also approve all deliverable documents.

Software design reviews and audits, as well as code
are "sometimes" conducted by the QA organization
Acceptance testing is witnessed and a final software
audit is performed. It should be noted that the reviews
non-technical reviews.

Comments on software quality assurance programs
following:

- The desired elements of a software QA program
defined. Once more experience is gained in
standardized QA program should be developed.

- QA personnel are not technical enough.

included the

are not well
this area, a

walkthroughs,
for AEGIS.

configuration
conducted are

29

STEP - Current Defense Practices Overview

In order to maintain the technical proficiency of QA
personnel, they should be rotated in and out of development
groups on a yearly basis.

- In some cases, it may be necessary for government personnel
to help train a contractor's QA personnel.

- For one program, it was felt that QA really had not
contributed anything.

- In addition to the QA organizations, all other groups
involved in the development and acquisition of a program
should be involved in the PCA and FCA. This gives everyone
one last chance to voice their opinions.

INDEPENDENT VERIFICATION AND VALIDATION

In the past, independent verification and validation of software
was typically performed by independent contractors. Today, however,
the military services are beginning to realize the benefits of having
IV&V activities performed in-house by the organizations which will
ultimately be responsible for maintaining the software under
development. This is the case for portions of the Cruise Missile
Project.

The IY&V organizations report directly to the project office. The
involvement and responsibilities of the project office with respect to
the IV&V of the software include managing and funding the effort,
approving the IV&V plan, supplying documentation, etc. to the IV&V
contractor, and forwarding any IV&V problem reports or comments to the
development contractor for resolution.

Under ideal circumstances, the
involved with the project no later
In actuality, this is not always the
the initial involvement of the IV&V
to well into the coding phase.

IV&V organization would become
than the development contractor.
case. For the projects examined,
organizations ranged from "Day 1"

An analysis of the software requirements for completeness,
correctness, consistency, traceability, and testability is performed
to some degree by the IV&V organizations for all of the applicabe
projects (those which have the support of an IV&V organization).

For ALCM, the IV&V organization, also, provided information to the
source selection board. In-depth IV&V activities were only conducted
for critical applications areas of the software. These activities
included independent testing using an Instruction Level Simulator.

30

STEP - Current Defense Practices Overview

The GLCM missile software was tested independently using data from
a nominal mission. When the necessary documentation is available, an
analysis of the software design for correctness and satisfaction of
the requirements will be conducted for the GLCM Weapon Control
System. In addition, the IV&V organization performed code analyses
and independent testing including both nominal and stress tests. This
testing supported the development testing process.

The IV&V organization for the Cruise Missile Mission Planning
System performed design analyses, supported development testing, and
conducted validation testing using both nominal scenarios and those
which stress the system.

AEGIS had no IV&V as such, but the engineering support contractors
reviewed the performance specifications for content, completeness, and
consistency. That organization also developed some test plans.

The RPV IV&V contractor was responsible for examining only flight
critical functions. In addition, the IV&V contractor, for a limited
time, evaluated the software using metrics as described in an earlier
section. (In this case, the IV&V contractor was paid by the
development contractor.)

The IV&V activities performed for BCS included reviewing
documentation, witnessing contractor's tests, and conducting
independent tests. The independent tests consisted of black-box tests
where each requirement was tested by at least one case. A conscious
decision was made to strive for repeatability of the tests rather than
coverage during testing. Therefore, a system reload was performed
before executing each test case.

The primary strength of IV&V is seen to lie in its independence.
Other comments made included:

- IV&V is expensive.

- Many benefits are lost if IV&V begins too late.

- On complex systems, it is difficult to get IV&V personnel "up
to speed" in a timely fashion.

- IV&V organizations are not responsive enough. IV&V reports
lag behind the development process thus diminishing their
effectiveness.

- The flow of information from the development contractor to
the project office to the IV&V contractor and back causes
major delays.

31

STEP - Current Defense Practices Overview

- In some cases, IV&V contractors exagerate problems to
increase the apparent importance of IV&V.

- In one case, the only errors found to date by the IV&V
organization have been documentation errors.

OPERATIONAL TESTING AND EVALUATION

The primary purpose of operational testing is to evaluate a
system's capabilities in as realistic an environment as is possible.
Certain limitations, however, always exist. One example is that when
testing a cruise missile it cannot be fired over the North Pole (i.e.,
towards the USSR). OT&E also provides the opportunity for another
independent assessment of the software, this time in the context of
the total system.

Operational testing and evaluation is usually performed by
organizations within the military services which have been formed
expressly for that purpose. For details relating to these
organizations and their philosophies concerning OT&E of software, see
Section 2.3. In some cases, other organizations may assist the OT&E
Agencies. For BCS, both TRADOC and the Field Artillery Board were
involved in operational testing.

The OT&E Agencies do not report to the project offices, but to the
appropriate Chief of Staff, etc. The project offices are responsible
for providing data and information concerning schedules, etc., about
the system under development to the OT&E Agencies. Since the OT&E
Agencies are independent of the project offices, the information
concerning OT&E which was available during these interviews was rather
limited.

During the GLCM missile software development effort, OT&E
personnel attended the Preliminary and Critical Design Reviews and
forwarded action items to the project office for resolution. They
were also involved in the validation of simulators used during
testing. Finally, special flight tests were conducted to validate
critical software functions.

Similarly, OT&E personnel attended PDR's and CDR's for the GLCM
Weapon Control System and forwarded comments to the appropriate
project personnel.

In the case of the Cruise Missile Mission Planning System, OT&E
personnel were involved, to some extent, in the development testing
and evaluation. They also attended the PDR's and CDR's.

32

STEP - Current Defense Practices Overview

During OT&E for AEGIS, a conscious effort was made to develop
scenarios which would exercise the software throughout the total range
of expected operational conditions. In this case, AEGIS project
personnel witnessed the operational testing to assist OT&E personnel
with problem resolution. Again, OT&E representatives attended design
reviews and had limited involvement in the development testing and
evaluation conducted.

The operational testers for BCS worked with the developers to
identify critical issues for OT&E. They also assisted the developers
during the Final Qualification Tests and took those test results into
consideration during their evaluation. Efforts were directed toward
trying to "break" the system during OT&E. The accuracy of the data
was evaluated; the fidelity of the system operation between versions
was inspected; and response times were measured. Mean time between
failure rates were also calculated to estimate software reliability.
In order to clearly identify deficienceis as software or hardware
related, all test reports are examined. Regression testing is
performed by selecting a certain number of days from a two week war
scenario. The days chosen depend upon the changes incorporated in the
new version, the economy of testing, and the availability of resources.

Comments made relative to the operational testing and evaluation
process for software included the following:

- The strength of OT&E lies in the evaluation of human factors.

- OT&E should be automated wherever possible.

- The amount of software actually exercised during OT&E is not
sufficient.

- OT&E should be conducted to assess the extent of enhancement
a system provides to battlefield operations.

RISK ASSESSMENT

For the projects examined, specific software risk assessment
procedures are nonexistent. The only exceptions to this occur when
critical nuclear related functions are performed by the software.
MIL-HDBK 255 (AS) entitled "Nuclear Weapons Systems, Safety, Design
and Evaluation Criteria For" describes the assessment conducted (see
Section 3.2). In general, if a risk assessment is performed, it is
based on the intuitions and past experience of the personnel
involved. The primary consideration during this assessment is the
success of the mission.

33

STEP - Current Defense Practices Overview

It is perceived that the evaluation conducted for nuclear weapons
forces the software to be "good". Personnel familiar with these risk
assessment procedures expressed the opinion that the procedures should
be applied to all projects, not just those with nuclear implications.

GENERAL COMMENTS - LESSONS LEARNED

The following comments describe "lessons learned" by the
individuals interviewed:

• Systems are too complex to attempt to the concurrent
development of hardware, operating systems, languages, and
applications.

• The expectations of all parties involved in large system
developments should not be too high; complexity must be
recognized.

- A perfect system cannot be built.

- Determine the allocation of the functional responsibilities
to hardware vs. software in advance.

• Improvement is needed in the area of identifying and defining
requirements up front.

- Software is very expensive; do not underestimate the cost.

• Be realistic about acquiring software. Allow sufficient time
and money for development and testing.

▪ Money spent on testing is money well spent.

- An enormous amount of unintentional "throw-away" software is
produced.

▪ There is not enough government involvement in the software
development process.

- A program's management and testing philosophy needs to take
into account the high susceptibility of military systems to
change.

- With respect to the potential perturbation of a project
during development, either allow none or plan for it.

- The software baseline needs to be established early for
changing requirements.

34

STEP - Current Defense Practices Overview

- Allow 25% of the memory for growth.

- Memory requirements will expand at least 50% over original
estimates.

- The turnover in personnel creates problems with continuity in
the knowledge of the project.

▪ Get good people involved early and keep them involved.

- Conduct training courses for developers.

▪ The software development process must be structured.

▪ Follow the "classical" approach to software development.

- Engineering houses do not necessarily have sophisticated
software engineering procedures.

• You cannot legislate standards.

• Be careful when using MIL-STD-1679; make sure the appropriate
portions are applied, especially with respect to required
documentation.

- Maintain control over the documentation. 	Require the
documentation corresponding to each phase of the software
development process prior to the beginning of the next
phase. Insist on good documentation.

- Documentation should be produced as the development process
progresses, not after the fact.

- Developers cannot be relied upon to produce adequate
documentation unless management emphasizes it.

- Documentation is important, but difficult to get on schedule.

▪ A good technical writer is worth his weight in gold.

- Have plenty of design reviews to allow interested parties to
"speak now or forever hold your peace".

- A useful way to define a program's size is by the number of
decisions.

- Testing needs to be automated as much as possible.

• Always require module testing.

35

STEP - Current Defense Practices Overview

- Functionally test the software (using simulators, if
necessary).

- Do not underestimate the importance of simulations.

- Examine test results.

- Errors which occur most often during testing should be
corrected first.

▪ Decisions must be made with respect to how much testing is
necessary and sufficient.

- The real problems with the software are best found in the
operational environment.

▪ Stress the importance of QA and CM.

- When schedule slippages are imminent, software quality
assurance is the first effort to be cut.

- Start IV&V early with the cooperation of the prime contractor.

▪ IV&V contractors may try to create problems where none exist.

- Metrics and risk assessment procedures are needed.

▪ Even well defined metrics won't guarantee that all concerned
parties will evaluate the software consistently.

- When a contractor is in serious trouble, "keep the heat off"
so that some work may be accomplished. Too much "help" does
not help.

36

STEP - Current Defense Practices Overview

2.3. OT&E AGENCY INTERVIEWS

Each of the Military Services has an organization which has been
given the mission to operationally test and evaluate new and modified
systems. These OT&E Agencies are the Army's Operational Test and
Evaluation Agency (OTEA), the Navy's Operational Test and Evaluation
Force (OPTEVFOR), and the Air Force Test and Evaluation Center (AFTEC).

Since the testing which is performed is operational testing of
systems, the software is usually singled out on an exception basis
only. However, due to the special section in DoDD 5000.3 on the test
and evaluation of software which states, for example, that "...OT&E
Agencies shall participate in software planning and development to
ensure consideration of the operational environment and early
development of operational test objectives"', groups which specialize
in software have been formulated within each organization.

The software specialists, in some cases, are involved with the
development of new systems from the time of conception. They attend
the Computer Resource Working Group meetings, Preliminary and Critical
Design Reviews, and may even witness acceptance testing. In addition,
the Software Evaluation element of AFTEC has developed a set of
handbooks for use when evaluating the operational effectiveness and
suitability of the software.

Informal meetings were held with software specialists from each of
the OT&E agencies. The information gathered is presented here.

OTEA (Army)

OTEA is in the process of staffing a "Methodology and Software
Testing Section". At the time of our meeting, the group consisted of
six software specialists. Due to the limited number of personnel, it
is impossible for the OTEA software specialists to examine all systems
under development.

Under ideal conditions, the first involvement of the OTEA software
specialists with a new program will be to supply a representative to
the Computer Resources Working Group. The primary benefit to be
gained from this early, and continued, involvement is a thorough
familiarity with the system, its requirements, and its operation.
This includes gaining insight into the development of the software
system and acquiring a thorough understanding of the software
functions and interface requirements.

37

STEP - Current Defense Practices Overview

Early involvement enables the identification of necessary software
operational testing aids (i.e., simulators and stimulators, etc.)
while there is still time for their development and use. Monitoring
the development of a software system enables OTEA to better identify
the areas that should be highlighted during OT and make appropriate
recommendations as to whether or not the software is sufficiently
mature to be properly evaluated in an operational environment.
Finally, detailed knowledge of the software allows the operational
tester to identify software-unique OT requirements and develop more
effective test scenarios so that the system can be exercised at or
near the limitations which are "built-in" to the software. Examples
of software-unique OT requirements are software/hardware monitors,
software instrumentation, and data reduction programs.

OT&E is conducted to estimate a system's operational effectiveness
and suitability. In order to locate errors which were introduced
during the translation of user requirements into system
specifications, OTEA bases its testing on the user's needs. Software
OT test objectives are normally subordinate to system operational
effectiveness and suitability test objectives. In any case, however,
software subobjectives and low level data requirements do appear in
test planning documents.

The assessment of the system's operational effectiveness includes
an assessment of the functional performance of the fielded software,
i.e., how well the software assists the battlefield system in
accomplishing its mission in the context of the operation and
organization. Therefore, OTEA attempts to include scenarios that
exercise the software throughout its typical performance envelope.
When limited resources preclude stressing critical software functions,
simulators may be used to enhance the real environmental testing. In
addition to data gathered during OT, contractor test data and IV&V
data, when available, are used by OTEA to evaluate system software
performance. Questions addressed during this evaluation include:

1) Do the critical system functions implemented in the software
perform as required?

2) Does the software perform satisfactorily when operated at
saturation level?

3) Does the software perform satisfactorily in degraded modes of
operation typically expected in tactical circumstances?

4) Do the software recovery procedures sufficiently restore the
operational effectiveness of the system?

5) Are the software functions compatible with the operational
concepts, tactics, and doctrine?

38

STEP - Current Defense Practices Overview

The system suitability assessment includes an examination of the
software's suitability and supportability. Software suitability is
determined by how well the fielded system interacts with the using
personnel and other systems in performing the battlefield system's
primary mission. Software supportability is determined by how fielded
support software and equipment affect the capability of Army personnel
to operate and maintain the operational software in a timely manner.

Software "test data" which results from the assessments described
above is both quantifiable and non-quantifiable.. OTEA consolidates
all available data according to operational issues when evaluating the
impact of the software on the operational effectiveness and
suitability of the system.

OPTEVFOR (Navy)

OPTEVFOR's philosophy toward operational test and evaluation is
that of testing the system - not the software. Consideration must be
given to the software, human factors interfaces, and the hardware;
but, none of these areas should be isolated during testing. There-
fore, no attempt is made to ensure the execution of the software's
critical paths during OT&E.

In order to gain knowledge and understanding of how the system is
built, OPTEVFOR representatives attend Preliminary and Critical Design
Reviews. Prior to OPTEVFOR acceptance of a software system for
evaluation (OPEVAL), the developer must demonstrate that the software
is, in fact, mature enough for OT&E. This demonstration consists of a
TECHEVAL which requires that the software be tested as stated in
MIL-STD-1679 (see Section 3.2).

The purpose of OT&E is to determine the system's effectiveness and
suitability. All testing performed by OPTEVFOR is scenario based.
During OT&E, software errors are identified for correction only.
Software reliability is estimated when assessing system effectiveness;
however, the model used is the same mean time between failure model
which is applied to hardware. In addition, the definition of software
maintenance, used when assessing system suitability, is the amount of
time it takes, after a failure, for the system to become available for
normal operation (i.e., the amount of time it takes to reload all
files).

39

STEP - Current Defense Practices Overview

AFTEC (Air Force)

Air Force Regulation 23-36 assigns AFTEC the mission to manage the
Air Force OT&E program according to Air Force policy. In addition,
AFTEC plans, directs, controls, evaluates, and reports on OT&E and
recommends OT&E policy to HQ USAF. One AFTEC responsibility is to
observe, or take part in, the early development of major and other HQ
USAF-designated systems. To accomplish this task, AFTEC personnel
sometimes reside in system program offices or contractor facilities.
AFTEC is also involved in the preparation of the Test and Evaluation
Master Plans and attends specific acquisition program reviews.

The purpose of OT&E is to evaluate system capabilities in light of
operational requirements and concepts. AFTEC's position on the OT&E
of software is that, when software is present, it is an integral part
of the overall system and must be evaluated in that context. However,
due to the unique nature of software and the difficulty of uncovering
software problems, it does require special emphasis. The primary
problem when planning for the OT&E of software is the determination of
the extent of special attention needed and the identification of areas
which should be evaluated independent of the system.

The OT&E of software conducted by AFTEC consists of three phases:
test preparation, test conduct, and test evaluation. Test preparation
begins early in the system life cycle and includes the development of
test plans with the assistance of the implementing, using, and
supporting agencies. The entire test design/test planning function is
an evolutionary, iterative process which involves the definition,
evaluation, and refinement of test objectives, measures of
effectiveness, and test methodology along with the associated test
resources. Test conduct involves the preparation of detailed test
procedures, scheduling of day-to-day activities, on-the-scene
management of test events, and the preparation of the final test
report. This phase includes both in-plant and on-site testing. The
evaluation phase consists of test data analysis and evaluation, and
report preparation. As with OTEA, development testing results are
also considered during the final evaluation.

Two test teams are formed for each system evaluated by AFTEC: the
Headquarters Test Team Element and the Field Test Team. The former is
responsible for all phases of test design, test planning, and overall
test management. When appropriate, the Headquarters Test Team Element
includes a software test manager selected from the Software Branch.
On the average, software test managers support three to four different
test programs. The Field Test Team is responsible for actual test
conduct in accordance with the approved test plan. The Field Test
Team includes a Deputy for Software Evaluation who is concerned with
effectiveness from the user's point of view and suitability from the
supporter's point of view. The Deputy for Software Evaluation also
directs the software evaluators and is responsible for ensuring that
all software test objectives are completed and that test results are
reported.

40

STEP - Current Defense Practices Overview

AFTEC's software evaluation focuses on the following areas:

(1) Software Performance - As stated previously, the software
performance evaluation is conducted in the context of the overall
system performance. Test scenarios are defined to stress known or
suspected weak spots in the system design. When software problems
arise during OT&E, they are evaluated in terms of the extent of
system degradation caused.

(2) Software Operator-Machine Interface - This evaluation is concerned
with the interactions between the operator and the computer. The
assessment 	procedure 	involves 	the 	use 	of 	standardized
questionnaires and will be discussed in detail below.

(3) Software Maintainability - This evaluation assesses the quality of
the computer program code and supporting documentation in terms of
the ease with which changes can be made. As with the software
operator-machine interface evaluation, the assessment employs
standardized questionnaires and will be discussed below.

(4) Support System Effectiveness - This evaluation is intended to
determine whether or not the software support system (i.e.,
support software, equipment, and documentation) effectively
supports the maintenance team. Since support systems are rarely
available during OT, the assessment is usually based upon the
evaluators' subjective opinion of the planned support system.
Efforts are currently underway to develop a methodology and tools
to replace the subjectivity of the evaluation with objectivity.

The primary tools available to the AFTEC software evaluators are
standardized questionnaires, the event trace monitor, and Independent
Verification and Validation.

AFTEC is a strong advocate of Independent Verification and
Validation (IV&V). A recent Air Force Policy letter states that,
"Consideration will be given to the use of IV&V in new acquisitions
and for retrofit or modification of existing systems". The preferred
source for the accomplishment of IV&V is the designated support
organization. This arrangement would help eliminate the waste of
expertise gained on a system when performing an IV&V. Criteria for
the extent of IV&V necessary include safety, mission essentiality,
technical risk, supportability, cost/schedule impact, and security.
Possible uses of IV&V data and results by AFTEC are to identify
critical paths which should be exercised during OT&E and to identify
suspected weak spots in the software. To avoid problems with the IV&V
contractors, OT&E requirements should be specifically identified in
the IV&V contract.

41 ,

STEP - Current Defense Practices Overview

The event trace monitor is a test tool which can be used during OT
to monitor the processing performed by a computer and record the
occurrence and time of key events. This allows a determination of the
amount of reserve processing time available for future enhancements
and the verification that a system failure is not about to occur due
to stressed operating conditions. It can also be used to aid the
process of identifying sources of failures which occur during OT&E
(i.e., hardware malfunctions vs. software errors).

The Computer/Support Systems Division of the Test and Evaluation
Directorate at AFTEC has prepared a set of handbooks for use when
operationally testing and evaluating software. This set of handbooks
consists of the following volumes:

Volume I:
	

Software Test Manager's Handbook

Volume II: Handbook for Deputy for Software Evaluation

Volume III: Software Maintainability Evaluator's Handbook

Volume IV: Software Operator-Machine Interface Evaluator's
Handbook

Volume V: 	Computer Support Resources Evaluator's Handbook

Much of the material presented thus far is contained in these
documents. We will now discuss the use of standardized questionnaires
to evaluate the software's maintainability and operator-machine
interface as described in Volumes III and IV of the handbooks.

Software maintainability is defined to be the ease with which
programmers/analysts can change software, whether it be to correct
errors, add or delete system capabilities, or incorporate
modifications made necessary by hardware changes. The evaluation of
software maintainability is based on the use of closed form
questionnaires which determine the degree of existence of desirable
attributes of the code and documentation (a separate questionnaire
exists for each). The attributes are each associated with a software
characteristic which is believed to increase the maintainability of
the software. These software characteristics are modularity,
descriptiveness, 	consistency, 	simplicity, 	expandability, 	and
instrumentation.

The software documentation (design, testing, and maintenance
documents) is evaluated for content and format. The content
evaluation answers the question, "Has the software been designed for
maintainability?" The format evaluation answers the question, "Does
the organization of the documents aid in the communication of
information?" The software source listing evaluation assesses each
selected module's source listing and the consistency between the

42

STEP - Current Defense Practices Overview

source listings and related documentation. It is important to realize
that not all module source listings are evaluated; the software test
manager selects a reasonable number of representative modules for
evaluation. The separate evaluations are then consolidated to perform
an overall assessment. Since evaluations are conducted on both the
software documentation and selected source code modules, potential
maintainability problems can be identified as to their location (code
vs. documentation), the characteristic involved, or a combination of
the two.

The questionnaires used for this evaluation are contained in the
"Software Maintainability Evaluator's Handbook". Only one question is
presented per page along with the identification of the characteristic
whose presence is being measured, any necessary explanations,
examples, a glossary, and special response instructions. In
actuality, the questions are not really questions at all; they are
statements of the existence of desirable attributes.

The response scale for the questions consists of answers ranging
from completely disagree (which is assigned the value of 1) to
completely agree (which is assigned the value of 6). In this way,
subjective opinions of the evaluators are quantified. All of the
evaluators answers are averaged on each question, thereby providing
the basis for a statistical evaluation. The averages are next grouped
according to the characteristic they measure and another average score
is calculated. Finally, the average scores are multiplied by
preassigned relative weights and summed to arrive at an overall
maintainability score for the documentation or source code, as
appropriate. Any of the average scores described can be compared to
preset evaluation criteria (thresholds or goals), in order to identify
potential problem areas. If the thresholds are stated as contractual
requirements, software may be returned to the developers for
improvement.

The use of the questionnaires involves four phases: planning,
calibration, assessment, and analysis. During the planning phase, the
evaluator team, characteristic weights, and evaluation schedule are
established. The calibration phase consists of each evaluator
completing one documentation and one module source listing
questionnaire. The completed questionnaires are then examined for
possible areas of misinterpretation. The function of the calibration
phase is to ensure that each evaluator has a clear understanding of
the questions on each questionnaire and any response guidelines. The
assessment phase consists of the evaluators updating their calibration
phase questionnaires and completing the remainder of the
questionnaires. In the analysis phase, the averages described above
are computed for use in the final evaluation.

43

STEP - Current Defense Practices Overview

The following are sample software documentation questions taken
from the "Software Maintainability Evaluator's Handbook". The
software characteristics being measured are identified within the
parentheses.

Major parts of the documentation are essentially self-contained
(format modularity).

The program control flow is organized in a top down hierarchical
tree pattern (processing modularity).

Each physically separate part of the documentation includes a
useful table of contents (format descriptiveness).

Timing requirements for each major function of the program are
explained in the documentation (constraints descriptiveness).

The processing done by each module is explained in the
documentation (module descriptiveness).

Program initialization and termination processing is explained
(external interface descriptiveness).

There is a useful set of charts which show the general program
control and data flow hierarchy among all modules (internal
interface descriptiveness).

The documentation on each complex mathematical model includes
information such as a derivation, accuracy requirements, stability
considerations and references (math model descriptiveness).

The format of the documentation reflects the organization of the
program (format consistency).

It appears that programming conventions have been established for
the interfacing of modules (design consistency).

The documentation is physically organized as a systematic
description of the program from levels of less detail to levels of
more detail (format simplicity).

The documentation indicates that each program module is designed
to perform only one major function (design simplicity).

A numbering scheme has been adopted which allows for easy addition
or deletion of narrative parts of the documentation (format
expandability).

The program has been designed so that functional parts may be
easily added or deleted (design expandability).

44

STEP - Current Defense Practices Overview

There is a separate part of the documentation for the description
of a program test plan (format instrumentation).

The documentation describes a standardized set of program test
data (input and output) that has been designed to exercise the
program (design instrumentation).

Overall, it appears that the characteristics of the program
documentation contribute to the maintainability of the program
(general question).

The following are sample module source listing questions taken
from the "Software Maintainability Evaluator's Handbook". Once again,
the software characteristics being measured are identified within the
parentheses.

The concepts of structured programming have been applied to the
control structures in this module (data/control modularity).

This module performs only related functional tasks (processing
modularity).

The purpose of this module is described in a preface block
(preface block descriptiveness).

Imbedded comments describe each function (block of code) within
this module (imbedded comments descriptiveness).

The module code is indented within control structures to show
control flow (implementation descriptiveness).

The module's flow chart represents the logic control flow as shown
in this module's source listing (external consistency).

Global variables are distinguishable from local variables by a
naming convention (internal consistency).

Esoteric (clever) programming is avoided in this module (general
coding simplicity).

Each physical source line in this module contains at most one
executable source statement (singular coding simplicity).

The number of expressions used to control branching in this module
is manageable (size simplicity).

Constants used more than once in this module are parameterized
(general expandability).

45

STEP - Current Defense Practices Overview

It appears that functional parts could be easily inserted,
deleted, or replaced within this module (processing expandability).

This module contains checks for possible out-of-bound array
subscripts (processing instrumentation).

Intermediate results within this module can be selectively
collected for display (control of instrumentation).

Overall, it appears that the characteristics of this module's
source listing contribute to the maintainability of this module
(general question).

The software operator-machine interface evaluation is performed to
determine the adequacy of the attention given to the design of that
part of the system which involves the interaction between the
computer-driven system and its operator. The methodology employed is
the same as that used for the evaluation of the software's maintain-
ability. In this case, the characteristics being measured by the
desirable attributes detailed on the questionnaire are assurability,
controllability, workload reasonability, descriptiveness, consistency,
and simplicity. Multiple operator-machine interfaces may be assessed
using this procedure, however, the evaluators should have experience
operating the system prior to the evaluation.

The following are sample questions taken from the "Software
Operator-Machine Interface Evaluator's Handbook". The software
characteristics being measured are again identified within the
parentheses.

Operator input errors do not cause system failures (assurability).

The operator can interrupt and resume automatic processes
(controllability).

The system may be operated without reference to manuals during
normal operations (workload reasonability).

The machine gives the operator decision aids if tasks cannot be
executed as ordered (descriptiveness).

Operator 	entered 	commands 	are 	systematically 	formatted
(consistency).

Each new message contains only one idea to which the operator must
respond (simplicity).

Overall, it appears that the operator-machine interface has been
well-designed (general question).

46

STEP - Current Defense Practices Overview

Some limitations identified by AFTEC with respect to their
evaluation of software during OT&E are that there is little assurance
that critical functions are exercised; the deficiencies which are
discovered are very expensive to correct due to the time in the
development cycle when OT&E is performed; and, finally, there is a
shortage of software engineers available to conduct the evaluations.

47

STEP - Current Defense Practices Overview

2.4. DEVELOPMENT ORGANIZATION INTERVIEWS

This section reports the findings of the interviews which were
conducted with industrial representatives involved in the development
of software for the government. These results are organized according
to whether the software developed is applications software or support
software. This differentiation is made due to the different
environment for usage and the varying criticality of errors.

48

STEP - Current Defense Practices Overview

2.4.1. DEVELOPMENT ORGANIZATION INTERVIEWS - APPLICATIONS SOFTWARE

OVERVIEW

In this section, the results obtained by interviewing six of the
twelve industry contacts will be discussed. The software developed by
these contractors is primarily embedded or mission critical
applications software as opposed to support software. Three of the
corporations represented are large systems houses; two are large
computer manufacturers; and one is a software house. Each works
primarily on military systems, whether for the United States or for
foreign governments. Customers represented include the Army, the Air
Force, the Navy, NATO, NASA, DCA, and numerous others. In some cases
the software being developed is basically an upgrade to systems
developed in the past; in others, the applications are brand new.
Some interviews centered upon specific military projects; others were
discussions of the "typical" software development process used by that
contractor. Therefore, though the sample interviewed was relatively
small, the information gathered pertains to a wide variety of software
development efforts.

The programming languages used by these contractors are as shown
in Figure 1. The amount of Assembly Language used varied from less
than 5 percent to a maximum of 30 percent.

CONTRACTOR

LANGUAGE
1 	2 	3 	4 	5 	6

ALGOL 	 X

CMS2 	 X 	X 	 X 	X

FORTRAN 	 X 	X 	X 	X

JOVIAL 	 X 	X 	X

PASCAL 	 X 	X 	X

SPL1 	 X 	 X

Assembly Language 	 X 	X 	X 	X 	X 	X

Figure 1: Programming Languages used by Applications
Software Developers

49

STEP - Current Defense Practices Overview

A variety of operating systems are being
both batch oriented and timesharing. In some
being used rather than terminals.

The development and target hardware being
Figure 2.

used for development,
cases, card inputs are

used is illustrated in

ORGANIZATION

MACHINE
1 	2 	3
	

4 	5 	6

AN/UYK-7

AN/UYK-20

AN/UYK-77

ROLM 1602, 1666 	 X

IBM 370

IBM 3032, 3033

VAX 11/780

Others

X

X

H

H 	H

X 	X 	X

H = host machine, T = target machine, X = both

Figure 2: Hardware used by Applications Software Developers

Special purpose hardware used for testing includes numerous
simulators, both government furnished and those developed internally
to aid in the testing process for a specific project. Also included
are load drivers, logic state analysers, signal synthesizers, test
target generators, and interface testers.

50

STEP - Current Defense Practices Overview

MILITARY STANDARDS

The MIL-STD's invoked for each of the contractors surveyed are
illustrated in Figure 3.

ORGANIZATION

MIL-STD
1 	2 	3 	4 	5 	6

483

490

1521A

1679 *

52779A

x 	x 	x 	x 	x

x 	x 	x 	x 	x

x 	 x

x 	x 	x 	x 	x

X

* or previous standard

Figure 3: Military Standards Invoked for Applications
Software Developers

The subjects of these mi litary standards are:

MIL-STD-483 (USAF)
	- "Configuration Management Practices for

Systems, 	Equipment, 	Munitions, 	and
Computer Programs"

MIL-STD-490
	- "Specification Practices"

MIL-STD-1512A
	- "Technical Reviews and Audits for Systems,

Equipments, and Computer Programs"

MIL-STD-1679 (Navy) - "Weapon System Software Development"

MIL-S-52779A
	

- "Software 	Quality 	Assurance 	Program
Requirements"

See Section 3.2 for details on these military standards.

51

STEP - Current Defense Practices Overview

Although these standards are invoked, it should be kept in mind
that it is a common and necessary practice to tailor standards for
each specific project that they are applied to. Therefore, extreme
care must be used when making generalizations about the actual
constraints being placed upon the software development process.

The primary strengths of the military standards, in the view of
the contractors interviewed, are that the discipline applied to the
software development process is much better today than it was 10 years
ago and the fact that MIL-STD-1679 addresses software testing and
quality. The problems encountered when trying to work under the
constraints of the military standards and suggestions for improvement
are as follows:

▪ There is not enough money to implement the standards properly.

- The interpretation of government and industry as to what the
standards really require is not consistent.

- MIL-STD-1679 needs to be less restrictive; there is no
flexibility when problems arise.

▪ The amount of documentation required should be dependent upon
the size of the project and the applications involved.

- The level of detail required by the Data Item Descriptions
needs to be defined.

- All program packages should include a Version Description
Document.

▪ The requirements for the test plans are not flexible enough.

▪ There is too much redundancy in the test plans.

- It is not the customer's job to dictate methodology.

- The allocation of functions to hardware vs. software should be
up to the contractor. No customer approval should be required.

- There is little emphasis on development testing to ensure
progress; the emphasis is on completed projects.

MIL-STD-490 should not be applied to working papers.

▪ MIL-STD-1521A doesn't discuss how to resolve action items.

- The Using Command is not involved enough in the procurement
process; the Procuring Agency doesn't know what the users
really want. Suggestion - assign a "friend" in the Using
Command to help define the real requirements.

52

STEP - Current Defense Practices Overview

Other comments made by the contractors referred to the
difficulties encountered when doing functional flow diagrams for
asynchronous systems and the preference to organize Data Base
Descriptions according to functional groups rather than generic groups.

INTERNAL STANDARDS

Each of the contractors interviewed has internal standards for
software development. All use top-down development and structured
programming whenever possible. Two of the contractors require formal
internal waivers for any projects not compliant with the internal
standards. Two of the other contractors determine the standards that
will be used on a project by project basis. One of the deciding
factors concerned with which standards will be used is the programming
language for the project under consideration.

Other internal standards relate to:

- structured design and analysis

- the use of PDL's

- code reviews or inspections

- documentation practices
(i.e. preambles and comments within the code)

- naming and labelling conventions

- coding practices
(i.e. defining parameters rather than "hard coding" actual
numbers)

In one instance, the preambles for each module of code are
actually the Program Design Specification and detailed design. For
realtime software applications, one contractor requires that the
design be batch oriented so that the majority of the developers do not
have to be concerned with interrupts. The same contractor requires
that executives handle all I/O operations.

In each case, the means to enforce the internal standards includes
the participation of a Quality Assurance organization. Four of the
contractors' QA groups attend all code reviews; the remainder either
perform their own reviews or do "spot checks" to ensure compliance.
Other reviewers may include section leaders, Configuration Management
personnel, and IV&V organizations.

53

STEP - Current Defense Practices Overview

SOFTWARE DEVELOPMENT LIFE CYCLE

The common elements in each of the contractors' software
development life cycles are:

▪ software requirements specification and analysis

- software design specification and analysis

- coding and analysis

▪ module testing

- integration testing (software with software)

▪ acceptance testing

In addition to the testing described above, two of the contractors
described a level of testing prior to module testing; we will call
this pre-module testing. In the cases where the software is developed
on a machine other than the target machine, software/hardware
integration testing must also take place. Furthermore, for four of
the contractors, a level of testing called software system testing
takes place after integration testing is complete.

Five of the contractors use the build or incremental approach to
development. The other has used parallel development but plans on
using sequential development in the future. In one instance the
program design specification was not being updated for new
capabilities.

DOCUMENTATION ITEMS

All of the contractors are required to deliver software
requirements specifications, software design specifications and test
plans, procedures, and reports for at least one level of testing to
their customers. The names of these documents vary depending upon who
the customer is. The software requirements specification is known as
the Program Performance Specification (PPS), the B5 specification, or
the Part I specification. The software design specification is known
as the Program Design Specification (PDS), the C5 specification, or
the Part II specification.

54

STEP - Current Defense Practices Overview

Other deliverables described but not common to all of the
contractors include:

- concept papers and studies
- system requirements documents
- development plans
- documents reporting the allocation of requirements to

software vs. hardware
- Quality Assurance and Configuration Management plans
- Program Description Documents (POD)
- Data Base Design Documents (DBD)
- Interface Design Specifications (IDS)
- test completeness reports
- error analysis and categorization reports
- operators' manuals
- users' manuals
- programming maintenance manuals

One contractor has an internal requirement for unit development
folders which include the requirements, design description, functional
capabilities list, unit code, unit test plans and results, problem
reports, and comments.

REQUIREMENTS ANALYSIS

Requirements analysis of one form or another is performed by all
of the contractors interviewed. The methods employed are:

▪ studies, simulations, and prototyping done by requirements
engineers with good systems analysis background and experience
with similar systems.

- reviews where the requirements are analyzed for completeness,
correctness, consistency, traceability, and testability.

- inspections by system engineers, software developers, testers,
and Quality Assurance personnel.

- Technical reviews where the system operational design is
traced into the software requirements document combined with a
formal presentation to the customer, test group, and Quality
Assurance.

- the development of a requirements matrix for use as a database
to track development (one of the contractors which uses this
technique has experimented with two automated tools to aid in
the requirements specification process).

55

STEP - Current Defense Practices Overview

Two of the contractors referred to the problems of writing
software requirements. One observed that with or without the help of
automated tools, no one seems to be able to write "good"
requirements. The other described difficulties in differentiating
between what should be in the software requirements document and what
should be in the software design document.

DESIGN ANALYSIS

The Preliminary Design Review (PDR) and Critical Design Review
(CDR) are formal government reviews which are required for all of the
contractors interviewed. These reviews may be conducted by the
customer, the contractor, or both. Attendees include the contractor's
project team and representatives from the customer's project office.
Other attendees may include the contractor's test team and Quality
Assurance group and representatives from the customer's user command,
OT&E Agency, IV&V organization, and logistics and training groups.
The preliminary design is baselined after PDR: the detailed design
after CDR.

Prior the the formal design reviews, each of the contractors
performs an internal design analysis. Techniques used are:

• inspections conducted by trained moderators, in accordance
with internal standards, who choose team members from system
engineering, the development organization, the independent
test team, and the Quality Assurance organization (Fagan ID
inspections). These inspections include an analysis of units
consistency and are conducted for both the high level design
and the detailed design.

- peer design reviews using the requirements matrix developed
previously to trace the requirements into the design.

- peer design reviews with selected managers present.

• informal technical reviews conducted by the developers and
Quality Assurance reviews where any outstanding action items
are resolved. Units consistency is checked at section leader
reviews.

- dry runs for formal customer reviews.

Other activities include database and interface coordination
meetings and desk checking.

Three of the contractors interviewed build
help refine the requirements and/or design. In
simulations are used during the requirements
respect.

software prototypes to
one case, modeling and
phase to aid in this

56

STEP - Current Defense Practices Overview

CODE ANALYSIS

Four of the contractors interviewed perform code analysis prior to
testing. The variations employed follow.

- Code inspections including reviews of module test plans and
procedures. The integration test team attends these reviews
and may refuse to accept the code if it is not satisfied with
the module test.

- Peer group code reviews including a review of the module test
plans. In some cases error checklists are used.

▪ Weinberg method using error checklists.

- Informal code inspections and walkthroughs with supervisors;
formal with the Quality Assurance organization. The extent of
formality or the lack thereof depends on the application,
complexity, and size. Also performs desk checking.

Two of the contractors use code analysis on a selective basis.
One uses peer or analyst reviews when module testing doesn't seem
sufficient. These reviews concentrate on checking the logic rather
than coding techniques. Desk checking is also used. The other
contractor has made code inspections optional due to the close
relationship between the code and the detailed design. Design
inspections are always performed by this contractor.

COMMENTS ON ANALYSIS ACTIVITIES

All of the contractors felt that the analysis activities just
described have a positive influence on the quality of the software
produced. Their comments and concerns follow.

- Testers should be involved in requirements reviews.

- Management should not attend inspections.

- There is a tendency to rush through inspections when there are
schedule difficulties.

- Design reviews become instructional sessions when the
participants have not reviewed the documents in advance.

- Inspections should be postponed if the participants are not
adequately prepared.

- A more diligent application of the review process is needed.

57

STEP - Current Defense Practices Overview

- Formal customer reviews should be incremental rather than
program wide.

- Dry runs for formal customer reviews are more beneficial than
the actual reviews.

One contractor is currently trying to determine how detailed a
design should be and whether or not code inspections are necessary
when the correspondence between the design and the code is
approximately one-to-one.

PRE-MODULE TESTING

Two of the six contractors interviewed performed pre-module
testing. In both cases, the goal was to exercise all paths at this
level. One contractor determined that this was not cost effective and
no longer strives for this coverage.

MODULE TESTING

Four of the contractors began their preparations for module
testing during the design phase. In all cases the developers write
test plans and procedures or keep a log of the testing performed. It
should be noted that in one case, module testing was combined with
module integration testing.

Five of the six contractors require that the extent of module
testing be reviewed for adequacy by someone other than the developer.
The reviewers may be section leaders, integration test teams, or
project managers. The reviews may take place at design reviews, code
inspections, or audits. In one case, the customer required test
reports for selected modules.

The testing philosophies and criteria used can be summarized as
follows:

- Only one contractor performs module tests as black-box tests.
In this case, all requirements must be tested using nominal
and extreme values.

- For the contractors that use the white-box methodology: one
requires that a "reasonable" number of branches be exercised,
one measures statement coverage to find any "blatant" areas
that are missed, two require 100% branch coverage, and one
strives for complete path coverage.

- Four of the contractors exercise the code with nominal values,
minimums, maximums, extreme values, and invalid inputs.

58

STEP - Current Defense Practices Overview

- Two contractors use module testing to test any critical timing
and performance requirements.

- One contractor uses calibration bugs occasionally, but not as
a regular practice.

INTEGRATION TESTING

The testing performed when integrating the software modules into a
software system is known by numerous names. Some of these are module
integration tests, subprogram tests, subsystem tests, and build tests.

An opinion that all of the contractors have in common is that the
key to integration testing is to get the best people on the
integration test team. Two of the contractors use independent test
teams; the membership of the remainder of the teams is as follows:

- 3 or 4 lead programmers and the programmers responsible for
the modules being integrated

- a software requirements specification expert, a software
design specification expert, and the section leaders.

- a few "key" people

One of the contractors is in the process of creating a skill
center which will be responsible for integration and testing,
configuration management, and facilities management.

Preparations for integration testing begin during the requirements
phase for two contractors and the design phase for three of the
contractors. One contractor described integration testing as
"initially ad-hoc". Four of the contractors require formal test plans
and procedures for integration testing. In one case, the test plan
must be approved by the customer. In that same instance, the test
plan and procedures are also reviewed by the internal project manager.

In all cases, the software is tested for functional correctness.
The tests are based on the software requirements document and
performed in a scenario fashion. If an Interface Design Specification
is available, it is also a basis for integration testing. In one
case, the tests performed are the same as those used for software
system testing. The final result of integration testing, for two of
the contractors, is the acceptance test. In one case, once a
"full-up" system has been achieved, capacity testing is performed.

Four contractors use a top-down testing strategy; one uses
bottom-up; and, one uses a combination of the both. Three of the
contractors test both nominal and off-nominal or extreme inputs in the
process of integration testing.

59

STEP - Current Defense Practices Overview

Four of the six contractors use the same people and tests to
integrate the software system with the hardware. In one case, system
engineers perform this testing. Two contractors use simulators for
the hardware until the actual hardware is available. Both noted that
the sooner the real hardware is used, the better it is for the
development process.

SOFTWARE SYSTEM TESTING

Software system testing, also called program performance testing
or verification testing, is performed by four of the six contractors
prior to acceptance testing. In all cases, this level of testing is
performed by a test team independent of the developers. Preparations
are begun during the requirements or design phase. Test plans,
procedures, and reports are required for software system testing. In
one case, the tests are developed by the independent test group and
reviewed by the engineers, developers, and Quality Assurance
personnel. Another contractor holds reviews with the customer to
determine the adequacy of the tests and resolve any disagreements.
Three contractors use a test/requirements matrix to ensure that all of
the requirements are tested during software system testing. All tests
include nominal and off-nominal scenarios. One contractor described
this testing as having "no holds barred" - the testers start with the
specified requirements, then test for the real world including failure
mode testing.

ACCEPTANCE TESTING

As with the other levels of testing, the contractors have assigned
their own names to what we will call acceptance testing. The names
used include quality testing, formal qualification testing and formal
functional/performance testing.

In all cases, the test plans and procedures must be approved as
adequate by the customer. The preparations for acceptance testing
begin during the requirements phase. The organizations responsible
for writing and conducting the acceptance test are different for each
contractor interviewed. The acceptance tests may be:

▪ written and conducted by customer's DIU organization with
contractor's support. (The IY&Y organization writes the
test plan; the contractor writes the test procedures.)

▪ written by contractor, conducted jointly by customer and
contractor.

- written by contractor's independent test team, conducted
by customer.

60

STEP - Current Defense Practices Overview

- written and conducted by contractor's independent
integration test team.

- written and conducted by contractor's system test people.

- written by contractor's software system test people,
conducted by Quality Assurance organization.

The contractors' Quality Assurance organizations always witness
acceptance tests.

The criteria for acceptance tests are that they test every
testable requirement and demonstrate every function after complete
integration. One contractor described the acceptance test as a "super
integration test". Two of the contractors use Validation Cross
Reference Matrices to control the acceptance testing process. Fault
testing is also conducted at this time.

In one case, acceptance testing is made up of reliability testing,
software functional verification testing, and a final test which is a
subset of the other tests. The duration of the total acceptance
testing process is between 3 and 4 weeks with the final test lasting
approximately 50 to 60 hours. The reliability testing takes 1 to 2
weeks. During this time the full hardware/software set is exercised
for at least 200 hours. The amount of testing performed depends upon
the required reliability. This also determines the amount of time
that the system will be exercised under overload conditions. A Mean
Time Between Incident (MTBI) is measured over the 200+ hours. The
minimum requirement for MTBI is 24 hours.

TESTING TOOLS

The only tools in general use to aid the testing process are
simulators, models, data reduction tools, and standard debug tools.
The majority of these tools are project specific. In isolated
instances, the following types of tools are also being used:

- standard file comparators or output comparators

- general cross-reference generators

- static analyzers, path analyzers, or code auditors

- test file/data generators (project specific)

- dynamic execution verifiers

- symbolic testers

61

STEP - Current Defense Practices Overview

One contractor is trying to combine the tools used within its
organizations into a test data management system for Fortran 77.

METRICS

No metrics were found in use.

APPLICATION SPECIFIC TESTING TECHNIQUES

The only application specific testing technique found is that of
inserting faults into the hardware to test Built-in-Test software.

COMMENTS ON SOFTWARE TESTING

The following comments on software testing were made by the
contractors interviewed.

A more scientific methodology for software testing is needed.

- Test procedures are too detailed. They should be written from
an engineering point of view.

▪ More stringent rules for test plans and procedures are
needed. These should be spelled out in RFP's.

▪ More money is needed for Quality Assurance so that standards
and procedures can be better enforced.

▪ Interactive test drivers/harnesses are needed.

Independent test teams are needed. Unfortunately, testing is
not a career programmers like.

▪ Success is dependent on the preparation of the testers.

▪ Configuration management and good documentation are very
important during testing.

▪ There is currently no good way to keep up when the customer
keeps changing the requirements.

62

STEP - Current Defense Practices Overview

TEST DOCUMENTATION PROCEDURES

In general, formal test plans and procedures are kept under
configuration control. When updates to the software become necessary
due to changing requirements or software trouble reports, a software
change control board oversees the process. Usually, forms used to
request changes also specify which software modules will be effected.
This same information is used to update test plans and procedures.

ERROR ANALYSIS AND TRACKING

When software errors are discovered, software trouble reports are
submitted to the software change control board described previously.
The information submitted includes what errors were found, when they
were found, and what modules were involved. The errors are then
prioritized according to severity. An example of the priorities used
are those defined in MIL-STD-1679 (see Section 3.2). Errors are
tracked in terms of the number outstanding, their ages, and their
seriousness.

One contractor uses error information to estimate software support
requirements since the software produced, in this instance, is
maintained forever by the contractor. Error information is also being
used to determine the usefulness of design and code inspections. In
another case, the frequency of recompilations combined with error
information is used to estimate software maturity and determine
progress.

REGRESSION TESTING

Four of the contractors interviewed either have or plan to have a
standard set of test cases which will be rerun prior to each new
release of the software. One contractor intends to do a complete
retest of the software system for each delivery. In each case,
special tests will be run for all changes made. One contractor uses a
combination of engineering judgement and path analysis tools to
determine the amount of testing necessary for a given set of changes.
Finally, in one case, the regression testing process is largely
automated and optimized.

QUALITY ASSURANCE

Each of the contractors interviewed has an independent Quality
Assurance organization. In one case, in addition to the corporate
Quality Assurance organization, each project is assigned its own QA
group which is managed by the project manager but is still independent
from the developers. The activities of each of the Quality Assurance
organizations are shown in Figure 4.

63

STEP - Current Defense Practices Overview

CONTRACTOR

QA Activities
1 	2 	3 	4 	5 	6

Review Requirements
& Design Specs. 	 X 	X 	 X 	X

Review Test Plans
and Procedures 	 X 	X 	 X

Review All Deliverables 	 X 	X

Attend Design Reviews 	X 	 X 	 X 	X

Attend Code Reviews 	X 	 X 	 X

Witness Acceptance
Tests 	 X 	X 	X 	X 	X 	X

Perform Final
Configuration Audit 	 X 	X 	 X 	X

Figure 4: Quality Assurance Activities for Applications
Software Developers

In most cases, QA reviews are conducted for compliance with
customer invoked and internal standards. Other activities may include
conducting spot checks of documentation when not involved in the
actual review process, performing test readiness reviews, monitoring
Configuration Management audits, and participating on the software
change control board. In one case, QA is responsible for writing test
plans and procedures. In another case, a Product Assurance
organization supplies the independent test group.

Comments made by three of the contractors interviewed had to do
with the fact the QA is basically a non-technical function. These
organizations feel that a Quality Assurance organization that
understands content as well as form would be much more beneficial.
One contractor is experimenting with rotating developers in and out of
the QA organization to help in this respect. Another comment made was
that QA is usually an understaffed and underbudgeted activity.

64

STEP - Current Defense Practices Overview

INDEPENDENT VERIFICATION AND VALIDATION

Only three of the contractors interviewed have had any experience
with IV&V organizations participating in the development process. In
each case, the IV&V organization reports directly to the customer.
The contractor's responsibilities with respect to IV&V are usually to
deliver documentation, etc. to their customers. The customers then
forward the items to the IV&V organization. The contractor must also
respond to any comments made by the IV&V organizations. In one case,
the contractor is required to give the IV&V organization one hour
notice for any meetings so that IV&V representatives may attend. The
IV&V organization must also be allowed total access to all documenta-
tion. In another case with the same contractor, IV&V representatives
work on-site during the development process to observe operations for
compliance with contractual requirements. In one case, the IV&V
organization was involved with the project from the beginning. In the
other cases, the initial involvement was during the software require-
ments phase.

The IV&V activities for the projects discussed above are shown in
Figure 5.

CONTRACTOR

IV&V Activities
1 	2 	3

Independent Requirements & Design Analysis 	X 	X 	X

Algorithm Studies 	 X 	X

Participation in Code Inspections 	 X

Independent Code Analysis 	 X 	X

Witness Acceptance Tests 	 X

Approve Test Plans & Procedures 	 X

Independent Testing 	 X

Figure 5: IV&V Activities for Applications Software Projects

65

STEP - Current Defense Practices Overview

In one case, the acceptance test plans are written and the test
conducted by the IV&V organization. Other IV&V activities include
witnessing integration and software system tests, independently
evaluating software trouble reports, and writing software
documentation. In another case, the IV&V organization was responsible
for reviewing all deliverable documents.

Concerns were expressed about the relationship between contractors
and IV&V organizations. In some cases, contractors feel that IV&V
organizations have exaggerated problems to make themselves appear
needed. Other comments related to the timing of the initial
involvement of the IV&V organizations. It was agreed that the sooner
they are involved, the better it is for the project concerned.

OPERATIONAL TESTING AND EVALUATION

The contractors.' involvement in Operational Testing and Evaluation
(OT&E) of the systems produced varies from no involvement, to
explaining any problems encountered with the software, to helping plan
and evaluate the tests conducted.

OT&E Agency involvement in the development process varies from no
involvement to attending all customer reviews to performing
requirements analysis, conducting design reviews, and witnessing
acceptance tests.

Contractors' comments with respect to OT&E are:

- OT tends to be a subset of the contractor's testing.

- OT is conducted at the system level and is not too interested
in or concerned with testing software.

- OT is not thorough enough in testing man/machine interfaces.

RISK ASSESSMENT

In most cases, risk assessment consists of analysts and/or systems
engineers defining critical functions, etc., based on past experience
and intuitive knowledge. One contractor performs failure modes and
effects analyses and, based upon the results, recommends code changes
and tests to the developers and test organizations. In some cases,
simulation and modeling takes place to determine the risk involved
with specific algorithms. Prototypes are also built to reduce risk.
Based upon the perceived risk involved, more design reviews, code
reviews, and testing may take place. One contractor stated that
"unofficial importance is given to risk by the people who write the
test procedures".

66

STEP - Current Defense Practices Overview

One contractor requires formal proofs of correctness when the
software design is "too complex". 	As a result, the developers
redesign until the proofs are no longer required. Another contractor
requires formal proofs of correctness for nuclear release mechanisms.

NEW TECHNOLOGY TRENDS

Asynchronous systems: One contractor tries to design asynchronous
systems such that there aren't any time criticalities.

Signal processing and data flow machines: Contractors expressed a
need to know how to test these technologies.

Firmware: What amount of testing, etc., must be performed when
firmware is involved in a system? This is an area of major concern.

Software Testing: One contractor is currently teaching a course
for software testers and conducts workshops to promote the transfer of
information.

Ada: Two of the contractors interviewed use Ada as a PDL. Two
others are planning to do so in the near future. A group in one of
the contractors' software engineering area is currently teaching Ada
classes. This contractor is now waiting for a project to impose the
use of Ada. This is expected in the 1984 to 1985 timeframe. Comments
concerning Ada included:

- Ada should help testability.

- Ada should result in an increase in the quality of code.

- Ada will help, but standard ISA's are also needed.

LESSONS LEARNED

The following is a list of "lessons learned" which the contractors
interviewed wished to pass on.

- Think through all of the steps required in advance. More
planning up front means fewer problems downstream.

▪ Make sure you have the right tools for software development.
It is very helpful to have a compiler, etc., on a mainframe
for development purposes.

▪ Hardware is not usually delivered ontime. 	When it is
delivered, it may not work as expected. 	Plan for these
possibilities when determining schedules.

67

STEP - Current Defense Practices Overview

Mlo

Allow time for education.

Management should interact...not react.

It is important to have systems people who understand software.

Find problems early.

Establish a 	requirements matrix early on. 	Identify
unreasonable requirements and suggest alternatives.

ASK QUESTIONS!!:

It is very important to baseline the software requirements
prior to design and the software design prior to coding.

Use top-down design techniques.

Eliminate or minimize parallel development.

Use simple architectures. Many small problems are better than
one large problem.

"Nail down" interfaces.

Manage at subroutine level - work the details.

▪ Developers need to feel involved in the total development
effort. One way to accomplish this is for each developer to
maintain his code "forever".

▪ Every requirement is a test requirement.

▪ Code is nothing until it is executed.

- Solve long term problems rather than short term problems
(i.e., no patches).

- Recognize the merit of software testing:
-- get the right tools, test environments, simulators
-- get good people for testing
-- keep track of progress - get early visibility

▪ Controlled testing is very important.

▪ Make sure people are adequately prepared for testing.

- Keep test teams a reasonable size.

- Independent test groups improve the quality of software.

68

STEP - Current Defense Practices Overview

- Configuration Management is very important to the testing
effort.

- Customer interaction and user visibility is important.

- Customers have an idealized view of software development.
They must be educated to the fact that things will go wrong!!:

/

69

STEP - Current Defense Practices Overview

SUMMARY OF SOFTWARE TEST AND EVALUATION ACTIVITIES

CONTRACTOR

SUMMARY
1 	2 	3 	4 	5 	6

PROGRAMMING LANGUAGES

ALGOL 	 X

CMS2 	 X 	X 	 X 	X

Fortran 	 X 	X 	X 	X

JOVIAL 	 X 	X 	X

PASCAL 	 X 	X 	X

SPL1 	 X 	 X

Assembly Language 	X 	X 	X 	X 	X 	X

HARDWARE (T = target, H = host, X = both)

AN/UYK-7 	 T

AN/UYK-20 	 T 	 X

AN/UYK-77 	 X

ROLM 1602, 1666 	 X

IBM 370 	 H

IBM 3032, 3033 	 H 	H

VAX 11/780 	 H 	H

Others 	 T 	 X 	X 	X 	T

70

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY
1 	2 	3 	4 	5 	6

MIL -STD's

483 	 X 	X 	X 	X 	X

490 	 X 	X 	X 	X

1521A 	 X 	 X

1679 	 X 	X 	 X 	X 	X

52779A 	 X

REQUIREMENTS ANALYSIS

Studies, Simulations,
and Prototyping

Reviews

Requirements Matrix

x 	x 	x

DESIGN ANALYSIS (Internal)

Inspections 	 X

Peer Reviews 	 X 	X

Informal Reviews 	 X

QA Reviews 	 X

Dry Runs for
Formal Reviews 	 X 	X 	 X

71

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY
1 	2 	3 	4 	5 	6

CODE ANALYSIS (0 = optional)

Inspections 	 X 	X

Walkthroughs 	 X

Peer Reviews 	 X 	0

Desk Checking

Review Module Test
Plans and Procedures 	X 	 X

PRE-MODULE TESTING

MODULE TESTING

Adequacy Review 	 X 	X 	X 	X 	X

Black-box 	 X

White-box 	 X 	X 	X 	X 	X

Extreme Values &
Invalid Inputs 	 X 	 X 	X 	X 	X

INTEGRATION TESTING

Top-Down 	 X 	X 	X 	X 	 X

Bottom-Up 	 X 	X

Nominal & Off-Nominal
Scenarios 	 X 	 X 	 X

72

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY
1 	2 	3 	4 	5 	6

S/W SYSTEM TESTING 	X 	X 	 X 	 X

Use Test/Requirements
Matrix

ACCEPTANCE TESTING 	X 	X 	X 	X 	X 	X

Use Validation Cross
Reference Matrix

REGRESSION TESTING

Standard Test Set 	X 	 X 	 X 	X

Complete Retest 	 X

Selective Testing 	X 	 X 	X

TESTING TOOLS

File or Output
Comparators

Cross Reference
Generators

Static Analyzers, Path
Analyzers, or Code
Auditors 	 X 	X 	X 	X

Test File/Data
Generators 	 X

Dynamic Execution
Verifiers 	 X 	X

Symbolic Testers 	 X

73

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY

QA ACTIVITIES

Review Requirements
& Design Specs. 	 X 	X

Review Test Plans
and Procedures 	 X 	X

Review All Deliverables

Attend Design Reviews 	X

Attend Code Reviews 	X

Witness Acceptance
Tests 	 X

Perform Final
Configuration Audit

IV&V ACTIVITIES

Ind. Requirements &
Design Analysis 	 X 	 X 	 X

Algorithm Studies 	 X 	 X 	 X

Participation in
Code Inspections 	 X

Ind. Code Analysis

Witness Acceptance
Tests 	 X

Approve Test Plans
& Procedures 	 X

Independent Testing 	 X

74

x 	x

x 	x 	x

x 	x

x 	x 	x 	x 	x

x 	x 	x 	x

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY

RISK ASSESSMENT

Experience/Intuition

Failure Modes &
Effects Analysis
	

X

Modeling & Simulation 	 X 	X

Prototyping 	 X 	 X

75

STEP - Current Defense Practices Overview

2.4.2. DEVELOPMENT ORGANIZATION INTERVIEWS - SUPPORT SOFTWARE

OVERVIEW

Two of the industry contacts who were interviewed are primarily
involved in the development of support software (i.e. compilers,
assemblers, loaders, etc.). The efforts put forth by one of the
contractors are directed at implementing enhancements to previous
systems. The other contractor is currently in the early detailed
design phase for a new system. In addition, some pieces of the new
system are being prototyped. In both cases, only the machine
dependent code is done in assembly language. This reportedly amounts
to less than 5% of each system.

MILITARY STANDARDS

MIL-STD-1679 (Navy) on "Weapon System Software Development" was
invoked on one of the contractors for their compiler development
effort. The other contractor is required to follow MIL-STD-490,
"Specification Practices". For a description of the contents of these
military standards, see Section 3.2.

The perceived strengths of the standards are the fact that they
address specifications, design, QA, CM, etc. The weaknesses described
include:

The standards require an extreme amount of paperwork.

The standards do not describe how to test properly.

The required test plans and procedures are too general.

The standards are vague and ambiguous; some sections are
inappropriate.

INTERNAL STANDARDS

Internal standards which are common to both contractors
interviewed required top-down development, structured programming, and
the use of a PDL based on the appropriate programming language. In
addition, one of the contractors requires a waiver for any module
which contains more than 300 statements. The same contractor requires
that the detailed design be embedded within the code via the use of
preambles and comments. In each case, project/team leader reviews are
used as a means to enforce the required internal standards. QA spot
checks and a PDL processor are other means which are also employed by
one of the contractors.

76

STEP - Current Defense Practices Overview

SOFTWARE DEVELOPMENT LIFE CYCLE

One contractor described the software development life cycle very
simply as determining the specifications, implementing them, and
testing them. The other contractor described the process in more
detail. Since the requirements had been well defined prior to that
contractor's involvement with the system, the first phase of the life
cycle described is concerned with developing the design. Once the
Critical Design Review (CDR) is completed, coding begins, followed by
code reviews and unit tests. Once integration testing of the Computer
Program Configuration Items (CPCI's) is completed, the software is
turned over to the Quality Assurance organization for functional
testing. If, based on their testing, the QA group accepts the
software, subsystem and system tests are conducted.

DOCUMENTATION ITEMS

The documentation items required for delivery include those which
were common to all of the applications software developers: the
software requirements specifications, the software design
specifications, and test plans, procedures, and reports. The support
software developers must also deliver documentation items selected
from the following list: user handbooks or manuals, operating
procedures, reference booklets, technical descriptions, maintenance
manuals, and revision descriptions.

REQUIREMENTS ANALYSIS

Requirements analysis is not being performed, to a great extent,
by either one of the support software developers interviewed. In one
case, this is due to the fact that the requirements for the system
being developed underwent extensive scrutiny and review prior to the
contractor's involvement with the system. In the other case, the
contractor is in the process of implementing enhancements to
previously developed systems. Although, the Software Change Proposals
(SCP's) include an analysis of the impact the change will incur, in
some instances, prototyping may also be performed to ensure that the
new requirements are well understood and can be implemented
satisfactorily.

77

STEP - Current Defense Practices Overview

DESIGN ANALYSIS

The design analysis performed by the contractor implementing
enhancements consists of the project leader interfacing with the
responsible programmer. The design analysis for the system undergoing
initial development, as would be expected, is more extensive.
Informal team design reviews are held. In addition, seminars are
conducted for future users of the new system. The developers are
usually required to justify their designs at these seminars.
Prototypes are also built to determine potential performance and/or
usability problems which may require modifications to the design.
Finally, the usual government reviews (PDR's and CDR's) are
conducted. In this case, the design specification is baselined upon
acceptance at the Critical Design Review. For the other contractor,
each time a certified revision of the system being enhanced goes under
configuration management, the corresponding design is baselined.

CODE ANALYSIS

As with design analysis, the code analysis performed by the
contractor implementing enhancements consists of informal reviews
involving the project leader and the responsible programmer. The
level of formality applied is dependent upon the experience of the
programmer. One purpose of these reviews is to ensure compliance with
the internal coding and documentation guidelines. The other
contractor's development teams will perform code reviews on each
Computer Program Component (CPC). In this case, the experienced
developers will be relied upon to direct attention to areas where
common problems may exist.

COMMENTS ON ANALYSIS ACTIVITIES

One of the contractors questions the usefulness of the analysis
activities described thus far. In this contractor's opinion it is the
proficiency of the programmers that makes the difference in terms of
the quality of the code produced. The other contractor believes that
the analysis activities are very valuable. They allow you to discover
•errors while it is still relatively inexpensive to correct them. The
weaknesses discussed pertain to the government reviews. It is felt
that the military and IV&V personnel involved in the PDR's and CDR's
need more time than is currently allocated to prepare for these
reviews if they are to be genuinely beneficial to the software
development process.

78

STEP - Current Defense Practices Overview

MODULE TESTING

The purpose of module testing is to test the specifications and
the error conditions. An objective of one of the contractors is to
achieve 100% statement coverage during module testing. The other
contractor will record control flow analysis data for information
only. The amount of testing actually performed will be left up to the
discretion of the responsible programmer. In one case, the modules
will be instrumented to aid in the testing process.

INTEGRATION TESTING

The integration testing which will be discussed only pertains to
the plans of the contractor developing the new system. For a
discussion of the testing performed by the contractor implementing
enhancements, see the section on Regression Testing.

Preparations for the integration testing which will be performed
by this contractor began prior to contract award. The test plans
which will be used were outlined in the proposal which won the
contract. The integration testing will consist of functional tests
based upon the software requirements and design specifications. The
compiler will be instrumented to record information necessary to
determine whether performance objectives have been met. A bottom-up
testing strategy is planned.

ACCEPTANCE TESTING

The purpose of acceptance testing for these contractors is to
certify their respective compilers and systems for government use. In
one case, the test plans and procedures are written by either the QA
or IV&V organization and reviewed by the developers. It should be
noted that, in this case, the original set of test cases used to
certify the compiler were developed as a separate task on the
contract. In addition, a set of tests was furnished by the govern-
ment. For each new release of the system, the original test set is
enhanced with new test cases which address the specific changes to the
system. Upon completion of the certification tests, which are
conducted by the contractor, the tests reports are sent to the
customer who then approves the new version of the system for release.

The contractor who is developing the new system will have one
responsibility with respect to acceptance testing, that being the
responsibility to turn the system over to the customer. The
acceptance testing will then be performed by the customer with the
help of another contractor.

79

STEP - Current Defense Practices Overview

TESTING TOOLS

In addition to the normal Operating System tools which are
available to aid in the software development process, the tools found
in use by the support software developers were standard file
comparators or output comparators and dynamic execution verifiers.
One of the contractors also uses simulators of the target machines
during the testing process.

The contractor developing the new system plans to develop a test
executor for use during regression testing. The test executor will
choose which tests to run, from a standard test set, based upon which
modules have been modified. It is hoped that these tests will be
selfchecking. The other contractor has a standard JCL run stream
which accomplishes this same task (in this case, the tests are
selfchecking).

METRICS

No metrics were found in use.

TEST DOCUMENTATION PROCEDURES

As with the applications software developers, the support software
developers are required to document their tests via plans, procedures,
and reports. The process to request changes to the system is a formal
one. The forms used specify what areas of the system will be affected
by the change and the expected impact on the cost, schedule, documen-
tation, and users of the system. These same forms are used to trigger
the appropriate changes to the test sets. The contractor who is in
the mode of implementing enhancements to the existing system has
organized the test cases in the standard test set according to
components and function to facilitate the necessary changes.

ERROR ANALYSIS AND TRACKING

Errors in the existing system, as well as priorities for the
correction of the errors, are communicated to the developers via
software trouble reports. A patch log is used to document changes
made to the system between releases. The reported errors are
categorized according to the guilty components to aid the developers
in their efforts to find "soft spots" in the system. The contractor
developing the new system has no formal plans for error analysis and
tracking. The developers speculated that errors in that system will
probably be categorized in terms of whether they are logic errors,
interface errors, etc.

80

STEP - Current Defense Practices Overview

REGRESSION TESTING

The major difference between the testing performed by the
applications software developers and the support software developers
is the degree of automation used during regression testing. The
support software developers either have or plan to have an extensive
set of test cases for use during regression testing. The decision
whether to run the entire set or a subset of the test cases prior to
the release of the modified system is based on the scope of the
changes which were implemented. Due to the use of specialized testing
tools, very little human intervention is needed when running these
tests or when checking the results (see the section entitled Testing
Tools).

QUALITY ASSURANCE

Each of the contractors interviewed has an independent Quality
Assurance organization. 	Both of these organizations review all
documentation produced. 	One specifically checks for readability,
consistency, and level of detail - not technical correctness. The
other checks for compliance with military standards, etc. This same
group also ensures that code reviews are conducted as required.
Another activity which is common to both organizations is the writing
of test plans and procedures; in one case, these are then reviewed by
the developers. One QA group is responsible for tracking the status
of testing and determining the sufficiency of the tests via comparison
with the specifications. In addition, one of the QA organizations has
subsumed the Configuration Management function.

A reported strength of one of the groups is that its personnel are
good developers. This is in contrast to the complaint by the other
interviewees that the QA group is not technical enough. Another
reported weakness is a lack of manpower due to a lack of support from
the customer.

INDEPENDENT VERIFICATION AND VALIDATION

Independent Verification and Validation organizations support the
customers of each of the contractors interviewed. In one case, the
IV&V organization was selected at the same time as the contractor.
The other contractor feels that the IV&Y organization for their effort
came on board too late and that the project schedules will probably
impact the amount of IV&V accomplished. One of the IV&V organizations
performs a review function only. This takes the form of attending
PDR's and CDR's and reviewing all documentation and test reports. In
addition to performing requirements analysis and design and code
reviews, the other IV&V organization also writes test plans,
specifications, and procedures and conducts independent tests.

81

STEP - Current Defense Practices Overview

The general attitude of the contractors toward IV&V is that if it
begins early enough it can reveal errors in designs, etc. and
documentations allowing the implementation of corrections prior to any
significant repercussions. One problem which was experienced with
IV&V testing, however, was the discovery of errors in the tests rather
than the software as was initially suspected.

OPERATIONAL TESTING AND EVALUATION

Rather than using the customer's OT&E Agency for operational
testing and evaluation prior to release, one contractor uses friendly
user beta test sites. These test sites communicate directly with the
developers and any comments are incorporated into the new system prior
to general distribution. In some instances, the test sites issue
software trouble reports as an alternative to direct communication.
In addition to testing the systems, the beta test sites also review
any manuals which are to be distributed with the system. The
informality of this type of OT&E is perceived by the developers as a
benefit in terms of productivity.

The other contractor's expected alternative to formal OT&E is to
perform the final 6 months of development using the system which is
being developed.

RISK ASSESSMENT

As with the applications software systems, risk assessment for the
support software systems is built on a foundation of past experience
and devoid of formal procedures. Areas of concern may surface during
design discussions, etc., thereby requiring special attention from
that point on. In one case, the amount of testing on the various
modules of the system is directly related to the complexity of the
modules, thereby reducing the risk. In another case, prototypes may
be built for especially risky areas of the system under development.

NEW TECHNOLOGY TRENDS

One of the contractors is using a program generator to produce
required tests based on the ISA's of the target machines.

82

STEP - Current Defense Practices Overview

LESSONS LEARNED

The "lessons learned" by the support software developers are
equally applicable to other software development efforts. They are:

▪ Customer participation is very important to the development
effort. Development should not take place in a "dark tunnel".

▪ The role played by the contract is also very important. Make
sure that any uncertainties with respect to contractual
requirements are resolved early.

▪ Efforts to produce deliverables in a limited amount of time
without reviews and/or feedback are futile.

▪ Allocate time and money for testing up front.

▪ Begin planning for testing with the development effort.

- Testers must be as proficient as the developers.

- Test baselines must be built upon. The completeness of the
test sets must be maintained.

83

STEP - Current Defense Practices Overview

SUMMARY OF SOFTWARE TEST AND EVALUATION ACTIVITIES

CONTRACTOR

SUMMARY
1 	 2

STATUS

Detailed Design 	 X

Enhancements 	 X

MIL -STD's

490 	 X

1679 	 X

REQUIREMENTS ANALYSIS

Prototyping (for special cases only) 	X

None (this was completed prior to
contract award)
	

X

DESIGN ANALYSIS (Internal)

Project Leader Reviews
	

X

Informal Peer Reviews
	 X

Prototyping & Seminars
	 X

CODE ANALYSIS

Project Leader Reviews 	 X

Peer Reviews 	 X

84

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY
1 	 2

MODULE TESTING

White-Box 	 X 	 X

Objective of 100% Statement Coverage 	X

Control Flow Analysis (for information
only) 	 X

Program Instrumentation 	 X

INTEGRATION TESTING

(See Regression Testing)
	

X

Bottom-Up
	 X

Functional
	

X

Program Instrumentation
	

X

ACCEPTANCE TESTING

Performed by Contractor

Performed by Customer & Independent
Contractor

REGRESSION TESTING

Standard Test Set

Entire Retest or Subset Based on
Scope of Changes

Specialized Text Executors

Self-Checking Tests

85

X

X

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY

TESTING TOOLS

File or Output Comparators 	 X

Dynamic Execution Verifiers 	 X

Test Program Generators 	 X

Test Executors 	 X

QA ACTIVITIES

Review Requirements and Design
Specifications 	 X 	 X

Write Test Plans & Procedures 	 X 	 X

Review All Deliverables 	 X 	 X

Ensure Proper Code Reviews Are
Conducted 	 X

Track Testing Status 	 X

Perform CM Functions 	 X

IV&V ACTIVITIES

Independent Requirements, Design,
& Code Analysis 	 X

Attend PDR's & CDR's
	

X

Independent Testing
	

X

Review All Documentation & Test
Reports
	

X

86

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY

OT&E ACTIVITIES

Use Beta Test Sites 	 X

Use System Under Development for
Development (final 6 mos.) 	 X

RISK ASSESSMENT

Experience/Intuition 	 X 	 X

Prototyping 	 X 	 X

Test Relative to Complexity 	 X

87

STEP - Current Defense Practices Overview

2.5. IV&V ORGANIZATION INTERVIEWS

OVERVIEW

Independent Verification and Validation (IV&V) is a risk reducing
technique which is applied to many major programs under development
today. The results reported in this section were obtained by
interviewing four industry contacts whose primary function is to
conduct an independent evaluation of the software being produced by
another contractor. Due to the high cost of IV&V, the activities
which will be described are usually only performed for a portion of
any software system.

The IV&V contractors surveyed report directly to the project
office for the systems under development. In two of the cases to be
discussed, initial involvement with the projects occurred during
either the system or software requirements specification phase. In
one instance, the high-level design was completed prior to a prime
contractor being chosen. The IV&V contractor was hired one month
after the prime contract was awarded. For the remaining IV&V
contractor, initial involvement with the project of interest occurred
well into the software development cycle. All of the projects
discussed make extensive use of either embedded or mission critical
computer resources. The customers represented include the Army, Navy,
and Air Force. In one case, the discussions centered upon the IV&V
activities being performed for a tri-service project.

The programming languages used for the systems under development
included CMS2, Fortran 77, JOVIAL, PASCAL, PL/1, and Assembly
Language. One quarter of one of the systems discussed was coded in
Assembly Language. This was the maximum percentage of Assembly
Language encountered.

MILITARY STANDARDS AND REGULATIONS

Although there are no military standards in existence specifically
for application to IV&V efforts, it is important for IV&V
organizations to be aware of those that relate to the software
development process in general. Therefore, it is not surprising that
the MIL-STD's mentioned by the IV&V contractors are the same ones
which were discussed with the development organizations (see Section
2.4).

88

STEP - Current Defense Practices Overview

In addition, since an IV&V contractor may, in some instances,
perform the role of a technical contract monitor, cognizance of the
relevant military regulations is also helpful. Those regulations
referred to by the IV&V contractors interviewed follow.

Air Force:

Army:

AFR 800-14, Volume I 	

-

"Management of
in Systems"

AFR 800-14, Volume II 	- "Acquisition
Procedures for
in Systems"

Computer Resources

and 	Support
Computer Resources

Navy:

DARCOM Regulation
70-16 - "Management of Computer Resources

in Battlefield Automated Systems"

SECANAVINST 5200.32 	- "Management of Embedded Computer
Resources in the Department of
the Navy Systems"

TADSTAND A 	 - 'Standard 	Definitions 	for
Embedded Computer Resources in
Tactical Digital Systems"

TADSTAND B 	 - "Standard 	Embedded 	Computers,
Computer Peri]herals, and Input/
Output Interfaces"

TADSTAND C

For a discussion of the contents of these regulations, see Chapter 3.

- "Computer Programming Language
Standardization 	Policy 	for
Tactical Digital Systems"

TADSTAND D 	 - "Reserve Capacity Requirements
for Tactical Digital Systems"

TADSTAND E 	 - "Software Development, Documenta-
tion, and Testing Policy for Navy
Mission Critical Systems"

89

STEP - Current Defense Practices Overview

Again, it should be noted that in most cases, the regulations and
standards are tailored for the specific system under development. For
the tri-service project, the Computer Resources Working Group (CRWG)
addresses any commonality or life cycle issues which arise between the
individual services.

The perceived strengths of the regulations and standards centered
on MIL-STD-1679's methodology for software development. The primary
weakness mentioned was concerned with the lack of tri-service stan-
dards. It was felt that MIL-STD-SDS will be of great benefit to tri-
service programs.

DOCUMENTATION ITEMS

In all cases, evaluation reports of various types are supplied to
the Project Office by the IV&V organizations. These may be document
review reports, algorithm study reports, review reports (for design
reviews, etc.), test reports, problem reports, and/or status reports.
In one case, the test plans and procedures developed by the IV&V
contractor are submitted to the customer for approval.

REQUIREMENTS ANALYSIS

All of the IV&V contractors analyze the software requirements for
the system under development. The methods employed include the
following:

The software requirements are developed independently and
then compared with those of the development contractor.
Alternatively, a "classical" review of the software
requirements may be conducted.

▪ The system specification is traced into the software
requirements specification to ensure that "nothing has
fallen through the cracks". In addition, interface analysis
studies, mathematical accuracy studies using simulation, and
man/machine interface studies with the Using Commands are
also conducted.

- Individuals review the requirements independently and then
collaborate on the evaluation to be forwarded to the Project
Office. 	In this case, traceability receives the most
attention, although some consistency checking is also
performed.

- A requirements check matrix is developed to aid in tracking
the software development process. 	An informal analysis
based on prior experience and knowledge of potential
pitfalls is also conducted.

90

STEP - Current Defense Practices Overview

Three of the IV&V contractors use automated tools to aid in the
process of analyzing the requirements. The tools mentioned include
the AFFIRM Specification and Verification System and PSL/PSA. Another
tool used is an automatic requirements tracing tool. This tool is
basically a database information system which is used to enter
requirements and "pointers" to the modules where each requirement is
implemented, etc. Although the requirements and "pointers" are
entered manually, the system does alert users to missing "pointers".
One IV&V contractor also uses a listing processor which prints
requirements documents, etc. allowing room for comments. A comment
was made that requirements analysis tools don't necessarily help; it
is the knowledge of what the requirements really are that makes a
difference.

The development contractors interviewed describe problems
encountered when trying to determine the level of detail which should
be present in a software requirements specification. One of the IV&V
contractors made the following observation: Systems engineers don't
have the detailed knowledge of computers which is necessary to write
software requirements. Computer scientists have that knowledge;
however, when computer scientists write software requirements, they
tend to write at a level of detail such that the requirements, in
actuality, are the design.

DESIGN ANALYSIS

Each of the IV&V contractors also conducts some type of design
analysis. The following describes the techniques which are used.

- The design specification is defined independently using
PSL/PSA for comparison with the design prepared by the
development contractor. Alternatively, a "classical" review
of the design specification may be performed.

- The design is evaluated for traceability, consistency, and
feasibility. Math and logic analyses are also conducted.
(These analyses are performed without the benefit of
modeling.) Depending upon the application, an analysis of
units consistency may also take place. In addition,
critical algorithms are derived independently for comparison
with those of the development contractor. In this case, the
analyses are conducted independently by individuals who then
collaborate on the final evaluation to be forwarded to the
Project Office.

91

STEP - Current Defense Practices Overview

▪ The design specifications are reviewed for traceability. In
addition, the IV&V organization conducts independent design
walkthroughs where the analysts act out the roles of the
designers. A review of the preliminary documentation is
also performed. Occasionally, this IV&V contractor sends
representatives 	to 	participate 	in 	the 	development
contractor's internal design walkthroughs and technical
interchange meetings.

- The IV&V contractor witnesses the design walkthroughs
conducted by the development contractor to ensure that
proper review procedures are being followed. 	The
participants in these walkthroughs are the designer, the
designer's co-workers, one management representative, and
the IV&V contractor's representatives. In some instances,
the IV&V contractor may also perform its own independent
design reviews.

In addition to the design analysis activities described above,
each of the IV&V contractors also participates in the formal
government reviews which are conducted (i.e., the Preliminary Design
Review and the Critical Design Review).

CODE ANALYSIS

For three of the four IV&V contractors interviewed, code analysis
is one of their "standard" tasks. The other IV&V contractor only gets
involved in this when there are major problems. Then, code analysis
is performed primarily to check for inefficiencies in the coding
techniques used. The IV&V contractors which do perform code analysis
on a regular basis described the following activities.

▪ First of all, the code is traced back into the design
specification. 	Code inspections and walkthroughs are
conducted to ensure that maximum levels of nesting are not
exceeded, no unreachable code exists, etc. In some cases,
critical algorithms are coded independently to perform
accuracy checking.

▪ The code is evaluated using metrics. This will be described
in more detail later.

- The code is analyzed for understandability.

92

STEP - Current Defense Practices Overview

COMMENTS ON ANALYSIS ACTIVITIES

The comments made on analysis activities referred to the formal
government reviews rather than the IV&V activities. It was felt that:

- Early reviews should focus away from computer resources,
thus allowing more flexibility in future activities.

- A weakness of the government review process is the lack of
reviews between the Critical Design Review and final
acceptance. A formal method to review progress during the
implementation and testing phase is needed.

- The reviews described in MIL-STD-SDS are an improvement over
what currently exists.

INDEPENDENT TESTING

All of the IV&V contractors interviewed are involved in the
testing process in one way or another. This may be characterized by
either conducting independent tests, witnessing the development
contractor's tests, or both. The levels of independent testing
performed and strategies employed vary from contractor to contractor.
The descriptions follow:

- Module level tests or tests on a limited number of
integrated modules. The testing of this IV&V contractor is
constrained by a simulator which must be used. 	A
prioritized list of modules to be tested is prepared during
the design phase. 	The tests performed include minimum
values, maximum values, and illegal inputs. Error guessing
is another source of test inputs. Objectives of these tests
include executing every option and every branch of the
modules tested. Complete statement and branch coverage are
required for mission critical functions.

- Functional testing of complete software systems. 	Test
inputs 	include 	both 	operationally 	realistic 	and
implementation dependent critical values.

▪ Software system level tests. The tests are functional tests
whose requirements are derived from the 	software
requirements. Worst case scenarios are emphasized. 	All
tests are scenario based unless specific problems are being
investigated. In that case, generic testing may be used.

93

STEP - Current Defense Practices Overview

In addition to witnessing the development contractor's tests, one
of the IV&V contractors also reviews the development contractor's test
plans and procedures. Another IV&V contractor described the testing
activities as 50% independent testing and 50% evaluating the
development contractor's tests. This was felt to be sufficient for
IV&V. In addition, or as an alternative to independent testing, one
of the IV&V contractors performs a monitoring role to enforce the use
of pre-specified testing techniques. This IV&V contractor advocates
an aggregate statement coverage measure of at least 85% with
explanations of why the remainder of the statements in the total
software system were not exercised.

TESTING TOOLS

In addition to the tools which are used for requirements analysis,
one of the IV&V contractors uses the following types of testing
tools: simulators, file comparators, code auditors, and units
consistency analyzers. Another IV&V contractor uses dynamic execution
verifiers.

METRICS

In April 1980, the Rome Air Development Center published two
reports on software metrics. They were entitled "Software Quality
Metrics Enhancements" and "Software Quality Measurement Manual". The
metrics framework described in those reports is being used by one of
the IV&V contractors as a basis for further study. One of the
objectives of this study is to determine the usefulness of the metrics
framework. In addition, efforts are being made to tie the metrics
together with cost estimates for the purpose of doing tradeoff
analyses. The quality metrics framework has been tailored for a
specific project and is being applied to both the code and the
documentation. PSL/PSA is being used to gather some of the data
needed for the metrics calculations. It is hoped that these metrics
can be used to answer some of the questions which are posed by the
Defense System Acquisition Review Council (see Section 3.6).

TEST DOCUMENTATION PROCEDURES

The test documentation procedures employed by the IV&V contractors
are basically the same as those used by the development contractors,
though the level of formality may be somewhat reduced. The
requirement for human intervention during testing is still a problem
in terms of automating the process of regression testing. As was the
case with the development contractors, updates to "standard"
regression test sets are usually a fallout of traceability efforts.

94

STEP - Current Defense Practices Overview

ERROR ANALYSIS AND TRACKING

Only one of the IV&V contractors described any involvement in
error analysis and/or tracking. That contractor uses the same type of
program trouble reports as the development contractors to perform an
informal categorization on functional errors.

OPERATIONAL TESTING AND EVALUATION

One of the IV&V contractors has been approached by the Operational
Test and Evaluation Agency of the customer to provide technical
support during OT&E. The responsibilities of this contractor will be
to recommend specific test cases for OT&E and aid in the resolution of
any problems which may be encountered.

RISK ASSESSMENT

As was mentioned previously, due to the high cost of IV&V, the
activities described are usually only performed for a portion of any
software system. Therefore, it is obvious that some type of risk
assessment must be conducted to determine the scope of any IV&V
applied to a project. In many cases, it is the IV&V contractor who
determines which areas of a software system warrant special
attention. Description of these analyses and the effect of the
results, follow.

- The functions Of the software system as defined in the
software requirements specification are assessed in terms of
technical, schedule, and/or other risks and assigned a
criticality rating. 	This criticality rating determines
whether a portion of the software system will be tested
independently, reviewed, or completely ignored by the IV&V
contractor. The criticality criteria used are defined on a
project by project basis.

- Modeling and simulations are performed for critical
functions. 	Independent testing is conducted on a
prioritized list of the software modules. 	Complete
statement and branch coverage are required during
independent testing on all mission critical modules.

- The applications of the software system are studied to
determine which are the most important so that appropriate
actions may be taken during the IV&V process.

95

STEP - Current Defense Practices Overview

NEW TECHNOLOGY TRENDS

An IV&V contractor who is working on a multiprocessor,
asynchronous, realtime system looks for worst case scenarios to apply
during testing. Significant efforts are also put into modeling and
simulation.

The IV&V contractors interviewed felt that the principle of
commonality underlying Ada and the APSE is good. It is also felt that
Ada should make a difference in the quality of the software produced.
One of the contractors did comment, however, that any idea of
"outlawing" Assembly Language is unrealistic.

A problem which concerns the IV&V contractors, as well as the
development contractors, is that of firmware. Requirements for the
definitions of interfaces with, and the testing and documentation of
firmware need to be established.

Another problem mentioned relates to the standard Instruction Set
Architectures which were recently defined. The concern is that these
standards are not consistent with the Navy standard hardware.

LESSONS LEARNED

The "lessons learned" by the IV&V contractors include the
following:

IV&V should begin as soon as possible on any given project.

- RFP's should include a clause concerning independent
evaluation. This should not be added as an afterthought.

- User involvement in the initial phases of system development
is very important.

- The life cycle planning document should be finalized prior
to full scale development to protect the life cycle from
compromises which may be made for the ease of implementation.

▪ The transition of a program from single service to
tri-service is not trivial.

- Customers are always optimistic in terms of schedules,
costs, etc.

96

STEP - Current Defense Practices Overview

SUMMARY OF INDEPENDENT VERIFICATION AND VALIDATION ACTIVITIES

CONTRACTOR

SUMMARY

TIME OF INITIAL INVOLVEMENT

Requirements Phase 	 X 	X

One Month after Prime Contract Award
	

X

Well into Development Cycle
	

X

REQUIREMENTS ANALYSIS

Independent Derivation of the
Software Requirements 	 X

System Specification Traced into
Software Requirements 	 X

Reviews for Traceability and
Consistency 	 X

Interface Analysis Studies
	

X

Mathematical Accuracy Studies
	

X

Man/Machine Interface Studies
	

X

Individual Reviews, then
Collaboration for final
Evaluation
	

X

Requirements Check Matrix and
Informal Analysis 	 X

97

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY
1 	2 	3

REQUIREMENTS ANALYSIS TOOLS

PSL/PSA

AFFIRM
	

X

Requirements Tracing Tool
	

X

Listing Processor
	

X

DESIGN ANALYSIS

Independent Derivation of the
Software Design 	 X

Independent Derivation of
Critical Algorithms 	 X

Evaluation of Traceability,
Consistency, and Feasibility 	X

Reviews for Traceability 	 X

Math and Logic Analyses 	 X

Analysis of Units Consistency 	 X

Independent Design Walkthroughs 	 X 	X

Participation in Development
Contractor's Design
Walkthroughs 	 X 	X

Technical Interchange Meetings 	 X

Individual Reviews, then
Collaboration for Final
Evaluation
	

X

98

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY

CODE ANALYSIS

Independent Coding of
Critical Algorithms 	 X

Evaluation using Metrics

Inspections and Walkthroughs
	

X

Code Traced into Design
	

X

Review for Inefficiencies
	

X

Review for Understandability
	

X

INVOLVEMENT IN TESTING

Independent Testing 	 X 	X 	X

Software System Level Testing 	 X 	X

Module and/or Integration Testing
on Prioritized List of Modules 	 X

Worst Case Scenarios 	 X

Operationally Reslistic &
Implementation Dependent
Critical Values
	

X

Extreme Values, Invalid Inputs,
and Error Guessing 	 X

Statement and Branch Coverage 	 X

Evaluate Development Contractor's
Testing 	 X 	X 	X 	X

99

STEP - Current Defense Practices Overview

CONTRACTOR

SUMMARY

TESTING TOOLS

Simulators 	 X

File Comparators 	 X

Code Auditors 	 X

Units Consistency Analyzers 	 X

Dynamic Execution Verifiers 	 X

MISCELLANEOUS ACTIVITIES

Error Analysis 	 X

Involvement in OT&E 	 X

RISK ASSESSMENT

Experience/Intuition 	 X 	X 	X

Criticality Ratings 	 X

Modeling and Simulations 	 X

100

STEP - Current Defense Practices Overview

CHAPTER 3

MILITARY STANDARDS AND GUIDANCE

OVERVIEW

In this section, we will describe the current military standards
and guidance. In addition, modifications planned for the near future
will also be discussed.

The Department of Defense issues directives and instructions to
the Office of the Secretary of Defense (OSD), the Military
Departments, the Organization of the Joint Chiefs of Staff (JSC), and
the Defense Agencies. These directives and instructions provide
guidance and uniformity of thrust, which the separate military
Services may tailor, supplement or amplify for their own particular
applications, including more detail as appropriate. The military
standards are used as requirements on contracts by program managers.
The military Services' regulations and standards are requirements on
members of those services.

Documents were chosen for inclusion here based on their applica-
bility to the issues addressed in the Software Test and Evaluation
Project, or when they were recommended by the interviewees as of use
or applicability to the pertinent programs. Included in this summary
of regulations and standards are Air Force Regulations (AFR), Army
Regulations (AR), Navy Standards, and summaries of other documents
related to military efforts toward regulating, delineating,
describing, and proscribing procedures necessary for the entire
software life cycle for Embedded Computer Resources (ECR) and/or
Mission Critical Computer Resources (MCCR).

101

STEP - Current Defense Practices Overview

3.1. DEPARTMENT OF DEFENSE DIRECTIVES AND INSTRUCTIONS

DoDD 5000.1: Major Systems Acquisitions. 19 March 1980.

This Directive applies to the Office of the Secretary of Defense,
the Military Departments, the Organization of the Joint Chiefs of
Staff, and the Defense Agencies. Each DoD official who has any
responsibility for the acquisition process shall make "every effort"
to ensure that an effective and efficient acquisition strategy is
developed for each system acquisition program, minimize time from need
identification to introduction of the system into operational use,
achieve the most cost-effective balance between acquisition costs and
system effectiveness, and integrate support, manpower, and related
concerns into the acquisition process.

The provisions of this Directive shall apply to the acquisition of
systems designated as major, as well as others, where appropriate. As
a part of routine planning, DoD Components shall conduct analyses to
identify deficiencies in capability or more effective means of
performing assigned tasks.

The designation of a system as major is based on development risk,
urgency of need, estimated requirement for the system's research,
development, test and evaluation (RDT&E), or Congressional interest.
Affordability must be considered at every milestone. To proceed to
the Demonstration and Validation phase, the DoD component must assure
that it plans to acquire and operate the system and that sufficient
RDT&E resources are available to complete development. To proceed
into Full-Scale Development, and the Production and Deployment phases,
the DoD component must assure and reaffirm that resources are
available to complete development and acquisition, and to operate and
support the deployed system.

Acquisition of equipment satisfying DoD component needs should
also 	include consideration 	of intraservice and interservice
standardization and interoperability requirements. Logistic
supportablility shall be a design requirement as important as cost,
schedule, and performance. Milestones 0, I, II, and III are defined,
and the following documentation for Milestone Decisions is described:

- The Mission Element Need Statement (MENS);
- The Decision Coordinating Paper (DCP);
- The Integrated Program Summary (IPS);
- The Milestone Reference File (MRF):
• The Secretary of Defense Decision Memorandum (SDDM).

These documents are referenced and described in the review of DoDD
5000.2.

102

STEP - Current Defense Practices Overview

The Defense Systems Acquisition Review Council (DSARC) is defined
and described. Elsewhere in this document (see Section 3.6), the
publication, "Embedded Computer Resources and the DSARC Process", is
reviewed. The Defense Acquisition Executive (DAE) is explained. This
Directive and DoD Instruction 5000.2 are first and second in order of
precedence for major system acquisitions except where statuatory
requirements override.

DoDD 5000.2: Major System Acquisition Procedures. 19 March 1980.

This Instruction applies to the same DoD Components as DoDD
5000.1, which has the subject of Major System Acquisitions and is used
in conjunction with DoDI 5000.2. Specific procedures for major system
acquisition include: designation of a major system, listing of major
systems, Milestone 0 Documentation, and Defense Systems Acquisition
Review Council (DSARC) involvement. The Secretary of Defense
designates certain acquisition programs as major systems, which may be
recommended by the Defense Acquisition Executive (DAE) at any point in
the acquisition process. The DAE may also withdraw the designation of
"major systems" when changing circumstances dictate. The Executive
Secretary of DSARC shall maintain and distribute a list of designated
major systems.

Milestone 0 Documentation consists of the Mission Element Need
Statement (MENS), the document upon which the Milestone 0 decision is
based, and the Secretary of Defense Decision Memorandum (SDDM). The
MENS identifies and defines:

- A specific deficiency or opportunity within a mission area;
- The relative priority of the deficiency within the mission

area;
- The Defense Intelligence Agency validated threat forecast or

other factor causing the deficiency;
- The date when the system must be fielded to meet the threat;
- The general magnitude of acquisition resources that the DoD

component is willing to invest to correct the deficiency.

It should be noted that a MENS is not required for programs,
regardless of size, directed toward developing and maintaining a
viable technology base.

The SDDM is prepared, by the action officer, when the DAE plans to
recommend approval of the MENS and designation of a system as major.
The SDDM documents the Secretary of Defense's milestone decision
including approval of goals and thresholds for cost, schedule,
performance, and supportability, exceptions to the acquisition process
and other appropriate action. The DAE forwards the SDDM to the
Secretary of Defense after formal coordination.

103

STEP - Current Defense Practices Overview

The DSARC acts as the top level DoD corporate body for system
acquisition and provides advice and assistance to the Secretary of
Defense. DSARC reviews are held at Milestones I, II, and III.
Documentation for Milestones I, II, and III includes the Decision
Coordinating Paper (DCP), Integrated Program Summary (IPS), and the
Milestone Reference File (MRF).

DoD directives, regulations, and instructions that relate to the
acquisition process are part of the Defense Acquisition Regulatory
System (DARS). The object of this system is to provide detailed
functional regulations required to govern DoD acquisition of
materials, supplies, and equipment. Program managers must tailor
their programs to DoD issuances that are part of DARS.

Special attention in the development of acquisition must be given
to the following matters:

- Mission Analysis;
• Operational Requirements;
- Threat;
- Acquisition Strategy;
- Management Information;
• Competitive Concept Development;
- Contracting;
- Design Considerations;
▪ Reliability and Maintainability;
- Test and Evaluation;
▪ Logistics;
- Computer Resources;
- Command and Control Systems;
• International Programs: NATO Rationalization,

Standardization, and Interoperability.

Although the acquisition strategy developed is not a document
requiring DAE approval, the program manager is required to keep all
management levels informed on strategy and to summarize certain
aspects of it at the milestone decision points (i.e., Milestones 0, I,
II, etc.).

Embedded computer resource acquisition must be managed within the
context of the total system. Plans for computer interfaces must be
identified early in the life cycle, and special attention must be
given to plans for software development, documentation, testing, and
update during deployment and operation. Computer hardware and
software must be specified and treated as configuration items.

104

STEP - Current Defense Practices Overview

Another matter requiring special attention is the topic of Command
and Control systems. These systems require unusual management
procedures because they have a rapidly evolving technological base,
multiple requirements for internal and external interfaces, and a
reliance on automatic data processing hardware and related software.
These systems differ from other weapon systems in that they are
acquired in small numbers, or are one of a kind, and their operational
characteristics are largely determined by the users in an evolutionary
process. For such systems, acquisition management procedures should
allow early implementation and field evaluation of a prototype system
using existing commercial or military hardware and software.

The provisions of DoDD 5000.1 and this Instruction are first and
second in order of precedence for major system acquisition except
where statuatory requirements override. Enclosures for this
Instruction include a list of references, sample formats for the MENS,
the DCP, the IPS, and a list of DoD policy issuances related to
acquisition of major systems.

DoDD 5000.3: Test and Evaluation. 26 December 1979.

Department of Defense Directive 5000.3 addresses the subject of
Test & Evaluation (T&E). It establishes policy for the conduct of T&E
in the acquisition of defense systems, designates the Director Defense
T&E (DDTE) as having overall responsibility for T&E matters within the
DoD, defines the responsibilities of DDTE, the organization of the
Joint Chiefs of Staff (OJCS) and the guidance for Test and Evaluation
Master Plans (TEMPS). The provisions of the Directive apply to the
Military Departments, the Office of the Secretary of Defense (OSD),
the OJCS, and the Unified and Specified Commands. These provisions
encompass major defense system acquisition programs in all responsible
DoD components, as well as the management of system programs not
designated as major.

This directive requires that Test and Evaluation (T&E) shall begin
as early as possible and be conducted throughout the system
acquisition process. Before tests begin, meaningful critical issues,
test objectives, and evaluation criteria shall be established.
Successful accomplishment of T&E objectives will be a requirement for
decisions to commit additional resources to a program or to advance it
from one acquisition phase to another. To minimize dependence on
subjective judgment concerning system performance, appropriate test
instrumentation will be used to provide quantitative data for system
evaluation.

105

STEP - Current Defense Practices Overview

Development T&E (DT&E) is that T&E conducted to assist the design
and development process and to verify attainment of technical
performance specifications and objectives. It includes T&E of
components, subsystems, hardware/software integration, related
software, and prototype development models of the system, as well as
compatibility and interoperability with existing systems. DT&E is
prescribed during the system acquisition phase before the decision
Milestone I, to assist in selecting preferred alternative system
concepts; before the Milestone II decision, to identify the preferred
technical approach, technical risks and feasible solutions; before the
Milestone III decision, to ensure that engineering is reasonably
complete, that all design problems have been identified, and that
solutions to these problems are in hand; and after the Milestone III
decision, for development, acceptance, and introduction of system
changes for improvement, new threats, or to reduce life cycle costs.
Multiservice DT&E may be required for systems that interface with
equipment of another DoD component or that may be acquired by more
than one DoD component. "DT&E is normally accomplished or managed by
the DoD Component's material development agency."

Operational T&E (OT&E) is that T&E conducted to estimate a
system's operational effectiveness and suitability, identify needed
modifications, and provide information on tactics, doctrine and
personnel requirements. Acquisition programs shall be structured so
that OT&E begins as early as possible in the development cycle.
Initial operational test and evaluation (IOT&E) must be completed
prior to the Milestone III decision. IOT&E must be accomplished, as
appropriate, before the Milestone I decision, to assess the opera-
tional impact of candidate technical approaches; before the Milestone
II decision, to examine the operational aspects of the selected
alternative technical approaches and estimate the potential opera-
tional effectiveness and suitability of candidate systems. Before the
Milestone III decision, adequate OT&E shall be accomplished to provide
a valid estimate of the system's operational effectiveness and
suitability; and, after the Milestone III decision, follow-on OT&E
(FOT&E) must be managed as necessary, to ensure that the initial
production items meet operational effectiveness and suitability
thresholds.

Multiservice OT&E shall be accomplished when systems have an
interface with equipment of another DoD Component or may be acquired
by more than one DoD component.

Throughout the system acquisition process, the DoD's component
agency shall ensure effective planning during all acquisition phases,
participate in system acquisition planning and test design, ensure
that OT and DT are sufficient and credible to support analysis and
evaluation needs, and include recommendations regarding system
readiness for operational use at Milestone III.

106

STEP - Current Defense Practices Overview

DT and OT can be combined "when clearly identified and significant
cost and time benefits will result, provided that the necessary
resources, test conditions, and test data required...can be
obtained". When a combined testing program is chosen, the OT&E agency
shall provide a separate and independent evaluation of the test
results, in all cases.

For computer software, quantitative and demonstrable performance
objectives and evaluation criteria must be established during each
system acquisition phase. Testing shall be structured to demonstrate
that software has reached a level of maturity appropriate to each
phase. For embedded software, these objectives and criteria shall be
included in the performance objectives and evaluation criteria of the
overall system.

Decisions to proceed from one phase of software development to the
next shall be based on quantitative demonstration of adequate software
performance through appropriate T&E. OT&E agencies shall participate
in the early stages of software planning and development to ensure
that adequate consideration is given to the system's operational use.

Each DoD component is required to have a major field agency,
separate and distinct from the material developing/procuring agency
and from the using agency, that is responsible for managing
operational testing and for reporting test results and an independent
evaluation of the system under test directly to the Military Service
Chief or Defense Agency Director.

The directive specifies that, for one-of-a-kind systems,
particularly space, large-scale communications, and electronic system
programs, the principles of DT&E of components, subsystems, and
prototype models of the system shall be applied. Compatibility and
interoperability of these systems with existing or planned equipment
shall be tested during DT&E and OT&E. Subsequent OT&E may be
conducted to refine estimates and ensure that deficiencies are
corrected.

It is specified that the DoD component shall prepare and submit a
T&E Master Plan (TEMP) for OSD approval, before Milestone I. The TEMP
is a broad plan that relates test objectives to required system
characteristics and critical issues. An enclosure to the directive
specifies guidelines for the TEMP. The DoD component is required to
provide the following information to the Director Defense T&E (DDTE):
appropriate test reports when testing has been accomplished, system
operational concepts, how tests were accomplished, and test
limitations.

107

STEP - Current Defense Practices Overview

When Joint T&E (JT&E) is required by the DDTE, the Joint Chiefs of
Staff (JCS) have a requirement for JT&E results that provide
information on joint doctrine, tactics, and operational procedures.
The JCS can annually nominate exercises for JT&E, as can the Joint
Staff, the Military Services, and the Commanders in Chief (CINC) of
the Unified and Specified Commands. Control of JT&E will be exercised
by the DDTE.

DoDD 5000.29: Management of Computer Resources in Major Defense
Systems. 26 April 1976.

Department of Defense Directive 5000.29 addresses the subject of
the management of computer resources in major defense systems,
establishes a management steering committee for embedded computer
resources (MSC-ECR), and establishes policy for the management and
control of computer resources during the development, acquisition,
deployment and support of such systems. Due to a 1982 expiration
date, it is currently being updated. The directive specifically
excludes general purpose, automatic data processing (ADP)
applications. Since embedded computer resources have a cost measured
in the billions of dollars, these resources must be treated as being
of major importance, especially with respect to integration with
hardware.

The directive specifies that requirements validation and risk
analysis must be conducted, that computer resources (HW and SW) will
be treated as configuration items, and that a computer resource life
cycle plan will be developed and maintained during the life cycle.
Support items required to effectively develop and maintain the
delivered computer resources, such as compilers, documentation aids,
test case generators and analyzers, and training aids, are required as
deliverables. The use of High Order Programming Languages (HOLs)
where effective or practical is required.

DoD Components are required to review their existing regulations
and modify, cancel, or supplement them as necessary to render them
consistent with this directive. Furthermore, they are required to
maintain guidance documentation for the software life cycle for
program managers and other responsible organizations, maintain
education, career paths and career incentives to foster development
and retention of professional computer resource engineers, managers,
and technicians, and plan and execute a research and development
program to provide the technological base to support the policy,
practice, and procedure requirements of this directive, using the
Technology Coordinating Paper.

108

STEP - Current Defense Practices Overview

The DoD management steering committee for ECR (MSC-ECR), formerly
named "Weapon Systems Software Management Steering Committee", is
chartered to implement the provisions of DoDD 5000.29 and issue
ensuing policies. Its objectives are to improve computer resource
management (CRM), increase visibility of computer resources in overall
acquisitions, formulate a coordinated DoD Technology Base Program for
software basic research, development and demonstrations addressing
critical software issues, and to "guide the assimilation and
integration of computer resources policy, practice, procedure and
technology into the normal process of major Defense systems
acquisition."

The MSC-ECR is to be composed of representatives from the DoD
offices, and representatives of the Army, Navy, Air Force, Office of
the Joint Chiefs of Staff, Defense Communications Agency, National
Security Agency, Defense Advanced Research Projects (DARPA), and
TRI-TAC.

DoDI 7920.2: Major Automated Information Systems Approval Process.
20 October 1978.

The subject of DoD Instruction 7920.2 is Major Automated
Information Systems Approval Process. It does not cover Command,
Communication, and Control Systems (CCCS)or Embedded Computer Systems
(ECS). The purpose of this Instruction is to establish the review and
decision process and procedures for major automated information
systems (AIS).

It establishes requirements for the system decision paper (SDP),
which must be prepared following the approval of the Mission Element
Need Statement (MENS), to support DoD Component and OSD reviews,
coordination, and decisions before continuation of the AIS
development. The SDP process provides for appropriate policy level
involvement in key decisions during the life cycle of each major AIS.

The Milestone 0 Decision follows the phase where a mission need is
identified, that need is validated, and the exploration of alternative
function concepts have been recommended. That decision allows the DoD
Component to proceed to identify alternative concepts to satisfy the
functional need.

The next phase is the concept development phase, where one or more
feasible concepts for further exploration are recommended and
alternative methods are synthesized and evaluated. "This phase is
completed upon approval at Milestone I to define and design an AIS
based upon a selected concept."

109

STEP - Current Defense Practices Overview

The Definition/Design Phase precedes the Milestone II decision.
The purpose of this phase is to define fully the functional
requirements and to design an operable AIS. This phase is completed
when ADP and the telecommunications technical adequacy have been
validated, and approval is issued to fully develop the system.

The system development phase is to develop, integrate, test and
evaluate the ADP system and the total AIS. At the end of this phase,
prior to Milestone III, the following tasks are to be completed: the
mission need has been reaffirmed, computer programs and data bases
have been fully developed, standardization and interoperability
requirements have been satisfied, system support documentation has
been developed, and unit and system level T&E results support a
decision to proceed with the deployment. The Milestone III decision
by the appropriate officials allows deployment of the system at the
operating site(s).

System Effectiveness Milestones shall be conducted if required at
convenient time periods after the first year of full system operation
to determine the continued effectiveness of the system, to identify
potential obsolescence, and to certify continued need for the system.

Other DoD publications that are also related to or have had impact
on the testing and evaluation of computer software in embedded
computer system applications will be reviewed or listed in Section 3.6.

110

STEP - Current Defense Practices Overview

3.2. MILITARY STANDARDS

MIL-STD-483(USAF): Configuration Management Practices for Systems,
Equipment, Munitions, and Computer Programs.
1 June 1971.

MIL-STD-483 (USAF) addresses the subject of configuration
management practices for computer programs, systems, equipment, and
munitions. It is specified that practices are to be tailored to
specific programs. This standard establishes configuration management
requirements that are not covered in MIL-STD's 480, 481, 482, and
490. The scope of this standard includes configuration management,
identification, control, audits (functional and physical), interface
control, engineering release control, and reports and records. It
applies during appropriate system life cycle phases of CIs
(configuration items), whether part of a system or an independent CI.

Configuration management is "a discipline applying technical and
administrative direction and surveillance to (a) identify ... config-
uration item characteristics, control changes to these characteris-
tics, and record and report change processing and implementation
status". Requirements of this standard include a Configuration
Management Plan, Baseline Management, System Engineering, Interface
Control, and Configuration Identification (functional, allocated, and
product). Functional Configuration Identification is required for all
systems and all CIs specified in the contract which are allocated from
a system requirement, except privately developed items. Allocated CIs
"shall be used to govern the development of selected CIs that are
allocated from system requirements or are part of a higher level CI."
Product CIs "shall be used to prescribe necessary 'build-to' or form,
fit and function requirements and the acceptance tests for those
requirements."

Baseline management is formally required at the beginning of an
acquisition program. A baseline may be established at any point in a
program where it is necessary to define a formal departure point for
control of future changes. "System program management normally
employs three baselines ... to include the functional, allocated, and
product baselines ... Computer program management may employ all
three baselines or employ only the functional and product baselines
depending upon complexity or peculiar requirements." Furthermore,
"All descriptions of baselines ... used to state product performance
and design requirements ... must be contained in specifications."

Baselines are the basic requirements from which contract costs are
determined. Once defined, changes in these requirements are formally
approved and documented to provide an equitable way to adjust contract
costs.

111

STEP - Current Defense Practices Overview

System engineering for the total system or a functional area is
normally vested in a single contractor or government agency. System
engineering as it relates to configuration management, is the
application of scientific efforts to transform an operational need
into a description of system performance parameters. The system
engineering agency generates requirements for configurations which
will satisfy the operational need, constrained technically only by the
content of the system specification.

The interface control contractor is a coordinator with
responsibility to "assure that configuration item identification
conforms to the functional interfaces established by system
engineering and that the configuration items, including computer
programs as finally designed, are physically compatible...and can be
operated and maintained as intended".

The formal qualification review (FQR) establishes "that a new
design configuration item has satisfactorily qualified to the
specification requirements." Procedures for accomplishing "the FOR
when the procuring activity requires contractor participation are
contained in appendix XII." The FQR "establishes that the
configuration item performs in its use environment as required by the
CI specification." Where practicable, configuration audits shall be
accomplished in conjunction with other audits and reviews. CM
records/reports shall ensure that there will be a configuration record
documenting all approved changes to all configuration items.

Appendices to this standard give detailed criteria and guidelines
for the CM Plan; Establishment of Interface Control; Computer Program
Configuration Items (CPCIs); Specification and Support Document
Maintenance for Computer Programs; System Allocation Documents; and
Configuration Audits.

MIL-STD-490: Specification Practices. 1 February 1969

MIL-STD-490 addresses the subject of specification practices. It
establishes the format and contents of specifications for program
peculiar (one-of-a-kind) items, processes and materials, and
establishes criteria for a uniform specification program for all
contractor-prepared documents. It describes:

A. System Specifications
B. Development Specifications
C. Prime Item Product Specifications
D. Process Specifications
E. Material Specifications (such as raw materials, chemicals,

electrical cable)

112

STEP - Current Defense Practices Overview

Other specifications described which do not mention computer
software explicitly, include the Bl - Prime Item Development Specifi-
cation, which is applicable to complex items such as aircraft,
missiles, radar sets, or fire control equipment, and is used as the
functional base line for a single item development program or as part
of the allocated base line where the item covered is part of a larger
system development program.

Specifications prepared in accordance with this standard are
intended for use in the design and procurement of configuration items,
computer programs, and required services for program peculiar
application. Requirements include configuration identification,
functional, allocated, and product configuration identification, and
detail and general specifications.

Requirements for specification types are:

Type A - The system specification states the technical and
mission requirements for a system as an entity,
allocates requirements to functional areas, and defines
interfaces between the functional areas.

Type B - Development specifications state the requirements for
the design and development of a product during the
development period.

Type B5, the Computer Program Development Specification (CPDS)
contains a brief description of the overall computer program by major
functions (tasks) and a summary of the specification content,
composition, and intent. The requirements section is the major
section of the CPDS and consists "of a series of paragraphs that
specify in detail the performance requirements of the computer
program". Program definition, detailed functional requirements, input
and output data, processing descriptions, and system parameters and
capacities shall be described. The program test plan and procedures
at the subprogram and program level must be developed, and computer
program acceptance and system integration testing is required. Test
requirements at each level of testing, except the acceptance test
level, and test tools and facilities required shall be specified. A
separate paragraph on acceptance test requirements is required to
"establish the means by which the procuring agency may formally accept
the computer program as fulfilling the performance requirements."

Type C - Product specifications are applicable to any item below
the system level, may be oriented toward procurement of
a product through specification of primarily function
(performance) or fabrication (detailed design)
requirements.

113

STEP - Current Defense Practices Overview

Type C5 - Computer Program Product Specification (CPPS) is
applicable to the production of computer programs and
specifies their implementing media. The CPPS will
include a statement of scope, a brief review of the
major functions of the computer program, its structure
and function as a whole, description of storage
allocation, functional flow diagrams, program
interrupts, detailed description of control logic, and
any special control features.

Type 85 specs apply to computer program development, C5 apply to
computer program production and specifies their implementing media
such as magnetic tape, disc, drum, etc. Two-part specifications
(which combine B5 and C5 specs) provide a translation of the
performance requirements into programming terminology and quality
assurance procedures. When two-part specifications are used, Type B5
shall form Part I and Type C5 shall form Part II.

This standard describes the format and identification of specifi-
cations. "Specifications shall contain six numbered sections ... as
shown below":

1. Scope
2. Applicable Documents
3. Requirements
4. Quality Assurance Provisions
5. Preparation for Delivery
6. Notes
7. Appendix

MIL-STD-1679 (NAVY): Weapon System Software Development.
1 December 1978.

MIL-STD-1679 (Navy) has the subject of weapon system software
development, which is necessary because of factors that are unique or
have a significantly different degree of emphasis, including:
criticality of performance, changing operational requirement
(sometimes technical design efficiency must be sacrificed to
facilitate efficient change), and life-cycle cost considerations
(requires standardization of program design, languages used, and
system interfaces).

The scope of this standard is weapon system software within the
Department of Defense. It applies to "weapon system software
(including firmware), which is developed either alone, or as a portion
of a weapon system." Adhering to this standard should "ensure that
the weapon system software so developed possesses the highest degree
of reliability and maintainability feasible".

114

STEP - Current Defense Practices Overview

This standard defines the weapon system and its software to be
"any system or subsystem contributing to the combat capability of the
operating forces - land, air, sea, C2 systems, etc. Systems serving
both the individual unit and those supporting a tactical commander
fall within the definition.

This standard describes varieties of weapon system software (e.g.,
operational, test and maintenance, trainer, and support), and numerous
other terms used in software design and development.

General requirements include the use of High Order Languages
(HOL), the use of configuration management disciplines, and software
development management. Deviations and waivers must be processed and
approved by the procuring agency.

Detailed requirements for program performance and design, top-down
development, code walk-throughs, documentation, system description,
and flow charts are specified. The contractor is required, as a
minimum, to utilize "those items available of the following to
determine the program performance requirements":

a. System performance requirements.
b. System design specifications.
c. Equipment design specifications.
d. Interface design specifications.
e. Operational standards, doctrine, and tactics.
f. System design standards.

Program performance requirements are subject to the review and
approval of the procuring agent.

"Total system memory, input and output channels, and processing
time reserves of at least twenty percent shall exist at the time of
program acceptance by the procuring agency."

The following programming design and coding standards are
required: control structures (only the five basic ones); included/
copied segments written in an HOL only; entry-exit structure; program
traceability; no self-modification; recursive procedures only used if
the target computer has a stack oriented architecture; modules not to
exceed a maximum of two hundred executable HOL statements; branching
statements to be approved by the procuring agency; and programs to be
built in the form of relocatable object modules. It is required that
numerous further programming conventions shall be observed with the
intent of producing quality software.

115

STEP - Current Defense Practices Overview

The program shall be generated/implemented in a top down fashion.
Code walk-throughs of each program component shall be conducted prior
to compilation. Copious use of comment statements shall occur to
provide documentation and clarification. Source code statements shall
be optimized for execution efficiency. A listing of a compiled
program with object machine instructions and equivalent assembler
statements, if available, is a requirement for acceptance as a
deliverable.

The contractor determines the scope of tests required to ensure
that the program meets all specified requirements and the acceptance
criteria. 	The contractor is responsible for accomplishing all
development testing. 	Test planning must include development of
program acceptance criteria, levels of testing to verify performance,
procedures for scheduling and conducting tests at each level and
reporting those procedures.

Module tests must be adequate to determine compliance with
technical, operational and performance specifications. Then the
modules shall be integrated individually into particular subprograms
for subprogram testing, that ensures error-free linkage of the
modules, ensures that the subprogram fully satisfies the detailed
performance and design requirements, exercises the subprogram so that
the satisfaction of detailed performance and design requirements is
demonstrated, ensures the subprogram level man-machine interfaces, and
ensures the capability of the subprogram to handle properly and
survive erroneous inputs.

Program performance tests shall be performed to ensure the total
man-machine interface, system initiation, the proper interfacing of
all specified equipment, and the capability of the program to satisfy
all applicable system performance requirements. A system integration
test may be required at some outside facility, requiring technical
support to the integration testing on the part of the contractor.

It is required of the contractor that he maintain an internal
procedure for handling software trouble reports (STR), whose final
disposition, after all appropriate action has been completed, is
determined and recorded by the contractor. STR categories are as
follows:

S: 	Software trouble. Software does not operate according to
supporting documentation and the documentation is correct.

D: Documentation trouble. 	The software does not operate
according to supporting documentation but the software
operation is correct.

E: Design trouble. 	The software operates according to
supporting documentation but a design deficiency exists.

116

STEP - Current Defense Practices Overview

L: 	Logic trouble. The software has a logical error with no
directly observable operational symptom but with the
potential of creating trouble.

Priorities of software errors by severity are as follows:

Priority 1

Priority 2

Priority 3

Priority 4

Priority 5

- An error which prevents the accomplishment of an
operational or mission essential function in accordance
with official requirements (causes a program stop), or
interferes with an operator or jeopardizes personnel
safety.

An error which adversely affects the accomplishment of
an operational or mission essential function in
accordance with official requirements for which no
alternative work-around solution exists, or which
interferes with an operator so that he adversely affects
the accomplishment of an operational or mission
essential function so as to degrade performance and for
which no alternative work-around solution exists.
(Reloading or restarting the program is not an
acceptable work-around solution).

- An error, as defined in Priority 2, with the difference
that there is a reasonable alternative work-around
solution.

- An error which is an operator inconvenience or annoyance
and does not affect a required operational or mission
essential function.

- All other errors.

The contractor determines the initial status of each STR when it is
reported, and monitors and records any and all changes of the status
of each STR.

The contractor is required to implement quality assurance
procedures in each stage of the development to verify that the product
program will meet current performance specifications approved by the
procuring agency. The contractor's quality assurance organization
shall conduct quality audits "throughout the development phase
starting with design development and ending with test, certification,
delivery and acceptance which measure system conformance with
technical and management requirements and standards."

117

STEP - Current Defense Practices Overview

"The program shall have successfully completed the software
quality test" prior to program acceptance. The software quality test
"shall be conducted by a testing activity designated by the procuring
agency and independent of the procuring agency and the development
contractor(s)." The software quality test "is intended to exercise
all of the functions of the software for a period of time in order to
demonstrate that the software is reasonably free of serious or
numerous errors." For systems designed to operate continuously, that
time period shall be 25 hours, for other type systems, the time period
shall be the length of time required to fulfill the system's mission,
including any premission or postmission periods. Three distinct
periods of stress testing are required, wherein "the software shall be
required to operate at saturation levels which stress the software's
capabilities in terms of response times and data handling capacity."•

An authorized list of Data Item Descriptions (DIDs) is given for
use by the procuring agent to order data generated from having invoked
pertinent work tasks, which are essentially the same as previously
used DIDs required for weapon system software development.

MIL-S-52779A: Software Quality Assurance Program Requirements.
1 August 1979.

MIL-S-52779A (Military Specification) delineates software quality
assurance (SQA) program requirements, and applies toll.' .t.'ftware
(including firmware) acquisition, where the acquisition involves
either software alone or software as a portion of a system or a
subsystem, and to non-deliverable design, test, surc-t ar.!
operational software. Periodic assessment of the SQA program id

required as well as consistency with the configuration managerio, and
test and development plans.

At the time of the contract award, the contractor shall plan and
implement a SQA Program which includes practices and procedures to
assure compliance with all the software requirements of the cont-ict.
The contractor must document his QA program with an SQA Plan 2 ' The
Plan must address tools, techniques, methodologies to be , used,
Computer Program Design (CPD), work certification, documentatPn, and
computer program library controls, as well as reviews and audits,
configuration management and subcontractor control. The SQP. Program
shall require periodic assessment and, where necessary, realignment of
the Program to conform to changes in the acquisition program.

Testing requirements include review of software testability;
"review of test criteria and requirements, for adequacy, feasibility,
and traceability and satisfaction of requirements;" review of test
plans, procedures and specifications; and verification of approved
conducting of tests. The contractor shall ensure that suppor 4 '
software and computer hardware to be used for any part of the system
development are acceptable to the Government.

118

STEP - Current Defense Practices Overview

The SOA plan must document or reference procedures to assure
prompt detection, documentation, and correction of software problems
and deficiencies, analysis of data and examination of problem and
deficiency reports to determine their extent and causes, analysis to
prevent development of non-compliant products, and any other analysis
or review provided for in the contract.

The ensurance of repeatability of tests, and documentation of the
quality assurance of subcontractor software is required. The title,
number, and date of this specification shall be specified in the
procurement requirements for the program.

DI-S-30567A: Computer Program Development Plan (CPDP).
2 February 1978. Air Force DID.

The CPDP is a document wherein the contractor describes his
specific detailed plan for the management and development of all of
the comv.er programs and documentation that he needs to fulfill the
contract. The plan may be used by the procuring activity both to
assess an approve the contractor's approach and methods for computer
program .velopment, and to assist in monitoring and evaluating the
contractor's efforts during development and test of the products
defined b; the contract.

This 	. nent is a Data Item Description (DID), which applies to
the computer resources portion of system development and acquisition.
It is to be utilized during the validation and subsequent phases of
the,,poD syWel acquisition cycle. A CPDP may be obtained precontrac-
tually ip,the bidders' proposals and may be a product of the valida-
tion coltcact or acquired during the full scale engineering develop-
ment contract. It is intended to complement other contractual
management plans which address such disciplines as systems engineer-
ing, configuration management, and test and evaluation.

Preparation instructions are given for the CPDP, with the
follow . 4 items required as a minimum: requirements assessment
summary, roject objectives; work definition; work schedule; activity
network (. .g., PERT); organizational chart with names of key skilled
managers a,d employees; resource allocation description; definition of
engineering standards and practices; design assurance techniques
definitions, definition of procedures for design, coding and checkout;
presentation of the integration and test philosophy leading to pre-
liminary and formal qualification tests; plans for system test and
evaluation; methods of anomaly detection and documentation; management
controls description; description of documentation tools and
techniques; any special aspects of configuration management not
addressed in the overall Configuration Management Plan; procedures for
qualifying and documenting vendor-supplied computer resources, and
means for accomodating revision of vendor-supplied computer resources;
and description of support resources for the deployment phase.

119

STEP - Current Defense Practices Overview

DI-T-3703A: 	Computer Program Configuration Item (CPCI) Test
Plans/Procedures.
18 May 1977. Air Force DID.

The Computer Program Configuration Item (CPCI) Test Plans/Procedures
is a Data Item Description generated by the Air Force to establish
detailed qualification requirements, criteria, general methods,
responsibilities, and overall planning for the Development Test and
Evaluation (DT&E) qualification of a computer program configuration
item (CPCI) and for subelements of the CPCI.

The DT&E CPCI test plan is normally obtained in the validation
phase as a complete plan applicable to the computer program.
Procedures are normally obtained in the design and development phase.
The test plan contains sections stating purpose, reference documents,
test concepts, qualification requirements and criteria, qualification
objectives/test phase summary, a DT&E CPCI qualification test
implementation plan, and control and reporting procedures.

The test procedure must have a caption containing test identifica-
tion, contract item to which the test applies, and the primary func-
tions to be tested. The location and schedule for briefings, tests,
debriefings, and data reduction/analysis related to the test efforts
shall be shown. Procedures must be specified for initiating the
computer program operation, maintaining the computer program opera-
tion, and terminating and restarting the computer program operation.

Footnotes to this DID define verification to be the iterative
process of determining whether the product of each step of the CPCI
development process fulfills all of the requirements levied by the
previous step, and validation to be the evaluation, integration and
test activities carried out at the system level to ensure that the
finally developed system satisfies the mission requirements set down
as performance and design criteria in the system specification.

DI-T-3717A: Computer Program Configuration Item (CPCI) Development
Test and Evaluation Test Report. 18 May 1977. Air
Force DID.

The Computer Program Configuration Item (CPCI) Development Test and
Evaluation Test Report is an Air Force DID that is used to report the
results of an individual Development T&E (DT&E) preliminary or formal
qualification test for a computer program configuration item (CPCI)
and to report a summary of the total DT&E process. This DID serves as
the major link between the end of CPCI DT&E and the start of system
DT&E testing, and is also applicable to validation and verification
efforts.

120

STEP - Current Defense Practices Overview

The requirements for the report include the following:

a) Draft incremental reports shall be submitted in accordance
with the planned test groupings but in no case at intervals
less than 3 months;

b) The CPCI DT&E Final Test Report shall consist of a final
summation report of the total Cl/Subsystem test process.
Incremental reports previously submitted and revised, in
final form, shall be resubmitted.

The report must contain the number and name of the CPCI to which
the test applies, the identification of the individual qualification
test as shown on the test procedure, and the CPCI's primary functions
or segments to which the test applies.

Test results must be stated, as well as recommendations for
subsequent action, based on the test results. They may include
revising the CPCI to meet specifically identified, but not fulfilled,
requirements; conduction of additional tests; and qualifying those
functions for which test objectives have been fulfilled.

MIL-HDBK-255 (AS): Nuclear Weapons Systems, Safety, Design and
Evaluation Criteria for. 5 May 1978.

MILITARY-HANDBOOK-255(AS), prepared by the Naval Air Systems
Command, provides information on nuclear safety design and describes
the criteria for nuclear weapons systems, safety, design and
evaluation. It applies only to weapon systems that use nuclear
components. This document provides information and guidance to those
individuals responsible for design, test and procurement of nuclear
weapons components and systems.

Any computer software (or methods of weapon control) which can
exercise automated control over any critical nuclear weapon system
function must be subjected to a software nuclear safety analysis
(SNSA). The purpose of the SNSA is to assure that the implemented
program controls cannot contribute to accidental or fault activation
of the nuclear weapon system functions. Software is categorized by
the degree to which it could affect critical functions or contribute
to an unauthorized launch or release.

A first level interface is defined as any software used by
automata having a direct electrical connection to a nuclear weapon.
This includes all resident or processor-accessible programs. Any
software used by automata having a direct electrical connection to
automata having a first level interface is categorized as a second
level interface.

121

STEP - Current Defense Practices Overview

"Nuclear safety critical software analyses shall be conducted
throughout the weapon system life cycle whenever new or modified
software is developed. Modified software may have a modified SNSA
covering the changed segments, but all interfaces to the original
program must be checked. Software which is not subject to recurring
changes requires only an initial review, analysis, and certification."

Special circumstances wherein maintenance or diagnostic software
may require an SNSA are delineated. The organization performing the
SNSA and the software developer are required to be managerially and
financially independent of each other, and may not be in direct
contact except under the direction and control of the Program Manager.

MIL-STD-SDS: Defense System Software Development (Working Papers).
15 April 1982.

MIL-STD-SDS, now in development, is a military standard for
defense system software development which is being proposed by the
Joint Logistics Commanders/Joint Policy Coordinating Group on Computer
Resource Management (JLC/JPCG-CRM) - Computer Software Management
Subgroup. In April 1979, this subgroup sponsored a joint Government-
Industry workshop in Monterey, California. The initiatives resulting
from this workshop's recommendations include the development of policy
for software acquisition addressing the entire software lifecycle,
development of military standards that are consistent with the policy
framework, and the definition of Data Item Descriptions (DID's) that
support the acquisition policy and standards.

The philosophy being followed in developing MIL-STD-SDS is that
the standard should serve as a "bridge" between the general guidelines
expressed as policy, and the detailed information in DIDs. Therefore,
"since information is a major by-product of software development, many
of the detailed requirements in MIL-STD-SDS are information generation
requirements."

The standard requires a structured requirements analysis approach,
the establishment of requirements for each Computer Software
Configuration Item (CSCI), top down design, and the use of a program
design language. It requires unit and integration testing, and
software performance testing. The standard also requires a software
specification review, a critical design review, and mandates that top
level design exhibit modular architecture. Detailed descriptions of
interface purpose and requirements must be provided. The standard
describes formal and informal test planning. It describes and
requires both software quality excellence and documentation thereof.
It requires that the contractor implement and document configuration
management, implement and document developmental baseline management,
maintain configuration change control, and participate in functional
and physical configuration audits. Because "sizing and timing" is

122

STEP - Current Defense Practices Overview

usually a major problem in most defense system software developments,
MIL-STD-SDS directs the contractor to pay close formal attention to
processing resources throughout the development.

Other requirements that the contractor shall fulfill include unit
development folders maintained by each programmer and a program
support library to be delivered to the procuring agency with unlimited
data rights. Specifications of data base requirements shall be
divided into three categories: general environment, system parameters,
and system capacities. Special requirements that affect the design of
the CSCI may include protection of classified or limited access
information, maximum degradation of performance allowed under various
situations, features to facilitate testing (such as intermediate
printouts), and human performance considerations.

A Comparison of MIL-STD-SDS and MIL-STD-1679 (Navy). 15 April 1982.

A comparison was performed by the JLC/JPCG-CRM-CSM with the
purpose of tracing the evolution of MIL-STD•SOS, "Defense System
Software Development", describing its intent, and comparing it with
MIL-STD-1679 (Navy), "Weapon System Software Development". Separate
descriptions of MIL-STDs SDS and 1679 (Navy) are given elsewhere in
this document.

The Monterey workshop participants, consisting of experts in
software acquisition from Government and industry, found that, in the
area of software acquisition policy, no general policy exists that
defines a common software acquisition framework for all the service
components.

Each service has implemented DoDD 5000.29 somewhat independently.
Nomenclature, emphasis, interpretations, and degree of implementation
differs among the services. A general policy framework was proposed
by the workshop participants to address the entire software lifecycle,
be consistent with defense systems acquisition policy as in the 5000
series of directives, specify a common set of functional elements and
milestones, and describe the elements of software life cycle in
sufficient detail to allow common implementation procedures. This
framework would also provide a foundation for formulating and revising
software acquisition and development standards and software
documentation. Participants in the workshop recommended that a
comprehensive set of DIDs be defined and developed for joint service
application.

The workshop participants found that users of numerous standards
related to software were confronted with:

- 	Requirements which are difficult to understand;

123

STEP - Current Defense Practices Overview

- An acquisition process which is not fully supported by its
accompanying documentation system;

- Requirements which cannot be measured;

- Incompatibilities with more modern methods of developing and
acquiring software.

Rather than perform the extensive effort required to revise
MIL-STD-1679, it was decided to develop a new standard, drawing upon
MIL-STD-1679, that would be appropriate for joint service application.

Tables are given, comparing MIL-STD-1679 with MIL-STD-SDS,
paragraph by paragraph, with explanations of omissions. For example,
MIL-STD-1679, in the paragraph on Module Tests, states that the module
shall "have completed a code walk-through prior to being subjected to
developmental testing," adequate to determine compliance with the
applicable technical, operational, and performance specifications.
MIL-STD-SDS replaces this with a paragraph on Unit Testing that
requires testing of "individual units to check for agreement with the
detailed design, for correct execution, and for proper data
handling." In MIL-STD-SDS, unit testing must verify at the minimum:

- correctness of all computations using nominal, singular, and
extreme data values;

- correct operation for valid and invalid data input options;

- correct handling of all data output options and formats,
including error and information messages;

- that all executable statements execute as intended.

MIL-STD-1679 requires performance of module testing to:

- "ensure error-free compile/assembly of the coded module;

- ensure that the coded module fully satisfies the detailed
performance and design requirements and that all code to be
delivered has been exercised;

- exercise the module in terms of input/output performance with
the results satisfying the applicable detailed performance
and design requirements."

MIL-STD-1679, 	for 	subprogram 	tests, 	requires 	individual
integration of modules into particular subprograms. As a minimum,
subprogram tests must be performed to ensure error-free linkage of the
modules; ensure that the subprogram satisfies the performance and
design requirements; exercise the subprogram in terms of input/output

124

STEP - Current Defense Practices Overview

performance with the results satisfying the applicable detailed
performance and design requirements; ensure the subprogram level
man-machine interfaces; and ensure the capability of the subprogram to
handle properly and survive erroneous inputs. MIL-STD-SDS replaces
this with two paragraphs that require the contractor to successively
integrate tested units of code and perform Preliminary Qualification
Tests (PO's) on selected aggregates of integrated software until
complete Computer Software Configuration Items (CSCI) are built. The
contractor is required to specify and implement an integration
approach which accomplishes the following: segments the integration
of the CSCI into manageable steps; integrates code in a sequence, and
provides a meaningful measure of CSCI development progress by
demonstrating selected CSCI capabilities early in the software
integration testing activity.

Rather than telling the contractor how to do his job, MIL-STD-SDS
emphasizes the goals of the procedure and allows the contractor to
specify how he will perform the task. Eight sentences were omitted
because: "It would be difficult if not impossible, to verify
compliance with this requirement." Eight sentences were omitted
because: "This requirement delves too deeply into the contractor's
internal management of the development." Explanations for other
omissions included "this requirement is arbitrary", "this requirement
would not necessarily be applicable in most joint service cases and,
therefore, would not be appropriate for inclusion in a joint
standard", "this is not really a requirement", "this requirement was
inadvertently omitted, and will be considered in the final version",
"this requirement is ill-defined", and, "this requirement is not
supported by the JLC document system".

Proposed Revisions, MIL-STD-483 (USAF). 15 April 1982.

The proposed revisions of MIL-STD-483 (USAF), "Configuration
Management Practices for Systems, Equipment, Munitions, and Computer
Programs", generated by the Joint Logistics Commanders Joint Policy
Coordinating Group on Computer Resource Management (JLC/JPCG/CRM),
Computer Software Management (CSM) subgroup, at the Monterey workshop,
will render MIL-STD-483 consistent with MIL-STD-SDS, and make it more
appropriate for use by all the services.

A paragraph by paragraph list Is given of changes incorporated
into MIL-STD-483 and the reasons for those changes. Table 1 consists
of a Paragraph Cross Reference for Original Appendix VIII and Revised
Appendix VIII. Changes incorporated into the proposed revisions to
MIL-STD-483 include the following:

- 	Changes to reflect the distinction between software
configuration management requirements from those for hardware
CIs;

125

STEP - Current Defense Practices Overview

- Changes from "Air Force" to "procuring activity" to reflect
an expanded role as a tri-service standard;

- Changes to require the preparation of a verification matrix
rather than allowing it as an option;

- Addition of a paragraph (6.1) containing a list of all
Software Data Item Descriptions referenced within the
standard, to facilitate maintenance of the standard and
provide a useful cross-reference table.

JLC policy was used as a criterion for appropriateness of
terminology and consistency. Appendices III, VI, XII, and XVI from
the original version have been deleted because their contents were
either inconsistent with JLC policy or redundant with information
contained in other standards and data item descriptions. These
appendices related to, respectively, System Specification/System
Segment Specification; Computer Program Configuration Item
Specification; Configuration Audits; and Non-Complex Computer Program
Specifications. The terms "program" and "programs" were changed to
software, and "CPCI" or "CPC" to "CSCI" or "CSC", in keeping with JLC
terminology.

The paragraph on baseline management was revised to reflect JLC
policy which requires three baselines for software: functional,
allocated, and product baselines, as well as a developmental baseline
which is normally employed in software management.

Text that was perceived unclear or contradictory was changed.
Sections that were derived from hardware standards were revised to
address the unique characteristics of computer software. "The most
significant section revisions were rewriting Appendices VIII and
XVII." Appendix VIII deals with maintenance and change control
procedures for computer software specifications and support
documentation; the subgroup considered this appendix to be confusing,
resulting primarily from the fact that it was derived from MIL-STD-483
Appendix VII which deals with hardware CI documentation, and hardware
procedures are not always amenable to software documentation
maintenance. Appendix XVII was rewritten to provide better guidance
for selecting Computer Software Configuration Items (CSCI). New
information for this appendix was derived from the report of the June
1981 JLC Software Workshop Panel on Hardware/Software/Firmware
Configuration Item Selection Criteria.

This version of MIL-STD-483 requires the inclusion of a verifica-
tion matrix in the specifications prepared, and gives a sample of the
verification cross-reference matrix, where previously this was an
option.

126

STEP - Current Defense Practices Overview

Proposed Revisions, MIL-STD-490: "Specification Practices".
15 April 1982.

The proposed revisions of MIL-STD-490 were generated by the Joint
Logistics Commanders/Joint Policy Coordinating Management Subgroup.
This standard addresses the subject of practices for the preparation,
interpretation, change and revision of program peculiar specifica-
tions. Its purpose is to establish uniform specification practices
for configuration identification concepts of the DoD Configuration
Management Program.

The rationale for the proposed changes is the same as for all
revisions of MIL-STD's recommended by this subgroup, as well as the
generation of MIL-STD-SDS, i.e. to develop a general policy framework
for software acquisition throughout the entire software life cycle,
develop unified military standards for use by all Services which are
consistent with the policy framework, and provide uniform terminology
and definitions.

The proposed changes consist mainly of a new section, modified
appendices, and terminology changes. A section was added to allow for
the appropriate DID's to be referenced. Appendices were changed to
reduce redundant material but were not deleted because other documents
that reference 490 would be inconsistent.

Terminology changes were made to accomodate the new JLC policy and
JLC Data Item names, for example: "Computer Program Product Specifi-
cation" was changed to "Software Product Specification", "System" to
"System/Segment", and "Quality Assurance Provisions" to Qualification
Requirements". "Type C2b Critical Item Fabrication" under Type C
Product Specifications in the paragraph addressing Classification for
specifications was added for consistency.

Proposed Revisions, MIL-STD-1521A (USAF): "Technical Reviews and
Audits for Systems, Equipments, and Computer
Programs." 15 April 1982.

The type of technical reviews and audits that the program manager
may select, according to this revision, include, but are not limited
to, the following:

- Systems Requirements Review (SRR). Conducted to ascertain
the adequacy of the contractor's efforts in defining system
requirements.

▪ System Design Review (SDR). 	Conducted to evaluate the
optimization, correlation, completeness, and risks associated
with the allocated technical requirements.

127

STEP - Current Defense Practices Overview

- Software Specification Review (SSR). 	Finalizes Computer
Software Configuration Item (CSCI) requirements so that the
contractor can initiate preliminary software design.

▪ Preliminary Design Review (PDR). Conducted for each Cl/CSCI
to evaluate progress, technical adequacy, and risk resolution
of the selected design approach.

- Critical Design Review (CDR). Conducted for each Cl/CSCI
when the detail design is essentially complete.

- Test Readiness Review (TRR). Determines that the software
test procedures are complete and that the contractor is
prepared for formal software performance testing.

- Functional Configuration Audit (FCA). 	Validates that the
development of a Cl/CSCI has been completed satisfactorily
and that it has achieved the performance and functional
characteristics specified in the functional or allocated
identification.

- Physical Configuration Audit (PCA). 	Examines a designated
Cl/CSCI to verify that the Cl/CSCI "As Built" conforms to the
technical documentation wich defines the Cl/CSCI.

- Formal Qualification Review (FQA). The test, inspection, or
analytical process by which products at the end item or
critical item level are verified to have met specific
procuring activity contractual performance requirements.

The contractor's responsibilities and participation is defined.
The reviews and audits must be conducted at the contractor's facility
or a designated subcontractor facility if approved by the procuring
activity. The procuring activity's participation in Reviews/Audits is
defined to include serving as co-chairperson, providing information on
each participating individual to the contractor, and providing formal
acknowledgement to the contractor of the accomplishment of each
Review/Audit after receipt of the minutes.

The background and rationale for the revisions are the same as
those given previously. New sections have been added to MIL-STD-1521A
for the Software Specification Review (SSR) and Test Readiness Review
(TRR). The new section on the SSR basically requires close review of
the information developed in accordance with MIL-STD-SDS. The new
section on the TRR requires review of the current statements of
requirements and design, test plans, descriptions, and procedures.

128

STEP - Current Defense Practices Overview

Modifications have been made to the sections on the SDR, PDR, and
CDR to accomodate the evolution of information required by
MIL-STD-SDS. Terminology changes include changing "Part I Development
Specification" to just "Development Specification" or, if appropriate,
"Software Requirements and Interface Requirements Specifications."
"Design" was deleted from the foreword, since the scope is more
encompassing than just design. The feature of the existing
MIL-STD-1521A, which orders the appendices according to the relative
chronological occurrence of the reviews and audits, has been preserved
by _inserting the new appendices on the SSR and TRR in their
appropriate places.

129

STEP - Current Defense Practices Overview

3.3. AIR FORCE REGULATIONS

AIR FORCE REGULATION 80-14: Research and Development, Test and
Evaluation. 12 September 1980.

Air Force Regulation 80-14 outlines policy for test and evaluation
(11E) activities during development, production and deployment of
defense systems in the Air Force. It applies to all Air Force
activities and implements Department of Defense Directive (DOD)
5000.3. Automatic data processing resources are exempt from the T&E
provisions of this regulation unless specified otherwise by HQ USAF.

A distinction is made between development test and evaluation
(DT&E) and operational test and evaluation (OT&E), either of which may
occur at any point in the life cycle of the system. "Their primary
purposes are to identify, assess, and reduce the acquisition risks, to
evaluate operational effectiveness, and operational suitability, and
to identify any deficiencies in the system."

Through DT&E, the Air Force must demonstrate that the system
engineering design and development is complete, that design risks have
been minimized, and that the system will perform as required and
specified. OT&E is conducted, in as realistic conditions as possible,
to estimate a system's operational effectiveness and suitability, to
identify any operational deficiencies, and to identify the need for
any modifications. OT&E uses personnel with the same type of skills
and qualifications as those who will operate, maintain, and support
the system when deployed.

Other types of T&E may include initial OT&E (IOT&E), follow-on
OT&E (FOT&E), qualification OT&E (QOT&E), and multiservice T&E
(MST&E), where applicable. IOT&E is conducted before the first major
production decision. It is done by the OT&E command or agency
designated by HQ USAF. As a rule, it is done using a prototype,
preproduction article or a pilot production item as the test vehicle.

FOT&E is that operational testing usually conducted after the
first major production decision or after the first production article
has been accepted. It may go on all through the remainder of the
system life cycle.

QOT&E and Qualification T&E (QT&E) are performed instead of DT&E
and IOT&E, respectively, on programs where there is no funding for
research, development, test and evaluation (RDT&E). Multiservice T&E
(MST&E) is the T&E conducted by two or more services for systems to be
acquired by more than one service. Test resource management is
described, as well as the test planning working group and the test and
evaluation master plan which are required elements of T&E.

130

STEP - Current Defense Practices Overview

Responsibilities assigned to HQ USAF, the Implementing Command,
the OT&E Command (which is almost always AFTEC), the Major Commands
(MAJCOMs), the Operating Commands, the Air Force Logistics Command
(AFLC), the Air Training Command (ATC), and the Electronic Security
Command (ESC) are presented in detail. Those agencies that are
involved in DT&E include HQ USAF (publish and review documents), the
OT&E Command, AFTEC (overview, appoint OT&E test director, and
report), the MAJCOMs (manage OT&E for operational training), and ESC,
in some cases.

Some of the responsibilities of the Implementing Command are the
planning, management, conducting and reporting on DT&E; collecting,
processing, and evaluating reliability, availability, and
maintainability data; and preparing the threat assessment to be used
for T&E planning.

AIR FORCE REGULATION 800-14: Acquisition Management: Management of
Computer Resourses in Systems (Vols. I &
II). 12 September 1975.

This regulation has the objective of insuring that computer
resources in systems are planned, developed, acquired, employed and
supported to effectively, efficiently, and economically accomplish Air
Force assigned missions.

Air Force policy intends that computer resources in systems are
managed as elements of major importance during all phases of
development and operation, management responsibility for the
integration of computer equipment/programs into a system remains
centralized for the life of the system, organic computer equipment
maintenance and computer program development and maintenance
capabilities are established where economical, computer programs are
standardized to the extent practical within and across systems,
Automatic Data Processing (ADP) standards and higher level programming
languages are used to the maximum extent practical in the system under
development, and Data Item Descriptions are identified and developed
as required for program documentation support. Moreover, user
involvement is an integral part of computer program development, test,
operational maintenance, and major modification; "common purpose
automatic test equipment is desirable"; and, there must be
comprehensive testing of computer equipment and verification and
validation of computer programs.

131

STEP - Current Defense Practices Overview

Other considerations include trade-offs of computer equipment and
computer programs to minimize cost; early identification of
organizational responsibilities and computer resource requirements;
configuration management procedures; prime development directives
(PDDs) and program management plans (PMPs); and the level of
simulation to be employed. "Special emphasis is directed to these
items during the testing and evaluation conducted in accordance with
AFR 80-14."

The responsibilities of the program manager are to:

a. Provide management and technical emphasis to computer
equipment and computer program requirements identified in the
program management directive (PMD);

b. Direct the preparation, revision, and implementation of the
PMP consistent with the policies of this regulation;

c. Ensure that the Program Office (P0) work with Air Force
Logistics Command (AFLC) and the user to incorporate their
needs into the PMP, and other system documents prepared and
implemented by the PO.

AFR 800-14, Volume II, contains procedures for Acquisition
Management and Support Procedures for Computer Resources in Systems.
It consolidates and explains the applicability of other publications
to computer resource acquisition and support, which are required by
the uniqueness of computer resource management. These publications
may include: AFR 80-14, MIL-STD-482, and MIL-STD-490. This regula-
tion applies to ADP resources, as well as Embedded Computer Resources.

Computer resources will undergo a System Acquisition Life Cycle
which, in general, has five major phases:

- the conceptual phase
- the validation phase
- the full-scale development phase
- the production phase
- the deployment phase

Figure 1 shows the Computer Program Life Cycle (CPLC) as a
function of time. This life cycle is not bound to the system
acquisition life cycle; for example a mission simulation computer
program may undergo all of the phases of the CPLC during the
conceptual phase, while a mission application program may undergo
these phases during the validation, full-scale development, and
production phases. Activities need not be sequential, there are
potential loops between all the phases.

132

OPERATING & SUPPORT

PDR

CODE &
CHECKOUT

TEST &
INTEGRATION . 1

INSTALLATION

FEEDBACK

TIME

CDR

ANALYSIS

DESIGN 	 FCA/PCA

Figure 1: Computer Program Lifecycle

133

STEP - Current Defense Practices Overview

Guidance in planning acquisition and support of computer resources
in the case where the computer resources are identified during the
course of system or equipment development and in the case where the
computer resources are known to be required at the outset is
provided. Requirements for computer resources evolve from overall
system requirements as a result of applying system engineering
disciplines.

Computer resources must be considered as an integral part of the
system and must be subjected to optimization and trade-off studies.
"Higher level languages may simplify programming and thus reduce
programming costs, but for real time processing systems more powerful
and expensive computer equipment may be necessary to efficiently
process computer programs written in these languages."

The Program Management Directive includes numerous guidelines for
the program manager relating to computer resources, documentation,
audits, testing and maintenance, and program development and support
requirements. The Computer Resources Integrated Support Plan (CRISP)
identifies organizational relationships and responsibilities for the
management and technical support of computer resources. The Computer
Program Development Plan (CPDP) identifies the actions needed to
develop and deliver computer program configuration items and necessary
support resources. The Computer Resource Working Group (CRWG)
consists of representatives from the implementing, supporting and
using commands, and is responsible for preparation and revision of the
CRISP.

A fundamental concept associated with engineering management is
the use of a series of configuration management baselines which aid in
assuring an orderly transition from one major decision point to the
next throughout the system acquisition life cycle. Baselines are
established at discrete points in a program when it is necessary to
define a formal departure point for control of future changes.

The principles of AFR 80-14 apply to testing of computer
resources. Testing is reported in accordance with that regulation.

To perform Computer Program Validation/Verification (V&V) in the:

a. Analysis Phase, a review of all available documentation for
logic and completeness should be made; a timing and sizing
study should be conducted to insure that the proposed
computer system is adequate;

b. Design Phase, all models should be checked for logic and
completeness; a scientific simulation of the system may be
produced, to develop algorithms and to check system
interfaces;

134

STEP - Current Defense Practices Overview

c. 	Code and Checkout Phase, desk-checking or a correctness proof
may be performed, or the following types of automated test
tools (available for static code checking) may be utilized:

1) Instruction-by-instruction comparators of two versions
of the same program;

2) Editors 	that 	flag 	coding 	errors 	and 	produce
cross-reference listings;

3) Flowcharters;
4) Logic/equation generators used to reconstruct arithmetic

text and to flowchart assembly language programs;
5) Pathfinders, traps and traces, which analyze possible

paths through a given program;
6) Interpretive Computer Simulation (ICS), a simulation of

the operational computer on a host computer;

d. 	Test and Integration Phase, several different types of
simulation are used;

e. 	Operational and Support Phase, simulations may be useful for
reproducing operational problems and for retesting the system.

The configuration management practices and procedures of AFR 65-3
shall be applied to computer resources throughout the system acquisi-
tion life cycle, giving attention to the importance of specifying and
controlling interfaces, and keeping the using command involved in the
approval of any changes that may be effected by a separate supporting
command. MIL-STDs 480 and 483 contain appropriate procedures for con-
figuration control and processing Engineering Change Proposal (ECPs)
to CPCIs. Configuration audits are performed in accordance with
MIL-STD-1521A (USAF).

Specification documentation for systems, system segments, computer
equipment, programs and other system components are established in
MIL-STD-483 (USAF) and MIL-STD-490.

AIR FORCE REGULATION 122-9: The Nuclear Safety Cross-check Analysis
and Certification Program for Weapon
Systems Software. 1 July 1974.

This regulation establishes the requirement for performing the
Nuclear Safety Cross-Check Analysis on specifically identified weapon
system software that involves nuclear safety, and establishes the
responsibility for nuclear safety certification of the software, for
the Air Force. Positive measures must be established to prevent
accidental or unauthorized arming, launching, firing, or releasing of
a nuclear weapon. Certification of cross-check identified software
provides assurance that the Nuclear Safety Cross-Check Analysis
(NSCCA) has been properly performed.

135

STEP - Current Defense Practices Overview

Terms such as "critical component", Firmware, Software, Certified
Software, and NSCCA are explained. "Critical" refers to functions,
circuits, "hardware and software components which apply directly to,
or control, the pre-arm, arm, fuze, unlock, release, launch, or
targeting functions of a nuclear weapon system." Firmware is
explained to be logic circuits in read-only memory that may be altered
by the software under certain circumstances. Software is information
used to control or program, and which is processed or produced by
automatic machines. In the context of this regulation, software
includes those types of machine-stored logic devices known as
firmware. Certified Software is cross-check identified software which
has had a successful NSCCA and is published on the nuclear certified
software list. The NSCCA is an analysis performed by an organization
which is independent from the software developer to ensure that
cross-check identified software contains no improper design,
programming, fabrication, or application which could contribute to
premature, unsafe, or unauthorized operation of a nuclear system.

Responsibilities for NSCCA and certification lie with the
Inspector General, AF. The Director of Nuclear Safety supervises the
program and ensures implementation and maintenance of the program,
certifies software, coordinates all nuclear safety certification
requirements for software for use with nuclear weapons, and designates
software that requires NSCCA.

Commanders of AFSC and AFLC must designate an agency within the
command which serves as the focal point for all NSCCAs and certifica-
tion requirements, and must provide to the Director of Nuclear Safety
recommendations for certification, denial or decertification, a copy
of the NSCCA results report, and criteria recommended for publication
in AFR 122-10. The commander of SAC uses cross-check identified
software on weapon systems wich nuclear warheads installed only after
notice of certification is received, establishes procedures for
changes, and ensures that all certified software is managed in such a
manner that nuclear safety is not degraded. A sample format of the
NSCCA results report is included as a supplement.

AIR FORCE REGULATION 122-10: 	Nuclear 	Weapon 	Systems 	Safety
Design and Evaluation Criteria.
27 November 1978.

Minimum criteria for design, development, and modification of
nuclear weapon systems are specified, and criteria to be used in the
evaluation of systems, equipment, and software for nuclear safety
certification are outlined. A glossary of terms is provided.

136

STEP - Current Defense Practices Overview

"Nuclear safety requirements are set up to prevent nuclear
accidents and to minimize both the number and consequence of nuclear
incidents and deficiencies." Each nuclear weapon system is designed
and operated to control critical functions in the sequence leading to
detonation of the weapon. As a minimum, the following functions are
considered to be critical:

- Authorization to use the weapon (enabling),
▪ Intent Command Signal and Prearming (prearming is a separate

and distinct function from enabling),
- Launching or Releasing,
- Environmental Sensing and Final Arming (several environmental

measurements are taken to determine if the environment is
within limits defined for operational use).

Design and Evaluation criteria include minimum standards for
design, minimum standards for nuclear safety certification, and
minimum standards for specific items. General safety design criteria
for human engineering requires that at least two independent human
errors will not allow prearming, arming, launching, or releasing a
nuclear weapon in an operational weapon system.

In separate chapters, design criteria for ground launched missile
systems, combat delivery aircraft systems, and automata and software
are presented. This review will address in detail only the chapter on
automata and software. The design criteria apply to automata and
software which receive, store, process, or transmit data to monitor,
prearm, arm, enable, unlock, target, launch or release a nuclear
weapon.

The design must include a nonvolatile core or main memory with
characteristics that make sure that the contents of memory are not
altered or degraded over time. "The system will be designed to
prevent automatic control until all valid and correct data have been
loaded and verified." Once memory has been loaded and verified,
programs and data must be protected against unauthorized changes. A
single hardware fault must not cause a memory change that could
initiate a critical function.

A method must be provided to erase any secure codes from memory.
"Any software used to process the data for, provide the status of, or
which can exercise automated or automatic control over any critical
nuclear weapon system function, may be subjected to an NSCCA,
designated a critical component, and certified according to AFR 122-9
to insure system nuclear safety integrity."

137

STEP - Current Defense Practices Overview

This Page Intentionally Left Blank

138

STEP - Current Defense Practices Overview

3.4. ARMY REGULATIONS

AR 70-1: Army Research, Development and Acquisition.
15 February 1977.

This regulation establishes policy, responsibilities, and general
procedures for conducting Army research, development, and
acquisition. The objective of Army research and development is timely
development of weapons and systems, at minimum cost, with adequate
performance to meet approved operational requirements and capable of
being effectively manned and supported in any environment under all
conditions of war. With reference to "Policy and principles for
conducting research, development, and acquisition", that section which
is appropriate to developing computer software states that:

"Throughout the research and development cycle, emphasis must be
placed on the design, test, and production of equipment operable
and maintainable by individuals possessing common skills,
aptitudes, and education levels in order to reduce training cost."

Furthermore, it is specified that test and evaluation will begin as
early as feasible.

Development contract clauses should be flexible and state so as to
encourage the contractor to conduct trade-offs and request cost
effective waivers. The project manager may waive technical
requirements of MILSPEC/STDs which are not determined to be within the
overall program objectives. "All approved requirements documentation
is also published in complete form as separate documents (AR 71-9)."

Responsibilities of the Army Staff and major commands are listed
and the role of the US Army Operational Test and Evaluation Agency
(OTEA) in support of materiel acquisition and force development is
identified. OTEA has the responsibility of supporting the materiel
acquisition and force development processes by exercising
responsibility for all operational testing and by managing force
development testing and experimentation and joint user testing for the
Army. In conjunction with TRADOC, OTEA verifies that known hardware
deficiencies affecting combat capability have been corrected and such
corrections incorporated into production hardware prior to initial
issue to units in the force. The Commanding Officer, US Army Computer
Systems Support and Evaluation Agency has the responsibility for
technical evaluation services to developers "during design and
development of electronic data processing and computing equipment", as
requested, and the US Army Computer Systems Command has
responsibilities, in coordination with other agencies, for developing
the Army-wide program of R&D in computer software techniques.

139

STEP - Current Defense Practices Overview

The life cycle system management of Army systems is divided into
four phases: conceptual, validation, full-scale development, and
production and deployment. Management decisions during the acquisi-
tion cycle are made at milestones appropriate to the particular
program. Reviews are held to provide a sound but flexible decision
making process. The Materiel Acquisition Decision Process (MADP), a
vital part of the materiel acquisition process, may (depending on the
type of program) include the following reviews:

(1) Defense Systems Acquisition Review Council (DSARC) reviews
for major system acquisitions.

(2) Army Systems Acquisition Review Council (ASARC) reviews to
prepare for the DSARC reviews for major systems, or make
major decisions on non-DSARC major acquisition programs.

(3) In-Process Reviews (IPR's) to make major type decisions for
non-major system acquisitions.

Essential ingredients of an effective MADP review are a full
interchange of information (including Development Test (DT) and
Operational Test (0T) plans, reports, and evaluations, and Cost
Operational Effectiveness Analyses (COEA)) and the freedom to consider
and accept other courses of action.

Strategies or special documentation for major programs include:

- the Special Task Force or Special Study Group (STF or SSG), a
group convened to conduct analysis, ensure inclusion of all
alternatives within an analysis, monitor experimentation, etc.

- the Decision Coordinating Paper (DCP), an OSD acquisition
document that brings the rationale for starting, proceeding
into the next acquisition phase, reorienting, or stopping a
development program at each of the critical milestones in the
acquisition cycle.

- the Program Memorandum, a document similar to a DCP and
initially prepared by the materiel developer.

- the Requirements Control Board, a panel of selected senior
officials which 	reviews 	trade-off options concerning
technical requirements (formed on an exception basis).

▪ the system/project management concept that uses a
system/project manager who is responsible for planning,
organizing, directing, and controlling all phases of the
development, 	procurement, 	production, 	distribution 	and
logistical support.

140

STEP - Current Defense Practices Overview

- the OSD management reviews that evaluate the organization and
procedures for the management of selected major programs,
usually in the form of a briefing by the project manager to a
panel of senior OSD officials.

Strategies for non-major programs include conducting In-Process
Reviews (IPR) to evaluate project/system status and recommend a course
of action. Participants in these reviews include representatives of
the materiel developer, combat developer, logistician, and trainer.
For systems using ADP software, membership in the IPR will include a
representative of the organization responsible for such effort. Test
agencies will present DT and OT evaluations directly to the IPR.
Formal IPRs that may be held are the:

- Validation IPR, held upon completion of the advanced
development effort.

- Development acceptance IPR, where results of development and
operational testing and evaluations will be discussed by the
testing agencies.

- Special IPR, directed by the materiel developer or the Deputy
Chief of Staff for Research, Development, and Acquisition
(DCSRDA) when other formal IPR's are not appropriate.

At a minimum, normally, the validation and the development acceptance
IPR will be required.

Nondevelopmental items are those items available for procurement
to satisfy an approved materiel requirement with no expenditure of
RDTE funds for development, modification, or improvement. "The MADP
review applicable to nondevelopmental items is the special IPR."
Nondevelopmental items only undergo that T&E necessary to assure
"acceptability of the item for entry into the operational inventory
and adequacy of logistic support concepts and resources."

Certain criteria that are applicable to all acquisition programs
and must be considered at each MADP review are the criteria for entry
into the Validation Phase, criteria for entry into Full-Scale
Development (includes DT/OT I independent evaluations, when
scheduled), criteria for low rate initial production (includes OT III,
DT/OT II test results and independent evaluations), and criteria for
full production and deployment (DT II and OT II or DT III and OT III
test reports, as appropriate).

This regulation divides testing during the development and
acquisition of materiel into DT, OT, and production and post-
production testing. Development testing is designed to demonstrate
that the engineering design and development process is complete,
design risks have been minimized, the system will meet specifications;

141

STEP - Current Defense Practices Overview

and, to estimate the system's military utility when introduced.
Operational testing is accomplished with typical user operators, in as
realistic an operational environment as possible, to provide data to
estimate the system's operational effectiveness and suitability, the
system's desirability to the user considering equipment already
available, the need for modification to the systems, and the adequacy
of doctrine, organization, operating techniques, tactics, training for
employment of the system, and maintenance support for the system.

Production and post-production testing is accomplished by or for
the procuring activity on full-scale production quantities (see AR
700-78). The coordinated test program (CTP) will state what DT and OT
are to be accomplished, tailor test requirements to the particular
system and be as specific as possible, and will identify critical
issues to be examined through testing. OTEA is the independent
evaluator throughout the CTP.

Automatic data processing equipment (ADPE), including that ADPE
which is integral to combat weapons systems, is within the purview of
this regulation. Advanced development, engineering development, and
operational system development addresses software test data packages
and considerations for electronic and signal security, and requires
software and documentation for tactical data (command and control)
systems to be developed and tested concurrently with hardware.

The objective of system-advanced, engineering, and operational
systems development is to conduct the necessary engineering,
development, and T&E to ensure qualitatively superior weapons and
equipment, which meet requirements, are simple to operate and
maintain, and are reliable and affordable. The materiel developer is
required to manage the detail design effort necessary "to provide a
specific design approach, and to provide test hardware and software
test data packages which will approximate production hardware as
closely as practicable". This includes actively seeking and obtaining
the combat developers' advice and assistance at project initiation and
continuously through the development program. The developer must
prepare and update a development plan. "Signal intelligence vulnera-
bility must be considered for all systems ... involving communica-
tions, data processing, or intentionally radiated electromagnetic
energy."

Sufficient funds must be programmed to provide for "the technical
uncertainty inherent in the development effort, including programming
for necessary design, engineering, testing, fault location and
correction, Producibility, Engineering, and Planning (PEP); and an
allowance for engineering changes, as well as concurrent development
and testing of the maintenance test package (AR 750-1)." PEP measures
include, but are not limited to, developing technical data packages,
and computer modeling or simulation of the production process to
better assess producibility. PEP will be conducted so that the
results of DT II/OT II can be incorporated into the PEP process.

142

STEP - Current Defense Practices Overview

Product engineering and integrated logistic support (ILS) must be
completed prior to the decision to produce/deploy the item or system,
and will include reliability and maintainability, quality assurance,
data acquisition and analysis for system effectiveness assessment.

AR 70-10: Research and Development Test and Evaluation During
Development and Acquisition of Materiel. 29 August 1975.

This regulation implements DoD Directive 5000.3 and incorporates
recommendations from the Army Materiel Acquisition Review Committee
(AMARC). It applies primarily to the development testing (DT) and
operational testing (OT) that are accomplished during the materiel
acquisition process, providing separate and independent evaluations
for consideration at decision reviews. A decision review is a program
review conducted by the Defense Systems Acquisition Review Council
(DSARC), Army Systems Acquisition Review Council (ASARC), or by an
In-Process Review (IPR). DT and OT are defined and described. DT is
that T&E conducted to demonstrate that the engineering design and
development process is complete, that the design risks have been
minimized, and that the system will meet specifications. OT is T&E
that is conducted to estimate a prospective system's military utility,
operational suitability and effectiveness. OT also provides
information on personnel requirements and operating instructions and
handbooks.

The role of the Operational Test and Evaluation Agency (OTEA) is
described. OTEA is responsible for all OT and manages Force
Development T&E (FDTE) and joint user testing for the Army. OTEA
determines when, where, how, and by whom operational testing will be
accomplished for all major and selected non-major systems.

Planning for testing is addressed, and testing during validation and
full-scale development phases are described.

Specific responsibilities of Army Staff and major Army Commands
for participating in and managing test and evaluation in the materiel
acquisition process are stated. The roles of materiel developers,
combat developers, the logistician, OTEA, the trainer, the operational
tester, whether or not it be OTEA, and the Concepts Analysis Agency
(CAA) are listed and described.

The goals for Army testing include:

1) Maximum efficient use of resources, avoiding duplication of
efforts, facilities, or programs;

2) Complete testing, with a minimum of DT II, OT II, and DT III;
3) Objective testing, where normally DT and OT are conducted

separately.

143

STEP - Current Defense Practices Overview

The testing to support decision making includes DT I, II, and III,
which are, respectively:

1) Testing beginning early in the development cycle to
demonstrate that technical risks have been identified and
solutions are "in hand";

2) The source of the final technical data for determining the
system's readiness for transition into either the low-rate
initial production portion or the full production portion of
the production and deployment phase;

3) The test that is conducted on production prototypes or items
delivered from an initial or a pilot production run to verify
their adequacy and quality when produced in quantity using
quantity production processes.

Operational testing is done by an organization independent of the
developing, procuring, and using commands, and usually conducted in
phases keyed to an appropriate decision review in the materiel
acquisition process. OT I is a test of the hardware configuration of
a system or its components to provide an indication of military
utility and worth to the user. OT II is the test of engineering
development prototype equipment prior to the initial production
decision. OT III is normally a test of initial production items and
has the fundamental purpose of providing data on the item or system to
estimate its operational suitability.

Nondevelopmental item and system testing is required prior to type
classification. Type classification identifies the life-cycle status
of a system by the assignment of a type classification designation and
records the status of a system in relation to its overall life history
as a guide to procurement, authorization, logistical support, assets,
and readiness reporting. Redundant testing is prohibited. Force
development testing and experimentation (FDTE), technical and
operational feasibility testing, innovative testing and on-site user
testing are described for relevant circumstances.

When computers and computer programs are part of the system to be
acquired, integration of the testing of the computer programs must be
given special consideration. The extent to which the computer
programs form the basis for satisfying the functional and performance
requirements of the overall system will impact the extent to which
separate or integrated hardware testing must or can be accomplished.

Testing of special materiel, such as SAFEGUARD and Site Defense
systems, aircraft testing, nuclear weapons and nuclear reactor systems
testing, chemical weapons testing, and communications security
(COMSEC) equipment testing is described in terms of responsible
agencies and technical criteria.

144

STEP - Current Defense Practices Overview

The final chapters of the regulation deals with test
administration and test funding, specifically the coordinated test
program (CTP); the five-year test program (FYTP), a compendium of
approved outline test plans requiring user troops, independent
evaluation and test plans and reports; and test funding, support, and
organization. An appendix provides an explanation of terms used.

AR 702-9: Product Assurance - Production Acceptance Testing and
Evaluation. No Date.

This regulation is a revision that includes definitions and selection
criteria for First Article testing, instructions regarding
accountability for and auditability of testing, and an expansion to
cover computer software and materiel evaluation. Supplementation of
this regulation is permitted but not required. First Article tests
are a group of tests performed on preproduction models or prototypes
that have been manufactured at the intended production facility using
the intended production components, processes, and personnel.

The purpose of this regulation is to assure product conformance to
baseline performance, safety, reliability, availability, and
maintainability (RAM), and quality requirements; to determine the
suitability of those requirements for satisfying operational needs;
and to provide for the reporting, evaluating, and correcting of
production test incidents/defects prior to release of the materiel to
the supply system. The tests and evaluations described are those
required for Product or Quality Assurance purposes, after development
and operational tests are conducted and the decision to enter
production is made, for reconfiguration of production materiel, and
when the Army elects to acquire equipment or software for which it
does not own the baseline.

In the situation when limited production is authorized on an
exception basis, Development Testing III (DT III) can be conducted on
preproduction prototypes or production items. The evaluated test data
provide information to the production and deployment decision process
such as results of tests similar to First Article Preproduction Tests
of the item's quality and conformance to contract requirements. "The
conduct of DT III is ROTE funded, and the test items are procurement
funded."

No preproduction or production test may start without government
approved explicit, firm, and auditable test requirements, plans, and
procedures. Production test plans and requirements may not be waived
nor changed during a test.

145

STEP - Current Defense Practices Overview

"Required testing during production includes First Article Tests
(FAT) that determine the producer's ability to produce a conforming
product using the production facilities, tooling, processes, and
personnel intended for the production run; Comparison Tests (CPT) and
Interchangeability Tests (ICT) to insure that production items conform
to contract requirements; and Production Acceptance Tests (PAT) to
insure that only conforming products are accepted." The First Article
Preproduction Test (FA-PPT) is conducted on one or more production
prototypes prior to initiating full-scale production. It serves the
purpose of confirming contract compliance, proving out the producer's
detailed design for production, and confirming corrective
modifications from earlier testing on engineering prototype materiel.

Comparison testing is a periodic test of random samples of
full-production items that is conducted as a quality assurance measure
to detect any design, manufacturing, or quality deficiencies that have
developed during volume production. It is conducted or supervised by
an agent independent of producer or Government on-site quality
assurance personnel.

Quality conformance acceptance inspections are the examination and
verification tests normally prescribed in the technical data package
for performance by the contractor. They include, as necessary,
measurements or comparisons with technical quality characteristics.
Production quality conformance acceptance inspection requirements will
be prescribed in the technical data package. Quality conformance
inspections include materiel test, environmental test, reliability
tests, and endurance tests. These tests must be designed to provide
data which may be used as the baseline for subsequent testing.

It is specified that previous validated test data, including
contractor generated test data, shall be used to avoid costly
duplicative testing. A section on software testing will be added to
this document.

Chapter 2 addresses the specific responsibilities of the Army
agencies which are involved with quality assurance testing,
operational testing, safety activities, health precautions, and
research and development.

AR 1000-1: Utilization, Basic Policies for System Acquisition.
1 June 1981.

Army Regulation 1000-1 addresses Basic Policies for Systems
Acquisition, adds a term, Designated Acquisition Program (DAP), for
programs reviewed by ASARC, but not by DSARC, and provides guidance
for integrated logistics support (ILS), reliability, availability, and
maintainability (RAM), and rationalization, standardization, and
interoperability (RSI). This regulation applies to all elements of

146

STEP - Current Defense Practices Overview

the Active Army. It does not apply to ADP equipment or services, but
does apply to computer resources that are integral to or in direct
support of battlefield systems. These resources are dedicated and
essential to the specific functional task for which the higher order
system was designed.

System acquisition policy for Federal agencies shall:

(1) express needs and program objectives in mission terms and not
equipment terms;

(2) encourage innovation and competition in creating, exploring,
and developing alternative system design concepts (ASDC);

(3) place emphasis on the initial activities of the system
acquisition process;

(4) ensure appropriate trade-offs among acquisition, operating
and support costs, schedules, and performance characteristics;

(5) provide strong checks and balances by ensuring adequate
system T&E, and conduct such T&E independently where
practicable;

(6) accomplish system acquisition planning based on analysis of
agency missions;

(7) rely on private industry in accordance with OMB policy;

(8) ensure that each system fulfills a mission need, operates
effectively in its intended environment, and "demonstrates a
level of performance ... that justifies the allocation of the
nation's limited resources for its acquisition";

(9) depend on competition between similar or differing system
design concepts throughout the entire acquisition process,
when economically beneficial.

Command and control (C 2) systems require special management
relating to their rapidly evolving technology, multiple interface
requirements, and reliance on ADP hardware, software, and
communications. It is specified that they will be developed in an
evolutionary manner, with special attention to computer processing and
storage space.

Four milestone decisions and four phases of activity comprise the
normal DoD system acquisition process. Milestone 0 includes the
approval of the Mission Element Need Statement (MENS) and the
authorization to proceed into concept exploration, and exploration of
ASDC. "ASCD refers to alternative types of systems which solve the

147

STEP - Current Defense Practices Overview

need." Milestone I includes the selection of alternatives and the
authorization to proceed into Phase I, Demonstration and Validation
(D&V). Milestone II includes authorization to proceed into Phase II,
Full-Scale Development, which includes limited production for OT&E.
At this time the decision authority intends to deploy the system.
Milestone III includes the authorization to proceed into Phase III,
Production and Deployment.

Acquisition of ECR for operational military systems, including
C2 and automatic test equipment, will be managed within the context
of the total system. Interface requirements and plans to achieve
interface must be identified early in the life cycle, and special
attention must be paid to the plans for the following:

(1) Software development
(2) Documentation
(3) Testing
(4) Allied interface
(5) Post-deployment software support (PDSS)
(6) Communications
(7) Automation security

Standardization policy and plans for ECR include coordination with
US Army Materiel Development and Readiness Command (DARCOM);
minimization of types of battlefield computers, software support
requirements, and assembly language programming; use of DoD approved
HOLs, use of a standard ISA after 1982; and development of a military
computer family for use on new systems after 1983.

The Integrated Program Summary (IPS) describes the program
management plan for the complete acquisition cycle and includes 23
topics but should not be longer than 60 pages. These topics include
program history and alternatives, cost information, threat assessment,
system vulnerability, overview of acquisition strategy, and overview
of computer resources.

DARCOM Regulation 70-16: Management of Computer Resources in
Battlefield Automated Systems. 16 July 1979.

This regulation implements DoD Directive 5000.29, Management of
Computer Resources in Major Defense Systems. It establishes policy
and assigns responsibilities for the planning phase through the
testing phase, training and support of Army battlefield automated
systems employing computer resources, that is, those that employ
computer resources and operate or have components that operate within
the boundaries of the battlefield. Computer resources in these
systems must be managed as elements of major importance throughout the
entire system life cycle with particular emphasis on computer software.

148

STEP - Current Defense Practices Overview

Risk areas and a plan for their resolution consistent with
operational requirements must be identified prior to Milestone II and
included in the Materiel Acquisition Decision Process documentation at
the Milestone II review. Interoperability and communications support
requirements for using computer resources must be identified, defined,
validated, and included in appropriate planning documentation during
the Demonstration and Validation phase.

A Computer Resource Management Plan (CRMP) must be prepared for
each Army battlefield automated system during the Demonstration and
Validation Phase of system acquisition. The CRMP identifies important
computer resource acquisition and life cycle planning factors and
establishes guidelines to ensure adequate consideration of these
factors. The CRMP is the primary document used to establish the
necessary framework and support system for software control during
production and post deployment.

Software quality and support will be addressed as a major
consideration during all phases of the system life cycle. Computer
resources, including hardware, software, and support items, with
associated documentation required for the development and support of
operational systems, will be specified as deliverables in all
solicitation documents with the Government acquiring rights and data
as specified in the Defense Acquisition Regulations (DAR's).

DoD approved High Order Programming Languages (HOL's) will be used
to develop all battlefield automated system software unless it can be
demonstrated that none of the approved HOL's are cost-effective or
technically practicable over the system life cycle.

The Associate Director of Battlefield Automation Management within
the Directorate for Development and Engineering, DARCOM (Development
and Readiness Command) has responsibility for the overall DARCOM
computer resource management policy for Army battlefield automated
systems. The Commander of the U.S. Army Test and Evaluation Command
(TECOM), Aberdeen Proving Ground, MD, has the responsibility for
developing the capability and methods necessary to:

- Support the T&E of Army battlefield automated systems during
development and production;

▪ Determine system conformance with established requirements,
including reliability, maintainability, and performance;

• Conduct testing in a realistic environment, or a controlled
and reproducible test environment that stresses the system
design limits (worst-case testing).

149

STEP - Current Defense Practices Overview

Chapter 2 addresses the subject of life cycle computer resource
management. In all applicable systems, the hardware and accompanying
software shall proceed through the system life cycle concurrently.
The system life cycle, including Milestones 0, I, II, and III, is
defined and described. Technical milestones and attainment criteria
that are identified include:

- The system specification, which establishes the system
baseline functional requirements, and is prepared, reviewed,
and evaluated prior to Milestone I;

- The development specification, which establishes the design
necessary to implement, test, and maintain the functional
requirements established in the system specification, and is
placed under configuration management upon entry into the
Full-Scale Engineering Development phase;

- The product specification, which documents the details of
system implementation for production and maintenance, and is
prepared prior to Milestone III;

- The system requirements review (SRR), whose objective is to
ascertain the adequacy of the contractor's efforts in
defining system requirements, and is conducted when a
significant portion of the system functional requirements has
been established.

The system design review (SDR) is conducted at an intermediate
point in the definition effort, and has the goal of ensuring a
technical understanding between the contractor and the procuring
activity on system segments identified in the system specification and
the configuration items identified in the system specification and the
configuration items identified in the Computer Program Configuration
Item (CPCI) development specifications. The preliminary design review
(PDR) is conducted for each CPCI and is a formal technical review of
the basic design approach. It is conducted after approval of the
development specification and prior to the start of detailed design.
The critical design review (CDR) is a formal technical review of a
single or functionally related Computer Program Components (CPC), when
detailed design is essentially complete, and when the draft computer
program product specification and test procedures have been prepared.

A formal qualification review (FQR) is held for each CPCI, and is
conducted with the functional configuration audit (FCA), after the
formal qualification test has been completed. At the FCA, test plans,
procedures, and test results will be reviewed for compliance with
specification requirements, and it will be determined whether any
tests should be repeated. The physical configuration audit (PCA) is
conducted for each CPCI to establish that the CPCI technical data
package is complete, and that all physical items called for by the
contract have been produced in the specified configuration.

150

STEP - Current Defense Practices Overview

The computer resource management plan (CRMP) is developed by a
group including operational testers and evaluators, materiel
developer, combat developer, and designated post deployment support
activities prior to Milestone II, and is maintained throughout the
system life cycle. The CRMP must address the responsibilities for
integration of computer resources into the total system and the test
and evaluation of that system to determine entire system quality and
integrity, and complete management planning for the acquisition, test,
evaluation and post deployment support for all functions related to
the computer resources in the Army battlefield automated system.

Test management, quality assurance, data management, integrated
logistics support (ILS), training, personnel, deployment planning,
compatability and interoperability, and validation and verification
are defined and described. Standards for measuring software
performance must be adopted on a project by project basis by the
materiel developer, and include computer resource planning,
specifications, documentation, programming, quality control, testing,
and configuration management standards.

An appendix explains terms used in this regulation; a second
appendix specifies the sections and details of a CRMP; and a third
appendix addresses the issue of system acquisition reviews and
provides supplementary questions for milestone review checklists.

DARCOM Regulation 702-6: Quality Assurance and Product Quality
Management. 13 March 1979.

This regulation addresses Quality Assurance and Product Quality
Management. It is designed to prescribe the functions that DARCOM
considers necessary to verify the fact that product quality is being
achieved in accordance with technical requirements and quality
assurance provisions throughout the life cycle of individual items.
These functions may be assigned to an individual, an organization, or
a group of individuals or organizations.

Product Quality Managers must be knowledgeable in the areas of
design and contract requirements; production; inspection and test
methods; quality control procedures; quality assurance provisions;
maintenance; serviceability; and shelf life standards, data analysis,
ILS requirements, and other QA related specifications and regulations.

The objectives of product quality management are to:

- Plan appropriate steps throughout the acquisition cycle to
assure that quality of materiel performance is achieved;

- Provide a focal point for QA between Government activities
involved with development, production, maintenance, storage
and use of DARCOM materiel;

151

STEP - Current Defense Practices Overview

- Provide a system wherein past experience on quality problems
can be effectively used in preventing a recurrence or by
which existing quality problems can be easily and quickly
acted upon;

- Identify significant quality hardware problems that require
intensive management;

- Plan track, and report materiel quality.

Functions of product quality management programs are listed, and
include reviewing and appraising activities, coordinating activities,
providing quality assurance technical assistance, and assisting QA
organizations. General product quality management advance planning is
described. "To the maximum extent, the 'lessons learned' approach
should be practiced in all aspects of advance planning to capitalize
on prior mistakes and to achieve improvement in all areas, whether
technical or administrative." Quality Assurance Letters of
Instruction (QALI's) are described and explained in Appendix B. In
Appendix C, the Quarterly Product Quality Management Summary Report is
explained.

DARCOM Regulation 702-10: Quality Assurance Provisions for Army
Materiel. 22 May 1979.

This regulation deals with Quality Assurance Provisions (QAP's)
for Army Materiel. Product assurance is concerned with all aspects of
fitness of products for use, including performance, safety,
reliability, availability, maintainability, interchangeability, and
quality. This regulation defines the format, content and requirements
for QAP's, establishes organizational responsibilities for preparing
QAP's, establishes the relationship of QAP's to acquisition activities
in each phase of the life cycle, and provides for configuration
management and technical audit of QAP's.

Requirements for QAP's include:

- Identifying all features and characteristics important to
assure that the design conforms to user requirements and that
materiel produced conforms to design;

- Specifying acceptance standards for each characteristic
defined;

- Establishing test, examination and audit methods to assure
the design or product conforms to the established acceptance
standards through all stages of design, development, and use;

152

STEP - Current Defense Practices Overview

▪ Specifying the test and measuring equipment needed to carry
out the required procedures;

- Providing test and examination instructions;

• Providing for an Initial Production Test (IPT);

- Specifying critical processes that are essential to achieve
the production design and performance requirements.

Quality characteristics of a product include reliability and
maintainability requirements, material process requirements,
electrical and electronic requirements, and safety features.

Appendices to this document address preparation of a QAP form,
preparation of the Quality Engineering Planning List (QEPL), Sampling
Plan Considerations, and Related Publications.

153

STEP - Current Defense Practices Overview

3.5. NAVY REGULATIONS AND STANDARDS

TADSTAND 9: Software Quality Testing Criteria Standard for Tactical
Digital Systems. 18 August 1978.

The Naval Software Quality Testing Criteria Standard for Tactical
Digital Systems (TADSTAND 9) was promulgated out of a growing concern
over the problems of software cost and reliability within the DoD. It
has been difficult for the DoD to establish meaningful test
requirements supported by objective test criteria to determine
software quality. "Within the practical limitation of testing
protocol, resources, and time available, a test vehicle and associated
testing criteria are necessary to provide reasonable assurance that a
computer program will operate reliably if placed into service use."
This TADSTAND has been superseded by TADSTAND E and cancelled as of 25
May 1982.

Extensive testing is not seen to be a panacea that will ensure a
satisfactory system throughout its life cycle. "For new programs, the
software acquisition manager must initiate a rigorous quality
assurance effort at the beginning of program development." System
specifications and design documentation must be reviewed to ensure
that test specifications and procedures based on them are valid. "The
criteria for judging a program's performance and quality should be
contractually binding, derived from requirements specifications, and
kept in mind throughout the development cycle." Then, if the software
satisfies quality testing criteria during its development and
acceptance, there is some assurance that the program will operate
satisfactorily.

The life cycle support activity must sustain the quality assurance
(QA) effort when programs are placed into operational use.
Corrections and enhancements must receive as much attention to detail
as the original development.

All tactical digital system software programs are required to meet
the Software Quality Testing Criteria delineated by this standard.
These criteria apply to "all operational programs, including the
operating systems and on-line test programs, that are used in
computers, including microprocessors, embedded in a tactical digital
system." The Software Quality Testing Criteria (SQTC) also applies to
the entire integrated program, including a system's interfaces with
other systems and devices. However, the SQTC is not intended to be a
comprehensive testing criteria of itself; "specific performance
requirements and acceptance criteria are to be defined in test plans,
test specifications, and test procedures." Requests for deviations
from the standard must be extensively documented, including a
statement of criteria that will be used to ensure software correctness.

154

STEP - Current Defense Practices Overview

The intent of the Software Quality Test is to exercise all of the
functions of the software for a period of time in order to demonstrate
that the software is "reasonably free of serious or numerous errors".
Stress testing is required, in the ultimate user environment for which
the system program was designed, if possible. Otherwise, an alternate
test site should be a fully integrated facility equipped with the same
hardware found in the ultimate user environment. A testing activity
independent of the system acquisition manager and the developer shall
conduct the test. The length of time that the test shall be run is a
function of the complexity and mission of the system under test, and
shall be 25 continuous hours for those systems that are designed to
operate for more than one day at a time, or a length of time equal to
the mission plus premission and postmission periods. The program test
run shall not be stopped until scheduled test completion, and any stop
prior to the scheduled stop is considered to be a failure to meet the
requirements.

Saturation level operation is required, and at least three
distinct stress periods representing at least 1/3 of the total length
of the time of the test are required, where stressing includes, but is
not limited to:

• Providing more information to be processed than the processor
is designed to accomodate;

• Saturating the data transfer capabilities of the system;

▪ Exceeding assigned storage area capacities;

▪ Physically degrading hardware to create each possible reduced
capability mode for those systems designed to operate in such
a mode.

Software error limits and patch limits are specified, and it is
required that they be documented.

TADSTAND A: Standard Definitions for Embedded Computer Resources in
Tactical Digital Systems. 2 July 1980.

Tactical Digital Standard (TADSTAND) A has the purpose of
establishing standard definitions for terms applying to embedded
computer resources (ECR) in tactical digital systems, so that each
TADSTAND is consistent in its policy specifications. Deviations from
this TADSTAND are inappropriate.

155

STEP - Current Defense Practices Overview

TADSTAND B: Standard Embedded Computers, Computer Peripherals, and
Input/Output Interfaces. 2 July 1980.

TADSTAND B is promulgated to establish Standard Embedded
Computers, Computer Peripherals, and Input/Output Interfaces for use
within the Naval Material Command. It cites DoD Instruction 5000.2
and DoD Directive 5000.29 as references. Except for major systems
acquisitions that are based on DoDI 5000.2, this TADSTAND applies to
all phases of tactical digital system acquisition, including initial
concept formulation and requirements definition, design, development,
installation, production, and post-development support throughout the
system life-cycle. For the excepted systems, this TADSTAND will be
applied to all phases of acquisition commencing with the Demonstration
and Validation phase.

The requirement to use standard ECR in tactical digital systems
comes from the perceived need to stem ECR proliferation, achieve an
acceptable level of supportability, and reduce costs over system life
cycles. Standardization is expected to improve reliability and
maintainability and reduce cost and schedule risks in development and
acquisition of new tactical digital systems. The following are
designated as standard or planned standard embedded computers:

AN/UYK-7
AN/UYK-20
AN/AYK-14
AN/UYK-44 (Militarized Reconfigurable Processor-microprocessor,

Software compatible with UYK-20, AYK-14)
AN/UYK-43 	(Software compatible with the UYK-7)

Only these computers may be used unless a waiver is obtained. For
each major system upgrade, a new waiver request must be submitted.

Configuration management will be exercised by the development,
acquisition, maintenance, or support offices under the guidance of
established Configuration Control Boards (CCBs). Each problem and
corrective action will be dealt with by use of the Engineering Change
Proposal (ECP).

If adherence to this TADSTAND is technically infeasible,
economically prohibitive, or operationally impracticable, a waiver
request must be submitted. Requests for waiver must include detailed
descriptions of the system; software and hardware requirements; data
description; reliability and maintainability information; acquisition,
testing, and integrated logistic support information; and reasons,
with rationale and documentation, why standards cannot be used.

156

STEP - Current Defense Practices Overview

TADSTAND C: Computer Programming Language Standardization Policy for
Tactical Digital Systems. 2 July 1980.

TADSTAND C has the subject of Computer Programming Language
Standardization Policy for Tactical Digital Systems. Excluded from
the provisions of this TADSTAND are:

(1) Hardware-intensive 	applications 	authorized 	to 	use
non-standard microprocessors;

(2) Automatic Data Processing (ADP) software;

(3) Special purpose languages such as requirements definition
languages, design specification languages, automatic test
languages, job control languages, and simulation languages.

The goal of standardizing languages is to improve total life cycle
maintainability and cost effectiveness, and to provide "a significant
reduction to the spiraling costs for developing, testing, and
maintaining tactical digital systems."

Low level code may be used for required machine oriented functions
such as input/output where the programming language does not provide
high level support, or for software functions which require special
optimizing or fine-tuning such as executives, interrupt handlers, math
routines, etc. The programming languages CMS-2Y, CMS-2M, and SPL/I
are identified as Navy standards. Ada is designated as a planned Navy
standard language and is not authorized currently unless an explicit
waiver is obtained. The SPL/I/CMS-2 preprocessor is designated as
standard and Fortran is only approved for use in development of
applications software when a waiver has been granted for the use of a
non-standard embedded computer.

Waivers to this TADSTAND require documentation similar to that of
TADSTAND B.

TADSTAND D: Reserve Capacity Requirements for Tactical Digital
Systems. 2 July 1980.

The subject of this standard is the Reserve Capacity Requirements
for Tactical Digital Systems, and applies to those systems under the
purview of the Naval Material Command. This encompasses all phases of
the life cycle of tactical digital systems, except for major systems
acquisitions based on DoDI 5000.2, in which case the TADSTAND will be
applied to all acquisition phases commencing with the Demonstration
and Validation phase. The reserve capacity requirements shall apply
to the first production delivery of a new system or a modified system
that incorporates new Embedded Computers or hardware modifications to
Embedded Computers (EC) already in the system, and shall not include

157

STEP - Current Defense Practices Overview

capacities reserved for future growth, when the growth requirements
are known prior to acquisition commitment to the configuration of the
system.

As a minimum, main memory shall have a 20% reserve capacity,
measured at peak main memory loading of the EC during its operational
mission, with all programs and data required for successful
operational mission execution. Secondary storage shall have a 20%
reserve capacity, as a minimum, measured at peak secondary storage
loading of the EC, with all secondary storage information included.
It is required that secondary storage and central processor throughput
each must have a 20% reserve capacity, as a minimum. This reserve
capacity is expressed as a percentage of available capacity at full
operational loading over a specific period of time (determined by
operational mission characteristic). The number of reserve
input/output channels required is a minimum of 18.75% (3/16) of those
available.

Requests for deviations from this standard will follow the
procedures similar to those specified for waivers in TADSTANDS B and C.

TADSTAND E: Software Development, Documentation, and Testing Policy
for Navy Mission Critical Systems. 25 May 1982.

TADSTAND E addresses the subject of Software Development,
Documentation, and Testing Policy for Navy Mission Critical Systems.
It cancels TADSTANDs 2,3, and 9. It defines mission critical systems
to be those systems which are required for the conduct of the military
mission of the DoD. This definition includes systems related to
intelligence activities; cryptology activities related to national
security, command and control of military forces, a weapon or weapon
systems; and, the direct fulfillment of military or intelligence
missions that are not routine administrative or business applications.

TADSTAND E "applies to all mission critical systems under the
cognizance of the Chief of Naval Material that use embedded computer
resources," as well as other programs that are intended to be employed
as mission critical systems, throughout all phases of system
acquisition.

A concern exists over the high cost of software development, life
cycle support, reliability and supportability within the DoD.
Therefore, a need is perceived for establishing meaningful system
operational and performance software requirements and objective test
criteria for determining software correctness. Management controls
are lacking to govern the software development, acquisition, and life
cycle support process. Clear and detailed guidance to specify
software specifications and requirements throughout the life cycle
must be supplied to the program and acquisition managers.

158

STEP - Current Defense Practices Overview

Previous standards and instructions were issued as an initial step
toward correcting the problem areas, but some problems arose in
uniform implementation because of a lack of direction on specific Data
Item Descriptions (DIDs), and a resulting proliferation of Unique Data
Item Descriptions (UDIDs).

TADSTAND 9 invoked standard software quality testing criteria for
tactical digital systems, was primarily concerned with acceptance
testing rather than the full range of requirements covering the
complete software development process, and therefore applied more to
Navy software acquisition managers than to software contractors.

MIL-STD-1679 establishes minimum uniform requirements covering the
complete development process of weapon system software, including
program test, quality assurance, and program acceptance criteria, and
must be invoked in all new contracts for development, documentation,
or testing of software. When MIL-STD-1679 is invoked on any
organization, the Navy development activity or acquisition manager is
not relieved of still further responsibility regarding the
requirements of this TADSTAND.

Limited tailoring of MIL-STD-1679 is permitted under certain
circumstances, such as system size or complexity that does not require
the complete minimum set of software documentation, but "in no case
will such tailoring result in the development of a new DID, i.e., a
UDID." Guidance for configuration management of software and related
documentation is specified. Waivers of TADSTAND E may be granted, but
the waiver must be granted before proceeding with the software
development. Each waiver must be considered on a case-to-case basis.

COMOPTEVFOR NOTICE 3960: Operational Test and Evaluation of Software
Intensive Systems and Computer Software
Subsystems. 6 July 1979.

COMOPTEVFOR (Commander Operational Test and Evaluation Force)
Notice 3960 provides general guidelines for conducting OT&E of
Software Intensive Systems and Computer Software Subsystems in
accordance with the software initiatives contained in DoDD 5000.3 and
DoDD 5000.29. Because the cost for weapons system software was over
$3 billion in 1979, and the cost, especially for maintaining
operational software, is steadily rising, a directive is needed to
promote higher visibility and a more disciplined approach to
management of software design, engineering and programming to ensure
production of effective software at minimum life cycle cost. "Due to
lower visibility in the acquisition process, development and testing
of software is not given the same emphasis as hardware even though it
is just as critical to the operational performance of a new or
existing weapons system."

159

STEP - Current Defense Practices Overview

The provisions of this directive are intended to provide
standardized guidance for Operational Test Directors, e.g.,

(1) At an early point in system development planning and
definition, COMOPTEYFOR will participate by involving typical
operator personnel in the software functional design and
developmental testing, identifying the extent to which DT&E
accomplishes OT&E objectives and which tests might be
combined, and defining what system operational issues should
be monitored closely throughout the software development;

(2) During 	initial 	planning 	of 	software 	development,
configuration management procedures should be reviewed for
the purpose of ensuring that management plans and
specifications required by DoDD 5000.29 (Management of ECR)
are complete and promulgated. Development plans should
provide sufficient configuration baselines to ensure stable
software and documentation prior to final IOT&E test phases;

(3) Requirements Analysis. 	Early development planning can be
significantly augmented by:

(a) Conducting 	a 	system 	and 	subsystem 	operational
requirements analysis

(b) Interpreting requirements from an operational viewpoint
(c) Relating system and software subsystem operational

requirements to mission needs
(d) Commenting on the adequacy of program performance

specifications to capture the functional part of these
requirements

(e) Identifying critical system operational issues or
limitations related to software for OT-III (OPEVAL);

(4) Test planning will consist of reviewing development test
plans and procedures for performance and quality oriented
testing, to be sure that this testing is clearly defined in
the TEMP, and that performance testing is planned at the
completion of significant phases, especially the integration
phase.

Stages (1)-(4) are also known as OT-I & OT-II. In the stage of
OT-III Integration Testing, combined DT/OT may occur, software
standards are reviewed for conformance, scenario driven tests are
exercised, and an early estimate of system operational effectiveness
and operational suitability may be prepared.

160

STEP - Current Defense Practices Overview

At the stage of OT-III addressing OPEVAL, a total system test with
fully integrated software and hardware in the ultimate user
environment will determine system operational effectiveness and
suitability. OT-IV is designed to complete unfinished IOT&E, test
fixes, and refine tactics for hardware and software, and may be
continued or reopened until the TEMP objectives for that phase have
been attained. OT-V is designed to ensure demonstration of the
achievement of program objectives for system operational effectiveness
and suitability.

In summary, the functions of COMOPTEVFOR include:

- The analysis and relating of system and software subsystem
requirements to mission needs;

- Monitoring of software development by identifying and
tracking operational issues and requirements;

- Preparing 	OT&E 	objectives
	

and 	required 	operational
characteristics;

- Reviewing development test plans and procedures to ensure
that operational objectives have been considered;

- Providing user oriented services to developmental testing;

- Evaluating the operational impact of major changes;

- Planning and conducting OPEVAL on new or modified systems.

OPNAV INSTRUCTION 3960.10, TEST AND EVALUATION, 22 October 1975.

This instruction, issued by the office of the Chief of Naval
Operations, establishes policy for test and evaluation in Navy
acquisition programs, defines responsibilities, establishes procedures
for planning, conducting, and reporting T&E, and establishes
procedures and a format for test and evaluation master plans (TEMPs).
The key element of DoD acquisition policy affecting T&E is that
"Programs shall be structured and resources allocated to ensure that
the actual achievement of program objectives is the pacing function."
It references DoD Directive 5000.1, "Major Systems Acquisition".

Three types of T&E are defined:

- Developmental Test and Evaluation (DT&E), that test and
evaluation conducted to demonstrate that the engineering
design and development process is complete, that the design
risks have been minimized, that the system will meet
specifications, and to estimate the system's military utility
when introduced;

161

STEP - Current Defense Practices Overview

• Operational Test and Evaluation (OT&E), that test and
evaluation conducted to estimate the prospective system's
military utility, operational effectiveness and suitability,
and need for any modifications;

- Production Acceptance Test and Evaluation (PAT&E), that
testing conducted on production items to demonstrate that
systems meet contract specifications and requirements.

Authority for these three types of T&E is described, and the_
phases of the program development lifecycle where each is utilized are
delineated. Acquisition categories are established according to
dollar values allocated to funds for RDT&E and funds for production.
The amount of T&E required for a program is then specified as a
function of the acquisition categories (ACAT), and is more intensive
for more expensive programs.

"The TEMP is the controlling management document which defines the
test and evaluation for each acquisition program." This document is
described and explained. It contains the integrated requirements of
the developing agency (for DT&E) and COMOPTEYFOR (for OT&E). The TEMP
is prepared early in each new acquisition program and approved prior
to Milestone I. The initial version of a TEMP will lack many
specifics that will be added in later revisions as developed. The
TEMP shall be retired upon completion of the last phase of OT&E.

Special T&E situations such as T&E of ships, combined DT and OT,
waivers, and special complex programs are described. T&E reports must
be correlated to program key decision points and secondary milestones,
and requirements for reports will be specified in the TEMP.

162

STEP - Current Defense Practices Overview

3.6. MISCELLANEOUS DOCUMENTS

Department of Defense Acquisition
Improvement Program: 	 Carlucci's Initiatives.

1 January 1982.

The Deputy Secretary of Defense chartered five working groups from
the military Services to develop recommendations for improving the DoD
acquisition process, in light of the fact that the DoD had a
significant budget increase at the same time that almost all other
Federal agencies were experiencing substantial cuts in funds.
Recommendations resulting from the efforts of the working groups
reflect "major changes both in the acquisition philosophy and the
acquisition process itself". DoD is demonstrating its commitment to
act by a series of "far-reaching measures" whose ultimate goal is
implementing the entire group of 32 actions.

A series of initiatives were approved which reflect a shift in
management style to a "controlled decentralization" style, whose
objective is to return significant amounts of responsibility and
authority to lower levels of management while continuing to hold
program managers accountable for their management decisions. Other
actions were centered around the goals of:

1) improving the planning and execution of weapon system
programs,

2) strengthening the industrial base which supports the DoD,

3) reducing the burdensome administrative requirements that make
the acquisition process more costly and time-consuming than
necessary,

4) increasing the readiness of weapon systems, particularly in
the early stages of their lives in the field.

Concerns with the acquisition process include the failure to stick
to long-range plans, the burden of reporting and checking, the rising
costs of acquisition, unrealistic cost estimates, the weakness of the
industrial base, the length of the acquisition cycle, the high cost of
ownership, and the low readiness of fielded systems. These concerns
were voiced in all sectors, from Congress to program managers.

163

STEP - Current Defense Practices Overview

The thirty-two Carlucci initiatives are as follows:

1. Management Principles should include improved long-range planning;
greater 	delegation 	of 	responsibility, 	authority 	and
accountability; emphasis on low-risk evolutionary alternatives;
more economic production rates; realistic budgeting and full
funding; improved readiness and sustainability; and strengthening
the industrial base.

2. Preplanned Product Improvement should be used as a means -ifif
achieving performance growth.

3. Multiyear Procurement should be used, on a case-by-case basis,
reduce unit production costs.

4. Increased Program Stability in the Acquisition Process should be
achieved by fully funding R&D and procurement in order to maintain
the established baseline schedule.

5. Encourage Capital Investment to Enhance Productivity through
legislative, contractual and other economic incentives.

6. Budget to Most Likely Costs to achieve more realistic long-term
defense acquisition budgets, reduce apparent cost growth and
achieve increased program stability.

7. Economic Production Rates should be used whenever possible and
advantageous.

8. Assure Appropriate Contract Tzpe in order to balance program needs
and cost savings with realistic assessment of contractor and
Government risk.

9. Improve System Support and Readiness by establishing objectives
for each development program and "designing-in" realiability and
readiness capabilities.

Items by
reducing

Risk by
to deal

10. Reduce the Administrative Cost and Time to Procure
raising the limit on purchase order contracts and
unnecessary paperwork and review.

11. Incorporate the Use of Budgeted Funds for Technological
quantifying risk and incorporating budgeting techniques
with uncertainty.

12. Provide Adequate Front-End Funding for Test Hardware in order to
emphasize early reliability testing and to permit concurrent
development and operational testing when appropriate.

164

STEP - Current Defense Practices Overview

13. Governmental 	Legislation 	Related 	to 	Acquisition 	which
unnecessarily burdens the acquisition or contracting process
should be eliminated.

14.Reduce the Number of DoD Directives by performing a cost-benefit
Zhe7kd7 —h---M5irequitigtatteAE be the sole issuer of
acquisition-related directives.

15. Funding Flexibility should be enhanced by obtaining legislative
authority to transfer individual weapon system procurement funds
to RDT&E when appropriate.

16. Contractor Incentives to Improve Reliability and Support should be
developed and introduced in RFPs, specifications and contracts.

17. Decrease DSARC Briefing and Data Requirements in order to increase
the efficiency of DSARC and other program reviews.

18. Budgeting Weapons Systems for Inflation should be adopted in order
to more realistically portray program cost.

19. Forecasting of Business Base Condition at Major Defense Plants by
coordinating interservice overhead data and providing program
projections to plant representatives.

20. Improve the Source Selection Process by placing added emphasis on
past performance schedule realism, facilitization plans and cost
credibility.

21. Develop and Use Standard Operational and Support Systems to
achieve earlier deployment and enhanced supportability with lower
risk and cost.

22. Provide More Appropriate Design to Cost Goals to provide effective
incentives during earTy production runs.

23. Assure Implementation of Acquisition Process Decisions by
initiating an intensive implementatiori-Thase.

24. (ISSUE A) DSARC Decision Milestones should be reduced to
"Requirements Validation" and "PrograniTo-Ahead".

25. (ISSUE B) MENS should be submitted with Service POM thus linking
the acquisition and PPBS process.

26. (ISSUE C) DSARC Membership should be revised to include the
appropriate Service Secretary or Service Chief.

27. (ISSUE D) The Defense Acquisition Executive (DAE) should continue
to be the USDRE.

165

STEP - Current Defense Practices Overview

28. (ISSUE E) The Criterion for DSARC Review should be increased to
SZOOM RDT&E and $1B procurement in FY 8U dollars.

29. (ISSUE F) Integration of the DSARC and PPBS Process will be
achieved by requiring that fiscally executable programs be
presented for DSARC review.

30. (ISSUE G) Logistics and Support Resources will be included in the
Service POM by weapon system, and Program Managers will be given
more control of support resources, funding and execution.

31. (ISSUE H) Improved Reliability and Support for expedited ("Fast
Track") programs will be achieved by requiring an early decision
on the additional resources and incentives needed to balance the
risks.

32. Increase Competition in acquisition by establishing management
programs and setting objectives (July 27, 1982).

Numerous major studies of the acquisition process have been
conducted in the decade of 1970-1980. Some of the progress resulting
in that time period can be perceived from the promulgation of DoD
Directive 5000.1 and OMB Circular A-109. Both of these documents are
notable for a strong emphasis on tailoring of the acquisition process
to yield the optimum acquisition strategy.

In parallel with DoD actions to improve the acquisition process,
OSD initiated a major activity to simplify and improve the Planning,
Programming and Budgeting System (PPBS). The DoD Management
Philosophy is to:

- Define the national military strategy;
- Achieve integrated and balanced forces;
- Assure that we are ready;
- Manage defense resources effectively within national resource

limitations;
- Keep the Secretary of Defense informed.

Documentation of the FY 83 Program Objective Memorandum (POM) is
required to be cut by 50%, and the comptroller is required to slash
the high amount of paperwork required by the Zero-Base Budgeting (ZBB)
process.

The objectives of controlled decentralization and participative
management arise out of a concern with two decades of increasing
centralization, increased reporting requirements, increased number of
policies and procedures, and delays occasioned by the decision-making
process.

166

STEP - Current Defense Practices Overview

To illustrate the complicated, time-consuming path to a DSARC
review, data is presented on the number of DSARC prebriefings for
sample programs, such as the F-16 Aircraft: 56; Joint Tactical
Information Distribution System (JTIDS): 42; and, the F-18 Aircraft:
72.

The thrust to improve industrial productivity has the following
stated objectives:

- Enable American industry to undertake a program of capital
investment;

- Improve American self-sufficiency in the area of critical raw
materials;

- Insure sufficient skilled manpower exists to meet the demand
of American industry;

- Improve the quality of American workmanship and products;

- Impose stability on military procurement programs and
resource demands;

- Make the defense market an attractive place for American
industry to do business;

- Make military equipment designs compatible with commercial
industrial production capabilities; 	.

- Create an industrial base which is responsive to mobilization
needs.

A table at the end of this document lists relevant statutes, their
purpose, the issue that they address, and the status of the statute.
The implications of the new program management environment created by
these initiatives are delineated: greater authority, responsibility,
and flexibility for the program manager, as well as more accountabili-
ty; DoD must maintain its credibility, commitment and discipline;
opportunities for innovation will proliferate.

Strategy for a DOD Software Initiative: 	Draft. August 1982.

The Software Technology Coordinating Committee was formed by the
Office of the Secretary of Defense (OSD) to provide direction and
oversight to the Software Technology Initiative. A questionnaire was
distributed to all segments of the DoD/academic/industry community to
evaluate the effectiveness and desirability of the candidate thrusts
of the initiative and suggest other possibilities. These results were
published in Summary of Responses to the Software Technology
Initiative Questionnaire.

167

STEP - Current Defense Practices Overview

Dr. Edith Martin, the Deputy Under Secretary of Defense for
Research and Engineering/Research and Advanced Technology (DUSD/R&AT)
was concerned that the plans evolving from this effort might not
address all critical DoD problems. Therefore, she chartered a Joint
Service Task Force to report on DoD problems in using computer
technology. Not all the opportunities and needs revealed by initial
studies are technological; therefore, the scope of the initiative was
increased to include non-technical concerns.

In order for the U.S. to maintain its military supremacy,
aggressive action is needed to surmount the problems preventing us
from fully exploiting computer technology. The DoD-wide initiative
provided in this document will improve the state of practice in the
acquisition, management, development, and support of computer software
for military systems. Objectives are established and top-level plans
for achieving the objectives are presented. Steps are identified to
develop the next level plans for implementation.

"The military power of the United States is inextricably tied to
the digital computer." Computers are integral to our strategic and
tactical capabilities, and software is the essential element of the
system. Software provides the flexibility to respond to changing
threats, needs, and requirements. The problem is that software is a
complex human endeavor that may require hundreds of people, for five
or more years, and costs exceeding $100 million. The body of accepted
practice and supporting theory is inadequate for development of
complicated systems. Representing the immaturity of the underlying
technology base, the state of practice in DoD ranges from a reasonably
effective disciplined approach in a few systems "to near chaos in
others".

DoD has not been ignoring the problems, but a high-level effort
involving attention and coordination is required. For too long,
software-related activities have lost out in the competition for
resources because managers have not understood how software helps to
build better systems. A cooperative effort among all DoD research
activities must be coordinated to develop improved technology that
will be used. Productivity must be increased, as well as the quality
of software. Improved technology must be developed and used.

The goal of this initiative is to improve the state of practice to
achieve faster, less expensive, and more predictable development and
support to get more powerful, reliable, and adaptable software. The
challenge is to advance the technology base and adopt practices
facilitating the widespread use of the technology. One conservative
estimate suggests that DoD can improve productivity in the current
environment by a factor of four by 1990 using existing techniques.

168

STEP - Current Defense Practices Overview

The objectives of the initiative include:

- Improve the personnel resource by
.. Increasing the level of expertise,
.. Expanding the base of expertise available to DoD;

▪ Improve the power of tools by
.. Improving project management tools,
.. Improving applications-independent technical tools,
.. Improving application-specific tools;

▪ Increase the use of tools by
.. Developing the incentives to
.. Improving tool usability,
.. Increasing the level of tool
.. Increasing the level of tool

use the tools,

integration,
automation.

The strategy of the initiative is to establish the funding impetus and
organizational incentives to coordinate improvement in the state of
software practice in the DoD community through the planned evolution
of a sophisticated software environment.

Stage 0 of the initiative will consist of a year of preparation in
FY83, during which the necessary organizational mechanisms will be
established, detailed planning will be conducted, initial studies
launched, and requests for proposals developed. The Ada Program has
already established the sociological and technological basis for
sharing tools, and will be a cornerstone for this initiative. With
Ada serving as a focus during the early stages, the initiative is
responsive to recent congressional direction to accelerate adoption of
Ada."

Stage 1 will focus on consolidation of demonstrated practices,
educational programs, and other tools to structure an environment
consistent with the state of the art.

Stage 2 will focus on enhancement of the environment adopted in
Stage 1. Techniques and technology that undergo refinement during
Stage 1 will be introduced in Stage 2. Stage 3 will focus on
transition of the initiative and funding responsibility to a steady
state. The environment will undergo a stage of transition that is
either evolutionary or revolutionary.

The initiative will be managed by a vertical organization. A
directorate will be established under the DUSD (R&AT) with
representatives assigned from each of the services. A Software
Engineering Institute will be established to bridge the gap between
R&D activities which experiment with new techniques in a constrained
domain and exploitation of those techniques on real systems. The
Institute will be supported by DoD and will be composed of both a
permanent staff and a visiting staff drawn from the DoD, industry, and
academic communities.

169

STEP - Current Defense Practices Overview

Recent studies have recommended that DoD undertake a significant
effort to improve the state of practice in the acquisition,
management, development, and support of computer software for military
systems. This document establishes overall objectives and implementa-
tion plans for such an effort: the DoD Software Initiative. Computer
software is a two -edged sword in that it can cause critical failures
of our future military systems because it is still an immature field.

The problems of computer software are not just due to an
inadequate technology base; they include "inappropriate acquisition
and management practices and an increasing shortage of expertise."

The microelectronic revolution has dramatically improved the
cost/performance ratio of computers. This improvement has been so
great that embedded computer systems (ECS) are now the primary means
of introducing new capabilities and sophistication into our military
systems. Furthermore, the reliance on software has increased because,
when system modifications are required, software changes are easier
and less costly to make than physical system changes. "Hardware
changes cost fifty times as much as software changes and took three
times as long to make" (in the F-111 A/E and F111 0/F programs).

There are difficulties that hinder exploiting the advantages of
computer software. There is inconsistency in management practices and
supporting technology requiring project-specific support facilities to
be developed and maintained. A fundamental difficulty lies in poorly
defined or changing requirements. In extreme cases, projects have
been abandoned after delivery because they are inappropriate to users'
operational needs.

Because the difficulties are often technological, the technical
community has a responsibility for solutions. Furthermore, the U.S.'s
economic survival lies in maintaining leadership in software and
systems technology. The lead in computer technology requires not only
a strong hardware base, but also the complementary software and
systems technology to exploit the hardware.

The emphasis will be on technology transfer, which will be an
important responsibility of the Software Engineering Institute. A set
of "initial high level plans to serve as a baseline from which a set
of fully detailed and integrated plans may evolve" is presented. This
task plan addresses the development of "quantifiable indices of merit
that can support comparisons and evaluations of people, software
products, and the processes associated with software development and
support."

170

STEP - Current Defense Practices Overview

In order to increase human resources skill levels available to
DoD, career incentives to motivate software personnel will be
provided. These incentives will be designed to reward software
engineering skills and the application of Ada/APSE-related tools.
Funds will be provided to improve software engineering curricula, pay
for support staff, and upgrade computing facilities at participating
educational institutions. The human resource base available to DoD
will be expanded by increasing the flow of qualified software
engineering university graduates, and augmenting the capabilities of
lower skilled personnel with knowledge-based expert systems.

The expected rapid advancement of both hardware and software
technology over the next decade relates to the systems tasks focus on
reliability and architectures. The recent emergence of VLSI
technology raises the question of which parts of a system should be
implemented in hardware and which parts in software.

Other tasks proposed by the initiative include:

Conducting application -specific demonstrations,
- Improving software acquisition procedures,
- Addressing techniques in human engineering,
- Defining disciplined methods,
- Developing powerful, automated environments,
- Addressing numerous related problems and issues.

This initiative augments the current low level of funding for
software related research development and improvement in DoD. The
initiative expands or accelerates many existing activities. The
primary responsibility for the program lies with the Deputy Under
Secretary of Defense for Research and Engineering (Research and
Advanced Technology), who will chair an executive advisory committee
with members designated by the Military Departments and appropriate
Defense Agencies. The estimated budget for this initiative ranges
from 5.75 million dollars (FY84 Dollars) in 1983 to 57 million dollars
in FY88 for a total of 227.75 million dollars.

Embedded Computer Resources
and the DSARC Process: 	 Revised Report. 30 April 1981.

This report has the purpose of providing guidelines to assess the
adequacy of embedded computer resource (ECR) planning and utilization,
and is promulgated by the Department of Defense. The Defense System
Acquisition Review Council (DSARC) has a level of interest in embedded
computer resources that is related to the percentage of development,
acquisition and support funds represented, and to the criticality of
system performance and support that these resources represent.

171

STEP - Current Defense Practices Overview

DSARC reviews are required for all major defense systems as
designated by the Secretary of Defense (DoDD 5000.1 and DoDI 5000.2
have more details on the classification of major systems). Three
sections in this document address issues of Milestone I, II, and III
reviews, which are held prior to entering the demonstration and
validation phase, the full-scale engineering development phase, and
the production and deployment phase, respectively.

By the time the Milestone I decision point has been reached, the
critical period where data rights are established, a High Order
Language and an Instruction Set Architecture have been chosen, and an
overall ECR strategy has been largely decided, is completed.
Candidate acquisition strategies should be developed prior to
Milestone I. Important issues that should be addressed by Milestone I
include:

1) Who will 	perform the analysis 	for 	reliability and
maintainability, 	and 	perform independent quality and
reliability assessments (DoDD 4155.1)?

2) What design reviews are planned during the life cycle? What
agency has overall responsibility for the scheduling and
conduct of design reviews? Will reviews be conducted in
accordance with MIL-STD-1521A, or another standard?

3) How will the system requirements and design be validated
prior to implementation? How will the system design be
evaluated for feasibility?

4) Who in the Program Office (P0) has overall responsibility for
software acquisition or for coordinating requirements with
the acquisition agency? Who will develop the advanced
acquisition plan for the Program Manager?

5) How will software design maturity and supportability be
quantitatively assessed?

6) What is the scope of the IV&V effort? To whom will the IV&V
organization report? How will the funding be handled? If
performed by a contractor, when will the contract be let?

7) What are the areas of greatest risk? How will risk analysis
be performed?

8) What are the critical computational and decision algorithms?
What are the plans for validating these algorithms and the
timing assumptions of these algorithms?

9) Who will perform design reviews for quality and for
reliability and maintainability?

172

STEP - Current Defense Practices Overview

10) How will the processor memory capacity be determined?

11) How will timing requirements be determined?

12) How will safety margins and growth capacities for memory,
processor time, and input/output capabilities be determined?
How will these resources be partitioned?

13) What new technology (computer, sensor, and control) must be
developed or utilized? 	What are the risks in such a
development effort?

14) What special tasks must be performed in the demonstration and
validation phase to perfect new technologies?

15) Which existing operational application and software support
packages will be utilized? Are the application programs
operational on the proposed computer? If not, what are the
major hardware/software differences? To what extent have the
contractor's personnel used these packages previously?

16) What hardware and/or software will be Government Furnished
Equipment (GFE)? What hardware and/or software will be
Contractor Furnished Equipment (CFE)?

17) How were the percentages of GFE and CFE determined? If there
is a mix of GFE and CFE, who is responsible for solving
system integration problems?

18) When and where will the final acceptance of the embedded
computer resources be made? Who will determine whether the
system is acceptable?

Milestone II is reached when the demonstration and validation
activity has been completed and a recommendation on the preferred
system for full-scale development can be made. Important issues that
should be addressed by Milestone II include:

1) How were the requirements for computer resources, including
software and its support documentation, validated?

2) How was risk analysis performed?

3) How will you ensure that the planned computer resources will
meet stated operational requirements?

4) Has a Computer Resources Management Plan been written? By
whom? Has it been approved? How and when will the plan be
updated?

173

STEP - Current Defense Practices Overview

5) How will the computer resources be integrated into the total
system?

6) How will the overall system quality be determined?

7) When will the system and program designs be baselined?

8) How will software testing be performed? What levels of
testing will be employed? Will an independent analysis and
evaluation be accomplished?

9) How will you ensure the test data is representative of the
total range of data and operational conditions that the
system might encounter?

10) Are the software module test plans and software module test
procedures adequate?

11) How will testing be used to clearly identify deficiencies as
software or hardware related? How will the determination of
whether errors are caused by hardware or software be made?
How will regression testing be performed?

12) Are "test beds" or "hot benches" required to adequately test
software? Will they become government property after testing
is complete? If not, does the government have equivalent
integration and testing facilities available? What "test
bed" documentation is listed as a contract deliverable
i tem(s)?

13) How will software modules be interfaced with one another?
How will these interfaces be tested? How will software be
integrated and tested as part of the system?

14) What critical questions and areas of risk still need
resolving by testing? What are the test plans and milestones
for resolving these problems?

15) How will test-related documentation and media be maintained
to allow repeatability of tests? 	How will 	support
documentation be maintained to allow traceability?

16) What test and calibration software documentation and media
are listed as contract deliverables?

17) How will verification and validation be performed? Who will
perform it?

18) How will you assure the software architecture is modular?

174

STEP - Current Defense Practices Overview

19) How will you assure that the "top-down" software development
methodology and structured programming will be used?

20) What programming standards and conventions will be used? How
will they be enforced?

21) Which automatic debugging tools will be used during program
development? Were they developed during the program? Are
they deliverable?

22) How will error data be defined, collected, analyzed, and
reported?

23) How will the software be integrated with the hardware during
full-scale engineering development?

24) How will software be documented as it proceeds from concept
to design to the final operational system?

25) Will Automatic Test Pattern Generators be used for support?
If so, are they proprietary? How will they be maintained?
What support documentation is contract deliverable? How will
it be validated?

26) What is the government's mechanism to make an independent
assessment of the software?

The Milestone III decision point is reached when a production
recommendation for the system can be made. Important issues that
should be addressed by Milestone III include:

1) What are the results of the latest series of operational
tests (on the entire weapon system)? Where are the current
tests in relationship to the overall test plan?

2) What is the profile of the last three months of Discrepancy
forms and Software Change Requests? How many discrepancies
are still to be corrected? How is the error data collected
and analyzed?

3) How much of the recent software change activity has been due
to program errors and how much has been due to change in
requirements? Were changes in requirements due to increased
or decreased requirements? Who has the authority to change
software requirements?

4) How has delivered code been verified to conform to original
software design? Who prepared test data for the validation?
How has delivered code been shown to satisfy original
operational requirements? How was the support documentation
validated?

175

STEP - Current Defense Practices Overview

5) How was hardware/software integration and validation
performed?

6) How was software maturity (versus design maturity) measured
during development?

7) How can the completion of software development be shown
quantitatively?

8) Are there any "lessons learned" that should be passed on?
What process will be used?

Computer Resources are defined to include computer data, hardware,
programs, resource documentation, personnel, supplies, contractual
services, and software, including support software, utility programs,
test software, and operational software. The Embedded Computer is
defined to be a computer that is incorporated as an integral part of,
dedicated to, or required for direct support of, or for the upgrading
or modification of, major or less-than-major systems.

Definitions for Software Maintenance, Software Modification,
Validation, and Verification of Computer Programs are provided, among
other important concepts. A matrix shows available regulations and
standards that pertain to various computer resource topics, and a form
is provided which can be used to provide suggestions to improve the
guidebook.

Proceedings of the Joint Logistics
Commanders Joint Policy Coordinating
Group on Computer Resource Management: Computer Software Manage-

ment Subgroup/Second Soft-
ware Workshop.
1 November 1981.

This was a continuation of the documentation panel of the first
software workshop held in April 1979. The original panel examined the
existing software documentation arena, and developed overview
descriptions for what they considered to be a comprehensive set of
documents that could be used for DoD contracts. Their recommendations
for further action included preparation of Data Item Descriptions
(DIDs) for these documents, the preparation of modifications to
existing military standards or the creation of a new one, "from which
the DIDs can be evolved", and the preparation of guidelines to help
program managers select an appropriate subset of documents for
specific contracts. The first task has been completed via contract,
and a contract has been awarded to accomplish the second task.

176

STEP - Current Defense Practices Overview

Five panels, for Software Documentation, Hardware/Software/
Firmware, Standardization & Accreditation, Software Cost, and Software
Reusability, were convened and each report is included separately in
this document. Panel A, the Software Documentation group, pursued
four objectives:

a) Provide recommendations to the JLC for developing project
management guidelines for the selection of software
documentation;

b) Clarify the relationship between the DoD acquisition
life-cycle (milestones, phases) and the JLC-list of software
documents;

c) Provide recommendations to the JLC concerning the addition,
deletion or modification of documents in the JLC-list of
software documents;

d) Provide recommendations to the JLC for implementing the
standard 	set 	of 	software 	documents 	within 	the
OSD/JLC/Services.

The initial objectives provided to this panel were to develop
guidelines for project managers to help select the appropriate subset
of documents for their projects, prepare draft implementation plans
for the DIDs, and recommend a method of evaluation. The panel
determined that several issues needed to be clarified or resolved in
order to meet the more long-term objectives of acquisition management
guidelines and DID implementation plans. Furthermore, the alloted
time of three days was insufficient to meet these objectives.

Four subpanels were formed to address issues of deep-seated
concern, which were:

- Guidelines for Acquisition Managers;
- Life Cycle;
- Document Set and DIDs;
- Implementation Plan.

The first subpanel recommended that guidelines be developed via
contract, and directed their efforts at drafting a Statement of Work
(SOW) for such an effort. The subpanel agreed that DID tailoring
should be discouraged, on the basis of the belief that document
standardization is the most important concept behind the use of a
single DID set, and that prohibiton of tailoring does not prohibit
offerors or acquisition managers from stating particular sections are
not applicable if such is the case.

177

STEP - Current Defense Practices Overview

This subpanel had three concerns, regarding the question of DID
selection. It was agreed that some of the documents had considerable
information overlap, not all of the documents were necessary on every
project, and acquisition managers, when in doubt as to what documents
to require, would tend to procure all of them. A selection matrix,
flow chart or selection algorithm in a guidebook form is recommended
for appropriate DIDs versus project characteristics.

The second subpanel, Life Cycle, deliberated the necessity of
including the Software Specification Review (SSR) and the Test
Readiness (TRR) in the new DID set, decided that this was not their
charter, and concluded by examining the role of these documents in the
life cycle, projecting them against the life cycle chart, showing when
each should be available in preliminary form, baselined, or modified.
Other conclusions regarding details of the life cycle and timing were
also drawn.

Subpanel three, Document Set and DIDs, was tasked with reviewing
the results of the JLC DID development contract. This was supplemen-
ted by panel members' knowledge of existing software documents. The
first task was to review the JLC software documentation list for
sufficiency. The panel concluded that three documents should be
deleted from the list (two of these are government-generated and do
not belong in the contractor set of documents), some changes were
necessary to those remaining, and three should be added, a Firmware
Support Data Document, an Operational Concept Document, and a
Requirements Traceability Matrix.

Subpanel four, Implementation Plan, had the objective of examining
the problem of bringing the revised DIDs developed under the DID study
panel to the point of official approval. The on-going OSD Standardi-
zation Program is the program within DoD that should act as the focal
point for administering the approval of new documentation. The
ultimate plan for document implementation should validate the
effectiveness by choosing on-contract pilot projects. Transition to
the new MIL-STD and DIDs should be done using a pilot program in
conjunction with a phased approach.

Panel B addressed the issue of Hardware/Software/Firmware Configu-
ration Item Selection Criteria with the objective of developing a set
of criteria to aid in the selection and documentation process, and
recommending an approach for defining firmware/software categories and
support documentation requirements.

In order to develop a process for recognizing the hardware
intensive or software intensive nature of firmware Configuration Items
(CIs), the panel pursued the following objectives:

178

STEP - Current Defense Practices Overview

a) To conduct a top down analysis of technical and management
considerations important in the selection of systems
hardware, software and firmware components;

b) To establish technical, programmable and management guide-
lines/criteria for Cl/CPCI selection and treatment;

c) To test the criteria against representative hardware/firm-
ware/software architecture for adequacy and clarity;

d) To define sensible categories of reprogrammable CIs for
treatment of their software nature as less than full CPCIs;

e) To review recommended firmware Dins and define documentation
requirements for the different reprogrammable CI categories.

Recommended actions included adoption of standards relating to
current and future perceived hardware intensive applications of
firmware, and documentation for firmware. The use of HOLs on firmware
is encouraged, but it is recommended that HOL direction on hardware
intensive firmware not be imposed. An element in a system must be
identified as a separate Cl/CPCI if failure of that element would
adversely affect security, human safety, the accomplishment of a
mission, gr nuclear safety. Continued work in the Cl/CPCI was
recommended to provide guidance for selection, coordinate the effort
in making recommendations with on-going JLC documentation and
standards development activities, and plan to review and develop a DID
firmware applicability matrix.

Panel C, the panel on Standardization and Accreditation of
Computer Architecture, had the objective of evaluating the potential
for utilizing accreditation of computer architectures as a viable
tri-service computer acquisition strategy. Accreditation has been
promoted as an alternative computer acquisition strategy to solve the
problems resulting from the acquisition of systems with an approved
standard, yet technologically obsolete, computer. Accreditation has
the goals of stimulating competition in production, easing technology
insertion, increasing flexibility of choice for program managers,
shortening the acquisition cycle, and minimizing cost of ownership.

Accreditation is an acquisition strategy by which a product is
certified to be suitable for service use in accordance with documented
criteria. It was decided that acquisition strategies must be
evaluated by specific criteria in order to focus on their relative
merits. The criteria include reliability and maintainability, effect
on logistics, effect on personnel, sources for development and
qualification funding, promotion of a competitive environment, effect
of shortening the acquisition cycle, life cycle cost, product
availability, and capability of achieving technological currency.

179

STEP - Current Defense Practices Overview

This panel was divided into three sub-panels with responsibilities
for a group of related criteria. Some of their conclusions include:

1) Except for reliability and maintainability, the more
restrictive acquisition strategies favorably improve the
impact that the acquisition strategy has on the measures of
comparison. Further, increasing the level of standardization
also has a favorable effect on the criteria considered.

2) Reliability and Maintainability (RAM) is the exeption to the
first conclusion. The reason is that the less restrictive
the acquisition strategy, the greater the potential for
contractors to be innovative in using the most current
technology to achieve improved levels of reliability.

The entire panel had substantial disagreement regarding the degree
of industrial concentration which would take place. One school of
thought held that industry would respond to the certain knowledge that
its participation will be rewarded, while the other school believed
that the greater the opportunity to make a sale (laissez faire as the
extreme), the greater will be industry's willingness to risk
investment.

The panel recommended that studies of computer designs be
conducted to determine the impact of standardization level, including
those designs capable of direct HOL execution. They recommended that
the data base of acquisition/accreditation issues developed at
Monterey II be used as a basis for further study, leading to the
selection of computer acquisition strategies best able to achieve the
benefits of standardization.

Panel D addressed the issues of software costs with the objective
of evaluating existing software cost estimating models and
recommending an approach to improve software cost estimating
methodology. They produced the following conclusions:

- The current cost estimation models have insufficient accuracy
for JLC application.

- Performance of current models varies greatly from one
development environment to another.

- Current models do not cover all of the life cycle phases of a
software product in the required level of detail.

- Complicated models have not proven to perform better than
very simple models.

- The burden of an accurate estimate is on the user, and the
user must do extensive calibration and tuning of the models
to minimize estimation error.

180

STEP - Current Defense Practices Overview

- Current cost estimation models are better able
needs of JLC early in acquisition life cycle.

- No one current cost estimation model satisfies all
cost estimation needs.

- Reliable historical data for model development or
is almost non-existent.

to satisfy

of the JLC

validation

- A software cost estimation methodology should be developed
which covers life cycle phases completely by providing the
required cost estimation information to the user based on
data available at that time in the acquisition life cycle.

- Basic research should be conducted into techniques,
determining parameters that characterize the software
development environment, and the influence of application
environment upon cost model accuracy.

▪ No more surveys appear to be required, additional evaluation
of why the current models perform differently in different
application and development environments would provide
additional insight.

▪ An estimate cost and schedule should be associated with
specific software updates.

- Model requirements should be developed in the areas of input
and output parameters, and refined to correlate specific
requirements with each area of model application.

▪ Additional research in the area of software metrics is needed
to define software attributes which are the cost drivers over
the life cycle.

Data collection activities must be established using the
metrics in an organized and standardized manner.

▪ Data collection should be automated and outputs provided in
machine readable format.

- A central repository should be designated for storing and
analyzing software cost estimation (SCE) data.

- MIL-STD-881A should be modified to permit a work breakdown
structure that supports data collection and analysis.

▪ The SCE methodology requirement needs to be integrated into
the Government's technical performance measurement system.

181

STEP - Current Defense Practices Overview

- The SCE methodologies should not be applied to progress
payment determinations, which are relatively inaccurate and
only predictive in nature.

• SCE methodology should not be employed in the fee
determination process as it is predictive and cannot
adequately support evaluations of predetermined baselines and
criteria.

• SCE data should be collected at each formal program review
point.

▪ The JLC should issue a policy that implements a SCE
direction, making existing SCE technology usable by program
managers.

The four recommendations developed by the panel were:

1) The JLC should not adapt any existing SCE model, as none of
those existing are sufficient to adapt as an embedded
computer system standard.

2) A judicious use of SCE models and methodologies can improve
acquisition and management of software, and a guidebook
should be developed for program offices to systematically
qualify models and methodologies.

3) The JLC should sponsor a program to develop and implement an
improved SCE methodology.

4) A SCE Data Base should be established to support improved
software cost estimating.

The final panel, on Software Reusability, was convened to evaluate
whether reusability represents a potentially valuable concept to
reduce cost and elapsed time to develop embedded computer system
software. Standardization in the hardware arena has yielded DoD gains
in various aspects of life cycle costs. Three types of reusability
were addressed:

1) Reuse of functional software systems across multiple
configurations of the same basic system.

2) Reuse of generic software components for different
applications.

3) Reuse of prototype and development software during the
evolution of a system through its life cycle.

182

STEP - Current Defense Practices Overview

The panel defined reusable software to be "existing software,
including specification, design, code, and/or documentation, which can
be employed or adapted, in part or total, into a new end use." Four
subpanels were organized to address the following issues:

1) How to design and build reusable software.

2) Managing a "ported" development.

3) How to employ existing software and what can be learned from
past experience.

4) Implications on DoD policy and acquisition practice and
strategy.

Language issues must be considered as a primary factor among the
technical factors which influence the degree to which software is
reusable. Despite the extent to which the use of Ada will alleviate
the problem of proliferating languages, dialects and processors, "the
language problem may continue to persist unless very strict controls
are implemented and enforced with respect to both the Ada language and
its compiler(s)." Dialects of Ada must not be permitted to occur.

There was a consensus among this group that attempts to reuse
present-day existing software are likely to meet with failure. New
software must be manufactured with a requirement that it is to be
reused. Software unit packaging, modularity rules, coding standards
and information binding concepts require exploration and standardiza-
tion. Interface criteria, identification of functional units,
specification languages and tools, support tools environments, and
common language subsets must all be standardized. Strict
configuration control must be maintained for the ultimate set of
standard languages. Traceability methods/tools should be investigated
and developed so that system requirements can be traceable down to a
source statement, and a precise record of the module derivation can be
kept.

The next subpanel recommended that:

1) CRM should define a technology transfer program which
incorporates lessons learned in business applications to
Weapon System Programs.

2) JLC should provide a government investment plan for reusable
software technology development.

3) JLC should determine the feasibility of standardizing on a
language and methodology for system and software requirement
analyses.

183

STEP - Current Defense Practices Overview

4) Existing DoD guidebooks should be updated to address
technical problems and remedies in the planning, award, and
performance of contracts where the reuse of software is
anticipated.

5) CRM should sponsor the formation of User Groups in areas
considered candidates for reusability.

Other final recommendations of the panel include revision of
military standards, instructions, directives, guidebooks and
regulations to identify changes which must be made to include the
concept of reusability. Incentives should be provided to DoD PM's and
contractors for compliance with reusability concepts. Current
documentation standards should be investigated to achieve reusability.
Further attention is required for the transition to Ada from current
languages. One suggestion is to have the Ada Program Support
Environment (APSE) support multiple languages.

The Report of the Army Science Board
(ASB) Ad Hoc Subgroup on Testing of
Electronic Systems:
	

16 April 1982.

This report presents four conceptual plans addressing test
planning for mission critical or embedded computer resources (ECR).
These plans have been prepared by DARCOM (US Army Materiel Development
and Readiness Command) in coordination with TRADOC (Training and
Doctrine Command) and OTEA (Operational Test and Evaluation Agency),
but are currently submitted as a DARCOM position only since full
concurrence could not be obtained within the timeframe allowed.

The first group issue is to achieve more orderly design/software
testing in early system development. Specific recommendations are for
additional effort to be devoted to the concept definition/concept
evaluation/advanced development phases of system development; the
improvement of Army in-house capability as "wise builders"; employ a
philosophy of incremental step-by-step design/testing during engineer-
ing development; place additional emphasis on hardware and software
subsystem testing and on hardware/software integration; the perform-
ance of formal reviews for hardware and software design status
throughout engineering development; and complete and evaluate develop-
ment tests prior to the related phase of operational testing.
Furthermore, it should be recognized that higher-than-normal funding
in early program stages, with effective program management, can be
expected to lead to reduced life-cycle costs and shortened time
scales; additional emphasis should be given to early establishment and
documentation of quantitative, "testable" system requirements; soft-
ware designs should be required to be testable at module and subsystem
levels as well as on an overall system basis; and software designs
should be directly relatable to system requirements. "Program plans
should include module, subsystem and system-level software tests in
all phases of system design (with adequate funding provided)".

184

STEP - Current Defense Practices Overview

The history of weapon development has been that little lead-time
was needed for successful completion of test programs; methods and
testing facilities were in place at the proving grounds, the developer
merely had to arrange for the item to be at the proving ground and the
test could start with very little preparation. Complex electronic
systems have changed these precedents, and require long lead-times for
reviewing documentation and digesting tasks and functions that must be
performed.

Testing is an integral part of every stage of the development
cycle. The necessary functions of testing include testability of
requirements/specifications, requirements traceability, software
documentation completeness, and test planning for objectives and
instrumentation and tools. The user needs to participate in the early
system design and development process. The system Materiel Developer
should produce the A-level specification in conjunction with the
Combat Developer.

The government's software testing interests are rarely served when
the Developing Contractor is hired to draft all specs and develop all
system elements to include software. If more than one contractor is
involved, the changing of contractor from drafting specs to writing
code forces visibility and good documentation. "The developing
contractor need not be the software producer."

The Independent Software Verification and Validation (V&V) Tester
serves as a close observer and sometimes performs tests at the module,
module integration and software system integration levels. "Much care
must be used in drafting the prime software contractor to allow the
Independent Software V&V Tester free access to all required informa-
tion, documentation, test tools, and code."

Roles of the System DT Tester, the Combat Developer, Software
Maintainer, DT Evaluator, Operational Tester, and the Operational
Evaluator are described in detail. Summary recommendations include
reviewing appropriate Army regulations with emphasis on early
involvement of T&E agencies, incremental design/test philosophy,
requirement of system simulation, use of suitably revised MIL-STDs-490
and 1679, delivery of software documentation, early identification of
DT and OT test issues and criteria, and enhancement of the user's
ability to participate in the early design/development process. It is
also recommended that Army Regulations 1000-1, 70-1, and others, be
rewritten to "front end load" funding to permit concentration of
effort on early program stages.

Group 2 recommendations relate to parallel testing using computer-
based test tools, and are as follows:

1) 	Automated, computer-based test tools should be developed to
drive the engineering and initial production models of
software-intensive systems;

185

STEP - Current Defense Practices Overview

2) Facilities such as MAINSITE should be designed and equipped
for the special requirements of software testing; lessons
learned by other Army testing agencies and other services,
should be studied to assist in determining MAINSITE testing
requirements;

3) To facilitate cost-effective software testing with results
that can be uniformly interpreted and graded, a common
library of software verification and validation tools should
be developed and used on an Army-wide basis;

4) Consideration should be given to a radical change in the
development/testing process, in recognition of the special
characteristics of software-intensive systems, and computer-
based test tools required to present the test environment
should be provided by a contractor other than the system
development contractor;

5) Test drivers (environment simulators) should be developed in
accordance with the disciplines previously outlined for
software development and testing.

These recommendations are discussed and interpreted in relation to
1) Simulators and Stimulators, 2) Large Instrumentation Facilities,
and 3) a Library of Software V&V Tools.

The Group 3 Issue addresses the post DSARC III software testing.
It has been found that software intensive systems have had major
difficulties because testing is not conducted on true production
prototypes; DT II/OT II data is often unrepresentative of production
designs because DT II/OT II systems software is usually incomplete and
immature; inadequate recognition of these points result in inadequate
planning for design/testing follow-up between the Production Decision
(DSARC III) and the Start of Production; and production testing
appears to be scheduled "as needed" and is unfunded and limited in
scope.

Recommendations related to these findings include the following:

1) Additional 	efforts 	should 	be 	devoted 	to 	detailed
establishment of relationships between the hardware/software
employed for DT II/OT II and the ultimate production designs;

2) After OT II, "visibility" relative to hardware/software
status should be regarded as critically important; the need
for continuation of integration tests should be recognized;

3) Follow-on evaluation on production hardware should be planned
as a requirement, not on an "as needed" basis;

186

STEP - Current Defense Practices Overview

4) It should be recognized that software designs will be
evolutionary, that integration testing will be necessary
during the production phase, and that continuing visibility
and adherence to design disciplines will be essential.

Inadequate emphasis on the earliest design effort is believed to
be the root of most system acquisition problems. There is no
substitute for a thoroughly thought-out design. This emphasis on
careful design, although costing additional dollars and time
initially, is justifiable, and furthermore, is in agreement with
Carlucci initiative #12, Front-end Funding of Test Hardware
(software). It is recommended that a design, when agreed upon, be
frozen, and formal configuration management procedures begin.

Other improvements to consider include top-down software
development precepts, modularization, uninterrupted dedication of
personnel involved in system development, Government personnel
participation in the lowest levels of testing at the contractor's
facility, inclusion of all test agencies in all phases of system
evaluation right from the beginning, establishment of a Traceability
Matrix, DT II/OT II to Production, and establishment of standards for
software languages, programming, and ancillary documentation.

The Group 4 Recommendations address the improvement of
interoperability testing and coordination of planning for acquisition
and operation of test facilities. The findings of this group include
the following:

1) The Army does not adequately coordinate the development or
use of its testing facilities.

2) The Army does not adequately plan for interoperability
testing of its systems.

3) The Army does not maintain the technical continuity of
personnel who are responsible for Army system developments.

It is recommended that Army testing facilities should coordinate
and communicate better among themselves, as well as coordinate with
other software agencies to ensure the unique requirements for software
testing are met; steps should be taken to outline a plan for improving
coordination of detailed facility planning and test system planning
for the overall Army test community; more extensive planning for
interoperability testing is needed; the Army must improve its in-house
technical expertise and continuity of that expertise throughout a
system's development; and, Federal Contract Research Centers (FCRC's)
should be used to gain continuity, "corporate memory," and
"transmittal of culture" from program to program.

187

STEP - Current Defense Practices Overview

Furthermore, the Army must accept the facts that personnel must be
trained in the system development process on an ongoing basis;
personnel must be acquired who can perform in these roles; it must
realign its manpower allocations to allow for adequate personnel; and
it must systematize its use of standards and traceability processes so
that records and documentation are updated and maintained.

ESD-TR-78-141: 	Software Acquisition Management Guidebook: Series
Overview. March 1978.

This guide is one in a series of Software Acquisition Management
(SAM) guidebooks intended to help ESD Program Office personnel in the
acquisition of

(C3)
software for command, control and

communications (C.3) systems. It serves as the introductory volume
to the series, places it in the overall context of the Air Force
Guidebook program, defines the intended audience, tells how the
guidebooks were developed, provides a subject matter index, and
identifies future guidebook requirements. Some of these SAM guide-
books are in the process of revision or being eliminated. AF ESD
should be contacted to ascertain the current status of any specific
guidebook.

The Command, Control and Communications (C 3) System SAM
Guidebook series is one of three series designed to help Air Force
Program Office (PO) personnel in the acquisition and management of
embedded software procured under Air Force 800-series regulations.
The other two series relate to Automated Test Equipment and Flight
Simulators, and Avionics. C 3 software subsystems are large;
customized and unique (normally state-of-the-art); on-line, real-time,
closed-loop operations; interactive; employ a large data base
component; contain significant user-tailored doctrinal software; use
large, multi-site, ground-based computers; are capable of dealing with
asynchronous, event-driven environments; and must be fault-tolerant
with fail safe/soft and recovery attributes. The basic purpose of the
C series guidebooks is to communicate preferred procedures; in-
struct PO personnel in implementation of regulations, specifications,
and standards (RSS); correlate sources of information concerning the
software life-cycle; provide references, explanations and checklists
to aid PO personnel; and to support training of new personnel.

The guidebooks provide three general classes of information:

- 	Explanations (lessons learned, common pitfalls, and mistaken
assumptions);

188

STEP - Current Defense Practices Overview

- Checklists and descriptions of proven software acquisition
management techniques which answer the questions: What are
early symptoms of common SAM problems, what tools and
techniques have proven effective in the past in monitoring
status and re-creating and performing post-mortems on
management decisions?

- References and index lists which can be used to access the
formal RSS relevant to the topic presented.

Much of the guidance provided is applicable to less complex
systems. In all cases it should be tailored to the needs of
individual projects.

The audience of the guidebooks is intended to be Air Force PO
management personnel and members of the Engineering Division that are
referred to as the Software Director (SD), presumed to be responsible
for managing software acquisition, with systems engineering experience
ranging from basic to highly advanced.

The need for the guidebooks was motivated by dissatisfaction with
software acquisition management in several areas:

▪ Today's RSS are written in a general manner which allows an
experienced SD considerable latitude in tailoring the
acquisition to the program.

- There is a lack of experienced SDs.

- Standards and regulations which are sometimes unclear or
contradictory.

- Known differences between policy and practice.

▪ Software which is often the high risk item of C 3
 procurements.

- Schedules and budget which prove to be unrealistic, or for
other reasons, are not met.

"Although a large body of software development information is
available in written form, it is not available as useful guidance for
ready reference in concise or focused form." The experience of varied
efforts within DoD to acquire defense system software is not
transferred effectively to new personnel and the same mistakes tend to
be repeated in software acquisition programs.

189

STEP - Current Defense Practices Overview

The first seven C 3 guidebooks were produced by the MITRE
Corporation between FY75 and FY77, and System Development Corporation
subsequently produced the rest of the guidebooks. Drafts of each
guidebook were reviewed by Air Force PO personnel, the Air Force
Contracting Offices, and the authors, face-to-face. Upon Air Force
approval, each guidebook was disseminated to the field through Air
Force channels as well as the facilities of the National Technical
Information Service (NTIS).

Issues arose in the preparation of the guidebooks which were
beyond the original intent and scope of the series, and are presented
with the hope that they will be considered for future publications.
These issues include: the system and software engineering processes,
differing procurement strategies, software aspects of the system
specification, the budgeting and scheduling dilemma, firmware
acquisition management, and an Air Force glossary of terms ("many
software-related terms are not consistently used throughout the
guidebook series, throughout the RSS, or throughout the Air Force").

ESD-TR-75-85: 	An Air Force Guide for Monitoring and Reporting
Software Development Status. September 1975.

This guide provides information for managers and technical
personnel engaged in a software development project. Formal
procedures, found in official regulations and manuals, and informal
methods, from military, industrial, and academic experience, are
discussed to provide a concise reference for the software manager.
Using these procedures and methods, the manager should be able to
identify the kinds of information relevant to his project, where to
obtain it, how to use it to determine status, and what problems may be
associated with using this information.

This guidebook is relevant to all Air Force activities responsible
for planning, developing, and acquiring computer software in systems
managed under the concepts of AFR 800-2. A major section of the
guidebook is devoted to status-monitoring tools and status reporting.
It discusses both formal and informal milestones, periodic status
meetings, contractor and Government reports, interviewing, and project
schedule representations.

A system acquisition life cycle will typically consist "of five
major phases: Conceptual, Validation, Full-Scale Development,
Production and Deployment." The major emphasis in this guidebook is
providing management direction during the Validation and Full-Scale
Development phases, through Formal Qualification Testing (FQT).
Status monitoring is a means of providing managers with information so
that areas of confidence and potential problem areas can be identified
early and decisions can be made to correct deficiencies. Status is
interpreted as the measure of progress toward a project goal in terms
of quality and schedule.

190

STEP - Current Defense Practices Overview

Monitoring during the design phase is through design documentation
and baselining. "The Reviewer must be capable of analyzing progress
through evaluation of design and implementation documents, test plans
and procedures, and test results."

Another section discusses contractual planning to ensure Govern-
ment visibility, top-down and bottom-up implementation approaches,
modularity, structured design, requirements traceability, structured
programming, and functional organization of personnel.

There are limitations of software status monitoring and
reporting. "Reliability must be designed in, it cannot be tested into
a system." The impact of decisions on a software project are
inversely proportional to the life cycle phase of a project, i.e. the
most important decisions occur at software system requirements
analysis and design time. This does not mean that testing is
unimportant. Only through testing can the product be demonstrated to
satisfy specification requirements. The test phase is more visible
than the design phase, but because of schedule and cost, little can be
done to redirect projects at test time without serious impact.

Finally, an appendix is included that provides summaries of
selected status factors that can be used to evaluate project
progress. Included in the appendix are discussions of documentation
quality, stability of the requirements baseline, interfaces,
programming languages, programming practices and standards, project
complexity and operating systems. In addition, the appendix addresses
data management, personnel, development facility quality, project
management, and non-subjective data.

ESD-TR-75-365: 	An Air Force Guide to Contracting for Software
Acquisition. January 1976.

This guidebook provides an introduction to the process of
contracting for the development of computer programs acquired under
Air Force 800-series regulations. It attempts to highlight those
areas that deserve special attention when software is to be developed
under contract. It describes the Armed Services Procurement
Regulation (ASPR), "the bible for all contracting by the Department of
Defense". This guidebook provides a list of references that
identifies those parts of the ASPR that have a bearing on the Software
Director's job, and identifies Air Force publications that may be
useful. The guidebook specifically excludes, commercial, ADP software
from its areas of interest.

191

STEP - Current Defense Practices Overview

A major section is devoted to preliminary procurement planning,
including selection of the basic procurement approach, formal
procurement planning, and the bid package. Considerations relating to
single or multiple contractor awards are described, and specifically
those problems that may arise if one contractor on a multiple contract
system fails to deliver on time. This section provides a checklist
for the Software Director to use in planning the basic procurement
approach and discusses the Advanced Procurement Plan, negotiated
procurements, and Determinations and Findings. It is asserted that
"ideally, the detailed design of the hardware, and preferably the
hardware itself, should exist before the support software is
designed," and that both should be completed before the applications
software is designed.

	

Another section addresses contractor selection, 	including
contracts, RFPs, proposal evaluation, contract negotiation, and
contract award. The issue of proprietary documentation and data that
the Air Force owns is addressed. The guide then discusses contract
management, and summarizes the responsibilities of the Air Force
Contracting Officer, the Procuring Contracting Officer, the
Administrative Contracting Officer, the Defense Contract
Administrative Services, the Air Force Plan Representative Offices,
and the Software Director.

The Air Force Software Director is limited in what he can say to
contractors while the advanced procurement planning is being done, but
he can accept input from potential contractors on what has been
accomplished on previous programs, what related developments are
currently underway, and what the risk areas are in the planned
program. When the RFP is released, the Air Force Software Director is
directed to work with the Contracting Officer to provide answers to
questions which deal with technical or management aspects of software
development.

Evaluation criteria for a software source selection are based upon
requirements in the RFP package. A sample set of criteria are
tabulated in this guide, and address such issues as computer program
design; programming and design standards; government furnished
equipment; human factors, overall system design and performance;
program, configuration and data management. Lastly, contract changes
and contract termination are discussed.

The last section lists ASPR references
applicable to this guidebook. It also abstracts
AFR 800-14 that are of particular relevance
software acquisition, and finally, an appendix
source selection do's and don'ts.

that are directly
regulations such as
to contracting for
provides a list of

192

STEP - Current Defense Practices Overview

ESD-TR-76-159: 	An Air Force Guide to Software Documentation
Requirements. June 1976.

This guide addresses those requirements for documentation of
software developed in a large system acquisition, and use of that
documentation. It emphasizes the determination of documentation
needs, the preparation of the Contract Data Requirements List (CDRL),
and the specification of Data Item Descriptions (DIDs).

A major section of this guidebook addresses software documentation
requirements, and how to determine those requirements. The author
describes the purpose of documentation and identifies regulations,
standards, and specifications (RSS) which provide guidance on the
determination of documentation requirements for software. In
addition, he discusses specific factors which impact documentation
requirements and presents a series of guidelines that can be used to
determine documentation requirements. Factors which impact documenta-
tion requirements include: system magnitude, system complexity,
duration of the software development process, multi-contractor/agency
involvement, instability of system requirements, the relationship to
schedule, procuring activity manning and expertise, and the cost of
document preparation and updating.

Considerations in the determination of documentation requirements
should follow the following steps:

- Identification of mandatory requirements;
- Solicitation of user requirements for the operation and

support phase;
- Inclusion of applicable RSS;
- Incorporation of program-unique data requirements;
- Identification of any other basic documentation requirements;
- Verification that only the minimum essential documentation

satisfying specific needs is acquired.

Another major section describes key software documents. 	Key
software documents consist of "Data Items", a formal collection of
information (data) acquired under the system acquisition process to
support the management and technical objectives of the program. The
specific content and organization of each data item is defined in a
Data Item Description (DID). These DIDs include such items as the
Computer Resources Integrated Support Plan (CRISP), the Computer
Software Configuration Item (CSCI), the Computer Program Development
Plan (CPDP), the Version Description Document (VDD), the Engineering
Change Proposal (ECP), and other documentation required for design,
development, integration, testing, fielding, and maintenance of
software.

193

STEP - Current Defense Practices Overview

This section also discusses the tailoring of DIDs to meet the
requirements of specific programs. In addition, it discusses
alternative sets of software documentation (documents used by DoD
agencies other than the Air Force) that may be applicable to some
programs.

The next section of this guidebook is devoted to the contractual
aspects of data item acquisition. It addresses contractual specifica-
tion of the documents desired, including their content, format,
delivery dates, numbers, and conditions of acceptance. This section
emphasizes the relationships between the SOW, CDRL, and DIDs.

In the last section, general conclusions and recommendations
regarding the determination of documentation requirements are
presented, including the following conclusions:

1) There is a lack of formal guidance in the area of software
documentation requirements;

2) There is no single source of guidance on 'software
documentation;

3) There is a lack of guidance on requirements for and usage of
documentation related to software and its acquisition;

4) Many applicable references lack definitions, and where
definitions are provided or may be inferred, they introduce
ambiguities and inconsistencies with respect to other
references;

5) There is a general lack of detail in the DIDs;

6) The determination of the number of Computer Program Configu-
ration Items (CPCIs) is a management decision which has a
heavy impact on software documentation requirements; if a
"sub-assembly" (functional area) is expected to have its own
independent cycle of changes, it should be designated a
separate CI. An approach to determining the most appropriate
number of CPCIs must attempt to minimize CPCI interdependen-
cies and interfaces.

Recommendations include:

1) Minimizing the number of documents identified for acquisition;

2) Defining terms and requiring references to specific sections
and paragraphs in all RSS cited;

3) Acquiring documentation for all software used or developed in
the system acquisition;

194

STEP - Current Defense Practices Overview

4) Specifying 	the 	acquisition 	of 	the 	Data 	Accession
List/Internal Data to ensure access to all data generated by
the contractor for his use in performing the contract;

5) Specifying the preparation and periodic updating of a
glossary of terms associated with the requirements and design
of the software or total system.

Three appendixes provide summary material on Data Items relevant
to software acquisition.

ESD-TR-77-16: 	Software 	Acquisition 	Management 	Guidebook:
Statement of Work Preparation. January 1977.

This guidebook explains the preparation of a software-related
statement of work (SOW), and describes other components of Requests
for Proposal (RFPs) for acquisition of electronic systems that
comprise, or include, software. It contains a major section covering
planning for SOW preparation and then presents model Full-Scale
Development Phase SOW tasks.

The purpose of the guidebook is not to prescribe what must be
done, but rather to identify issues and pitfalls, reference relevant
sections of appropriate regulations, specifications and standards, and
suggest alternative approaches to problems that arise for the Program
Office or the Software Director.

The section on planning heavily emphasizes the use of work
breakdown structures in SOW preparation. A work breakdown structure
(WBS) is a hierarchical representation of the tasks and the products
(e.g., equipment, software, data) that comprise an acquisition. A WBS
depicts the chief order in which these tasks and products will be
aggregated for purposes of cost accounting.

SOW preparation requirements, general suggestions for SOW
preparation, and configuration item definition are discussed. SOW
preparation requirements apply generally to SOWs for Validation Phase
and Full-Scale Development Phase contracts, and on occasion to SOWs
for other types of contracts. Examples of these requirements are:

- Each SOW must correspond in structure and substance to the
planned contract's Preliminary Contract WBS (CWBS).

- Each SOW paragraph that prescribes contract effort must
correspond to a Contract Line Item (CLIN) of the same name.

195

STEP - Current Defense Practices Overview

- Each Validation Phase or Full-Scale Development Phase SOW
paragraph that prescribes contract effort must be identified
by the Program Breakdown Code (PBC) of the corresponding
Preliminary CWBS Element.

- A separate SOW paragraph must call for acquisition of each
Computer Program Configuration Item (CPCI).

The section on model SOW tasks includes a table of contents and
the software-related paragraphs of a hypothetical Full-Scale Develop-
ment Phase SOW. The SOW presumes to prescribe the work desired from a
single contractor (at the system level) to develop a postulated
one-of-a-kind digital communications message switch. The SOW-
prescribed tasks include interfacing the system with numerous local
and remote digital data sources and sinks. The hypothetical planned
contract covers site activation, support equipment, and administrative
data, as well as software acquisition, computer equipment acquisition,
and system engineering.

Three appendixes are included in the guidebook. 	The first
describes the use of WBSs, and summarizes the various types of WBSs.
The second discusses source selection plan requirements, and finally,
the third appendix presents extensive guidance regarding the contents
of RFPs.

"The Request for Proposal (RFP) is a formal document used by the
Air Force to solicit proposals from a Source List of potential
contractors." The RFP contains a statement, in general terms, of the
criteria that the government plans to use to evaluate proposals, and
the relative importance of each aspect of the proposal. A RFP for a
software-related Validation Phase or Full-Scale Development Phase
contract consists of three volumes. It includes contract forms and
representations; solicitation instructions and conditions; evaluation
factors for award; the schedule, including supplies, inspection and
acceptance; general provisions, and a list of documents including the
SOW, engineering drawings, security classification specification and a
preliminary contract WBS.

ESD-TR-77-22: 	Software Acquisition Management Guidebook: 	Life
Cycle Events. February 1977.

This guidebook explains the chief activities, events, products,
and software-related efforts that normally occur during the life
cycles of major electronic systems acquired within the framework of
the 800-series of Air Force regulations and manuals.

196

STEP - Current Defense Practices Overview

The 800-series normally governs acquisition of computers and
software which are embedded in weapons or C 3 systems. Some of this
software (e.g, applications programs) may be built expressly for the
weapons or Ci system. Some (e.g., certain operational executives)
may be modified versions of off-the-shelf software. The 800-series
covers the research, design, development, engineering, testing, and
production of tactical and strategic systems for the operational
inventory. In contrast, the acquisition of off-the-shelf,
commercially-marked data processing equipment and its associated
support software for business type applications (payroll, logistics,
personnel records, etc.) is normally governed by the 300-series of Air
Force regulations and manuals. This guidebook does not address
acquisition managed in accordance with the 300-series, although some
of its principles may apply.

Uses anticipated for this guidebook include as a tutorial for the
individual inexperienced in acquisition of large systems that include
software, and as a summary of material relevant to software acqusition
for those otherwise quite familiar with large system acquisition.

Major sections are devoted to the acquisition life cycle including
an overview of the life cycle and one section each for the Conceptual
Phase, the Validation Phase, the Full-Scale Development Phase, and the
Production and Deployment Phases. Each section discusses phase
objectives, initiating events, primary activities and related
products, and terminating events. Another section addresses less
elaborate acquisitions, and the last section summarizes the activities
and products of the computer program life cycle. It distinguishes
between this cycle and the system acquisition life cycle and relates
the two. The computer program life cycle consists of six phases that
occur sequentially for the most part, but have some overlap. These
phases are identified as:

- Analysis,
- Design,
- Coding and Checkout,
- Test and Integration,
- Installation,
- Operation and Support.

AFR 800-14 defines the computer program life cycle and the goals
of, activities in, and milestones for each phase. Examples of
activities that occur in these phases are: requirements allocation to
the computer program; the conducting of PDRs for the computer
program's CPCIs; defining algorithms and computer program logic; test
planning; critical design reviews (CDRs) for the computer program's
CPCIs; coding; module and CPCI tests; DT&E, IOT&E, and FOT&E (defined
elsewhere in this document).

197

STEP - Current Defense Practices Overview

The computer program life cycle may span more than one system
acquisition life cycle, or occur in any one phase. The computer
program life cycle for the T&E software might extend from the
validation phase of the acquisition life cycle into the deployment
phase.

An appendix summarizes the major specification provisions
affecting software. This appendix should be compared with the similar
discussions in the Configuration Management Guidebook.

ESD-TR-77-254: 	An 	Air 	Force 	Guide 	to 	Computer 	Program
Configuration Management. August 1977.

This guide provides basic instructional and reference materials to
support the application of Air Force/DoD prescribed configuration
management techniques. The guidebook covers the following topics:

1. Background and introductory information, reviewing general
concepts, principles, special terms, and the status of Air
Force/DoD configuration management standards.

2. Requirements and criteria for selecting assemblies of
computer program code to be identified as computer program
configuration items (CPCIs), and includes a subsection
summarizing the sources and coverage of standards for
identification numbers and markings.

Requirements and criteria "decisions should be based on
experience, knowledge of the principles ... and the given
system program", and not based on "'stylized' rules". The CI
(originally "contract end item") is the level at which a
program office exercises formal management control over the
contractor in the areas of configuration management, procure-
ment, program control, and monitoring of the contractor's
technical progress. The following documents and actions are
requirements that apply separately to each CPCI;

• Specifications.

- Proposed engineering changes, and reports of change
implementation.

- Management information reporting against the contract
Work Breakdown Structure.

• The performance of technical reviews and configuration
audits -- Preliminary Design Review (PDR), Critical
Design Review (CDR), Functional Configuration Audit
(FCA), and Physical Configuration Audit (PCA).

198

STEP - Current Defense Practices Overview

- The preparation of operating and user manuals.

▪ Formal acceptance by the procuring activity.

Criteria are given as a shopping list, since the importance
and applicability of considerations vary widely among
different system programs. By definition, the CPCI must be
"in a form suitable for insertion into a computer".
Therefore, "computer programs to be designed for operation in
different types or models of computers must be separate
CPCIs". Computer programs scheduled for development,
testing, or delivery at different times may be separate
CPCIs. However, an earlier-developed CPCI may be expanded by
an Engineering Change Proposal (ECP), or a later CPCI may be
developed to incorporate and replace the earlier item.
Computer programs for different system functions, such as
mission, support, and off line diagnostic functions, should
be separate CPCIs.

3. Specification types and forms, the specification tree, the
system specification, computer program development and
product specifications, other types and forms of specifica-
tions applicable to computer programs, and comparisons
between software and hardware with respect to the roles of
their specifications in the system acquisition cycle.

4. Requirements and procedures for processing changes to
approved specifications. It identifies organizational
factors, explains change classification, describes standard
forms, and discusses procedures involved in the preparation
and processing of change proposals, including a subsection
dealing with concepts of interface control and the documenta-
tion of interfaces involving software.

5. Requirements and practices of document identification and
maintenance which are significant to configuration management
functions, and to formal reports/records of status for
documents, change proposals, and CPCIs.

6. Factors that arise after completion of development and
initiation of the CPCI operations at a field location. Using
a sample system DUE situation for illustration, it
identifies the nature of questions to be anticipated and
shows how centralized controls and procedures described in
preceding sections relate to that expanded framework.

7. Notes written in response to questions raised by reviewers of
a draft version of the guidebook, pertaining to a few of the
topics covered in preceding sections.

199

STEP - Current Defense Practices Overview

The bibliography and glossary list references, other guidebooks,
abbreviations and standard Air Force/DoD terms as they apply to
configuration management of computer programs.

ESD-TR-77-255: 	Acquisition Management Guidebook: Software Quality
Assurance. August 1977.

This guide describes the scope of quality assurance (QA) to be (as
in AFR 74-1): "A planned and systematic pattern of all actions
necessary to provide adequate confidence that material, data, suppi 4es
and services conform to established technical requirements and achieve
satisfactory performance."

Special attention is given to the relationship of QA to the other
acquisition management disciplines, the integration of QA requirements
within the system acquisition process, contractual aspects of OA,
monitoring the implementation of QA requirements, common problems and
proposed solutions, and pitfalls, risk areas, and danger signals as
they occur during the System Acquisition Life Cycle.

Section One relates the Air Force QA program to the major
milestones of the system acquisition cycle as they occur during the
Conceptual, Validation, and Full-Scale Development Phases. It treats
objectives, activities, and QA considerations for each phase.
Discussions are supplemented by flow charts depicting major activities
within each phase.

Section Two provides discussions designed to assist the PO in
evaluating a contractor's proposal and the status of his software QA
program. The contractor is responsible for controlling product
quality and for offering to the Government for acceptance only those
supplies and services that conform to contract requirements. The
director of Computer Systems Engineering (MCI) at ESD is responsible
for providing software support to the POs. MCI computer: system
personnel are assigned to the POs to assure that quality software is
being developed by the responsible organizations.

Prior to the award of a Full-Scale Development Phase contract, QA
activities must be conducted with the following objectives, to assure
that:

▪ The technical and contractual requirements for the CPCI(s),
data, and services are practical and enforceable.

▪ The delivered CPCI(s), data, and services conform to the
specified technical and contractual requirements.

- The causes of user dissatisfaction and mission der 'dation
are identified and corrected or eliminated.

200

STEP - Current Defense Practices Overview

Section Three is designed to assist the Software Director (SD) in
evaluating a contractor's proposal and monitoring the status of a
contractor's software QA program. It covers the evolving QA role
within ESD and discusses specific QA aids, such as a source selection
checklist used by the Computer Systems Evaluation Panel (CSEP) to
assist in evaluating RFPs and proposals.. The source selection
checklist highlights areas which were not as thoroughly reviewed in
past procurements. These areas include: schedule risks; technical
risks; adequacy of the stated requirements; conformance with
regula',ons, specifications, and standards (RSS); and computer program
products that will be useful to the Air Force throughout the system
life cycle.

An appendix discusses various software quality issues. It begins
by discussing the term software quality, qualitatively and quantita-
tively. Software quality is a composite of many conflicting factors,
e.g., efficiency, maintainability, reliability, testability,
understandability, modifiability, and portability. Software quality
is not yet measurable, in any practical sense. The subjects; covered
include quality vs. program delays, how much QA is enough, and
independent support contractors. Risk analysis can be used to
determine the amount of QA required in terms of the impact of the
software on the overall system. For a system where it is difficult to
design a thorough and realistic test program, an intensive software QA
effort is merited.

ESD-TR-77-263: 	Air Force Electronic Systems Division Software
Acquisition Management Guidebook: Verification.
August 1977.

This guide provides direction for planning and managing the
implementation of software verification concepts and requirements as
they relatt to software acquisition management. It provides a review
of the verfication practices and procedures employed by industry and
set forth in relevant RSS and describes those Computer Program
Configuratif1 Item (CPCI)-oriented system engineering and test
activities wnich lead to verification.

Verification is defined and distinguished from validation and
certification. Verification is CPCI oriented. It begins with system
and software engineering activities, which lead to CPCI definitions
and to the CPCI Development Specification, and ends with the qualifi-
cation of the CPCI. Validation is system oriented, begins with the
System Specification and concludes at the end of System Development
T&E. Certification is a user-oriented, system-level activity and
occurs during Operational T&E.

201

STEP - Current Defense Practices Overview

One section addresses requirements verification from initial CPCI
definition until authentication of the Development (Part I)
Specification and verification of the contractor's CPCI DT&E plan.
Contractor activities are discussed, as are PO verification activities
during the Validation Phase, including determination of Validation
Phase support products, SRR (System Requirements Review), and SDR
(System Design Review).

The 	Requirements Verification 	section 	also discusses PO
verification activities during the Full-Scale Development Phase,
including evaluations of the contractor's Computer Program Development
Plan (CPDP), authentification of the Development Specification, and
review of the contractor's CPCI DT&E plan. Evaluation techniques have
had "varying degrees of success in verifying performance
requirements." Such techniques include:

- Simulation, the process of studying specific system
characteristics by the use of models exercised over a period
of time and a variety of conditions.

▪ Performance monitoring, the process of collecting data on the
performance of an existing system for the purpose of
evaluating or improving performance.

- Synthetic programs, a set of executable instructions,
including I/O, files, etc., written for the purpose of
representing various computer demands inherent in the system
under study.

- Benchmarks, 	existing 	operational 	programs 	used 	for
performance projection or selection evaluation of computer
equipment.

- Kernels, programs written to evaluate timing information
about a specific computer.

Design verification activities which occur during the Full-Scale
Development Phase, contractor activities, PO activities, including
Preliminary Design Review (PDR), Critical Design Review (CDR), and
review of the contractor's CPCI DT&E procedures are addressed.

Computer Program Verification activities in terms of informal
testing of the CPCI and its components as carried out by the
contractor at his discretion, and formal testing of the CPCI as
carried out by the contractor are discussed. Contractor-internal
testing, including Computer Program Component (CPC) code and test, CPC
incremental-integration testing, and CPCI testing, qualification
testing, including Preliminary Qualification Tests (PQTs) and Formal
Qualification Tests (FQT) are specifically addressed. Module and
CPC-level testing uses traces, dumps, drivers, data reduction

202

STEP - Current Defense Practices Overview

programs, and test-case generators for aids in helping the programmer
locate an error in program code. Tools used for CPC integration
testing include automatic execution analysis, and dynamic analysis of
the system structure, a program which outputs listings of the CPCI.

An appendix describes selected commonly used support tools and
techniques for computer program development and testing. The appendix
stresses the applicability of these aids to distinct verification
tasks. Design tools and techniques used to support definition of
computer program components (CPC) performance requirements,
interfaces, and data base definitions, include simulation, top-down
design, use of a design language, and use of decision tables.

ESD-TR-77-326: 	Software 	Acquisition 	Management 	Guidebook:
Validation 	and 	Certification. 	Air 	Force
Electronics Systems Division. August 1977.

This guidebook summarizes the software acquisition implications of
validation and certification. It recognizes and is compatible with
Air Force 800-series regulations and related concepts. Validation is
defined to be those evaluation, integration and test activities
carried out at the system level to ensure that the final system
satisfies the requirements of the System Specification. It is system
oriented, begins with the System Specification and concludes at the
end of System Development Test and Evaluation (DT&E). Software
validation cannot be isolated from system validation since all
evaluation and test activities that make up validation are focused at
the system level.

Certification refers to the using command agreement, at the
conclusion of OT&E, that the acquired system satisfies its intended
operational mission. During OT&E, the system undergoes test and
evaluation aimed at assuring operational effectiveness and suitability
under operational conditions. Verification is the iterative process
of determining whether the product of selected steps of the
CPCI-development process fulfills the requirements levied by the
previous step.

The guidebook describes the system engineering activities carried
out to ensure that the requirements documented in the System
Specification accurately respond to the operational needs called for
in the Required Operational Capability. It then addresses the
activities involved in integrating into the system the qualified CPCIs
which were verified during FQT. At this point in the system acquisi-
tion cycle, the software has been tested and the individual CPCIs are
now ready to be put together and checked out in preparation for System
DT&E. The PO should have a high degree of confidence that each CPCI
is functionally correct. The contractor must now demonstrate that the
software performs correctly when assembled into the system in an
environment which may differ markedly from that used for CPCI develop-
ment and test.

203

STEP - Current Defense Practices Overview

Another section addresses the software-related activities involved
in planning and executing a comprehensive System DT&E program.
Although the objective of System DT&E is formal qualification of the
system, there are unique aspects of planning and conduct which are
software related and should be recognized at the beginning of the
system acquisition cycle. The principal software-related items which
should be included in the program management plan (PMP) and which
affect DT&E planning are:

- The identification of software system validation expertise to
be allocated to the PO for the management of the test program.

- Requirements for simulation capabilities to support System
DT&E, if needed for system testing inputs.

- Requirements for a system test facility, if necessary, based
on both system DT&E and planned system deployment support
requirements.

- A realistic master schedule containing all the major
milestones, key events, and critical actions related to
software acquisition.

An identification of required external interfaces to be
accommodated by the system.

▪ A discussion of growth and spare capacity requirements.

- An identification of support required from outside agencies.

System certification starts the Deployment Phase and indicates the
operational suitability of the system. While certification is the
responsibility of the using command, the PO is involved in planning
and preparing the Operational Test and Evaluation which concludes with
certification, just as the operating command may support System DT&E
with liason personnel, facilities, test data, and general assistance
in evaluating test results.

The last section discusses the software-related requirements of
system turn-over, transfer of management responsibility, and system
certification. System turnover agreements must be formulated early in
the acquisition cycle. In the turnover agreement a version descrip-
tion should be included, listing all system elements and computer
resource elements, and details of all deficiencies and exceptions to
be corrected and delivered. For the system to be certified, the using
command must agree, at the conclusion of OT&E, that the acquired
system satisfies its intended operational mission.

204

STEP - Current Defense Practices Overview

ESD-TR-77-327: 	Software 	Acquisition 	Management 	Guidebook:
Software Maintenance. October 1977.

This guide has a scope that is limited to those acquisition and
development activities, occuring throughout the Software Acquisition
Management (SAM) cycle, which impact software maintenance. It
includes discussions of system turnover to the using command and the
transfer of program management responsibility to the supporting
command. The computer program life cycle is also considered. Most of
the information provided in this guidebook covers the implementing
command's responsibilities during the SAM cycle. However, software
maintenance during the Deployment Phase is also discussed to provide
the background for proper planning. Concepts of quality computer
program design and development are discussed, as well as Regulations,
Specifications, and Standards (RSS). Quality computer program design
and development should emphasize the following:

- A limited number of interfaces between modules;
- Communication between modules limited to the defined

interfaces;
▪ Well documented, easy to understand design;
▪ Limited equipment interfaces;
- A controlled data base;
- Limited access to the data base by each module;
- Programming style for clarity of function and ease of

verification;
• Separate modules for input, output, and computation of

functions.

Additionally, the increasing cost of fixing software errors during the
advance of the program life cycle is described.

This guidebook emphasizes the specification and procurement of
maintainable software, including procurement of the facilities,
support tools, and documentation necessary to support software
maintenance activities. Major sections are devoted to the acquisition
of maintainable software and to applicable RSS. The former addresses:
the definition and specification of maintainable software; monitoring
the evolving software and evaluating contractor effectiveness; design
change and error correction during subsystem DT&E; and transfer and
turnover. The latter discussed those RSS that impact software main-
tenance. In this guidebook, the definition of software maintenance
includes the ability to modify the software. Therefore, this section
relates some of the configuration management RSS to software mainte-
nance.

205

STEP - Current Defense Practices Overview

The guidebook includes an appendix devoted to designing
maintainable software, which describes the properties of maintainable
software, including conceptual organization, modular design,
self-monitoring computer programs, program hooks for further
extensions, and design methodology. In addition, it covers specific
techniques that facilitate software modification, including computer
program legibility, parametric organization, stable code, and
development methodology or structured programming.

ESD-TR-78-117: 	Software Acquisition Management Guidebook: Reviews
and Audits. November 1977.

This guide provides detailed guidance concerning the use of
engineering design reviews and configuration management audits as
tools to monitor a developing organization's technical progress. The
following formal reviews and audits are defined and described: System
Requirements Review (SRR), System Design Review (SDR), Preliminary
Design Review (PDR), Critical Design Review (CDR), Functional and
Physical Configuration Audit (FCA & PCA), and the Formal Qualification
Review (FQR).

Major sections are devoted to general requirements for reviews and
audits, engineering design reviews, and configuration management
audits. Each of these sections discusses such topics as location and
scheduling, the responsibilities of participating organizations, and
the conduct of reviews and audits. In addition, the materials to be
reviewed or audited are listed and suggested evaluation criteria
presented. The data required for CDR is detailed in the agenda for
the review. The developer prepares the agenda and submits it to the
PO for approval. The technical information is the same data contained
in a CPCI product (PART II) specification, with the exception of the
program listings and the results of software engineering studies that
were conducted to arrive at the CPC-design decisions. Evaluation
criteria for CPCI development specifications include assuring that the
development specifications contain performance requirements rather
than computer program design information, so that a non-programmer can
evaluate the development specification; assuring that the operational
CPCI development specification reflects an understanding of the
operational mission; and assuring that the requirements are defined at
a level of detail sufficient to initiate the CPCI design effort.

Another section presents modified sample forms from MIL-STD-1521A
(USAF) which can be used to identify and record critical data during
reviews and audits, and finally, a section on the more common reviews
and audits problem areas is included, dealing with responsibility and
authority, the CPCI (Part I) Development Specification, and the
scheduling of PDRs and CDRs. This guidebook also has a glossary.

206

STEP - Current Defense Practices Overview

ESD-TR-78-178: 	Software 	Acquisition 	Management 	Guidebook:
Regulations, 	Specifications, 	and 	Standards.
November 1978.

This guide serves as an introduction to the plethora of military
and Government documents pertaining to software acquisition management
and development. It identifies the existing types of official
documents and provides a table of guides, lists, catalogs, and indexes
to the various forms of military and Government publications. It ends
with two indexes, the first of which lists keywords with associated
regulations, specifications, and standards (RSS). The second index
reverses the first and lists RSS with associated key words.

The RSS guidebook applies to software, whether it is acquired as
an entity or as a portion of a larger system. Therefore, even though
many of the documents cited do not specifically refer to software
management or development tasks, the software element of a system
assumes the same measures of management control and development
quality as does the system. Further, some referenced publications
deal specifically with software while others apply to software on a
broader scale (e.g., cost control systems, or work breakdown
structures (WBSs)).

A major section of the RSS guidebook differentiates between the
types of programs governed by Air Force 300-series regulations and
those governed by Air Force 800-series regulations. This section
provides lists of 300-series and 800-series regulations and manuals
and identifies distinguishing characteristics between the two series.

Two other major sections list documents pertaining to software
acquisition management and software development tasks, while an
appendix presents abstracts of selected software acquisition RSS.

ESD-TR-81-128: 	An Air Force Guide to the System Specification.
January 1981.

This guidebook differs from others in the series in that its topic
relates more to the system as a whole than to the software elements of
the system. There is a growing recognition that the prominence of
software, especially in ground electronic systems, has implications
for management at the system level.

The System Specification (Type A spec) is the designated source of
basic requirements for the system software functions and performance,
and many of the problems associated with software acquisition in
systems have been traceable to inadequacies in those basic require-
ments. This guidebook's material is addressed primarily to members of
system Program Offices who are responsible for software aspects of
system programs, and in part to supporting contractor personnel.

207

STEP - Current Defense Practices Overview

Furthermore, since a PO's approach to the System Specification is
constrained by basic program management policies that are determined
at or above the Program Manager level, the discussions in this
guidebook also touch on certain areas which merit attention by
higher-level managers and decision makers.

The System Specification development process is described, with
emphasis being placed on describing the levels and nature of system
engineering studies that are normally needed, but not yet typical in
practice, to develop comprehensive requirements information in
signficiant areas. The manner in which the technical process can be
planned and managed systematically within the framework of program
management policies and milestones established in such documents as
AFR 800-2 is outlined.

The section on issues and problem areas identifies those areas
where problems have been encountered pertaining to development and
uses of the system specification in electronic system programs,
including the intended functions of the system specification; current
problems associated with PO manpower and increasing prominence of
commercial components; and those problems that have impacted factors
of risk.

An appendix is provided as a preliminary basis for development of
guidance pertaining to preparation of the System Specification as
described in MIL-STD-490. Also provided is a sample system
specification paragraph dealing with design and construction standards
for computer programs developed at ESD, and sample functional flow
block diagrams. The System Specification paragraph provides
requirements for computer programs that are comparable to the types of
design and construction standards provided in other parts of the
specification as a whole for items of system equipment. Functional
flow block diagrams are a prominent form of system engineering
documentation which is normally contained or referenced in a system
specification. These diagrams show the flow of functions required to
carry out the system mission.

Air Force Electronic Systems
'Division Pamphlet 8UU-4: 	Acquisition Management: 	Statement

of Work Preparation Guide.
15 January 1979.

The Statement of Work (SOW) is a vital management tool and an
important contractual instrument. This document provides detailed
guidance for each functional/technical task involved in preparing the
SOW. Each task has been aligned with a prescribed Work Breakdown
Structure (WBS) code to facilitate cost proposal preparation,
analysis, and tracking. The guidance in each task addresses each of
the areas of instructions to offerors, system/equipment specifications
and data requirements.

208

STEP - Current Defense Practices Overview

Sample or model SOWs are provided in this pamphlet as guides. ESD
policies and procedures for SOW preparation are given, with
itemization of applicable documents. "Specifications and Standards
are the heart of the SOW. Minimum application and tailoring to
program needs are required per DoDD 4120.21."

Test and Evaluation concepts are addressed, and DT&E and OT&E are
defined. "Test and Evaluation shall be applied on all programs in
accordance with the individual program requirements." It is
emphasized that the program office (P0) must provide for early test
planning and get the operating and supporting commands and the Air
Force Test and Evaluation Center (AFTEC) involved with test planning
early in the program. A T&E working group should be organized to
accomplish test planning. Testing must be specified on the life cycle
phases of conceptualization, validation, full-scale development, and
production.

Statements of design requirements are specified, as are methods of
verifying the design requirements. Sample system specifications are
given. Methods of verification include quality conformance verifica-
tion, inspection, analysis, demonstration and test.

Design requirements for Computer Programs should not be included
in the SOW. The System Specification addresses such issues as general
requirements, computer program structure, top down design, structured
coding, programming languages, firmware requirements, program
generation, and character set standards. General instructions to the
contractor shall include the development of computer programs required
to satisfy the design and performance requirements delineated in the
system specification. The contractor's approach to computer program
development shall conform to the government approved Computer Program
Development Plan. "Care must be taken, when preparing the SOW, to
ensure that the level of management and detail does not constrain the
contractor to the extent that cost/efficiency of the computer programs
will be adversely impacted." Data Items most frequently used for the
management of computer programs are listed. A sample SOW is given for
guidance only, and includes such issues as sizing and timing analysis,
data base architecture, software design criteria and decisions,
algorithm description, and results of the investigations to be
delivered by the contractor in accordance with the CDRL.

Model Statement of Work Task
for Software Development: 	U.S. Air Force, Electronic Systems

Division (ESD). March 1979.

This document specifies general and specific requirements for the
SOW, and gives samples of how it should be worded. "The contractor
shall develop the project software to satisfy the design and
performance requirements established in Specification No. XXX."

209

STEP - Current Defense Practices Overview

Topics addressed include Software Development Technologies/Management
Practices, Life Cycle Activities, Analyses, Sizing/Timing Analysis,
Data Base Architecture Analysis, and Risk Analysis. Algorithms must
be described. Design criteria and decisions, hardware selection
criteria and decisions, CPCI organization and decomposition, system
integration testing, documentation for design, QA, delivery,
installation, operation, etc. must be included. Support software must
be identified. Reviews, both formal and informal, of software
development must be conducted.

Management Guide For Independent
Verification and Validation: 	Air Force Space Division 	(SD),

Directorate 	of 	Logistics 	and
Acquisition Support. August 1980.

This guide was prepared to provide an overview of IV&V as
performed by SD program offices. Its purpose is to provide insight
into how the need for an IV&V contractor is established, the scope of
the IV&V effort relative to the size of the project itself, how the
RFP should be written, what CDRL items to call for, what to look for
in source selections, and how to manage the IV&V contract. IV&V spans
activities throughout the system acquisition life cycle. The purpose
of these activities is not to avoid the occurrence of all software
bugs, but to eliminate programming errors which can lead to
catastrophic results such as loss of life or mission failure, or to
less compelling but still serious consequences, such as equipment
damage and negative economic impacts.

Some SD programs that have used IV&V are: Space Defense, Defense
Meteorological Satellite, Space Shuttle (Interim Upper Stage), and
Global Positioning System. These programs are recommended as sources
for first-hand, lessons learned experience.

The consequences of computer programming errors establishes
whether or not IV&V is indicated for a project. If there is some
chance that an undetected error could cause loss of life or personnel
injury, jeopardize mission success, damage equipment, or lead to waste
of economic resources, IV&V is required on the project. A numerical
IV&V value can be determined by summing criticality values from the
following decision table.

210

STEP - Current Defense Practices Overview

CRITICALITY ASSIGNED PROBABILITY ASSIGNED
CLASS VALUE OF VALUE

OCCURRENCE

Negligible 1 Impossible 0
Marginal 2 Improbable 1
Critical 3 Probable 2
Catastrophic 4 Frequent 3

For every factor/subsystem combination, a criticality value can be
obtained from the product of the software error criticality class
value times the probability of occurrence, summed over all factors,
then divided by the number of factors. The level of IV&V effort is
determined from that number through the use of the following selection
chart.

IV&V Level Selection Chart

IV&V VALUE 	 SUGGESTED IV&V LEVEL

	

0-2 	 None - C
2-3
3-6
6-12 A

Where:

Level C: 	Constructively 	critique 	developer's 	documentation,
participate in milestone reviews; monitor development.

Level B: 	Same effort as in Level C. 	In addition, using
appropriate tools as necessary: Analyze selected
critical functions, spot check design performance,
conduct limited testing, perform selected audits.

Level A: 	Same effort as in Level B. 	In addition, using
appropriate tools as necessary: Independently analyze
requirements and design, rederive key algorithms, confirm
technical adequacy, independently test and evaluate
operational software, conduct stress tests and special
studies, and support configuration and data management.

211

STEP - Current Defense Practices Overview

Cost of IV&V is addressed, as well as what to put in the RFP, how
to identify a good IV&V Contractor, how to get the desired IV&V
evaluation data, and how to evaluate the IV&V proposal data. Pointers
on establishing and maintaining typical IV&V/Software Developer/SPO
Interactions are provided for the SD IV&V manager. A chapter is
devoted to lessons learned, potential IV&V management problems and
suggested actions.

Guide to the Management of
Embedded Computer Resources:
	

Air Force Space Division (SD),
Directorate 	of 	Logistics 	and
Acquisition Support. September 1982.

This publication provides guidance to SD project officers on the
acquisition of embedded computer resources, defined in AFR 800-14 as
"the totality of computer equipment, computer programs, associated
documentation, contractual services, personnel, and supplies".
Technical and management activities which lead to a contract award for
the development of a computer resource capability are highlighted.
Pre-contract award activities are seen as particularly critical for
software development, and must lead to a professional business
environment wherein the software development requirements are
effectively negotiated and made legally binding on the signed contract.

General guidelines for construction of the statement of work (SOW)
are presented, with an emphasis on the SOW being well researched and
as explicit as possible. Techniques that can be used to enhance
software reliability are recommended as specifics to look for in
evaluating a vendors qualifications, such as good requirements
definition, programming standards, all-branch testing, internal
independent verification and validation, and other "equally obvious
reliability enhancers". Areas to be considered in a pre-award survey
of contractor qualifications are presented in detailed tables.

In computer resources acquisition, the life cycle model is a key
concept, but more important is that the SD program office be concerned
with the adequacy of how a phase was conducted rather than just
adhering to the form of the life cycle phasing. HSPO personnel should
be aware of the fact that the life cycle was not invented to burden
contractors or to increase the cost of development." The life cycle
has evolved because of cost overruns, schedule delays, and sometimes
failure.

The remaining chapters address the issues of planning and
management control, technical analysis and requirements development,
application of standards and specifications, software cost estimation
and measurement, configuration management, technical data, reviews and
audits, quality assurance, programming languages, and IV&V. "The most
important phase of software cost estimating from the Air Force

212

STEP - Current Defense Practices Overview

standpoint is the pre-contract activity which will dictate the
visibility we will get on the cost/schedule during the life of a
contract." The work breakdown structure is one of the most important
mechanisms for getting visibility in software cost estimating.

The IV&V concept was originated in the Air Force during the early
days of the Ballistic Missile and Space Systems Division, and applied
to missile systems software that was connected to activation and
control of nuclear weapons or the launching of space vehicles. IV&V
is defined to be the application of a variety of techniques often
supported with automated software tools to evaluate critical/complex
software. These techniques are applied by an experienced contractor
who is completely independent.

In the final chapter, critical issues and periods in computer
resource management are summarized. The critical periods are
primarily in the conceptual and design validation phases. Some key
considerations are:

- A detailed study of requirements must be developed by the SPO
in concert with the user.

- The investment strategy is to spend as much time and money in
this phase as is necessary to do a professional job, as you
get the maximum engineering benefit for each dollar spent in
this phase.

- A technical and management strategy for the acquisition
relating the management aspects of the program to the
technical and procurement considerations should be developed.

- A general conceptual phase scenario should include:

a. Prepare system concept;
b. Review system concept;
c. Determine Systems approach;
d. Determine 	major 	functions, 	i/o, 	processing,

estimated storage requirements;
e. Prepare 	requirements 	definition 	and 	system

specifications;
f. Prepare master development schedule and cost

estimate;
g. Factor in transition and maintenance concepts.

Probably the most critical activity is to assign the management
responsibility and to ensure that the Air Force has the expertise
allocated to do the computer resource job.

213

STEP - Current Defense Practices Overview

APPENDIX A

DATA GATHERING GUIDES

I. OVERVIEW OF DATA GATHERING GUIDE FOR HQ AND DEVELOPMENT COMMAND
VISITS

OVERVIEW:

A. Background Information

B. Regulations and Standards, Etc.
Regulations and standards, controls and waivers for software
T&E and procedures for coordinating multiservice T&E effort.

C. Industry Testing Standards vs. DoD Practices
Contractor selection process, and regulations and standards.

D. New Technology Trends
New technologies related to embedded computer resources and
special validation tasks required.

E. Other
Suggested programs and contacts, and general comments.

NOTES:

1. The primary purpose of these interviews was to determine what
guidance currently exists and the effectiveness of that guidance,
the involvement of the Headquarters and Development Commands with
the individual project offices, what the future holds for embedded
computer resources, and what programs would be useful for survey
purposes.

2. Interviews conducted using this guide had an average duration of
one hour.

214

STEP - Current Defense Practices Overview

I. DATA GATHERING GUIDE FOR HQ AND DEVELOPMENT COMMAND VISITS

A. Background Information

1. Name, Organization, Address, Phone Number.

B. Regulations and Standards, Etc.

1. Regulations, etc. that exist with respect to:
a) Development testing and evaluation.
b) Operational testing and evaluation.
c) Acceptance testing.
d) Test documentation.
e) Quality assurance.
f) Independent verification and validation.
g) Risk assessment.
h) Other.

2. Controls of software testing and evaluation (reports, etc.).

3. Circumstances under which a program may be exempted from any
governing regulations, etc. concerning software.

4. Percentage of the major programs that actually receive waivers.

5. Tailoring of regulations, etc.

6. Strengths of regulations, etc.

7. Weaknesses of regulations, etc.

8. Enhancement efforts with respect to regulations, etc.

9. Procedures for coordinating multiservice software testing and
evaluation.

10. Comments on Regulations and Standards, etc.

C. Industry Testing Standards vs. DoD Practices

1. Role in contractor selection process.

2. Guidelines followed with respect to the amount of importance
given to a potential contractor's internal policies, etc. and
past performance regarding software testing and evaluation
when letting a contract.

215

STEP - Current Defense Practices Overview

3. Requirements placed upon contractors with respect to:
a) Development testing and evaluation.
b) Operational testing and evaluation.
c) Test documentation.
d) Quality assurance.
e) Independent verification and validation.
f) Other.

4. Strengths of requirements, etc.

5. Weaknesses of requirements, etc.

6. Enchancement efforts with respect to requirements, etc.

7. Comments on Industry Testing Standards vs. DoD Practices.

D. New Technology Trends

1. New technology trends that relate to embedded computer
resources.

E. Other

1. Suggested programs and contracts.

2. General comments.

216

STEP - Current Defense Practices Overview

II. OVERVIEW OF DATA GATHERING GUIDE FOR PROGRAM OFFICE VISITS

OVERVIEW:

A. Background Information
Description of organization and program, current status,
applications, development groups, staffing, programming
languages, operating systems, existing software, and hardware.

B. Regulations and Standards, Etc.
Regulations and Standards, controls and waivers for software
T&E, and procedures for coordinating multiservice T&E effort.

C. Industry Testing Standards vs. DoD Practices
Contractor selection process, and regulations and standards.

D. Pre-Testing Activities
Programming 	standards 	and 	conventions, 	documentation,
requirements analysis, design analysis and reviews,
design-to-test procedures, metrics, prototypes, baselining,
and code inspections and walkthroughs.

E. Development Testing and Evaluation
Test plans and procedures, testing strategies, testing
techniques, and evaluation techniques.

F. Integration Testing
Software and hardware/software integration and testing
procedures.

G. Acceptance Testing
Organization, interfaces, acceptance testing procedures, and
quantification of requirements and thresholds for acceptance.

H. Testing and Evaluation Tools
Testing and evaluation tools and metrics.

I. Test Documentation Procedures and Regression Testing
Test documentation procedures, maintenance of documentation
and test media, tools, documentation of errors, and regression
testing techniques.

J. Quality Assurance Program
Scope and organization, QA procedures and standards, QA
reviews and evaluations, and QA activities.

K. Independent Verification and Validation
Scope, organization, requirements analysis, design analysis,
code analysis, and independent testing.

217

STEP - Current Defense Practices Overview

L. Operational Testing and Evaluation
Objectives, 	organization, 	interfaces, 	methodology,
environment, test plans and procedures, test data analysis,
in-plant testing, on-site testing, effectiveness-related
testing, full system/casualty mode testing,
suitability-related testing, metrics, and regression testing.

M. Risk Assessment
Risk assessment procedures with respect to success of mission,
lethality of failure, and system production, and relationship
between risk and testing effort required.

N. New Technology Trends
New technologies related to the program's embedded computer
resources and special validation tasks required.

0. Other
Lessons learned, suggested contacts, and general comments.

NOTES:

1. The primary purpose of these interviews was to get as much
information as possible on all aspects of the software development
process as seen by the Program Office. An unexpected result of
the interviews was the discovery that the Program Offices, in
general, have little detailed knowledge of the activities
performed by the contractors or the OT&E agencies.

2. Interviews conducted using this guide had an average duration of
four hours.

218

STEP - Current Defense Practices Overview

II. DATA GATHERING GUIDE FOR PROGRAM OFFICE VISITS

A. Background Information

1. Name, organization, address, phone number.

2. Description of organization.

3. Description of program.

4. Current status of program's software.

5. Software applications that exist in program:
a) Tracking.
b) Guidance and Control.
c) Navigation.
d) Digital Filtering/Image Processing.
e) Computation.
f) Communications Systems.
g) Command and Control/Information Management.
h) Applications Support.
i) General Automatic Data Processing.
j) Built-in-Test Software.
k) Other.

6. Government furnished software applications.
responsible.

7. Contractor furnished software applications.
responsible.

Organization

Contractor

8. Software development lifecycle for program.

9. Programming language(s) used. Percentage of code using each.

10. Operating system used (timesharing vs. batch).

11. Existing operational application software to be used.

12. Hardware used (host and target).

13. Special hardware devices used for testing.

219

STEP - Current Defense Practices Overview

B. Regulations and Standards, Etc.

1. Regulations, etc. being applied to this program with respect
to:
a) Development testing and evaluation.
b) Operational testing and evaluation.
c) Acceptance testing.
d) Test documentation.
e) Quality assurance.
f) Independent verification and validation.
g) Risk assessment.
h) Other.

2. Controls of software testing and evaluation (reports, etc.).

3. Circumstances under which a program may be exempted from any
governing regulations, etc. concerning software.

4. Waivers approved for program's software.

5. Tailored regulations related to software testing and
evaluation for program.

6. Strengths of regulations, etc.

7. Weaknesses of regulations, etc.

8. Enhancement efforts with respect to regulations, etc.

9. Procedures for coordinating multiservice software testing and
evaluation effort.

10. Comments on Regulations and Standards, etc.

C. Industry Testing Standards vs. DoD Practices

1. Role in the contractor selection process.

2. Guidelines followed with respect to the amount of importance
given to a potential contractor's internal policies, etc. and
past performance regarding software testing and evaluation
when letting a contract.

3. Requirements placed upon contractors with respect to:
a) Development testing and evaluation.
b) Operational testing and evaluation.
c) Acceptance testing.
d) Test documentation.
e) Quality assurance.
f) Independent verification and validation.
g) Risk assessment.
h) Other.

220

STEP - Current Defense Practices Overview

4. Strengths of requirements, etc.

5. Weaknesses of requirements, etc.

6. Enchancement efforts with respect to requirements, etc.

7. Comments on Industry Testing Standards vs. DoD Practices.

D. Pre-testing Activities

1. Programming standards and conventions used in program.
Enforcement procedures.

2. Procedures to assure software architecture modularity.

3. Procedures to assure that the "Top-down" software development
methodology and structured programming are used.

4. Documentation items for software as it proceeds from concept
to design to the final operational system.

5. Validation of software requirements/specifications prior to
implementation (requirements analysis).

6. Validation of software design prior to implementation (design
analysis).

7. Software design reviews conducted for program.

8. Organization responsible for conducting software design
reviews.

9. Standards that software design reviews are conducted in
accordance with (MIL-STD 1521A?).

10. Software design review participants.

11. Procedures for analysis of units consistency.

12. Design-to-test procedures.

13. Procedures for quantitative assessment of software design
maturity and supportability.

14. Metrics used to evaluate software design quality in terms of
cohesiveness, coupling, scope of effect/control, modularity,
etc.

15. Software prototypes built to refine system requirements/
specifications and design prior to implementation.

221

STEP - Current Defense Practices Overview

16. Software design baselining procedures.

17. Verification that code conforms to the original software
design (program analysis).

18. Code inspections and walkthroughs conducted.

19. Error checklists used for inspections.

20. Other pre-testing activities.

21. Differences in pre-testing activities between application
areas.

22. Major likes and dislikes of pre-testing activities.

23. Reasons for use/non-use of pre-testing activities.

24. Strengths of pre-testing activities.

25. Weaknesses of pre-testing activities.

26. Enhancement efforts with respect to pre-testing activities.

27. Comments on Pre-testing Activities.

E. Development Testing and Evaluation

1. Software testing and evaluation process for program, covering
the entire software development life cycle.

2. Software tests performed. Levels of testing employed.

3. Time of initial preparations for software testing.

4. Software module test plans and procedures development process.

5. Testing strategies used:
a) Black-box Methodology.

Input space partitioning.
Cause-effect graphing.
Random testing.
Automated generation of test data.

b) White-box Methodology.
Logic coverage testing.

- statement coverage.
- branch coverage.
- condition coverage.

Domain testing.
c) Top-down.
d) Bottom-up.
e) Thread testing.
f) Other.

222

STEP - Current Defense Practices Overview

6. Lines of code/test case ratio (planned and actual).

7. Procedures to ensure that test data is representative of the
total range of data and operational conditions that the
software might encounter.

8. Test execution procedures - scenario fashion simulating "real
world" situations vs. testing all inputs, displays,
processing, etc. in generic groups.

9. Types of calibration bugs used to test the test data.

10. Differences in testing strategies between application areas.

11. Major likes and dislikes of these testing strategies.

12. Reasons for use/non-use of these testing strategies.

13. Testing techniques used:
a) Symbolic testing.
b) Program instrumentation.
c) Mutation.
d) Input space partitioning.
e) Functional program testing.
f) Algebraic program testing.
g) Random testing.
h) Grammar-based testing.
i) Data-flow guided testing.
j) Other.

14. Differences in use of testing techniques between application
areas.

15. Major likes and dislikes of testing techniques.

16. Reasons for use/non-use of Testing Techniques.

17. Software module interface testing procedures.

18. Validation procedures for critical software computational and
decision algorithms and their timing assumptions.

19. Formal proofs of correctness attempts for program's software.

20. Measurements of software maturity (versus design maturity)
during development.

21. Procedures for quantitatively demonstrating the completion of
software development.

223

STEP - Current Defense Practices Overview

22. Evaluation techniques used.

23. Software verification and validation procedures. Organization
responsible.

24. Organization responsible for preparation of test data for
software validation.

25. Mechanism to make an independent assessment of the software.

26. Differences in the use of evaluation techniques between
application areas.

27. Major likes and dislikes of these evaluation techniques.

28. Strengths of development testing and evaluation process.

29. Weaknesses of development testing and evaluation process.

30. Enhancement efforts with respect to development testing and
evaluation process.

31. Comments on Development Testing and Evaluation.

F. Integration Testing

1. Software integration and testing procedures.

2. Organization responsible for software integration when there
is a mix of government furnished software and contractor
furnished software.

3. Procedures for quantitatively demonstrating the completion of
software integration and testing.

4. Major likes and dislikes of software integration testing
methodology.

5. Software/hardware integration and testing procedures.

6. Procedures for quantitatively demonstrating the completion of
software/hardware integration and testing.

7. Major likes and dislikes of software/hardware integration
testing methodology.

8. Strengths of integration testing.

9. Weaknesses of integration testing.

224

STEP - Current Defense Practices Overview

10. Enhancement efforts with respect to integration testing.

11. Comments on Integration Testing.

G. Acceptance Testing

1. Software acceptance testing process for program.

2. Organization responsible for the acquisition of the program's
software.

3. Organization 	responsible 	for 	conducting 	the 	software
acceptance testing for program. Interfacing process.

4. Process used to develop the software acceptance test plans and
procedures.

5. Procedures to use acceptance testing to establish the proper
execution of each software function.

6. Procedures to use acceptance testing to demonstrate that the
integrated software operates correctly in the user environment.

7. Procedures to use acceptance testing to demonstrate the
compliance of the integrated software with general performance
requirements.

8. Procedures for the quantification of requirements for software
and threshold values for acceptance.

9. Differences in the software acceptance testing process between
application areas.

10. Organization 	responsible 	for 	the 	final 	decision 	to
accept/reject software. Information decision is based on.

11. Strengths of the software acceptance testing process.

12. Weaknesses of the software acceptance testing process.

13. Enchancement efforts with respect to the software acceptance
testing process.

14. Comments on Acceptance Testing.

225

STEP - Current Defense Practices Overview

H. Testing and Evaluation Tools

1. Testing and evaluation tools used:
a) Static analyzers.
b) Symbolic evaluators.
c) Test data generators.
d) Program instrumenters.
e) Mutation testing tools.
f) Automatic test drivers.
g) Comparators.
h) Others.

2. Metrics used to evaluate the software.

3. Differences in use of testing and evaluation tools between
application areas.

4. Major likes and dislikes of testing and evaluation tools.

5. Reasons for use/non-use of testing and evaluation tools.

6. Testing and evaluation tools available but not used.
Justification for non-use.

7. Strengths of testing and evaluation tools.

8. Weaknesses of testing and evaluation tools.

9. Enhancement efforts with respect to testing and evaluation
tools.

10. Comments on Testing and Evaluation Tools.

I. Test Documentation Procedures and Regression Testing

1. Software test documentation procedures for program.

2. Procedures to maintain test-related documentation and media to
allow repeatability of tests.

3. Procedures used to ensure that changes in the requirements
and/or 	specifications 	trigger 	changes 	in 	the 	test
documentation.

4. Tools used to maintain and control test case library.

5. Procedures to define, collect, analyze, and report software
error data.

6. Regression testing procedures for software.

226

STEP - Current Defense Practices Overview

7. Procedures to determine the amount of regression testing to be
performed given an arbitrary change to the software.

8. Strengths of the software test documentation and regression
testing procedures.

9. Weaknesses of the software test documentation and regression
testing procedures.

10. Enhancement efforts with respect to the software test
documentation and regression testing procedures.

11. Comments on Test Documentation Procedures and Regression
Testing.

J. Quality Assurance Program

1. Software quality assurance program.

2. Scope and organization of software quality assurance program
(separate function?).

3. Software development standards and procedures required by
quality assurance plan.

4. Process used by quality assurance to ensure that standards and
procedures are being followed.

5. Quality assurance organization reviews and evaluations of
software documentation:
a) Requirements specifications.
b) Design specifications.
c) Test plans and procedures.
d) User manuals.
e) Implementer's Guide.
f) Other.

6. Quality assurance activities:
a) Software design reviews and audits.
b) Code walk-throughs.
c) Software acceptance testing witnessing.
d) Final 	software 	configuration 	audit prior to 	its

installation in the operational environment.
e) Other.

7. Strengths of the software quality assurance program.

8. Weaknesses of software quality assurance program.

227

STEP - Current Defense Practices Overview

9. Enhancement efforts with respect to the software quality
assurance program.

10. Comments on Quality Assurance Program.

K. Independent Verification and Validation

1. Scope of the independent verification and validation effort of
the software for this program.

2. Organization responsible for the independent verification and
validation of software for program.

3. Organization to whom the independent verification and
validation organization reports.

4. Involvement and responsibilities with respect to the
independent verification and validation of software for
program.

5. Time of initial involvement of the independent verification
and validation organization with program's software.

6. Independent verification and validation activities:
a) Analysis of software requirements for completeness,

correctness, consistency, traceability, and testability.
b) Analysis of software design for correctness and

satisfaction of requirements.
c) Analysis of code to verify correct implementation of the

design.
d) Independent test of software (Using nominal scenarios?

Using worst-case scenarios?).
e) Other.

7. Procedures used by the independent verification and validation
organization to ensure that the software does not fail by
unintentionally performing an undesirable function.

8. Strengths of independent verification and validation.

9. Weaknesses of independent verification and validation.

10. Enhancement efforts with respect to independent verification
and validation.

11. Comments on Independent Verification and Validation.

L. Operational Testing and Evaluation

1. Objectives of operational testing and evaluation of software.

228

STEP - Current Defense Practices Overview

2. Organization responsible for conducting the operational
testing and evaluation of software for program.

3. Process used to interface with the software operational
testing and evaluation organization.

4. Involvement and responsibilities with respect to the
operational testing and evaluation of software for program.

5. Extent of operational testing and evaluation organization's
participation in software development, covering the entire
lifecycle:
a) Requirements analysis.
b) Design analysis.
c) Program analysis.
d) Development testing and evaluation.
e) Other.

6. Software operational testing and evaluation methodology.

7. Operational testing and evaluation environment:
a) Special hardware.
b) Monitoring devices.
c) Patches allowed during testing.
d) Number of prototype devices dedicated to OT&E.
e) Other.

8. Time of initial preparations for software operational testing.

9. Software operational test plans and procedures development
process.

10. Procedures used by the operational testing and evaluation
organization to ensure that the test scenarios are
representative of the total range of data and operational
conditions that the software might encounter.

11. In-plant testing.

12. On-site testing.

13. Procedures to ensure that the software meets its stated
operational requirements.

14. Effectiveness-related testing procedures for software with
respect to:
a) Performance.
b) Machine-machine interface.
c) Operator-machine interface.
d) Other.

229

STEP - Current Defense Practices Overview

15. Validation of critical software computational and decision
algorithms and their timing assumptions during operational
testing and evaluation.

16. Full system/casualty mode testing.

17. Procedures to use testing to clearly identify deficiencies as
software or hardware related.

18. Suitability-related testing procedures for software with
respect to:
a) Maintainability.

- source code.
- documentation.
- computer support resources.

b) Usability.
c) Other.

19. Metrics used by the operational testing and evaluation
organization to evaluate the software.

20. Regression testing procedures used by the operational testing
and evaluation organization.

21. Procedure used to determine the necessary amount of regression
testing given a set of changes to the software during
operational testing and evaluation.

22. Procedures to quantitatively demonstrate the completion of
software operational testing and evaluation.

23. Differences in the operational 	testing and evaluation
methodology for software between application areas.

24. Strengths of the operational testing and evaluation process
for software.

25. Weaknesses of the operational testing and evaluation process
for software.

26. Enhancement efforts with respect to the operational testing
and evaluation process for software.

27. Comments on Operational Testing and Evaluation.

M. Risk Assessment

1. Software risk assessment procedures for program.

230

STEP - Current Defense Practices Overview

2. Software risk assessment procedures with respect to:
a) Success of the mission.
b) Lethality of failure.
c) System production.
d) Other.

3. Relationship between risk posed by various casualty modes of
software 	failure 	and 	testing effort required 	in 	the
development-procurement-maintenance
lifecycle.

phases of 	the 	software

4. Strengths of software risk assessment procedures.

5. Weaknesses of software risk assessment procedures.

6. Enhancement 	efforts 	with 	respect
assessment procedures.

to 	the 	software 	risk

7. Comments on Risk Assessment.

N. New Technology Trends

1. New technologies to be developed or utilized for program's
embedded computer resources.

2. Special tasks to be performed to validate new technologies.

0. Other

1. "Lessons learned" from program.

2. Suggested contacts (contractors, IV&V contractors, OT&E
personnel, etc.).

3. General comments.

231

STEP - Current Defense Practices Overview

III. OVERVIEW OF DATA GATHERING GUIDE FOR SOFTWARE DEVELOPMENT SHOP
VISITS

OVERVIEW:

A. Background Information
Description of organization and program, current status,
applications, staffing, programming languages, operating
systems, existing software, and hardware.

B. Industry Testing Standards vs. DoD Practices
Regulations and standards, and controls.

C. Pre-Testing Activities
Programming 	standards 	and 	conventions, 	documentation,
requirements analysis, design analysis and reviews,
design-to-test procedures, metrics, prototypes, baselining,
and code inspections and walkthroughs.

D. Development Testing and Evaluation
Test plans and procedures, testing strategies, testing
techniques, and evaluation techniques.

E. Integration Testing
Software and software/hardware integration and testing
procedures.

F. Acceptance Testing
Organization, interfaces, acceptance testing procedures, and
quantification of requirements and thresholds for acceptance.

G. Testing and Evaluation Tools
Testing and evaluation tools and metrics.

H. Test Documentation Procedures and Regression Testing
Test documentation procedures, maintenance of documentation
and test media, tools, documentation of errors, and regression
testing.

I. Quality Assurance Program
Scope and organization, QA procedures and standards, QA
reviews and evaluations, and QA activities.

J. Independent Verification and Validation
Scope, organization, requirements analysis, design analysis,
code analysis, and independent testing.

K. Operational Testing and Evaluation
Organization, interfaces, involvement, and responsibilities.

232

STEP - Current Defense Practices Overview

L. Risk Assessment
Risk assessment procedures with respect to success of mission,
lethality of failure, and system production, and relationship
between risk and testing effort required.

M. New Technology Trends
New technologies related to program's embedded computer
resources and special validation tasks required.

N. Other
Lessons learned, suggested contacts, and general comments.

Notes:

1. The primary purpose of these interviews was to get as much
information as possible on all aspects of the software development
process.

2. Interviews conducted using this guide had an average duration of
four hours.

233

STEP - Current Defense Practices Overview

III. DATA GATHERING GUIDE FOR SOFTWARE DEVELOPMENT SHOP VISITS

A. Background Information

1. Name, organization, address, and phone number.

2. Description of organization.

3. Description of program.

4. Current status of software.

5. Software applications responsible for:
a) Tracking.
b) Guidance and Control.
c) Navigation.
d) Digital Filtering/Image Processing.
e) Computation.
f) Communications Systems.
g) Command and Control/Information Management.
h) Applications Support.
i) General Automatic Data Processing.
j) Built-in-Test Software.
k) Other.

6. Software development lifecycle for program.

7. Programming language(s) used. Percentage of code using each.

8. Operating system used (timesharing vs. batch).

9. Existing operational application software to be used.

10. Hardware used (host and target).

11. Special hardware devices used for testing.

B. Industry Testing Standards vs. DoD Practices

1. Requirements placed upon contractors with respect to:
a) Development testing and evaluation.
b) Operational testing and evaluation.
c) Acceptance testing.
d) Test documentation.
e) Quality assurance.
f) Independent verification and validation.
g) Risk assessment.
h) Other.

234

STEP - Current Defense Practices Overview

2. Controls of software testing and evaluation (reports, etc.).

3. Strengths of requirements, etc.

4. Weaknesses of requirements, etc.

5. Enhancement efforts with respect to requirements, etc.

6. Comments on Industry Testing Standards vs. DoD Practices.

C. Pre-Testing Activities

1. Programming standards and conventions used in program.
Enforcement procedures.

2. Procedures to assure software architecture modularity.

3. Procedures to assure that the "Top-down" software development
methodology and structured programming are used.

4. Documentation items for software as it proceeds from concept
to design to the final operational system.

5. Validation of software requirements/specifications prior to
implementation (requirements analysis).

6. Validation of software design prior to implementation (design
analysis).

7. Software design reviews conducted for program.

8. Organization responsibile for conducting software design
reviews.

9. Standards that software design reviews are conducted in
accordance with (MIL-STD-1521A?).

10. Software design review participants.

11. Procedures for an analysis of units consistency.

12. Design-to-Test procedures.

13. Procedures for quantitative assessment of software design
maturity and supportability.

14. Metrics used to evaluate software design quality in terms of
cohesiveness, coupling, scope of effect/control, parsimony,
modularity, etc.

235

STEP - Current Defense Practices Overview

15. Software prototypes built to refine system requirements/
specifications and design prior to implementation.

16. Software design baselining procedures.

17. Verification that code conforms to the original software
design (Program analysis).

18. Code inspections and walkthroughs conducted.

19. Error checklists used for inspections.

20. Other pre-testing activities.

21. Differences in pre-testing activities between application
areas.

22. Major likes and dislikes of pre-testing activities.

23. Reasons for use/non-use of pre-testing activities.

24. Strengths of pre-testing activities.

25. Weaknesses of pre-testing activities.

26. Enhancement efforts with respect to pre-testing activities.

27. Comments on Pre-testing Activities.

D. Development Testing and Evaluation

1. Software testing and evaluation process for program, covering
the entire software development life cycle.

2. Software tests performed. Levels of testing employed.

3. Time of initial preparations for software testing.

4. Software module test plans and procedures development process.

5. Testing strategies used:
a) Black-box Methodology.

Input space partitioning.
Cause-effect graphing.
Error guessing.
Automated generation of test cases.

b) White-box Methodology.
Logic coverage testing.

- Statement coverage.
- Branch coverage.
- Condition coverage.

Domain testing.

236

STEP - Current Defense Practices Overview

c) Top-down.
d) Bottom-up.
e) Thread testing.
f) Other.

6. Lines of code/test case ratio (planned and actual).

7. Procedures to ensure that test data is representative of the
total range of data and operational conditions that the
software might encounter.

8. Test execution procedures - scenario fashion simulating "real
world" situations vs. testing all inputs, displays,
processing, etc. in generic groups.

9. Types of calibration bugs used to test the test data.

10. Differences in testing strategies between application areas.

11. Major likes and dislikes of these testing strategies.

12. Reasons for use/non-use of these testing strategies.

13. Testing Techniques used:
a) Symbolic testing.
b) Program instrumentation.
c) Mutation.
d) Input space partitioning.
e) Functional program testing.
f) Algebraic program testing.
g) Random testing.
h) Grammar-based testing.
i) Data-flow guided testing.
j) Other.

14. Differences in use of testing techniques between application
areas.

15. Major likes and dislikes of testing techniques.

16. Reasons for use/non-use of testing techniques.

17. Software module interface testing procedures.

18. Validation procedures for critical software computational and
decision algorithms and their timing assumptions.

19. Formal proofs of correctness attempts for program's software.

20. Measurements of software maturity (versus design maturity)
during development.

237

STEP - Current Defense Practices Overview

21. Procedures for quantitatively demonstrating the completion of
software development.

22. Evaluation techniques used.

23. Software verification and
responsible.

24. Organization responsible
software validation.

validation procedures. Organization

for preparation of test data for

25. Mechanism to make an independent assessment of the software.

26. Differences 	in 	use of evaluation 	techniques between
application areas.

27. Major likes and dislikes of these evaluation techniques.

28. Strengths of development testing and evaluation process.

29. Weaknesses of development testing and evaluation process.

30. Enhancement efforts with respect to development testing and
evaluation process.

31. Comments on Development Testing and Evaluation.

E. Integration Testing

1. Software integration and testing procedures.

2. Organization responsible for software integration when there
is a mix of government furnished software and contractor
furnished software.

3. Procedures for quantitatively demonstrating the completion of
software integration and testing.

4. Major likes and dislikes of software integration testing
methodology.

5. Software/hardware integration and testing procedures.

6. Procedures for quantitatively demonstrating the completion of
software/hardware integration and testing.

7. Major likes and dislikes of software/hardware integration
testing methodology.

8. Strengths of integration testing.

238

STEP - Current Defense Practices Overview

9. Weaknesses of integration testing.

10. Enhancement efforts with respect to integration testing.

11. Comments on Integration Testing.

F. Acceptance Testing

1. Software acceptance testing process for program.

2. Organization responsible for the acquisition of the program's
software.

3. Organization 	responsible 	for 	conducting 	the 	software
acceptance testing. Interfacing process.

4. Involvement and responsibilities with respect to the
acceptance testing of software.

5. Process used to develop the software acceptance test plans and
procedures.

6. Procedures to use acceptance testing to establish the proper
execution of each software function.

7. Procedures to use acceptance testing to demonstrate that the
integrated software operates correctly in the user environment.

8. Procedures to use acceptance testing to demonstrate the
compliance of the integrated software with general performance
requirements.

9. Procedures for the quantification of requirements for software
and threshold values for acceptance.

10. Differences in the software acceptance testing process between
application areas.

11. Organization 	responsible 	for 	the 	final 	decision 	to
accept/reject software. Information decision is based on.

12. Strengths of the software acceptance testing process.

13. Weaknesses of the software acceptance testing process.

14. Enhancement efforts with respect to the software acceptance
testing process.

15. Comments on Acceptance Testing.

239

STEP - Current Defense Practices Overview

G. Testing and Evaluation Tools

1. Testing and evaluation tools used:
a) Static analyzers.
b) Symbolic evaluators.
c) Test data generators.
d) Program instrumenters.
e) Mutation testing tools.
f) Automatic test drivers.
g) Comparators.
h) Others.

2. Metrics used to evaluate the software.

3. Differences in use of testing and evaluation tools between
application areas.

4. Major likes and dislikes of testing and evaluation tools.

5. Reasons for use/non-use of testing and evaluation tools.

6. Testing and evaluation tools available but not used.
Justification for non-use.

7. Strengths of testing and evaluation tools.

8. Weaknesses of testing and evaluation tools.

9. Enhancement efforts with respect to testing and evaluation
tools.

10. Comments on Testing and Evaluation Tools.

H. Test Documentation Procedures and Regression Testing

1. Software test documentation procedures.

2. Procedures to maintain test-related documentation and media to
allow repeatability of tests.

3. Procedures used to ensure that changes in the requirements
and/or 	specifications 	trigger 	changes 	in 	the 	test
documentation.

4. Tools used to maintain and control test case library.

5. Procedures to define, collect, analyze, and report software
error data.

6. Regression testing procedures for software.

240

STEP - Current Defense Practices Overview

7. Procedures to determine the amount of regression testing to be
performed given an arbitrary change to the software.

8. Strengths of the software test documentation and regression
testing procedures.

9. Weaknesses of the software test documentation and regression
testing procedures.

10. Enhancement efforts with respect to the software test
documentation and regression testing procedures.

11. Comments on Test Documentation Procedures and Regression
Testing.

I. Quality Assurance Program

1. Software quality assurance program.

2. Scope and organization of software quality assurance program
(separate function?).

3. Software development procedures and standards required by
quality assurance plan.

4. Process used by quality assurance to ensure that standards and
procedures are being followed.

5. Quality assurance organization reviews and evaluations of
software documentation:
a) Requirements specifications.
b) Design specifications.
c) Test plans and procedures.
d) User manuals.
e) Implementer's guide.
f) Other.

6. Quality assurance activities:
a. Software design reviews and audits.
b. Code walk-throughs.
c. Software acceptance testing witnessing.
d. Final 	software 	configuration audit 	prior to 	its

installation in the operational environment.
e. Other.

7. Strengths of the software quality assurance program.

8. Weaknesses of software quality assurance program.

241

STEP - Current Defense Practices Overview

9. Enhancement efforts with respect to the software quality
assurance program.

10. Comments on Quality Assurance Program.

J. Independent Verification and Validation

1. Scope of the independent verification and validation effort of
the software for this program.

2. Organization responsible for the independent verification and
validation of software for program.

3. Organization to whom the independent verification and
validation organization reports.

4. Involvement and responsibilities with respect to the
independent verification and validation of software for
program.

5. Time of initial involvement of the independent verification
and validation organization with program's software.

6. Independent verification and validation activities:
a) Analysis of software requirements for completeness,

correctness, consistency, traceability, and testability.
b) Analysis of 	software design 	for correctness and

satisfaction of requirements.
c) Analysis of code to verify correct implementation of the

design.
d) Independent test of software (Using nominal scenarios?

Using worst-case scenarios?).
e. Other.

7. Procedures used by the independent verification and vai idation
organization to ensure that the software does not fail by
unintentionally performing an undesirable function.

8. Strengths of independent verification and validation.

9. Weaknesses of independent verification and validation.

10. Enhancement efforts with respect to independent verification
and validation.

11. Comments on Independent Verification and Validation.

242

STEP - Current Defense Practices Overview

K. Operational Testing and Evaluation

1. Objectives of operational testing and evaluation of software.

2. Organization responsible for conducting the operational
testing and evaluation of software.

3. Process used to interface with the software operational
testing and evaluation organization.

4. Involvement and responsibilities with respect to the
operational testing and evaluation of software.

5. Time of initial involvement of the operational testing and
evaluation organization with software.

6. Extent of operational testing and evaluation organization's
participation in software development, covering the entire
lifecycle:
a) Requirements analysis.
b) Design analysis.
c) Program analysis.
d) Development testing and evaluation.
e) Other.

7. Differences in the operational testing and evaluation
methodology for software between application areas.

8. Strengths of the operational testing and evaluation process
for software.

9. Weaknesses of the operational testing and evaluation process
for software.

10. Enhancement efforts with respect to the operational testing
and evaluation process for software.

11. Comments on Operational Testing and Evaluation.

L. Risk Assessment

1. Software risk assessment procedures for program.

2. Software risk assessment procedures with respect to:
a) Success of the mission.
b) Lethality of failure.
c) System production.
d) Other.

243

STEP - Current Defense Practices Overview

3. Relationship between risk posed by various casualty modes of
software failure and testing effort required in the
development-procurement-maintenance phases of the software
lifecycle.

4. Strengths of software risk assessment procedures.

5. Weaknesses of software risk assessment procedures.

6. Enhancement efforts with respect to the software risk
assessment procedures.

7. Comments on Risk Assessment.

M. New Technology Trends

1. New technologies to be developed or utilized for program's
embedded computer resources.

2. Special tasks to be performed to validate new technologies.

N. Other

1. "Lessons learned" from program.

2. Suggested contacts (IV&V contractors, OT&E personnel, etc.).

3. General comments.

244

STEP - Current Defense Practices Overview

IV. OVERVIEW OF DATA GATHERING GUIDE FOR IV&V ORGANIZATION VISITS

OVERVIEW:

A. Background Information
Description of organization and program, current status,
applications, development groups, staffing, programming
languages, operating systems, existing software, and hardware.

B. Industry IV&V Standards vs. DoD Practices
Requirements for IV&V and controls of IV&V.

C. IV&V Pre-Testing Activities
Requirements analysis, design analysis and reviews, metrics,
and code inspections and walkthroughs.

D. IV&V Development Testing
Test plans and procedures, testing strategies, testing
techniques, and evaluation techniques.

E. IV&V Integration Testing
Software and software/hardware integration and testing
procedures.

F. IV&V Involvement in Acceptance Testing
Organization, interfaces, acceptance testing procedures, and
quantification of requirements and thresholds for acceptance.

G. IV&V Testing and Evaluation Tools
Testing and evaluation tools and metrics.

H. IV&V Test Documentation Procedures and Regression Testing
Test documentation procedures, maintenance of documentation
and test media, tools, and documentation of errors, and
regression testing.

I. IV&V Involvement in Operational Testing and Evaluation
Organization, interfaces, involvement, and responsibilities.

J. New Technology Trends
New technologies related to program's embedded computer
resources and special validation tasks required.

K. Other
Lessons learned, suggested contacts, and general comments.

245

STEP - Current Defense Practices Overview

NOTES:

1. These interviews had a primary purpose of getting all available
information on all aspects of IV&V involvement in the software
development process.

2. Interviews conducted using this guide had an average duration of
two hours.

246

STEP - Current Defense Practices Overview

IV. DATA GATHERING GUIDE FOR IV&V ORGANIZATION VISITS

A. Background Information

1. Name, organization, address, and phone number.

2. Description of organization.

3. Description of program.

4. Current status of program's software.

5. Scope of the independent verification and validation effort
for the software for this program.

6. Organization to whom the independent verification and
validation organization reports.

7. Time of initial involvement of the independent verification
and validation organization with the program's software.

8. Software applications that exist in program:
a) Tracking.
b) Guidance and Control.
c) Navigation.
d) Digital Filtering/Image Processing.
e) Computation.
f) Communications Systems.
g) Command and Control/Information Management.
h) Applications Support.
i) General Automatic Data Processing.
j) Built-in-Test Software.
k) Other.

9. Government furnished software applications. 	Organization
responsible.

10. Contractor furnished 	software applications. 	Contractor
responsible.

11. Software development lifecycle for program.

12. Programming language(s) used. Percentage of code using each.

13. Operating system used (timesharing vs. batch).

14. Existing operational application software to be used.

15. Hardware used (host and target).

16. Special hardware devices used for testing.

247

STEP - Current Defense Practices Overview

B. Industry IV&V Standards vs. DoD Practices

1. Requirements, etc. related to IV&V of software.

2. Controls of software IV&V (reports, etc.).

3. Strengths of requirements, etc.

4. Weaknesses of requirements, etc.

5. Enhancement efforts with respect to requirements, etc.

6. Comments on Industry IV&V Standards vs. DoD Practices.

C. IV&V Pre-Testing Activities

1. Documentation items for software as it proceeds from concept
to design to the final operational system.

2. Analysis 	of 	software 	requirements 	for 	completeness,
correctness, consistency, traceability, and testability.

3. Analysis of software design for correctness and satisfaction
of requirements.

4. Software design reviews conducted for program.

5. Organization responsibile for conducting software design
reviews.

6. Standards that software design reviews are conducted in
accordance with (MIL-STD-1521A?).

7. Software design review participants.

8. Procedures for analysis of units consistency.

9. Procedures for quantitative assessment of software design
maturity and supportability.

10. Metrics used to evaluate software design quality in terms of
cohesiveness, coupling, scope of effect/control, modularity,
etc.

11. Analysis of code to verify correct implementation of the
design.

12. Code inspections and walkthroughs conducted.

13. Error checklists used for inspections.

14. Other IV&V pre-testing activities.

248

STEP - Current Defense Practices Overview

15. Differences in pre-testing activities between application
areas.

16. Major likes and dislikes of IV&V pre-testing activities.

17. Reasons for use/non-use of IV&V pre-testing activities.

18. Strengths of IV&V pre-testing activities.

19. Weaknesses of IV&V pre-testing activities.

20. Enhancement efforts with respect to IV&V pre-testing
activities.

21. Comments on IV&V Pre-Testing Activities.

D. IV&V Development Testing

1. IV&V independent test of software (Using nominal scenarios?
Using worst-case scenarios?).

2. Software tests performed. Levels of testing employed.

3. Time of initial preparations for software testing.

4. Software module test plans and procedures development process.

5. Testing strategies used:
a) Black-box Methodology.

Input space partitioning.
Cause-effect graphing.
Error guessing.
Random testing.
Automated generation of test cases.

b) White-box Methodology.
Logic coverage testing.

- Statement coverage.
- Branch coverage.
- Condition coverage.

Domain testing.
c) Top-down.
d) Bottom-up.
e) Threat testing.
f) Other.

6. Lines of code/test case ratio (planned and actual).

249

STEP - Current Defense Practices Overview

7. Procedures to ensure that test data is representative of the
total range of data and operational conditions that the
software might encounter.

8. Test execution procedures - scenario fashion simulating "real
world" situations vs. testing all inputs, displays,
processing, etc. in generic groups.

9. Procedures used to ensure that the software does not fail by
unintentionally performing an undesirable function.

10. Types of calibration bugs used to test the test data.

11. Differences in testing strategies between application areas.

12. Major likes and dislikes of these testing strategies.

13. Reasons for use/non-use of these testing strategies.

14. Testing techniques used:
a) Symbolic testing.
b) Program instrumentation.
c) Mutation.
d) Input space partitioning.
e) Functional program testing.
f) Algebraic program testing.
g) Random testing.
h) Grammar-based testing.
i) Data-flow guided testing.
j) Other.

15. Differences in use of testing techniques between application
areas.

16. Major likes and dislikes of testing techniques.

17. Reasons for use/non-use of testing techniques.

18. Software module interface testing procedures.

19. Validation procedures for critical software computational and
decision algorithms and their timing assumptions.

20. Formal proofs of correctness attempts for program's software.

21. Measurements of software maturity (versus design maturity)
during development.

22. Procedures for quantitatively demonstrating the completion of
software development.

250

STEP - Current Defense Practices Overview

23. Evaluation techniques used.

24. Differences in the use of evaluation techniques between
application areas.

25. Major likes and dislikes of these evaluation techniques.

26. Strengths of IV&V development testing and evaluation process.

27. Weaknesses of IV&V development- testing and evaluation process.

28. Enhancement efforts with respect to IV&V development testing
and evaluation process.

29. Comments on IV&V Development Testing and Evaluation.

E. IV&V Integration Testing

1. IV&V software integration and testing procedures.

2. Procedures for quantitatively demonstrating the completion of
IV&V software integration and testing.

3. Major likes and dislikes of IV&V software integration testing
methodology.

4. IV&V software/hardware integration and testing procedures.

5. Procedures for quantitatively demonstrating the completion of
IV&V software/hardware integration and testing.

6. Major likes and dislikes of IV&V software/hardware integration
testing methodology.

7. Strengths of IV&V integration testing.

8. Weaknesses of IV&V integration testing.

9. Enhancement efforts with respect to IV&V integration testing.

10. Comments on IV&V Integration Testing.

F. IV&V Involvement in Acceptance Testing

1. Software acceptance testing process for program.

2. Organization responsible for the acquisition of the program's
software.

3. Organization 	responsible 	for 	conducting 	the 	software
acceptance testing for program. Interfacing process.

251

STEP - Current Defense Practices Overview

4. Involvement and responsibilities with respect to the
acceptance testing of software.

5. Process used to develop the software acceptance test plans and
procedures.

6. Procedures to use acceptance testing to establish the proper
execution of each software function.

7. Procedures to use acceptance testing to demonstrate that the
integrated software operates correctly in the user environment.

8. Procedures to use acceptance to demonstrate the compliance of
the integrated software with general performance requirements.

9. Procedures for the quantification of requirements for software
and threshold values for acceptance.

10. Differences in the software acceptance testing process between
application areas.

11. Organization 	responsible 	for 	the 	final 	decision 	to
accept/reject software. Information decision is based on.

12. Strengths of the IV&V involvement in the software acceptance
testing process.

13. Weaknesses of the IV&V involvement in the software acceptance
testing process.

14. Enhancement efforts with respect to the IV&V involvement in
the software acceptance testing process.

15. Comments on IV&V Involvement in Acceptance Testing.

G. IV&V Testing and Evaluation Tools

1. Testing and evaluation tools used:
a) Static analyzers.
b) Symbolic evaluators.
c) Test data generators.
d) Program instrumenters.
e) Mutation testing tools.
f) Automatic test drivers.
g) Comparators.
h) Other.

2. Metrics used to evaluate the software.

3. Differences in use of testing and evaluation tools between
application areas.

252

STEP - Current Defense Practices Overview

4. Major likes and dislikes of testing and evaluation tools.

5. Reasons for use/non-use of testing and evaluation tools.

6. Testing and evaluation tools available but not used.
Justification for non-use.

7. Strengths of testing and evaluation tools.

8. Weaknesses of testing and evaluation tools.

9. Enhancement efforts with respect to testing and evaluation
tools.

10. Comments on IV&V Testing and Evaluation Tools.

H. IV&V Test Documentation Procedures and Regression Testing

1. IV&V software test documentation procedures.

2. Procedures to maintain test-related documentation and media to
allow repeatability of tests.

3. Procedures used to ensure that changes in the requirements
and/or 	specifications 	trigger 	changes 	in 	the 	test
documentation.

4. Tools used to maintain and control test case library.

5. Procedures to define, collect, analyze, and report software
error data.

6. IV&V regression testing procedures for software.

7. Procedures to determine the amount of regression testing to be
performed given an arbitrary change to the software.

8. Strengths of IV&V software test documentation and regression
testing procedures.

9. Weaknesses of IV&V software test documentation and regression
testing procedures.

10. Enhancement efforts with respect to IV&V software test
documentation and regression testing procedures.

11. Comments on IV&V Test Documentation Procedures and Regression
Testing.

253

STEP - Current Defense Practices Overview

I. IV&V Involvement in Operational Testing and Evaluation

1. Objectives of operational testing and evaluation of software.

2. Organization responsible for conducting the operational
testing and evaluation of software for program.

3. Process used to interface with the software operational
testing and evaluation organization.

4. Involvement and responsibilities with respect to the
operational testing and evaluation of software for program.

5. Differences in the IV&V involvement in operational testing and
evaluation for software between application areas.

6. Strengths of the IV&V involvement in the operational testing
and evaluation process for software.

7. Weaknesses of the IV&V involvement in the operational testing
and evaluation process for software.

8. Enhancement efforts with respect to the IV&V involvement in
the operational testing and evaluation process for software.

9. Comments on IV&V Involvement in Operational Testing and
Evaluation.

J. New Technology Trends

1. New technologies to be developed or utilized for program's
embedded computer resources.

2. Special tasks to be performed to validate new technologies.

K. Other

1. "Lessons learned" from program.

2. Suggested contacts.

3. General comments.

254

STEP - Current Defense Practices Overview

APPENDIX B

BIBLIOGRAPHY

DoD DIRECTIVES AND INSTRUCTIONS

DoD Directives and Instructions are issued to DoD Components.
They provide guidance and uniformity of thrust, which the separate
services may tailor, supplement or amplify for their own specific
applications, including more detail when appropriate. Those listed
below were chosen based on their applicability to the topics addressed
by STEP.

DoDD 5000.1: 	Major Systems Acquisitions. 19 March 1980.

DoDI 5000.2: 	Major System Acquisition Procedures.
19 March 1980.

DoDD 5000.3: 	Test and Evaluation. 26 December 1979.

DoDD 3)00.29: 	Management of Computer Resources in Major
Defense Systems. 26 April 1976.

DoDI 7920.2: 	Major Automated Information Systems Approval
Process. 20 October 1978.

255

STEP - Current Defense Practices Overview

MILITARY STANDARDS

Military Standards and Data Item Descriptions may be applied on
contracts or used as guidelines by Project Managers. Those listed
below were chosen based on their applicability to the topics addressed
by STEP.

MIL-STD-483 (USAF):

MIL-STD-490:

MIL-STD-1679 (NAVY):

MIL-S-52779A:

DI-S-30567A:

DI-T-3703A:

Configuration Management Practices
for Systems, Equipment, Munitions,
and Computer Programs. 1 June 1971.

Specification Practices.
1 February 1969.

Weapon System Software Development.
1 December 1978.

Software Quality Assurance Program
Requirements. 1 August 1979.

Computer Program Development Plan.
2 February 1978. Air Force DID.

Computer Program Configuration Item
Test Plans/Procedures.
18 May 1977. Air Force DID.

DI-T-3717A: 	 Computer Program Configuration Item
Development T&E Test Report.
18 May 1977. Air Force DID.

MIL-HDBK-255(AS): 	 Nuclear Weapons Systems, Safety,
Design and Evaluation Criteria For.
5 May 1978.

MIL-STD-SDS: 	 Defense System Software Development
(Working Papers). 15 April 1982.

A Comparison of MIL-STD-SDS and MIL-STD-1679 (Navy).
15 April 1982.

Proposed Revisions, MIL-STD-483 (USAF). 15 April 1982.

MIL-STD-490: 	 Proposed Revisions. 15 April 1982.

MIL-STD-1521 (USAF):
	

Technical Reviews and Audits for
Systems, Equipments, and Computer
Programs. Proposed Revisions.
15 April 1982.

256

STEP - Current Defense Practices Overview

AIR FORCE REGULATIONS

These Air Force Regulations address areas of concern to STEP.

AFR 80-14:
	

Research and Development, Test and Evaluation.
12 September 1980.

AFR 800-14:
	

Acquisition Management, Management of Computer
Resources in Systems (Volumes I & II).
12 September 1975.

AFR 122-9: 	Nuclear Safety Cross-Check Analysis.
1 July 1974.

AFR 122-10: 	Nuclear Weapon Systems Safety Design and
Evaluation Criteria. 27 November 1978.

257

STEP - Current Defense Practices Overview

ARMY REGULATIONS

These Army Regulations address areas of concern to STEP. DARCOM
Regulations are used by the Army's Materiel Development and Readiness
Command to supplement the Army Regulations.

AR 70-1:

AR 70-10:

Army Research, Development and Acquisition.
15 February 1977.

Research and Development Test and Evaluation
During Development and Acquisition of Materiel.
29 August 1975.

AR-702-9: 	Product Assurance - Production Acceptance
Testing and Evaluation. No Date.

AR 1000-1: 	Utilization, 	Basic 	Policies 	for 	Systems
Acquisition. 1 June 1981.

DARCOM 70-16: 	Management 	of 	Computer 	Resources 	in
Battlefield Automated Systems. 16 July 1979.

DARCOM 702-6: 	Quality 	Assurance 	and 	Product 	Quality
Management. 13 March 1979.

DARCOM 702-10: 	Quality 	Assurance 	Provisions 	for 	Army
Materiel. 22 May 1979.

258

STEP - Current Defense Practices Overview

NAVY REGULATIONS

The following Navy Regulations and Standards address areas of
concern to STEP. The TADSTAND's are Standards for Tactical Digital
Systems.

TADSTAND 9: 	Software Quality Testing Criteria Standard for
Tactical Digital Systems. 18 August 1978.

TADSTAND A: 	Standard Definitions for Embedded Computer
Resources in Tactical Digital Systems.
2 July 1980.

TADSTAND B: 	Standard 	Embedded 	Computers, 	Computer
Peripherals, and Input/Output Interfaces.
2 July 1980.

TADSTAND C: 	Computer Programming Language Standardization
Policy for Tactical Digital Systems.
2 July 1980.

TADSTAND D: 	Reserve Capacity Requirements for Tactical
Digital Systems. 2 July 1980.

TADSTAND E: 	Software 	Development, 	Documentation, 	and
Testing Policy for Navy Mission Critical
Systems. 25 May 1982.

COMOPTEVFOR 	Operational Test and Evaluation of Software
NOTICE 3960: 	Intensive Systems Computer Software Subsystems.

6 July 1979.

OPNAV 3960.10: 	Test and Evaluation. 22 October 1975.

259

STEP - Current Defense Practices Overview

MISCELLANEOUS DOCUMENTS

The following documents describe current initiatives, processes,
and activities which address areas of concern to STEP. Also included
are numerous guidebooks related to software acquisition, development,
and testing.

DoD Acquisition Improvement Program (Carlucci's Initiatives).
1 January 1982.

Strategy for a DoD Software Initiative, Draft. August 1982.

Embedded Computer Resources and the DSARC Process.
30 April 1981.

Proceedings of the Joint Logistics Commanders Joint Policy
Coordinating Group on Computer Resource Management - Computer
Software Management Subgroup/Second Software Workshop.
1 November 1981.

Report of the Army Science Board Ad Hoc Subgroup on Testing of
Electronic Systems. 16 April 1982.

ESD-TR-78-141: 	Air Force Electronic Systems Division Software
Acquisition Management 	Guidebook: 	Series
Overview. March 1978.

ESD-TR-75-85: 	Air Force ESD Software Acquisition Management
Guidebook: An Air Force Guide for Monitoring
and Reporting Software Development Status.
September 1975.

ESD-TR-75-365: 	An Air Force Guide to Contracting for Software
Acquisition. 	Electronics Systems Division,
USAF. January 1976.

ESD-TR-76-159: 	An Air Force Guide to Software Documentation
Requirements. June 1976.

ESD-TR-77-16: 	Software Acquisition Management Guidebook:
Statement of Work Preparation. Prepared for
ESD by the Mitre Corporation, January 1977.

ESD-TR-77-22: 	Software Acquisition Management Guidebook:
Lifecycle Events. February 1977.

ESD-TR-77-254: 	Air 	Force 	Guide 	to 	Computer 	Program
Configuration Management. August 1977.

260

STEP - Current Defense Practices Overview

ESD-TR-77-255:

ESD-TR-77-263:

ESD-TR-77-326:

ESD-TR-78-327:

ESD-TR-78-117:

ESD-TR-78-178:

Air Force ESD Software Acquisition Management
Guidebook: Software Quality Assurance.
August 1977.

Air Force ESD Software Acquisition Management
Guidebook: Verification. August 1977.

Software Acquisition Management Guidebook:
Validation and Certification. August 1977.

Software Acquisition Management Guidebook:
Software Maintenance. October 1977.

Air Force ESD Software Acquisition Management
Guidebook: Reviews and Audits. November 1977.

Software Acquisition Management Guidebook:
Regulations, Specifications, and Standards.
November 1978.

ESD-TR-81-128:

USAF ESD 800-4:

Model Statement
ESD. March 1979.

An Air Force Guide to the System Specification.
January 1981.

Acquisition Management: 	Statement of Work
Preparation Guide.. 15 January 1979.

of Work Task for Software Development. USAF,

Management Guide for Independent Verification and Validation.
Air Force Space Division. August 1980.

Guide to the Management of Embedded Computer Resources. Air
Force Space Division. September 1982.

Software OT&E Guidelines. Volume I. Software Test Manager's
Handbook. February 1981. Air Force Test and Evaluation Center
(AFTEC), Kirtland Air Force Base, New Mexico 87117.

Software OT&E Guidelines. Volume II, Handbook for Deputy for
Software Evaluation. Air Force Test and Evaluation Center
(AFTEC), Kirtland Air Force Base, New Mexico 87117.

Software OT&E Guidelines. Volume III. Software Maintainability
Evaluator's Handbook. April 1980. Air Force Test and
Evaluation Center (AFTEC), Kirtland Air Force Base, New Mexico
87117.

261

STEP - Current Defense Practices Overview

Software OT&E Guidelines. Volume IV. Software Operator-Machine
Interface Evaluator's Handbook. July 1980. Air Force Test and
Evaluation Center (AFTEC), Kirtland Air Force Base, New Mexico
87117.

Software OT&E Guidelines. Volume V. Computer Support Resources
Evaluator's Handbook. July 1980. Air Force Test and Evaluation
Center (AFTEC), Kirtland Air Force Base, New Mexico 87117.

262

. 	 • 	,,,•°, . 	:.,,... -.e. , 	if. ,-,„ . ,-.. 4‘,.; 	.-..i. 4,-- :''

Y s I 	r ,1 ; 	 ,..tn- 	---, 1 	 7 , 	:! 	7, 	- - 	, "."' ,' 	. 	,!‘ 1,,! r""-,•#.: ''. 	■• 	•' b ' 	- 	- 	‘-,. '1-- 	•,, 	1 	,...,, - 	' 	' "'"•;' ,, l' 	'''.'" - -t• 't -,"•-••-:;,,'• 4,, ..- --- ,.,,,...t.,:,-- -;..,_ .1..:_,,,....... ,i. -: ',..14., :!-,..;,,'.:„; 	" t .-...:- .:111' coot, tiki -A,--i „...ay.7 '-',.' - %,-...,e t.-, ,, - .: .,:. ,,• ., r —2,:t..„:- 	''''

	

-t-..-. 	A.,,,..-,-„ 	: „v,, .-- t-4,..i.-.„,-,:: ,..,---_,._

	

,... 	4... 4, 7 	4 '.- i.r , iLl. 	. 	,. 	..-.

	

'.4--' '1:f .. -.1. - -'',".•— 	.:-'s ''' -'4-- • ,---- ■•• — :f -."-,• *.".• -'",f1- ." 	';' t 1 '' — 	'''''' , ' • 1'1: ' li. 	' '` , - -4 	, 	-1• - • ',nee. 	 s„.0
.. 	 ..:..e4 '.- 7, ,--. 	.._

	

- ii., 	.- 	-.„,,tiet,.. 7,,..-..., ., '.....

''' e 71-0!4`

, ...,

OSO/DDT&E
SOFTWARE TEST AND EVALUATION PROJECT

PHASES I AND II
FINAL REPORT

Volume 4
Transcript of STEP Workshop, March 1982

SUBMITTED BY
GEORGIA INSTITUTE OF TECHNOLOGY

TO

THE OFFICE OF THE SECRETARY OF DEFENSE
DIRECTOR DEFENSE TEST AND EVALUATION

AND

THE OFFICE OF NAVAL. RESEARCH

FOR

ONR CONTRACT NO. N00014-79-C-0231
Subcontract 2G36661

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director Defense Test and
Evaluation under Office of Naval Research Contract N00014-79-C-0231.

Comments should be directed to: 	Director Defense Test and
Evaluation (Strategic, Naval, and C 3 I Systems), OSD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Volume 1: Final Report and Recommendations
Volume 2: Software Test and Evaluation:

State-of-the-Art Overview
Volume 3: Software Test and Evaluation:

Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and

Evaluation
Volume 6: Tactical Computer System Applicability Study

Software Test and Evaluation Project Workshop

PARTICIPANTS

' 	Cdr. Mike Anderson

Lt. Col. M. A. Blackledge

Mr. T. R. Browning

Operational Test and Evaluation
Force (Navy)

HQ Air Force Test and
Evaluation Center

Naval Electronic Systems Command

Lt. Col. Robert L. Christopher 	Office of the Director Defense
Test and Evaluation

Georgia Institute of Technology

Automation Industries, Inc.

Computer Sciences Corporation

Operational Test and Evaluation
Agency (Army)

Dr. Richard A. DeMillo

Mr. John A. Devlin (NSIA)

Dr. Kurt Fischer

Mr. Stephen French

Mrs. CaraT Giammo
	

Defense Communications Agency

Lt. Col. Chuck Gordon
	

HQ US Air Force

Dr. Robert B. Grafton
	

Office of Naval Research

Mr. Donald R. Greenlee
	

Office of the Director Defense
Test and Evaluation

Mr. H. Mark Grove 	 Director, Embedded Computer
Resources ODUSD (AM)

Maj. David A. Hammond
	

He Air Force Systems Command

Mr. James Hess
	

US Army Materiel Development
and Readiness Command

Mr. Ed Kennedy
	

Defense Communications Agency

Dr. J. F. Leathrum
	

Clemson University

1

Lt. Col. Vance Mall 	 Ada Joint Program Office

Dr. Edith W. Martin

Ms. R. J. Martin

Mr. Donald W. Miller

Mr. Owen L. McOmber

Lt. Col. Kenneth Nidiffer

Deputy Under Secretary of
Defense (Research and Advanced
Technology)

Control Data

Control Data

HQ Naval Material Command

Defense Systems Management
College (DSMC)

BG. B. J. Pellegrini 	 Commandant, DSMC

Lt. Col. Kenny Rahn 	 Office of the Director Defense
Test and Evaluation

Dr. Frederick Sayward 	 Consultant

Lt. Col. Harry Sherlock 	 HQ US Air Force

Mr. William Smith 	 Office of the Assistant
Secretary of the Navy

Mr. Jerry Thingelstad 	 Naval Electronic Systems Command

Mr. Patrick J. Ward 	 US Army Materiel Systems
Analysis Activities (AMSAA)

Mr. Charles K. Watt 	 Deptuy Director Defense Test
and Evaluation

2

Volume 4

Transcript of STEP Workshop, March 1982*

TABLE OF CONTENTS

Page

Participants 	1

Administrative Items and Introduction (Mr. Greenlee, ODDTE). 	3

Keynote Address (Mr. Watt, Deputy DDTE) 	12

DSB Study on Embedded Computer Resources
(Mr. Grove, OUSDRE/AM) 	17

Software Technology Program (Dr. Martin, DUSD/R&AT) 	28

Ada (Lt. Col. Mall, Ada Joint Program Office) 	38

DSMC Perspective (Lt. Col. Nidiffer, DSMC) 	63

Industry Perspective (Dr. Fischer, NSIA) 	81

Army Presentation (Mr. French, OTEA) 	103

Navy Presentation (Cdr. Anderson, OPTEVFOR) 	120

Air Force Presentation (Lt. Col. Blackledge, AFTEC) 	137

DCA Presentation (Mrs. Giammo, DCA) . 	 182

Software T&E Project Status & Plans
(Dr. DeMillo, GIT) 	 195
(Mr. Miller, CDC) 	 212
(Ms. Martin, CDC) 	216

Summation & Discussion (Mr. Greenlee, ODDTE) 	225

*The following is a transcript of a Workshop on Software Test and
Evaluation which was sponsored by the Director Defense Test and
Evaluation and held at the Defense Systems Management College, Ft.
Belvoir, VA on 18 March 1982. Participants were given the opportunity
to edit their comments prior to distribution of this document;
however, it should still be kept in mind that this is a transcript and
not a collection of formal papers from a symposium.

Workshop on Software Test & Evaluation
Sponsored by the Director Defense Test & Evaluation

18 March 1982
Ft. Belvoir, VA

MR. DON GREENLEE: OFFICE OF THE DIRECTOR DEFENSE TEST & EVALUATION

Mr. Greenlee: I would like to say just a couple of introductory words
having to do with the Software T&E Program. Many of you have differing
degrees of familiarity with the Program in the large. I think most of
you, by virtue of your professional activities, are aware of the general
state of things in the embedded computer software arena, but let me tell
you just very briefly one aspect of it that we observe in the Office of
Director Defense T&E. Very frequently, programs that reach OSD for DSARC
or other milestone reviews come encumbered with issues relating to the
adequacy of testing of the embedded software. It seems that between
software and RAM, much of our review time is spent in assessing the
degree of operational effectiveness and suitability. For this reason,
Mr. Watt, Deputy Director Defense Test and Evaluation, has proposed an
initiative which would lead to the development of improved guidelines for
software testing within the Department of Defense. This, in basic terms,
would provide a basis upon which the review community and the developing
community could agree on standards which would relate to the satisfactory
completion of software testing prior to milestone decision points. This
status has been highlighted in some of our senior documents.

Let me quote just briefly from the Secretary of Defense's Consolidated
Guidance, Test and Evaluation Section: 	"Services should establish
cost-effective readiness objectives.. 	Realistic estimates of the
readiness levels to be achieved at the time of early operational
employment and at maturity should be made. In conjunction with this
planning, the service test and resource planning should program the
procurement of adequate standard test hardware to support early
maturation of reliability, growth, and proof of maintenance design.
System test beds, simulation techniques, and evaluation of software
performance should be used in the assessment of system operational
capability.." And later, in the section on Unresolved Problems, i.e.,
those areas to which the Secretary wishes the Services to devote special
attention, "All Services need to give priority to development of tools
and techniques for testing of embedded computers and software. Testing
of software should be sufficient to achieve a balanced risk with the
hardware of the same system."

3

In the SECDEF's Posture Statement and Annual Report to the Congress, he
says, "In support of testing technology advancement, considerable
attention is being given to the effective utilization of system test beds
and simulation techniques and software performance evaluation. These
advances are required if the activities are to provide realistic
assessment of system operational capability." Finally, in the Annual
Report of the Under Secretary of Defense (Research and Engineering), Dr.
DeLauer, under Objectives, states, "Specifically, I will ensure the
effective utilization of system test beds, simulation techniques, and the
evaluation of software performance in the assessment of system
operational capability." So you see that the state of affairs has
received attention from the senior management of the Department of
Defense. The Software T&E Project is intended to assist in resolving
some of the issues and problems in this area.

Our objective, basically, is to attempt to develop policy guidance which
would embrace all DoD components, and yet be specific enough to be of use
and value in the evaluation of embedded computer software. Additionally,
we hope to stimulate the development of improved tools and techniques for
software testing, support the development of guidelines and criteria, and
promote uniform standards as appropriate in software T&E. We are
definitely not in the "standards for standards sake" business here. The
Software T&E Project will be primarily composed of the indicated
participants. The management and control will come out of the Director
Defense T&E. A panel will be established drawing from the Services and
military departments. Defense Systems Management College is obviously
intimately involved. Industry will be represented primarily by the good
offices of the National Security Industrial Association. Dr. Fischer
from NSIA will talk to us a little bit later about that. Contractual
support in expert areas is being provided by Georgia Tech and Control
Data.

That picture is intended to indicate roughly our approach to the Software
T&E Project. Our initial phase is principally data gathering. We seek
inputs from military, and government, industry and the academic world.
We are looking at two sides of the coin; first, the practices and
procedures and tools which are actually in current use at this time, as
well as the management doctrine and constraints, standards and guidelines
under which the military and industry are operating. In cognizance of
the rapid changes in this area, we also wish to look ahead and try to
predict what trends in both hardware and software will affect software
testing. In Phase II, we hope to be able to assess the value and identify
deficiencies in the tools area, as well as in the standards area. Phase
III is essentially a decision box, at which point we will attempt to
determine what, if any, guidance is practicable to be developed. Phase
IV will consist of the issuance of that guidance in a suitable format,
perhaps as a modification to DoD Directive 5000.3 on test and
evaluation. In any event, the various Phases of the Project will be
documented and provided for use by the community. That, in a nutshell,
is the overall program, and we will welcome your interest and involvement
in the program as it proceeds over the next 9 months to a year.

4

SOFTWARE TEST & EVALUATION ACTIVITY

OFFICE OF THE DIRECTOR

DEFENSE TEST & EVALUATION

OCTOBER 1981

r

3329-1

SOFTWARE T&E ACTIVITY

PRIMARY OBJECTIVE

DEVELOP AND PROMULGATE POLICY FOR

DoD COMPONENTS IN THE TEST AND

EVALUATION OF COMPUTER SOFTWARE

t

3329-1

SOFTWARE T&E ACTIVITY

ADDITIONAL OBJECTIVES

• STIMULATE THE CREATION AND APPLICATION OF
IMPROVED TOOLS & TECHNIQUES FOR SOFTWARE
T&E

• SUPPORT THE DEVELOPMENT OF GUIDELINES AND
CRITERIA FOR USE IN SOFTWARE T&E

• PROMOTE UNIFORM AND CONSISTENT DoD
STANDARDS, WHERE APPROPRIATE, IN THE T&E OF
SOFTWARE

3329-1

SOFTWARE T&E ACTIVITY

1.0

GOVERNMENT 	PHASE I 	 TOOLS

INDUSTRY 	 SURVEY C 	
PRACTICES/PROCEDURES
STANDARDS/GUIDELINES

ACADEMIA 	(GATHER INFO) 	 TRENDS (INCL. HARDWARE)

PHASE it 	 SUMMARIZE/CLASSIFY
ANALYSIS 	 EVALUATE WORTH

(EVALUATE INFO) 	 IDENTIFY DEFICIENCIES

PHASE III

ASSESSMENT
(FEASIBLE, DESIRABLE TO PROCEED?)

POLICY NEEDED?
POLICY POSSIBLE?

YES
	

NO

PHASE IVA
	

PHASE IVB
POLICY DEVELOPMENT
	

TERMINATION
PUBLISH PHASES I & II) 	3329-1

SOFTWARE T&E ACTIVITY

PARTICIPATION

DDTE STAFF

DaD PANEL

DSMC

NSIA

CONTRACTOR
r

3329-1

Mr. Greenlee: I would like now to introduce Mr. Watt, who will stimulate
our thinking and probably issue a challenge or two. Mr. Watt is the
Deputy Director Defense Test & Evaluation, with responsibilities for T&E
of all strategic and space, naval and C 3I systems. He is an alumunus of
Bell Labs and the Naval Electronics Systems Command, among many other
things. He was most recently the Technical Director at the NAVELEX
Systems Engineering Center in Charleston, SC. Mr. Watt.

11

MR. CHARLES WATT: DEPUTY DIRECTOR DEFENSE TEST AND EVALUATION

Mr. Watt: Permit me also to welcome you to this most important workshop
and to express my appreciation for an opportunity to share some thoughts
with you on computing, or computer software. Perhaps I will talk more
about what I would phrase computing than I will software. I will not be
presumptuous and claim to have the in-depth knowledge of software that I
know all of you have who are truly experts in this explosive field of
technology. Nor will I belabor the importance of this subject in that
such is already well known and documented. All of you are familiar with
the pie charts and have seen the tremendous software and embedded
computer system investments. We know that in looking to the next decade,
software will be the dominant issue in most systems.

Having said that, I would like to talk about two basic subjects. First
is "attitudes" or "mind-sets," that we have established about computing
in this nation, and second is "opportunities," which I will interchange
from time to time with "technological advances." A few months ago, when
my staff and I first started discussing the subjects you are addressing
today, our primary concern was how do we wrap our minds around such an
illusive, complex issue as software. Even narrowing it somewhat to
software testing did not solve our problem. Just to structure the task
so that we could begin to make a contribution to test and evaluation was
a considerable effort. I know that your efforts today will provide ideas
and recommendations, and hopefully, they will outline some progressive
actions in software test and evaluation. They should result in tools,

techniques, and guidelines for a more effective "STEP" in defense.
Similar to Neil Armstrong's famous quote, we are taking a giant step for
mankind. Certainly for the issues we are addressing and discussing
relative to how to do a better job In software testing, no one to my
knowledge has any major solutions. From a mental standpoint, we are
challenged to find and develop new frontiers. As I alluded to before,
our computing effort is aided considerably today by mind sets and by
technological advances. I'm gratified to read the numerous documents
that suggest, and in many cases even dare to demand, that engineering
disciplines and principles be applied to software. Some would even go so
far as to state that control should be taken out of the hands of the
programmers, the systems analysts and placed in the hands of systems
engineers. We are even finding youngsters today that are getting a good
grasp on pulling together engineering theory in one hand and computing in
the other as they prepare for the future. Some universities are even
condoning this by offering degrees in computer engineering. Now, I say
this because I believe that it is time that we put more science into
computing, into development, and into the software in particular that
dominates system performance.

12

Now, you might ask, "why have I stressed the importance of attitude?" I
believe that the attitude we see in this country today is very healthy.
Certainly the attitude of our youngsters is most positive as they begin
to deal with the next generation of computing. But, I an equally
concerned that unless we solve some of the problems, and they are very
complex and very pervasive, that we night well find the attitudes of this
nation, and in particular, the attitudes of the users, beginning to
inhibit rather than contribute to the solutions we all seek. I believe
we presently have a mutually coupled effort in attitudes and technology
that can considerably aid the process of finding scientific solutions to
deal with computing and computer software.

Let me give you an example of the difference attitude can make in
computer applications. I had dinner with a group of scientists from
Europe not too long ago, and we were discussing the subject of computing
and its rather widespread application in the United States. It was
concluded that the growth in Europe may be slower than in the United
States and that part of this delay may be attributed to the limited
exposure and somewhat negative attitude of the more traditional user
generation. Perhaps this is a Catch-22 situation. In either event, it
is an iterative process and attitudes in this country are an important
element in our successful utilization of computers.

Let me address another aspect of attitude. I an somewhat concerned that
the application of chip technology in the commercial end of our business
is oftentimes much more effective than in the Department of Defense.
This point was brought home to me when I was working for the U.S.
Congress in assessment of future telecommunication technologies. If you
look at new networks being introduced by major corporations in the
commercial marketplace, the wideband connectivities that are now possible
in both space and terrestrial 	systems begin to stagger one's
imagination. 	We are beginning to apply similar technologies in the
defense establishment, but we must deal with a different mind set and
commitment to achieve success. As we get more complex, users must be
able to interact on a realtime basis with systems. They must not have a
long trail of "programmers and support personnel" to make sure that the
system is working. Such situations are likely to cause users to take on
negative tones. Technology and scientific processes must be allowed to
provide answers instead of creating problems.

In this month's IEEE Spectrum, Dr. Graham presented an article on the
software crisis created by the large manpower costs of programming new
information systems. His contention was that breaking the bottleneck
requires a visionary approach. He stated that we need to actively seek a
fully integrated programming support system and that solutions include
computer advances that offer advanced programming aids. Project
information management that exploits the benefits of computers in
interpersonal communications, documentation and recordkeeping is
described as being among the major items that are essential for software
development projects. Perhaps the foremost requirement is for direct
access to computers by end users. In particular, they must not require
programmers or professional support personnel for routine data processing.

13

I believe that the bottom line of most of these concerns and attitude
indicators gets back to cost. In fact most people, when all is said and
done, respond to the typical question of, "What is your major problem?",
--- with a simple statement of cost. But, I don't believe that cost is
the root cause of the dilemma. The root cause of most system failures is
inadequate software, which is a result of an ineffective application of
technology. In all too many instances, we have not properly applied
technological scientific processes and that is the significance of why we
are seeing humongous cost increases and difficulties. In order to build
on this statement, let me go back to the point that I made earlier when I
said I was going to talk about attitudes, as well as opportunities or
technological advances. Never before have we experienced or observed
such a blurring of systems as is being experienced today. I contend that
the technological blurring is caused somewhat by systems engineers who
are effectively doing their job. They are utilizing computers in solving
a multiple of large complex problems. A more integrated approach is
being utilized in the application of computers, and we are finally
getting a handle on end-to-end system engineering. The embedded
computers in defense systems is a familiar example of technological
blurring. The-reference that I made to communications or teleprocessing
is another example of networks that are certainly becoming transparent
information pipes, as we provide wide band connectivity and alternate
information channels which are rapidly available on a realtime basis for
those who would like to interconnect. Some of the blurring of issues is
even entering into our court systems, as we recently have read about some
of the decisions concerning AT&T and IBM. 	We are now finding it
difficult to accurately define old lines of demarcation. 	This is a
result, I believe, of good systems engineering. Now, I'm not condoning
the fact that we don't properly control; I'm just saying that where
computing ends and other processes begin is no longer as clear in
anyone's mind as it was a few years ago. The impacts of such systems are
explosive, and I believe that they also have many economic implications.
Needless to say, there are also social, demographic and political
implications. Those things that were thought possible tomorrow, suddenly
are becoming reality today, even yesterday. Integrated circuits with an
extremely high density of 1 million components, 2 micron line widths on
chips requiring only a few milliwatts of power, continue to stretch our
minds. Powerful new 32-bit microprocessors, termed micro-mainframes, now
are suddenly coming on the market. Three such systems were recently
announced in Spectrum. We are finding that these systems with solid
state devices and nonvolatile memories of 1 million bits are complemented
by 20 megabit secondary devices. These are but a few examples of what is
happening in the area of computing. That is why when I started out I
said I would talk more perhaps about computing than I would just the
software aspect of it.

14

I believe that technology is and will continue to be very explosive.
This trend nay further readjust our attitude to acceptance of even
cheaper hardware in place of costly software. The takeover of many
software functions by hardware nay help programmers to develop high level
languages that are shorter, more efficient, easier to write, compute, and
hopefully, to debug. So, we may begin to see many of the functions that
perhaps historically have been those of the programmer--the software and
the logic--begin to be converted into hardware. Now, you have probably
heard this before and considered that it is nothing new. What amazes me
is that recent forecasts on similar technological advancements, estimated
to require a decade, have occurred within a short time span of 3 years.
Therefore, many of the problems we grapple with in software today could
well be solved with hardware tomorrow.

I could continue to talk about the maze of technologies that are
impacting computing, but I will hold these for another place, another
time. I believe that my point of technologies, opportunities, attitudes
is either well made by now, or my teleprocessing system isn't working
very well. I did want to challenge you with these thoughts as you begin
to start your workshop.

Now, in closing, I would not have you think that computing or developing
computer software has become a science or is even close to it. It
certainly is not; but, I believe that your being here today is certainly
indicative that we are making progress and the trend is in the right
direction. Your tasks are made somewhat easier by the technological
advancements and attitudes I've touched on this morning. I firmly
believe that the time and place for "STEP" is here and now -- thank you
very much for your time and attention.

15

Mr. Greenlee: 	Thanks very much, Mr. Watt, for that stimulating and
far-reaching keynote. 	Since this is being taped, I must correct one
statement in that presentation. Mr. Watt suggested that he was not a
computer software expert, and I ask you not to believe that and correct
your notes accordingly. He is an expert in that, as in many other areas
of software and systems engineering.

Our next speaker will be Mr. Mark Grove, who works in the Office of the
Under Secretary of Defense (Research and Engineering) and is the Director
for Embedded Computer Resources. I expect that any of us who have had
any contact, even tangential, with the ECR field are well aware of his
name. The latest major activity with which he has been associated is, of
course, the recently completed Defense Science Board Study on Embedded
Computer Resources, which was just recently reported out. As you are
undoubtedly aware, one of the thrusts of this ECR report by the DSB is
the proposal for standardization not only of high-order languages, but
also of instruction set architectures. We feel this is very key in its
impact on software testing since obviously the difficulties in testing
are in some way proportional to the complexity of the universe that one
must deal with, and conversely, limiting-and standardizing the HOL's and
ISA's can very materially ease the job of the software tester. For this
reason, I've asked and Mr. Grove has kindly consented to talk to us a
little bit about embedded computer resources, the findings of the recent
DSB study, and how they devolve upon computer software testing. Mark.

16

MR. MARK GROVE: DIRECTOR, EMBEDDED COMPUTER RESOURCES - ODUSD(AM)

Mr. Grove: It is a pleasure to be here this morning. Charlie's remarks
remind me that we did not give sufficient attention to the test and
evaluation aspects of computer software and hardware during our Defense
Science Board Review. That is something we probably should correct the
next time around. I think it would have strengthened considerably some
of the conclusions that were reached and probably would have helped us
order the discussion. But, we will try to repair that; I don't believe
we have done anything inconsistent with what your needs are. Clearly,
test and evaluation are central to the policy decisions that we need make
with respect to language and to architecture. I certainly agree with the
discussion about the cost and how that must be capped by an approach that
levers on the ability to evaluate the systems themselves during the T&E
phases. We haven't done a good job of that. There are some other points
that I may, if we have a little time, discuss relative to the
hardware/software tradeoff.

This was the charter that Dr. DeLauer gave the Defense Science Board in
establishing the Task Force on Embedded Computer Resources Acquisition
and Management. A principal motivation for this study was the extensive
disagreement both within the Department and between us and our colleagues
in industry about whether of not this type of management is appropriate,
or whether we would be better off with a more general statement of
requirement and to let industry do their thing in meeting those
requirements with whatever technology is on the shelf and in their
plant. But, at any rate, he asked us take this look to review and make
recommendations on the acquisition, management, and utilization of
digital technology. We did not, therefore, get deeply into some of the
other things that need to be done in providing a better technology base
for software/hardware engineering with respect to "computering."

Those four questions each abstract about a paragraph which describes the
concerns about management policy, some of the key programs that are going
on in the Department now and those that are planned for the near future.
A key point had to do with the process of management and oversight in the
Department of Defense particularly at the OSD staff level --- a process
that is somewhat emulated down through the Military Departments. But,
it's a rag-tag kind of operation and almost every OSD staff office has
some interaction in the management and oversight of programs to provide a
computer capability for the Department of Defense. At the time this
charter was written, and this was August the 20th, I believe, of last
year, there were some legislative changes in the mill that had not been
really completely acted upon, and so there was some uncertainty about
that. It had to do with exempting the DoD from the Brooks Act under
which much of the commercial equipment has been purchased over time.
That has some implications that we'll go into.

17

The Task Force was a fairly broad-based Task Force. We did have people
from the current industry, both producers and integraters; we had the
academic community represented; the not-for-profits. We had an
outstanding group of senior military participants who really did
participate. They attended most of the meetings and participated
intensively. It is sad that last Saturday Admiral Lewis died of a heart
attack; he was quite a gentlemen who contributed strongly to the
acquisition part of this.

We use the term "embedded computers" extensively. Let me remind you of
what we meant by it in the Task Force and what we generally mean by it in
the Acquisition Policy part of DoD. It doesn't have anything to do with
the source of that equipment; whether it is commercial, off-the-shelf;
whether it is large; whether it's small; but it has to do with the
applications. And, we're tending to move from the term "embedded" toward
something more general, "Mission Critical Computer Resources" (MCCR),
which is a better descriptor of what we really need. It describes better
that we need access to the commercial market place as well as to the
specially designed equipment that has traditionaly been thought of as
"embedded computers." This also immediately brings up another problem in
that some of our policies have been put in place with the assumption that
the materiel that we were trying to control was specially designed,
militarized computers, and particularly those that are deeply embedded
within subsystems. As a result, the policy we are proposing to
standarize Instruction Set Architectures (ISAs) needs to be re-evaluated,
since we do have a better access now to the commercial market place.

I want to make clear that we are not saying that we want to force this
small set of instruction set architectures on those applications where
the commercial market place can actually fulfill the requirement.

But, it's key that these five areas are, with respect to the Department
of Defense, exempt, and that is in capital letters, from all of the
acquisition process that is covered within the Brooks Act that you may be
familiar with. The exemption does not include routine administrative and
business applications. 	It also does not include "routine" logistics
applications. 	So, the gray area has moved from the region between
specially designed and commercial off-the-shelf to a gray area in
application. Certainly, on the battlefield, we have administrative and
business applications that need to be fulfilled. In some cases, it will
be necessary to do that with a militarized piece of equipment. In those
cases, the policies we are talking about would apply. Where commercial
off-the-shelf can meet those requirements, then these policies would
probably not apply.

18

Again, I might bore some of you with this, but we need to know what the
Task Force meant by instruction set architecture, and it was basically
this. It's key that we are talking about the interface between software
and hardware, and that interface is an important one to the test and
evaluation process. It's clearly an important one also to the hardware
and software design processes, but it does not imply a specific hardware
implementation or instantiation of the interface. There are things
included in that interface which do impinge upon the design process and
are particularized in a given piece of hardware, but that is not what we
are trying to control at this level. That is another problem, and on the
battlefield, you may want to do that. There are some exemptions even in
the militarized environment where we feel we need to control this in
order to manage the logistics and maintenance.

There are some applications where we don't expect the software to
change. And, if that is the case, it's not quite so important how that's
done. You need to know about it, and you probably need to
configuration-manage it, but not in the same way. Let me remind you that
DoD Directive 5000.29 was issued in 1976, and it basically made these
points about computer resources used within systems. They really should
be considered a subsystem of major importance and treated so throughout
the development and lifecycle support of a system. Try to emphasize that
you lay requirements on the computer subsystem then the same way as you
would lay requirements on a radar subsystem. There are some important
things that need to be done, and those requirements need to be validated
the same as any other system requirement. Perhaps, this was ill stated
of the configuration management process because immediately the
bureacracy said you apply the same kinds of configuration management that
you do to hardware, and that may be inappropriate. Indeed, software must
be able to change, else you don't need software. But, what it must do is
change in a controlled way, and you must be knowledgeable about what the
state of a given system is at a given tine. I'm not so sure we have
solved that problem yet.

DoDD 5000.29 said also, and here's a charge observed more in the breach,
that any unique software required to support a system throughout its life
shall be deliverable. That's not an option. Turns out to be ignored,
but it's not supposed to be an option legally. The other key thing that
caused action was the policy that software languages should be
standardized after recognizing that applications code should wherever
possible be developed in a high-order language. Somebody needs to
control those languages. Generation of dialects is one of things that
causes that software cost curve to exponentiate over time. Following
that up, we set up these seven languages as interim standards that should
be followed and that worked pretty well.

19

What was next proposed and what caused grief with the industry was their
misunderstanding of what this meant, and they don't want to understand
that ISA doesn't mean hardware, because in their parlance it does mean
hardware, and they control producer economics by controlling ISA's. We
propose to adopt a small number, not 1, not 2, but a small practical
number and manage pretty much the way we said we ought to with the
software. Each Military Department would be given the assignment for
controlling and being able to evaluate whether an ISA was actually
properly implemented, such that software and other things could be
transferred.

We suggested that a waiver process would be necessary; there is no way we
can forecast what all the requirements will be, so waivers will be
appropriate, particularly in the early times; but we want to know what
that process is in advance, rather than after the fact. The principal
criteria for not using the ISA, assuming the list is good, ought to be
that a particular application has technical requirements or the economics
of a given application don't allow it, not just because we don't want to
or our selected contractor says he would rather use his proprietary
approach. We also said this is a dynamic situation so the list ought to
be continuously monitored to assure that we aren't making a mistake by
implanting this policy. And, if it does turn out to be a mistake, we
ought to get rid of it, not just let it go along and then be ignored,
which is a rather embarrassing way to operate. We also need to be able
to add or delete ISA's in order to meet the requirements of the systems.
Here, again, is where the industry people got a little bit upset with
us. They said that in order for us to do this, we must have if not
unlimited rights and data, we must have clear rights so that at the
beginning of a program, we can explain that and make it a basis for a
fair competition, that there aren't surprises coming up later. Clearly,
that says you don't start with a commercial ISA and get a license for it,
because immediately there comes a contractor who is doing militarized and
commercial product promulgation. He has an unfair advantage from the
start. Anybody who wants to enter that process has to capitalize quickly
in order to be able to provide product, and if he is only covered in a
license for those things that are militarized, he can't write that off
against the commercial market place, and he also has to worry about the
leakage from the military to the commercial market place. The risk is
significant. So, our policy is founded on the precept that it must be a
government owned architecture that anybody, the first time around at
least, can enter fairly and equitably.

The Task Force then identified these 7 principal issues that should be
concentrated upon, and there is no need to go through those in any
detail: we have touched upon most of them. These two were added for
emphasis. The Joint Chiefs of Staff asked us to say a few words of
advice to them about whether or not Ada, the new high-order language,
common language, for DoD, is sufficiently far along that they ought to
consider it for the WWMCCS systems upgrade. And further, should they
consider the hardware that is expected to come out of the military
computer family, where applications in those transportable parts of WIS
are expected. I mentioned we needed to take a look at how the management
process was working.

20

We did do something a bit differently in advertising to the public in the
Commerce Business Daily. We received 20 responses ranging from some of
the largest companies down to individual responses. That may turn out to
be a contribution to the total DSB process in the future.

We concentrated principally on this idea of managing instruction set
architectures so one of the first things we did was to look at the
comments from industry and try to evaluate them as to what impact they
were going to have. Clearly, industry and we are interested in
competitiveness. And, such a standardization policy may well eliminate
some suppliers if they don't have the products at the time that a given
RFP hits the street. That can't be considered positive if we are
eliminating anybody from what we would like to say is fair and open
competition. On the other hand, since people can enter on an equal
footing, this surely will add some other contractors who do have
something to bring to the table in the computer business, that certainly
is a "pro". We have been locked in to a rather small set for a long
time, and that is part of this cost escalation problem. There is always
the fear of stultifying technology insertion if you standardize. The
word standardize usually runs a chill up the spine of the technologist.
And, certainly, if the standardization is done irrationally, it could
impede the injection of technology. However, if it is done properly,
which I think we've demonstrated in , many cases, it can actually
accelerate the injection of technology. It gives you a stablilized base
of requirements so that you can plan your technology programs, and
therefore, make then more coherent and therein supportive. No doubt, the
software development process would be improved if there are less targeted
machines that you have to worry about. The degree of that depends on
many things, but the main reason I think that we came out with the
conclusions that we did is life cycle support. This is the driver in the
computer business or any other equipment for militarized application.
Everybody concentrates on the acquisition phase, the early acquisition of
the original equipment, but there is a minimum of three times, and it
probably ranges up to 10-15 times that investment required just for
spares for complex electronic equipment. The Army, when they're fielding
equipment, when you consider all the war reserve spares involved, the
pipelines that are involved, 7-9 times the numbers of boxes are required
just to keep that logistic pipeline going almost independently of the
reliability and maintainability of that equipment.

We really make our decision based on the wrong data, generally. And, it
is this kind of recognition that drives us to a standardization policy,
some kind of policy or limitation of variance. And, it is that one that
the people who normally work in the commercial marketplace, selling to
universities and individuals don't understand or don't want to
understand. Everybody knows what the personnel training problem is and
by limiting the variance there, we can't hurt that, I think we will help
it. Our operational people are very concerned about the flexibility that
they have when the shells and bullets begin to whistle around their
ears. And, this is, again, something that doesn't happen even in the
most ruggedized commercial equipment in a steel mill. 'However, if you
are in the middle of some sort of a firefight and a critical piece of
hardware goes down, namely a computer, to be able to trade-off quickly
with something else that's in that same general location is very
important. Again, it is something that doesn't have an analog in the
commercial world.

21

There were findings from the DSB panel on these seven topics. 	The
principal one, the one where we spent most of our time was on the
proposed 5000.5X instruction set architecture standardization process.
The next most important probably is the management and organizational
aspects. The Task Force did recommend after a lot of discussion that the
arguments were compelling in favor of standardizing ISA's. That action
is a necessary thing for us to do, but not sufficient. There are a lot
of other things that must be done in order to bring that cost curve you
are all familiar with down. So, they did recommend that we issue the
instruction expeditiously, but that we qualify its scope, as I tried to
early on. It does not cover everything. It covers those things for
which we need to provide organic support and for which the off-the-shelf
product is not appropriate. We want to limit the number of ad hoc
designs that are necessary. And, that management cannot be passive, it
needs to be very active. Technology is moving fast, which means
advantages will be overcome if we just put a policy in place and then
walk away.

The key programs that we looked at which would implement this policy, if
it were indeed a policy, are already in place, at least for this coming
generation, and these are the representatives of that. There are three
separate approaches to this problem because the three Military
Departments face, in general, different problems. But, more than that,
these programs which grew up by themselves without the need of an OSD
thing to tie it together came about in different time periods. The Navy
had long since decided that they could not support shipboard operations
with a random selection of hardware. So they put the policy into place
many years ago, and what they are doing is iterating that with technology
over time. They have a large software investment, and that needs to be
conserved simply because we can't find the money to replace it, even
though we would like to. The Army had something like 50 separate
computers in some 70 systems. They were using 44 languages at the time.
That was just eating them alive. So, they decided that they needed to
bring this under control. MIL-STD 1750 was the Air Force's approach to
get out from under some of the sole-source acquisitions that they been
forced to.

Now, 	from all 	those implementation programs, 	the findings and
recommendations are these. Those programs indeed did meet the policy
intent, and that's not surprising because the policy was developed after
the programs. We would suggest however that the idea of having only one
producer initially could very well be a mistake, and we have experienced
that in trying to establish second sources after the fact. Almost
impossible to do that. So, what we were asking, particularly of the Army
and Navy, is to look up front at carrying multiple producers rather than
try to inject them later. There was also some idea that the regulations
under which acquisition is carried out were setting some of the
timetables. The maximum length of a contract being five years with the
law being interpreted as that was causing them to do technology injection
programs on a five year cycle. We want to try to make sure that is not
the driver, that there is some flexibility.

22

The approved list of high-order languages, I've already talked about and
mentioned what they were. We do have a Joint Program Office that is
trying to bring along the common language, Ada, and Vance Mall is with
you to talk about that sometime during the forum.

Everybody is giving accolades to the Ada program, so your work's cut out
for you to make sure that it works. I say "you", but that's an inclusive
"you". Our work's cut out for us, since we have oversight of that
program. The Task Force did say that it's time to update DoD Inst.
5000.31 and get a couple of the old languages off so the people could
take the policy seriously. We're going to do that within the next very
few weeks. Again, the Task Force as well as others said; "Let's make
sure the Ada Joint Program Office is properly supported". We felt that
since Ada is such a critical part of the military computer family
program, there would be a little more attention there in that the Army
could accelerate this whole process if they would put a little bit more
emphasis behind it.

From a test and evaluation standpoint, if you are going to put tools and
processes in place to evaluate the software, then certainly we would like
to see those tools centered around these languages when language specific
issues are at hand. And, of course, many of the issues may not be
language specific, although the tools very well nay. Even though we are
pushing Ada for the broadest possible use, there is no way that existing
languages are going to go away in the near tern. Another issue is that
all of the software that you ought to be worried about is not the
applications code and equipment --- there is probably an equal amount
that is dedicated to the automatic testing business from factory to
field. From that standpoint, a little attention needs to be given to the
Atlas type program.

Reasonably simple changes recommended to the overridding or capstone
Directive 5000.29 are these. It is necessary because of the sunset
clause that it has to be reviewed in 1982, or it goes away, and then we
would basically have no policy to be followed in software acquisition,
and therefore in the computer acquisition, and the observation was made
that there still are problems. They haven't all gone away. And, another
key recommendation of the DSB Task Force is that if the acquisition
process can be made to accomodate it, the "software first" approach
should be emphasized. But ofttimes, the hardware is chosen simply
because of the leadtime and the comfort feeling of having the target
hardware available upon which to develop software. As a result, we make
some serious mistakes, and it seems that, since the hardware technology
is changing so fast, the software can be developed in a different way,
through emulation or some other manner, and largely matured before the
hardware decision has to be made IF the leadtime for delivery can be
handled. Another thing that should done more, and we have been fairly
poor about this I think, is to have specific software considerations in
the source selection process. Again, that wraps into the T&E.

223

We are not consistent in the way we address industry from the three
Military Departments and the other Agencies. As a result, they have to
diffuse their talents; I think that tends to degrade quality, so we are
asking for a consistent set of DoD-wide specs and standards. There's
activity in process to get that through the Joint Logistics Commanders
and others.

Now, the last thing I want to say a couple of words about is our
management approach. I mentioned that we don't have a very consistent
and coherent management process. Each program manager does pretty much
his own thing. Each staff element in OSD approaches it from a different
point of view, and we are not helping each other very much. We tried to
coordinate these activities with the Management Steering Committee for
Embedded Computer Resources (MSC-ECR), and clearly, the problem has
outgrown that kind of process. The DSB Task Force has recommended that
there be an explicit designation of a policy official, a senior official,
responsible for all acquisition management and management of computers in
the DoD. And that has been done. The first of February, Secretary
Carlucci designated the Under Secretary for Research and Engineering as
that policy official and he's responsible for all computer acquisition
and management that is not under the ambit of the Brooks Act. On the
16th of February, that responsibility was delegated to me. We are going
to try to centralize some of the activities. That doesn't mean we are
going to bring everybody into one big office, but we are going to try to
establish a set of communications channels across OSD and work for a
little more friendly communication. And so the face that we put toward
the industry and the policies that we put forth for the military
departments to follow are at least coherent.

Then, if they are wrong, there is no problem determining what's wrong,
and we can change it. We are going to be a little more specific about
our oversight function on the R&D and acquisition processes in the
Military Departments and that is not counter to Carlucci's
decentralization policy. That means you must pay attention to the words
"controlled decentralization", that Dr. DeLauer insisted upon, and it
means we are going to insist on having visibility into the programs.
When we can see things that could help one program going on in another,
we want to make sure those people get together and that there is some
advantage taken of that.

The terminology issue needs to be clarified, and when the DSB report
comes, it will have an annex in it that consolidates, to the best we can
now, some of the different definitions of terms. Perhaps we can then
spend less time at future meetings and at future forums worrying about
what the words mean and worrying a bit more about what needs to be done.

That report should be out soon. If in the interim, you have a need for
more detiils on the findings and recommendations, we can work that out.

I didn't say a lot about software, or much about T&E, but I think those
recommendations will have an impact on how easy that job is for you and
us to accomplish.

Thank you.

24

VIEWGRAPHS

USED BY

MR. GROVE

FOR THE

DSB STUDY ON EMBEDDED COMPUTER RESOURCES

PRESENTATION

25

"NOT AVAILABLE"

26

Mr. Greenlee: Thanks very much, Mark, for that excellent overview o
ECR.

Our next presenter was to have been Mr. Joe Batz from OUSDRE/R&AT, who
the proprietor of an interesting new initiative called the Softwar
Technology Program or STP, not to be confused with our acronym. This
another initiative like the initiatives which have come out of the DS
study, which I believe all software testers must be aware of. 	Th
intent, as I understand it, is basically to improve the efficiency of th
software development process. Some time ago, ideas and thoughts wer
solicited from industry and academia, as well as within the government
on notions which might lead to the improvement of software development
How can we get to debugged computer programs better and easier? Tha
generated about three forklifts full of responses from the community,
which Joe and his people have sifted through, and the Software Technology
Program, as it is presently defined, as I understand it, has a couple o
very interesting thrusts, most of which are really key to software
testing, one being the emphasis on development of a program support
environment and the other having to do with the notion of reusable
software. Joe, unfortunately, could not be here this morning. He was
presented with a conflict at the last moment, so we are very fortunate to
have participating today Dr. Edith Martin, who has been involved with the
STEP program since its inception. 	She is currently the Executive
Director of Control Data Corporation's Atlanta R&D Center for Government
Systems. However, she is about to assume the position of Deputy Under
Secretary for Research & Engineering (Research and Advanced Technology),
in which capacity she will have management responsibilities for
implementation of the Software Technology Program. This nay be the first
forum in which you have been introduced in your new capacity. So, we are
very pleased and honored to have Dr. Edith Martin talking about the
Software Technology Program.

27

DR. EDITH MARTIN: DEPUTY UNDER SECRETARY OF DEFENSE (RESEARCH & ADVANCED
TECHNOLOGY)

Dr. Martin: As he had indicated, the software technology initiative is
within R&AT, Research and Advanced Technology, and within the Electronics
and Physical Sciences Directorate, and Joe Batz is heading it. He's been
coordinating extensively with the Ada Joint Program Office and with Larry
Druffel. That coordination has been very good, however, we do anticipate
that the AJPO will cone over under R&AT in the near future. This move
will formalize that coordination and among other things consolidate the
computer related activities. The software technology initiative, even
with its several forklifts of materials, is still seeking input from the
community. Those of you who have suggestions to make, certainly have an
opportunity remaining to embellish that repository. We would like very
much to have by September 1982 an implenentable plan, one that we can
hand off and say, now it's your turn and go do it. We did suggest that
the software technology initiative be a subject for the Defense Science
Board Sumner Study that would be in August. That is approximately a two
week long concentrated activity. Subsequent to the DSB and prior to that
September deadline, we would look for a quick turnaround review from
industry and from other segments of DoD and the Services. Hopefully,
you'll be participating in that, but in any event, look for something to
come out in August, and mark your calendar to respond to it by September.

Now the role of test and evaluation in a program such as the software
technology initiative, a program that is directed toward developing
better software, cheaper software, software that can be developed faster
and is going to last longer is obviously immense. We can see ourselves
addressing in the final software technology plan some of these test and
evaluation topics. Now, we need a lot of input on how they should be
constituted. Listed here are some possible topics.

Reusable software. The idea of reusable software has been hanging around
for a long tine. We have all heard in other domains, "if it ain't broke,
don't fix it", and this is the philosophy of "if it works, use it". I
think that we need to pursue what it means to have reusable software; how
do we describe it; how do we diseminate it; how do we make it available
to people. You know, there are a lot of mechanics that surround that
concept that must be flushed out in order for us to actually implement it
and use it in the development of new systems.

Designing to test. We will focus a good deal of attention on how we go
about developing systems that are easily tested. So often today, testing
is done after the system has been completed. All of us know that what
you have there is a Gordian knot. Trying to disentangle that and say
that it does everything that you intended it to do correctly all of the
time is very, very difficult, if not impossible. So, we have to look
very hard at designing systems that can be tested in components and then
as integrated systems. These should be cleanly put together and cleanly
testable.

28

Development of evaluation methodologies and metrics. 	There are many
methodologies and a few metrics available. They're not in common use
across DoD, certainly. Part of what this T&E study is about is finding
out exactly what the state of the practice is in DoD and in industry. I
don't think we can say there are no voids. This T&E Study will be very
helpful in identifying what those voids are. Research and Advanced
Technology is the place from which the funding and support will cone to
see that we fill those gaps. There will be very strong endorsement for
anyone who is pursuing research that will help in the definition and
development of these methodologies and metrics. Developing a laboratory
for experimenting, for the development of metrics is one area in which
the Services could jump in and help out.

Develop consistent testing tools and incorporation of these tools as part
of a standard environment. Obviously, the Ada integrated environment is
what we are looking toward as the home of these tools. It is very
important that if we develop new capabilities that we make these
available. That we have the capability to evaluate or qualifj , one system
relative to another and say that it is .5 on the Richter scale is
important. We cannot do that today. Having a number of tools available,
maybe different tools for different type of systems, having consistent
metrics, having the capability to share those tools and not reinvent them
would be very, very useful to us.

These six topics are sort of out of order, but as I was making up this
"impromptu list", I realized that I had left off something very important
and that is prototypes or throw-away software. We really do need to get
a better handle on what that means. What do we have to provide to the
developing community to allow them to prototype a system. I'm sure that
we can develop systems for prototyping. Generic simulation capabilities
ought to be established.

Those are the thoughts that I have. I have not discussed some of these
with Joe Batz, but I will. I'm sure from the discussions that we've had
he would concur with all of these things. Now he can go write them up.
Are there any questions?

Software T&E, I agree with Mark, did not get satisfactory attention in
our DSB study. We were focused very much on hardware. Software T&E
certainly is one of the most important areas that we have to address in
the software technology initiative. And, so, your involvement in that,
any input that you might have is going to be very well received. Don't
be bashful, don't be voluminous, but get us the information. Or, if you
think there are people that we ought to be talking to, make that known.
If this was all that the software technology initiative was about, it
would be a very, very full program. There is much more to it. We will
endeavor to keep you informed on the full scope of that program. We've
got years of work here, and we need all the resources we can find.

Mr. Greenlee: 	Thanks very much, Edie, for stepping in there very
quickly. Questions? Surely. Dr. Leathrum from Clemson University.

29

Dr. Leathrum: The previous talk and this one brought to focus in my
mind, the problem that we that call ourselves software engineers need to
give a bit more attention to. We tend to focus in on a software
lifecycle and problems that arise in that lifecycle. But I think a lot
of our problems arise particularly with embedded systems, where the
system lifecycle is out of phase with the software development lifecycle
and maybe the procurement cycle gets out of phase as well. This came to
mind as I was reviewing the applications software for an Army computer
system last night, and again, the procurement lifecycle seems to have
reached a climax, and lo and behold, the software tools were primitive.
The keeping in phase of these lifecycles, I think, is something that
needs to be given some attention as well.

Dr. Martin: Well, I'm not sure that I understand how you can say that
the software lifecycle is out of phase with the system lifecycle. You
mean in hardware/software entities. The procurement problems are going
to be there no matter what we do. That is just a fact of life.

Dr. 	Fischer: 	Kurt Fischer from Computer Sciences 	Corporation,
representing NSIA. I know one experience that I have in that regard is
that in our major weapons systems, we have a phase called production.
But, for those of us who deal mainly in software, the production phase of
the system lifecycle is always almost nothing in software because all of
the software is developed during the development phase.

Dr. Martin: 	Are you saying that hardware production is preceding
software production?

Dr. Fischer: No. Just the opposite. That software production is done
during the development phase. With hardware, during development phase,
we might make one or two prototypes of the hardware and put the software
in. Where, insofar as putting that software in production, all you do is
make copies of it. So, there is no software production done during
system production phase.

Dr. Martin: OK, and your point is ...

Dr. Fischer: I'm just backing up what the gentleman from Clemson said,
that sometimes during the system lifecycle the phases are out of sync.
We produce our software during the development phase, we produce our
hardware during the production phase.

3C)

Dr. Martin: I wish I had a couple of view graphs that I use for another
presentation. I wholeheartedly agree. The view graph, if I could
describe it, is one that shows the PERT chart of the development of a
hardware system and it's very, very detailed. Essentially, that is
because we understand it. We have a software PERT chart and it has two
nodes, development and test. And the earliest possible start date on
development of software, is sometime before completion of the hardware.
You know, we do go off and fake it. The latest possible start is at the
completion of the hardware. The earliest possible start date for testing
is at completion of the total software system today. The latest possible
start date is after the system has been deployed! Or never! Testing
whether or not a system does what you thought it was going to when it was
out in the field, is an observation, and that's all it is. That's
pathetic. I think that some of the things that are happening as a result
of the Ada activities and as a result of the embedded computer resources
standardization activities will help. One, if we use standard hardware,
we've got the hardware on which the software is supposedly going to run
available for the total time in which the system is being developed.
That's going to be a very big help. In the past, we have been guessing
on how the hardware was going to operate. We will still guess at some of
the interfaces, however, having a standard language and having standard
tools will certainly be helpful in developing software because previously
we have not had those aids. We are moving the capability to develop
software closer to the outset of the total system development activity.

There is no reason why we can't do that with testing too. In fact, I
don't think that with good conscience, we can continue the way we are
now. We all know that we have to test the system upon completion, and we
all know it is supposed to work. Part of your program plan really should
ask "how are you going to go about testing this system along the way to
give some assurance to those people who are dumping millions of dollars
into its development, that when it is completed, it will work?". To say
that after it is complete, we'll stick in a thermometer, and if it is
past 105, we'll call it sick, is not good enough. We can move that up. I
think that in the research community, there are techniques being
developed that say that it's straightforward, it's not going to be that
hard. If we can't break down the problem to a testable form early on,
what makes you think we can do it later? So, it's a matter of how we
manage what we do in a lot of instances rather than whether or not there
is a technology there that permits us to do it. We have not been
managing the software/hardware system as an integrated system from the
outset. We have developed our hardware, we know that the software is
supposed to run on it, we go off and we develop our software, and at the
end, voila, comes a marriage, and hopefully, it works out. It's just
unnecessary to continue doing that. I guess, what I'm saying is that
part of the problem you are observing, although I think it is real,
there's no technical reason for it. It's a management problem, and it is
one that is resolvable if we simply bring it to the attention of the
system designers early on and place a requirement that the test plan be
there in advance of initiation of development of the system. There is no
reason why we can't resolve that part of the problem.

31

The procurement problem is still going to be there. There are efforts
underway to resolve some of that in the hardware area. I think that we
have made great strides by having the procurement decision making power
for embedded systems removed from under the Brooks Act almost in total.
That means that the general purpose machines that are going to be
purchased for embedded computer systems are not going to fall under
Brooks, and that, procurement-wise, is a major step because it is
probably going to buy you 2-3 years. So, I guess, I shouldn't be too
harsh on the procurement problem, but it is going to be a difficult one
to work with. In the area of software, we've got an advantage because
they don't understand it, maybe we don't either, but at least, we are
working with something that we can say we have a clean slate to start out
with. We are not trying to reverse a trend that already exists as we
were in the procurement of general purpose hardware. Trying to make an
exception to the Brook's Law with a case by case instance was very, very
grueling. So, we do have a better opportunity in software. Does that
answer your question?

Dr. Leathrum: My point was that the development of the software should
be controlled such that it climaxes at the same time as the rest of the
system.

Dr. Martin: Agreed. Part of the draft papers that I would presume that
most of you have not seen are components that will be in the software
technology initiative that talk about the methodology or the management
approach to the software system lifecycle. Those have been sufficiently
rough, that they have not been put out for review except by a very few
people. But, that problem is understood or recognized at least, if not
understood, and is being addressed. Any suggestions you might have on
that are very much welcome, and I'll be glad to get you a copy of the
draft methodology or management paper, whatever we end up calling it,
once that's ready for review.

Mr. Watt: The lack of synchronization between the hardware and the
software is an issue that needs to be addressed in depth as a part of
this study. The immaturity of the software relative to the hardware, the
lack of synchronization, that entire issue, I think, is one that any
ideas on would be welcome, and as we continue this effort, we need to
address the alternatives for solving that problem.

Dr. Martin: I think that one of the major problems that comes about is a
lack of advanced planning or at least not living by the plan once it has
been established. Because there has been a hardware first approach, as
we all know, the deadline doesn't decrease; the time to develop the
software simply condenses, right? There is a point at which you can no
further condense the development time for the software. What does happen
as a result of hardware delays is that the software that is going out is
immature. If you don't have mature software, then it is hard to say that
the integrated system is truly going to work together. The other side
effect is that the dollars also don't change, so as you start incurring
overruns in the hardware, the software is simply going to cost less.
That's ridiculous, but it happens. So, you're working with condensed
dollars and less tine, and the Mythical Man Month says that won't work.
You know, as you condense the time, the dollars go up astronomically.

32

You get to a point when you can't do the job no matter how many dollars
you put into it. So, you see, there are some parameters that are not
being manipulated as the system synchronization gets screwed up that,
again from a management standpoint, have to be factored in. We have to
say the deadline moves or the dollars go up or something has to give.
But, traditionally, there has been no room for that giving. So what you
ask, is that for software people the meantime between miracles has to be
short. We've pulled off a few, but again, that's unreasonable, and it is
resolvable. I do think that it is getting attention at the right level
right now because we do have multimillion dollar systems out there that
don't work. And the reason they don't work is because of a bug in some
tiny little piece of software that no one thought was terribly
important. At least, they didn't think it was important enough to get
started on early. So, it is getting attention because people are running
out of excuses in program reviews.

Mr. Devlin: One of the things that may explain this nonsynchronous flow
is that the thrust changes. Another possibility is the fact that the
dollars change.

Dr. Martin: With changing missions, usually, the dollars are going to
change. As the mission requirements change while the system is under
development, it often means some retro-fitting, retro-designing, and that
is going to cost more money. So, there is some justification of those
things. Experience says that all of the requirements for every system
change before the system is deployed from drawing board to deployment.
Yet, very little is factored in for the cost change, that we all know is
going to be there. How many systems have cost less. None. How many
changes in the system have had zero impact on dollars. Probably none.

Lt. Col. Blackledge: 	Mike Blackledge, Air Force Test & Evaluation
Center. 	The concept of reusable software is a beautiful one, and
especially in a large mainframe CDC-type environment. Would you speak a
little bit to its applicability in the embedded computer.

Dr. Martin: I don't see why you say it is so different in the large
mainframe area. What you are looking at on the host computers,
obviously, is an environment in which the tools that are used for the
work that is done are very often the same. Editors and some debuggers
and that type of thing certainly can be reused. But, how about operating
systems for the field, multi-tasking operating systems. I can think of
having developed, on six different projects, six different operating
systems, the core of which was very, very similar.

Lt. Col. Blackledge: So, you are speaking of reusable software from the
support software viewpoint.

Dr. Martin: Yes, but we ought to be able to do some of it in the
application area. Fast Fourier transforms and things, routines that you
would use in many applications should be packaged in such a way that
someone else who has to process the same type of thing can pick it up and
use it. Today that is usually not the case. Now, I know from work at
the Engineering Experiment Station that we made stabs at cataloging what
software had already been developed and making this available to other
people. And, yes, there was a lot of ownership, and there was also a lot
of "gee, if I do what I think, I'll have a greater confidence that it
works".

33

All that says is that we have a lot of ignorance about qualifying
software because you're qualifying software with a prejudice you can't
substantiate. Developing tools and objective measures is critical to us
in qualifying that software. Once we have something that works, and we
can certify that even though Joe developed it, and I don't like Joe, I
can certify that it works. That's important. I think that is part of the
problem that has surrounded reusability in the past. The other part of
the problem that we had was that it was very difficult to understand what
somebody had when they were trying to tell you what they had in a piece
of software. There is no consistent way of describing what that software
routine was. There was a lot of difficulty in understanding how one
would take that and incorporate it into another piece of software. So,
trying to reuse a routine that somebody else had developed was fraught
with sufficient integration problems in just trying to understand what it
would take to integrate it that it was easier to. start over and reinvent
it. All that says is that we have to find a way to describe these
things. We have to find a way to catalog them so that somebody else who
night want to use them could find them. We have to have a way of
describing how they interact with the other components of the program.
It is going to take some deep study to understand this, because you are
trying to develop a general interface to other people's application
systems. There is a lot of research activity that needs to take place.
I do think it is a good idea that has not been realized. But I do think
there is payoff there and I think that we are smart enough to find out
how to make it pay off. But, to say that somebody has the answer today,
I don't think they do. But if you give someone a few dollars and the
responsibility to get that job done, I think that it can be done. It's a
matter of software documentation. Anything else? Thank you very much.

34

VIEWGRAPHS

USED BY

DR. MARTIN

FOR THE

SOFTWARE TECHNOLOGY PROGRAM

PRESENTATION

35

SOFTWARE TECHNOLOGY INITIATIVE

Possible Topics

- Reusable Software

- Designing to Test

- Evaluation Methodologies

- Metrics

- Testing Tools

- Prototypes

36

Mr. Greenlee: Thanks very much, Edie, for your presentation and your
eloquent responses to questions and comments.

We've talked a little bit about the ECR DS8 initiative and the software
technology initiative. One of the other major thrusts, obviously, is the
new high-order programming language, Ada, which will pervade the
Department of Defense. Ada is a very successful program, I think most
will agree, even though cynics said it would never happen back when. As
testers, and as developers and other people involved with computer
software, we will all have to be aware of and conversant in Ada. For
this reason, I've asked Lt. Col. Vance Mall from the Ada JP0 to talk to
us a little bit about the language and his reflections on how the use of
Ada as a high-order language throughout DoD will impact our T&E
considerations. Vance.

37

LT. COL. VANCE MALL: ADA JOINT PROGRAM OFFICE

Lt. Col. Mall: Thank you, Don. I am from the Ada Joint Program Office.
This briefly is the way we are constituted. We are attached to the
Deputy Under Secretary of Defense for Research and Advanced Technology.
We have representation from OSD and three Services. The director is
Larry Druffel from OSD. I'm the Air Force representative. This is our
purpose (drawn from the AJPO charter): to manage the DoD effort to
implement, introduce and provide lifecycle support for Ada.

Now, this is what Ada is in one sentence. The key words are modern
high-order computer programming language. Ada embodies most of the
programming language concepts that have been developed over the last 15
or 20 years. Ada will become the standard language for writing software
for DoD's embedded computer applications. We hold a registered trademark
on the name Ada. That has been a very useful mechanism. We exercise the
trademark by saying that anyone who uses the name Ada in connection with
computer programming languages must acknowledge the trademark and
furthermore, anyone who claims to be developing an Ada compiler, must be
developing a full Ada compiler (no subsets, no supersets) or he must
announce publicly that he intends to complete that development. At the
moment, no one has delivered a full Ada compiler. That is reasonable
since there hasn't been time, but people who are marketing such software
must say, if they use the name Ada, that they intend to develop the full
compiler. This turns out to be a very useful loop closing mechanism.
There are apparently thousands of people in the land who know this rule
and who read ads, and when they spot an ad that fails to recognize the
trademark, they call us or send us a copy. We then get in touch with the
company and brief him on the situation. It turns out that there are many
people who are active in the business who are now at less risk than they
were because we were able to close that loop.

This is what we hope Ada and the associated programming support
environment will do: Reduce cost and improve quality by facilitating the
application of modern software engineering practices. From the
beginning, in the mid-70's, the studies all said that the way to solve
these horrendous software problems is to apply good software engineering
techniques. One of the things you need is a common high-order language.
Ada is that common high-order language, but the fact remains that without
the modern software engineering practices, we won't get there. So, we
always emphasize that it is really software engineering we're after.

The solution to our software problems has two major facilitators: a
single modern high-order language (Ada) and the Ada Programming Support
Environment.

This is the EIA slide that shows an estimate of the cost that we are
talking about. I'm sure that most people have seen this slide. This
shows that by 1990, we will be spending $32 billion (1980 dollars) on
software for DoD embedded computers. From $2.8 billion in 1980. A
tremendous growth, if we don't do something.

38

And, this is what we are trying to do. The Ada program is considerably
more than just a language. This is the view of the world we are trying
to create. This represents the host machine on which development takes
place. This is the target machine in the aircraft, missile, or other
system. These are seen as different pieces of hardware. In the host
machine, you have all kinds of development tools. We see these as being
candidates for porting from one system to another. Candidates as
reusable software. Over here, you actually have the same kind of thing.
This is a target machine. It also has an operating system and a runtime
support library. This is a computer, and there's all kinds of stuff
over there that can be architected similiarly to the way the host is
done. It turns out that we haven't done that very well. We are now
beginning a program in conjunction with AIRMICS down at Georgia Tech to
try to articulate just what this runtime support environment architecture
should be, with the hope that we can get some commonality of tools, so
that at least some of that software can be transported easily. Those are
the two computer based environments. This is the extra-computer
environment. The socio-political structure that all of us live in. This
is clearly very important, and it includes ... it doesn't include test
and evaluation, but, obviously, it should. The language itself (MIL-STD
1815) is in the process of being approved as an ANSI standard. We hope
to have the ANSI standard by fall. We have certification procedures for
the compilers under development, and in fact, the Ada Compiler Validation
Capability is in very good shape. It will consist of about 1500 Ada
programs. The scheme is to compile all those 1500 programs on your
compiler and, if the compiler does what it is supposed to do, then it is
certified correct. The capability also includes a batch of software
support tools to make running those 1500 tests automatic and, in
addition, a book called the Implementer's Guide which lists pitfalls and
suggestions of how we might go about writing the compilers. This whole
system has already been very useful. It was in place in large part
before work started on compilers, and people who have been writing
compilers have been using those tests and the Implementer's Guide. It
surely has saved some money and effort, and we hope that it will save
more in the future. One of the advantages that that system offers in
being available before compilers are ready, is that we avoid having a
bunch of compilers which are effectively dialect compilers. The test
facility was in place first, so the conversion of compilers to the
standard should be much easier.

There are two, perhaps three, bullets on this slide that are of
particular interest to this group. We hope that by offering a single
language that many people use, and the single programming support
environment that many people use, that people will be encouraged to
invest in software support technology. High quality tools, such as
editors and compilers and debuggers, and a great list of other
development tools, including test and evaluation tools. The programing
support environment is there to host anything that might be useful in the
whole lifecycle management process in software. We hope that by focusing
attention, and thus resources, on one language and a small number of
programming support environments, that we will be able to get very high
quality out of the system. Reusable software is also subject to the same
argument.

39

As has been mentioned, the Ada program seems to be proceeding very
successfully, and it is clear that the reason for that is the basically
political nature of the program from the beginning. This is a list of
the requirements documents which culminated in the Steelman document,
which is a 22 page paper describing, in extremely readable 'terns, just
what requirements this language must have. The RFP for the Ada design
was based on Steelman. There was a succession of documents circulated,
increasingly widely as time went on. Comments were collected on each
document and incorporated into the next document. The result is that
there are hundreds of people in the world who have contributed
significantly to the language. That is excellent from a technical point
of view. We collected lots of good technical information. And it's
excellent from a political point of view. There are now many, many
supporters of the language in industry, government, and academia. I
think that accounts for the success of the program.

These are the technical requirements that Steelman lists, and some of
these requirements are associated with the T&E effort in that they either
solve the problem of errors in software in the first place or they offer
a handle to get T&E onto the project. Strong typing turns out to be a
method for catching an awful lot of things like typing errors in the
program. Encapsulation enforces modularity so that a module which is
tested can continue to merit confidence even though some other module has
changed. This module is not going to depend on the other module.
Machine dependencies are isolated in a properly written Ada program.
Machine dependencies are of course a place where breakdowns in
reliability as you port the system from one piece of hardware to another
are very likely. In a properly done Ada program, those are well isolated
so you can focus attention on them. The generic facility is another
feature which should contribute to reliability. A generic is a piece of
code which can be instantiated with parameters of different types. You
can write the generic package once, test it thoroughly, and it should
then be usable in more instances than a typical procedure or subroutine
is. It is a further effort to factor code into isolated'pieces.

In addition to the language itself, the Ada Programming Support
Environment is a very important aspect. Its purpose is as stated. One
very important thing to be contributed by the Ada Programming Support
Environment is a common user interface, common programmer interface. A
programmer can move from one installation to another. If they both have
the Ada Programming Support Environment, then his interface with the
computer will be basically unchanged from place to place, so the training
problem is reduced. This is the way the Ada Programming Support
Environment is constructed. In here, we have the Kernel Ada Programing
Support Environment. One way to describe it is as a wrapper around the
hardware or the hardware plus the underlying operating system. It hides
that from the tools that are outside. The interface of the tools to the
kernel is uniform from one system to another. That means that if you
want to transport your Ada Programming Support Environment from one piece
of hardware to another, all you have to rewrite is the kernel. This
stuff out here does not have to be redeveloped, does not have to be
retested, it's simply transportable, at extremely low cost. Free would
be nice, but that's probably pressing it.

This next ring is called the Minimal Ada Programing Support
Environment. That is the minimal set of tools that you need in order to
develop and test programs. 	It doesn't contain very many tools.
Compilers, editors, linker/loaders, and so forth. 	Necessary and
sufficient toolsets. 	Outside that is the full blown Ada Programming
Support Environment with all the other tools anybody can think of,
including test and evaluation tools. Now, if this thing works, it should
be possible to plug in well-designed, well-exercised test and evaluation
tools on any Ada Programming Support Environment irrespective of which
hardware it happens to run on.

This is our responsibility in the Ada Joint Program Office. We have
these three objectives. The ANSI standard we hope to have in September.
We're in the process of getting the first systems up so that by 1983, we
hope the Army will be using Ada for production systems. That's their
plan. Providing support systems seems to fall into two groups. One is
providing lifecycle support for Ada itself, that's configuration control
of the language. We anticipate a review at about the 5 year point, say,
to see whether everything is fine, to accommodate comments that may have
come up and perhaps to adjust the language a little bit. That has
already been done, of course, at great length during the ANSI process.
So, I would anticipate not too many changes, and certainly none for
several years. And to provide support systems such as the Ada
Programming Support Environment.

I wrote down several thoughts about where I thought the software test and
evaluation project and the Ada program had interfaces, and I think they
have been pretty well taken care of already. But, let me go through them
again. First of all, it seems to me that the main advantage is the
advantage of a standard. Given the Ada program and the extent to which
the language and the programming support environment are going to be
used, there is very high leverage for anything that is inserted into that
program. Test and evaluation stuff that is based on Ada and the
programming support environment will have very broad applicability and
should enjoy, it seems to me, the fairly sizeable resources that are
going to be attracted by Ada. Lots of people are going to be building
things in Ada and for Ada, so there are going to be lots of resources.
If some of those can be attracted to test and evaluation activity, that's
all for the best.

Let me talk a little about this. We are at the very beginning stages of
the development of a methodology. Dr. Martin mentioned this earlier. We
issued a letter just the other day for publication inviting suggestions
for methodologies, inviting them to be sent to Professor Freeman at the
University of California at Irvine. The objective is to collect what
people know about methodologies and try to sort out that issue. It
occurred to me that the test and evaluation community needs to be
represented there, so I would encourage you to make that contact with
Professor Freeman, and be sure your concerns are represented. Things Dr.
Martin was talking about, designing to test and that kind of stuff, are a
very important part of the methodology, and we have to'be certain that
they don't get overlooked. Are there any questions?

41

Dr. Fischer: 	Can you tell us please what currently identified DoD
programs are planning on using Ada?

Lt. Col. Mall: I cannot. I had that question the other day.

Dr. Fischer: The one that I know of is RTACS, the Realtime Adaptive
Control System that the Army is doing for the DCA, but that's the only
one that I know of.

Lt. Col. Mall: Another one in the Air Force is the MEECN, Minimum
Essential Emergency Communications Network. Ada has been suggested by
the contractor and is being evaluated. So, that is another candidate.
The Army is pressing very, very hard to get their Ada Language System
fielded in early 1983, so that they can deliver it to program managers,
but, I don't know what program managers they are talking about.

Dr. Fischer: The Army has the ALS, and the Air Force, the AIE, what are
the Navy's plans?

Lt. Col. Mall: The Navy's plans are to choose either the ALS or the AIE,
and then build on it. Bob Converse at. PMS408 is putting together a Navy
strategy, and their basic strategy is to choose one or the other and
build on it. Since we have these two efforts, there is a lot of
concern. One of the things you want to do with an Ada Programming
Support Environment is be able to transport tools from one to the other.
Well now, we have two environments, the AIE and the ALS, what are we
going to do about that? What we are doing about that is the KAPSE
Interface Team (KIT), which is being managed by Trish Oberndorf at Naval
Oceans Systems Command in San Diego. There is a tri-Service committee
and in addition, there is an industry committee. They are looking at
both the ALS and AIE trying to identify interface issues so there can be
some commonality of interfaces so that tools can be transported from one
system to another.

Dr. Leathrum: You are right in observing that the support for Ada is
wide, but there are also some very vocal detractors, partly along the
lines of wishing for a smaller language, whatever that means. Do you
feel that any of these methodologies might ultimately make the language
smaller?

Lt. Col. Mall: Some of this may migrate into hardware. One of the
features in Ada is the package. You write a package to provide some
services. You define it very well so that it can be ported. It is
entirely possible that when one of those packages is well shaken down and
extremely useful, that package could be one of the things that is
implemented in hardware. If so, it is possible that the language could
be simplified, but the issue of simplifying the language has been looked
at very, very hard for at least a year, and it turned out that the
language is so tightly integrated that you just can't carve. The
conclusion was you can't just carve off some pieces because then the
house of cards collapses. So, making a smaller language turns out to be
very, very difficult to do from a technical point of view.

42

Unidentified person: The subsetting rule only applies to compilers. The
Program Manager can choose his own subset of the language for a given
program.

Lt. Col. Mall: That's correct. The subsetting rule has entirely to do
with transportability of software, suppression of dialect. But, both
from a training point of view and from the individual program manager's
point of view if you don't want to use the whole language, you don't have
to.

43

VIEWGRAPHS

USED BY

LT. COL. MALL

FOR THE

ADA

PRESENTATION

44

PROGRAIVIEVIINC LANGUAGE

"'Ada is a Registered Trademark of the Department of Defense (Ada Joint Program Office)

ADA IS A MODERN HIGH ORDER COMPUTER
PROGRAMMING LANGUAGE WHICH WILL
BECOME THE STANDARD LANGUAGE FOR
WRITING SOFTWARE FOR DOD EMBEDDED
COMPUTER APPLICATIONS.

"ADA IS A TRADEMARK OF THE U.S. DEPARTMENT OF DEFENSE.

ADA AND PROGRAMMING SUPPORT
ENVIRONMENTS WILL HELP US REDUCE
THE COST AND IMPROVE THE QUALITY OF
SOMA/ARE BY FACILITATING THE APPL1-
CATION OF MODERN SOFTWARE
ENGINEERING PRACTICES.

AD JOHkrr rpinocn) M OFFICE
VW[PCA

• ATTACHED TO DUSD (ACQUISITION MANAGEMENT)

u REPRESENTATION FROM OSD, NAVY, ARMY, AF

a PURPOSE — TO MANAGE THE DOD EFFORT; TO
IMPLEMENT, INTRODUCE, AND PROVIDE LIFE-CYCLE
SUPPORT FOR ADA

THE NAME "ADA" HONORS:

AUGUSTA ADA BYRON
COUNTESS OF LOVELACE
1815-1852

uD 	 SHE WROTE A DETAILED DESCRIPTION OF AN ALGO-
RITHM TO BE EXECUTED ON CHARLES BABBAGE'S
MACHINE. IT WAS, IN EFFECT, THE FIRST COMPUTER
PROGRAM.

u SHE WAS THE DAUGHTER OF LORD BYRON.

PERear2 Rind

o PROBLEM
- EMBEDDED COMPUTER SYSTEM SOFTWARE

-- LIFE CYCLE COST
-- RELIABILITY

▪ SOLUTION
- MODERN SOFTWARE ENGINEERING PRACTICES

TWO MAJOR FACILITATORS
-- SINGLE MODERN HIGH ORDER LANGUAGE
-- PROGRAMMING SUPPORT ENVIRONMENT

AD FO PR022

DOD INITIATIVES TO IMPLEMENT SOLUTION

• DODD, DODI 5000 SERIES
— CONSTRAIN LANGUAGE PROLIFERATION

a HOLWG
u, 	— DEVELOP REQUIREMENTS, LANGUAGE, STONEMAN

▪ AJPO
— INTRODUCE AND MANAGE LANGUAGE AND

ENVIRONMENT

a COMPONENTS
— USE ADA FOR EMBEDDED SYSTEMS

2121 2

PRS2-1,1-t

OBJECTIVES:

a IMPLEMENT ADA AS A STANDARD

a FOSTER EARLY INTRODUCTION AND ACCEPTANCE

a PROVIDE SUPPORT SYSTEMS

TARGET MACHINE
ENVIRONMENT

APPLICATION

APPLICATION
EXECUTIVE
ROUTINES

ADA RUN TIME

TARGET ISA 	I

LOADERS FOR
SELF HOSTED
SOFTWARE

ADA LANSUACE ERIVIMOMMERIT

ORGANIZATIONAL 	 HOST (PROGRAMMING)
INFRASTRUCTURE
	

MACHINE ENVIRONMENT

COMPILERS

I/O PACKAGES

STANDARD APPLICATIONS PACKAGES

EDITORS

TEST/DEBUG TOOLS

ANALYZERS

PERFORMANCE MEASUREMENT
TOOLS

PROJECT MANAGEMENT
TOOLS

CONFIGURATION MANAGEMENT
TOOLS

DOCUMENTATION AIDS

ETC.

COMMON DATA BASE

OPERATING SYSTEM

HOST HARDWARE ISA

— LANGUAGE STANDARD

— COMPILER CERTIFICATION
PROCEDURES

— STANDARDS Et GUIDELINES
FOR HOST AND TARGET COMPUTER
ENVIRONMENTS

TOOL DISTRIBUTION MECHANISMS

— DOCUMENTATION

— TRAINING

— COMPUTER RESOURCE POLICIES

EMBEDDED COMPUTER SYSTEMS
- WEAPON SYSTEMS
- COMMUNICATIONS
- COMMAND AND CONTROL
- AVIONICS
- SIMULATORS

NOT
- FINANCIAL MANAGEMENT, INVENTORY, PAYROLL

(COBOL)
- LARGE SCIENTIFIC COMPUTATION (FORTRAN)

EM E ED COMPUTER SVSTE S
PPLICATOOMS CVARACTEROSTOCS

o REAL TIME CONSTRAINTS

E3 AUTOMATIC ERROR RECOVERY

CONCURRENT CONTROL

o NON-STANDARD INPUT-OUTPUT

EDDED COMPUTER SYSTEMS EM
FM! IRE CM 	CITE-MSTICS

LARGE

a LONG LIVED

❑ CONTINUOUS CHANGE

ESTIMATED SOFTWARE COSTS IN
THE DOD

S4.5 BILLION/YEAR

SCIENTIFIC

OTHER Et
INDIRECT

SOFTWARE
COSTS

20 0/0

5%

DATA
PROCESSING

19%

EMBEDDED COMPUTER
SYSTEMS

56%

B
IL

L
IO

N
S 22

20
18
16
14
12
10
8
6
4
2

DOD ks.t7 V EC 113 231i:Qag; LI) IlVil LIJ
SOFICWARE/E-ZARDWARE

(ANNUAL COST - FY 1C110 DOLLARS)

34
32
30
28
26
24

32.10

21.20

WITHOUT STANDARDIZATION

13.90 	 SOFTWARE

8.95

	

5.62
	

5.89
4.34

3.20

	

1.81
	 2.36 	

HARDWARE

2.82

1.28

0 	 1 	1 	
'80 	'82 	'84 	'86
SOURCE: ELECTRONIC INDUSTRIES ASSOCIATION.

'88 	'90

ADA EXPECT TOOK'S

a REDUCE COMPUTER SYSTEMS LIFE CYCLE COSTS

a ENCOURAGE INVESTMENT IN SOFTWARE SUPPORT
TECHNOLOGY

a IMPROVE ADAPTABILITY OF SOFTWARE PERSONNEL

a ENCOURAGE DEVELOPMENT OF REUSABLE SOFTWARE

a DISCIPLINE SOFTWARE ENGINEERING

STEELMAN RECLECREIVIEUTS

■ STRONG TYPING

	

	- EXPLICIT DEFINITION AND ENFORCEMENT OF
CHARACTERISTICS OF DATA ELEMENTS

■ ENCAPSULATION 	- RESTRICTS VISIBILITY AND . USE OF SELECTED
VARIABLES; FACILITATES 130TH TOP DOWN DEVELOP-
MENT AND ACCUMULATION OF REUSABLE MODULES

Iii GENERIC FACILITY 	- PROVIDES EXTENSIBILITY TO THE PROGRAMMER
WITHOUT EXTENDING THE LANGUAGE

■ TASKING

	

	 - STRUCTURED APPROACH TO CONCURRENT
PROCESSING AND INTERPROCESS COMMUNICATION

■ EXCEPTION HANDLING - FACILITY FOR DEALING WITH EXCEPTIONAL SITUATIONS
WHICH OCCUR DURING PROGRAM EXECUTION

■ INTERRUPT HANDLING - FACILITY FOR PROCESSING INTERRUPTS AND OTHER
EXTERNAL STIMULAE

■ NUMERIC PRECISION

	

	- MACHINE INDEPENDENT APPROACH TO INTEGERS, r
FIXED POINT AND FLOATING POINT

▪ MACHINE DEPENDENCIES - EXPLICIT DECLARATION AND ENCAPSULATION OF
HARDWARE AND OPERATING SYSTEM DEPENDENCIES

PURPOSE:
TO SUPPORT THE DEVELOPMENT AND MAINTENANCE OF
EMBEDDED COMPUTER SOFTWARE THROUGHOUT ITS
LIFE CYCLE

VIEW POINT:
• PROGRAMMING IN THE LARGE

▪ o PEOPLE ARE MORE EXPENSIVE THAN MACHINES
▪ MACHINES ARE MORE RELIABLE THAN PEOPLE
o OPEN-ENDNESS IS A CRITICAL REQUIREMENT
a THERE ARE TOOL INDEPENDENT GENERIC CAPABILITIES

REQUIRED IN ALL INTEGRATED ENVIRONMENTS
o DATA BASE AND KERNAL STANDARD CONVENTIONS

ARE NECESSARY FOR TOOL COOPERATION,
COMPOSITION

Mr. Greenlee: Thanks very much, Vance. In addition to serving as a site
for our meeting, the DSMC has been involved substantively in our software
T&E project all along. And this is attributable to Col. Ken Nidiffer.
He has made all the arrangements to enable us to have this Workshop
here. One of Ken's duties on campus is to direct the course that is
presented in management of software acquisition. He's done this through
many cycles and through his own thinking process, contacts with industry
and the students, who I'd like to mention are not students in the sense
of unwashed tenderfeet, but experienced people from industry and the
Services who are perhaps, for example, going to undertake some software
development assignments in the future, but come in here with their own
sets of qualified opinions. Under Ken, the school has developed a
perspective on software acquisition, and this relates to testing. So,
Ken, I believe, is going to talk to us a little bit about the three
aspects, the academic, government and industry, and how they relate to
software acquisition and testing in particular. Col. Ken Nidiffer.

62

LT. COL. KEN NIDIFFER: DEFENSE SYSTEMS MANAGEMENT COLLEGE

Lt. Col. Nidiffer: I've been in the software acquisition business about
20 years. When I started in the early days of our military space
efforts,'testing was not like we view it today, because we really didn't
have a test program. In fact, we were very fortunate to get enough
software to load into our satellites such that we could make then work.
Today, a well organized test program is a very large factor in what we
try to develop. Unfortunately, there is a large amount of controversy on
how you develop a well organized test program, and that's why we are here
today. To start off a little bit differently, I an going to present my
summary conclusions, and then work toward these summary statements.

The first conclusion is that software is an integral part of the
acquisition process in terms of its lifecycle, and therefore, software
testing must be also. You should consider software testing in the
conceptual and demonstration/validation phases, as well as full scale
engineering. The second conclusion is that the government will never
back away now from its role of defining its requirements. I feel
requirements definition is a very important part of our job, and I think
this key part of the job will always be with us. The third conclusion
which was mentioned by Dr. Martin and several people so far is the need
for prototyping. For a long time, industry has prototyped software, but
the government has never recognized it within their procurements. The
government is beginning to recognize that prototyping is an important
function that is being accomplished by industry to meet their needs. The
last conclusion, which I think is the most important, is the need for
architectures. I think we need an architecture for our systems in which
we are evolving.

I will now present how I arrived at these conclusions via historical
perspective. Credit is given to Dr. Winston W. Royce of Lockheed Space
and Missile Systems Corporation who originally developed some of the
concepts which will be presented next.

I first became involved with large scale embedded software systems at the
Space and Missile Systems Organization in 1967. In those days, we gave
the contractors our software requirements and prayed that they would come
back with some code that we could load into the satellites. Although not
obvious, there were a lot of advantages to what we did back then.

6:3

The first thing, it accented the most important points in terms of
productivity as far as an engineer is concerned: analyzing and producing
code. He was not tied down in writing documentation. The second thing
that was important is that code was produced quickly, and we got a fast
response to any change in requirements. We seemed to get more code per
unit dollar back then, and that was important in terms of handling our
early requirements. There were also a lot of disadvantages. As our
systems grew more complicated, we found out that we had to somehow get a
methodology by which we laid out our requirements so that we could get
them developed. The second thing that happened to us is that we found
out that we could not change our requirements very quickly. It took the
contractors longer to develop the software because of the complex
interfaces associated with the more complex requirements, and they needed
more reaction time. In summation, the government and industry needed a
comunication medium. We borrowed a concept from the hardware people,
which was called Baseline Management, a concept of management that had
developed out of the Air Force 375 series regulations.

As shown on this chart, we place on the front end of analysis a
requirements phase. For example, we started out and required .a
functional analysis to be accomplished. We required that the functional
analysis establish tradeoff studies, and that these tradeoff studies be
an iterative recursive process until high quality computer program
development specifications (B5/Part I) were finalized, specifications
that would define the functional requirements for what we were after. We
then permitted the contractor to proceed into design. We kept the coding
phase but added something which we are addressing today; we added a
formalized testing methodology on the back end of the software
acquisition cycle. There are a lot of advantages associated with this
approach.

First of all, it was really geared to handling complex requirements.
Thanks to Baseline Management, we began to be able to establish more
control over the software acquisition process. We also established
reviews, such as the systems requirements review, the systems design
review, the preliminary design review, the critical design review,
reviews that allowed us to review the progress of the contractor. We
also formulated MIL-STD 1521, which set up the rules and guides for these
reviews. We established some configuration management points. When
everything was completed in terms of defining the functions for the
software, we developed a functional baseline. Then, when we had
allocated all our systems into what we called computer program
configuration items, we established an allocated baseline. Finally, we
had a product baseline which looked at the as-built product. Because
each step fed on the preceding step, we had good comunication between
the systems engineering that was done by the contractor and our
government people, who were reviewing the work. We had another luxury
back then also. We had a lot of people within the government who
understood systems engineering.

64

This chart shows some of the weaknesses of Baseline Management. The
first thing is that coding and testing are conducted very late in the
development cycle. In fact, in a lot of our regulations, a requirement
exists that there will be no coding before CDR. Now, there are not too
many contractors who ever obeyed this rule, especially if they had to
build prototype concept formulation. Yet, the regulations forbid them.
Baseline Management also delayed the test program because everything was
sequential, so the test program was held at the end. A back end test
program leads to other problems. A primary motivating force for
shortening a software test program is shortage of program funds and
schedule. The program manager is always faced with two critical
constraints, dollars and schedule, which he never has enough of. •As a
result, he robs the back end of his program. By the nature of the beast,
the test programs that we have for software are usually too short. Thus,
the test program manager has lower confidence in the quality of the
software because of the limited number of software paths that are
validated. We also produced a lot of paper under Baseline Management.
As a result, we often had a thousand line program which had four feet
worth of documentation associated with it. Many of the contractors that
are out there now know the amount of documentation that we require on
software products. As a result of all this paper, we find out it's very
easy to misassess progress. Industry is faced with yet another problem
which impairs Baseline Management, and that problem is too few resources
in terms of systems analysts to do the work and the need for a better
systems engineering process based on an evolving technical base. To meet
this need, universities and industry jointly came up with a new
methodology called Top-Down Design. This methodology is centered on
three basic notions. Most of us are software oriented in here, and I'm
not going to go over these in detail, but I want to point out where the
test fits in. In a hierarchy of functions, we are concerned about the
programs that have to be tested in terms of being used for test; they
need to be designed first because of a concept we will call test
stubbing, which I'll describe in a minute. The second notion of Top-Down
Development is that the designer should start to tackle the hardest
problems first in somewhat of a logical manner.

The third notion is associated with when the requirement definition,
design, code and test should occur. That is, when we identify the
module, we can begin to do the requirements definition, the design, and
the test early on. We don't have to put that testing until a point late
in the acquisition cycle. As a result, through this process, we have
allowed testing and design to occur throughout the cycle. Let me provide
you with the following scenario. You're a young software engineer who
just graduated and got your masters degree in computer science. , You are
interested in productive labor of designing and producing, not writing
hundreds of pages of documentation that will probably never be read.
What Top-Down Development allows is for industry to take people who are
heavily motivated in computer science and make them productive!

65

The strengths and weaknesses are presented on this chart. First of all,
it does allow industry to be productive with their people. Second, it
allows for inherent prototyping, which I think is critical in our
systems, especially from the systems viewpoint. Third, testing is
accomplished throughout the lifecycle. Top-Down Development has some
weaknesses. For example, it is very hard for people to conceive of a
top-down design. It takes a very special person or group of people to be
able to take a system that they have never seen before and structure a
top-down design. A couple of other weaknesses is that if the designers
are wrong in their guess, there can be an unravelling in the requirements
chain. From the government viewpoint, it is very difficult to set
progress review points because there are not logical points in the
software development where all the software passes discrete milestone
points at one time.

The idea of evolving architectures is not new. It started out, I think,
at Space Division way back in 1972. What it essentially says is that the
government will have control over the activities that lead to the
documentation of its software requirements in the computer program
development specification. After a satisfactory allocated baseline has
been accomplished, the contractor is allowed to develop products in
accordance with the evolving architecture.

I'm recommending here that we examine an evolving architecture concept
with respect to DOD 5000.3. Architecures are currently being set up by
the Services, both planned and unplanned. For example, the Department of
the Army has recently released a Post-Deployment Software Support (PDSS)
Concept Plan For Battlefield Automated Systems, and TRW has produced for
Air Force Logistics Command a Long Range Plan for Embedded Computer
Systems Support which take into account some of these evolving
architectures for deployed systems. I think what we are going to see in
our structure, especially as Ada comes along, is a point where we can get
these incremental releases for our weapons systems. Whether those occur
under the sane contract or whether those releases are competitively bid
in a fixed price structure, I don't know. But, I do see it evolving.
Thank you very much.

Mr. Devlin: As a tester, how does one test an incremental release of
weapon system software, especially when major change requires retesting
to conform to directives for issuance approval for service use?

Lt. Col. Nidiffer: I think our thoughts on testing in terms of the
development are going to have to change, and the reason for having to
change is because I feel industry is going to stay with top-down
structured programming based on the need for better productivity from its
limited work force. Based on this management approach by industry, we
have to look at how to get better visibility. I don't have all of the
answers on how to achieve this visibility. I'm sort of hoping that this
group will come up with some of those answers.

Mr. Devlin: I agree with you. You night consider bouncing this off the
Navy. The Navy's been involved with incremental releases for some tine.
There's been a number of problems though, i.e., training of the operators
in incremental releases, funding, documentation, user/operator manuals,
in general, total configuration control and quality assurance.

Lt. Col. Nidiffer: I think that's super, and I share it with you. I
guess what I'm saying is that from what I've teen, that's where we're
headed. I don't know all the answers on how to get there. But, I have
some ideas.

57

VIEWGRAPHS

USED BY

LT. COL. NIDIFFER

FOR THE

DSMC PERSPECTIVE

PRESENTATION

68

rt. 	It.t.).
4.■ Ze.- •

• ••••■•■ ,..........•

"". •
. 	• . •

•

•■9,E4,1'. 7""".

••• . •-e• 	••• ■••• • ,.• • , - 	sil
•"11.....7j,„..„,... 	

•• • '...,2- -'... ' - 	..".. 	-.: -..,.,..a..', -.7.• ,,',.........r.."'.. 	• ...

..,,,,,, 41/ 	..se elltjg=Z2ZM2arlgigt
. • ,

aw•••••••■••••

..

,, .,;■647,121=21a.

ACQUISITION MANAGEMENT OF
•COMPUTER SOFTWARE

Lt Col Kenneth E. Nicaff er
Defense Systems Management College
Building 207/Room 227
(703:) 664-3477
Autovon 3,54-3477

69 	 •

441

we. 4111. Me nei* Oa • 	1. NA, • .1101001.. 	 11,1%,..1.1. 	MU. • :WS., • h. • 	Mper44.0001010 ,01.1,. a. a . .a.

0 	SOFTWARE TESTING IS AN INTEGRAL PART OF THE ACQUISITION
PROCESS AND WILL NOT BE SEPARATED FROM IT

0 	GOVERNMENT PROCUREMENTS WILL CONTINUE TO REQUIRE THAT
REQUIREMENTS AND SPECIFICATIONS BE TRACEABLE

O

0 SOFTWARE PROTOTYPES WILL GAIN FAVOR

0 	SYSTEM ARCHITECTURE STUDIES WITH TIME-PHASED GOALS WILL
EVOLVE

•

'11 . 4 $,.., • 	 „,•• 	 • k,, 41 ,•••1 • •.., 	• k $ • 	 1,1,00.1,, It 	• v unt•, • • 	 . .111411106. 	ft• 	09 , .. 1.4..010410r, 	114.010/. 01 !I ry OW.1114:144 I NI* • f 	0.41141111101111191114100
•

ALTERNATIVE I:

ALTERNATIVE II:

ALTERNATIVE

ALTERNATIVE IV:

ANALYZE AND CODE

BASELINE MANAGEMENT

TOP OWN DEVELOPMENT
•

INCREMENTAL RELEASE

COURTESY DR. WISTOR W. ROYCE
LOCKHEED

ANALYZE Ai '̂D CODE

.,..,•••- •-•••••••••••• ■•••■•■•••••••-.4.••••=-- •••••."-

(1959 - 1955)

ANALYSIS

CODING

120.213.2339

•

• 	 •
•

72

ANALYZE AND CODE
• 1 , 	 .1• to.. :•......4 ...I t.1 .1 	•i.1.11,..• d Iv,. 411' 	 r1o15b4 	Pl": 	.11 	lc v441 "4. 1' '' 1 " 4 	. °1•1 6 1' . : 1 9 1 ""J 1.4j 4) 	A I . 11 	MI VIM. Intl° Ft.

.51RENTILS
e 	EMPHASIS ON TWO MOST PRODUCTIVE

STEPS

0 	TAILORED TO PERSONNEL PREFERENCES

o 	LOW COST, QUICK SCHEDULE RESPONSE IF
PRODUCT IS'ACCEPTABLE

WEAKNESSES
NO REQUIREMENTS ANALYSIS

0 	NO BUYER-USER INVOLVEMENT

0 	NO PLANNING OR AUDIT

a 	HIGHLY DEPENDENT ON SKILL

BASELINE MANAGEMENT

CURRENT. BEST PRACTICE MBE • PRESENT)
AN EIGHT STEP PROCESS

REQUIREMENTS
SYSTEM 1_1

SO FTWAR E
REQUIREMENTS

PRELIMINARY
PROGRAM Ir

DESIGN

ANALYSIS

DETAILED hi
PROGRAM

DESIGN

CODING 1-1

SUBSYSTEM
TESTING

SYSTEM
TOTING

120.22.233g

.1*

74

BASELINE MANAGEMENT METHODOLOGY
II 	• 1 	 .1, 	.4 	 I I. III. 	 0,90. 	r r , , 0,1 ,1 1 	 111.111 1 “.11' 1 II 	 .10A; Ill Ii!g) ..1 	 Ar i .0.11.4r .forriooro•

t o

amain
GEARED TO REDUIREMENTS ALLOCATION
FOR LARGE HIGH TECHNOLOGY APPLICA-
TIONS

o 	PERMITS BUYER/USER INVOLVEMENT'

o 	PERMITS EARLIEST IMPOSITION OF CON-
FIGURATION CONTROLS

e 	PRECEDING 	STEP 	SERVES AS AN

APPROVED, DOCUMENTED BASELINE FOR
SUCCEEDING STEP

'WEAKt651.S.
DELAYS DESIGN, CODING AND TEST

o 	TOO MUCH PRODUCTION OF LITTLE USED
DOCUMENTATION

o 	TOO CONCENTRATED TEST PROGRAM

o 	FAIRLY EASY TO MISASSESS PROGRESS

•

TOP-DOWN DEVELOPMENT
• 	 • • 	 ; 	t' I.. , ..t I•• 11 Y. .41 W.A.'• 10,,.,(,/ .1%.1,•1.. 44- 	irr....‘• Mr. ••1 	II V.)4.'11; 	%I• i.11•• o•eVi'l.A, •1•1•1 1 110114140914010:14 	$1111~4 1N1IPM

(1972 - PRESENT)

(1) ALIGN THE SOFTWARE FUNCTIONS INTO A HIERARCHY

- 	CONTROL ORIENTED:

- 	DATA ORIENTED: •

►

REQUIREMENTS ORIENTED:

- 	TEST ORIENTED:

CALLING ROUTINES ARE .11IGHER• THAN CALLED
ROUTINES

ROUTINES THAT PRIMARILY SET DATA ARE HIGHER
THAN ROUTINES THAT PRIMARILY USE DATA

ROUTINES LEAST SENSITIVE TO REQUIREMENTS OR
DESIGN CHOICES ARE BEST RANKED HIGHER THAN MORE
SENSITIVE ROUTINES

ROUTINES CRITICALLY NEEDED FOR TESTING OF
OTHER ROUTINES ARE HIGHER RANKED THAN ROUTINES
NOT NEEDED FOR TESTING

•

Ell

El

Ell

El
77

1 R i
	

O 	1 T

L2L
	

T 1

TOP DOWN DEVELOPMENT

121 IDENTIFY THE ORDER OF DEVELOPMENT SUCH THAT:
• WHEN DEVELOPING A ROUTINE ALL HIGHER

ROUTINES ARE COMPLETED
• HARDER PROBLEMS ARE ATTACKED FIRST; EASIER

PROBLEMS ARE DELAYED .
• TEST STUBBING IS EASIEST

•

TOP DOWN DEVELOPMENT

(3) STARTING WITH THE TOP FUNCTION DO THE COMPLETE
BASELINE MANAGEMENT LIFE CYCLE - REQUIREMENTS.
DESIGN. TEST - BEFORE PROCEEDING TO LOWER LEVEL
FUNCTIONS. CONTINUE UNTIL aDMPLETE.

R
	

0 	T

I R I 	- 0 	I T

I 	D

• OM •
• •

•

•

41k .1.06
#1 , %el tr s!.1...1 I. 	s 	 • I 	• I. Lc'. •I• 	 • ► 1,'" 1■31 , r 4, II It' 	 01"'t I ".4.1.011q0',1`0. 	 1•1 i41' 	'Pl.' n V Ia4I. /11:41rtyoli, of% 1,41 ivii,14,11.1414.,L1*• ■ 74.0tpip

•

5TRENGTH5
e 	EARLY DESIGN, CODING AND TEST

o 	CONCENTRATION ON CRITICAL DESIGN

ELEMENTS 	•

o 	INHERENT PROTOTYPING

WEAKNESSES
o 	.FRAGMENTED REQUIREMENTS ANALYSIS

HARD TO IDENTIFY TOP OF DESIGN AND
MOST NATURAL ORDER OF PRODUCTION

o 	MOST PEOPLE THINK BOTTOM UP

•

o 	CONSTANT RISK OF UNRAVELING DUE TO

UPWARD BREAKAGE

o 	TEST STUBBING IS HARD

TESTING TO REQUIREMENTS IS HARD

e 	PUZZLING DESIGN REVIEWS BECAUSE
THERE ARE NO NATURAL REVIEW POINTS

• COMPLEX CONFIGURATION MANAGEMENT

PROGRESSIVE DOWNWARD FREEZING OF
03
	 TOP-LEVEL CONTROL, DATA, DESIGN AND

TEST INTERFACES

TESTING IS SPREAD THROUGHOUT THE
LIFE CYCLE

INCREMENTAL RELEASE

t. 	t

ICOMPROMISE !TWEEN BASELINE MANAGEMENT
AND. OP-DOWN DEVELOPMENT)

//

SY11-S-7-E.14
-

‘ U

TEST

1.%' 4

1

S'YST'EM
TEST

122339

SYSTEM
REQUIREMENTS

r•••■■=1

SYSTEM
TEST

SOFTWARE
REQUIREMENTS

79

Mr. Greenlee: Thanks very much, Ken, for that presentation. That was
excellent and very much to the point.

Our next speaker will present an industry perspective. 	As we've
commented before, the vital participation of industry in this project is
welcomed. The meeting today is not filled with representatives from
industry because it was not intended to be that way. The National
Security Industrial Association has kindly offered to serve as a conduit
for industry opinions, perspectives, biases, complaints, and whatever,
and will play a greater role as the project continues. Today, the NSIA
and industry are represented by Dr. Kurt Fischer from CSC and Mr. Jack
Devlin from Vitro. I would like to introduce Dr. Fischer, who will talk
a little bit about the industry point of view on software testing.

80

DR. KURT FISCHER: NATIONAL SECURITY INDUSTRIAL ASSOCIATION

Dr. Fischer: A couple of introductory remarks with regard to who and
what the National Security Industrial Association is. First of all, we
are glad to be invited and to participate in your effort, Don. We were
founded by the first Secretary of Defense, Secretary Forrestal, back in
the very early 1950's, although I can't remember the exact year. Our
objective is not to be a lobbyist group, but to work together with the
agencies of the US Government that do business in the area of national
security to help solve common problems. We are made up of about 300
companies, and we work with, as I said, the various agencies of the
government, not just DoD, though DoD is the largest agency of the
government in terms of budget and number of people that solve our
national security problems, but we also are active with the Department of
Energy and NASA. So, with that, let me also say that it is very
difficult to present a total industry perspective in 20-25 minutes,
though we did canvass about a dozen different companies. I would like to
say that this is a really unofficial industry canvass, I'm very happy to
be here, and the views here are not parochial to Kurt Fischer, but if we
were to do a full job, we would probably require some type of workshop
with 50 or 100 people.

I'm going to talk about 8 or 9 problems in the area of T&E that we in
industry have found. 	And, I'm going to recommend some solution
approaches to each of these areas.

First of all is the area of planning. We in industry see a lack of early
planning in the area of T&E, specifically with regard to scope. We see a
lack of planning T&E resources, frequently. We see a lack of testable
requirements. I've seen countless numbers of specifications at the B5
level, where the requirements are not testable. For example, they talk
in terms of adequate response time. However, the testable requirements
that I find most insufficient are those specifically dealing with
performance requirements. Functional requirements we seem to have more
of a handle on, but performance requirements seem to allude us. We also
find inadequacy in the areas of simulation/stimulation tools. However,
we have some recommended solutions. First of all, we need earlier and
more thorough test planning and analysis. One method to do this could be
through modification of DoDD 5000.3. Another recommended solution is to
make our test organizations independent from our project organizations.
While we do that at the operational test level, we don't do a very good
job of that at the development test level nor from the contractor point
of view, we don't always do that in our own test and evaluation.

Another test problem area that we see is something that we will call
"tail end Charlie." That is, there is a tendency to shortcut testing
due to the budget and the schedule pressures. This forces incomplete
testing, it forces testing to obsolete requirements, due to late changes
to those requirements. Frequently, we have compromised IV&V efforts.
Sometimes, we have inadequate handling of our software problem reports.
So, how can we solve this problem? One problem addressed by the speaker
previous to me was to develop a "build a little, test a little"
environment. We should issue our software or systems in terms of
releases or, what we at my company call them, builds.

81

Another solution could be to assign the IV&V responsibility, its funds
and its schedules to the operational testing and evaluation agencies.
OT seems to get involved too late. 	They know they do, the little
influence they do have on the frontend is a little influence. 	If the
IV&V power were embodied to them, they could have information continually
throughout the development phase.

Mr. Watt: 	Some of the mechanizations particularly relative to the
operational test agencies having more responsibility is one which we have
thought about considerably and discussed rather extensively with the
Services. Invariably though, we get into resource constraint problems.
Operational test communities only have a certain amount of resources that
they can apply, and they are very hesitant and reluctant to get back into
the earlier phase of the acquisition cycle, i.e., during the development
part of the project. So that's the dilemma we find ourselves somewhat in
with them taking on more of the IV&V kind of responsibilities. However,
I feel that somehow, we're forcing that issue more and more as each
weapon system comes downstream and comes on line. You'll find that more
and more an issue that we have to grapple with, and consequently,
invariably we're driving the operational test community back further and
further into the cycle. I see some of the guys back there shaking their
heads, and I had a number of comments along that line. In the space
business, particularly, one way that has been accomplished is actually by
going out and contracting for independent tests, which says I buy
resources to do that job. General Henry's shop did some of that with the
shuttle, which was not so unusual although that was a rather significant
effort for which he contracted directly the IV&V. So, I throw that out
as a fundamental that is real world to us. We've been grappling with how
to do it, how to get the operational testers more involved. I could go
on with some other examples ... right now with some of the V&V work that
we are doing, we are now looking at how do we perhaps contract out that
independent test function, particularly during the early phase. There
are disadvantages; there are advantages; we can solve the resource
problem by building others. You may want to hold that as the kind of
thing that is not directly related to this discussion of testing, it is
related to the resource limitations and how to get the job done.

Dr. Fischer: Is your issue that the OT agencies do not want to get
involved or that they don't have the funds to get involved?

Mr. Watt: 	It's not the funding resources, it's a talent - resource
people problem. Although everything relates to funds, but that's not our
primary concern. Our primary concern with these operational test
activities, and we've had some long discussions along these lines, is
that I see it moving more and more by necessity that these guys are
having to get closer and closer up front. The test agencies have got to
get involved up front. The pressures are there, but that's where the
problems are - people.

82

Dr. Fischer: It seems to many of us that, from a contractor's point of
view, if the OT agencies don't follow through what's going on during the
development phase, as they get pushed further and further back, their
impact on the program is going to be more and more diminished. I would
appreciate hearing from the OT agencies this afternoon or even now.

Lt. Col. Blackledge: I'll mention that in the Air Force we do try to get
on board early. The only influence that we have is that we do things
like review the request for proposals and statements of work, and we try
to make sure that the software concerns are addressed early on. If there
is going to be an IV&V contractor, we try to put some hooks in the
contract to allow that IV&V contractor to work with us. The AFTEC
position is that we do not want to get into the monitoring of the IV&V.
The reason is that we simply do not have the resources to do that. What
we want to do is encourage a hybrid team of IV&V contractors working
with, in our case, Air Force personnel - the user type people - the
people who are going to be maintaining the software, get them as part of
that IV&V team, use those kind of resources because they are the people
that are going to use that system.

Cdr. Anderson: 	I have a couple of comments. 	You mentioned early
involvement. We at OPTEVFOR all try to get involved early. I don't know
if the rest of you have this problem or not. The Program Office attitude
is "get out of my hair, OPTEVFOR, I'll see you later." We fight that
syndrome all of the time. "I'm building the system, and you're going to
test it, and I don't want to see you until it is time for OPEVAL." So,
in the Navy side of the house, we are fighting the Program Manager, too.
As far as early involvement, we'll be there, and we'll be attempting to
influence the program development. However, OPTEVFOR is not chartered
with that kind of requirement. We are there to see how it is being built
so that when it comes time to test it, we can test it adequately.

Dr. Fischer: Can you set test requirements?

Cdr. Anderson: I interpret the operational requirements document to
establish the criteria that must be met and the questions that should be
answered by operational tests. As you pointed out, when you have an
operational requirement that a system X works better than a system Y,
what kind of a test requirement is that? You have got to have a good
requirement. Its got to work three times faster than Y ... Ten times
better than Y. You have got to have some kind of number in there.

Dr. Fischer: That's right, it has got to be quantitative.

Cdr. Anderson: As far as OPTEVFOR involvement in the IV&V early, we run
across the same problem as AFTEC, we don't have the people to do that.
We don't really have the people to do the job we are doing today.

83

Mr. French: As far as OTEA is concerned, in my briefing to be given
later this afternoon, I don't know how many times I used the word
"early", but it has got to be 25 or 30 times. I've got a contradiction
on the other side ... the people who are going to be doing this early
involvement at OTEA. Right now, there are 3, and we expect to expand up
to 5 or 6. There is no way we can manage to do all of the early
involvement that we all recognize as important with 5 or 6 people. So
where the manpower is going to come from and how to start off small like
we are doing and justify our existence to the point where we can grow to
a useful size is the question. Right now, it is trial and error. We
have to justify the early involvement and identify its value so that we
can put the people and resources there, and then maybe we can expand.
But, right now, we just can't justify it.

Dr. Fischer: I guess that is the problem. It is the resources.

Mr. Watt: Maybe we can go into that more this afternoon. The TEMP that
you mentioned there is the proper vehicle, the Test and Evaluation Master
Plan. We see it being utilized more. It is not nearly to the point
where it should be, but it is an effective tool.

Mr. Devlin: As a straight man for industry, I would like to ask you the
question ... Where would you like to see operational test organizations
involvement? At what period would industry like to see that?

Dr. Fischer: Industry usually doesn't get involved in the early concept
formulation phase. We don't get involved until a year or two has gone on
within the Departments. So, I don't know that our position is near as
critical as the position of the customer, because we are kind of the
middle guy, it's the customer that defines the system and the customer
really has to end up testing it and accepting it and using it. I see
fewer problems the earlier the testing agency gets involved. I see fewer
conflicts, both technical and political/managerial, the earlier that the
testing agencies get involved. For another industry perspective, can you
answer your own question?

Mr. Devlin: I'm caught in the middle. I'm working for an OT&E agency
and industry at the same time. I could philosophize for days.

Mr. Watt: Let me make one statement before we go on. The new policy
that requires that we make a commitment for production at a Milestone II
which says we are now coning in to a point where normally we would say,
"OK, we are ready to go to the next phase ... we haven't finished our
review, but at least we have made enough of a test, enough of a hard look
at the system that we can go on." Now when we go into a Milestone II
review, we must say, "yes, we are committed." This says that we must get
earlier involvement of the testing community, we have got to be involved
right up front.

84

Dr. Fischer: Another problem area is that extreme testing requirements
are levied without regard to the impact of software failures. 	The

_,?„ testing requirements and cost for noncritical software frequently is the
y same as that for highly critical software, and it doesn't necessarily

' .,,,,have to be that way. Someone mentioned earlier today that we ought to do
an analysis of the cost of testing versus the cost of failure. The
people in industry who we surveyed wholeheartedly agree with that. The
testing cost should be a function of the cost of the particular software

3-

 failure. Some candidate recommendations are that we ought to establish
some software criticality factors with graduated test requirements. For

.11,1;;example,l - at the highest level you might have life critical software or
life - Critical subsystems. The'next level might be subsystems or software r -1(.4., 	• 	 4 that ' tilas,'Jmplications,' „strong ,implications in the area of national
securttyp.ower thanjhat;,you —may have ground support software, post
procesSlpg'*ftware, -Itest„supporti.software and other types of support
softWare,that nay not require:years:Of test cost.

Another problem area is in the ,area of test organizations. Software
developers frequently have too much involvement in testing. Frequently,
our software designers move into testing as the design phases down and
the testing phases up. This all them to, so to speak,. grade their own
papers, which does not meet our independence objectives:. What happens is
the designers tend to test the design rather than test . theuirements.
So, some recommended solutions may be to have Aesting :Jri jdt separate
organization from your development organization. wSoinetimes_ we - do that.
But, then again, sometimes, we don't. Also,' - ought -1to discourage
transferring the designing and programming personnel frolithe development
shops into the test organization within a given'OrOjeCt:

.;
_This is not to

say that designers ,should never be testers and vice versa, but they
should not be.,testeri on the projects that they designed.

- 	 -
	 -

t.4t 1 	 -•

In the area of;test management, we see an undisciplined application of
the software development_ process and especially configuration
management. We find that our software baseline is not adequately fixed
or defined. Many of our designers have taken courses in fuzzy set
theory, I'm,afraid, and frequently, there is a premature declaration of
ready-to-test software, i.e., testing is initiated by schedule, not by
whether or not the software is fully developed. Frequently also, we see
an incorrect specification of software interfaces and the lack of quality
software documentation. So, what can we do about that? _Well, we can
increase our commitment to formality with more configuration management,
more test control, better, not necessarily more, but better
documentation, and a stronger understanding of organizations. We should
establish some useability and tracking mechanisms for baselining our

.,,status, for understanding and tracking our design 	steps, 	for .
'identification and definition of interfaces, and for tracking our iv, 	-Jw
'software problem reports. 	r'

X1'3.161 	 ;764)

ncz:l. 	 ezodl
,7c1 /fuoi s ,eno

w91 Isdw , 	 ./t e
4 be/loci2n67: leven 'lc V315-

Ind/ been odw 	f'77

85

We also see problems in the area of requirements definition. 	The
software community really has not yet learned how to write good
requirements specifications. They are still incomplete, inconsistent,
unclear, and quite untestable. What can we do about that? Well, I think
we need a more structured approach to requirements definition and
analysis that focuses requirements information to the designers. In our
R&D communities, we have developed several techniques. We have a
technique called problem statement language/problem statement analyzers,
PSL/PSA, that we have used in a limited environment. There is a
methodology developed by the Army called the Software Requirements
Engineering Methodology, SREM, that we have used in various systems. We
ought to take this knowledge that we've used in the R&D,1ab,*and bring it
into the production environment.-. There is a wide gap'between what the
R&D'ers know and what the software production peopW.In ;the trenches
know. Somehow, we have to do a better job of takinOheqechnology and
transferring it from the lab into'the production trenchei":" 1

There is one inherent characteristic of the beast, and that is that many
of our systems are extremely complex. From a testing point of view, it's
virtually impossible to test all system level combinations. Moreover, we
have very few tools to help us do that. When we try to test all the
paths through the code, we usually do that at the module level.

'1 'Unfortunately, however, even when we integrate thoroughly tested modules, .
you still have not tested all the system level paths. So, we're still
finding that*we need better techniques to help us test systems. How can
we do that? 'Well, one method is to use more simulation techniques. We
ought to go through some type of sampling process, where we sample our
software testing to verify the range of input (the stimulation) of our
particular software system. We could develop automatic test generators.
Again, in the labs and in our R&D centers,. we have developed some very
useful automatic test generators, but we in the software engineering
community and management community have done a very poor job of taking
that technology from our R&D centers and really implementing it on our
production programs.

Another problem area is regression testing. The problem here is that
minor software changes can require extensive retesting. I was at NORAD
about a year ago and spoke with Col. Phil Deering, who is the director of
the Space Computation Center, and he told me that his number one problem
was trying to select test cases to re-run after they had made changes to
their software modules. It's a real problem in the operations and
maintenance organizations. How do you retest your software? It's very
difficult to determine the logic and data dependencies that flow or
ripple through after you have made a change to a piece of software. We
have no tools or very few tools available to help us do that. One
problem in the area of acquisition management is what few tools we have
during the development are rarely transported to or given to the
maintenance environment to help those people to maintain the system. So,
the problem is two-fold. Number one, it is a difficult problem, and we
have few tools to help us solve it. Number two, what few tools we have
in the development shop are rarely or never transported over to the
maintenance shop, and they're the people who need those tools to help
them do their regression testing.

86

So, what can we do about that? First of all, we should pay closer
attention to test requirements during design. We should enforce a
structured design, partitioning of functions to isolate the impact of a
particular change, and we should develop better software tools to assist
designers and testers in cross referencing. Some of .our projects have
good traceability matrices. Other projects have no idea what the word
traceability means. We ought to do a better job of enforcing the
requirement of having traceability. That would help a great deal when it
cones time to change your requirements.

I have addressed the issue of software tools in many of the previous
viewgraphs. Our software toolbox, industry's software toolbox, has
suffered due to a lack of investment. Partially, that's industry's fault
for not coughing up the necessary IUD funds to build such a toolbox.
But, I've also seen statements of work coning out of the Department of
Defense that say, no tools shall be developed under this contract.
Another problem is that some tools that we in industry wave in front of
our customers do not always perform to the level of adequacy or accuracy
to which the salesman has portrayed them. I've seen many cases in
industry where people have said they've got this tool that does that, or
that tool that does this, great tools. But when you really pin them
down, "where have you used this?", "let's see your documentation", "can I
use it on this project?", well the industry representative suddenly
becomes more fuzzy. Another problem is that many of our embedded
computer systems are still coded in assembly language, yet most of our
tools are geared toward the higher order languages. So, in some of our
systems, we have a problem.

So .what can we do? Well, I'm a firm believer in the programming
environments. -I believe, and so do the people we talked to when we
surveyed the members of NSIA, that we need to structure an integrated
software tool development environment. We have made much progress in
this area, e.g., the Ada Integrated Environment that the Air Force has
and the Ada Language System that the Army has. We will need to put more
tools in the integrated environment, and I hope that those tools wtll be
centrally available from some source so that when I go on a project and I
know I need tools, I know I can write to somebody and get a set of tools
to put in my Ada Integrated Environment. Secondly, we need to use, we
are beginning to use, more higher order languages for embedded software.
We need to standardize on that yet, and we are doing that through Ada.

Maj. Hammond: I noticed that you and several other previous speakers
were talking about designing for testability, which is a concept that we
fully support also. It seems to us that synchronous systems that operate
on a fixed clock cycle are much more testable than asynchronous systems.
So much so, that we are considering banning the use of asynchronous
systems for things that have extreme reliability requirements, like
nuclear criteria, safety of flight, etc. The only problem we see with
that is that it appears to be counter to the current thrust in computer
science and also would throw away much of the advantage that Ada gives .

 with its built-in tasking. That makes us a little reluctant to put that
ban on. Do you have any comment on that from the industry viewpoint?

87

Dr. Fischer: I have a boss that did his dissertation in the control of
asynchronous systems back in the very early 70's, and he gets so angry
when he sees systems that are forced either to go into synchronous
designs or that are misdesigned in an asynchronous mode. It's a complex
issue, and it's one that we haven't solved though he and others believe
it is solvable if we could just get to it. And, if we could just get
somebody to fund this work and get it out in the open literature, if you
will. 	RADC has several efforts going in the area of distributed
control. 	Perhaps, out of their research, an answer will come.
Certainly, I was not aware of your initiative, if you will, to ban
asynchronous systems.

Maj. Hammond: I would not dignify it with the title "initiative." Right
now it's just exploratory thinking on the part of me and my boss.

Dr. Fischer: That's certainly one alternative. But, is that the right
one? I think we ought to solve the problem. Now, to really answer your
question, I can't, I don't know how, I don't have any information, I
don't have any industry-wide perspective to solve the problem. It's a
technical problem, and I think we probably will solve that within the
next half a dozen years. Now, from a T&E point of view, I do know that
it is a very difficult problem to test. On one major weapon system
program, they just increased the flight test period from something like
12 months to 27 months, because of that very issue. All I can say now is
that I acknowledge that it is a difficult problem, but I know there are
some areas in which they are trying to solve it. Anything else?

88

VI EWGRAPHS

USED BY

DR. FISCHER

FOR THE

INDUSTRY PERSPECTIVE

PRESENTATION

89

I 	MMMM.11/11111ht.

SOFTWARE. 'AD HOC GROUP • 44.

e 	 of the NATIONAL SECURITY INDUSTRIAL ASSOCIATION

tO

ISSUES. IN

TEST AND EVALUATION

SOFTWARE AD HOC GROUP •

of the NATIONAL . SECURITY INDUSTRIAL ASSOCIATION

•

TEST PLANNING

PROBLEM: LACK OF EARLY EMPHASIS ON THE RESULTS
IN BELATED RECOGNITION OF SCOPE

• RECOMMENDED SOLUTIONS

-EARLY AND THOROUGH TEST PLANNING AND ANALYSIS

-MAKE TEST ORGANIZATIONS SEPARATE FROM PROJECT
OFFICES

.t

i IN DUsr .t,
if

'N 	SOFTWARE . AD HOC GROUP k•
0.0

n

• • 	 of the NATIONAL SECUR ITY INDUSTRIAL ASSOCIATION e •

TAIL END CHARLIE

• PROBLEM: TENDENCY TO SHORT CUT TESTING DUE TO
BUDGET AND SCHEDULE PRESSURES

RECOMMENDED SOLUTIONS

-BUILD-A-LITTLE/TEST-A-LITTLE

-ASSIGN IY&Y RESPONSIBILITY, FUNDS, AND SCHEDULES
TO OT AGENCIES

SOFTWARE AD HOC GROUP
• of the NATIONAL SECURITY INDUSTRIAL ASSOCIATION •

COST EFFECTIVE TESTING

• PROBLEM: EXTREME TEST REQUIREMENTS LEVIED WITHOUT
REGARD FOR IMPACT . OF SOFTWARE FAILURES

• RECOMMENDED SOLUTIONS

-ESTABLISH SOFTWARE CRITICALITY CATEGORIES
WITH GRADUATED TEST REQUIREMENTS

-REQUIRE ECONOMIC ANALYSIS - COST OF TESTING VS,
COST OF FAILURES

-fe
SOFTWARE AD HOC GROUP • 1:4

I. 	' 	of the NATIONAL SECURITY INDUSTRIAL ASSOCIATION
,

TEST ORGANIZATION

• PROBLEM: SOFTWARE DEVELOPERS HAVE TOO MUCH
INVOLVEMENT IN TESTING.

• RECOMMENDED SOLUTIONS

-TESTING MUST BE DIFFERENT ORGANIZATION'

-DON'T TRANSFER DESIGNERS/DEVELOPERS TO
TEST ORGANIZATION

N
• • 	• 	•f/

le

SOFTWARE AD HOC GROUP • 7
■••

of the NATIONAL SECURITY INDUSTRIAL ASSOCIATION

TEST MANAGEMENT

• PROBLEM: UNDICIPLINED APPLICATION OF CM AND
S/W DEVELOPMENT PROCESS

O RECOMMENDED SOLUTIONS

—COMMITMENT TO FORMALITY

-ESTABLISH USABILITY AND TRACKING
MECHANISMS

" i %Nous, • 	,A 	., .1,
z. 	. SOFTWARE AD HOC GROUP i 	a
°,

4. 	or. 	- . 	of the NATIONAL SECURITY INDUSTRIAL ASSOCIATION

REQUIREMENTS DEFINITION

PROBLEM: THE COMMUNITY HASN'T LEARNED HOW
TO WRITE GOOD REQUIREMENTS

RECOMMENDED SOLUTION

-NEED REQUIREMENTS ANALYSIS TOOLS

11 IN Du 41,

le
- SOFTWARE AD HOC GROUP •

of the NATIONAL SECURITY INDUSTRIAL ASSOCIATION •

COMPLEX LOGIC

• PROBLEM: IMPOSSIBLE TO TEST ALL SYSTEM
LEVEL COMBINATIONS

• RECOMMENDED SOLUTIONS

—USE OF SIMULATION TECHNIQUES

—SAMPLETESTING OF S/W TO VERIFY STIMULATION

—DEVELOP AUTOMATIC TEST GENERATORS

. • 	
woui4 ••

7,1 SOFTWARE AD HOC GROUP
of the NATIONAL. SECURITY INDUSTRIAL ASSOCIATION •

REGRESSION TESTING

• PROBLEM: MINOR S/W CHANGES CAN REQUIRE
EXTENSIVE RETESTING

• RECOMMENDED SOLUTIONS

—PAY ATTENTION TO TEST REQUIREMENTS
DURING DESIGN

—ENFORCE STRUCTURED DESIGN, PARTITIONING
OF FUNCTIONS TO ISOLATE CHANGE IMPACT

—DEVELOP S/W TOOLS TO ASSIST DESIGNERS
IN CROSS REFERENCING

SOFTWARE AD HOC GROUP •
of the NATIONAL . SECURITY INDUSTRIAL ASSOCIATION

•

SOFTWARE TOOLS

PROBLEM: TOOL BOX HAS SUFFERED DUE TO
LACK OF INVESTMENT

• RECOMMENDED SOLUTIONS

-STRUCTURE AN INTEGRATED S/W TOOL
DEVELOPMENT ENVIRONMENT

-USE STANDARD HOLs FOR EMBEDDED S/W (ADA)

.•

TA
7 	 S
z 	 fi

9- 	4F

•..

SOFTWARE AD HOC GROUP •
of the NATIONAL .SECU/iITY INDUSTRIAL ASSOCIATION

•

EDUCATION

O. PROBLEM: EE GRADUATES CAN'T COMPUTE -
CS GRADUATES CAN'T ENGINEER

• RECOMMENDED SOLUTIONS

-CAREER COUNSELING

-DEVELOP MORE S/W ENGINEERING CURRICULA

.4 	
s 	I

0
1 I N DU:,
 */ ie

	

Tr" 	 SOFTWARE AD HOC GROUP • rt. ,-,
9.

x 	 e
r

. • of the NATIONAL. SECURITY INDUSTRIAL ASSOCIATION • e

WE HAVE THE INCENTIVE TO IMPROVE

• TEST COST NEARING DEVELOPMENT COST

• FIELDED SYSTEMS HAVE KNOWN ERRORS

• S/W IMPROVEMENTS NOT MADE DUE TO
HIGH REGRESSION TEST COST

.•

Mr. Greenlee: Thanks very much, Kurt, for your eloquent and dramatic
exposition of some of the problems.

As I discussed with most of you, our goal with the Services and DCA
presentations is not to hear a formal explication of a Service posture or
point of view or policy, but rather a discussion of the state of the art
of common practice as it exists within that Service and in its
relationships to industry. Successes, failures, lessons learned,
problems, etc., the motivation being, of course, to provide us with some
kernels or seeds of thought to use in eventually developing guidelines
for improving test and evaluation. To focus the presentation, I've asked
the representatives of the Services' independent test agencies to lead
the presentations, but obviously, as before, we will welcome full
interaction and participation by everyone present. To lead off, our
first speaker will be Mr. Steve French, from the Army's Operational Test
and Evaluation Agency. Steve.

MR. STEPHEN FRENCH: OPERATIONAL TEST & EVALUATION AGENCY (ARMY)

Mr. French: Good afternoon. Don, first I would like to thank you for
giving me the opportunity to be a part of this. Hopefully, we can all
gain insight and information from each other. I am the Chief of the
Methodology and Software Testing Section at OTEA. The subject of my
presentation this afternoon is the Army perspectives on software testing.

And, just kind of as an aside before I start, I kind of got a chuckle out
of Dr. Fischer's presentation this morning. He made a comment about
operational testers getting involved early. When I gave my briefing here
to a couple of my coworkers yesterday afternoon to read through and kind
of criticize, the only thing they said about it was that I used the word
"early" too much. I had to go back through it and try to cross out some
of the "earlys" so that it would read a little bit more intelligently.
But, that's really the main thrust of what we're doing, we're trying to
get more involved in what's going on.

Before I start, really it ought to be recognized that as the Army's
operational tester I do not represent the contractor, an Army Project
Manager or the Army's Development Test Community. I'm really only
representing OTEA. I will be making comments about what project managers
do, I will be making comments about what developmental testing
organizations do. But, my positions aren't official. They are more to
generate discussion and information. The topics of my briefing are shown
on the next slide here.

I think the majority of my briefing covers the operational testing
perspective and some of the Army Science Board findings. But, I'm going
to give a brief overview of some of the other things to put everything in
the right perspective. This presentation is perhaps a little premature
in that the Army is still in the process of reacting to last years Army
Science Board study on the testing of electronics and software intensive
systems. There is significant potential for the Army's perspectives to
change in the near term as a result of the study findings. At the close
of my briefing, I will highlight some of these Science Board findings as
an additional basis for discussion.

The testing of embedded software starts with the 	development
contractor. 	Ideally, this contractor will organize his software
development staff independently of his quality assurance staff. This
independence of the development and quality assurance is, we think, kind
of important to getting the quality out of the product. Both functions
are vital to the successful production of quality software.

The contractor's software development personnel are responsible for
testing their own program modules. This testing should be extensive and
closely tied to the software design specifications.

103

The contractor's quality assurance team is responsible for independently
testing to find errors, problems and deficiencies. This is done by
forcing adherence to good programming standards, by holding specification
reviews, by introducing error-avoidance or error discovery techniques, by
requiring satisfactory documentation, by utilizing software test and
diagnostic tools, and by holding peer walk-throughs, preliminary and
critical design reviews and all of the standard development error
avoidance techniques. This should not replace module and integration
testing, which should be done by the individual programmer, but should be
done over and above his efforts.

Development programmer testing and quality assurance testing generally
address the software design specification which is sometimes referred to
as the C-5 specification. MIL-STD 52779A addresses the software QA
functions and adherence to these principles is fundamental to the
development of quality software. It should be a requirement of a
contract that the developer exercise proper QA management techniques.

A second type of testing which is critical to the success of the
development of embedded software is the utilization of an Independent
Verification and Validation Contractor. The V&V Contractor works
directly for the Project Manager and is completely independent of the
software developing organization. Verification is the process of
checking one software product against the previous product. Validation
is that testing done to assure that a product satisfies a requirement.

The tools available to the V&V tester are almost limitless. These
include, but are in no way limited to, utilizing automated code
analyzers, problem statement languages and analyzers, general-purpose
simulations, input/output mapping, error insertion techniques,
documentation reviews, walkthroughs, etc.

V&V testing generally tests through the level of the software performance
specification or the B-5 spec. The Air Force has published an excellent
guide called the management guide for Independent Verification and
Validation testing, which I find quite helpful in learning about the
kinds of things that ought to be going on in a V&V organization.

Upon delivery of a software product to the Project Manager, government
testing begins. DT&E is that test and evaluation conducted to assist the
engineering design and development process and verify the attainment of
technical performance specifications and objectives. This is generally
system level testing and addresses the system specifications or the
A-level specifications. These specifications define how the system will
functionally perform its mission.

Development testing makes significant utilization of single and multiple
thread testing. Because it is unrealistic to expect every logic path to
be exercised, developmental testers pay particular attention to the
exercise of logic which has a significant impact on system success and
which has a high risk of causing difficulty.

104

To aid in the single and multiple thread testing, TECOM, the Army's
development tester, is developing the Modular, Automated, Integrated,
System Interoperability Test and Evaluation System called MAINSITE.
MAINSITE's emphasis is on the application of automation and simulation
technology to assure complete and adequate systems performance and
interoperability testiTg of automated communications, command, control,
and intelligence (VI) systems. Additional emphasis is on the
development of systems performance analysis, test control, data
management and specification measurement capabilities. The reason I
mention MAINSITE is it is an example of the commitment the Army is making
to the development of sophisticated system test and diagnostic equipment
and system loading devices to better represent a realistic environment
for software testing. The MAINSITE system is going to be a pretty
expensive and hopefully, a very worthwhile device for both developmental
and operational testing.

Emphasis is also given in DT testing to repeatability and use of
diagnostics. This gives the DT tester the capability to probe more fully
into the software logic and function by setting up and repeating test
events, thus assuring a thorough understanding of what happened and why.

Development test personnel rely' heavily on the Computer Resource Working
Group. The CRWG is to assist the materiel developer in initiating early
tasks and activities that are prerequisite to effective system'
development and adequate testing.. The CRWG includes personnel
representing the combat developer, the materiel developer, and the
development and operational testers. It provides a valuable forum for
information exchange and represents the vehicle for early understanding
of the system and its function, the early definition of test and data
collection requirements, and the early definition of the scope of
contractor quality assurance and V&V testing.

OT&E is that test and evaluation conducted to estimate a system's
operational effectiveness and operational suitability. The primary
emphasis of operational testing will be on the user requirements, not the
system specifications. Operational testing will help identify those
errors resulting from translating user requirements into specifications.

The Operational Test and Evaluation Agency (OTEA) is committed to the
effective implementation of the following quote, taken from DOD Directive
5000.3. This is a new commitment in that I really don't think that OTEA
has in the past done as good a job as we hope to do in the future in the
testing of software intensive systems. We're putting a concerted effort
to improve in that area. To do this, OTEA has instituted a six person
section with the directive to develop and implement an effective
operational test methodology for software intensive systems.

As a first step towards effective software test and evaluation, OTEA
recognizes the need to become involved early. One of the biggest
benefits to be gained is a thorough familiarity with the system, its
requirements, its operation, and with the interests, actions, and
responsibilities of other development and test activities. Early
involvement will lead to early identification of OT data requirements.
This should help not only in the test planning but in the elimination of
surprises to both the Project Manager and the development contractor.
Additionally, knowledge of the available built-in test probes and
monitors will help the tester determine useful, appropriate and desirable
data. Early involvement will lead to early identification of test
instrumentation, simulation and stimulation requirements, hopefully while
there is still time for their development and use.

Knowledge of system capabilities, software management methodologies,
decision functions, logic, control interfaces, input/output functions,
all will allow the operational tester to develop more effective test
scenarios.

OTEA executes test scenarios under operationally realistic conditions,
and attempts to subject the equipment under test to a broad spectrum of
stimuli. It is important for OTEA to recognize the system capabilities
just mentioned, as well as their limitations, in order that we will then
be able to design scenarios which exercise the system at or near its
built-in limitations. If done effectively, this should increase the
probability of discovering unknown errors, if they exist. This does not
mean that OTEA will be testing only to extremes of performance and
environment, but it does mean that when an extreme is appropriate, it
will be tested.

The kind of thing that I'm talking about here is one that we came across
not too long ago in the file management system in an air defense weapon.
The system was built so that it could handle a finite number of aircraft
- it could manage them. It was important that we test not only within
the band of what it could manage, 5 or whatever it was, aircraft at one
time, but that we subject the system to a 6th or 7th aircraft to see what
it would do with the additional stimuli. It is very tactically realistic
to have 7 aircraft in the sky at a time. The built-in software could
only do a specific thing with 6 or whatever the right number was. It was
important for us to know that so that we could design the scenarios to
look at those particular management-type capabilities within the system.

A major component of the software testing and evaluation effort at OTEA
will be the examination of the embedded tactics and doctrine assumed or
employed by the software.

106

Valid questions might be:

- Are the embedded tactics and doctrine compatible with the user
requirements?

- Do the embedded tactics and doctrine support the requirements of field
use?

- Are algorithms such as development of target priorities or development
of IFF rules compatible with the user needs?

- Has the contractor inadvertently been developing his own doctrine, and
if he has, is it compatible with the user needs?

OTEA will be making a concerted effort to identify and assess these types
of embedded tactics and doctrine.

Due to the nature of operational testing, results will not always be
repeatable. If the test events are well documented by test monitors or
imbedded probes, problem areas can sometimes be identified. Early
knowledge of planned scenarios may lead to more effective test probes;
hopefully by leading to more consistent explanation of the test results.

Early involvement will also minimize duplicate testing. This will expand
the utility of the all too scarce operational testing. It serves no
purpose for OT to run out and do the same thing that the development
testers have done a month earlier.

The Army RAM .community has recently published its baseline failure
definition and scoring criteria. This document, by recognizing the
existence of software problems in a forum which requires a management
response, puts a significant increase in the emphasis on software. The
software section at OTEA will provide software expertise at the scoring
conferences. Identification of a test incident as software related
serves no purpose unless a concerted effort is made to identify exactly
what flaw there is in the software. This is primarily a Project
Manager's 	responsibility, 	but 	the 	tester's 	participation 	and
understanding is essential.

OTEA will be actively participating in the Computer Resource Working
Group (CRWG). The CRWG will be a prime vehicle for the exchange of
information and the definition of resource requirements. In the past, we
generally haven't been going because we didn't have the manpower, but

• hopefully, my group will be able to start filling in that gap.

Finally, the Software Section at OTEA will provide the analysis of those
system performance parameters affected by software in order to more fully
explore and define the degree to which the software supports the intended
system function.

107

The following chart shows some of the key software concerns of the
operational tester. By putting them there, I don't mean to imply that
those are all inclusive, that one is more important or less important
than another; it's just that those are really kind of the key areas we
are interested in.

Loading is that testing done at or above some extreme of software logic
or computer management capability, the kind of thing I talked about a few
minutes ago. It will be tactically realistic, but will hopefully be at
some performance or management extreme.

Performance is the measurement of those system parameters which are
indicative of adequate software function.

The remaining concerns are fairly self-explanatory, but I will answer any
questions if there are any.

Earlier, reference was made to the findings of the Army Science Board.
These findings and recommendations are currently a significant impetus to
work towards improvement in the testing of software systems. Some of the
recommendations of the Science Board are already being utilized. In any
case, the Army is currently preparing a response to the Science Board
findings. As such, it is premature for me to predict any reaction to the
recommendations. But, it may be of value to present some of the
recommendations for discussion purposes.

At the early concept stage of development, the following recommendations
have been made. Early system simulations are valuable tools which aid in
the definition of system requirements and the translation of those
requirements into specifications. Many of the problems experienced in
software testing are directly relatable to problems in the definition of
system requirements and the translation of those requirements into
specifications. Additionally, these simulations are invaluable to the
developer in conducting trade-off analyses on system design
alternatives. These simulations will also aid in the establishing of
quantitative and testable system requirements.

The testers' early involvement in the specification and requirement
writing process will also facilitate the identification of the
computer-based test tools, software monitors and system drivers necessary
for adequate testing. Additional funding in early program stages is
necessary to accomplish these recommendations.

The next chart shows some of the recommendations in the system
development area. The first three recommendations recognize that the
cost of software development is much higher than the corresponding
hardware costs, and that maximizing the testability and traceability of
the software development is more beneficial in the long run than the
efficiency to be gained by artful software programming. Sacrificing
efficiency for testability and traceability is frequently a good practice
for software development.

108

In the area of testing, on the next slide, the following recommendations
were made. The second recommendation is key from OTEA's point of view.
Thorough testing and appropriate fix and retest during DT are crucial for
getting the maximum benefit out of an OT. It's not an easy
recommendation to carry out as it is directly in conflict with current
philosophies to shorten the testing cycle by combining DT and OT and to
define program schedules that are so inflexible that slips in the start
of OT can't be tolerated. But basically, we think that that's a good
philosophy to follow so we can get the maximum results out of an OT.

It is only by involvement in the system development that a test
evaluator, whether DT or OT, can truly define and assess the
relationships between pre-production and software post-production
designs. We want to put more effort in that area.

The recommendation to give more emphasis to interoperability testing is
the one that OTEA supports highly. Implementation of the Automated
Tactical System Test Bed, the ATSTB, concept should help in this area.

The Science Board recognizes the need for an established post-development
software growth plan to include testing and fix cycles. By that, they
are really recognizing the fact that just because something passes an
OT-II or gets into the field doesn't mean that there is not going to have
to be a lot more work done on it to make it a first class system.

In closing, this presentation was intended to provide a brief overview of
the Army software testing effort and to explore various perspectives
toward software testing. In keeping with Don's goal, any questions or
comments will be appreciated.

109

VIEWGRAPHS

USED BY

MR. FRENCH

FOR THE

ARMY

PRESENTATION

110

.

. 	 .,

...... 1
OPERATIONAL TEST AND EVALUATION AGENCY

, h • 1.11. 	

BRIEFING SEQUENCE

• CONTRACTOR QUALITY ASSURANCE AND TESTING

• INDEPENDENT V Et V TESTING

• DEVELOPMENTAL TESTING

• OPERATIONAL TESTING

• ARMY SCIENCE BOARD RECOMMENDATIONS

' ARMY SOFTWARE TESTING

DEPARTMENT
OF THE ARMY

4

TRADOC DARCOM

PROJECT
MANAGER

DEVELOPMENT
CONTRACTOR

DEVELOPMENT
TESTER

v V

"I (7

OPERATIONAL
TESTER

I

DEVELOPMENT
TEAM TESTING

QUALITY
ASSURANCE'

TESTING

DOD DIRECTIVE 5000.3

BEFORE RELEASE FOR OPERATIONAL USE, SOFTWARE

DEVELOPED FOR EITHER NEW OR EXISTING SYSTEMS

SHALL UNDERGO SUFFICIENT OPERATIONAL TESTING

AS PART OF THE TOTAL SYSTEM TO PROVIDE A VALID

ESTIMATE OF SYSTEM EFFECTIVENESS AND SUITABILITY

IN THE OPERATIONAL ENVIRONMENT 	•

OT SOFTWARE INTERESTS

• LOADING

• PERFORMANCE

• EMBEDDED TACTICS
AND DOCTRINE

• INSTALLABILITY

• RECOVERY

• DEGRADED OPERATION

• MISSION
RELIABILITY

• DOCUMENTATION

• HUMAN FACTORS

• I NTEROPERABILITY

• BUILT-IN TEST
EQUIPMENT

CONCEPT STAGE RECOMMENDATIONS

• CONSIDERATION SHOULD BE GIVEN TO EARLY
SYSTEM SIMULATION

• FUNDING IN EARLY PROGRAM STAGES CAN BE
EXPECTED TO LEAD TO REDUCED LIFE- CYCLE
COSTS AND SHORTENED TIME SCALES

• EMPHASIS SHOULD BE GIVEN TO ESTABLISHMENT
AND DOCUMENTATION OF QUANTITATIVE "TESTABLE"
SYSTEM REQUIREMENTS

• COMPUTER BASED TEST TOOLS SHOULD BE DEVELOPED
INDEPENDENT OF THE SYSTEM CONTRACTOR TO DRIVE
ENGINEERING AND PRODUCTION MODELS OF SOFTWARE
SYSTEMS

DEVELOPMENT RECOMMENDATIONS

• SOFTWARE DESIGNS SHOULD BE DIRECTLY RELATABLE TO
SYSTEM REQUIREMENTS AND TESTABLE AT MODULE AND
SUBSYSTEM LEVELS

• AUDIT TRAILS SHOULD BE PROVIDED THROUGHOUT TESTING

• FORMAL REVIEWS OF BOTH HARDWARE AND SOFTWARE
DESIGN STATUS THROUGHOUT ENGINEERING DEVELOPMENT

• A COMMON LIBRARY OF SOFTWARE V It V TOOLS SHOULD
BE DEVELOPED AND USED ARMY-WIDE

• ESTABLISHMENT OF RELATIONSHIPS BETWEEN SOFTWARE'
EMPLOYED IN DT-11/ OT-II AND THE ULTIMATE PRODUCTION
DESIGNS

TESTING RECOMMENDATIONS

• EARLY PARTICIPATION IN THE DEVELOPMENT CYCLE

• DT BEFORE OT

• FOE'S SHOULD BE PLANNED AS A REQUIREMENT TO

co 	ASSURE ADEQUATE FUNDING

• NEED TO STRENGTHEN THE EXTENT AND FIDELITY OF

INTEROPERABILITY TESTING

• PROGRAM CHECK-POINTS AND PHASED DEMONSTRATIONS

SHOULD BE SCHEDULED AFTER OT-11 FOR BOTH

HARDWARE AND SOFTWARE IMPROVEMENTS

Mr. Greenlee: We will continue with the Navy presentation, which will be
led by Commander Mike Anderson from the Navy's Operational Test and
Evaluation Force at Norfolk.

119

CDR. MIKE ANDERSON: OPERATIONAL TEST & EVALUATION FORCE (NAVY)

Cdr. Anderson: My presentation will be, I guess you can categorize it as
a view from the trenches, so to speak. There was some talk this morning
about some of the high level decisions and issues we need to address. I
find it a little bit difficult to relate to it as I am down there in the
trenches shoveling the proverbial cow manure out of the way so we can get
something done. So, I'll try to present some of the problems as I see it
from my level down there, way down low and, hopefully, that will relate
to what we are trying to do here.

We talked about early involvement, I guess we've been talking about that
all day. You look on the slide there and see the OPTEVFOR column with a
bunch of X's in it. I'm trying to indicate that somewhere in the late
60's, early 70's we were doing operational evaluation, and that was all
we were doing. By operational evaluation, you'd show up one day, pick up
the system, go out and test it. Since that time, direction has changed
and, as you can see by the addition of the X's, that we have got
ourselves involved in the system acquisition process right from
operational needs/advance system concept design. We're in the
acquisition process as early as possible. By the way, feel free to
interrupt me any time you want to and ask a question. I don't have a
formal type presentation prepared.

This early involvement, as I indicated earlier today, is not as easy as
it appears to say it because early involvement means that I've got to get
in the program manager's hair quite a bit of the time. In other words,
I'm going to look over his shoulder to find out how he's building the
system and why be is building it that way, so when I show up to test it,
I'll know how it's put it together. In some cases, I can take my recent
operational experience. By the way, the criteria for being assigned to
OPTEVFOR is that you have to have recent operational experience, so when
you go talk to somebody, a contractor or somebody in Washington about
what the fleet is doing today, you know what the fleet is doing today.
You've just been there, so we have some credibility. So, I can go
interact with the contractor and with the program manager with some
degree of credibility as I just came from there and I know what it's like.

Traditionally, OPTEVFOR has done a great job, what we consider a great
job, in this area of testing the requirements of the hardware that goes
together to make a system. In other words, a gun system, be it a 6 inch
gun or an 8 inch gun or whatever, we can go out and shoot that gun and do
a great job of seeing how accurate it is. As we develop the software
intensive systems, we realize now that we have to look at the software,
at the same time we've got to look at some operators, some human factors
interfaces of the system. We've really got about three areas we need to
look at. We need to expand ourselves out here to look at the software
and the operators interface with the system. So, we need to watch that,
no less than, strictly no less than hardware.

120

Mr. Devlin: How do you do that? For example, do you use a similar
approach to IV&V?

Cdr. Anderson: No, we don't use an IV&V effort, when I say be aware of
that requirement translation in the software, I mean you are attending
the design reviews, reviewing some of the top level documents that are
being used by the contractor to develop a system so you know how the
system is being built. Not necessarily to get in there and tell then how
to code it or how to draw a flowchart, but to know what is being
translated from the written requirement into the written specification.

And, if there is a translation problem, try to help it out and correct
i t.

I went into problems here. I teach the test director course down at
Norfolk. I spend about an hour and a half, I guess, talking about
software testing. A problem I run into with the typical fleet person who
has just come of the fleet, that is worried about making the launch
tomorrow in his aircraft or dropping a bomb on target, is that now I'm
telling him he's got to look at software, and he says, "where is it?"
Most of the time, we have to tell him that it's right here in a pile
about this high, and you've got to look at all that paper. Well, you've
got to limit what you're looking at to the top level documents.
Otherwise, the operational test director, there is no hope of him being
able to make any impact at all. He is just swamped, he's got too much
paper there.

Mr. Greenlee asked me to have some examples of some early involvement.
The most recent one that my shop was concerned with is the system called
JTIDS. This system is an advanced command and control system and data
link/anti-jam link terminal that will provide secure communications of
data and voice and has an AJ margin and is advanced state of the art.
It's presently just got through the DSARC II decision point. I think
it's come all the way through. OPTEVFOR has been involved in this
particular development, which is kind of unusual for OPTEVFOR; we don't
usually do any. We hardly ever do OT-I's, but OPTEVFOR did an OT-I on
JTIDS. I feel we provided the program some really good direction,
because when we went out to the landbased test site at San Diego, and got
together with the engineers out there who were building this system, we
provided them scenarios and we said, this is what we are going to do with
your system. Most of them said, "gee, I never thought about it that
way". "I didn't realize that you were going to try to do something with
it like that." "Now, I understand why you wanted this switch to do
that." So, we feel we may have made a very- good contribution to the
program by getting involved early at OT-I in this case. Additionally,
this is the first DSARC that I've been through, so I got a chance to see
how it worked, and I was somewhat impressed with how much they wanted to
know about what OPTEVFOR thought about the system. If we had not have
done OT-I, we couldn't have thought about the system very much, except by
looking at a pile of papers. So, we did two weeks of actual testing out
on the West Coast with JTIDS.

121

I've said some good things about JTIDS, now let me tell you some bad
things. This is our interface with the developer, who is the program
manager in this case. About six months ago, eight months ago, we were
talking in a meeting, and he said something to the effect that I don't
care what the system does, I'm building a terminal. And the red flag
went up for OPTEVFOR because, when we test something, we're testing a
system. In other words, if you have to bring a terminal, an antenna, a
new computer on board a ship to make this system function, by God, when
we test it, we're going to test the whole thing. We're not just going to
test the terminal. We have to test the whole thing. So, we went through
several months of discussion with the program manager and finally, he
became convinced that maybe he rightly should be concerned with the whole
system and not just the terminal, and build a whole system and let us
test the whole system. So, early involvement got us somewhere there.

Another example of an ASW system that I've been working on for about a
year now, this is a bad example, this particular system has had a history
of very poor reliability. OPTEVFOR has been testing it for more years
than I care to think about, and every report I read about this system
talks about the hardware improvement program going on, we're going to fix
this system. But, you look in the next paragraph, and for instance, the
last operational evaluation he had, he had one hardware failure and 9
software failures. Well, where is he putting his money? He's putting
his money in building better hardware. Now, I don't know what that has
to do with how good the software works, but he seems to think it is
connected. The system is still not blessed by OPTEVFOR as far as passing
an operational evaluation.

I've been talking about system testing, and I will give you some of our
philosophy at OPTEVFOR on how we test systems. Scenario driven testing
of complete systems, repeat, complete systems, meaning the hardware and
the software. We don't test hardware and say that it has 500 hr. MTBF
and you ran this software for 25 hours like the MIL-STD says, and it's
good. You put them both together, and what you get is a 25 hour system,
not what CNO said he wanted. He said he wanted a 500 hour system.

Dr. Fischer: Do you wait until the final version of software?

Cdr. Anderson: No. If that version is going to be used by the fleet, my
operational forces will test it before it goes out there.

Dr. Fischer: But, you wait until you get one that is intended for use,
however, rather than a development build or_ something like that.

122

Cdr. Anderson: Yes. We want to test one that's going to be in the
fleet. Now, occasionally, we'll get one that we will get halfway through
a test and they will say, "oh, by the way, this is not your final
version". And, we'll say, "what are we testing it for then?" We need to
test the final version, the one that is going to be used by the fleet.
If it's going to be like NTDS model 4.1, 4.2, 4.3, we will try to test or
at least look at each one of those versions. NTDS is the Naval Tactical
Data System; it is a large command and control system on board most of
our ships at sea today. They released the programs in versions model 3,
model 4 and model 5 coming up, etc. As we talked about earlier this
morning, there is a series of releases over a period of time. New bells
and whistles get added, new program versions get put out to the fleet.
OPTEVFOR should look at each one of those. In fact, we are required to
by a DoD Instruction.

Mr. McOmber: One of the problems in using this for an example, and the
reason OPTEVFOR can't get involved, is because all of those systems have
been built, modified, and enhanced not with R&D dollars. By charter, you
can't do this.

Cdr. Anderson: But, by OPNAV Instruction, I'm required to look at each,
if it's a significant modification to an existing program, we're required
to do it. NTDS is a bad example because OPTEVFOR has never evaluated
NTDS. It's been in existence since the late 60's, and we have not looked
at it.

Mr. McOmber: I think we need to do away with the restriction that if it
is not done with R&D dollars, you can't look at it.

Cdr. Anderson: Yes, I agree.

Mr. Devlin: The color of monies has no impact on the test or not to test
approach. Significant hardware/software modification, however, does.
Navy-wise, CNO (program sponsor) and the Systems Command, i.e., NAVSEA,
NAVAIR, etc. (developer) make the decision to refer the system to IOT&E
or in-house T&E. However, at times, the R&D (098) within CNO's
organization makes the decision for all based on the level of effort,
including money and impact on operational readiness.

Mr. French: In the Army, the key decision point that the operational
testers really get into is OT-II. I don't think I'm overstating it if I
say we don't seem to have the ability of getting production software at
an OT-II decision point. What is different about the Navy that allows
you to wait for your testing until you get a software version which is
production software? Are you talking about a later level testing, maybe
OT-III?

Cdr. Anderson: We do OT-II testing primarily.

Mr. French: How do you get production software to test for an - OT-II when
the Army can't?

123

Cdr. Anderson: I don't know. Jack, do you know?

Mr. Devlin: A lot of decisions are made early in the program as to what,
when and how, at least in documentation. The Test and Evaluation Master
Plan is your contract between the developers and the operational
testers. If you call for production software or at least a prime example
of production software, you'll be headed in the right direction. First
thing, the software is not going to be error free. You are going to turn
up bugs, but if you can get a good base, you can get the system marriage,
the hardware and the software. Maybe, we have a little bit more latitude
or Navy exercises more control over it's DA's in just what is required to
be tested during OT-II well ahead of the start of OT-II testing.

Mr. French: How do you define your requirements for this baseline
software? I'm not sure I understand what you mean by that.

Mr. Devlin: Baseline software is what you have when you have a strict
configuration control program. Baseline software only changes when there
is reason for change, i.e. numerous PTR/ECP trouble reports that have
been tested and found problem-free. This allows for re-compilation of
the baseline software.

Mr. French: Where the Army went wrong with Patriot, we got to OT-II, and
we had software that was so incredibly terrible. Was it in the way that
we wrote our TEMP, was it in our contract?

Mr. Devlin: How about early involvement?

Dr. Fischer: But, it boils down to what you just said, the TEMP, I think
that OT agencies do have an input. They have that opportunity, everyone
has that opportunity. There is a wide range of people and organizations
that have an input into Test and Evaluation Master Plans. That's your
shot. That is your early involvement.

Mr. McOmber: Does the Army have someone at any level to certify the
system ready for OPEVAL, for example, a TECHEVAL?

Cdr. Anderson: That's right. Prior to the Navy taking the system to
operational evaluation, the developer has to complete what we call a
TECHEVAL, as part of that TECHEVAL, he's required by the Military
Standard 1679, etc. to complete a certain amount of endurance runs on his
software, to stress it so many hours, to run it so many hours, and he has
to either up front tell the CNO that he has not completed that or that he
has successfully completed it and sign a paper to that effect. Now, I
don't see in the Navy a problem with getting too immature software for
OPEVAL. I don't see that problem. I'm not saying that we don't have bad
software systems out there, it's not because they are not mature, just a
terrible job of development.

124

124

Cdr. Anderson: I don't know. Jack, do you know?

Mr. Devlin: A lot of decisions are made early in the program as to what,
when and how, at least in documentation. The Test and Evaluation Master
Plan is your contract between the developers and the operational
testers. If you call for production software or at least a prime example
of production software, you'll be headed in the right direction. First
thing, the software is not going to be error free. You are going to turn
up bugs, but if you can get a good base, you can get the system marriage,
the hardware and the software. Maybe, we have a little bit more latitud
or Navy exercises more control over it's DA's in just what is required t
be tested during OT-II well ahead of the start of OT-II testing.

Mr. French: How do you define your requirements for this baselin
software? I'm not sure I understand what you mean by that.

Mr. Devlin: Baseline software is what you have when you have a stric
configuration control program. Baseline software only changes when ther
is reason for change, i.e. numerous PTR/ECP trouble reports that hav
been tested and found problem-free. This allows for re-compilation o
the baseline software.

Mr. French: Where the Army went wrong with Patriot, we got to OT-II, an
we had software that was so incredibly terrible. Was it in the way tha
we wrote our TEMP, was it in our contract?

Mr. Devlin: How about early involvement?

Dr. Fischer: But, it boils down to what you just said, the TEMP, I thin
that OT agencies do have an input. They have that opportunity, everyon
has that opportunity. There is a wide range of people and organization
that have an input into Test and Evaluation Master Plans. That's you
shot. That is your early involvement.

Mr. McOmber: Does the Army have someone at any level to certify th
system ready for OPEVAL, for example, a TECHEVAL?

Cdr. Anderson: That's right. Prior to the Navy taking the system t
operational evaluation, the developer has to complete what we call
TECHEVAL, as part of that TECHEVAL, he's required by the Militar
Standard 1679, etc. to complete a certain amount of endurance runs on hi
software, to stress it so many hours, to run it so many hours, and he h-
to either up front tell the CNO that he has not completed that or that h
has successfully completed it and sign a .paper to that effect. Now,
don't see in the Navy a problem with getting too immature software fo
OPEVAL. I don't see that problem. I'm not saying that we don't have ba
software systems out there, it's not because they are not mature, just
terrible job of development.

Cdr. Anderson: Pressing on. Report effectiveness and suitability of a
total system. It seems like a simple statement, but in actuality it is
not in practice, because of a tendency to allocate software to a separate
box and say, we'll let it run 25 hours, and we'll make the hardware work
500 hours. OPTEVFOR will look at the total system, including hardware
and software, as a system in itself, and will attempt to identify the
software errors, but only to tell the developer that he has a problem in
this module or that module. The software errors are strictly for
correction only. The overall system effectiveness and suitability is
used for the approval for service use determination. ASU is the Navy
paper that says deploy it. Buy it, deploy it. In the fuzzy category
area, effectiveness and suitability sometimes get a little mushy in
software. Effectiveness is how well it does its job, and suitability is
the reliability, maintainability, durability, all the "ilities. "
Effectiveness, if I've got a software problem that say, I've got a
function that I have to do and it takes 10 steps, and if I programmed it
correctly, the program worked correctly, I could do it in one step. The
fact that it takes me 10 steps to do it might take me 20 seconds instead
of 10, but I can still do it, therefore, I'm working around the problem
and it is not as effective as it could be if it were properly programmed,
but it works. So, I can work around it. Suitability, reliability of the
system, what I'm saying then is, hey, every 10 hours the thing faults and
doesn't run anymore. I've got to reload it. I've got a critical or major
failure. That's your suitability.

In suitability testing for reliability, which is the meantime between
failures, we'll calculate it the same way for software as we do for
hardware if we've got all the major failures corrected. In other words,
it runs. I don't take it out on my ship, turn it on, it runs for 10
hours and quits, and it's going to take a programmer to fix. I can't do
that because I can't fly a programmer to the Indian Ocean to get it
fixed. Some minor failures have been corrected or worked around, and the
system is large. If that is true, I can then take the number of failures
divided by the number of hours and I get an MTBF for software. Only used
for the DA to fix his problem and you give him a report card. I don't
use that to say the system is good or bad.

Maintainability is slightly different. 	If I have a failure, how long
does it take me to fix it? For software, it may be a matter of seconds.
I might have an automatic reload or bootstrap in this program and it will
take 5 seconds and it's back on line again. So, how long will it take me
to fix it? Five seconds, or two weeks to get a programmer out there to
fix the problem? Big question, right? There's no easy answer. We take
the easy way out at OPTEVFOR and say that it takes 5 seconds because I'm
up and running again in 5 seconds and I can shoot a missile or direct an
aircraft or drop a bomb after the reload. I may expect that in another
hour or so it's going to go down again, and it'll reload itself, but it
is still working. I haven't terminated the program.

126

Mr. French: What if the process that caused you to go down is a function
of whatever exercise it takes. Just because you come back up in 5
seconds, if you go down again because you have the same aircraft flying
over you, you've got the same cause of failure.

Cdr. Anderson: Did that prevent me from doing a critical function of
this system? If it did, then I've got a major failure. I'm probably
going to have to say "the exercise is over, let's go back home to get it
fixed." I'll do it again. I'd go out and take it back out and retest
it.

Maj. Hammond: Repeatability may be the word. If you continue to repeat,
let's say, the same divide by 0 function, you've got a major problem.
However, if it is just one loose 1 or 0 running around there that every
once in a while decides to raise its ugly head and crash the system,
you've got a different problem. The next thing to ask is, when you
reload it, what did you lose? Now, you are in the effectiveness area.
You then consider the worst case. Well, I lost everything. Now, you
have to move it up from the maintainability area to the effectiveness
area. It is not very effective when you're reloading.

Cdr. Anderson: Notice also that the restore time must include databases
and files. If I've got a command and control system, I'm tracking 300
aircraft, and I dump my program and the automatic reload takes over, my
program's back up in 5 seconds. What about those 300 tracks, those 300
aircraft out there? I've got to wait until they're back in there before
I start/stop that clock. Other words, I'm not effective until those
databases and files are reloaded, reinitialized.

Availability, which is operational availability, which we define in
OPTEVFOR as up-time over up-time plus down-time, and will give you,
normally we look for .9 or .95 availability. In the case of software
alone, a properly designed system with a very small maintainability will
give you availability of almost 1, because your downtime is very small,
seconds. As compared to the total runtime, which is maybe days or
weeks. So, in the case of software, availability doesn't mean much to us
really.

The remaining suitability tests, such as interoperability, a whole bunch
of "ilities", are basically the same for software as hardware. I do have
a couple of additions doWn here. Human factors is becoming an
increasingly big problem, particularly in the area of diagnostics. The
Navy is presently buying or getting ready to buy a new mainframe embedded
computer and a couple of smaller computers. The Navy computer standards
in the late 80's, and their maintenance concept is they are going to give
somebody a couple of weeks training, put him out on the ship, and he's
going to be able to maintain them. The only way that will work is with
good diagnostics that will point that limited ability technician down to
the card, in this case, they need to replace. So, diagnostics is
becoming an increasingly big problem in the Navy. Our answer to the
problem with not having enough qualified technicians out there is you
better build one into the system, so we don't have to have many really
qualified technicians that can change a chip. Maybe, all they wanted to
do is change a box or change cards.

127

Along that line, my last slide here is that I've taken liberties with
this famous software iceberg and turned it upside down. The operational
tester is not only concerned with this down here, but he's looking at
everything. So, when the system goes into operational test, you better
have all those wickets in line, because we're probably going to look at
them all. And, we should look at them all. We may not have the time, we
may not have the people, but we're going to look at them.

Any questions?

Maj. Hammond: Do you really believe that the concept of MTBF has any
validity? Software doesn't wear out; it goes down because it gets an
input it can't handle.

Cdr. Anderson: Well, I agree with you, and I'm taking a simplistic look
at it from the operational testers viewpoint. Academically, I'm sure it
is not proper to do it that way. But, for our purposes, the operational
test purposes, I don't see anything wrong with it. All the operational
tester has to do is tell the captain of that ship, "hey, it's going to
run". "It looks good to us, it's going to run." Or, "you are going to
be able to fix it." And, I don't think we need to go beyond that as far
as operational testing goes.

Maj. Hammond: It just seems like an awfully artificial concept. I can
give you 100% reliable software as long as you allow me to restrict the
input.

Cdr. Anderson: It won't be reliable if you require the input to be
restricted such that it won't do its mission. Then it's not a reliable
system, because it's going to go down.

Maj. Hammond: That's my whole point. The reliability of the system
depends totally on the input and not on how long it's going to run.

Cdr. Anderson: That's right. The scenario developed to test that system
will ensure that all possible inputs or all expected inputs are there and
that unexpected ones don't cause the software to abort.

Maj. Hammond: I would be willing to bet that if you went back and looked
at it, you were exercising a negligible percentage of the possible inputs.

Cdr. Anderson: No doubt about it. No doubt about that at all.

Mr. French: I think, at least from the Army standpoint, it becomes a
valuable tool not in that the answer is .8 or .9 or whatever it is, but
that when you start talking about it in reliability terms at a scoring
conference or some other process like that, the Project Manager is forced
to respond. That then becomes a valuable tool.

128

Cdr. Anderson: That was at the top of the line, that we are going to
look at the whole system and the discussion that went under RM&A for
software is strictly for the developer to know how well he did and where
he has to work to fix it.

Maj. Hammond: I think in that case it would make more sense to say it
works in this area, and it doesn't work in this area. It works if I try
it with this, and it fails if I try it with this.

Cdr. Anderson: You can say that, but 90% of the developers are going to
want you to put a number on it. Give me a grade, I need A+ or B or C-.
They want you to quantify it.

Maj. Hammond: However, I would object if someone gave me a grade like
that.

Mr. McOmber: I have two stories to tell about mean time between failure
problems. One, a few months ago, Admiral Lewis called down to our office
and sent a few figures he had copied out of a TEMP for one of the Navy
systems. In that TEMP, it had mean time between failure for software
thresholds and goals. He asked, "what does that mean? Are these good
figures? Could they ever be reached?" I called the system engineer and
asked him, "where did you get those mean time between failure rates?" He
said, "look out the window and just grab and pull them down." "That's
where we got them." My question to you and the guys at OPTEVFOR is, is
that what they should do?

Cdr. Anderson: They should not.

Mr. McOmber: I agree that maybe you guys have a use for them as a lever
going back to the guy that's developing the software, but the goal is
unrealistic, absolutely meaningless.

Cdr. Anderson: The only number that should be in the TEMP is the system
criteria. That's it.

Mr. McOmber: Another example. I know a guy that helped develop, worked
for IBM, one of the large airline reservation systems, and they concluded
that it would take over 100 years to test the system out in all of its
variations. So, they decided to stop at a certain point. They stopped
at a certain point where they had developed a mean time between failure
that had some meaning for that system. They know that every 8 hours the
system is going to go down with a soft error. It will be software
related, but it won't lose data, it will come - back up in a few seconds,
and they don't even try to fix it. They're going to live with it. They
expand that to a little bit harder error. Once a day, it is going to
crash and take 10 minutes to fix. They still don't figure it is going to
be useful to them to figure out what the problem is. They don't care.
They can live with it, and from that, now they have concluded they have a
mean time between failure. And, that may be appropriate because they are
never going to go and try to find the error.

129

Cdr. Anderson: The key is that you said that they could live with it.
Now, if the captain of the ship can live with a system that goes down
every 8 hours and is back up in 5 seconds, no problem. If that system
goes down every 8 hours and stays down for an hour, they aren't going to
live with that because what if he gets attacked by a bad guy, and he
wants to go push the button, there is no way to do it. "Sorry, Captain,
it's down, be up in an hour." No.

130

VI EWGRAPHS

USED BY

CDR. ANDERSON

FOR THE

NAVY

PRESENTATION

131

TEST PROCEDURES

1. SCENARIO DRIVEN TESTING OF COMPLETE
SYSTEMS IS STILL THE KEY.

• REPORT EFFECTIVENESS AND SUITABILITY OF THE TOTAL SYSTEM

• IDENTIFY S/W ERRORS FOR DA CORRECTION

• OVERALL SYSTEM EFFECTIVENESS AND SUITABILITY USED FOR
ASU DETERMINATION

2. FAILURE CATEGORIES

• EFFECTIVENESS - ARE "WORK AROUNDS" AVAILABLE?

• SUITABILITY - TOTAL SYSTEM FAILURE OR COMPLETION OF
PRIMARY MISSION IS PREVENTED _

3. SUITABILITY TESTS

• RELIABILITY (TEST S-1) CALCULATE THE SAME AS HW IF:

A. MAJOR FAILURES HAVE BEEN CORRECTED

B. MINOR FAILURES HAVE BEEN CORRECTED OR WORKED AROUND

C. THE SYSTEM IS LARGE

• MAINTAINABILITY (TEST S-2)

A. DIFFERENT FROM HW

B. RESTORE TIME MUST INCLUDE DATA BASES/FILES

C. MAY BE A JUDGEMENT CALL

• AVAILABILITY (TEST S-3)

A. VERY CLOSE TO 1.

• REMAINING QUALITATIVE SUITABILITY TESTS

A. THE SAME AS HW

B. HUMAN FACTORS

COMMITMENT TO EARLY
INVOLVEMENT

ROC

OPERATOR 1 I 	HW 	SOFTWARE.

* WATCH THIS LINE OF REQUIREMENTS TRANSLATION

NO LESS THAN THE OTHERS

MS 0

MS I'

OT-II REQUIREMENTS.

MS II-

SW
OT-III DESIGN

MODULE
OT- 111 IMPLEMENTATION

SW
OT-III INTEGRATION & TEST

OT-HI OPEVAL

MS III

OT-IV/V

_

e
.

D
EV

EL
O

P
IN

G

C
O

N
T

R
A

C
T

O
R

D
E

V
E

L
O

P
IN

G

A
G

E
N

C
Y

SU
P

P
O

R
T

A
G

E
N

C
Y

O
P

TEV
FO

R

b

FLEE
T

>
xi —1
n --Ti - > 	SW z —4 cri 	PROGRAM

PHASES

X •
R&D OPERATIONAL
NEEDS, ADVANCED
SYSTEM CONCEPT

0 X
ADV. DEVELOPMENT
PROPOSAL/SYSTEM

REQUIREMENTS /

• X V
SOFTWARE PERFORMANCE

DESIGN REQUIREMENTS

• PRELIMINARY DESIGN

• X
PRELIMINARY DESIGN

REVIEW

•
DETAIL DESIGN

• • X FINAL DESIGN REVIEW

• CODING AND TESTING

• SOFTWARE TEST AND
INTEGRATION

• SOFTWARE ACCEPTANCE

• INSTALLATION

•
OPERATIONAL
EVALUATION (SYSTEM)

• OPERATIONAL USE

• MAINTENANCE

135

Mr. Greenlee: Very good. Thank you, Mike. You are a good lightning
rod. Our next presentation from the Air Force side is by Lt. Col. Mike
Blackledge from AFTEC (Air Force Test and Evaluation Center) at Kirtland
AFB. Mike?

:136

LT. COL. MIKE BLACKLEDGE: AIR FORCE TEST & EVALUATION CENTER

Lt. Col. Blackledge: Thank you, Don. I'm Mike Blackledge from the Air
Force Test & Evaluation Center at Kirtland. We know in the Air Force
that the rated personnel are out there depending on us to evaluate their
software. What I want to do today is not go over very much background
because I think you are all sufficiently motivated that software is a
problem. But, I will tell you what we're doing at AFTEC, how we're
organized to attack that problem, what we're doing about it now, and what
we plan to do about it in the future. I just have a couple of background
slides to remind you that the basic problem that people have been stating
is that most software errors occur early on in the requirements and
design time frame, but they are not found until you get into the testing
time frame, and that is usually much later on in the program, when the
costs are significantly higher.

I promised Don I wouldn't show any regulations, but I put one in here to
remind you also that we're kind of unique in that we have our own special
paragraph in DOD 5000.3, Test and Evaluation. One paragraph just for
software. I'm still fighting that problem even at AFTEC. People say,
"how can you have a special group to evaluate software?" "We don't have
a special group to do engines." I guess the point is that they don't
have as much trouble with engines. Perhaps someday, we won't have a
special group for software. That's really what we are all pushing for.
Perhaps after there are computers in every home, and there are 1,400
standard test tools on the shelf to pull off whatever you want. Then
maybe we won't have to break software out separately.

Here is a stylized look at the way we're set up at AFTEC to handle
software. Essentially, for every major Air Force system, there is a test
manager assigned. One individual dedicated to that one project. He
doesn't write the test plan, he doesn't do the test design or test plan
all by himself, he draws on other expertise in other areas within AFTEC.
He gets a resource manager to help him set up what he's going to need to
run the test, he get's an Ops Analyst to help him define how the
operational effectiveness part of the test should go. He gets a •
logistician type analyst to help him define how the suitability part of
the test should go, and he gets somebody from our shop, a software
specialist, to help him define what kind of software subobjectives he
should have within that test.

Mr. Devlin: What kind of folks do you have in the software evaluation
area?

Lt. Col. Blackledge: That fits in on the next slide.

Mr. Devlin: Before you leave this slide, let me ask one question. How
many programs does that one test manager manage?

137

Lt. Col. Blackledge: 	The one test manager manages one. 	But, the
software people such as we have are divided into different functional
specialties. For example, one individual might handle three or four
different C 3 systems. We have one super guy who handles the air launch
cruise missile, the ground launch cruise missile and the medium range
air-to-surface missile. So, one software guy lends his expertise to
several test planning groups within the headquarters. The test manager
however is dedicated to that program.

We have right now about 16 people, and we are going to about 20-22 by the
end of the fiscal year, as far as software specialists. These are two
different kinds of people. You saw the slide that computer science
people can't engineer and vice versa. Well, we fight that problem by
taking half of each. Half of us are EE's, and half of us are computer
science type people. That's just at the headquarters. Out in the field,
we have a test team. AFTEC sets up a test team at Edwards AFB or
wherever the particular system is going to be tested, and on that test
team, if it's for a software intensive system, we also place one of these
software specialists. We try to make this an AFTEC slot. That's not
always been the case in the past, and that's kind of a new policy. The
air launched cruise missile happened to be a Strategic Air Command
individual, but we try now to make this an AFTEC slot. You'll see that
very few positions on the test team are actually test and evaluation
professional testers, if I can use that term. As you all know, there is
no specialty for test and evaluation. These are people on whom we've
painted the AFTEC badge and given them some training on what they should
know about operational testing and evaluation. But the Deputy for
Software Evaluation we try to make an AFTEC slot. The people working for
him will come from the using command or come from the supporting command
to help evaluate that software.

The next chart has an awful lot on it, but it covers pretty much what we
do. Let me go over it just a little bit. You see the "early" on there
again. Same type of thing. We try to get out there early, as I mentioned
this morning, we review the request for proposal, statement of work and
whatever comes across on the system in order that we can place the right
kind of hooks in it. For example, we suggest that they use MIL-STD-1679
or suggest that they put in some hooks for independent verification and
validation. We try to get those things in early. We also write up the
software portions of the test plan. We first do a test approach to
outline how we are going to do it. All those people that I indicated
were on that test planning group from the headquarters, all get together
and do their own specialties, write up their own objectives, write them
all together into one overall test approach. .Then, from that, the test
plan is developed. We also attend preliminary and critical design
reviews, we participate on the Computer Resource Working Group and the
Test Planning Working Group. Once the test is underway, we (the AFTEC
people or the test team people) try to observe the in-plant testing that
goes on. We don't participate in that directly, but indirectly we get
involved in it as much as we can. We do get directly involved, of
course, in the onsite testing. We take the test data and evaluate it, do
the analysis on it, write up the report, and the report is forwarded to
the interested parties and directly to the Chief of Staff of Air Force.
That is kind of an overview of what we do.

138

Mr. Watt: How much do you affect the actual test scenario?

Lt. Col. Blackledge: That's something we're trying to get into a little
bit more. How much do we affect the actual test scenario. One of the
things we are going to use is the independent verification and validation
contractor. If he's got some ideas on whether there are critical modules
in that particular software, what things might happen, we try to add some
OT&E type tasks onto his IV&V contract to help us define how that test
scenario should look.

Dr. Fischer: Are you saying you use OT&E money then to pay the IV&V
contractors?

Lt. Col. Blackledge: This is something brand new for us that we are just
trying. Right. Just doing this year. Do an add-on task.

Mr. Devlin: Who hired the IV&V contractor?

Lt. Col. Blackledge: The SPO, the Program Office has hired the IV&V
contractor.

This slide I love because we've been working for 3-4 years on how to put
what we do on one slide, and this is the closest we've gotten. Overall
operational test and evaluation, as you've seen, is broken up into
operational suitability and effectiveness. How does the software
evaluation affect that? We support both of those areas. We do it by
trying to answer these three questions: Does the software restrict or
even degrade the system's performance? Does the software help the
individual who is trying to run the system? And, how easy is it to
change the software? I can rephrase those into maintainability and
effectiveness and other things, but that kind of sums up our job
quickly. Now, how do we do that? Well, in the operational effectiveness
part of it, software performance as it is called here, we're really
looking at a system level test. We run the system level test and use a
"by-exception basis" as our standard approach. If something broke down,
then take a look at that problem. Is it a software problem, is it a
hardware problem, and go from there. The trouble is how do you know that
you've exercised the right paths in the software. That's where I
mentioned that we try to use that IV&V contractor to give us a little
insight. He is supposed to be intimately familiar with that software; if
there is indeed an IV&V contractor on board, he should be intimate with
that software, he should be able to give us some insight into how to
influence that test design.

Maj. Hammond: Do you find any problem with the PM paying the bill and
the tester asking the questions of the IV&V guy?

Lt. Col. Blackledge: Not when we add it on as a task, we don't. That's
what we are trying to do. You are talking about the color of money.
That's one of the problems, with the color of the money. They' try to add
that task on with our money.

•

139

Unidentified person: You are going to attempt to add a task on to the
Program Manager's expense action with the IV&V contractor ...

Lt. Col. Blackledge: 	Right. 	I'll say we haven't been successful yet
with getting through the contractual binds, but we're still struggling
with it.

Unidentified person: The money you are using at that point in time is
probably RDT&E money which comes through the Program Office anyway. So,
you are using the Program Manager's money ...

Lt. Col. Blackledge: The Program Manager usually doesn't know that that
money was pulled off ... We don't tell him that That's not been a
problem. The problem has been things like 3400 money versus 3600 money
type problems. The program office has not been unresponsive to us going
out and setting up our separate tasks with the IV&V contractors.

Dr. Fischer: What programs have you tried that on?

Lt. Col. Blackledge: 	This is on the Global Positioning System user
equipment, and we're also going to do it on another segment of GPS.
Those are the ones we are working right now.

Another area which is essentially in the operational effectiveness area
is the operator-machine interface. When I say operator here, I'm not
talking about the computer operator. I'm talking about the user of the
system. Was that software designed with the individual in mind that's
going to use it? Our methodology here is a standard questionnaire that
we have developed over the last two years that has about 95 questions on
it. Here are some typical questions that we hit the evaluator with, and
we have a standard handbook that we hand him which has each question on a
page and a glossary and instructions. We're not talking to computer
people here, we're talking to operators, electronic warfare officers, the
guy at the C console, whatever. In order to take our questionnaire,
he has to have enough familiarity with the system to feel qualified to
answer it, at least two or three weeks working on a new system. He's
been out there, he's observed the system if it crashes, and so on.

Maj. Hammond: 	I noticed that your third bullet up there is "menu
techniques are used to aid the operator in making decisions". Does that
mean that the gospel according to AFTEC is that menu techniques should be
used?

Lt. Col. Blackledge: Not gospel, but ...

Maj. Hammond: Some operators would contest that.

Lt. Col. Blackledge: Well, that may be. Yes, we are implying that it is
easier . if you have a menu to choose from than having to know.or look up
in the documentation what your next step is or what choices you have.

140

Maj. Hammond: Yes, it is easier for an unskilled operator, but it really
slows down a skilled operator.

Lt. Col. Blackledge: We cover that in other places in the questionnaire,
namely that the operator has control over how much help he's given. So,
we hit that separately.

Maj. Hammond: I just wanted to make sure your test criteria were not
biased.

Lt. Col. Blackledge: 	Toward an unskilled operator. 	We cover both
areas. In summary then, under the effectiveness area, I think I've
covered most of these. One thing I haven't covered is the support
system. We run a separate evaluation, which we are just getting into, on
software support facilities, for example for a large system having a
separate software support facility. We found that these are not
identical, you can't run one evaluation for all facilities. You can ask
certain questions or find out certain things that are common to all
facilities, but when you get down to whether they're making software for
an operational flight type software or doing air cruise training devices,
or they're doing automatic test equipment, then they get into specialties
and you've got to make sure your evaluation covers those particular types
of support facilities. So, we tailor our particular evaluation in that
case, for each of those different types of facilities. Here's an example
of what it looks like in the test plan. These are just the subobjectives
that relate to these particular software areas that I've been going

over. To give another example with the operator machine interface
questionnaire, when we administered it on the EF-111, we found the system
made a very low score relative to workload tests on the operator machine
interface, and it turned out the electronic warfare officer had to punch
in 1,000 key strokes before the aircraft could take off. The joke around
the program office was (holding up a stub of a finger), "Hi there, I'm an
EW officer on the EF-111." So, the software showed up poorly. The
program officer agreed and the software was sent back to the contractor
to make that change. They did make a change, we went back and tested it
again, and it showed up much better the second time around. The
operators obviously agreed, as that was what they were showing in the
questionnaires.

In the maintainability area, our methodology is well structured and has
been used for more years, about four years now. This is also a
questionnaire type approach, not unlike that of the operator-machine
interface. What we do here though, is we are asking the questions of
individuals that are going to be maintaining that software, if it's going
to be assigned to a particular air logistics center or if it's going to
be assigned to the communications computer programming center out at
Tinker AFB, or down at Warner Robbins. We draw in some typical software
maintenance people from that organization, bring them in on temporary
duty to where we've gathered up some listings from the system and the
documentation for the system. We have them go over this questionnaire.

141

They don't need to know what the function of the software is. They do
have to be experienced programmers and maintainers, as opposed to the
individuals evaluating the operator-machine interface. Here we want
programmer types. They go through this type of questionnaire with one
questionnaire for a particular software module and one questionnaire for
all the documentation in the program. What we do is go through question
by question, we talk to them about the questions, we see if they have any
misunderstandings, then we have them go through a calibration run on one
module. Then we get all their answers and go back over them and see if
there is a big disparity. The answers are forced into the choices from
completely agree to completely disagree. The questions (as in the
operator-machine interface) are not questions, but desirable
characteristics. And, they're answering to what degree this particular
software has those desirable characteristics. So, then when we take a
look at what their scores are, if this guy gave a high score and the
other 4 or 5 evaluators said it was a low score, we talk about it in the
decalibration or debriefing session and make sure both groups are
answering the same question or have the same understanding of the
question. If the guy really felt that way strongly, obviously, we are
not going to try to change his answer, but we want to make sure that he
is thinking about that question the same way those other guys are. Maybe
he's right and they're wrong.

Mr. Devlin: You might make a plug for your guidebooks or handbooks ...

Lt. Col. Blackledge: 	Thank you, I hate to do that because the
maintainability one was written up in a national computer conference that
had a maintainability panel, and a speaker brought it up there. Somebody
wrote to us and asked for it and under the freedom of information we sent
it to the somebody, the somebody turned out to be the reviewing editor
for EDP Analyzer, and they reviewed it and gave a glowing review, and we
got about 300 requests for that manual since last winter --- everybody
from the London Stock Exchange to Procter & Gamble. So, I guess,
software maintainability is a common problem.

Mr. Devlin: I'm one of them, and I haven't got it yet.

Lt. Col. Blackledge: 	I'll get one to you. We have a set that will
eventually be six unique volumes in a set called Software Operational
Test and Evaluation Guidelines. Some of them are designed for in-house
use. The first volume, for example, is for the software test manager,
the guys who work in my shop that help the test manager write his test
plan. Other ones, though, are the evaluator handbooks; for example,
volume three is for the maintainability evaluator. Volume four is for
the operator-machine interface evaluator. Volume five will be that
software support facility evaluation, and that one is not off the press
yet. That software support facility evaluation is the area we are
looking at here. A lot of times, you don't have a software support
facility that is available, you're just looking at plans. That's one of
the reasons we need this tailored type of tool. We may just be reviewing
plans as far as the software support facility. Or, it might be a
completed facility like the AFSATCOM System which is still in follow-on
test and evaluation. It has this facility all there in place, set up at
Tinker, and we can go out and get people that are actually running that
system. So, we find everything from plans all the way to the final
product.

142

Here is a sample of what would be in a test plan as far as the
subobjectives for the suitability side. Both these examples were taken
from the Tri-Tac system, the Tactical Communications System. From the
Communications Nodal Control Element of the Tri-Tac system. What kind of
results do we come up with, well, as I say, we force our (at least) 5
evaluators into a completely agree to completely disagree, and for the
type of results that we can express from this type of work, we set up a
goal and a threshold value for those averages. We try to force them into
a normal distribution on their responses by guiding them away from
"completely agree" and "completely disagree." This is an old slide that
I love to show because it makes a point well. What I'm showing across
here is the programs; we do these evaluations by modules, but you can
group the modules into a program, you can group the programs into a
subsystem, and you group the subsystems into a system. We used the
EF-111 Tactical Jamming System and the F-4G Wild Weasel for individual
programs. The top part is for the documentation, different
characteristics that we look at under the documentation. The bottom part
is for the actual source listings, the design of the code. You see some
things that show up, others are old characteristics and they've been
re-arranged a little bit, but the structure of the code shows up well.
Blue being good, red being bad. What shows up interestingly in this
particular one is that when you look across here, it turns out that this
one particular module, called EXACT, has a super rating on it, and it
turns out that the prime contractor did these two programs, and he
subcontracted out this EXACT program. Apparently, he forced good
programming practices on his sub, but not necessarily on his own people.

What are we doing now? What kinds of new things are we doing? Well,
I've mentioned a couple of them, like the software support facility
evaluation that we're working on. These are the types of things that we
are trying to overcome. Other areas that we are working with are the
event trace monitor, standardized test tools, and independent
verification and validation applications. The event trace monitor is
usually described as a logic analyzer, but it is more than that. We've
taken a standard off the shelf commercial COMTEN 8028, I believe it is,
and added on to it, what Hughes built for us: this universal selector
component, they call it. You can dial in certain addresses from the
software. This particular hardware monitor you can clip onto your
operating computer.

143

Whenever you hit that particular address, it chunks it out to a tape and
gives you a time stamp of when you hit it so every time the address is
pulsed, you know about it. It looks like a DT&E tool, right? Well, it
is pretty much a DT&E tool and that is why we're not talking about this
too much, but it can be used as an excellent OT&E tool, if you have
somebody that is intimately familiar with the software. You've got to
have somebody that is really educated on the software. Where do you get
them? Well again, you've either got to be on good terms with the
developing contractor or the IV&V contractor, one or the other. We have
used this this year for the first time, on two different programs. On
the Over-The-Horizon Backscatter radar in Columbia Falls, Maine, we
hooked up to a Univac 1616, and on the Tri-Tac program down at Ft.
Huachuca, we used it on the equipment there, and we're still getting the
data from that particular one. What can it tell you? If you suspect a
particular area is a bottleneck, then you can dial in those particular
addresses, like the entry point of a module where you say, "I'm worried
that this area is going to be overworked", and it'll show you. You'll
get your printout, or you get your tape, take it off-line, do your data
reduction, and you get an indication of how often that module was hit.
If you had another area, a background type of thing, a waste type of job,
you can find out how much reserve time you have in the program. Those
are DT&E type of things. So, if you really want to use it well as an
OT&E tool, you've got to know what you want to check very well.

Dr. Fischer: Why do you use a tool like that? Is it because you at OT
are trying to do a super job or is it because people in DT don't do their
job?

Lt. Col. Blackledge: First reason, rather than the second. I sort of
emphasize that we can keep that computer operating in its operational
environment, and this monitor will not interfere with its operation,
whereas if you put in some kind of software testing in there, it is going
to change the operational environment of that system. We don't have it
in a pod yet for mounting on an aircraft, and may never do that, but for
command and control systems like Tri-Tac and 0TH-B radar type systems, we
can clip it on without affecting its operation at all. So, we can get
more visibility into what's happening in that software and find out
whether or not it's got bottlenecks, or if it's working right on the
ragged edge of operational capability. In other words, if it were pushed
a little bit more, if it's going to drop off the cliff, or whatever. We
can get a little more visibility into what's happening when the system is
actually running.

Mr. Devlin: That is over and above reports that are already available to
the DT testers or programmers?

Lt. Col. Blackledge: Right. One company, Martin-Marietta, got kind of
excited about this and they are looking at something like this as an IR&D
project. We'd love to see that. We would much rather have somebody else
do it in industry instead of us. We really don't want to get into the
hardware business.

144

In the structured area, we encourage better software design techniques,
of course, and we're strong advocates of Ada. We're going to start
pushing that when we see the RFP's, we want to make sure they've got that
all covered properly. 1679 is a MIL-STD, a Navy MIL-STD, that we think
is excellent. The Joint Logistic Commanders didn't jump on it and say
this is the way the Air Force should go, but until we get a better one,
that's the one we're pushing. If a contractor follows 1679, he will make
a high score on our maintainability questionnaire.

Mr. McOmber: The Navy is getting ready to issue a data call for updates
to 1679. Are you interested in that?

Lt. Col. Blackledge: Sure. Send one to Col. Marciniak at RADC, too.
I've already covered this pretty well. IV&V itself is also a DT&E tool.
But, we feel that we in the OT&E community can gain by that experience
that the IV&V'er built up over the life of the development of the
program, if we can get him to identify for us what are the critical
functions; perhaps when an aircraft goes into a particular climb, there
is one module he thinks when looking at the software that "boy, if all
these inputs come in at the same time, this little module is going to be
overwhelmed and there's a possibility that it's going to degrade the
output of it". OK, let us know that. What kind of things would come
in? Well, if the pilot pulls back on the stick or whatever, then all
these things happen at the same time. If you put that into your test
scenario, you should be able , to check out that particular critical
function. That would help us, from all the infinite possibilities for
test design, help us check out a couple that might tell us something.

Dr. Fischer: If you have a potential use for the work an IV&V contractor
does, do you have any input into the evaluation of IV&V proposals?

Lt. Col. Blackledge: I thought you were going to sign us up to monitor
IV&V. ... Yes, we do. What we found, of course, is that most systems
don't do IV&V across the board. They do IV&V on a particular area like
the mission data preparation system, or some particular area, some subset
of the system. Our software test manager usually gets to take a look at
what they are going to do on that area.

Maj. Hammond: This might be an appropriate time to point out that rather
than your concept of having OT guys doing IV&V, current Air Force
thinking is whoever is going to support that system do the IV&V. One of
the reasons for that, is once the testers finish testing a system, that's
the end of their involvement with it. There's no longterm payback period
just in learning that software program. The supporting command is
extremely active. So, the current letter luidelines from the Air Staff,
that we are incorporating in our supplement to AFR 800-14, say that the
program manager, once he has decided, to do IV&V, set up criteria on how
he makes that decision. He then gives primary consideration to whoever
is going to support that, whether it's the operating command or the
logistics command, or whoever. It doesn't have to go that way, but
that's the way it's planned.

145

Lt. Col. Blackledge: Thank you for reminding me of that, Dave. There's
an October 13th '81 Air Force RD/LE letter that makes IV&V a policy.
I've got a few copies of it, if you'd like to get a copy from me. I have
a few of them to pass out there. That, essentially, just went out with a
90 day suspense to Systems Command and Logistics Command to get back and
tell Air Staff how they were going to set up their focal points and so
on. That policy is something we have been pushing at AFTEC for a couple
of years, and it has finally come about.

Maj. Hammond: 	And it's being included in the supplement to 800 - 14

virtually word for word.

Lt. Col. Blackledge: OK, in the supplement. We were pushing, hoping it
would get into 800-14, itself, but apparently, that is not to be.
[Editor's note: The latest revisions of AFR 800-14 will contain the IV&V
policy.]

Mr. Watt: Does this mean that AFTEC will not be in on the IV&V, involved
at all?

Lt. Col. Blackledge: Only as a strong advocate. What it says in there
is that ideally IV&V would be run by the using command and the supporting
command. If that can't work, then there should be some combination of
the using command and the supporting command and an independent
contractor or a federally contracted FCRC [RAND] type of outfit. But,
AFTEC itself is not. General Leaf's position was that you'd have to
double or triple his staff to really get into IV&V, and he wouldn't sign
up for that. He was in favor of it but not for AFTEC to be running the
show.

This kind of sums up what we've been talking about. We do put somebody
out on each test team, and we try to tailor to each individual software
evaluation on each program that we're working at. I've mentioned some
examples as I went through. I also have some handouts of a paper that is
going to be at NAECON, National Aerospace and Electronics Conference at
Wright-Pat in May. I've got about 10 copies of that, which takes the
program, goes through what I said, but gives it a detailed account of
what was done on the air launch cruise missile competitive flyoff as far
as the software evaluation goes. So, if you would like a copy of that,
I've got about 10 of those. Any questions?

146

VI EWGRAPHS

USED BY

LT, COL, ELACKLEDGE

FOR THE

AIR FORCE

PRESIENTAT ION

147

SOFTWARE EVALUATION DIVISION \

•

+4•1111/••••• MEP 	• •••.— • pon•-■pyr• • ■•■•1/0 •• •••••• •

• 717T,A4

• ..1••• • 	 . ' 	 •

:"tIV!'" "*.1 	 rr• 	'" ' 	•

•

re. 	mfr. r 	 • 	 • 	 •• I •

OFT. WARE -TEST AND EVALUATION
.tr .

•

—77,11

.1.1•

' 	 *

t , "1. 4,1 	"t/4, ' • 	•AFITC_ORGANIZATION FOR SOF aVARE OT&E
•.1. • , 	, 	 •O. 	 a: to I

•

oAFTEC APPROACH TO SOFTWARE OT&E
',MI T.-1 I •

•L4:•, -•-•••60+ ••IPI"‘" 	
• ••
	 • "" 	 • •

• -• • • 	 • • • 	 • _
•

—• • 	 slrf. - • - FUTURE EFFORTS IN SOFTWARE OT&E
17-7 	°I

.737- 	•

_fi r 4.: 	_ ..::-, _

• • 	- . 	 . Jot'
- 	• 	- 	• • • 	• 	,

• - • - ' •

ts,

1.141i 	 4 	1".
, 	'

1 • 	 .t 	 t

• tri:, VA 	-.•-• •••••• 11,1 • -• • •• • ...II •
••••• • • 	 .1•10 •••• 	• •7 	VIVI: 1. • 	•• 	 • 1 	 . - •

V* ...Lt.'.

.ne 	i 	...A.•— •!..114 . . 	•

.6 6

-- • ---
7'1- 11

• BACKGROUND

	

. 41 "t• 	 r:

	

ttr. 	 !Vr;'". 	. 2•1. :

61 .

41,

• •e.
• • 	

If
.. 	.611. 	I

• 14 '•
• ••••••

. 	.

DEFINITION

SOFTWARE I. A SET OF COMPUTER PROGRAMS,

PROCEDURES, AND ASSOCIATED DOCUMENTATION

CONCERNED WITH THE OPERATION OF A DATA

PROCESSING SYSTEM

DEFINITION

EMBEDDED COMPUTER SYSTEM -A COMPUTER SYSTEM THAT IS:

• PHYSICALLY INCORPORATED INTO A LARGER SYSTEM
WHOSE PRIMARY FUNCTION IS NOT DATA PROCESSING

• INTEGRAL TO A LARGER SYSTEM FROM A DESIGN,
. -... PROCUREMENT, AND OPERATIONS VIEWPOINT

EMBEDDED COMPUTER SYSTEMS SOFTWARE PROBLEMS

RISING COSTS

DEVELOPMENT ERRORS

OTHER & INDIRECT
SOFTWARE COSTS

20%

EMBEDDED COMPUTER SYSTEMS
56%

ANNUAL DOD
SOFTWARE COSTS

• • TEST AND EVALUATION •: ,.......
• I • 	 I 	 • • 	I

i - • • - 	•
. .

• I t• • . • .:

t• . 	!

t' •

: THE TASK FORCE FOUND THAT:
.! 	 . 	 •

• 177: 1" 	 , - 7177 .7.7-•"""::.T• 13,.. .

•DEVELOPME1411711VAS= N
••••

THE 1974 DEFENSE SCIENCE
TASK FORCE

ON

•

•

•.••••........••••"WHEREAS THE HARDWARE

DEVELOPMENT WAS FOR THE MOST PART SCHEDULED,

MONITORED, TESTED, AND REGULARLY EVALUATED,1* -----

• • 	-.- •
•• 	.• 	 : .

	

• • * 	• 'I-

'14j4 	.. 	•

4 I

„ ;

- 	-4.
. 1

SOFTWARE DEVELOPMENT SEQUENCE •

MAJORITY OF ERRORS MADE

MAJORITY OF

ERRORS

DISCOVERED

WILE

SYSTEM

REQ

SOFTWARE
REQ

PREL.
DESIGN

DETAILED
DESIGN

..■■■■■■=••■

CODE &
CHECKOUT

SOFTWARE ERROR
CCUR ENCE AND DISCOVERY

INTEGRATION
AND TEST
(IN-PLANT)

S
S

dPERATION
8& SUPPORT

vow 	

1$

TEST EARLY TO SAVE COSTS

CONCEPT
	

DEVELOPMENT
	

DEPLOYMENT

TIME

EXCERPTS FROM DODD 5000.3

(26 DEC 79)

...PROVISIONS APPLY TO SOFTWARE COMPONENTS ...n WELL AS HARDWARE
COMPONENTS

...PERFORMANCE OBJECTIVES SHALL BE ESTABLISHED FOR SOFTWARE
DURING EACH SYSTEM ACQUISITION PHASE...

• ...DECISIONS TO PROCEED FROM ONE PHASE OF SOFTWARE DEVELOPMENT
TO THE NEXT WILL BE BASED ON... APPROPRIATE ME.

...SOFTWARE...SHALL UNDERGO OPERATIONAL TESTING...UTILIZING TYPICAL
OPERATOR PERSONNEL.

1-6-WAGENCIES SHALL PARTICIPATE IN SOFTWARE PLANNING AND
DEVE---4715IF---AENT TO ENSURE CONSIDERATION (OF THE) OPERATIONAL
ENVIRONMENT AND EARLY DEVELOPMENT OF OPERATIONAL TEST OBJECTIVES.

i •■• • - 1-•=-■ 	3 wAFTEC APPROACH TO SOFTWARE OT&E

r

•

-H.1--5f-:17 	 II FUTURE EFFORTS IN SOFTWARE OT&E

MIL

I .

. 	CO

i 	•

• •••. 4.. • 	 • .

•

•
— 1:

trt, 	 BACKGROUND

.747)7.-•,_:7_-_VP'!:::',7:,.._.'._7_41AFTEC ORGANIZATION

• .

4 1 r 	1r SOFTWARE TEST AND EVALUATION -4 • °:" 	' • 	I •

-

.,...„.„.:,.,,,..,.,_,,,- _,

r ...s.".,„.4, .,.:?.„,.. ..

,-...,..-6,..:,..,1 17 ,:',"..:. •;:t:---i -,:i: • ...
7 - ..; ._7 . :',.;;P:

. i 4 ii..Z. . 11

-rt.:1,- .••••••
1

•• 	••• 	Iv •

- 'p.' ••••• **-1,

1,11, 	• 	.
•

•_

FOR SOFTWARE OT&E

.•

••••■•••■••■••••••■•61.1ww........•■■pagm

AFTEC ORGANIZATIONAL RELATIONSHIPS

FIELD

DETACIVAINTS

AFTEC
COMMANDER

CHIEF OF STAFF

DCS

TEST
VALUATION

JOINT TEST

■IL••■•■p 4081■•■■ImiNzw■ww, ■De■mr .0■1:Lma■r

	I 	

FIELD .TEST

TEAMS

RESOURCE

MANAGEMENT
ANALYSIS

TACTICA4 STRATEGIC SPACE/RECON
SUPPORT
SYSTINIS

Cs ll

I-1 LOGISTICS

I

SOFTWARE
EVALUATION

IRONIC
IOWANS

PLANS A

PTIOGRAMS

PLANS AND
PROGRAMS

(xP) i 	 	1

TEST MANAGEMENT APPROACH
(AFTEC HQ ELEMENTS)

AFTE, C
MAMA/OMER

CHIEF OF STAFF I

1•0

ANALYSIS
(OA)

TEST AND
EVALUATION

(9,4FS

TEST
MANAGERS

SOFTWARE EVALUATION

FUNCTIONAL SPECIALTIES

AVIONICS/ELECTRONIC WARFARE SYSTEMS

•SPACl/MISSILE SYSTEMS

0,-

• C 3 SYSTEMS

• AIRCREW TRAINING DEVICES

. __. 	*AUTOMATIC TEST EQUIPMENT

* DATA AUTOMATION SYSTEMS

•
r

• • •
'1-• ; 	 •

• •

.....rdrr..a*as•sesa • •• ■ •■••-•am 	 . 21,ra••••■•• .10WiSalbwo

•
• i

011E TEST TEAM COMF.DSITION d

--z.- 	 • 	,•••• 	• • 	• 	; '. 	•

• •-•;% 	 ••,rot- 	•-• . • •
°Tar TEST

WRECTOR
(AFTEC)

• . :

irgi 	 -

'f 	r 	 t' •

.. 7rj .: 	 •r 	 -

'1 4t 11":"" . •

- - 	 • 	'

	 : 	 -

" 	• 	• 	• •; 	•÷"tti 	•,•.i

- . .

-4.-

[DEPUTY FOR 1
	 _ 	_ 	SOFTWARE

EVALUATION I
(AFTEC) j

1

1 I •

•

DEPUTY FOR
LOG IL EVALi -

(AFTEC)

_ 	 • 	 • 	 - • • - ••

-4-.45;•::H;;:=

DEPUTY FOR
OPS i EVAL

(AFTEC)

. 	.

OPERATIONS
(USING

COMMAND)

: ea ,8111:,,I, - . — . •

4 4 CP .,
6.,: -.

1.••••-a".. 40 6* . g • . •F , • „frog i .4. - .
4 rii#. o..;14.1.: : : 4 • r..- - -• : 4 ' 	 1 1 ::

C•VO.:it'f41 -"- ;:•.-. 1.. 11-E 	- .'" ! .1 ..

I • 	-• ••
' "!;:i% c .-- • 4.4‘.4.....- -..!..-1.-.7:ti.:-

. 	; 	 .9, .

• ••••• • •• :1/7••f•••{.
I. N/

. 	 !Ir. • •) 	 t■csi
' - 	•

	

- 	, 	• I • .! • ft-

1 ASSISTANT FOR DATA
MGT AND ANALYSIS

•(AFTEC)

• •

••

• • 	. 3 7 7 7; • 1: 	.• -••••• 	• •'•

• • 	 4., •

" 	f• 4. 1"

•• • 	 : :7: 7

AFTEC

MAINTENANCE
(USING .

COMMAND)

TRAINING

(ATC)

•: LOGISTICS
(ARC)

EFFECTIVENESS
(USER)

SUITABILITY

(SUPPORTER)

SOFTWARE EVALUATION

• TEST PREPARATION

• EARLY PLANNING WITH IMPLEMENTING,
USING, SUPPORTING AGENCIES

• PREPARE OBJECTIVES, MEASURES, METHODOLOGY

• DESIGN REVIEWS, CRWG, TPWG

• TEST CONDUCT

• IN-PLANT TESTING

• ON-SITE TESTING

• EVALUATION

•TEST DATA ANALYSIS

•TEST DATA EVALUATION

• •REPORT PREPARATION

SYSTEM OTgE

•

I OPERATIONAL
1 EFFECTIVENESS

OPERATIONAL
SUITABILITY 	I= IIMM NIM IN= MEM MEM MOM OM illi MEI =Ell MN NNW MEM =MN UMW IM• UMW Il

SOFTWARE EVALUATION

* 	DOES THE SOFTWARE DEGRADE SYSTEM PERFORMANCE? 	
I
I

I 	
* 	DOES THE SOFTWARE FACILITATE THE JOB OF THE

I 	 OPERATOR/SUPPORT PERSONNEL?
	 I

I 	

• 	IS THE SOFTWARE EASY TO CHANGE? 	 r
I

6 um =NI me Nom Imo am ii■ am mow own moil Imo ■I IMINI OMNI ME NM WWI MMI M= NM= =MI MIN IMM MEN NMI WM NEM 11

a. •

••
ei r io`r.4".11

r- tt t /r..

• • 	-

• f !

• • • .
• •-?;-•:•

SOFTWARE EVALUATION
•; 	: I. 	• ''••

'
e ol • 7

• .

..;•

S 'W SUITABILITY
(MAINTAINABILITY)

S/W EFFECTIVENESS it? '

,•;

1
•

• - PER ----
FORMANCE 1—+

01
CFI

MISSION
S/ VV

OPERATOR-
MACHINE
INTERFACE

SUPPORT
S/W

MACHINE-
MACHINE
INTERFACE

41, 	

•
11111■111•11■■■■•■••Noommini■•■••■••■■••■••■■••1 • DOCUMENTATION • PERFORMANCE

REVIEW
. OF THE MISSION S/W • OPERATOR-

MACHINE
INTERFACE

- • DOCUMENTA
TION
REVIEW

: 	 —77-717— . • 1-7

• . •

DEFINITION

SORWAMMAINTAINABILITY - A MEASURE OF THE EASE WITH WHICH SOFTWARE
CAN BE CHANGED

REASONS FOR CHANGE:

• CORRECT ERRORS

• ADD OR DELETE SYSTEM CAPABILITIES

• MODIFY SOFTWARE BECAUSE OF HARDWARE CHANGES

DEFINITION.

OPRierl.•_ THE EXTENT TO WHICH ECkEIWARIDISIGNATED TO perm
SUPPORT FUNCTION IS IFFECTIVI,IN,PERPORMING THAT PUNCION

AND IS USABLE BY, THI AIR FORCE OP 'A1

CONSIDERATIONS:

• FUNCTIONAL PERFORMANCE

• OPERATOR•MACHINE INTERFACE

• PERSONNEL/TRAINING REQUIREMENTS

-7,%.......!,1 .., - 	 .. . ,1 	 . .. • 	: ' 	 • 4 	 . . - "; . : 7:::F4:3- ..;..a.7...':44)7"r, k11411.1:11C1.41111;t7R:4
...

• • ' 	b. 3

...* : :............z .1'..•:. f ., .i! ,...., ..,....4 .-.= • . ..'' 	a,, a 	 • - . 	.- •,..-^ • :. 	.. : i:....r.i.:-:0,4;:i ',WI
'''..1.1"...r.•.-q- •..:.1.- t.4.4. IL.::'44/ ,i "•`54 4 '''' 11 - • '', .

• - 22" ; • ...E.- 7i -.-,'. . 	. .-kt 	i. ,; 	 ?. 	. 	.: 	
:•e 	•• ■• 	: 	t•-•.- • t 	. 	. .; ' ...,4 % 	-1-_ 	. 	•

• : 	. -., ' -o'.. - .:.:: .1"

• "P' 	• 	:. 1:. 	. -..., 	.• • tf : , 	.. ;;;;.: f r 	: ' . : 	: 	'

j!.13:;'..........L.:........... ..."644...1 7 	•

• ...i .". . ■ . 	: 	' t 	A 	' 	% .. ," • .f t.

SOFTWARE SUITABILITY OBJECTIVES
.

.7. ..
..........„...„...„..„.•,...,........., •.._:::.......::.... 	L. .'t '.' '17 .., '. i'

.. • - : • f i 	• 	• '' ; 	', ' 	' — •••:.!, • • 	7 LI. . 	. 	
. 	 .

.1.1- 	.'. 411,..!.:1.:.; . . 	. 	t. 	1 : 	. L..'. ,.:1-'1 	. L. •. 	: ... 	",
a . • 	'',.1p.;;At„...1,7„.-.1:-..„L„----_:4-..T.A.:,... .,..........;-',":4.:.:1: -r.a.:-..-..t.-7„;::-; ,......f......., -.7: 7.1. ... f...:. 4 .'.::' . : 7.. E)cAmpLE...._,..:.:..,.. 7)...

.. 	

. 	
...-. ----:_—:.7:::1—.:.1....r.r: -_-. 4 • . 	 -

• -t, • smt.-o-s -4 'ma,- 1-.. --a. • t - . • . . - 	. - . --.: 	. 	- -

• •

• • a •• • • 	 • *2.1 • •

-;+

•

•7"

;...:+_OBJECTIVE 11. EVALUATE THE OPERATIONAL SUITABILITY
OF THE CNCE SOFTWARE SYSTEMS.

• - 	 • 	 _
• • 	 . 	 .

:..(A)SLiROBJECTIVE 11.1. EVALUATE THE OPERATIONAL

: SOFTWARE FOR MAINTAINABILITY

•

- MAINTAINABILITY

(B) SUBOBJECTIVE 11-2. EVALUATE AVAILABLE SOFTWARE

SI.ilrORT RESOURCES

• . (C) SUBOBJECTIVE 11-3. EVALUATE THE ADEQUACY OF
- 	-

-71-GOFF-LINE DIAGNOSTICS TO DETECT AND ISOLATE

MALFUNCTIONS IN A TIMELY MANNER

•

• • .

'711

USABILITY --
r

- 	 I.

METHODOLOGY

AWIFY SUBJECTIVE EVALUATION

• SEPARATE EVALUATION OF DOCUMENTATION AND
SOURCE LISTINGS

• STANDARD QUESTIONNAIRES FOR ALL SOFTWARE

• MIASMAS PRISINCE OF DESIRABLE MAINTAINABILITY
CHARACTERIS'TICS,

• TECHNIQUE IN USE FOR SEVERAL YEARS

4 4ittlikirc4it.11.6.4■ !!,;:tk?:.,4;14 .7-; '
.iiirkmAgt_in"12$1;WIL`.1.41. •?..';.; ii *; .

itiliiii• •14.j.i.:_1....e.i,p, ,....:!:,,Ip.'.. C!kl. L t.

. 1•.i. --.`),;:t1:•:•17ri .1 %fie it..8;11111,-. • ,:i.. -
• • .

r:112S+,■ 0 1.: l• *, 4 ;:i
.

.!*.t...._..1...4 Le
.
 :. ,

...t4.77 ,tr-4- .• • ■ ••.t.i: ,•., 	.:. __LA :-.7.' . ,

: 4: - "'* • r - "' '" - ..--.4-i-,i,
•

COMPUTER
SUPPORT

RES • R E

• - •

• • •

'EXPANDABILITY

O S

• -

INSTRUMENTATION

BUILDING

PERSONNEL/TRAINING

•

. ;.

t i • :--; ::: 41••-!: ;:. I'.. 4. i4-•:•ii ; • ."
.

j 	r-i..sal 1 i...aL ...L. :: Li a i :; ...i.itti 	i• 	' I 	

illiess—.-L—Zai -•"""...16tiolia. 	, Fraaria44.4.-V .7-41--1---1-i="i".- -1:-I'4 ,•:-

1.9-s• 	 trei
	

:„..

•-+ DOCUMENTATION

•••

••■•• 	• - •

SOFTWARE SUITABILITY

MAINTAINABIUTY

1

SOURCE LISTING

-MODULARITY 	SUPPORT SOFTWARE - •

DESCRIPTIVENESS 	SUPPORT EOUIPMI IT

• • ."t• 	;

/ 	••■•••

•
•

• 441...

•
USABILITY -

• .•

•-

• •

1 1 ;

• 13 ! . -;!51..;sti • 7.. gr; t e
441 ■!:' .‘"...t3TPUrAtte+41,.. "

•.• •.4:167

" 	 ••

`ti. y.

– • • i i

MODULARITY

-DESCRIPTIVENESS

I

•.!. • •

.44...• •

-COPISISTENCf
1 •
I- CONSISTENCY

[.• • • • Is. 0:••:7 ... 711.Nr Y . • w . .=?. - 	 .r.

, : , ., . 	 • .. . --14 --4111APUCITY.-
- •

• • •

SIMPLICITY

-EXPANDABILITY

- INSTRUMENTATION

%ow: 	 — 	 • 	 —•

fel r

411.11•41 	 • • 	 •

-4143'

;I.'. • 	. 	ry •:
■ 	 ••.d.k110,... 	.4.;

: 	 • 	 '

Lit
• 41 • • v.: • 	• 	 1. 	* 	• 	:

• • ' •••• •• •

• . 	 . 	 • • 	 •• •• •••■ ••ii• ..
• '—"-. 	'' '•:: 11, ' 1

1 ...

j • 1 . 	ai
(

••.

i
i..; •

....••••• 4

1

1••• . 9 • ••
-it

, •

:;

-• • = .:

t * , 	l'•'-•' 	• •
. • 	..
	

• 	•

• •

MAN-MACHINE INTERFACE

EVALUATION METHODC LOGY

• APPROACH:

• SAME AS MAINTAINABILITY
• PROVISIONS FOR UNIQUE APPLICATIONS

- • •OPERATOR VS SUPPORTER ORIENTED 	-

.:711 CI 4.. 	; •••• 	•• ••■ 	 It: • 	

77
- ...• 	 :

I: t 	 ;

• STATUS:

•TEST FACTORS IDENTIFIED
- •QUESTIONNAIRE WRITTEN

• DRAFT EVALUATOR'S HANDBOOK AVAILABLE I
1

SOFTWARE OPERATOR-MACHINE INTERFACE-

EXAMPLES:

• OPERATOR INPUT ERRORS DO NOT CAUSE SYSTEM FAILURES.

• THE SYSTEM SOFTWARE MAY BE RELOADED QUICKLY AND EASILY.

• MENU TECHNIQUES ARE USED TO AID THE OPERATOR IN
MAKING DECISIONS.

• LEGITIMATE RESPONSES FOR ALL CONDITIONS ARE DOCUMENTED
AND/OR PROMPTED BY THE SOFTWARE.

• MESSAGES REQUIRING ACTION BY THE OPIIATOR ARE ALWAYS
HIGHLIGHTED IN SOME FASHION.

• OPERATOR ENTERED INSTRUCTIONS ARE RELATIVELY SHORT.

•

-;- 	: 11 1.
• • • 	; • 	1. 	r"Ir eirfeit

	

gic P.6 	r I ...IT. 	 ' 	 t•
• • ?4'.11.4

4 	 4 t
•.• SOFTWARE EFFECTIVENESS OBJECTIVES

.111411/4;•411%.,,t,,:r4.44-:m.v■.•• -1 •
-Ti! e 	.

•

.; 	

' 	 • r• • - 	." • 	 • EXAMPLE
• • 	 • 	

•

- 	 • 	 • 	 •• 	 • •• 	 •

';: 	 •

• ;!'

n . •

• • -

'':OBJECTIVE 5. EVALUATE THE IMPACT OF THE CNCE SOFTWARE
SYSTEKOWTHE OPERATIONAL EFFECTIVENESS OF THE SYSTEM.

T. : (B) SUBOBJECTIVE 5-2. EVALUATE THE ABILITY OF THE cNCE

 OPERATIONAL SOFTWARE SUBSYSTEM TO PROCESS NODAL

	

- - 	- _ - TRAFFIC IN A TIMELY MANNER . 	.

}

•-: 	 ••.••

• - 	-

PERFORMANCE --

•

• _ 	•

(F) SUBOBJECTIVE 5-6. EVALUATE THE INTEROPERABILITY OF THE

. 	CNCE SOFTWARE SUBSYSTEM WITH OTHER NETWORK

-SOFTWARE ELEMENTS
• •
• • •. 	 • •

1 MACHINE-MACHINE

INTERFACE 	•
I

	

--71.7 • — 	(H) SUBOBJECTIVE 5-8. EVALUATE THE CAPABILITY OF THE CNCE
•• 	 - 	 • o•-• • SOFTWARE SUBSYSTEM TO ASSIST THE CONTROLLER IN 	 - , MAN-MACHINE

	

.- -; 	 • '. •='' 	 ••,-. 	 • 4 --i ,- --•--: 	 •,.• - - • 	 ,

	

...
. 	 - . : 	 : :. 	 , .

r-'.:— ' '''—t — "• t .--" ..- — • PERFORMING HIS RECORD-KEEPING FUNCTIONS

	

. .
	 INTERFACE

•

SOFTWARE EFFECTIVENESS EVALUATION

• SYSTEM CONTEXT

• FOCUS ON CRITICAL PATHS

4.. 	 • FULL SYSTEM/CASUALTY MODE OPERATION

• DETAILS OF LOGIC EXECUTION

• FTWARE TEST AND EVALUATION
- • 	 • • • - • • • -

• - •

el. • 	 ' • • 	 • . I 	 I

•

— I 	 : 77 . 	 • • • 	 • —

-• • • --•

, • -.

• AFTEC ORGANIZATION FOR SOFTWARE OM • • •. 	 • 	 •

,O•

• 1 ,
:

: It • FUTURE EFFORTS IN SOFTWARE OT&E
. •

PRESENT SOFTWARE TESTING SHORTFALLS

• LITTLE ASSURANCE THAT CRITICAL FUNCTIONS ARE EXERCISED

• DEFICIENCIES DISCOVERED LATE - COSTLY TO CORRECT

• SOFTWARE SUPPORT RESOURCES NOT AVAILABLE FOR EVALUATION

• SOFTWARE ENGINEERS NOT AVAILABLE FOR EVALUATION

IMPROVED TEST METHODOLOGY

• EVENT TRACE MONITOR

• ADDITIONAL STANDARDIZED TEST TOOLS

• MORE IV&V APPLICATIONS

SOFTWARE DESIGN TECHNIQUES

11) MORE STRUCTURED, DISCIPLINED

• TOP DOWN PROGRAMMING

• HIGHER ORDER LANGUAGES
co

INDEPENDENT VERIFICATION AND VALIDATION
(IV&V)

• FUNCTIONS IN OPERATIONAL ENVIRONMENT

• USEFUL DT&E TOOL (ANALYTIC ENVIRONMENT)

• APPLY TO OT&E

• PROVIDES EARLY DATA

• IDENTIFY CRITICAL PATHS

SUMMARY

• SOFTWARE MUST BE EVALUATED
(EFFECTIVENESS AND SUITABILITY)

• SOFTWARE EVALUATION EXPERTISE ON TEST TEAM

• AFTEC TAILORS SOFTWARE OM TO EACH PROGRAM

Mr. Greenlee: Thanks, Mike. To complete our presentations by military
components, we will have a presentation from the Defense Communications
Agency. There are numerous defense agencies outside the Services which
are involved in computers and their use, NSA, DIA, etc. Probably none is
a bigger consumer of software than the DCA. To compound that, it seems
like our comm programs are the ones that frequently have most substantive
issues involving software and software testing. So, here to talk a
little bit about one portion of the DCA point of view is Mrs. Caral
Giammo. She has charge of the software testing for WWMCS at the DCA
facility out in Reston, VA. Caral?

181

MRS. CARAL GIAMMO: DEFENSE COMMUNICATIONS AGENCY

Mrs. Giacomo: I think what you are going to hear from me about software
testing is a little bit different than what the other people have been
saying because the software we test is based on commercially supplied,
general purpose software. Most of what has been talked about is embedded
software where the environment and the range of the use tends to be more
restrictive. The software itself is easier to use and easier to specify
than general purpose software, and we are involved with general purpose
software. I've been listening, and everyone seems to assume near perfect
specifications that are comprehensive, accurate, and precise and that,
therefore, the fallibility lies in the implementation. I work in an
environment where the specifications are probably nonexistant and the
fallibility lies everywhere. I was interested in the broadening of the
scope of the definition of embedded software to mission critical because
you will see that our software is indeed mission critical. The area I'm
with, and that the Defense Communications Agency plays a very big part
in, is in the Worldwide Military Command and Control System - WWMCCS. We
are in WWMCCS ADP which is 7% of WWMCCS. WWMCCS ADP is small yet it is
that part of WWMCCS that makes the headlines, which Jack Anderson writes
about, which the House Appropriations Committee chastises, and which is
constantly being investigated by GAO. We have high visibility. We even
had 7 minutes on Walter Cronkite.

The Defense Communications Agency is very heavily involved in WWMCCS.
WWMCCS is slightly different from the systems previously discussed. We
support all Services, JCS, unified and specified commands, and NATO. So,
the systems that I'm going to talk about are extremely general purpose
because we have such a mix of users. It .is indeed mission critical.

The WWMCCS ADP system is what I'm going to talk about and what they look
like today. WWMCCS ADP started in 1971 when the hardware buy was made.
The basic computer is a Honeywell 6000 frontended by a Datanet 355.
There are within this system at least 4 different type processors within
the WWMCCS community. A site may have from 1-4 processors. Some have
more. This slide is just a general picture. Some have more than one
Datanet. Most have more than one Datanet. There are at least 5
different kinds of disk drives in the community and 5 kinds of tape
drives in the community. The H6000 and Datanet was the original buy. In
about 1974, people discovered that they really had to access 2 computers
from remote sites, and they needed network processing capabilities. At
that time, the Honeywell 716 (700, 725) was put onto the WWMCCS
contract. I'd like to point out here that the software that operates in
the Honeywell 6000 is basically the Honeywell commercial software. If
you go to IBM and buy a computer, you get a whole pile of software that
comes for free. In WWMCCS, if you buy a computer, if you become a WWMCCS
site as the Defense Nuclear Agency has just become, the computer is from
Honeywell, but the software is from the Defense Communications Agency --
operating systems, compilers, data management systems, the whole set that
is normally free.

182

In addition, if you were buying from IBM and you were in the banking
industry, you might decide to buy from IBM a set of software to handle
banking applications. In WWMCCS, if you would like to have a joint
reporting system, you also get that from the Defense Communications
Agency. We supply to the WWMCCS community 23 standard applications.
We're dealing with not only applications but systems software. And the
systems software, as you'll see, keeps growing. Over 20 million lines of
code.

The next thing that happened was that the Honeywell 700 became obsolete
in Honeywell's product line and was replaced by the Level 6 computer.
Again, the users are accessing hosts over communications lines.
Computers in Panama are talking to computers at Tampa and one in Alaska
to Cheyenne Mountain. Our computers are all over the world. WWMCCS ADP
covers 17 time zones. We moved from stand alone hosts with remoted
mini's, which is easy, to internetting our computers. We run a computer
network, an ARPA type computer net. Twenty-two of the WWMCCS sites are
internetted and NATO runs their own net of 3 computers. Our front end is
an Interface Message Processor built on the Honeywell 716. Our
communication lines also involve satellite links. We have 6 computer
types within WWMCCS now, all one vendor. In a few months, we will have 7
computer types from 2 vendors.

The internetting is called the WWMCCS Intercomputer Network. This slide
is the topology as of March 1981. You can see that we have Air Force
sites in the Pacific (PACAF) with Korea internetted by a satellite into
an IMP at PACAF and PACOM, coming back over satellites into MAC. SAC
will be coming into the intercomputer network in a couple of months. The
network runs all the way to Europe. The network goes as far south, which
I don't believe is on here, to Panama which goes to REDCOM. From the
north, we have the Alaskan Air Command. This is the software that I'm
responsible for testing. We have 14 people who test the system software
that is the basic operating system, communications, and network software
for this network.

This next slide is from the WWMCCS modernization study. It is here to
show you the diversity of our users. In looking at the WWMCCS
modernization, the WWMCCS System Engineer found that there were 26
independent users of the system. They excluded NATO, the 4 Air Force
Major Commands that are part of WWMCCS, and the early warning systems.
Note the variance in the number of processors that the sites have and the
types of applications. Our users are everyone from MAC who runs an
airline reservation system to SAC to MTAC, the military transport
command. The last one is our facility in Reston. That is the scope of
applications.

183

Some interesting things come out of it, I think, that makes us a little
bit different from previous presenters. We have 20 million lines of code
on the systems software side, the bulk of which is commercial
off-the-shelf software. If you have ever had to deal with commercial
off-the-shelf software done to best practices, you know the problems.
What kind of testing do you do? We view our role as everytime the vendor
cones out with a new release of software, our role is to get the
belly-ache rather than our 42 WWMCCS sites all getting the same
belly-ache.

We have embedded into this software WWMCCS uniques, mainly in the
security area. These are embedded in the software and permeate all of
the software. We have, in addition, about 117 additional WWMCCS
hang-ons. They are requirements of the users after having used the
software and deciding that they needed something added. The biggest
WWMCCS unique is the software for the WWMCCS Intercomputer Network. Our
network handles file transfers and teleconferencing. Thus, we have a
full range of software. I think the key here is that we are dealing with
general purpose software. We don't know how our users will be using the
software. Our users are the computer operators, the system software
people, the application programmers, and the action officers who sit in a
command post, and who have to get into the strategic systems or into the
joint operational planning system. All of this is done through the
WWMCCS Intercomputer Network. We have a heterogeneous user community
both in the types of applications that they are using and the experience
level, from very experienced computer people to very inexperienced
people, and totally uncontrolled use. Another area of difference is that
we have multiple vendors -- multiple hardware vendors and multiple
software vendors. Even in the standard applications area, we have
multiple vendors. So, it is a slightly different environment.

Instead of general requirements, I started to put motherhood requirements
because that is about the only requirement that we have. We don't have
well defined, unambiguous specifications. Our requirements are that the
WWMCCS Intercomputer Network should be 99% reliable. Now, how can
something which is over communications lines, modems, cryptos, etc. have
99% reliability with no back-up? Even if the reliability of each
component is .99, by the time 100 components are hooked together, you
have a very small reliability. Some requirements are conflicting. For
example, two that came out of Congress recently said the WWMCCS is
obsolete. Then it said, next tine buy commercial, off-the-shelf software
without bells and whistles. And, by the way, make sure it handles
multilevel security. And, the last difference is that we have continual
change. If the vendor, Honeywell, isn't changing the operating system on
the H6000, then the Level 6 operating system is changing. We are
continually finding errors in the systems. Our applications are updated
twice a year. The sites are continually changing their use of the
system. What do we do in this kind of an environment?

184

We use all of the techniques that everyone has spoken about. We get in
early when we can. We obviously can't tell Honeywell how they should do
their software development. Given that we have the authority, given that
we have the dollars, given that we have the personnel, we get in when we
can. We do component tests, very extensive component tests. We have a
large range of test programs. We have the ability to choose tests based
upon the changed parts of the operating system or different pieces of the
equipment. We have gone into end to end tests, systems tests. The
biggest testing is with the WWMCCS Intercomputer Network. If a user
can't get into the system, who does he call? An exercise falls apart,
who gets blamed? The only place where there is any system expertise in
WWMCCS is within DCA. We're the people who have to try and do the post
mortem and find the problem. The big question is where does software
testing stop? When a system is more than hardware and software, who
solves the problem?

We just went through a very expensive'and time consuming problem solving
exercise. Our site in Korea was running much slower than any other
site. The first problem was that they didn't know they had a problem
until my boss went out there and signed on a terminal. He tried to get
into a teleconference and waited 5 minutes. He said, "this is not the
way it is supposed to be". We have a small test facility with the
ability to simulate satellite circuits or to go over live satellite
circuits. We found out theoretically in an unloaded system what kind of
throughput that Korea should have. Messages were sent back and forth --
check this, check that. The DCA Operations Center that controls the
circuits checked the circuits. Checks occurred through the tech control
facilities in Hawaii and the tech control facility in Korea. The problem
could not be found. We finally put 3 people on an airplane with
datascopes, and they started in Hawaii tracing the circuits. We believed
that the problem was one of the tail circuits. The Hawaii circuits were
clean. They went to Korea. The problem was a $1.50 wire, a grounding
wire. It had been cut. No matter how many times that field engineer
changed the boards, which had been done many times, the board still
wasn't grounded. It was causing the errors -- retransmissions, loss of
data, and the slowness. Is that a software problem? I don't know, but
the user came to the software people to find the problem. That is what
we are seeing today. Test personnel have to be multiskilled, and the
real critical area is the multi-discipline ADP/communications specialist.

I would like to give to Dr. Fischer a few more problem areas. One is
system test tools for computers and communications. Where there are
mixed systems, you need systems test tools. . Another area is system
performance, I rarely see in software that is being developed that the
requirement to be built into the software data collection tools which
will help in the performance evaluation or in even performance data
collection. The vendors don't do it in their operating systems.. This
data would help in testing systems. The last problem area is diagnostic
capabilities without taking the system off-line. We've got that big
intercomputer network, and something is going bad. How can we find it?
Loop backs through the comm circuits? Through the IMP's? Go into the
Datanet maybe and into the 6000 and back to a bad terminal? But, you
have to be able to do that without taking that site off-line. You have
got to keep the computers up because the operational data is flowing.

185

That is all I have. Does anyone have any questions?

Dr. Fischer: 	The representatives from the 3 services distinguish
operational tests from development tests, where development tests test to
the engineering specifications and operational tests test to the users'
needs. The testing you described, what would you classify that as?

Mrs. Giacomo: Well, we don't have any specs first of all. And, I'm very
serious about that.

Dr. Fischer: Why?

Mrs. Giacomo: We are getting commercial, off-the-shelf software. Do you
ever get a spec from IBM? WIN I have specs for, not very good ones
sometimes, but specs. If we have specs, we test to the specs. If we
don't, we use the users manuals that the vendor provides. In the WIN, we
have specs we test for. But the main thing we test to is the end user.
Here is the user document, these are the capabilities he has. Does he
really have those? The slide that I have left up there is that we ensure
that the system operates as the end user believes the system will
operate, that the documentation clearly explains the system to the user,
and that any capabilities that he had in the previous version of the
software still exists or the change is documented. We do a great deal of
regression testing. If I have to fit somewhere, I have to fit in the
operational testing. If we can get into the development phase, which we
do with the WIN software, we do. I fit more in that user end. Any other
questions?

186

VIEWGRAPHS

USED BY

MRS, GIAMMO

FOR THE

DCA

PRESENTATION

187

TEST AND EVALUATION
OF SYSTEM SOFTWARE

FOR THE WWMCCS STANDARD
COMPUTERS

1 6000

CARD

*Amm l
1M p
•

IMP

IA'

.6 •

ON 355
% %. •

CA KO

• •
H ?00 • •

■

Ali
♦ ♦ ∎ •
MEL 4

• . ■ •

• N. •
ON 33'f

• Irr

idttfA l Ir 	4e, 	• 	•••4

Et t 	Vt? 	 :11 *

-; ' 11.1r 	 -0"

COMMAND
LEVEL SITE

TOTAL CPUs
LOCATION 	BY SITE

CPUs PER
CONFIGURATIONS 	CONFIGURATION

JCS NMCC Pentagon 4 Operations 2
Development/Back-up 2

ANMCC Ft Ritchie, MO 4 Operations r—..

SIOP 2

Unified USEUCOM Vaihingen, GE 2 Operations/S1OP 1
Intelligence (IDHS) 1

PACOM Camp Smith, HI 1 SIOP 1
Makalapa, NI 1 Operations 1

LANTCOM Norfolk, VA 6 Operations 4
Intelligence (IDHS) 2

REDCOM/ McDill AFB, 4 Operations (REDCOM) 2
JDA FL Operations (JDA) 2

Sped-
fled

SAC Offutt AFB,
NE

7 SIOP
Force Status (on-line)

2
2

Development/Back-up 2
MAJCOM Support 1

NCRAD/ Colorado 14 Intelligence (IDHS) 2
ADCOM Springs, . Space Computation Center 2

CO NCRAD Command Center 2
NCS Back-up 2
Comm System Segment 2
Off-site Development _ 4

MAC Scott AFB, IL 7 Passenger 1
Cargo 1
Operations (Top Secret) 2
Operations (Unclassified) 2
MAJCOM/Development 1

Sub- USD'. Taegu, Korea 1 Operations 1
Unified

Service Army Pentagon 2 Intelligence 1
Hq (AOC) Operations 1

Navy Washington 4 Operations 2
(NCC) Navy Yard Development 1

Back-up 1
AF(AFDSC) Pentagon 1 Operations 1

System
Support-

Army War
College

Carlisle Bks,
PA

1 Back-up Operations 1

ive Air Univ Gunter AFS, AL 2 Back-up Operations 2

Component PACFLT Makalapa, HI 2 Operations 2
Commands (PACWRAC)

USAREUR Heidelberg, GE 1 Operations 1
FORSCOM Ft Gillem, GA 2 Operations 2
NAVEUR London, England 2 Operations 2
TAC Langley AFB, VA 3 Operations 3
PACAF Hickam AFB, HI 1 Operations 1
USAFE Ramstein AB, GE 2 Operations 1

NATO/US Support 1

Transpor- MTMC Falls Church, Va 3 Operations (Top Secret) 1 	_.
tation Operations (Unclassified) 2 	_

Support/ CCTC
•

Reston, VA 4 Development 4
Develop- (Reston)
went ATC Keesler AFB, MS 1 Training . 	1

Navy Pax River, MO 1 • Navy Test Bed 1

Totals 26 83 49 83

Figure 2 	WWMCCS ADP Sites, CPUs, Configurations
(Qanuary 1981)

191

C400
WWMCCS ADP

TECHNICAL SUPPORT
DIRECTORATE

SOFTWARE TEST AND EVALUATION

- OFF-THE-SHELF COMMERCIAL SOFTWARE

IMBEDDED WWMCCS UNIQUES

O 	HANG ON WWMCCS UNIQUES

- FULL RANGE OF SOFTWARE FUNCTIONALLY AND GENERALITY

- HETEROGENEOUS USER COMMUNITY-UNCONTROLLED USE

- MULTIPLE VENDORS

- GENERAL REQUIREMENTS-CONFLICTING REQUIREMENTS

- CONTINUAL CHANGE

Oil

0 ENSURE WWMCCS SYSTEM SOFTWARE FUNCTION AS DOCUMENTED

• ENSURE NEW FUNCTIONS ARE ADEQUATELY DOCUMENTED

O ENSURE CAPABILITIES OF PREVIOUS SYSTEM OPERATES
IN THE SAME MANNER AND ANY CHANGES IN CAPABILITIES
ARE DOCUMENTED

Mr. Greenlee: Our next and final presentation is by our contractor
support team established to carry out certain technical details in the
STEP program. We have obtained the expert services of Georgia Tech and
CDC out of Atlanta. Their primary emphasis will be, in addition to
smoothing and shaping the overall project activities and producing the
reports and other hard products, developing the data base which is really
composed of two parts, the technical survey on software tools, practices
and procedures, as well as the management or administrative side, which
will look at the current guidelines, standards, etc. under which software
is developed and tested within the Department of Defense. The principal
investigator is Dr. Rich DeMillo of Georgia Tech.

194

DR. RICHARD DEMILLO: GEORGIA INSTITUTE OF TECHNOLOGY

Dr. DeMillo: Let me tell you what's going on with the STEP contract at
Georgia Tech and Control Data because there are some ways in which you
all are going to be involved, I hope you are going to be involved later
on. The contract itself is funded through OSD and ONR. The prime
contractor is Georgia Tech. I have a group of people working with me,
mainly graduate students at Tech. We'll be dealing mainly with the state
of the art in software T&E. We have a subcontract to Control Data
Corporation to deal with current DoD practices. You'll hear from a
couple of the Control Data people later on. In addition to the contract
work that's being done, there are going to be two additional sources of
input. One is this meeting. I didn't really know what to call this
group, so as far as I'm concerned, you're an advisory panel. Later on,
we'll have a reconvened and expanded advisory panel that I decided to
call the consultants. Some of you, in fact, may end up being the
consultants. I'll explain in just a moment what the point of that second
advisory group is.

The goal of the project is to give Don Greenlee's office some technical
information on software test and evaluation. This slide shows some
things that we'll certainly want to provide. We may get to other topics
as time goes on. The things that seemed most important to me were these
top three items. Assessing available technology. Assessing the
state -of-the-art in software testing and surveying current practices both
in DoD and industry. We would like that to be as clear a picture as
possible of what the collection of people both in academic and research
circles and in practice think of program testing. We want to take into
account changes in technology that have relatively short horizons, both
hardware technology and software technology. There was talk this
morning, for instance about Ada, software tools ... That's a change in
software technology that will certainly impact software testing. We want
to account for special DoD problems. That's a euphemism for embedded
computer systems. If we're going to target anything in particular to
talk about that will be right up there on the list.

Finally, we want to solicit expert positions, opinions in effect on the
things that have come before. Almost certainly, there are going to be
differences of opinion on the meaning of the data that we collect on the
state-of-the-art and the state-of-practice. What we would like to do is
to get, within our resources, a range of positions that we hope will
cover the kinds of controversies that are going to come up as this step
takes place, as we give input to Mr. Greenlee for what were really
phases II and III of his flow diagram.

195

We've set up a number of tasks. We're actually in the middle of Phase I
of the project. Phase I of the project is 9-11 months, depending on when
you count the beginning of this contract. Phase I is a data gathering
phase. The assessment of the state-of-the-art, the assessment of the
state-of-the-practice, is going to be summarized in a document that we
are calling an overview document. This should be a relatively complete
picture of the world of software testing, at least from our point of
view. We're trying to be as objective as possible about the data
gathering effort. 	I was thinking about that this morning. 	I don't
usually sit so quietly in meetings like this. But, I guess I'm supposed
to be objective in the data gathering effort. The second bullet under
Phase I, convening of the advisory panel, is really this meeting. The
Control Data people who will be visiting some DoD installations in the
next few months are going to need a lot of help, a lot of input, a lot of
patience on your part. We had hoped that this meeting would be a ... I
don't know what you would call it .. an olive branch that we're holding
out to make sure that that goes smoothly. Anyway, Phase I, this lengthy
phase of the project will be mostly invisible to you. You will see the
output of it at the end. That will feed into Phase II, the analysis
phase. This is the non-objective part of the project. We'll select,
with your help and input, a panel of ... I don't really know how many ...
we had suggested 20 at one time ... we're open to suggestions on that
..., a panel of consultants or advisors whose job it will be to develop
position papers based on the overview document. The overview document
will be distributed to them. The position papers should hit the points
that Don Greenlee mentioned this morning and some of you have talked
about since then. We would like postion papers on the notion of risk
assessment with regard to program testing, status and limitations
current technology. Presumably academic people will be involved
developing those position papers, suggestions for future research and
development. I think what we will find is that there will be lots of
suggestions for future research and development in order to get the kind
of T&E technology that we would all like to see. The economics of
program testing. 	And input on feasible policy formulation. 	Those
position papers will be developed over a 3-4 month period. I'm not
particularly concerned that we get contradictory positions, in fact, I
hope that we will get some contradictory positions so we can lay out a
range of opinion on the matter. We will then hold a workshop at the end
of Phase II at which the position papers, and we hope, extensive
discussion will be presented. This entire Phase II project should be
completed, once it begins, in 3-4 months.

196

The overview document that we are now in the midst of preparing, as I
said, has 2 parts to it. One is an assessment of the state of the art,
the other is an assessment of current practices both within DoD and
industry. The topics in the state of the art survey, I just picked a few
from the outline, and I'll talk through some of these in a little more
detail in just a moment. The state of theoretical knowledge, the role of
software metrics, what methodologies are available for software test and
evaluation, what methodologies are available for test data generation,
what tools, automated tools, are available, what technological advances
will mean to T&E ... someone suggested this morning that being able to
migrate some software tasks into hardware would have an impact on it ...
Finally, the relationship of applications to software testing. The
Control Data portion, the current practices survey is data gathering in
the true sense of the word, I think. Ronnie Martin and Don Miller have
been gathering material on existing regulations for T&E, project
experience from various military organizations, effective procedures or
ineffective procedures, as the case may be, and finally, data on such
things as the kinds of errors that are reported in existing systems and
additional statistical data.

I'd like to just show you the kinds of things that we are going to talk
about in the state-of-the-art portion of the overview and then, when I'm
done, Ronnie and Don will tell us about what you can expect from the
current practices portion of the overview document.

The state -of-the -art survey is going to cover three aspects of software
testing. On the next slide, I'm going to limit the world of software
testing for you, so we shouldn't have any definitional problem. We'll
cover the current state of theoretical knowledge, the current status of
tools that we know about for test and evaluation, and these will be both
commercial products and things that are in the public domain, and
finally, take care of that issue of technological forecasting, as it
effects T&E.

Unlike a couple of the previous speakers, I'm not talking about
operational testing. Right now, I'm talking about this kind of testing
which is really the only thing that is dealt with very well in the
technical literature. It is really development testing. The picture you
should have, I think one that you all are familiar with, is one in which
the proposed methodology will somehow take test data, to be generated,
and a specification document and compare the results of executing the
program on that test data with the expected results from the
specification document for two purposes, one to discover errors ...
Vance, I think this morning you had in the Ada kernal diagram, debuggers
sitting at the MAPSE level, I guess I'd move those into the program
testing realm insofar as debugging helps you discover errors ... for
error discovery and for confidence building. If you don't find errors
what does that tell you about the reliability of the program? So, the
state-of-the-art survey is going to be concerned with the techniques that
are available for these two aspects of program testing and finally, the
sort of surrounding infrastructure, the management of that task.

197

Dr. Fischer: Is this going to be limited just to software testing or
also to integration testing where we put software on a chip and test that?

Dr. DeMillo: We'll say some things about that only to say that we don't
know much about it from a research point of view. One of the things that
we will do is identify research directions. I think that is one that has
to be put on that side of the board.

I'm going to show you some topics so you can see the things that we will
be dealing with. When I talk about testing techniques, here is a list of
techniques that is not inclusive but it is the kinds of things that we
will be looking at. The applications areas .. I don't think anyone here
feels left out by that. Tools ... and really the hardest section for us
so far is the assessment of new technology.

When Don Greenlee saw the outline for this section of the overview
document, he thought it would be a good textbook, and I hope that, at
least, if not a textbook, at least a handbook that is encyclopedic of
what is known today about software testing. I don't know what we want to
do about questions, I'm willing to take questions now and then turn over
things to Control Data.

198

VIEWGRAPHS

USED BY

DR. DEMILLO

FOR THE

SOFTWARE T&E PROJECT STATUS a PLANS'

PRESENTATION

199

THE GEORGIA TECH

SOFTWARE TEST AND EVALUATION PROJECT

(STEP)

Richard A. DeMillo

School of Information and Computer Science

Georgia Institute of Technology

Atlanta, GA

200

STEP CONTRACT :

OSD/ONR

1
STEP

Advisory

Panel

1
Georgia Tech: 	Consultants

R. DeMillo
M. Merritt

S. Bilsel

Control Data

Corporation:

E. Martin

R. Martin

D. Miller

J. Dodsworth

F. Sayward

201

PROJECT GOAL:

Provide Technical Information on Software

Test and Evaluation

• Assess Available Technology

• Survey Current Practice

• Assess State-of-the-Art

• Forecast Future Technology

• Account for Special DoD Problems

• Solicit Expert Positions

• Input for Policy-Level Decision-Making

202

PROJECT TASKS:

Phase I: 	Data/Information Gathering

• Overview Document Preparation

• Convening Advisory Panel

• 9-11 Months

Phase 11: 	Analysis

• Distribution of Overview Document

• Selection of Expert Panel

• Development of Position Papers

• • Risk Assessment/Management

• • Status and Limitations

• • R&D Needed

• • Economics

• • Feasible Policy Formation

• Workshop

• 3-4 Months

203

OVERVIEW OF SOFTWARE T&E:

State-of-the-Art 	(Georgia Tech)

• Theoretical Knowledge

• Metrics

• Methodologies

• Test Data Generation

•Tools

*Technological Advances

• Application Areas

2. 	Current Practices 	(Control Data)

• Regulations and Standards

• Project Experience

• Effective Procedures

• Data

204

STATE-OF-THE-ART:

I. Theory of Software T&E

II. Software T&E Tools

	

Ill. 	New Technology

205

SOFTWARE TEST AND EVALUATION:

Test Data ---1> Output

Vs.

I Expected Output

t
Specification Document

• Error Discovery

• Confidence-Building

• Management of the Task

206

APPROACHES TO SOFTWARE T&E :
Rm.

Concepts

• Black Box/White Box

• Structured Methodologies

2. 	Test Case Design and Generation

• Black Box Methodologies

*White Box Methodologies

207

TECHNIQUES:

1. Static Analysis

2. Symbolic Evaluation

3. Instrumentation

4. Compiler-Ba.sed Techniques

5. Mutation

6. Domain Testing

7. Functional Techniques

8. Path Analysis

9. Algebraic Techniques

208

APPLICATION AREAS:

1. Embedded Systems

2. Communications

3. Real-Time Systems

209

TOOLS:

I/O Behavior

•Test File Generators

• Test Data Generators

• Output Comparators -

• Mutation-Based Systems

	

2. 	Un-Augmented Tools

• Code Auditors

• Static Analyzers

	

3. 	Augmented Tools

• Dynamic Assertion Processors

• Dynamic Execution Verifiers

• SeIf-Metric Instrumentation

• Symbolic Evaluators

	

4. 	Productivity Considerations

Experimental Systems

210

NEW TECHNOLOGY:

1. 	Software Technology

• Operating Systems

• Compilers

• Data Bases

• Languages

2. 	Hardware Technology

• VLSI

• Memory

• Graphics

• Architecture

3. Communications Technology

4. Applications Technology

211

MR. DON MILLER: CONTROL DATA CORPORATION

Mr. Miller: I am Don Miller. Ronnie Martin and I will be doing this
task of surveying DO and its components, gathering data. We work for,
as you know, Control Data Corporation. I always like to start out with
wiring diagrams. This will give you a fast idea of the approach we're
going to use in gathering this data. The command and control lines are
the solid lines. The lines that I'm interested in are the dotted lines
which are the coordination lines for the lines from which we will be
gathering data. We'll probably follow the chain of command. We'll start
at the top level and follow the lines down to the program managers. We
are interested in the Headquarters levels of the Services, the Materiel
Commands, the Operational Test and Evaluation Agencies, and the Program
Managers, etc. This is basically what we are going to be doing. We are
going to be looking at the regulations and policies as far as software
test and evaluation. Then, we're going to survey the military
installations on how the regulations, procedures, etc. are implemented.

Mr. Devlin: How are you going to determine the implementation, by
examination as a question or are you going to examine the contracts...?

Mr. Miller: My partner is going to get into that in just a few minutes,
into the details of the methodology that we are going to use. Any
questions?

Dr. Leathrum: It seems there might be a little concern with finding ways
where the regulations were ignored or not ignored.

Mr. Miller: Well, hopefully, we'll find that out. We will definitely be
reporting our findings, and we'll be seeing you all again, real soon.

212

VI EWGRAPHS

USED BY

MR. MILLER

FOR THE

SOFTWARE T&E PROJECT STATUS & PLANS (CONT.)

PRESENTATION

213

OPERATIONAL
TEST & EVAL

_IGEN C I ES
CDC

NS I A

CONTRACTOR

MATERIAL]
COMMANDS

PROGRAM
MANAGERS

TEST
SITES

DEPARTMENT OF DEFENSE

SOFTWARE TEST & EVALUATION ACTIVITY

COMAND, CONTROL I_COO RD !NATI ON

U-

DOD

G I T
DOD

AGENCIES
HQ

MILITARY
SERVICES

r 	

214

9

•

DOD PRACTICE:

What Regulations, Etc. Exist?

DoDD 5000.3

MIL-STD-1679

• • •

How Are the Regulations, Etc. Applied?

Army 	Navy 	Air Forc

HQ

Development Cmds
(& Contractors)

OT&E

IV&V

215

MS. RONNIE MARTIN: CONTROL DATA CORPORATION

Ms. Martin: As it was mentioned before, my name is Ronnie Martin. I
work for Control Data Corporation.

The basic methodology we're going to use in trying to gather our data on
the current practices in DoD and industry as far as software test and
evaluation is ... Don and I have put together a whole group of Data
Gathering Guides which we will use to interview people when we go on our
visits to various military installations. The guides are specifically
tailored according to whoever it is we're talking to. We have one for
the Headquarters and Materiel Commands, we have a separate one for the
Program Managers, and the Government Programming Shops, Industry
Programming Shops, OT&E Agencies, and IV&V Organizations. The most
detailed one of those guides is the one for the Program Managers because
that's where we want to get the detailed information according to what
application the people are working on, how they test the software for
that application, how they evaluate the software, what do they do as far
as developmental testing, operational testing, and so on.

These are some of the areas that we'll be looking into. The items that I
gave you are overviews of the Data Gathering Guides. A lot of the
sections look the same under each of the different guides, but there are
some slight differences. For instance, if we talk to an IV&V
organization, we're not going to ask them everything in the world about
operational testing. It wouldn't be appropriate there. When we talk to
the operational testers, we're not going to ask them all of the detailed
questions about developmental testing. We will ask them to what extent
they participate during the development stage but we won't ask them
detailed questions on it.

Mr. Devlin: Are you going to ask about a specific program, say any given
program, X program? Are you going to start out with the program sponsor,
say at the Headquarters level and then go the the PM and then go the OT&E
and then go to the IV&V on one program?

Ms. Martin: We're going to hit more than one program, but we want to get
as much information about the programs that we choose to visit as
possible. Initially, what we want to do is talk to the Headquarters
people. The type of information we want there is basically, what
regulations and standards exist. We want guidance from those people as
to what programs are at a good stage for us to visit. If something is
way back in concept, they're not going to have a lot of details on how
it's going to be tested. They'll have some ideas, but we wouldn't be
able to get nearly the amount of information there as we would at a
project that's in the process of being tested or one that was just
deployed 6 months ago. This is the type of information we want at the
Headquarters level. And, similar information from the Materiel Commands.

216

The next level down from that would be the Program Managers. The Program
Managers we will visit will be the ones for the specific programs we want
to look at. If he can't give us all of the information we would like in
the detail we would like, then, hopefully with the help of NSIA, we'll go
to the contractor who actually did the programming. We'll go and talk to
the operational testers who are involved in it. If there is an IV&V
organization, a contractor involved there, we'll talk to them. We'll try
to get a total picture of all of the test and evaluation that is done on
that specific program. We're hoping to hit multiple programs, I don't
know exactly how many ...

Mr. Devlin: With what success rate? Are you going to look at the people
who survive? The people who didn't survive? ... That's what I was
wondering, the validity of the case ... you can pick up any contract and
see almost any regulation that there is invoked.

Ms. Martin: The important question here is, we want to know what
regulations exist and we want to know how they are implemented. It's not
a witch hunt, we're not trying to point fingers at anybody. We just need
as much information as we can get so we can give a realistic picture of
what the current practices are.

These are the various areas that we want to look into. Background
Information. Basically, the type of thing we want to know there is what
programming language is being used, what type of application this is. Is
it radar ... is it C31 ... what is this? What regulations and
standards exist, the people that work on this project, what they have to
follow? Industry testing standards vs. DoD practices. What is required
for industry to follow? Do you have any methodologies or any special
techniques within your corporation that go above and beyond what's
required by the government? What exactly are the standards in industry
vs. those in the government? Pre-testing activities are things like
design reviews, code reviews, walkthroughs, inspections, requirements
analysis, various areas like that. Developmental Testing and Evaluation,
people have talked about a lot today. Integration Testing, once you've
tested the various modules to make sure they're OK, how do you test that
they work with each other? How do you test that they work with the
hardware? We want to look at Independent Verification and Validation,
Operational Testing. Acceptance Testing, exactly what do you consider to
be your acceptance testing, is it part of the developmental testing, do
you have a separate group that does that, exactly how that is handled.
How do you document the tests that you do? How do you maintain that
media so that you can retest things later? Another part of each of these
sections where appropriate is regression testing. Given a specific
change to a program, how do you decide how much testing you have to do.
What are your procedures in those areas? What quality assurance programs
do you have? What kind of risk assessment do you do for software to
decide how much testing should be done given how critical this piece of
software is? Finally, we want as much information as possible from
people as to what they see the new technology trends to be and if you're
doing anything to prepare for those new technologies, if there are any
engineering studies or anything like that as far as how we're going to be
ready to test according to these new technologies.

217

This is a list of some of the types of supporting documentation that we
may be asking for. Organization charts, that gives us an idea of how
everybody fits together in the big picture. We need Operations and
Functions Manuals so that we're sure we don't miss somebody that's
important, that could give us some good information, and to know whose
responsibility is it to do this, whose responsibility is it to do that.
What regulations and supplements you have, since as you go down the chain
in the military, people supplement and supplement, and there goes a
pamphlet ... we need to know what's out there. We need to know what the
guy down at the bottom has to follow. What Standard Operating Procedures
do you have? Descriptions of the applications that we're looking at.
Not anything real, real detailed, because I don't have an engineering
degree to understand that, and that's not what I'm interested in. I just
want to know basically what applications are involved in this program, so
that if we have some application specific techniques, we can label them
as such. We would like to see some test plans and procedures because a
lot of the questions we will be asking relate to how you came up with
those. What method did you use for your test case design? Finally, if
it's possible, we would like to see some error data. By that I mean,
what kinds of errors have been found once the system has been deployed or
in the testing what kinds of errors have been found. What are your ideas
as far as what kind of testing might have found that?

Another thing that we'll be asking all the way through is when we're
talking about specific techniques, we'll ask you what do you like about
this technique and what do you dislike. We believe that for any
technique to be really useful, the people that have to use it have to
like it. So, we'll be asking those types of questions. This is
everybody's opportunity to get their input in as far as what they think
would be good, what's worked for them, what hasn't work.

Dr. Fischer: Are you aware of the Data and Analysis Center for Software
that RADC has? They have file drawers full of error data.

Ms. Martin: That might be a good source of information, but the error
data all by itself won't be worth much if we don't know how they tested
in the first place. So, we need it all as a package to be able to figure
out what it's worth.

218

Finally, this is an outline of what our part of the overview document
that Rich was talking about will look like. 	It has a background
section. 	We'll explain in there again how we went about our data
gathering. The important part is the results which we will organize
according to the state-of-the-art format so that if you read the front
part of the overview where it's state-of-the-art, if you read about
specific techniques you can turn to a similar section for Current
Practices and see what is really being done in those areas. That will
include a listing or some kind of a write-up about current standards and
procedures. Then, the practice of testing and evaluation rather than the
theory of it, this will be how it's really done. What philosophies were
used, test case design, testing techniques, evaluation techniques. What
tools are available for people. That will be an important part of the
questions we'll ask. What tools do you have available? What tools do
you use? Do you have any available that you don't use, and if so, why
not? This is to try to find out what problems there are with tools, what
the needs are.

We'll have a section on applications. Again, we want to know if any
techniques are application-specific and we'll be asking questions about
that. We'll also have a section on new technologies. That will depend
upon what information we can get.

We're completely dependent upon all of you people for all of the help
that you can give us. The more information you give us, the better job
we can do with this whole thing, and the more likely it is that it will
succeed. If you don't give us any information, we've got nothing.

Finally, we'll have a summary at the very end of it. This will be it.
The State-of-the-Art part, the current practices part, that'll be the
overview document for the panel of experts to come in and look at and
decide what's good, what isn't, and where we should go from here. As
Rich said, we're going to be as objective as possible throughout this.
We're just gathering data so that we can report it, and the experts can
decide what to do from there.

219

VIEWGRAPHS

USED BY

MS. MARTIN

FOR THE

SOFTWARE T&E PROJECT STATUS & PLANS (CONT.)

PRESENTATION

220

DATA GATHERING GUIDES:

HQ & Materiel Cmd Visits

	

11. 	Program Manager Visits

III. _ Government Programming Shop Visits

IV. Industry . Programming Shop Visits

V. OT&E Agency Visits

VI. IV&V Organization Visits

221

AREAS OF INTEREST:

Background Information

Regulations and Standards, Etc.

Industry Testing Standards Vs. DoD Practices

Pre-Testing Activities

Developmental Testing and Evaluation

Integration Testing

Independent Verification and Validation

Operational Testing and Evaluation

Procurement-Acceptance Testing

Test Documentation Procedures

Quality Assurance Program

Risk Assessment

New Technology Trends

222

SOFTWARE TEST AND EVALUATION

- STATE-OF-PRACTICE DOD:
am.

I. 	Background and Overview

Data Gathering Methodology

Results Organized According to State-of-the-Art

Format

A. 	Current Standards and Guidelines,

Procedures, Etc.

B. 	Practice of Testing and Evaluation

1. 	Testing Philosophies Used

2 	Test Case Design and Generation

Techniques Used

3. Testing Techniques Used

4. Evaluation Techniques Used

C. 	Testing and Evaluation Tools

D. 	Applications

E. 	New Technologies

Conclusions - Summary

223

SUPPORTING DOCUMENTATION:

• Organization Charts

• Operations and Functions Manuals

• Regulations and Supplements, Etc.

• Standard Operating Procedures

• Program Descriptions

• Test Plans and Procedures

• Error Data

224

Mr. McOmber: 	I don't have any questions, but I have a couple of
observations. You may or may not be aware of it, but DoD is in the
process of conducting a survey exactly like this and gathering a lot of
the same information regarding software problems. A year or so ago
within the Navy - in fact Bill Smith, who is here today - conducted a
survey asking for a lot of the same information. Admiral Williams, the
Chief of Navy Material, commissioned our office to conduct a survey of
the entire Material Command, including all project managers and Navy
development activities, collecting data which will be a superset of your
data. Number one, it seems like the world is being surveyed to death.
Number two, we decided to go in-house with our survey, because two years
ago, when the project was being planned, we had a contractor already
signed up, and our contract control people turned it down because the
contractor was also involved in the development of Navy software, and
they thought that this was inappropriate. That's my comment. I'm not
being negative about the whole thing, just a couple of observations.

Mr. Greenlee: Well, I understand and appreciate your comments. It is
our firm commitment not to replow any new ground. What you have heard
described is the from-scratch data gathering effort, but obviously, we
are committed to getting the most mileage out of everything that has
already been compiled. Nothing would please us more than if this were
simply a capstone effort to pull together existing data. We are not
going to go out and ask a single question more than we have to or take up
anybody's time where their thoughts have already been recorded elsewhere.
We are aware of many of these survey efforts, and I'm sure we will turn
up more as we go along. Our objective is not to compile raw data. It is
to reach conclusions. We will welcome surveys and inventories and
existing and ongoing and planned efforts of this type. We know about a
lot of efforts that are going on within and between Services, even NATO,
for example. The CDC objective, although they have described it as a
from-scratch effort, is really to pull together existing information to
the extent possible. Caral?

Mrs. Giammo: When I was thinking about what I was going to say here, I
tried to put together a chart that I hope you people can put together,
because I don't know how. I tried to develop a pictorial representation
of kinds of software, the states of the software development process, the
controls over the development process, including requirements, and tools
that are available for software testing. There would be guidelines or
something that says if you are up here, here is a test tool that is very
good, and if you are down in this part, here are other things. I find an
awful lot of what I do is trying to explain why some technique that is
really super good doesn't at all apply to the work I'm doing. It doesn't
technically make any sense. I don't know how to do it.

225

Mr. Greenlee: You may recall from the first flow diagram this morning,
that one of the tasks we have set for ourselves is to attempt to not only
survey and draw together test techniques and tools and practice but to
make some kind of a knowing assessment, an evaluation of these and try to
determine in what areas certain ones are good, what ones are not good,
etc. We do intend to attempt to assess as well as simply gather raw data
on the value of software tools.

Dr. Leathrum: A number of speakers said this morning that what we do
depends on the capabilities of the people we train. It makes me wonder
if CDC's survey shouldn't include educational institutions as far as what
techniques are being taught ...

Mr. Greenlee: I think that is a good point, and we are committed as you
have seen from our displays to bring in the ideas from the university
community as well. We have a suspicion that what government asks for,
industry provides, and colleges teach are not all at the same level.

Unidentified person: Don, you mentioned that one of the hopeful outcomes
of this effort is to write a guideline for the test and evaluation of
software and that will become part of DoDD 5000.3 and this effort will
take about a year. What is the current status with revising 5000.3?

Mr. Greenlee: To answer your first question, I don't think a decision
has been made on the medium by which any guidance which is developed will
be promulgated. 5000.3 is the likely choice of vehicle because it is the
T&E document that we live by, and it does call out software testing as a
special section. There are other alternatives. We will certainly not
make the next revision of 5000.3 which I think will occur rather
shortly. 5000.1 and .2 are very close to being issued now, and we expect
to provide whatever additional change or extra material is needed by
5000.3 very shortly, but certainly we will not be in a position to infuse
any of this effort into that.

If there are no further questions or comments, I would like to bring the
workshop to a close by thanking all of you who attended. Your
participation made this meeting a very interesting and useful forum for
the exchange of information and ideas on software testing. We owe
special appreciation to the DSMC for serving as our institutional host on
this occasion.

The material presented here today and the ensuing discussions were far
too broad and diverse to summarize briefly, so I won't attempt to.
However, I believe we have reaffirmed the- importance of effective
software T&E. Furthermore, it appears that there is room for improvement
in the technical state of the art in software T&E, i.e., tools and
techniques, or at least in the dissemination and application of existing
methods. Finally, it seems clear that the management side of software
T&E, i.e., the policies, practices and guidelines under which software is
tested, is also a candidate for enchancement. These are exactly the
subjects of subsequent STEP efforts.

226

You have heard the planned STEP methodology described. We are proceeding
to gather information from government, industry and the academic world.
A second workshop with wider representation will be held at a later date
to promulgate and discuss findings to date. An expert panel will develop
papers on specific topics. It is hoped that this activity will
ultimately lead to conclusions which will be specific enough to serve as
useful guidance in software T&E yet general enough to encompass all or
most DoD embedded computer resources. Your continued interest and
involvement are welcomed and appreciated.

227

S O FTWARE
 tEST AND EVALUATION

PROJECT

PHASES I AND II
FINAL REPO R

VOLUME 5
REPORT OF EXPERT PANEL

ON SOFTWARE TEST AND EVALUATION

SUBMITTED TO
THE OFFICE OF THE SECRETARY OF DEFENSE

DIRECTOR DEFENSE TEST AND EVALUATION
AND

THE OFFICE OF NAVAL RESEARCH
ONR CONTRACT NUMBER N00014-79-C-0231

SCHOOL _OF INFORMATION AND COMPUTER SCIENC
GEORGIA INSTITUTE OF TECHNOLOGY

ATLANTA, GEORGIA 30332

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director Defense Test and
Evaluation under Office of Naval Research Contract N00014-79-C-0231.

Comments should be directed to: Director Defense Test and
Evaluation (Strategic, Naval, and C I Systems), OSD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Volume 1: Final Report and Recommendations
Volume 2: Software Test and Evaluation:

State-of-the-Art Overview
Volume 3: Software Test and Evaluation:

Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and

Evaluation
Volume 6: Tactical Computer System Applicability Study

Volume 5

Report of Expert Panel on Software Test and Evaluation

TABLE OF CONTENTS

PAGE
An Integrated Software Test Technology Research Plan 	 -T

by Edward F. Miller, Jr.

Rapid Prototyping and Refinement: An Approach to Software • • 	8
Testing by Richard J. Lipton

Integration Testing of Software by James F. Leathrum 	10

Status and Directions for Software Testing and Evaluation • • 	14
Tools by Leon Osterweil

Assessing the Software Product Qualities of Correctness . • • 	25
and Reliability by Victor R. Basili

Impact of Software Testing Issues on Future Software 	33
Engineering Environment by Leon G. Stucki

Application of Software Metrics During Early Program 	34
Phases by Ralph C. San Antonio, Jr.

Managing Software Testing Using Reliability Estimates • • • • 	42
by Martin L. Shooman

Software Error Studies by Carolyn Gannon 	50

Experience in Testing Large Embedded Software Systems • • • • 	57
by John B. Bowen and Marion F. Moon

The Economics of Software Testing - An Introduction 	65
by Raymond J. Rubey

Programming Languages, Testing and Reusability 	69
by Peter Wegner

Impact of New Hardware Technology by D. A. Giese 	80

Software Testing Standards: Policy and Applications 	99
by Marilyn J. Stewart

Software Quality Assurance and Acquisition Policy 	105
by Capt. William P. Nelson

Air Force Testing/Acquisition Policy 	112
by Major Arthur E. Stevens

Acquisition Problems Influencing Software Development 	116
and Operational Testing by Lt. Col. Michael A. Blackledge

Perspectives: Software Test and Evaluation Project - . 	123
A Progress Report by Richard A. DeMillo

Panel Discussions 	133

An Integrated Software Test Technology Research Plan

Edward F. Miller, Jr.
Software Research Associates

580 Market Street
San Francisco, CA 94104 USA

Phone: (415) 957-1441 -- Telex: 340-235

ABSTRACT

It appears clear that the essential issue for the computing community in
the 1980's is to develop the technology to assure successful creation of
complex software systems at the necessary high level of Quality but with
acceptably low Cost. Already, some overseas competition has begun to
offer software ;TEN "extended warranties,* something that domestic
manufacturers of software have not yet attempted.

Research and development for the past decade has made substantial
strides toward the dual goals of Quality and productivity; yet much work
remains to be done. Many of the technical approaches that have been
identified in the past are, apparently, effective only on relatively
small projects. Methods have to be devised to extend *laboratory scale"
approaches to "commercial scale" problems.

Among major software engineering problem areas, software testing and
analysis has become a major bottleneck, due to a lack of understand of
the technology, a minimal understanding of the underlying theory, and
inadequate tools base. This paper describes a systematic program of ad-
vancement in theory, technology, and necessary support tool functions
designed to provide for software Quality needs for the remainder of the
century.

INTRODUCTION AND BACKGROUND

It is becoming clear that the main issue
in software engineering in the 1980's will
be "quality" in one form or another.
Quality in software must be delivered with
acceptably low cost, particularly in view
of the growing international competition
fQr high-quality high-capability software.

Significant strides have been made in the
1970's toward achieving reliable software.
These advances have spanned a range of 	.
technical areas, and the software test and
evaluation area has experienced great
growth and development. However, to meet
the challenges of the remainder of the de-
cade new appumches must he made to
achieving better quality software at
higher-than-ever production rates.

The Software Test and Evaluation Project
(STEP), (Reference 1), is an example of
the kind of program that can have a signi-
ficant benefit if carried through proper-
ly. An earlier workshop, held as part of
that Project (Reference 2), provided some
initial thinking on how best to attack the
software test and evaluation problem.

This paper describes how, in rather gen-
eral terms, software quality is actually
achieved, and discusses how quality
management is made to fit into the
software life cycle. Rased on this per-

spective, we then define a series of
research needs in broad technical areas.
A goal of identifying these needs is to
focus attention on those few important
technical areas which could benefit from
accelerated development.

The research needs identified form an in-
tegrated package of technical requirements
that could for the basis for a long-range
technology development plan.

HOW IS QUALITY ACHIEVED

Quality is "installed' at varying cost
throughout the life cycle of a software
system by means of a number of technical
devices, not all of which are completely
explicit. Effectively, testing in one
form or another accounts for the majority
of error discoveries. Gross error rates
range from 0.1% through 3.0% for unaudited
code; it is unknown how many other errors
exist: that may cause problems. Some of
these errors are found on purpose, and
some are not. In fact, some are found
only by field tests made by the final
users!

The feedback process involved in perfect-
ing a software system often involves
developers, quality assurance experts,
beta-site evaluators, and the first group
of actual customers. While this technique
of distributing costs may efficient in its

1

way (the least number of people spend the
least possible money producing the
minimally acceptable product), the old
formulas for software production do not
apply in an era of software guarantees
and, possibly life-critical systems fully
dependent on software.

A range of techniques currently exists to
analyze computer software. This range in-
cludes the following, where the Quality
Management (QM) Level indicates groupings
within the underlying quality assurance
technologies:

gt 0.1: Design Walkthroughs and Guide-
lines: Procedures and checklists
Tigicined to assist in analysis of
software design statements.

QM 0.2: Code Walkthroughs and Guide-
lines: Procedures and-Ch4carsts
designed to assist in analysis of
source level software listings.

0 1: Static Analysis: Automated tools
tat try -wlierfeUr induction' methods
in an attempt to monitor source level
programs for defects.

QM 2.1: anamic Cl Analysis: Systemat-
iU testing -IDWid at 7FFieving a high
level of segment coverage.

QM 2.2: pramic Ct Analysis: Systemat-
ic testing aimedat -It7gie-iing tests
for each equivalence class of program
flow (this is related to domain test-
ing).

0 2.3: Dynamic Mutation Analysis:
 Systematic error -WeUTU/ and testset

analysis.

QM 3: Symbolic Evaluation: Treatment
the source level of a system in de-

tail at the symbolic Level (related to
Proof of Correctness).

QM 4: Proof of Correctness: Mathemati-
cal verification of sof-E-u7ire proper-
ties using mechanical proof methods.
Often, this is done by reference to
Lata type •ivItractions of various
kinds.

Level 0 Quality Management methods are
largely manual approaches, although there
is some augmentation with automated tools.
The level 1 method relies on the use of
specially built static analyzers, which
are normally both language and system
dependent. Level 2 techniques involve the
use of dynamic analysis methods of varying
kinds. The Cl level, which is the most
basic, is becoming a standard (see below).
Ct, requiring source level analysis of the
control structure to recover the software
system structure in order to identify the
equivalence classes, is more thorough, and
emulates proof methods.

QUALITY MANAGEMENT IN THE LIFE CYCLE

Delivery of software quality control and
management technologies must be phased
carefully with the software life cycle.
This can be done by phasing the technique
with the corresponding phase of the life
cycle.

For example, Level 0 techniques relate
(obviously) with the design and coding
phases of the life cycle. The Level 1
method must relate directly with the
post-coding stage, since the source code
must exist and be processable by the stat-
ic analyzer.

Similarly, Level 2 methods can only be ap-
plied at the point where code and test
data exist. Note that the mutation
analysis phase requires that some test
data exist, or else there is now way to
*retire mutants.

Level 3 methods apply, if appropriate in
cost and effort levels, only to working
programs. Level 4, involving potentially
the highest costs for the smallest re-
turns, must he used only sparingly. Not-
ably, techniques based in Level 4's tech-
nology, primarily involving the applica-
tion of abstract data types, is finding
application in the requirements analysis
phase.

What is conspicuous by its absence is the
fact that Few of the current software
quality management methods have direct ap-
plication during the early-on phase of
requirements/specification. This is a
lack that must be remedied in the future.

RESEARCH NEEDS

All of the foregoing requirements suggest
a range of "technology needs" that, if
achieved, would serve to augment the capa-
bility to systematically test and evalua-
tion computer software. In this section
we have identified some 30 different
technical needs in a variety of areas. rn
part, thin identification is based on an
earlier paper (Reference 3), except that
the range of needs considered is expanded
and the context is updated.

The technology needs fall into a number of
general areas, roughly outlined as fol-
lows:

Theoretical Foundations: The technical
developments that support all of the
other areas, based on mathematical
understanding of the underlying techn-
ical models that describe computer
software. The theory must preceed
development of applicable methodolo-
gies.

2

The state of the art in testing theory is
good, but not complete. Tests can he
shown reliable only if the error class is
effectively restricted (according to
Howden, to action errors only). No basis
exists (yet) for mutation analysis, even
though the experimental results for it are
attractively good.

Methodology: These are the organized
procedures that bind theoretically
sound methods and techniques into a
workable strategy for accomplishing
some useful work. The methodologies
actually used must be based on suc-
cessful empirical evidence of success.

Mont organizations now have some Quality
Management methodology in place, but these
cannot be considered "strong" systems in
all cases.

Empirical Experience: This area deals
with past experience, with experiments
that can yield new information about
particularly interesting quantities,
and with applying available data to
problems at hand. Only with a
knowledge of theoretical foundations
can good experiments he designed.

The data exists, but it has only he
analyzed in very limited form. And, much
more data needs to be examined.

Automated Software Support Tools: Au-
toTJU tools provide a mearTg7TE car-
rying out the evaluations that are
prescribed by the methodologies
developed earlier. Good tools can
contribute significantly to the
overall quality of a software system
by lowering tho crest while maintaining
a givAin quaLity leveL And/or incri , an-
ing the capability of the system at
the same cost.

Automated tools continue to grow in
number, but not necessarily in effective-
ness (Reference 6). Some systems (notably
the Unix (tm) environment) seem to prOvide
a wide range of capabilities at relatively
low cost. Current programming environment
research work has yet to produce usable
products.

New Technical Approaches: Among the
rangJ3767rrent ideas, a few appear
to deserve significant new treatment
because of the possible high payoff
they promise.

The subsections below will investigate
each of these areas and propose some new
techniques: as well as comment on old tech•
niques.

Theoretical Foundations

While theoretical work was advancing ra-
pidly in the early 1970's, progress ap-
peared to slow down in the latter 1970's.
Quite probably this was due to the fact
that the "easy" results had been obtained
and published, and what remained were dif-
ficult and messy investigations.

The relationship between proof of correct-
ness and testing is, at last, reasonably
well understood (Reference 4). It is
known that software testing cannot show
the absence of software defects, and that
finite sets of tests can never replace the
use of full-blown proof methods.

The :strong reliance on software structure,
both in proofs and in testing-level
analysis, leads to the first Need:

Need 1: Devise a general relation-
ship between a programming struc-
ture and the content, effect, na-
ture, and/or behavior of the
corresponding program.

Such a structure would permit a uniform
treatment of program structures indepen-
dent of Language and execution environ-
ment. Once this general structure is es-
tablished it should be possible to develop
general rules Eor identification of
software faults.

Need 2: There needs to be a gen-
eral theory of formal testing that
relates the extent to which a test
along a particular path can, or
cannot, discover particular kinds
of defocts.

Once it ,ocitits, this theory would permit
predicting whether or not software con-
tains certain kinds of defects, provided
only that the guidelines and limits of the
theory had been met. The problem, howev-
er, is how to do this with a few tests,
rather than a large number (when it is
likelier that the defects would be found).

Need 3: There needs to he a better
relationship between the kinds of
tests that are run and the kinds
of defects that are discovered, so
that it can be shown in advance
that certain tests are sure to
prevent certain kinds of defects.

This may not be possible in every case,
since the execution of computer programs
is extremely complex when viewed from the
level at which software defects must be
sensed and reversed.

A common means to handle a problem is to
divide it into pieces "small" enough to be
useful. At present, a "test" has to be
viewed as a single monolithic element to
be analyzed. This can be particularly
troublesome at the system test level.

3

Need 4: The relationship between a
test of a system and the tests of
a subset of the system is not un-
derstood. There needs to be a
general investigation into the re-
lation of a test to its "sub-
tests".

If this can be accomplished then system
level tests could be sub-divided into
sub-system and maybe even module-level
tests. The result would be to save a
great deal of testing work.

Even so, however, the techniques used now
for system testing are crude and not par-
ticularly effective. Techniques like
cause-effect graphing, functional decompo-
sition, and state-space analysis seem to
be limited to a few hundred "items" (i.e.
causes or effects, functions, or internal
states).

Need 5: There needs to be a gen-
47r theory of system testing to
match that currently known (and
evolving) about unit testing.
This theory should provide for
development of functionally based
tests, possibly in terms of
specifications (see below), that
have error discovery and/or
preventive properties.

In such a theory, if it can be developed,
a test could be related directly to a
function or requirement that the software
system must have, and as such would Lead
directly to a "validating" step. This
would lead to a situation in which
software requirements, software design
statements, and source code, could be
treated in an common way. Such a develop-
ment would go a long way to improving the
effectiveness of formal and semi-formal
methods of requirements setting.

eed 6: There needs to he more
3:47el5pment of methods that can be
used effectively to "execute"
software requirements or specifi-
cations.

Interpretation of specifications should be
possible by a technique akin to that of
symbolic evaluation. The result would be
the ability to determine the exact nature
of a specification, long before it was
converted into code. Hence, errors could
be prevented before being bound into code.

Need 7: More theoretical work must
SP-1one on the notion of "program
mutations," small changes to pro-
grams at the source level. If
possible, a spanning set of muta-
tions should be developed.

Nt present, mutation analysis lacks a
theoretical basis to explain why particu-
lar sets of mutation operators are chosen,
and how that choice affects the level of

protection mutation analysis achieves.
This does not mean, it is important to
note, that mutation analysis should not he
performed as a valuable adjunct to the
testing process.

Methodology

Needs in the methodology area focus on the
development of a range of applications of
known methods, as before timephased care-
fully with the software life cycle.

Earlier we mentioned the need for a way of
connecting specifications to tests, but
even in the lack of that capability there
is still much that can be done without a
fully developed formal basis.

Need 8: There must be some better
meMod of relating specifications
to software tests, so that defects
can be discovered early in the
software life cycle.

Even if this method is "informal" or de
facto in some sense that would be far
better than the techniques used today.

The integration between the so-called
"production" or "synthesizing" life cycle
stages and the 'analysis" stages must be
made more effective if testing is to pro-
vide the benefits of lower cost higher
quality software.

Need 9: Testing must be integrated
into the design and coding process
more thoroughly. There needs to
he a method of evaluating the
problems of testing during.
software design and/or coding, as
well as methods for expressing
planned-for tests.

If this can be done one can anticipate
higher quality designs and, as a result,
higher quality source code.

Even so, there need to be stronger methods
to prevent incorporating software defects
into source code. One way to do this is
to have stronger and more effective design
and code check rules.

Need 10: Specific rules must be
TOilaged to check features of
software design and/or source
representations to impede insta-
tiation of software defects.

Most software quality work in the past has
dealt with the easiest of the problem
classes, e.g. a simple batch-oriented
system. Little thought has been given to
the issues surrounding real-time opera-
tion.

4

Need 11: Methods must be developed
to deal with the questions of the
quality of software which must
operate in a real-time environ-
ment. This implies a requirement
for both new techniques for han-
dling communications problems and
methods that work for timing-
sensitive program executions.

There may be some connection between the
work on communications protocols based in
proof of correctness and this testing
need.

The ASSERT idea, introduced by a number of
writers in the early 1970's (Reference 4),
is a way for programmers to indicate their
beliefs about the (future) behavior of a
software system. Attractive as it is,
this notion is not yet fully exploited.

Need 12: There must be more exper-
imentation with the ASSERT idea,
better in-use methodologies
developed, and a body of experi-
ence made more widely available to
support this powerful method of
annotating programs. Also, the
ASSERT notion must be extended to
the software system level.

Empirical Experience

Developing and interpreting statistics has
never been the most pleasant part of work-
ing with computers. For the software
testing area, however, in which so much
depends on the benefit/cost effects of
various methodologies, getting detailed
information about how varying techniques
work would seem essential.

Need 13: There must be better
overall effectiveness data on
every aspect of software testing
and evaluation, if the intuitively
clear benefit/cost rations are to
be supported quantitatively.

The essential "product" of software test-
ing -- the affirmation of existence of
function combined with the demonstration
of defects -- also has not yet been Folly
analyzed.

Need 14: More precise error and
defect discovery rates have to he
developed and analyzed. in par-
ticular, the relationships between
each kind of defect, its preven-
tive tests or diagnostic pro-
cedures, and the cost of discovery
must be understood in great de-
tail.

Once these rates are known the design of
effective methodologies will be somewhat
easier, particularly when combined with
good discovery and repair cost data.

The mutation systems in experimental
development need more attention too.

Need 15: More empirical informa-
tion must be gathered on the muta-
tion system idea. The goal of the
analyses must be demonstration of
benefit/cost ratios, and only
secondly the development of im-
proved tools.

The application of fault trees (see Refer-
ence 7) produces some very good effects
when studying hardware/software system in-
teractions.

Need 16: More information and ex-
perience must be gained on the
fault-tree approach to software
and system quality analysis.

The most powerful method for ridding "raw"
code of many subtle and potentially
dangerous defects is with a static
analysis system. The "lint" system on the
Unix (tm) environment is an excellent ex-
ample of how such a system should be built
(Reference 8).

Need 17: More experience must be
3gliiiloped about the use of static
analyzers as a way of finding
source-level defects. A primary
goal should be to clearly show the
benefit/cost ratios Eor use of
static analyzers before requiring
their use within the general com-
puter software development commun-
ity.

Although static analysis finds many de-
fects, other classes of defects have yet
to be analyzed in detail.

Need 18: More experience must be
collated and analyzed from areas
such as: operating systems, data-
bases, and real-time operation.
The goal of this information gath-
ering is to provide some feedback
on the possible use of new ap-
proaches.

Automated Software Support Tools

Tools capture proven methodologies in
specific implementations that serve the
given Function with a high degree of effi-
ciency.

The difficulty is: if the methodology is
not quite the one wanted, or if the en-
vironment is not the best one, then au-
tomated tools tend not to be used.

The commonest form of software testing
tool, a coverage analyzer, needs much more
work.

5

Need 19: Extended coverage
analysis systems, that handle the
"testing arithmetic" for more com-
plex measures than Cl or P1, must
be developed and distributed wide-
ly.

At the other end of the spectrum, there is
a growing need for use of rather advanced
systems.

Need 20: Symbolic evaluation sys-
tems, until recently only a
laboratory-level system, should he
made widely available, with two
goals: (1) improvement of the user
interface, and (2) additional of
necessary interactive manipulation
capabilities.

A simpler tool that would have a high im-
pact is one that analyzes only a program's
structure and suggests a set of test paths
Cur that program that would meet some es-
tablished coverage criteria (such as Cl or
Ct).

Need 21: Portable and relatively
standardized software testcase
generators based on analysis of
the structure of software should
be developed and distributed.

Test data is often very expansive, and has
to be managed with a great deal of care.

Need 22: Test control and data
management systems that are par-
ticularized to the needs of
software testing and analysis have
to be be built and experimented
with. At present, only the most
rudimentary of systems have been
tried.

Such a test data management system would
have a number of freestanding features and
facilities, but it would he even more ef-
fective if it could be included in a port-
able test environment.

Need 23: A fully portable software
test environment should be
developed. ToolPack, an initial
effort in this direction, should
provide valuable insights on how
to organize such a system.

What happens when the software to he test-
ed runs only on a machine for which the
cost of transporting an interactive test
environment is too great. One answer is
to "emulate" the target hardware using a
universal emulator.

Need 24: The use of dynamic mi-
croprogramming architectures
should be considered as a means to
minimize the cost of test analysis
of one-of-a-kind systems.

Work by Clark at the University of Mas-
sachusetts in the symbolic evaluation area
has led to development, almost as an
offshoot, of a Limited capability for au-
tomatically generating test data from the
source programs.

Need 25: A practical automated
test dita generator, based on the
use of symbolic evaluation and in-
teractive path selection tech-
niques, needs to be developed and
distributed to a selected group to
learn its effectiveness and cost.

Some new ideas have arisen over the last
decade that have never really had the op-
portunity for full exploitation.

Need 27: Approximations to comput-
er arithmetic, involving limited
range numbers that "fully charac-
terize" software behavior, need
experimental development.

Such an arithmetic would make it possible
to "execute" the program with "real
values" to determine what would happen in
the more general case. "Approximate ar-
ithmetic" falls midway between symbolic
evaluation and full direct execution of
the tested program.

More work needs to be done on the basic
implementation of systems to support
domain testing, and the use of interaction
with a skilled user should he emphasized.

Need 28: [Domain testing, a promis-
1:W4-technique, needs to he in-
tegrated into an interactive test
environment as a way to enhance
its capabilities.

The notion is an old one, and related to
random tests for hardware systems. But,
if successful, there could be a very high
payoff.

Need 29: Statistical test systems,
which choose their test data based
on random number generator pat-
terns, need to be developed on an
experimental basis.

Lastly, there is an important business
area that should now be addressed.

And, in keeping with the new emphasis on
fault-tree processing, there is a
corresponding need Eor tools.

Need 26: Support and analysis
ISEIs-Tor fault tree analysis of
software and hardware/software
systems must be developed.

New Technical Approaches

5

Need 30: Investigate the require-
ments?or guaranteeing software
performance, and providing for the
indemnification of software
against the effect of failure.

SUMMARY

Some 30 technology "needs" have been iden-
tified, in categories involving theoreti-
cal matters, methodology development, em-
pirical analysis, and automated tools.
These needs are one opinion as to what is
most important to accomplish in the long
run. It is clear that, even if these
needs are met, much work will remain to he
done.

REFERENCES

L. "ODDTE Software Test and Evaluation
Project (STEP)," Viewgraphs, Panel Orien-
tation Meeting, 29 September 1982.

2. "Transcript of Proceedings, Software
Test and Evaluation," Workshop, Georgia
Institute of Technology, Atlanta, Georgia,
18 March 1982.

3. E. F. Miller, Jr., "Program Testing
Technology in the 1980s," The Oregon Re-
port: Proceedings of the Conference on
Computing in the 1980's, IEEE Computer So-
ciety, 1979.

4. E. F. Miller, Jr. and W. E. Howden,
Software Testing and Validation Tech-
rirques, IEEE Computer SocriTy Press, 1982.

5. The Fourth Convention of the Israel
Society for Quality Assurance, Proceedings
of Software Quality Assurance Sessions,
18-20 October 1982, Israel.

6. Software Research Associates,
"Software Engineering Automated Tools In-
dex," San Francisco, California, 1982.

7. H. Hecht, "Validation of Fault
Tolerant Software by Means of Fault
Trees," In Reference 5, (see above).

8. S. C. Johnson, "Lint, a C Program
rThecker," Bell Laboratories, July 1978.

7

"RAPID PROTOTYPING AND REFINEMENT: AN APPROACH
TO SOFTWARE TESTING"

Professor Richard J. Lipton •

EECS Department
Princeton University

Princeton, New Jersey 08544

ABSTRACT

One of the possible approaches to handling the increasingly
difficult testing of software is by new development methodology.
We purpose an approach to software based on rapid prototyping
and step-wise refinement. This approach promised to make higher
quality software that is both easier to test and modify.

2. SOFTWARE EVOLUTION
First, we must understand

exactly what we mean by software
evolution. By this we mean that the
specification of the new system be
given in a new way. In the past
specifications of nontrivial systems
took 100's if not 1,000's of pages of
detailed specs. Such huge docu-
ments are clearly not easily used by
the very people they are created for,
the programmers. However, what we
propose here is that they be replaced
by incremental specifications. An
incremental specification would not
say what must be done, rather it
would explain what changes must be
done to a existing system to create
the new one. That is the specs are
viewed as a pair of objects: an exist-
ing system and a set of changes.

It is important to note that such
a view is used in many other areas of
specification. As humans one of the
ways we can control the specification

* This research is being supported by ARO Contract IDAAG 29-80-K-0090.

1. INTRODUCTION
Software development is very

expensive. What we believe is that
the current approaches to the
development of large software sys-
tems is not likely to greatly reduce
these huge costs. Further, we believe
that a new methodology is needed if
these costs are to be reduced.
Without such fundamental changes in
the way software is produced we feel
that only small improvements in its
costs are possible.

The key idea that we propose is
that software development be viewed
in a more evolutionary way. That is
that even large software systems be
viewed as evolving from other earlier
systems. The central claim is that
such an evolutionary approach has
the potential for greatly reducing the
costs of software: both in its produc-
tion and in its maintenance.

8

2

of very complex systems is to not
specify them from the ground up but
rather by such an incremental way.
Even software is informally specified
in this war what we are suggesting is
it be done on a formal basis.

An incremental specification is
then a way of expressing our needs in
a very concise way. Examples of
such specs are: (1) "make the
current foo command take an arbi-
trary number of files instead of just
one" (2) "the foo command is not fast
enough; make it at least twice as fast
as it is currently" (3) "the system
should also keep track of the goo
attributes; add a this to the data
base". The key to their success is
that we can envision the current sys-
tem changing to respond to this new
specs without having to redefine the
entire system.

It is important to note what we
are also not saying with this new
approach. We are not saying that the
new system is just a simple change to
the existing one. The incremental
specs can be very large themselves.
of course still much shorter than the
normal specs. However, the new sys-
tem need not share any code at all
with the old system. We are not sug-
gesting that the new system cannot
be totally new as far as its code is
concerned. What we are saying is
that it should not be specified from
the ground up. It is important to
note that incremental specification
may point the way to where we can
share or use preexisting code. One of
the most obvious ways to control
software cost is to attempt to avoid
recoding the wheel, and our
approach may help avoid this.

a RAPID PROTOTYPING
What if there is no current sys-

tem that is close to our needs? Then
it appears that the size of the incre-
mental specification will be no
smaller than a usual one. The answer
to this is rapid prototyping. Rapid
prototyping is the coding up of a sys-
tem, often in a very high level

language, to till exactly this role.
Once such a prototype is up and run-
ning we can then begin to see what
changes must be made to satisfy our
needs.

The rapid prototype can be used
to determine the final specification.
Often it is impossible to predict what.
features are needed in a system
without a running version. Another
advantage of a rapid prototype is
that we need not worry about its
speed. We are solely interested at
this point in the functionality of the
system: what features are useful?
which features are missing? which
features are not needed? and so on.
Later we can begin to address the
issue of efficiency.

4_ MAINTENANCE
Another advantage of the incre-

mental approach is that it meshes
very well with software maintenance.
By all accounts maintenance is the
dominating cost in large software
systems. The key to why our incre-
mental approach is so powerful is
that we can view the maintenance
process exactly as an application of
incremental specification. Mainte-
nance is precisely responding to
incremental changes in the software.
Since our approach addresses
directly such specs it should be able
to reduce greatly the costs of this
process.

5. RESEARCH ISSUES
We feel that the incremental

view of software is the key to great
reductions in its cost. In order to
make such an approach successful
we must begin research into tools
that we support such an approach.
We need editors, compilers, testers
and other software tools that work
well with our incremental view. We
also greatly need formal specification
languages that allow us to easily
specify systems in an incremental
way.

9

INTEGRATION TESTING OF SOFTWARE

by

James F. Leathrum
Professor

Department of Electrical and Computer Engineering
Clemson University
Clemson, S. C. 29631

AnsTRAcT

The technology of integration testing for software is considered in the context of similar
problems arising in other disciplines. The impact of Ada and the Ada program support environ-
ments upon integration testing developed in terms of the reduction of risk associated with
strong typing of user defined types. The case for shared testing technology is established
in relationship to other technologies which have not openly shared details of successes or
failures.

INTRODUCTION

The purpose of this paper is to outline some
problem areas and recent developments associated
with integration testing of software. Rather
than a survey of research trends or a discussion
of the state-of-the-art in integration testing,
this paper is an appeal for technology transfer
and an appeal for a new role for professional
societies in integration testing.

The problem of integration testing of software
can be characterized by presuming that the various
modules have been verified and tested and these
modules are to be "integrated" into a system.
The testing issues which arise at such a junc-
ture are of two important classes:

1) Testing the interface specifications of
the modules

2) Testing against the unquantified
requirements.

Testing and verification of interface specifica-
tions for modules represents an area of on-going
research and rapidly developing insight due to
the impact of hio as a software design tool.
The testing against unquantified requirements is
an area to which we must bring some insights
from other technologies.

UNQUANTIFI ED REQUIREMENTS

In dealing with the issue of unquantified require-
merits for software, we need to acknowledge
similarities and differences between software
design and other design disciplines. First,
we recognize that most other design disciplines
ehare the int, , ,Irdtion and integration testing
problem. 	lack of quanLiliable requirements
is also not unusual. A bridge may be expected
to operate at acceptable safety levels. A
nuclear reactor may be required to have a minimum
of environmental impact.

In the case of software, the unquantified require-
rtetnts are likely to arise in areas where the
verification methodology is not well developed.
In short, the mathematical foundations have not
been established. These areas are likely to be
associated with real-time operation, total
throughput requirements, and response time

requirements. Of increasing frequency and cone
cern as the technology develops are issues asso-
ciated with system survival in the face of hard-
ware or software component failure. Although
the modules have been verified and tested, and
the system meets all unquantified expectations,
we are still left with the question of what
happens when a memory segment fails or what are
the conditions under which resource (i.e. memory)
fragmentation may be fatal?

If we look to other design disciplines for guid-
ance in dealing with unquantified requirements,
we find that each such problem is characterized
by:

1) An acknowledged risk in the first
system integration:

2) Over-design in the earliest prototype:
and 3) A well established investigative body

to follow-up on failures.

We have acknowledged and accepted risks through-
out the development of flight and space travel.
A certain amount of risk is acceptable in the
interest of progress. It is unrealistic to
expect software design and integration to be
otherwise, but one is often led to believe that
the so-called "structured" techniques will obvi-
ate this risk. An appropriate view of the impact
of verified modules is that recovery and repair
of the system is facilitated in such a design.
(We have come to take such designs for granted in
automobiles.)

A close corollary to this view of system integra-
tion a:: a risk taking activity is the assessment
ol reducing software to code as an experimental
activity. The personal and organizational flexi-
bility to throw away code in the interest of de-
sign improvements has proven to be very difficult
to achieve. It is here that compatible design
Ind coding media such as Ada will help to put
the risks into perspective. Backing-up and
re-creating a "package body" in Ad,. will seem
like a far less serious risk than that encountered
with older programming tools.

The over-design of prototypes is an issue that is
difficult to treat in the isolated software

10

context. In the overall system view of the prob-
lem we find that extra memory or extra data chan-
nels are often committed to a design as safety
factors. The designs often become cumbersome and
inflexible as a result. In the next section,
the case of the Army's Tactical Computer System
will be considered as an example of such an over-
design.

The recognition of the need for an investigative
organization for software failures is perhaps the
most serious and most immediate concern in soft-
ware integration testing. Even the most super-
ficial view of the problem in the context of
other disciplines would lead to the conclusion
that the need is obvious. Those scientific
disciplines which have been most open in the
exchange of such information have also developed
the most rapidly. Most notably, the comemica-
tions and the electronics industries have estate
lished open forums for the exchange of what would
appear to be potentially proprietary information.
The automobile industry, on the other hand, has
not been characterized by open sharing of techni-
cs l i Ilformal itol. 	Al tlum4111

.•ly rt•lvvatel II) I he 	 i Ito 01 I.ri hirt•?:,
Uw commitment lo the exchange of technical infor-
mation is a key element to the success of such
investigations.

The mechanism by which we manage the investigation
of software failures is also an issue for which
some insight is available from other disciplines.
One finds three common modes of review:

1) A panel established by the appropriate
professional society.

2) A government review board.
3) A "blue ribbon" panel. Such a panel

was formed to investigate the Three
Mile Island nuclear reactor failure.

In case of software, the first two mechanisms
need careful consideration. The "blue ribbon"
panel would probably only be invoked in the case
of a failure of most serious consequences. The
most likely professional society to take a role
in such investigation would be the ACM since
they already have•in place the means of publishing

the results, and the ACM has already established
such panels to discuss curriculum matters. The
most obvious model of a government panel is the
National Transportation Safety Board. Given the
DoD commitment of software and the pending DoD
sponsored software initiative, it would appear
that the panel should be established within the
DoD.

THE TACTICAL COMPUTER SYSTEM: A CASE STUDY

Occasionally a systems development project
arises which provides a useful case study in how
pathologies occur during the software life-cycle.
The U. S. Army has had a Tactical Computer System
(TCS) under development for nearly a decade. Both
the hardware and software which have been designed
as part of the project have been viewed through-
out as prototype, generic models. Thus, nothing
that is written here should be construed as
being critical of the designers themselves.

The software for the TCS was developed during
early phases of the system development using
tools which by present day standards would be
judged exceedingly primitive. The modules were
subjected to extensive laboratory verification
and testing. These modules included various
modules which were subordinate to the operating
system such a message formatting and memory
management. Subsequent to further hardware
design which included militarization of the hard-
ware, applications software development and
development testing commenced. During the devel-
opment testing, the system was judged inoperable,
and the decision was made to redesign the soft-
ware under a new contract.

One could approach the TCS experience with a
"so what's new?" assessment. But, the interesting
aspect about this experience is that it presents
an excellent opportunity to examine the scenario
which led to the failure of the first software.
Even, if for contractural reasons, it is agreed a
priori that the original design was as good as
could be expected at the time it was executed,
Iher• r•e:lint: a er•at deal to h• learned tree
invet:1 i ■ fat 61.1 wIhtt . Ihippvned.

A few overall conclusions can be made directly
from the ICS experience. First, the software
failure was clearly a failure in software integra-
tion, and the failure was not recognizable until
integration testing was undertaken. Second, early
perceptions of integration problems which were
addressed by adding more hardware were the same
actual integration problems which proved fatal to
the system. Third, over-design of the communicae
tions hardware proved to be an unfortunate diver-
sion of the technical manpower from the systems
implementations problems.

The problems just cited were further complicated
by the progression of technological developments
which were occurring concurrently with the TCS
development. Since the original software was
implemented many years before the hardware was
militarized, the tools which were used were
primitive (assemblers) and the rationale for
the software design was either lost or it never
existed. By the time the system reached develop-
ment testing, it was clear to almost all concerned
that if any re-design was needed to make the
system operational, the whole software system
would! need re-designing not just the bad parts.
And so, it happened.

Without a careful examination of all that happened
to the TCS, it would be inappropriate to draw
sweeping conclusions. However, it is possible to
project the general types of recommendations which
might be forthcoming from such an examination.
One might expect recommendations regarding
standards of design documentation and design
rationale to be formulated. It is reasonable to
suppose that project management guidelines might
be established to insure that the software and
hardware life-cycles are kept in technological
phase with each other. Finally, one would expect
to find additional support for the use of high
level tools for software design and implementation.

11

THE IMPACT OF ADA UPON SOFTWARE INTEGRATION

Since on• of the issues which arose in the
previous section and throughout the notes of the
preliminary session of this workshop was the role
of higher level tools such as Ada on software
design and testing, it is appropriate to speculate
on the role of Ada in integration testing. The
issue is particularly relevant since Ada is
designed to specific "encapsulation" requirements
for software. To meet this requirement, the
language contains a construct called the
"package".

When viewed in the context of other design
disciplines, the issue of encapsulation seems to
be a new concept. However, we would note that
other designs such as structures, electrical
systems, and plumbing systems are treated in a
modular fashion. The interface issues are re-
solved by utilizing the laws of nature as emr
li,)died in the ' , report i,•!: 	mai vrial:;
iArength, insulation, etc. The important feature
of such designs is that the laws of nature are
scale independent, and thus they can be confirmed
in the laboratory. The materials can be expected
to perform according to the results of the small
scale tests.

In the case of software, we do not have any such
laws of nature at hand. We have very little
choice but to minimize the interfaces between
the various modules, and most importantly, we
must build the interface laws into our design
medium. Thus, we have encapsulation and
packages.

In assessing the encapsulation features of Ada,
one finds a mixed blessing with respect to
system integration problems. The simple fact
that the package body (i.e. the implementation)
is a separate entity from the package specifica-
tion (i.e. the interface design) offers the
possibility of repair of parts of a system during
integration. Since the various parts are not
dependent upon the details of the implementation,
it is apparent that those details can be refined
without upsetting the integrity of the whole
system. Although system failure is not pre-
cluded by such a linguistic feature, it is now
possible to keep a system alive much longer and
thus, learn much more before the ultimate failure
occurs. It is the risk associated with the next
prototype which is reduced by the Ada package.

In addition to the package feature of Ada, one
finds that Ada also lends the designer some
assistance in managing the evolution of the
modules of a software system. The library
management Features of the language and the
plans for a well defined program support environ-
ment will make it possible for the designer to
ensure that proper versions of each modules are
selected during the preliminary "system builds".
As an added side effect of these features, users
have found that they tend naturally to create
only small modules in Ada.

The other side of the impact of Ada derives
from features of the language which preclude
detailed compiler enforcement of interface
designs. Most notable, the "overloading"
feature allows a name to take on a number of
different meanings at a particular point in a
design. This is an acknowledged very powerful
feature of the language, but it is also a poten-
tial source of over confidence in a system
Integration. This over confidence may not be
illuminated except by the most careful and
detailed integration testing. Out of fairness
to the designers of Ada, it should be observed
that it is this same overloading mechanism
which allows the extension of a software system
at any level of abstraction without polluting
the name space to be managed by the programmer.
Thus, complex arithmetic may be added without
inventing new symbols for the arithmetic opera-
tions.

Ada offers additional protection to the systems
designer through the generalized type definition
mechanism. In Ada, it is possible not only to
control the objects associated with a type, but
it is also possible to obtain explicit control
over the allowable operations. Several of the
older programming systems included the former
capability, but it seldomly aided the programmer
prior to integration testing in avoiding inappro-
priate use of objects. The "private type" and
the "limited private type' of Ada allow the
designer to specify strict control over permissi-
ble use of objects, and furthermore to have the
compiler enforce the restrictions.

The advent of Ada has presented another oppor-
tunity to test ideas about software testing which
emerged during the 1970's. The Department of
Defense has proposed to validate Ada compilers
by subjecting them to a test Suite. This test
suite contains about 1300 programs each of which
is specific to a particular feature of the
language to be implemented by the compiler. The
design of the test suite is based upon the pre-
sumption that the major features of the language
are orthogonal and free of interference with
each other. The likelihood that compilers will
pass this kind of test suite and still remain
inoperable in practice needs to be recognized.
The problem comes back to one of dealing with
integration of all the features of the language
into a single compiler. On the more positive
side of the on-going testing of Ada compilers,
it should be noted that one class of tests
(Class L) will confirm that the systems inte-
gration tools of the language are implemented.

CONCLUSIONS

The preceeding discussions have highlighted
some of the problems which can be foreseen in
the development of a systematic approach to
integration testing of software. The most
pressing need is For leehnology transfer from
other disciplines with respect to ways of
dealing with design failures. Closely allied

12

with this conclusion is the expectation that
the software integration problems which we have
may not be solved through sharply focussed
research, but instead, may be solved by a
combination of risk taking and careful exami-
nation of failures. The continued development
of Ada deserves attention for what it offers
to the designer for the resolution of inte-
gration testing problems.

ABOUT THE AUTHOR

James F. Leathrum is a professor of computer
engineering at Clemson University. He is
currently consultant to the Western Digital
Corporation where he has participated in the
design of an Ada compiler and continues to
participate in the integration testing of the
same compiler. He is also a consultant to
the U. S. Army material System Analysis
Activity where he has participated in the
design and analysis of software for fire
control systems. He is the author of
Foundation of Software Design, a• book which
will appear soon through the Reston Publishing
Company.

40

13

STATUS AND DIRECTIONS FOR SOFTWARE TESTING AND EVALUATION TOOLS

Leon Osterweil

Professor and Chairman
Department of Computer Science

University of Colorado at Boulder
Campus Box 430

Boulder, Colorado 80309

Telephone: 	(303) 492-8787 or
(303) 492-7514

ABSTRACT

This paper advances the point of view that there are a number of very promising tools and
techniques for the testing and evaluation of computer software, but that at present, for a
variety of reasons, it is difficult and often impractical to exploit their innate capabilities
effectively. The major obstacles to effective exploitation are seen to be the difficulty and
capital required to bring superior tools into widespread and common use, the current predispo-
sition of large organizations in the private sector to refuse to disclose, no less share,
their best tools, and a lack of understanding of how to integrate the best of current and pro-
posed tools into effective total systems for the support of testing, verification, documenta-
tion and evaluation.

The paper goes on to suggest that what is most needed now is a mechanism for facilitating
experimentation with the best currently available tools and techniques. It seems that this
can best be done through the construction of collections of tools integrated in such a way as
to facilitate the rapid configuration of new and/or competing tools and approaches through an
architecture st g the composition of larger tools out of smaller tool fragments, and the
centering of the testing activity around a central data base. Such an experimental test bed
for testing and evaluation tools should facilitate the process of deciding which tools and
techniques are superior and should also facilitate the widespread familiarization of large Dod
communities with the tools and techniques. It is expected that this would lead to more rapid
adoption and implementation of superior tools and techniques.

be useful and effective.
EXECUTIVE SUMMARY

At present it seems that the greatest need in
the area of software testing and evaluation tools
is for a concerted program of development, packag-
ing, evaluation and integration of these tools.
The past decade has seen the creation of a large
number of such tools whose approaches to the
underlying problems of testing, analyzing, verify-
ing and documenting software items has been
refeshingly broad. Virtually all of those tools
remain either experimental curiosities or special
purpose tools, of value only in very restricted
contexts. Some of these cools show clear promise
of being exceedingly helpful in detecting errors
in software or in demonstrating the absence of
errors. Some have even been applied with consid-
erable positive effect. 	Few, if any, however,
have been broadly distributed and 	exploited.
Those that have, tend to have been the most
simple-minded.

Some of the reasons for this unfortunate
state of affairs are not hard to discern.
Software tools are themselves very sophisticated
items of software. Thus they are expensive to
produce and package to the point at which they can
be considered suitable for large user communities.
Many of the most innovative tools have been pro-
duced in University contexts or in private
research laboratories, where there has been little
incentive and/or little financial support for such
packaging. Adequate funding for development of
these tools could bring them to the point at which
they could be used and evaluated by broad , based
user communities. Many would doubtlessly prove to

Perhaps even more serious, there has been
little opportunity for carrying out the sort of
definitive, comparative analyses which are neces-
sary if potential users are to successfully select
appropriate testing and evaluation tools. As
noted earlier there is a very wide range of
approaches represented by currently available
tools. This is gratifying from a scientific point
of view, but represents a serious obstacle to the
systems analyst or project manager who wishes to
apply just the right tool or combination of tools
to a given software item or project. Differences
of effectiveness and efficiency between comparable
tool capabilities have not been measured defini-
tively in scientific studies. More important,
however, there is currently only a dim understand-
ing of the relative strengths and weaknesses of
the different approaches to testing and evalua-
tion. There is some understanding of how dynamic
testing and static analysis techniques can comple-
ment each other, for example. This is a far cry,
however, from the needed understanding of which
technique or combination of techniques to apply to
meet certain very specific testing and evaluation
objectives. This, in turn, is itself a far cry
from knowing which specific tools to acquire and
apply. In fact, it seems clear that, although
there is currently a very large variety of tool
capabilities available, such systematic scientific
testing and comparison of them will certainly
reveal that there are some important capabilities
that are still in need of development. For exam-
ple, there is clearly a shortage of tools for
testing and analysis of real-time and concurrent
software.

14

Recent work in the area of software develop-
ment environments seems pivotal in that it is
effecting the creation of standard harnesses
within which diverse testing and analysis tools
can be installed for comparison and measurement.
Some of these environments go even further in ena-
bling the creation of tools as sequences of lower
level tool fragments. The flexibility of this
approach should encourage the creation of new
classes of tools in a context within which they
can be evaluated and either rejected or improved.
This approach should also facilitate the sorts of
experimentation needed in order to better under-
stand the interrelations among testing and evalua-
tion capabilities.

1. TOOLS FOR TESTING, EVALUATION, VERIFICATION
AND ANALYSIS OF SOFTWARE

This section will attempt to present a brief
overview of the broad classes of tools for testing
and evaluation of software that have been pro-
duced, and will attempt to compare and contrast
the approaches which have been taken. Specific
tools will be named and referenced in places.

1.1 Class One - Dynamic Testin% and Analysis

The terms dynamic 	testing and dynamic

analysis, as used here, are intended to describe
most of the systems known as execution monitors,
software monitors and dynamic debugging systems
([Balz 691, [Fair 751, [Stuc 751 and [Cris 70J).

1.1.1. Testing Tools

In dynamic testing systems, a comprehensive
record of a single execution of a program is
built. This record the rxivution history -- is
usually obtained by instrumenting the source pro-
gram with code whose purpose is to capture infor-
mation about the progress of the execution. Most
such systems implant monitoring code after each
statement of the program. This code captures such
information as the number of the statement just
executed, the names of those variables whose
values had been altered by executing the state-
ment, the new values of these variables, and the
outcome of any tests performed by the statement.
The execution history is saved in a file so that
after the execution terminates it can be perused
by the tester. This perusal is usually facili-
tated by the production of summary tables and
statistics such as statement execution frequency
histograms, and variable evolution trees.

Despite the existence of such tables and
tatistics, it is often quite difficult for a
uman tester to detect the source or even the
resence of errors in the execution. Hence, many
ynamic testing systems also monitor each state-
ent execution checking for such error conditions
a division by zero and out-of-bounds array refer-
nces. The monitors implanted are usually pro-
rammed to automatically issue error messages
mediately upon detecting. such conditions in

rder to avoid having the errors concealed by the
lk of a large execution history. The monitors
e positioned so as to assure that any occurrence

errors will be detected immediately before it
uld occur in the actual execution of the pro-
am. To a human observer it is often obvious
at many of these probes are redundant. There are

ways in which automated analysis can be used to
suppress such probes.

Some systems ([Fair 751, [St= 751) addition-
ally allow the human program tester to create
additional monitors and direct their implantation
anywhere within the program. The greatest power
of these systems is derived from the possibility
of using them to determine whether a program exe-
cution is proceeding as intended. The intent of
the program is captured by sets of tions
about the desired and correct relation between
values of program variables. These assertions may
be specified to be of local or global validity.
The dynamic testing system creates and places mon-
itors as necessary to determine whether the pro-
gram is behaving in accordance with asserted
intent as execution proceeds.

These assertions are designed to capture the
intent of the program and explicitly stare certain
non-trivial error conditions, to which the program
may be particularly vulnerable. It should be
clear that dynamic assertion verification offers
the possibility of very meaningful and powerful
testing. With this technique, the tester can in a
convenient notation specify the precise desired
functional behavior of the program (presumably by
drawing upon the program's design and requirements
specifications). Every execution is then tire-
lessly monitored for adherence to these specifica-
tions. This sort of testing obviously can focus
on the most meaningful aspects of the program far
more sharply than the more mechanical approaches
involving monitoring only for violations of cer-
tain standards such ss zero division or array
bounds violation.

It is important to observe, that the benefits
of dynamic testing can only be derived as the
result of heavy expenditures of machine storage
and execution time. The next subsections will show
that storage and execution time costs can be
effectively reduced by employing static analysis
and symbolic execution techniques in conjunction
with dynamic' testing. More important, however, is
the observation that, because dynamic testing
focuses on the minute examination of tffi.history
of a single program execution, its results are
relevant 	to that execution, but may not be
relevant to other program executions. 	Hence
dynamic testing is able to detect the presence of
errors, but it is not clear that it is a useful
technique in demonstrating the absence of errors.

Because it is assurance of the absence of
errors that would seem to be most important, a
great deal of effort has been devoted to studying
how sets of dynamic tests of a piece of software
can be devised to at least raise the level of con-
fidence in the correctness of the software to an
acceptable level. At least three different
approaches to doing this are recorded in the
literature, although only one of the approaches
seems to be adequately supported by tools. These
are summarized next.

1.1.2. Testing Strategies

The first approach, and the one which seems
to have the most straightforward appeal is advo-
cated by Houten [flout 801. This approach, called
Functional Testing, suggests that an adequate set
of tests for a program can only be created by very

careful examination of the functional specifica-

tions for the program. The highest level func-

tional specifications must be determined and then

carefully broken down into specifications for the
lower level functions which are used to actually
effect this highest level functionality and which

are 	implemented in the highest level routines of

the software to be tested. 	These lower level
functions are in turn themselves effected by still

lower level functions implemented in still lower

level rout ines. These functions must al so be

carefully specified. This process of determining
how the highest level functions are implemented by

successive layers of lower level functions i.s the
necessary prelude to the process of determining

just what test data sets must be fed to the

software program in order to adequately test it.

The test data sets are chosen so as to exer-

cise thoroughly each of the functions at each of

the successive levels of the software. Howden

describes criteria to be used in determining just

how to decide when a function or subfunction has

been tested thoroughly. What is less clear is how

to automate this process with tools. More signi-
ficantly, it is still less clear how to use tools
t o help in the process of decomposing higher level

functions into lower level subfunct ions. This

appears to be, in essence, the software design

process. 	Thus the issue of providing adequate

tool support for Hovel en' s 	Functional Test ing

approach seems to be very much intertwined with

the issue of providing support for the earl ier

phases of soft ware development, especially the
design phase. This issue will be addressed again

in a later section of this paper.

A second major approach to the problem of

creating thorough test 	set s is what might be

called the St ructural Approach. 	This approach
involves modelling of the software as a graph or

coordinated set of graphs. As such it has ele-

ments of static analysis, a technique to be

characterized in the next subsection of this
paper. The major element of static analysis which

structural test ing employs is reliance upon the

creation and analysis of a program representation

cal led the flowgraph. The flowgraph is a struc-

ture in which each procedure or subprogram of t he

subject software is modelled by a set of nodes and
edges. In particular, each of a procedure' s exe-

cut ion units is model led as a node and each possi-

ble transit ion from one execution unit to a suc-

cessor is model led as an edge.

Most 	aut hors 	who 	advocate 	struct ural
approaches :wree that a ,-;v1 of tests of a program

should not be considered complete until and unless

t he set has assured t he execution of every node

and edge of every flowgraph represent ing the vari-

ous procedures and programs comprising the subject
software. This seems a minimal testing regimen,
but it is agreed that it is far from exhaust ive
enough to offer good assurance of the absence of

error from a piece of software. In particular, it

only assures that the functionality embodied in

each statement will be exercised at least once and

that the logic embodied in every flow of control
alteration statement will be exercised only enough

times to assure that every possible flow of con-

trol alternative will be selected at least, once.

Perhaps the most serious fl aw in this approach to
assuring thorough testing is that it is far too
mechanical, treating a piece of software as being

solely a structural object and not a functional

object. The most appealing aspect of Functional

Test ing (just described) is that it recognizes
that a piece of software is created to perform

certain functional transformations. Test ing

should be directed towards seeing that those func-

tions are correctly implemented.

Some investigators (e.g., [Rich 811, [Whit

80], and [Weyu 80]) have attempted to incorporate
into the structural testing context a recognition

of t he need to treat software under test as a

functional transducer. They have observed that a
piece of software can be thought of as a func-

tional transducer which performs a different

transformation on each of a number of different
subspaces of the software program's input space.

The decomposition of the input space into sub-

spaces is performed by the logic of the program's

flow of control alteration statements, and the

different functional transformations are achieved

by composition of the various executable state-

ments in the program in different orders.

These investigators suggest that thorough
test ing can be achieved if the decomposition

effected by the program is first determined, and

then used as a guide to the creation of test data

sets which assure that the functional transforme-

r ion performed for each input subspace is care-

ful ly exercised. Their papers suggest t he- tools

that are needed to do this. Symbol ic execution

methods (to be described more fully in a subse-

quent subsection) are central to determining the
set of input subspaces. They are al so use ful in

creating the data sets required to exercise the

code which implements t he various functions com-

puted for each of the various subspaces. As will

be seen in the subsequent subsection, there are

some research tools which have been built which

are capable of assist ing in the process of con-

structing such data sets. There are substantial

obstacles, both pragmatic and theoretical, to the
creation of truly effective tool supports, how-

ever.

The third approach t o assuring affective

test ing is called Mutation Analysis [DeMi 781.

This approach is quite novel in that it oilers an

effective way of quantitatively assessing t he

thoroughness of the test ing which is achieved when

a program is exercised with h a given set of test

data. Mutation Anal ysis assumes t hat a given

piece of soft ware is to be tested by a given set

of test data. This method entails the creation of

a very large set of "mutants" of the original
software, which are carelolly created to reflect

r Ire gamut of errors which a "reasonable program-
mer" might commit. This gamut of mutant versions

of the original program is fed al I of the test

cases in the given input data set. The outputs
obtained are then compared to the out puts of t he

original (presumably correct) program. As soon as

any di fference is observed, the mutant program is

discarded. If some mutants remain undiscarded

after al I set s of test data are executed then

these mutants are examined carefully to see if

they are actual ly functionally different from the

original program. The number of functionally dif-

ferent mutants which remain undiscarded has been

found to be a very reliable measure of the

thoroughness of the test data set, If an unac-

ceptably large number of nonequivalent mutants has
remained undiscarded, more test data must be added

16

to the original set, with the goal of causing some
of the undiscarded, nonequivalent mutants to give
different execution results from the original,
thereby causing them to be discarded. This pro-
cess of creating new test data sets to "kill off"
mutants is to be continued until an acceptably low
number of undiscarded nonequivalent mutants
remains.

Tool systems for supporting the creation and
testing of mutants have been built and experi-
mented with extensively. Thus, this approach in
contrast to the others, is well supported by
tools. The tool sets do not., however, address the
problem of automatically creating test data sets
as directly as is suggested by the structural
testing approach. It seems that there is a good
opportunity for combining the strong points of
these two approaches into a system for supporting
the effective generation and evaluation of test
data sets. This issue will be addressed in a sub-
sequent section of this paper.

In the next subsections of this paper we
describe two alternative approaches to testing.
These approaches attempt to assure the absence of
errors in a piece of software by analyzing its
structure instead of exercising it with t.estcases.

1.2 Class Two - Static Analysis Tools

In the category of static analysis tools, we
include all programs and systems which infer
results about the nature of a program from con-
sideration and analysis of a complete model of
some aspect of the program. An important charac-
teristic of such tools is that they do not neces-
sitate execution of the subject program yet infer
results applicable to all possible executions.

A very straightforward example of such a tool
is a syntax analyzer. With this tool the indivi-
dual statements of a program are examined one at a
rime. At the end of this scan it is possible ro
infer that the program is free of syntactic
errors.

A more interesting example is a tool such as
FACES (Rama 751, Softool 80 [Mehl 811, or RXVP
[Mill 741 which performs a variety of more sophis-
ticated error scans. These tools, for example,
perform a scan to determine whether all procedure
invocations are correctly marched to the
corresponding definitions. The lengths of
corresponding argument. and parameter lists are
compared, and the corresponding individual parame-
ters and arguments are also compared for type and
dimensionality agreement. By comparing every pro-
cedure invocation with its corresponding defini-
tion in this way it is possible to assure that the
program is free of any possibility of such a
mismatch error. Note that this analysis requires
no program execution, yet produces a result appli-
cable to all possible executions. This sort of
analysis, requiring a comparison of combinations
of statements, can also be used to demonstrate
that a program is free of such defects as illegal
type conversions, confusion of array dimensional-
ity, superfluous labels and missing or uninvoked
procedures.

Data flow analysis is a still more sophisti-
cated form of static analysis which is based upon
consideration of sequences of events occurring

along the various paths through a program. As
such it is capable of more powerful analytic
results than combinational scans such as those
just described. The DAVE System (Date 761, [Foal
761 is a good example of such a tool. This system
examines all paths originating from the start of a
Fortran program and is capable of determining that
no path, when executed, will cause a reference to
an uninitialized variable. DAVE also examines all
paths originating from a variable definition and
is capable of determining whether or not there is
a subsequent reference to the variable. A defini-
tion not. subsequently referenced is called a
"dead" definition. Hence DAVE is also capable of
showing that a Fortran program is free of dead
variable definitions.

Data flow analysis is based upon examination
of a flow graph model of the subject program. The
flow graph of every program unit is created and
its nodes are annotated with descriptions of the
uses of all variables at all nodes. Nodes
representing procedure invocations cannot be anno-
tated in this way immediately. For such a node a
data flow analyzer like DAVE would first determine
the presence or absence of uninitialized variable
references and dead variable definitions in the
procedure represented by the node. This can be
done by. using data flow analysis algorithms such
as LIVE and AVAIL ['tech 751 to efficiently deter-
mine the usage patterns of the program variables
along the paths leading into or out of the pro-
cedures start node. Having done this, it is possi-
ble to complete the data flow analysis of the cal-
ling program. The details of this procedure can
be found in [Fosd 761.

Thus static analysis can be used to determine
the presence or absence of certain classes of
errors and to produce certain kinds of program
documentation. Hence it is useful as a complement
to a resting procedure and offers some limited
verification capabilities. It is also useful in
supplying limited forms of documentation (e.g.,
the input/output behavior or a procedure's parame-
ters and global variables). 	There is currently
ongoing 	research which indicates that static
analysis, particularly data flow analysis, can be
used to both verify and test for wider classes of
errors, such as concurrency errors, (e.g., trayl
801) as well as to produce additional forms of
documentation.

Of particular interest is the possibility of
using static data flow analysis to suppress cer-
tain of the probes generated by dynamic assertion
verification tools as part of a comprehensive test
procedure. Many of these probes generated by
dynamic test aids are redundant.. Their presence
adds to the size and execution time of a test run
yet has no diagnostic value. Hence an automatic
procedure which removes them makes testing more
efficient.. It also serves to focus attention on
the importance of exercising the remaining probes.
Sometimes it is possible to remove all the probes
generated by an assertion or single error cri-
terion. In this case, it has been de facto demon-
strated that the error being tested for cannot
occur, and this aspect of the program's behavior
has been verified. This perspective shows how
testing and verification activities can be coordi-
nated with each other, through the integrating
medium of static analysis.

17

Although the synergism of these two tech-
niques seems apparent, no tools to exploit this
synergism have yet been constructed. This would
seem. to be an important. step to take, and it is
expected that it would be facilitated by the crea-
tion of testing and analysis environments contain-
ing coordinated modular tool fragments.

1.3 Class Three - Symbolic Execution Tools

Symbolic execution is the process of comput-
ing the val ues of a program's variables as func-
t ions which represent. the sequence of operations
c arried 	out as execution is traced along a
specific path through the program. 	If the path
symbolically executed is a path from a procedure
start node to an output statement, then the sym-
bolic execution will show the functions by which
all of the output values are computed. The only
unknowns in these functions will be the input
values (either parameters in the case of an
invoked procedure or read-in values when a main
program is being symbolically executed).

A small number of symbolic execut ion tools
has been built [Howd 781, [King 761, [Clar 761.
These tools mechanize the creation of the formulas
and maintain incremental symbol tables. They
employ formula simplification heuristics in an
attempt to forestall the growth in size of the
generated formulas and foster recognition of the
underlying functional relations. (It should be

noted, however, that these simplifiers do not take
roundoff error into account and, therefore, may
misrepresent the actual function computed by a
sequence of floating-point computations).

The foregoing indicates that symbolic exec U..

tion is an excellent technique for documenting a
program. Symbolic traces provide documentation of
the actual functioning of a program along any
specific path. In order to use symbolic execution
as a technique for testing and verification how-
ever, it is necessary to augment the technique
with a constraint solving capability.

In order to clarify this, let 	us begin by

observing t hat t he above described functional
behavior occurs only when the given path is exe-

cuted. In general, however, a given program can
execute an (often infinite) variety of paths,
depending upon the program's input. values. The
conditions under which a given path is executed
can often be determined by symbolic execution and
constraint solution. A given path will be -exe-
cuted if and only if all of the predicates
attached to all of the path edges are sat isfied.
Unfortunately, a simple textual scan will express
these constraints only in terms of the variables
within the statements. Thus the constraints will
in general not show their underlying interrela-
tions. If the constraints are expressed in terms
of the formulas derived through symbolic execut ion
01 I he oath, then a set of constraints al I
expressed in terms of the program's input values
is obtained. 	Any solution of this set of con-
straints is a set of input values sufficient 	to
force execution of the given path. This process
of solving simultaneous constraints generated by
symbolic execution is the process alluded to in
Section 1.1.2. which can be used to decompose the
input space of a program and rest the functions
executed for each subspace.

It is important to observe that some con-
straint. systems are unsatisfiable, indicating that
the path spawning them is unexecutable. This is
important. information as static flow analyzers
sometimes detect "errors" along unexecutable
paths. These errors are ephemeral and should not
be reported. Ho less important i.s the observation
that the problem of determining a solution to an
arbitrary system of constraints i.s in general
unsolvable. Hence we must not expect that this
potentially useful capability can be infallibly
implemented. Experimentation has indicated, how-
ever, that for an important class of programs the
const raints actually generated are quite tractable
[Clar 761. A great deal more of this sort of
experimentation is urgently needed. Testing and
verification capabilities can also be achieved by
attempting to solve constraints embodying error
conditions and statements of intent. Thus we see

that the symbolic execution/constraint solving
technique is a powerful testing aid. It should be
noted that the ATTEST system [Clar 761 implements
most of the capabilities just described.

Perhaps the most important use of symbolic
execution/constraint solution is as a technique
for verifying assertions of functional relations
between program variables. We saw that static
analysis is quite adept at inferring all the pos-
sible sequences of events which might arise during
execution of a program, and that by comparing
these with specifications of correct and incorrect
sequences, testing and verification capabilities
are obtained. When the statements of correct
behavior are couched as predicates involving pro-
gram variables, however, symbol ic
execution/constraint solution is most useful .
This is not surprising, as symbolic execution is a
technique for tracing and manipulating the func-
tional relations between program variables.

Using symbolic execution it is sometimes pos-
sible to synthesize recurrence relations among
program variables, which might then be solved to
yield closed form formulas relating the values of
variables. These formulas could then be compared
to assertions of intent. This capability rests
heavily upon being able to draw on results from
finite mathematics. Cheatham has created a tool
with impressive inferential capabilities of this
sort (Chea 781, although the problem of determin-
ing the closed form of a recurrence is in general
intractable. Also required here is the ability to
recognize when two formulas are equivalent. This
problem is likewise intractable in general.

Another drawback to the use of symbolic exe-
cution is that it generally employs a simplistic
model of real arithmetic under which the expres-
sions X/2.0 and 0.5*X are considered equivalent.
Because of the peculiarities of floating point
hardware, however, the two formulas will often
evaluate to different values. Hence the results
of symbolic verification and dynamic verification
may differ.

Despite these various limitations it seems
clear that symbolic execution/constraint solution
can be used to yield impressive documentation,
test ing and verification capabilities. Perhaps
these limitations can be put in better perspective
by observing that symbolic execution and con-
straint. solution are the basic techniques used in
formal verification or so cal led "proof of

18

correctness" ([Elsp 721, [Load 751, [Rant. 761).

In formal verification the intent of a pro-
gram must be captured totally by assertions
imbedded according to the dictates of a criterion
such as the Floyd Mmthod of Inductive Assertions
[Floy 671. The correctness verification is esta-
blished by symbolically executing all code
sequences lying between consecutive assertions and
shoving that the results obtained are consistent
with the bounding assertions. The consistency
demonstration is generally attempted by using
predicate calculus theorem provers rather than
constraint solvers as discussed here.

It. is crucial to observe, that these theorem
provers are subject to the same theoretical limi-
tations discussed earlier. The undecidability of
the First Order Predicate Calculus makes it impos-
sible to be sure whether a theorem is true or
false. Hence we cannot be guaranteed of an answer
to the question of whether or not a symbolic exe-
cution will yield results consistent with its
bound ing assertions. Furthermore, t he symbol ic
execution may make simplifications and transforma-
tions of real formulas which do not recreate the
functioning of floating point hardware. These and
similar limitations of formal verification have
long been acknowledged. Yet still formal verifi-
cation is rightly regarded as a useful technique
capable of increasing one's confidence in the
functional soundness of a program. This is sort
of the sense in which the symbol ic
execution/constraint solution technique just dis-
cussed should be considered worthwhile, as well.

In fact, this technique is of more worth to a
practitioner than formal verification, because of
it s flexibilit y. As already observed, formal
verification 	requires 	a complete, exhaustive
statement of a program's intent. The technique
just described focuses on attempting to justify or
disprove the validity of individual assertions.
This gives the practitioner the ability to probe
as many of the various individual aspects of a
program as may be desired. From this perspective
formal verification can be viewed as the logical,
orderly culmination of a process of verifying pro-
gressively more complete assertion sets.

2. REASONS FOR THE LACK OF WIDESPREAD USE OF EFFEC-
TIVE TOOLS FOR TESTING AND EVALUATION OF SOFTWARE

It is unfortunate and surprising ro most.
observers that, despite the impressive list of
capabilities just described, software tools have
met with poor acceptance. Thus the promise of
computerization of software production has, for
the most part, remained just a promise. In order
to understand this, it is important to carefully
examine the notion of what a tool really is.
According to most dictionary definitions a "tool"
is a device which is comfortably and conveniently
useful in facilitating or multiplying human work.
While it seems clear that the multitude of tools
which we have produced are capable of facilitating
or multiplying the work that users will do, it is
also clear that most of the tools which have been
built are either uncomfortable or inconvenient or
both.

There are some important classes of software
tools which are successful and are, in fact, tools

in t he truest sense of the word. 	Compilers,
loaders, asseeblers, and operating systems are
certainly tools. They perform the invaluable ser-
vice of enabling us to write programs in a higher
level language, to reuse l ibraries of al ready
written procedures, to access and store large
files of data, and to share access to the com-
puter. All of this is done through the use of
software which clearly multiplies and facilitates

human effort . Moreover, most users of this
software rarely think too much about when and how
to use it. Despite occasional nasty surprises
when this software fails, or periodic occasions
upon which some unfamiliar features of the
software must be learned, we generally use these
software systems pretty such without a great deal
of conscious thought. This software is comfort-
able to use, and thus these systems deserve to be
called software tools.

It is important to reflect upon why these
systems have achieved the status of tools in order
to understand what must happen in order for the
large univer se of testing and evaluation support
systems to achieve the status of software tools.
It is clear that to a large extent compilers and
operating systems have become comfortable and fam-
iliar simply because of their longevity. At
first, these software systems were new and unfami-
liar to users. At that time they experienced the
same sort of rejection that we see in the case of
many software - assistance systems today. Over a
period of decades, however, their benefits became
recognized, their proper utilization became better
understood, and the c orresponding increases in
comfort and convenience led to acceptance. It is
important to observe, also, that during this
period the quality of the software tools thee-
selves was slowly improved. It is a rare software
product indeed which is reliable, robust and well
documented right from the start. Early compilers,
loaders and operating systems were no exception..
Although relatively reliable today, they were not
so at first, and their acceptance and transforma-
tion into tools took place only after a period of
many years during which they were made robust,
reliable and well documented.

Thus it seems that our present crop of test-
ing and evaluation support systems is destined to
evolve into a set of software tools given the time
in which to improve and in which the using public
will come to understand the true merits and proper
application of this software. Here, unfor-
tunately, we arrive at a problem. The user public
was willing to tolerate years of poor compilers
and operating systems because it understood the
role and purpose of these systems, and because it,
on balance, believed that, when perfected, these
systems would lead to major productivity gains.
The same cannot be said for many of our systems
today. The sheer variety of such systems poses a
problem, as does the more fundamental lack of
understanding and systematization of testing,
verification, documentation and evaluation as dis-
ciplines. Compilers and are clearly useful to
humans because they assist in the necessary but
tedious dealings with the actual hardware. As
such they are common denominators, as all software
writers need this aid at a well-understood, agreed
upon time during software production. Our more
modern test and evaluation aids have been built to
address the galaxy of problems which arise before,
during, and after the actual execution of the

19

coded program. As such they form a bewildering
array whose proper times and modes of application
are neither widely understood, nor widely agreed
upon. In this, they are designed to help with
activities that have previously been largely the
province of humans guided and assisted only by
intuition. Thus it should be expected that there
will have to be a lengthy period during which the
bounds of their efficacy are studied and del-
i neat ed. It appears t hat this period is stil l

just. beginning.

Thus it seems that if our software-assistance
systems are to achieve the status of true software
tools, it will be necessary to be sure that the
proper usage contexts for these systems have been
established and agreed to. If this can be done,
then it is likely that the using public will have
the patience to wait through the laborious and
necessary process of incremental improvement which
will ultimately lead to systems whose quality is
adequate to assure acceptance.

It is evident that at present, due to lack of
adequate utilization of testing and anal ysis aids,
it is impossible to be sure of the best usage con-
texts for these aids. The discussions of these
aids in section 1 of this paper should, however,
have made clear that the resting, analysis and
verification capabilities described there comple-
ment each other in important ways. More specifi-
cally, t he discussion in that sect ion st rong I y

suggest ed ways in ssli ich I hese sl i I toren t c i I i-
I ies can he synthesized in support of such major
suit ware devel opnent activiti es as testing, verif-
ication and documentation. It is urgently neces-
sary that specific configurations of these tool
capabilities be made available to users for exper-
imental evaluation so t hat we can begin to under-
stand what tool combinat ions are most e ffect i VP

and are t he best prospect s for product ion develop-
ment and application.

Hence, in t he next subsections t here will 	be
brief expositions about how to support documenta-
tion, test ing and verification with combinations
o f t he capabilities described in Sect ion 1. Sec-
t ion 3 will t hen address t he quest ion of how
frameworks for experimental evaluation of such
tool capabil ities can be established.

2.1 Document ati on

A canplete set of program documentation must
fully describe the structure and functioning of
t he program. Clearly such a set must describe a
wide variety of aspects of t he program. At
present. it seems that certain of these items of
description must inevitably be supplied by humans.
The previous section of the paper has shown, how-
ever, that some documentation can be generated by
t on Is . Th is document at on is, moreover , probabl y
more reliably and cheaply done by such tools. In
addition, if some documentation is done by tools,
t he remaining documentation is likely to be done
more carefully by humans, t hereby suggest ing the
possibility of greater quality and reliability.

The first section of this paper suggests that
static analysis tools should be used first to
create such documentation as cross reference
tables, variable evolution trees, and input/out put
descriptions of individual variables and pro-
cedures. Symbolic execution tools can be used

next to create descriptions of the functional
effects of executing various paths through the
code. With constraint solution, a complete
input/output characterization of the code could be
obtained. Performance characteristics can be
measured and documented with the aid of a dynamic
testing tool. In the next section of this paper
it shall be proposed that all this documentation
be stored in a central data base, forming a skele-
ton of the complete documentation. Editors and
interactive systems might be used to gather from
humans such additional items of documentation as
text descriptions of variables and procedures.

2.2 Test ing

We have seen that probe insertion tools can
be very effective in instrumenting software for
the automatic detection of wide classes of errors.
We have also seen that tools can also be used to
design and evaluate the effectiveness of a testing
regimen. Tools can also be used to focus the
testing effort on paths and situations which
appear to be more error prone.. This is done by
elimination of probes which ware created to test
for common programming errors and for adherence to
explicit. assert ions. We saw that 'many probes can
be removed by application of progressively
stronger (and more costly) static analysis. Some
remaining probes may be removed as a result of
symbol ic execution/constraint solution. We saw
I hal !hese probes are I iks . ly 1 o be t he more sob-
Si ant lye ones, monitoring for aslIierencP I

asserted tunci ional intent. Their removal consti-
tutes significant verification, but it can be
expected that the cost of This wi I be relatively
high.

Final ly dynamic test tools can also be used
to gather definite information about the existence
and sources of error in the program. As already
noted, test ing can only show the presence of error
in a test case, and even a simple program may save
an infinite number of possible test, cases. Hence
the tool aided procedure just outlined has added
importance in that it helps suggest test cases -
namely t hose designed to exercise probes not
analytically removed.

Cl early the foregoing summary indicates t.e
power and importance of combining static 	s
and symbol ic execution tools with test 	, aids.
No current systems do this effectively, and there
is need for embarking on such large scale tool
consolidation immediately.

2.3. 	Verification

Verification is t he process of demonstrating
the absence of errors. As such it should not be
undertaken until I and unless test ing has failed to
uncover errors. Ittus it is a less freq.s:.ni , more
critical process, usually 	warranting 	greater
expense and thoroughness.

A verification activity should stas-t our like
the testing activity just described. The first
step is to suppress error testing probes and
probes resulting from assertions. St at , c analysis
can be used to suppress some probes, but the most
significant probes probably can be removed only by
symbol ic execution. Verification is achieved on
an assertion-by-assert ion basis only when all
probes generated by a single assertion have been

20

removed. 	In this way stronger more complete
verification can be obtained incrementally at
greater cost and effort . Complete formal verifi-
cation can be attempted if desired as the culmina-
tion of this process.

A final word should he said about the need
for both verification and testing. It has been
observed that testing cannot demonstrate the
absence of errors. Hence verificati.on should be
attempted. We have also observed that the verifi-
cation process has its own risks. The most impor-
tant risk is that an assertion verification
attempt may end inconclusively because of the
failure to determine the consistency of con-
straints or the truth of a theorem. As already
noted, this does not necessarily signify the fal-
sity of t he assertion, just that the verification
attempt ended inconclusively. Another important.
risk is t hat. the verification may be successful
but rely implicitly upon false assumptions about
r Ike semantics of language constructs. As an exam-
ple of this, we saw that symbolic executors gen-
erally maike incorrect simplifying assumptions
about the functitning of floating point hardware.
As a result even a complete formal verification of
program correctness may not completely rule our
t he possibility of an execution-time error. Hence
it seems that both testing and verification should
be considered techniques for raising the confi-
dence of project personnel in the software pro-
duct. Each is cape le of bolstering confidence in
its own way, and neither should be employed to the

exclusion of the other. Comprehensive, integrated
systems of tools for supporting both capabilities
must be coast ructed and ∎ nade easy t o Use.

3. NEED FOR SOFTWARE ENVIRONMENTS TO
FURTHER THE DEVELOPMENT AND

DEPLOYMENT OF TESTING AND EVALUATION TOOLS

The previous sections have made clear that we

are currently at a very rudimentary stage in the
development of r he needed overall view of how
existing testing, analysis, verification and docu-
mentation aids should be merged together into a
r)werful unified syst em capable at continuous and
e ffect ive support for the software testing and
evaluation process. It seems clear that a long
period of broadly based experimentation with a
wid, variety of tools and approaches is necessary
in colaer for us to reach the point at which the
most effective tools can be identified and effec-
tively integrated with one another in support of
agreed to testing and evaluation objectives. It.
seems, fut _her, that. the best way to facilitate
such experimentation is to contrive a large and
flexible L. amework in which tools can be
installed, 7onfigured, measured, evaluated, recon-
figured, anti reevaluated.

The previous sections have shown that dif-
ferent tool capabilities can complement each other
rather e'e*ttively in support of these various
functional objectives. Therefore it seems clear
that thii suggested framework should be organized
in such a way as to facilitate coordination and
cooperation among different tools. In addition,
because there is inadequate experience with
specific individual tools, it seems that such a
framework should be built out of smaller, modular
pieces of t•01 functionality which facilitates the
process of creating new tool capabilities and

altering the functionality of existing capabili-
ties.

An obvious strategy for having tools comple-
ment each other in this way is to arrange for them
to all access and update a single repository con-
taining the information needed in order to support
desired objectives. This repository could also
serve as the point of collection for the statis-
tics and data needed to help compare and evaluate
the various tools and approaches. This suggests
that the most important need now is for a careful
study of what bodies of information are needed in
order to carry out effective testing, evaluation,
verification, and documentation activities. We
should be thinking about what is needed in order
to create information utilities aimed at the crea-
t ion of data bases of information that are ade-
quate to support the critical objectives of test-
ing, analysis, verification and documentation.
Certainly tools and tool fragments are indispens-
able to the creation and maintenance of such data-
bases, but by focussing on the needed data items
and files we will be better able to focus the pro-
CPS.8 of comparing and evaluating tools. By creat-
ing a database-centered body of tools we will also
be anticipating the time when we will be able to
confidently create the sort of information utility
whiCh will be effective support for the needed
testing and evaluation activities in the future.

A flexible set of smaller tool fragments
built around a central database of shared informa-
tion, and accessed by means of a friendly user
interface language is called a software environ-
ment (see I ON P 81 1). Tilos it seems t hat the cen-

tral * locus [I est Ing and oval uat ion tool dove I up—

'sent anti evaluat ion should be t he design and con-

struction of software environments which emphasize
the integration of testing, analysis, verification
and documentation roots and fragments.

There are a number of research activities
currently in progress aimed ar the creation of
integrated sets of tools for the support of
software development. Some examples of such
environments are Mentor [Donz 80], Int.erlisp [Teit
d1I , The Cornell Program Synthesizer [TeKe l] •
and Tool pack [Oste 82, Oste 82a1•

Of these research activities, it seems that
the one which is closest to the above described
orientation and objectives is the Toolpack
activity. This project aims to build a sequence
of increasingly ambitious prototype environments
for the construction, testing, documentation and
maintenance of Fortran programs. The tool capabil-
ities offered in the early releases will include a
comprehensive dynamic test probe insertion tool
and run time monitoring system, called Newton; a
syntax analyzer; a static semantic analyzer; a
flowgraph consructor; a callgraph constructor; and
a data flow analyzer. These tool capabilities are
built out of a more or less standard set of
smaller tool fragments, all of which are imbedded
in an integrating framework, called the Integrated
System of Tools (IST). The tools are to be
invoked and controlled through a user interface
language which attempts to focus the user's atten-
tion upon the manipulation and maintenance of a
central system of files of information about the
programs being created, analyzed, tested and main-
tained. This file system is capable of holding an
elaborate structure of the source versions of the

21

user's programs, as well as such derived versions

as the parse trees, symbol tables, flowgraphs, and

parameter list descriptions.

The Toolpack project intends to make this set of

tools and the entire 1ST system freely available.

because a great deal of effort has been put into

making it easy to use and powerful, it is hoped
t hat a broad base of experience with this system
will be obtained. It is hoped t hat this exper

ence will then form t he basis for better under-

standing of the data items and tool capabilities
that users will most profit from having at their

disposal. It. is expected that. the Toolpack design

and IST architecture will be sufficiently flexible

to allow for the alteration of IST into a system

offering those desirable capabilities not already

present.

Specifically, it is expected that Toolpack

and the IST will be able to support the implemen-

tation of the sorts of integrated testing and

documentation and verification activities sug-
gested in Section 2 of this paper. Current plans

for IST do not include a symbolic execution capa-

bility, or a constraint solver. Further, present
plans do not call for the creation of the

integrated capabilities described in section 2.

The architecture of 1ST, however, should make it.
rather straightforward to incorporate these new

capabilities and effectively integrate them.

For example, the incorporation of a symbolic

executor should be very much facilitated by t he

1ST architecture. The symbolic execution capabil-

ity rest s importantly upon the presence of parse

tree and symbol t.able representations of the pro-

gram. 	These are already supplied by exist ing 1ST

oo I fragtnents . 	In symho I ic execution, t he sym-

bolic values that are evolved as the values of

variables are considered to be bound as values of
the variables. The IST also includes an attribute

table, which is considered to be related to the

symbol table, but is stored separately from it.
The attribute table contains a large amount of
semantic information about each variable. The

symbol ic value of a variable could well be con-

sidered to be yet another entry in the attribute

table's packet of information for that variable.
Thus it appears that t he creation of a symbolic

execution capability and coordination of it with

other analysis, testing, evaluation and documenta-

tion capabilities is facilitated by an architec-

tural decision to construct all of these capabili-

t ies out. of smaller tool fragments.

The centering ut these tool fragments around

a data repository which is structured like the 1ST

file system is also very helpful for the implemen-

tation of a symbolic execution system. In 1ST,

the file system allows for the storage and easy

management of various versions of a program's
source code, derived images (symbol table, parse

tree, etc.), input data and test output. It would

not be difficult to also store the different. paths

which are of interest t.o someone desiring to per-

form symbolic execution of a program. The sym-

bolic execution of a given program using a given
path specification will result in a set of sym-

bolic values for the program's variables. These

sets of values could be considered to be different
attribute tables corresponding to the fixed symbol

table for the program which had been previously
generated by the standard parser tool fragment in

Thus, it is not hard to imagine the incor-

poration of symbolic execution within a database-

centered system of tools which also contains a

powerful dynamic testing capability and a

comprehensive static analysis capability. This

would enable the integration of these capabilities

along the lines suggested in section 2. For exam-
ple, the use of static analyzers and symbolic exe-
cutors to remove dynamic testing probes would

require only the alteration of a small number of

exist ing tool fragments or the creation of a small
number of new ones. The results of mutation test-

ing could be stored in the central file system and

coordinated there with related data objects. In

particular, the outcomes of various structural

testing regimens could also be stored in the cen-

tral repository and might prove to be useful in

fashioning new test. cases designed to eliminate

additional program mutants.

Finally it is important to observe that the

sorts of environments which have been discussed

all support testing and evaluation of program

code, although it is generally agreed that the

most significant and costly errors are those which
are colomitted at. the stages preceding t he coding
phase. Thus it. is important to note that the

principles of database-centering and use of small

tool fragments are equally applicable to the

design and architecture of environments capable of

support of these earlier phases of software

development as well. In particular, it is impor-

tant to recall that Howden's concept of Functional

Testing seems to be best thought of as the process

of capturing the orderly design process as a
sequence of design refinements described as sets

of funct i ons. There is surely no reason why this

sequence of function refinements could not be cap-

tured and stored as part of large structured file

system such as has just been described. Howden's
scheme goes on to imply that these functions must

all be tested carefully using guidelines which he

supplies. This testing process could be managed
most effect ively with such a structured file sys-

tem. Test executions corresponding t.o each of t he

functional refinements could be created as

specific program instrumentations and associated

input data sets. 	The outputs from these input

sets could be captured and stored as well. 	Thus,

certain elements of the design of a program could

profitably be captured in a central database,

where they might be coordinated with associated

elements of code and test ing results. This indi-

cates how a soft ware production environment can

begin to span the design process as well as cod-

ing, testing and documentation. There appears to
be little reason why requirements specifications

might nor be incorporated profitably as well.

22

REFERENCES

(8a1z691
	

R. H. Balzer, "EXDAMS: 	Extendable
Debugging and Monitoring System,"
Proc. AFIPS 1969 Spring Joint Conr-
puter Conference 34 AFIPS Press ,
Montvale, N. J.

(Chea781 	T. E. Cheatham, Jr. and D. Washing-
ton, "Program Loop Analysis by Solv-
ing First Order Recurrence Re I a-
ions ," Harvard Univ. Center for

Research in Computing Technology „
TR-13-78.

(C1 ar 761
	

L. A. Clarke, "A System to Generate
Test. Data and Symbolically Execute
Programs," IEEE 	Transact ions 	on
Software Engineering, SE-2 pp. 215-
7ITTlerx . 1976).

DeNi 781
	

R. A. DeMi 1 1 o , it. J. Lipton and F.
G. Sayward , "Program Mutation: A
New Approach to Program Testing ,"
Infotech State of the Art Report. on
Software Testing 2, pp. 107-128
(Sept. 1978).

Donz801
	

V. Donzequ-Gouge , G. Huet , G. Kahn ,
and B. Lang , "Programming Environ-
ments Used on Structured Editors:
The Mentor Experience," INRLA
Research Re port No. 26, INK LA, Roc-
quencour t , France, 1980.

	

, SE-6, pp. 162-169, 	(March
1980)

[Kl og76I
	

J. C. King, "Symbolic Execution and
Program Test ing ," CACM 19 pp. 385-
394 (July 1976).

fLorni751
	

R. 1.. London, "A View of Program
Verification," 	1975 International
Cont. on Reliable Soft ware , IEEE
Cat.. 1075-CH0940-7CSR pp. 534-545
(1975).

iblehl8 I
	

E. Mehl schau, "So ftool 80, A Metho-
dology and Integrated Col lection of
Tool a for Software Management,
Development, and Maintenance," Proc.
Co n f on t he Computing Environment
for Math. Soft ware, JPL Publication
81-67, Jet Propulsion Lab.,
Pasadena, Calif., pp. 20-21, July
15, 1981.

[Mi11741 	E. F. Miller, Jr., "RXVP, Fortran
Automated Verification System," Pro-
gram Valid at ion Project, 	General
Re search Carp., 	Santa 	Barbara,
Calif. (Oct. 1974).

[Oste761
	

L. J. Osterwei 1 and L. D. Fosdick,
"DAVE - A Validation, Error Detec-
t ion, and Documentation System for

FORTRAN Programs," Soft ware - Prac-
tice and Experience 7777 47 -3
(Sept.. 1976).

iltair751 	R. E. Fairley, "An Experimental Pro-
gram Testing Facility," Proc. First
National Conf. on So ftware Eng. ,
IEEE Car.. #75CH0992-8C pp. 47-55
(1975).

[Oste811 L. J. Os ter -we i 1 , "So ftware Env iron-
ment Research Di rec tions for the
Next Five Years ," Computer 14 pp.
35-43, (April 1981).

	

Floy671
	

R. W. Floyd, "Assigning meanings to
Programs," in Mathematical Aspect s
uC Comput e r Science 19 J. T.
Schwartz (ed.) Amer. Math. Soc. Pro-
vidence, R. I. pp. 19-32 (1967).

	

(Fosd761 	L. D. Foad ick and L. J. Osterwe i 1 ,
"Data Flow Analysis in Software
Reliability," ACM Computing Surveys
8 pp. 305-330 (Sept. 1976) .

	

(Gris701 	R. Grishman, "The Debugging System
AIDS," AFIPS 1970 Spring Joint. Com-
puter Conf., 36 AFIPS Press,
Montval e, N. J. pp. 59-64.

	

11tant761 	S. L. Hant ler and J. 	C. King, "An
Introduction to Proving the Correct-
ness of Programs," ACM Computing
Surveys 8 pp. 331-354 Sept. 1976).

	

(Hech7SJ 	M. L. Hecht and J. D. Ullman, "A
Simple Algorithm for Global Data
Flow Analysis Problems ," SIAM J.
Computing 4 pp. 519-532 (Dec. 19757.

	

Howd 781 	W. E. Howlen , "DISSECT - A Symbolic
Evaluation and Program Testing Sys-
tem," IEEE Trans. on Software Eng. ,
SE-4 pp. 70 77-3-7Jan. MUT-

	

[Howd801 	W. E. Hoyden, "Functional Program
Test ing ," IEEE Trans on Software

(Oste821
	

L. 	J. 	Ostertee i 1 , 	"Tool pac k--An
Experimental 	Soft wa re Devel opment
Envi ronment 	Re scarelt 	Project ,"

Proceed ings 	Sixth 	In t ernat ional
Conference on Software Engineering,
IEEE Conference Proceedings, Tokyo,
September, 1982.

(Os te82.11 	L. J. Ostertet i 1 , 	"The 	Toolpac k
Mathematical So ft ware Development
Environment ," Department of Computer
Science, University of Colorado at
Boulder Technical Report #CU-CS-
226-82, Jul y 21, 1982.

(Ratual 51
	

C. V. Ratnamoorthy and 	5. Li. 	F. 	Ho ,
"Test ing Large So ft ware With
Automated Software Evaluation Sys-
tems," IEEE Transact ions on Software
Engineering SE-1. pp. 46-58 CMarch;
1975).

D. J. Richardson and L. A. Clarke,
"A Partition Anal ysis Method to
Increase Program Re 1 iabil ity ," Fifth
International Conf. on So ftware
Fag • pp. 244-253,, March 1981.

(St uc
	

L. G. St ucki and G. 1.. Fo she'. , "New
Assertion Concept s in Self-Metric
Software ," Proceed ings 1975 Interna-
tional Conference on Reliable
Software, IEEE Cat. a75-CH0940-7CSR

23

pp. 59-71.

[Tay1801 	R. N. Taylor and L. J. Osterwei I ,
"Anomaly 	Detect ion in Concurrent
Software 	by 	Static 	Data 	Flow
Analysis ," IEEE Trans. on Software
Ens. SE-6, pp. 265-278, May 1980).

[TeRe81

[Teit8 1

T. Teitelbaum and T. Reps, "The Cor-
nell Program Synthesizer: A
Syntax-Directed Programming Environ-
ment." Communications of the ACM 24
(Sept. 1981) 563-573.

W. Teitelman and L. Masinter, , "The
Intel-lisp Programming Environment ,"
Computer 14, pp. 25-33, IEEE Com-
puter Society, Los Alamitos, Calif.
(April 1981).

[Weyu801 	E. J. Weyuker and T. J. °strand ,
"Theories of Program Testing and the
Application of Revealing Sub-
domains ," IEEE Trans. on Software

 Eng. , SE-6, pp. 236-246, tay 1980).

[whit801 	L. J. White and E. 	I. Cohen, "A
Domain Strategy for Computer Program
Test ing ," IEEE Trans. on Soft ware

SE6, pp. 247-257, 7tay 1480).

ABOUT THE AUTHOR

Prof. Leon Os terwe i 1 is currently Chairman of
t he Department of Computer Sc ience, University of
Colorado at Boulder, where he holds the rank of
Professor. He is currently also serving as Techn-
ical Co-Chairman of the Tool pack project, a
cooperative research activity whose goal is the
distribution of an advanced so ftware development
environment, and which currently involves
researchers 	at 	seven 	institutions. 	Prof.
Osterwei I received a Bachelor' s degree in -
Mathematics from Princeton University, and Masters
and Doctoral degrees in Mathematics from the
University of Maryland. He also spent. a year on
l eave of absence working as an engineer and
manager at Boeing Computer Services Company. His
research interests center on the design, develop-
ment, and application of software tools 	and
environments. 	Prof. Osterweil has lectured and
taught on these and related topics extensively in
t his country and abroad.

24

ASSESSING THE SOFTWARE PRODUCT QUALITIES OF CORRECTNESS AND RELIABILITY

Victor R. Basili
Department of Computer Science

University of Maryland

ABSTRACT

Quality assessment with regard to 	reliability and correctness
needs to be performed across the entire software life cycle. In this paper
we discuss what can be done at various phases in the software development
life eyrie to provide the developer and customer with greater confidence in
the qualiay of the product. :several technologies currently available for
use in assessing reliability and correctness are discussed; these include
error analysis, testing strategies, reading and review techniques, relia-
bility models, and product metrics. Finally a software development metho-
dology which includes quality assessment is proposed and some aspects of
the methodology are described with respect to its use of measurement.

iNTRODUCTION

in attempting to assess the quality
of a software product, we are looking for
some objective or subjective statement
that will permit us to know whether the
product satisfies certain conditions
imposed upon the product. These qualities
may include the product's reliability,
correctness, 	modifiability, maintainabil-
ity, readability, 	its 	adherence to 	the
requirements 	laid out for it, its ease of
use, etc. 	In this paper we wilt deal
mostly with the qualities associated with
reliability and correctness , i.e. our
ability to assess how well the product
works and adheres to the requirements.

We can examine these qualities from
the point of view of the user or the
developer. 	In this paper we will try to
do both. 	Ideally the user would like to
evaluate the system as a 	'black box',
knowing nothing about the Internals of the
process. However the developer should
view the system as a 'white box gathering
whatever information is needed to aid in
assessing these qualities. Aside from the
assessment of the overall reliability and
correctness of the system, the developer
would like to learn or problem: 1 	in real
time 	to make improvements during the
development of the system. The developer
is interested in the quality of each piece
of the system at each stage of develop-
ment. He would also like to understand
what approaches have led to quality so
that the organization can improve its
quality in future developments.

To put things in perspective, we
should consider a working definition of
the life cycle. Rather than starting with
a process model of the life cycle, we will
offer a product oriented approach. The
typical life cycle in software development
consists of several documents. These
include the requirements, specification,
design, code and test document. The pro-
cess model by which one generates these
documents for a complete system varies.
The classic life cycle model is a sequen-
tial process where each document is

created before going on to the next. In
this case the above documents correspond
to phases in the life cycle. The require-
ments phase is where the requirements
document is generated and analyzed. It
represents the user's view of the system
and is meant to define what is needed,
without describing how it should be
achieved. The specification phase is
where the requirements are formalized from
the developer's point of view. Again this
document represents a statement of the
Problem or subproblems, rather than a
solution, The design phase is where the
specification is turned into an abstract
solution. The coding phase is where the
design is implemented in a programming
language executable on a computer. This
document consists of the commented source
code.

Following each of these phases is
typically a testing phase in which the
product is executed relative to some
specific input data. The test document
should consist of a test plan, i.e. an
approach to how the system should be

25

tested and how test cases should be gen-
erated, and a recording of all test cases
and results. Testing is divided into unit
testing, integration testing, system test-
ing and acceptance testing. Unit testing
involves the execution of individual
modules or subprograms of the system.
Integration testing checks the ability of
the individual pieces to fit together.
System testing checks the effectiveness of
the system to execute as a whole over some
range of inputs. Acceptance testing is the
final formal test that the product satis-
fies the requirements and with the input
tests ideally generated by the user.

There are many variations of the
phases of the life cycle stated above as
well as many different process models that
can be used for development. One such
model which merits special attention is
the iterative enhancement approach where
the product is developed incrementally by
passing through each of the various phases
of the life cycle as versions of the pro-
duct are developed. Each version contains
more and more functional capability. 	In
this 	approach the documents are also
developed incrementally.

The ability to assess reliability
from the users point of view is dependent
on the user's ability to generate a "good'
set of test cases for acceptance testing
and ability to make use of a procedure for
predicting the overall reliability and
correctness of the product based upon that
testing. This problem sounds simpler than
it is. Developing a good representative
set of test cases requires a great deal of
insight into the requirements: what tests
are representative of the requirements and
future system use? The procedure for pred-
iction is highly dependent upon those cri-
teria. If the testing process is biased
in any way, not only is the quality
assessment biased, but so is the predic-
tion of behavior.

Besides the problems of assessing. the
final reliability and correctness of the
system, the developer has other concerns.
The whole testing process is typically too
late in the life cycle to help with the
generation of a quality product. The
developer needs to measure reliability and
correctness incrementally in real time at
the earliest stages of development to
learn if the development Is going well, to
improve and refine the development process
and to record the experience for future
developments.

There 	are 	several 	technologies
currently available for 'both the user and
the developer to aid in the assessment of
reliability and correctness: error and
fault analysis, testing strategies, read-
ing and review techniques, reliability
models and product metrics. In the next
section we will present an overview of
some of these techniques and in further
sections we will show how some of the
various approaches can aid in quality

assessment. Finally, we will propohe some
ideas for a comprehensive development
methodology which will provide for quality
assessment throughout the software
development life cycle that makes use of
all ox tnese techniques.

TECHNOLOGIES

Clearly the ideas of quality assess-
ment are closely tied to our understanding
of the number and types of errors we make
in developing software. The more we under-
stand about causes of errors, when the
errors enter the system, the costs of iso-
lating and fixing errors, as well as any
number of other error classification
schemes, the more we can improve the
methods for developing software, evaluate
the quality of the product and generate
effective approaches for discovering
errors. Classifying errors helps the
developer better understand what pieces of
the system are of lower quality and where
to focus the effort. This information can
be used to focus integration and system
tests. It also provides the user with
some insights into what areas require more
extensive testing at acceptance.

The approaches to evaluating software
typically fall into two classes: reading
and testing. Reading may involve review of
any of the various documents associated
with the software product (requirements,
specification, design, code and test docu-
ments) in isolation for correctness or in
pairs for consistency. Obviously reading
requires that some form of document exist,
but this process can take place at the
earliest phase of the software develop-
ment. Included in this category are indi-
vidual readings of some life cycle docu-
ment, any of a number of correctness proof
techniques, and formal presentations of
the information in walk-throughs or design
reviews. The monitoring of these activi-
ties can generate valuable information for
error analysis and reliability estimation
at very early stages in the life cycle.
The data collected can also be used by
management and quality assurance people to
modify practices if they have been inef-
fective and focus and refine the activi-
ties.

Approaches to testing include func-
tional and structural testing. In each
case tests must be generated in which the
tester develops input for the executing
program and has some knowledge of the
expected output. Functional testing
assumes the test input is made up to check
the functionality of the product. Typi-
cally these test's are made from the
requirements or specification document.
The goal of structural testing is to exe-
cute as many statements or branches or
paths of the program as possible. The
testing approach can be guided by
knowledge of the error history for a pro-
ject. The testing process requires that
code has been written and can be run on a

25

machine so this process cannot be per-
formed until after the coding phase has
begun.

Reliability models are used to evalu-
ate the product during testing. Rather
than looking for errors or faults, relia-
bility models record failures of the pro-
duct. The most common models are stochas-
tic models that record either times
between failures or failure counts. These
models attempt to generate a function
which will allow the user to estimate the
time of the next failure as well as meas-
ure the amount of testing time needed to
reach some specified goal of mean time to
failure or reliability. Reliability
models are based upon the assumptions that
the testing of the system is random and
representative and that each error has
equal probability of occurring during the
testing. It is not probable that the same
model can be used across all the testing
phases. Clearly the more we know about
error analysis and the effect of different
testing schemes, the more effective use we
can make of reliability models and the
better we can interpret their results.

Product metrics can provide secondary
level information about the reliability
and correctness of the product from a
quality assurance point of view. If we
understand the relationship between errors
and a variety of product metrics such as
size, software science metrics [Halstead],
aumuer cisions [McCabe], number of
data references within a program unit
(span) [Elshoff], number of interconnec-
tions between program units [Henry
Kafura], etc., we can predict with some
degree of confidence the error-proneness•
of the system. However, the relationship
between many of these metrics and error-
proneness has not yet been fully esta-
blished.

ERROR ANALYSIS

The assessment of the reliability or
correctness of a system is based upon the
number and types of errors committed in
its development. It is therefore crucial
that error data be collected during the
entire development of any system. Actu-
ally, we are not analyzing errors but
faults. It is worth defining some of the
terms for the purpose of clarity. Accord-
ing to [IEEE], an error is a discrepancy
between a computed, observed, or measured
value or condition and the true, speci-
fied, or theoretically correct value or
condition. It is a human action which
results in software containing a fault. A
fault is an accidental condition that
causes a functional unit to fail to per-
form its required function; a manifesta-
tion of an error in the software. In each
of the above definitions we can assume
that software includes all the documents,
e.g. code, design, requirements.

respect to many variables,e.g. applica-
tion, organization, techniques, experi-
ence. Fault distributions can provide a
signature of the project with regard to
each of these factors. Knowing the fault
signature for a class of problems can pro-
vide input into correctness and reliabil-
ity evaluation of the product as well as
information about the effectiveness of
various methods and tools for software
development. There are various types of
fault distributions that can be studied:
total number of faults, faults by com-
ponent of the system, clerical vs. non-

clerical faults, faults per week, faults
by source of fault (requirements, design,
etc.), faults per detection and correction
technique, faults of omission vs. commis-
sion, faults per line of code, faults per
difficulty of detection, etc.

These 	distributions 	can 	provide
information about the effectiveness of
various phases or documents in the life
cycle, e.g. what document was the source
of the most errors. This provides informa-
tion on the correctness and reliability of
software documents. For example, in an
error analysis study [Basili & Weiss] on
the A7 flight software, a categorization
of errors in the requirements documents
was defined as: clericaL, ambiguity, omis-
sion, inconsistency, and incorrect fact.
This scheme provided the developers with
feedback on the types of problems involved
in the requirements document which they
used to improve their method for analyzing
the document and provided them feedback on
the effectiveness of their requirements
methodology. This type of analysis also
provides the user information on what
types of failures to check for during
acceptance testing as well as an assess-
ment of the correctness and reliability of
the requirements document.

Error distributions can also provide
information on the types of errors being
made. For example, using the omission vs.
commission categorization scheme of errors
, an error analysis [Basili & Perricone]
in the Software Engineering Laboratory at
NASA Goddard Space Flight Center
discovered that a large percentage of the
errors in a particular piece of software
were errors of omission (35%). The results
of this study for the user emphasize the
importance of using a good representative
functional testing scheme for acceptance
testing since structural testing would not
expose 35% percent of the errors. The
developer learned that it was important
for the readers to have a copy of the
specification available while reviewing
the design or code since some functional-
ity might be missing from the design or
code.

EVALUATION TECHNIQUES

Testing is currently the major source
Software 	developments 	vary 	with

27

of quality assurance with regard to relia-
bility and correctness. There are several
approaches to testing, top-down vs.
bottom-up and structural vs. functional.
Top-down testing assumes the top level
components of the system are tested first
with dummy routines or stubs used to simu-
'late the bottom level functions. This
approach allows the test data to be the
actual data for the full system. Bottom-up
testing involves the checking out of each
of the lower level functions before they
are integrated together. This approach
assumes the existence of test drivers to
simulate the input domain.

In structural testing, tests 	are
based upon the structure of the program
using some set of conditions, such as (1)
test each statement at least once and (2)
test each binary decision both ways. There
are other criteria that can be used but
these are the most common and practical
ones. The approach allows for measurement
of the level of success, one can check the
percent coverage of statements and binary
decisions. One can also check coverage
over a specific class of statements, e.g.
I/O statements, assignment statements.

There are many different types of
functional or requirements testing
approaches. We will define one approach
for the purpose of later discussion.
Equivalence partitioning [Hetzel],
[Hoyden] involves identifying equivalence
classes of input conditions. Each condi-
tion is then partitioned into two or more
groups, valid equivalence classes
representing valid Inputs and invalid
cqutvalence classes representing crroncouc
input values. Once the conditions are
identified and tabulated, test cases are
identified to cover conditions. The goal
is to write a new test case covering as
many of the uncovered valid equivalence
classes as possible and one new test case
for each invalid equivalence class.

During unit testing, structural test-
ing can be an effective approach for mak-
ing sure all the code is accessible. How-
ever some form of functional testing is
still essential to improve the chances
that the subfunction of the individual
unit is correct. Clearly functional test-
ing becomes all the more important during
integration, system and acceptance test-
ing. As pointed out earlier, structural
testing has the drawback that it does not
catch errors of omission. The major prob-
lem with functional testing is that creat-
ing the conditions that need to be checked
is a difficult heuristic process and
checking for all possible conditions can
be almost impossible on a very large sys-
tem.

In most organizations, some type of
problem report is generated to keep track
of raults and fixes. These forms could be
modified to provide the developer with
valuable information for error analysis.

Reading is a completely human based
activity. It includes reading of any of
the life cycle documents alone or in com-
bination. Documents can be read privately
by the individual who wrote them or by
another person. Walk-throughs can be per-
formed in which the individual talks a
group through the document, or they can be
done independent of the developer, by an
external group for independent quality
control [Pagan]. Typically forms are
filled out at the walk-through or design
inspection which capture the problems
found in the document. This data is useful
for determining the error distributions
discussed above.

It is worth a minor discussion of the
differences in activities performed when
doing reading and testing. For reading,
test cases do not need to be generated. In
testing the error detection and isolation
problems are separate, i.e. if for a
specific input, a failure is generated,
the place where the error took place must
still be isolated. In reading detection
and isolation are one activity. In testing
the error can only be found after the code
exists, in reading it may be found any
time after entry into a document. In test-
ing, program coverage is test based, if a
test has not been devised to cover a con-
dition, the condition will not have been
checked out. In reading, assuming the
entire document has been reviewed, cover-
age can be total. Reading does require
intermediate functions or requirements
against which the design and code are
checked.

tt has not been adequately demon-
strated which of the approaches discussed
above have the greatest effect in prac-
tice. One study [Myers], compared testing
and code reading for effectiveness in dis-
covering bugs. This study is important in
that it begins to address the issue of
effectiveness of various techniques,
whether they should be used together or
one as a check of the other. Some work
done at the University of Maryland [Hwang]
has exposed another problem: even if the
proper set of tests have been developed,
the tester may not be able to recognize
that an error has occurred. A study is
currently underway which will partly
duplicate the study of Myers as well as
shed some further light on the effective-
ness of finding various classes of errors
using structural and functional testing
and code reading.

A quantifiable measure of quality
that has become popular in software
engineering practices is software relia-
bility. It can be defined as follows: Let
E be a class of errors, defined arbi-
trarily and T be a measure of relevant
time, the units of which are dictated by
the application at hand. Then the relia-
bility of the software package with
respect to the class of errors E and with
respect to the metric T, is the probabil-
ity that no error of the class occurs dur-

28

ing the execution of the program for a
specified period of relevant time [Goel].

A number of analytical approaches
have been developed to address the prob-
lems of software reliability assessment
[Goel],[Musa]. These approaches are mostly

based upon the error history of 	the
software. They may be divided into time-
dependent and time-independent approaches.
The time-dependent approaches is based on
either times between failures or on
failure counts in specified intervals. The
time independent approach uses either
error seeding methods or input domain
analysis.

In the time-dependent approach, the
times between exposure of errors or the
number of errors observed in a sequence of
test time intervals are use• to estimate
the shape of the hypothesized failure
(hazard) rate function. From the estimated
failure rate functions, one can estimate
the number of errors remaining in the
software, mean-time-to-failure (MTTF) and
software reliability.

In the error seeding approach, a
known number of errors is seeded (planted)
in the program. After testing, the
numbers of exposed seeded errors and indi-
genous errors are counted. Using combina-
torics and maximum likelihood estimation,
one can then estimate the number of indi-
genous errors in the program and also the
reliability of the program.

In the input domain based models, the
procedure is to generate a set of test
cases from an input (operational) distri-
bution. The difficulty of estimating the
input distribution is overcome by parti-
tioning the input domain into a set of
equivalence classes. An equivalence class
is usually associated with a program or
logic path. The reliability measure is
then calculated from the observed failures
after symbolically or physically executing
the generated test cases.

A common problem with the use of
these models 	seems to be the lack of a
clear understanding of the inherent
strengths and weeknesses of such models.
Furthermore in many cases, the underlying
assumptions and outputs of the models are
not fully appreciated by the users. , It
is also true that not all models are
applicable to all testing environments

Basili & Valaesj. There has been
lack of controlled study and validation of
these models.

One idea that implicitly combines
testing and reliability is the clean room
[Dyer & Mills]. Here the programmer must
use a variety of reading techniques since
the testing is only done by an independent
organization. When used with top down
development, this approach allows portions
of the system to be tested, using random,
functional testing, and the test results

to be analyzed by a reliability model. The
developer then gets the test results and
some quality metric on the reliability of
the system at various points in the
development. An experiment being run at
the University of Maryland shows that the
developers become much more conscious of
quality than might otherwise be true.

Using each of the techniques dis-
cussed, data can be collected that,
involves all of the error distributions
listed. Coverage metrics can be obtained.
Although structural testing coverage
metrics may not capture the quality of the
testing because they do not record errors
of omission, they might be useful when
used in conjunction with a functional
testing plan. In this way, knowing the
number of errors of omission we may be
able to extrapolate and gain some informa-
tion on how well the system is tested.

The results of testing can be used as
inputs to an appropriate reliability model
to obtain estimates of reliability mean
time to failure.

LIFE CYCLE METHODOLOGY

Quality assessment and reliability
evaluation need to be done across the
entire life cycle. In this section we will
outline a proposal for a quality assess-
ment approach to software development
which involves the application of several
of the technologies discussed above. In
what follows we will discuss a few of the

phases in the quality assurance measure-
ment context, emphasizing reliability and
correctness.

Requirements

The earliest time available to assess
quality and reliability is during the
requirements phase. We can examine the
requirements document in an effort to
assess its quality and to set up the
needed predictors for quality of the final
developed product.

Fault distributions can be used to
evaluate the reliability and correctness
of the requirements document itself. The
developer can keep track of (1) the types
of errors, (2) types of changes, and (3)
the errors by section of the document.
Distribution (1) can be used to determine
if there are problems with
ambiguity,inconsistency, omission or
incorrect facts in the requirements docu-
ment. This information is useful in
focusing testing and review procedures for
the document itself. Distribution (2)
Provides information about where changes
are occurring and might indicate the need
for special testing. Errors can be local-
ized with respect to functionality using
distribution (3). There are several other
fault distributions which specifically
relate 	to 	errors 	associated with a

29

requirements document listed in (Basili &
Weiss].

There are metrics than can be used in
assessing the existing document. Several
of these are defined in (McCall, Richards,
& Walters] and include (1) a completeness
checklist, e.g. unambiguous references?,
all functions defined?, (2) an accuracy
checklist, e.g. error analysis performed
and budgeted to module?, a definitive
statement of requirement for accuracy of
inputs, outputs, processing and con-
straints?,. These metrics can be used to
evaluate requirements document and point
out potential areas for error.

In order to set up the necessary
framework for evaluating the goodness of
the final tests and the resulting quality
evaluation based upon those testa we can
design a test plan based upon the require-
ments document that can be used to quan-
tify later results. One criteria is to
know how well the requirements have been
tested. Let us start with a simple predic-
tor. Assume we can develop a metric that
indicates the percent of testing performed
relative to some minimum set of tests. In
the ideal, this would involve knowing the
total number of tests (T) based upon some
good strategy for functional testing and
then using this number to normalize the
set of tests actually used (t). Then t/T
gives a measure of the thoroughness of
testing. Assuming that the t tests are
representative of the T tests let is
represent the number that were successful
and tf represent the numbyr that failed,
then ts/t is a measure of the reliability
of the product, relative to the test set t
and (tfeT)/t is a simple predictor of the
total number of errors in the product.

In defining the metrics above two
assumptions were made: (1) we can find a T
that indicates the total number of tests
needed to expose all the errors in the
program (2) we can find a t representative
of T. Let us first discuss assumption
(1). This implies we can come up with a
good functional test plan, e.g.
equivalence partitioning, that could be
used for the entire requirements document.
We must come up with the set of all input
conditions and create for each category
the set of valid and invalid subclasses.
The set of tests needed to satisfy the
equivalence partitioning would then be an
estimate of T. A simple alternative esti-
mate of T without making up all the possi-
ble test cases might be 2•n where n
represents the number of input conditions,
assuming an average of 2 tests per condi-
tion. An even simpler estimate might be
achieved, if we can assume that n could be
approximated by the number of sentences in
the requirements document.

Generating a representative t may be
more complicated unless we can categorize
the input/output conditions into large

equivaience classes. 	A straightforward
approach would then be to choose t ran-

domly from the set T.

We can refine these metrics in two
ways, (1) by assuming there are
categories of errors, el, e2, etc. based
upon the severity of the errors or some
other categorization scheme for errors,
(2) by assuming that the requirements
document has been partitioned into input
domains, possibly based upon the impor-
tance of the product' meeting 	certain
requirements and then classifying the test
cases according to these input domains.

Design

There are many things that can be
measured during the design phase. These
include fault distributions and counts,
complexity metrics and traceability to the
requirements or specification document.

Assuming design reading and design
inspections, records can be kept of the
faults during design and several fault
distributions can be derived. Design
faults can be categorized with respect to
(1) total number of faults, (2) total
number of faults/ line of design, (3)
number of faults/system component, (4)
faults of omission vs. commission, (5)
faults caused by a misunderstanding of the
interface vs. the design of a single com-
ponent, (6) faults by when they entered
the system. Distribution (1) and (2) can
be used to evaluate the reliability of the
system and the design approach. The data
can be used in a reliability model to try
to predict future errors. Distribution
(3) can be used to assess the reliability
of each component. 	Components with a
higher percentage than the average might
be reviewed for further errors, higher
complexity 	and 	are 	candidates 	for
redesign. Distribution (4) can be used
with data distributions from previous pro-
jects to check if the project is con-
sistent. If the distribution is substan-
tially different from previous studies, is
it because the development team is doing a
better job or because there are problems
in the review process, e.g. design is not
being checked against the specification so
errors of omission are not being found.
Distribution (5) tends to pinpoint prob-
lems with the methodology. If there are
too many interface errors then more work
needs to be done in specifying and clan -.
fying the interfaces. These last two dis-
tributions also help focus the testing
activity and might generate modifications
to the test document, e.g. a large number
of interface errors might focus 	more
attention on integration testing. Distri-
bution (6) provides information on the
weak documents in the life cycle. If many
of the errors are requirements errors
then, it may be worth going back and
reanalyzing the requirements document.

There are many other distributions
that can be collected during the design
process that provide the developer with
insights into how to improve the process,

30

focus the techniques being used and what
might need redoing. The user, if any of
this information is available to him, can
use the information to modify the accep-
tance test plan.

Complexity metrics can be used to
track potential problem areas. To a large
extent, what can be measured during design
depends upon the design notation used. If
a process design language is used, most of
the metrics defined for code can be
applied. These can be applied at each
stage of the design to gather information
at the current design point as well as
examine progress (size changes) and
analyze the effect of updates in the
refinement of a design (complexity
metrics).

The idea of a metric vector is being
studied at the University of Maryland
[Hutchens], in which a large number of
metrics are collected on the existing pro-
duct, e.g. the design document. These
metrics are then tracked throughout the
development, i.e. through design, code.
test, maintenance. The metric vector can
be used to characterize the current ver-
sion of any document, indicate changes in

the system, and act as a mechanism for
checking the relationship between various
metrics. Assuming the vector 	contains
metrics that indicate such characteris-
tics as the size, control complexity, data
complexity within a component, data com-
plexity across components, number of
errors in a component, and number of
changes to a component, the developer can
at any point in time determine the "qual-
ity" of that component, and of the whole
system. For quality assessment, bounds
could be set for each of the metrics and
when the bounds are exceeded, review or
redesign of the component can take place.
Examining the changes to a particular com-
ponent can provide information about
whether the implementation of a lower
level function exceeded the predicted
"complexity". This again could signal a
flag to the quality assessment team per-
mitting any number of actions. The third
benefit of the metric vector is to allow
the quality assurance group to derive the
relationships for that particular project
between the various metrics, e.g. when the
control complexity is high there is a
larger than average number of errors in
the algorithm. This information can then
be used to predict potential errors and
error types.

To deal with traceability and aid in
the testing process, a requirements/
design component vector can be developed
[Valdes]. In this vector requirements
(rows) are compared with the various sys-
tem components (columns) and an entry is
made in the matrix if the component imple-
ments any part of the requirement. Blank
rows in the matrix indicate a missing
requirement in the design. The greater the
level of detail in the requirements ,the
more information is available. The rows

in the matrix should correspond to the
input conditions derived from the
equivalence partitioning process in the
requirements phase. The matrix provides a
view of the traceability of the require-
ments. A small number of items in the
matrix indicates a functional design. The
easier it is to draw the matrix, the
simpler the design and the easier it is to
trace the requirements to the design. The
matrix also provides a relationship
between functional and structural testing.
Using component coverage in structural
testing, test cases can be checked to see
if all components that implement a partic-
ular function have been visited.

The approaches for the specification
and coding phases are similar to the
requirements and design phases respec-
tively. The coding phase permits more
measurement than the design phase since
execution metrics can also be applied.
During the various test phases, coverage
metrics and reliability models can be
used. Early study indicates the clean
room approach may be an effective means of
providing quality assessment during the
coding phases.

SUMMARY

Quality assessment of software must
be done across the entire life cycle. The
assessment program requires measurement
and data collection so the user and
developer can gain the proper confidence
and assurance that the system behaves the
way it is expected to behave. This quality
assessment program must be built into the
software development methodology from the
beginning.

Techniques available for assessment
are error analysis, reading and testing,
reliability models, and product metrics.
These technologies need to mature, but
they will only mature through use and
experimentation in a variety of software
development environments. There are still
many open questions concerning the avail-
able technologies. What are the relation-
ships between the various testing tech-
niques and reading? Can coverage metrics
be used in assessing functional testing?
How and when can reliability models be
used with confidence? What is the rela-
tionship between the various complexity
metrics and software quality? It is
important that effort be expended 	to

answer 	these questions to assure the
future quality assessment of software.

ACKNOWLEDGEMENTS

I would like to thank Professor Amrit Goel
for his contributions to this paper. Work
on this project was supported in part by
NASA Goddard Space Flight Center grant NSG
-5123 to the University of Maryland.

31

REFERENCES

[Basili & Perricone]
V. R. Basili and B. Perricone, Software
Errors and Complexity: An Empirical Inves-
tigation, University of Maryland Technical
Report TR-1195, August 1982.

[Basili & Weiss]
V. R. Basili and D. Weiss, Evaluation of a
Software Requirements Document by Analysis
of Change Data, Proceedings of the Fifth
International Conference on Software
Engineering, March 1981, pp.314-323.

[Dyer & Mills]
M. Dyer and H. Mills, Developing elec-
tronic Systems with Certifiable Reliabil-
ity, Proceedings of the Conference on
Electronic Systems Effectiveness and Life
Cycle Costing, 1982, NATO Advanced Study
Series, Springer-Verlag.

[Elshoff]
J. Elshoff, An Analysis of Some Commercial
PL/1 Programs, IEEE Transactions on
Software Engineering , Jun177737-----

(Fagan]
M.E. Fagan, Design an Code Inspections to
Reduce Errors in Program Development, IBM
Systems Journal , Vol.15, No 3, 1976.

[Goel]
A. L. Goel, Software Reliability Modeling
and Estimation Techniques, RADC-TRxxx,
February 1983.

tuoei, Basili & Valdes]
A. L. Goel, V. R. Basili, and P. 	Valdes,
How and When to Use Software REliability
Models, Sixth Annual Software Engineering
Workshop, NASA Goddard Space Flight
Center, 1982.

[Halstead]
M. Halstead, Elements of Software Science

 , Elsevier North-Holland, New York, 1977.

[Henry & Kafura]
Sallie Henry & D. Kafura, Software Struc-
ture Metrics Based on Information Flow,
Transactions on Software Engineering ,
Vol. SE-T, September 1981, pp 510-518.

(Hetzel]
William 	C. 	Hetzel, 	An 	Experimental
Analysis of Program Verification Methods,
University of North Carolina at Chapel
Hill, Ph.D. Thesis, 1976.

[Howden]
William E. Howden, Functional 	Program
Testing, IEEE Transactions on Software
Engineering , Vol. SE-6, No 2, March 1 980,
pp 162-169.

[Hutchens]
D. Hutchens, The Value of Objective Meas-
urements in the Characterization of
Software, University of Maryland, Ph. D.
Thesis, 1983 (to appear).

[Hwang]
S. Hwang, An Empirical Study in Functional
Testing, 	Structural Testing, and Code
Reading/Inspections, University of Mary-
land, Scholarly Paper, December 1981.

[IEEE]
IEEE 	Standard 	Glossary 	of 	Software
Engineering 	Terminology, IEEE STD-729-
1982.

[McCabe]
T. J. McCabe, A Complexity Measure, IEEE
Transactions on Software Engineering ,
Vol. SE-2, No. 4, Dec. 1976, pp 308-320.

[McCall, Richards & Walters]
J. McCall, P. Richards 	G. 	Walters,

rectors in Software Quality, Rome Air
Development Center, RADC-TR-369, November
1977.

[Musa]
John Musa, A Theory of Software Reliabil-
ity and Its Application IEEE Transactions
on Software Engineering , Vol. SE-1, No.3,
pp. 312-327.

[Myers]
G. J. Myers, A Controlled Experiment in
Program Testing and Code Walkthrough/
Inspections, CACM , Vol.21, 1978, pp 760-
768.

[Valdes]
P. Valdes, An Approach to Software Testing
and 	Reliability 	Assessment, 	Syracuse
University, Ph. D. Thesis, 	1983 	(to
appear).

ABOUT THE AUTHOR

Victor R. Basili is Professor and Chairman of the
Computer Science Department at the University of
Maryland, College Park, Maryland. He has been
involved in the design and development of several
software projects, including the SIMPL family of
programming languages. He has been measuring and
evaluating software development in several places.
including the Software Engineering Laboratory at
NASA/Goddard Space Flight Center. Dr. Basili is
the author of over 50 published papers on soft-
ware development methodology and the quantitative
analysis and evaluation of the software development
process and product. He is a recipient of the
Outstanding Paper Award from the IEEE Transactions
on Software Engineering for the paper entitled
"A Controlled Experiment Quantitatively Comparing
Software Development Approaches" published in
May 1981. He has consulted with several govern-
ment agencies and industrial organizations,
including IBM, CE, CSC, Naval Research Laboratory,
Naval Surface Weapons Center, and NASA. He has
been Program Chairman for several conferences,
including the 6th International Conference on
Software Engineering, and the First ACM SIGSOFT
Sponsored Engineering Tymposium on Tools and
Methodology Evaluation. He has served on several
editorial boards, including the Journal of
Systems and Software and the IEEE Transactions
on Software Engineering. He is a member of the
ACM and a member of the Executive Committee of
the Technical Committee on Software Engineering,
IEEE Computer Society.

32

IMPACT OF SOFTWARE TESTING ISSUES ON FUTURE SOFTWARE ENGINEERING ENVIRONMENTS

Leon G. Stucki, Ph.D.
Boeing Computer Services Company

Seattle, Washington

ABSTRACT

Software testing tools have been discussed for some time in the literature.
Typically, two basic approaches have been followed:

Formal constructive - methodologies and tool systems to specify
and build programs with certain "assured"
Properties

Code analysis - tools designed to examine specific properties
of existing programs

The formal approach while offering theoretically pleasing results is still
viewed with skepticism by most involved with large systems. The code analysis
tools also suffer serious inadequacies. • One major problem is that they work on
"existing code" which is harder to modify and often too late in the project
life cycle to allow significant changes.

There are several efforts currently underway attempting to partially
bridge this gap. The author will discuss one such project - Argus. Argus is
an advanced software engineering environment being built on a micro-based work-
station.

The Argus environment contains management, design, programming, and analysis
tools. The presentation will include examples and observations describing the
early use of this system. The notion of software testing is distributed through-
out Argus and has heavily influenced the architectrue of this system.

Emphasis has been placed within the design component of Argus on capturing
information which will he of considerable value in better understanding the system
being specified, and in planning for subsequent testing activities. Capturing this
information in the design phase is quite straight forward and considerably less
expensive than attempting to create it after the code has been produced.

33

APPLICATION OF SOFTWARE METRICS DURING EARLY PROGRAM PHASES

Ralph C. San Antonio, Jr.
Dynamics Research Corporation
Wilmington, Massachusetts

Major Kenneth L. Jackson
U. S. Air Force Ballistic Missile Office

San Bernardino, California

ABSTRACT

This paper demonstrates the use of quantitative measures of
software quality during early requirements and design phases.
The approach is part of an overall methodology for improving
software quality that includes systematic procedures for collecting
and assessing data, and automated tools for measuring and analyzing
software quality characteristics. Software metrics are combined
with a requirements specification tool to compare and evaluate
software requirements. Results based on a limited application of
the approach are presented.

INTRODUCTION

Software quality is a matter of
perspective. Developers want software
that meets the functional and performance
requirements, and is delivered on time and
within cost. Users need software that is
reliable, easy to use, and supportive of
their mission objectives. Maintainers
require software that is easy to fix,
modify, and test. Software quality,
therefore, comprises all software attributes
and characteristics that are important to
developers, users, and maintainers.

For major defense systems, users and
maintainers rely on the developers (the
program office and development contractors)
for specifying software quality require-
ments, for monitoring and evaluating soft-
ware quality, and for ensuring that the
software complies with specifications.(1)
Unfortunately, definitions of software
quality that allow users and maintainers
to express their requirements to
developers are not well established.
Similarly, developers lack quantitative
techniques for specifying, measuring, and
assessing software quality. This is
especially true of early program phases
where little research has gone into
developing quantitative methods for
recording and evaluating software require-
ments.(2) Yet, the early requirements
phase offers the greatest opportunity to
influence software quality and life-cycle
cost. (2,3,4) Problems that go unnoticed
until program testing are always expensive
and difficult to fix. Moreover, adhering
to poor quality specifications assuces
delivery of poor quality software. (g) To
avoid this result, definitions of software
quality that make it possible to discuss,

specify, measure, and evaluate software
quality during early program phases are
required.

This paper discusses a comprehensive
approach for improving software quality.
The approach supports quantitative compari -

sons and evaluations of software during
early requirements and design phases. It
is part of an overall methodology for
specifying, measuring, and assessing soft-
ware quality throughout the software life-
cycle. The paper identifies software
quality concepts and related metrics that
are fundamental to the approach. The paper
further describes how the integration of
software metrics with an automated specifi -

cation development tool provides a means
to assess software quality in early devel-
opment phases, and to improve software
quality during successive iterations of the
requirements specifications. Results based
on a limited application of this approach
to Peacekeeper Missile Programs are
presented to illustrate the benefits.
Conclusions and recommendations for future
application of the technology are presented .

OVERVIEW OF THE METHODOLOGY

The methodology for improving soft-
ware quality is comprised of three
elements: software quality characteristics
stored as data in a project data base;
systematic procedures for collecting and
evaluating these data; and automated tools
for measuring and analyzing software
quality. The following paragraphs describe
each of these elements, beginning with the
project data base.

34

TEST

MANAGEMENT

crERATION/SURPORT

TEST PLAN
TEST SPECIFICATION
TEST PROCEDURE

l_TEST REPORTS

(CONFIGURATION MANAGEMENT PLAN

tDUALITY ASSURANCE PLAN
SOFTWARE DEVELOPMENT PLAN
MAINTENANCE PLAN

,OPERATOR'S MANUAL

tUSER'S MANUAL
OIAGNOSTIcs MANUAL
PROGRAMMER'S MANUAL

TAKE 1. REPRESENTATIVE SOFTWARE DOCUMENT TYPES

TRACEAIDUTY
COMPLETENESS
CONSISTENCY
ACCURACY
ERROR TOLERANCE
DUPLICITY
MODULARITY
GENERAUTY
EXPANOASILITY
INSTRUMENTATION
SELF-OESCRIPTIVENESS
EXECUTION EFFICIENCY

STORAGE EFFICIENCY
ACCESS CONTROL
OPERABILITY
TRAINING
COMWAUNICATIVINESI
SOFTWARE SYSTEM INOEPENOENCI
mACRINI INDEPENDENCE
COMMUNICATIONS COMMONALITY
DATA COMMONALITY
CONCISENESS
ACCESS AUDIT

TAIL! 1 CRITERIA

The Project Data Base

The project data base contains the
information required to analyze software
quality, including characteristics of the
software, the software development process,
and the system in which the software
operates. Software characteristics are
derived from various representations of
the software, such as requirements speci-
fications, design documents, and source
code. Details of the software development
process are obtained from documents such
as software development plans, and
programming standards and procedures
manuals. System features are taken from
system specifications and related design
documentation. (Table 1 identifies a
representative list of software documents
from which the data base is constructed.)(5,6)

to describe software quality; criteria,
 with associated metrics, used to quantify

the Factors; metric-elements, based on
observable software characteristics, used
to calculate the metrics; and primitive
software measures, called data items, that
support metric-element calculations. (The
framework is depicted in Figure 1.)

Factors are management-oriented terms
such as reliability, maintainability,
flexibility, and useability that represent
software qualities important to users,
maintainers, and developers. Eleven
factors are described in the model. (These
factors are listed in Table 2.) Each
factor is composed of one or more software-
oriented terms called criteria.

CATEGORY

RELAGIUTY
MANSTAINASLITY
FLEXISILITY
PORTATOLiTY

USIAIRUTV
REUSEAMLITY

INTEROPERARILITY
TESTASIUTY
EFFICIENCY

comacrooss
INTEGRITY

ENGINEERING

sr4TEIN SPECIFICATION
FUNCTIONAL REQUIREMENTS SPECIFICATION

L)

INTERFACE REOUIREMENTS SPECIFICATION
DETAIL DESIGN SPECIFICATION
INTERFACE DESIGN SPECIFICATION
DATA SASE 0551061 SPECIFICATION
STANDARDS MO PROCEDURES MANUAL
VERSION DESCRIPTION DOCUMENT

TAILS Z. SOFTWARE QUALITY FACTORS

Criteria are software-oriented terms
such as consistency, completeness, accuracy,
and self-descriptiveness that relate soft-
ware characteristics to the eleven factors.
Twenty three criteria are identified in the
model. 	(Criteria are listed in Table 3.)
Some criteria support more than one factor.
For example, consistency supports the
factors reliability, maintainability, and
correctness. Also, some of the criteria
are further partitioned into subcriteria to

.refine the definitions. Consistency, for
example, is subdivided into procedure
consistency and data consistency. Each
criterion and subcriterion is associated
with a metric.

Metrics quantify software character-
istics related to the criteria and sub-
criteria. They are comprised of lower-
level measures called metric-elements.

The software quality model described
by McCall and others (references 7 and 8)
was the starting point for defining the
data base parameters. This model was
selected because it resulted from a thorough
analysis of software quality concepts and
terminology. In addition, the model
identifies software characteristics
important to developers, users, and
maintainers, and establishes a framework
for analyzing software quality. This
framework was modified and extended,
particularly at the lower levels. The
ref:tilting model coniiii:t;; or factor:: 'iced

35

MANAGEMENT-ORIENTED 	 SOFTWARE-ORIENTED
	

MEASUREMENTS
TERMS
	

TERMS

FACTOR CRITERION
i 	•

CRITERION

	 METRIC_

SUSCRITERION I 	METRIC...

•

SUSCRITERION 7—METRIC 	METRIC-ELEMENT...

\\"•• METRIC-ELEMENT_

METRIC-ELEMENT — DATA ITEM

•

DATA ITEM

FIGURE 1. SOFTWARE QUALITY FRAMEWORK

Metric-elements are objective measures
of software characteristics used to calcu-
late metric values. 	(Table 4 lists metric-
elements for the criterion completeness.)
There are 153 metric-elements defined in
the referenced model to support the metric
calculations. Implied in the model, but
not specified, is a lower-level unit
of measurement required to support metric-
element calculations and to complete the
definition of the data base. These are
called data items.

phases. (Table 5 identifies requirements-
phase data items for two of the metric-
elements related to the criterion
completeness.) 	To date, 374 data items have
been identified to support the metric-
elements described in the original model. (9)

METRIC ELEMENT
	

OATH ITEMS

DA IA REFERENCES HAVING
	

DATA REFERENCE NOT HAVING ORIGIN

ORIGIN 	
NUMBER OF DATA REFERENCES NOT

HAVING ORIGIN

NUMBER OF DATA REFERENCES

FUNCTIONS SATISFACTORILY DEFINED

DEFINED FUNCTIONS USED

REFERENCED FUNCTIONS OEFINED

DATA REFERENCES HAVING ORIGIN

DATA REFERENCES HAVING DESTINATION

CONDITIONS AT DECISION POINTS

ALTERNATIVE PROCESSING OF CONDITIONS

ALTERNATIVE CONDITION OPTIONS SET
PROCESSING FOLLOWS SET CONDITION OPTIONS

CALLING SEQUENCE PARAMETERS AGREE

PROBLEM REPORTS RESOLVED

TABLE 4 METRIC-ELEMENTS FOR CORWLETENESSIM

Data items are primitive software
measures used to calculate metric-elements.
Examples include the number of functions,
the number of branch paths, and the number
of data references in a program. Data
items are defined for all life-cycle

ALTERNATIVE PROCESSING OF 	CONDITION OPTION WITHOUT PROCESSING
CONDITIONS

NUMBER OF CONDITION OPTIONS
WITHOUT PROCESSING

NUMBER OF CONDITION OPTIONS

TABLE 5. DATA ITEM EXA/APLES191

The framework shown in Figure 1
establishes a basis for evaluating software
quality throughout the software life-cycle.
It identifies the data items that must be
measured and included in the data base
during each life-cycle phase. The steps
required to collect, measure, and analyze
these data are described in the procedures.

Systematic Procedures

The procedures define a systematic
approach for collecting and analyzing data,
and for evaluating software quality during

36

each life-cycle phase. The procedures
identify when measurements are made, how
the information is collected, what analyses
are accomplished, and how the results are
reported.

While responsibilities may vary From
project to project, the procedure remains
the same. Typically, data collection
coincides with the software development
milestones and the delivery of software
specifications and related documentation.
Software quality characteristics are
measured using automated tools for require-
ments, design, and coding information
available in machine-readable form. When
this information is not available in a
machine-readable form the characteristics
are measured manually using worksheets and
checklists. Metric-element values are
calculated using the resulting data.
Statistical analyses of the metric-element
values are used to compare modules against
one another and to establish trends. Once
a data base sufficient to assure statis-
tical confidence has been established,
metric-elements are combined into higher-
level metrics. Thresholds are established
to identify where additional resources
should be applied to improve software
quality. Throughout this procedure, the
analyses are supported by the automated
tools integral to the methodology.

Automated Tools

Wherever possible, automated tools
are used to aid in the measurement and
assessment process. The primary goal is
to minimize the cost required to collect
the data and calculate metric and metric-
element values and statistics. Also, the
tools assure consistent results from one
application to the next. Presently, the
effective development and use of measure-
ment tools is hampered by the wide
variation in host-computer environments
and languages used to develop software for
major defense systems; however, standard
analysis tools can be developed and used
to effectively support the assessments
since the data base is defined by the
software quality model.

APPLICATION TO PEACEKEEPER MISSILE PROGRAMS

The approach described above was
applied to Peacekeeper Research and Devel-
opment Flight Programs (R&D FP) to demon-
strate the benefits of using software
quality metrics. The principal goal was
to identify techniques and procedures for
integrating quantitative methods of
measuring and assessing software quality
into the Peacekeeper development community.
The initial demonstration was restricted
to the R&D Flight Program Computer Program
Development Specification (CPDS) that
resulted from the requirements phase. To
simulate automating this phase of the
proceris the specification was translated

into a machine-readable form. For this
application the Problem Statement Language
(PSL)/Problem Statement Analyzer (PSA)
developed at the University of Michigan was
chosem.

PSL/PSA was developed to improve the
process of analyzing and preparing software
specifications. (10) It allows the user to
represent a software specification in
machine-readable form using PSL objects,
relationships between objects, and object
properties. PSA checks statements for
consistency during creation of the PSL data
base. PSA also provides reports that can
be used by the analy#t to evaluate the
system description. (11) The objects and
relationships used by PSL/PSA provide
information in the following areas; system
input/output flow, system structure, data
structure, data derivation, system size
and volume, system dynamics, system
properties, and project management. (10)

PSL was also used to remove ambiguities
at lower levels in the software quality
framework. For example, without further
guidance the determination of whether or
not a function is "used" could vary between
analysts. Table 6 provides a PSL definition
of the data item defined function not used
that eliminates this uncertainty.

DEFINE° FUNCTION NOT USED

A PA PROCESS IS USIO IF IT IS RELATED TO AT

LEAST ONE OTHER PL OILIECT ST

INCEPTION CAUSES

TERINNATION CAUSES

TRIGGERS

TERMINATES

INTERRUPTS

UTILIZES

THOSE PSL MULCTS THAT CAN INTERACT WITH PROCESSES

MTH THE ABOVE RELATIONSHIPS ARE INPUTS. EVENTS.

CONOITIONS ARO moccasin.

TABLE S. PSI. DEFINITION OF DEFINED FUNCTION NOT USED

Defining data items in this manner
also allowed the use of PSA to measure the
PSL representation of the specification.
Worksheets were used to record the measure-
ments thus obtained; the results were
stored in the project data base for later
analysis and assessment.

Analysis of Data

The analysis was restricted to the
metric-element level since the historical
data base necessary to combine these
elements into higher-level metrics is
lacking. In addition, the analyses were
based on a partial translation of the
specification into PSL. This translation
covered all aspects of the three major CPDS

37

SYSTEM 0.54 0.06 0.53

-

0.59 	0.17

,

0.01

-

0.411 0.00

MAJOR Fume-nom

SEQUENCING (0 OC.1:201 €. 9),2 006, 0019 0 0.56 0010

STEERING 005 0(.0:)I 0.50 1.00 	1.00 000 0.00 (2)

CONTROL 0.54 0.07 0.50 0.90 	1.00 florl 0.77 oeo
. .

FLIGHT PHASE

TERMINAL
COUNTDOWN 0.50 0.00 0.50 0.50 	0.00 0.00 0.00 0.00

PHASE ZERO 0.56 0.00 0.50 0.50 	0.00 0.00 0.25 0.00

PHASE ONE 0.56 0.06 0.50 0.71 	0.43 0.00 0.47 0.00

PHASE TWO 0.5111 0.06 0.50 0.59 Ms 0.00 0.50 0.00

PHASE THREE 0.53 0.09 0.55 0.56 	0.00 0.00 0.56 0.00

PHASE FOUR 0.40 0.04 0.55 0.59 	027 0.04 0.41 0.00

NOTES:

0.0 • HIGHEST QUALITY

1.0 - LOWEST QUALITYV

(RESULTS BASED ON
PARTIAL TRANSLATION
OF SPECIFICATION)

functions, Steering, Sequencing, and
Control, except for the dynamics of the
Steering and Control functions. While
this affected the outcome, the results are
typical of those obtained during the
evolution of a specification. The following
paragraphs illustrate the insight gained
from this approach using metric-elements
for the criterion completeness as examples.

Metric-elements are calculated by
simply dividing the number of occurences
that do not satisfy a condition or
characteristic by the total number of
occurences for the set considered. For
example, the metric-element data references
having origin is calculated at the system
level by dividing the number of data
references not having an origin within the
system by the total number of data
references within the system. Hence, a
value of zero is highest quality and one
is lowest quality.

for each flight phase. Metric-elements
were grouped in this manner to gain added
visibility into the specification. In
addition, metric values were calculated
for subfunctions within Sequencing,
Steering, and Control. Figure 2 shows
values of the metric-element data refer-
ences having origin for subfunctions with-
in Sequencing by flight phase. Also shown
in the figure is the mean value of 0.54
for the metric-element.

The mean value was used to compute
an acceptance threshold for the group. The
threshold was calculated to reject a per-
centage of the metric-element values.
Three functions in Figure 2 exceed the
threshold and warrant further evaluation.
This technique allows the developer to
identify areas where quality improvements
are most needed and to apply resources
accordingly. Since the threshold can be
arbio- r?rily set, the procedure is used to

TABLE 7. METRIC-ELEMENT VALUES FOR COMPLETENESS

Calculations lot- the metric-elements
contained in the criterion completeness are
shown in Table 7. Values are shown for
the system, for each major function, and

lower the mean value as much as possible,
consistent with available resources.

38

•

•
•

• ■■ •••■■ ••■ ••■ • ■ • ■••■ ••■ •• ■ •• ■ ••■ • ■■ • ■ • ■••-lirM

• •
•

• •
• • • • • •

• • • • •
•

•

•

TERMINAL
courtr-
oom

NNW
TWO

•

•

PHASE
Tanta

•

PHASE
ZERO

FRAM
ONE

PHASE
FOUR

•

LOWEST
QUALITY

.a
METRIC-

ELEMENT .5

VALUE
.•

2

HIGHEST
OUALI TY

SUSS-FUNCTIONS %WHIN SEGUENCINII BY FLIGHT PHASE

FIGURE 2. VALUES OF METRIC ELEMENT DATA REFERENCES HAVING ORIGIN FOR SEQUENCING
SURFUNCTIONS. SY FLIGHT PHASE

Software Quality Assessment

The entries in Table 7 that are
enclosed by circles were not affected by
the incomplete translation of the specifi-
cation; these values accurately reflect
the specification that resulted from the
requirements-phase activity.

One observation drawn from Table 7
relates to the metric-elements data refer-
ences having origin and data references
having destination. Data references
having origin measures the completeness of
references to data sources in the specifi-
cation. Quality ratings for this element
were low for both Sequencing and Steering
because these functions referenced data
that had no obvious point of origin.
References having destination measures
data usage for data produced by a function.
In contrast to the earlier results, this
metric element was satisfactory for
Sequencing and Steering. One explanation
for this difference follows. functions
are identified because data is required
for other functions; thus the destination
is known. Less is known about sources. for
data used by these functions; often this
information is left unspecified. This is
particularly true at the lowest functional
levels.

Another observation relates to the
low ratings for the metric-elements
alternative condition options set, and
alternative 2rocessinq of conditions for
Sequencing. Condition options control the
functional flow within a system. Processing
is identified for each option set.
Typically, specification writers are
success-oriented and deal explicitly with
only one of two condition options; the
alternative processing for the failure
case is frequently overlooked. The
ratings for alternative condition options
set and alternative processing of conai-
rions flagged the omissions.

CONCLUSIONS AND RECOMMENDATIONS

While the results are both limited and
preliminary, they clearly demonstrate a
quantitative technique for improving soft-
ware quality that can be used during early
requirements phases. The feedback to the
developer isolates problems and pinpoints
areas where additional resources should be
applied to improve the quality of the
specifications. The result is a more
complete and less ambiguous specification
for program design and test.

39

Integration of the software quality
model with PSL/PSA had several advantages.
First, PSL was used to remove ambiguities
in the model by giving precise meaning to
the data items. Second, defining the data
items in PSL enabled the use of PSA to
collect data automatically, thus reducing
the cost for the actual measurement
process. The third advantage is related
to the nature of PSL/PSA. To a large
extent, the benefits derived from PSL/PSA
are determined by the sophisitication of
the user; however, the software quality
model provides a comprehensive set of
review criteria for use with PSL/PSA,
making it a much more powerful tool for an
unsophisticated user.

Recommendations for Future Application

Despite these advantages, the require-
ments data base should be established
early in the software development process
to enhance the specifications and to avoid
the costly translation process. In the
future, measurements should be made for
several programs to provide a sufficient
basis for setting metric thresholds.
Studies of cost versus quality levels are
required to enable program.managers, users,
and maintainers to establish realistic
goals early in the program. To reduce
cost, as much of the technology as
possible should be incorporated into the
software development environment. Down-
stream, implementation of Adam and the
Ada Programming Support Environment will
provide the opportunity to instrument the
development environment and standardize
on automated measurement and analysis
tools. The goal will he to inl luence the
day-to-day engineering decisions that have
the greatest impact on software quality.

REFERENCES

1. Wood, D. L., "Department of Defense
Software Quality Requirements", in
Software Quality Management, edited by
Cooper, J. D. and Fisher, M. J., New
York: Petrocelli Books, Inc., 1979.

2. Curtis, B., "Experimental Evaluation
of Software Characteristics", in
Software Metrics, Perlis, A. J.,
Sayward, F. G., and Shaw, M., editors,
Cambridge, Massachusetts: MIT Press,
1981.

3. Brown, J. R., "Programming Practices
for Increased Software Quality", in
Software Quality Management, edited by
Cooper, J. D. and Fisher, M. J., New
York: Petrocelli Books, Inc., 1979.

Adam is a registered trademark of the
U. S. Department of Defense

4. Arblaster, A. T., Worden, R. P.,
Knight, C. D., Software Quality
Assurance Stud y, (Final Report,
European Space Research and Technology
Centre, Contract No. 4183/79/NL/PP
(SC)), Logica Ltd., October 1980.

5. MIL-STD-1679A (Navy), Weapon System
Software Development, May 1982.

6. MIL-STD-SDS (Proposed), Defense System
Software Development, April 1982.

7. McCall, J., Richards, P., Walters, G.,
"Factors in Software Quality", 3 Vols.,
RADC-TR-77-369, Rome Air Development
Center, 1977.

8. McCall, J. A., and Masumoto, M.,
Software Quality Metrics Enhancements,
RADC-TR-80-109, Rome. Air Development
Center, 1980.

9, 	Francis, J., Town, D., Miller, J.,
San Antonio, R., The Application of
Software Quality Metrics to MX Opera-
tional G&C Software, (Final Report,
Contract No. F04704-81-C-0006),
Dynamics Research Corporation,
September 1982.

10. Teichrow, D., and Hershey, E., "PSL/
PSA: A Computer-Aided Technique for
Structured Documentation and Analysis
of Information Processes Systems",
IEEE Transactions on Software Engineer-
ing, Vol. SE-3, No. 1, January 1977,
pp. 41-48.

11. Howden, W., "A Survey of Static
Analysis Methods", in Tutorial: Soft-
ware Testing and Validation Techniques,
Miller, E., and Howden, W., 2nd
Edition, New York: IEEE Computer
Society Press, 1981, pp. 102-115.

ACKNOWLEDGEMENT

The work described in this report was
funded, in part, under AF Contract No.
F04704-81-C-0006 and DRC Independent
Research and Development (IR&D) Project
No. 3018. The Air Force Project Officers
were Major Kenneth Jackson and Captain
James Haugen. The principal investigator
for this effort was Mr. James Francis.
Key contributions were made by Dr. Donald
Town (IR&D Program Manager), Mr. Jeffrey
Miller, Ms. Mary Ann DiBurro and Ms. Sandra
Bellone. Valuable comments and suggestions
were provided throughout the effort by
Mr. Al Peschel, Mr. Larry Hinckle, and
Mr. Charles Hamilton of TRW, Inc.

40

ABOUT THE AUTHORS

MR. RALPH C. SAN ANTONIO, JR., manages
the Software Engineering and Management
Group at Dynamics Research Corporation. He
holds a Bachelor of Science degree in
Engineering from the U. S. Air Force
Academy and a Master of Science degree in
Engineering from UCLA. From 1968 to 1978,
Mr. San Antonio served in the U. S. Air
Force where he was involved in acquisition
programs for satellite and communications
systems. During this period, Mr. San
Antonio contributed to Air Force policies,
and regulations for acquiring defense
system software. He is a member of the
IEEE and the National Security Industrial
Association Software Group.

MAJOR KENNETH L. JACKSON is the U. S.
Air Force program manager for the Peace-
keeper Software Development and Advanced
Technology in the Guidance and Control
Division of the Ballistic Missile Office.
He has responsibility for development and
evaluation of the ground, flight, and
missile targeting programs. Major Jackson
received a Bachelor of Science degree in
Electrical Engineering from Ohio University
and a Master of Science degree in Elect-
rical Engineering from the Air Force
Enstituto of Technology. His prior

hiviv includt.d devvlupmvnr
and flight testing a Minuteman missile
Global Positioning System (GPS) receiver
used to evaluate guidance and control
system performance. As a former Minute-
man maintenance field engineer he has
experience solving user problems during
weapon system life-cycle support. He has
co-authored several technical papers and
has taught college level courses in
programming.

41

MANAGING SOFTWARE TESTING USING RELIABILITY ESTIMATES *

Martin L. Shonman
Professor of Electrical Engineering and Computer Science

Polytechnic Institute of New York
Brooklyn, New York

ABSTRACT

One of the major problems in software testing is the lack of qualitative measures of

progress. Software reliability models are now available which predict within reasonable

accuracy the reliability, failure rate, mean time between failures, and number of expected
errors during field operation. These models answer the question: "If C release the software
now without further test and debugging, how well will it perform in use?" If the operational
requirements contain quantitative software reliability goals for the system, the predicted
reliability measures can be compared with the specified goals; then a cost benefit analysis can
he performed to decide when to terminate testing.

The paper discusses the various reliability models which have been used in practice and
developes a simple exponential reliability model. Several case studies are summarized where
these models have been used successfully in practice. The paper concludes with suggestions as
to how the use of software reliability models. can be broadened, and what additional research is

needed to further refine these models.

1.0 INTRonucrrom

1.1 Need for a Quantitative Measure

Software design involves an inherent paradox.
Coding involves the synthesis of thousands of
individual actions and decisions to form a
program. Any mistakes result in a program with
errors which will fail ender certain conditions.
Thus, the design of a program involves precise and
exact ideas. Once we have created a program and
ask the question how good the program is, we
encounter Just the antithesis of preciseness.
People resort to all sort ,: of qualitative means to
measure the quality of a program. Of course we
can adopt the philosophy of Abraham Lincoln: "you
may fool all of the people some of the time; you
can even fool some of the people all of the time;
but you can't fool all of the people all of the
time." (Bartlett 1968, p. 641). Thus, we could
simply release software to the field and see how
well tt performs. Of course this is a risky and
often cosily plan, due to the high cost of fixing
software errors in the field compared with
removing them during development testing. Also
some software which is poorly designed will never
perform satisfactorily in the field.

What is needed is a quantitative index of
testing progress during development. This implies
that a relative metric of quality would he
saitsfactory as long as the ranges corresponding
to "good" , "fair", and "poor" were known from
past usage and experimentation. The reliability
metrics which have been developed over the past
decade and are proposed in this paper can not only
serve as a relative criterion, but as and absolute
measure as well. This requires that the
specifications for the system be carefully drawn,
and an adequate and realistic value be chosen for
the reliability goal. For example, suppose we
focus on MTBF as our software metric. If we know

*
This work was supported in part by Office of

Naval Research under Contract No.
N00014-75—C-0858.

based upon analysis of collected data 	that
predecessor software similar to the one under
development exhibit a 200 hr. MTBF in use, and are
considered good systems; then we can base our
goals on this information. Based on the above
example, typical specification philosophies and
their probable results are given below:

1. The new system is much more complex then
the old one. Thus, we specify MTBF-200
hr. as a difficult and realistic goal.
The contractor will probably be able to
improve design and development
techniques sufficiently to meet this
goal even with the new more complex
system.

2. The new system is more complex then the
old one, however, we have decided that
reliability improvement is an important
goal. Thus, we specify a MTBF goal of
500 hr. and ask the contractor in the
proposal phase to describe in a
quantitative plan (including prediction
and reliability tests) how he intends
to achieve the higher reliability goal.

3. The new system is more complex than the
old one, and to insure that the
reliability is improved we specify a
MTBF of 2000 hr. No reliability plan is
required, and the contract is to be
awarded to the lowest bidder who meets
the minimal technical requirements. The
probable result is that the contractor
will see that the goal is unrealistic,
that there are no checks until the
software is delivered, and will proceed
on faith that his designers will meet
the goal through good programming.
The likely result is software with a
MTBF < 200 hr., legal negotiations for
a contract waver based upon a variety
of issues, and a compromise which
results in a poorer system than is
required.

Result 1 and 2 are acceptable if we realize the
compromises which have been made, however, result
3 is all too common and is generally a disaster.

42

1.2 Focus on the Integration Test Phase
	 1.4 Experience wi_th Software Reliability Models

For the purposes of our discussion, we may
divide the software production cycle into five
phases: (1) Specification (including requirements
and preliminary design); (2) Design (including
detailed specifications, design representations
such an pseudmcode, HIPO, etc., and design
revi•ws); Kshii.. (unit) Test of the control
structure and individual modules; (3) Integration
Test of the interfaces between the control
structure and each module; (4) Simulation Testing
and early field testing including aloha (in house)
test sites and beta (early field) test sites; and
(5) Operational Une in the field.

Our purpose is to formulate a software
reliability model as early as is feasible to help
guide the development of the project. One can
formulate a software reliability model during the
design phase but one can not measure the
parameters of the model. If however, there exists
a software reliability handbook with data recorded
for previous projects, we can select a similar
project and 'use_ the recorded parameters for a very
rough initial estimate. This can help us predict
the number of errors which will he found and give
an estimate of the amount of testing required to
bring the system to the specified reliahility
goal. A key requirement for most of the models
which will he described is that run time and
number of errors uncovered during testing be
carefuly recorded. In most projects, the earliest
one can begin to obtain accurate software
reliability data is after the start of Integration
test. At this time, the software is placed under
configuration control and the configuration
manager collects written necnents of all errors
and produeo!; AtroraLe records and eounrs. Thus,
our focus will he nn the integration test phase.

1.3 Types of Reliability Models

	

rhere 	are 	several types of reliability
models, however, this paper focus on the class of
macrn reliability models which are discussed Ln
detail in Sec. 3. In a macro model., one obviates
the problem of how to model the program structure
by focusing on only the number of errors in the
software and not how severe they are or where they
are located.

More detail can be modeled if one can
represent the software structure by a program
graph and if the program errors are associated
with the various paths through the program, and
the path execution frequencies. Such models are
not discussed again until Sec. 5, since they are
stilt in the research stages. (Shooman 1976).

Several individuals have suggested that one
should he able to test a program with n test
cases. If r of these tests succeed, then
hopefully one could make a point and interval
estimate of the software reliability based on n,
r, and the underlying error distribution.
Preliminary models of this type are discused in
Chap. 5 of Shonman 1983; however, more research is
needed in this area.

If we focus on the operational phase of a

project, then not only reliability but
availability. is an important measure of system
performance. Such models utilize markov '
probability 	models and are discussed in the
literature.(Goel 1978, Trivedi 1975).

Software reliability models have existed in
the research literature for a little over 10
years. Over the Last five years, demonstration
studies have been made showing how the models can
he employed in practice, and many of these are
discussed in Sec. 4.0. Some practitioners have
hogao to WOO these models, while others await
proof beyond the shadow of all possible doubt that
the models work. Section 5.0 discusses additional
research and demonstration work which is urgently
needed to continue the momentum in this field.

1.5 Acceptence of Hardware Reliability Models

We may obtain further insight into some of
the aversion toward software reliability models if
we briefly study the broader reliability field.
Some practitioners use the terms hardware
reliability and software reliability, and we will
adopt these terms even though precise distinctions
are difficult with some systems. (Also human
controlled computer complexes must also consider
operator reliability.) Thus, we ask how
successful is hardware reliability prediction and
how well accepted are the results?

Hardware reliability (reliability theory)
began in the Late 1940's and early 1950's. A
great amount of the early effort and a Sizeable
portion of the continuing effort in the field is
directed toward collection, analysis, and
documentation of field failures and a calculation
of the associated failure rates. This data is
published in failure rate handbooks and maintained
in failure rate data bases, eg. MIL-HDBK 217,
217A, 2178, 2170; the Government Industry Data
E:u.hauge Promram. A probabilistic reliability
theory liras been evolved which allows and analyst
(or a computer program) to decompose a complex
structure into its elementary parts. The
handbooks are then consulted for part failure
cares, and the reliability as A inaction of time
Ls calculated. (Shooman 1968). If one wishes to
express the result as a single metric rather then
a Function of time, the mean time between
Failures, mrTIF (also called mean time to failure)
Ls generally used.

The agreement which can be realized between
reliability predictions made during design and
subsequent field observations varies between very
gond and poor depending on the skill of the
analyst, the completeness of the system design,
and the quality and relevance of the failure rate
data at hand. If the system structure is well
described, and good failure rate data is available
for the parts under environment and use conditions
which are expected, then the MTBF can generally be
predicted within 25%. Under poorer conditions,
the estimates are within a factor of two; which is
accurate enough since a conservative design allows
ample margin for error.

Experienced 	reliability practitioners are
generally satisfied with the accuracy of the
results they can obtain, and understand the
limitations when the system description is
incomplete or when appropriate failure rate data
is unavailable. Unfortunately, hardware
reliability analysis is sometimes questioned for a
variety of reasons (Shooman 1981) which are either
invalid or related to a lack of familiarity with
the field:

43

L. Some of the early practitioners were not
always well trained.

2. Few university personnel were trained in
reliability in the 1950's and 1960's.

3. Reliability is generally taught as a
specialized graduate subject.

4. Reliability analyses are generally
performed by a staff group to industry,
rather than by the designer.

5. Management in the US often treats
reliability as an imposed requirement

(a 	yance??) and not as a cony! 	rut of

good design. (We ail know only too well
the success which the Japanese auto
industry has had by adopting the
opposite attitude)

6. The quality assurance (reliability)
department is often viewed as playing an

adversary role in the design process.

FOUNDATIONS OF A SOFTWARE RELIABILITY MODEL

2.1 Basis of the Probabilistic Model

To define a probabilistic model for program
errors, we begin by considering all the paths in a
program. For each path there are many
combinations of initial conditions and input
values comprising mutually exclusive execution
sequences. Once software is placed in use, a
certain number of residual errors exist. Thus,
some of the execution sequences result in system
failures. 	The choice of inputs and initial
conditions selects which of 	the execution
sequences will he processed. A software failure
occurs when an execution sequence containing an
error is processed. Although each execution
sequence is deterministic, the combinations of
input data and initial conditions in most
real-time systems is unknown beforehand, .thus
these 'uncertainties provide the probabilistic
element in the model.

2.2 Definition of Software Errors

Hardware errors occur due to poor-quality
fabrication, design error, overload of the
component, and wear-out.
Software errors occur due to reasons analogous to
those of hardware, however, there is no software
failure mode directly analogous to 	that 	of
hardware wear-out. 	Another difference is that
design errors represent perhaps 10% of all
hardware failures, while 90% or more of all
software errors are design errors.

At times it is important for clarity to be
precise in our definition of software errors. 	We
start by defining a system failure as a
significant deviation from specified operation; a
wrong answer, missing output, extraneous output,
too slow response, garbellng of a data base,
complete system crash, etc.. If the failure is
due to a hardware problem, it is a hardware
failure; if due to an operator error, tt is a
human failure; and if due to a software error, it
is a software failure. Many modern computer
systems contain multiple processors, redundant
computations, and other features such that not all
errors in the code will actually result in a
system failure. Thus, for preciseness, we call
internal code problems code faults. If the fault
alters the system operation, then it is a software
error. If the software error causes a significant

change 	in system pertormance, then it is a
software failure. In imprecise colloquail speech
we call either errors or faults "bugs."

2.3 Definition of Software Reliability

The following definition of 	software
reliability is commonly used:

Software reliability is the probability that
A given software system operates for some time
period without software error, on the machine for
which it was designed given that it Is used within
design limits.

The above definition is simple, yet included
within it are several subsidiary definitions which
must he made with care. 	 First of all,
reliability is defined as a mathematical
probability, which implies that we must make a
probabilistic model as outlined in Sec. 2.1. This
requires chat we model the imput data to the
software. The software system must also be
accuratly described. For example are we going to
count errors in the operating system or the
FORTRAN compiler as system failures? The
probability is a function of time, thus we must
describe the inputs over time. (Often lacking
more precise information a random or pseudorandom
sequence is assumed.) One of the hardest tasks is
to define what we mean by a (significant) software
error. We are implying that the software error
must be significant enough to cause a system
failure. Note that use on a different computer,
even if the two different models are preporteg. to
be interchangeable, may change things because of
different computational speeds, timing of
operations, minor differences in language
translators (compilers, interperters, assemblers,
etc.) We must also carefully state the design
limits. As an example, it is well known that a
rime-sharing system designed for 50 users seldome
operates as reliably with 45 users as with 10.

1.0 SOFTWARE RELIABILITY MODELS

3.1 Error Removal Model

As discussed in Sec. 1.3 we will concentrate
on 	Macro 	Software 	Reliability 	models 	of
exponential form. 	Severa,1 authors have proposed
similar models (Jelinski- 1972, 	Musa 	1975),
however, this discussion will center on the one
described by this author in 'umber of references
(Shooman 1972, 1979, 1983). 	The model assumes
that the program enters the integration test phase
with ET total errors, and as errors are found
during integration they are promptly corrected.
Thus, after r months of Integrat on testing, E c (r)
errors have been corrected and ele remaining
number of errors is

E (r) • E - E (r) 	 (1)
r 	I 	c

In a more advanced model (Shooman and Natarajan
1976), it is assumed that new errors are generated
during development.

3.2 Failure Rate Model

if we assume that the failure rate, z(t). is
proportional to the number of remaining errors
then

44

SLOPE.-4/K'. -50
K'.0.02
INTERCEPT Er . 82

■ 11 	 M '

0

I 00 -

80

60

40

20

z(t) - K'E (r) 	 (2)
r

where K' is the constant of proportionality. 	In
previous literature the author has often
normalized Eq. (1) by dividing by the number of

object code instructions, IT . In such a case the
right hand side of Eq. 2 is also divided by I •

T
3.3 Software Reliability Model

Using the principles of reliability theory
(Shoommi 1968), we [obtain expressions fur the
reliability function, R(t), and the mean time
between failures (MTBF):

R(t) = exp(-K'E r (; 	. exp(-1C(Er - Ec ())t)

(3)

MBE - 1/rE(r) 	1/K'(F. I 	- E (r))

4 () c

Study of Eq. 4 reveals a familiar reliability
function where R is unity at te0, and decays
exponentiellv as the operating time, t, increases.

The failure rate, K'E r(), determines the rate of
decay. If the _est and debugging (redesign to
correct detected errors) performed during the
integration phase of software development is
efficient, then at the planned release time, r 1.
E c (1) nearly equal RT . This will result in
a small failure rate, a slowly decaying
reliability function, and a high KTBF (see Eq. 4).
If at the planned end of the integration phase
many errors are still left, the failure rate will
be higher then desirable, and the MTBF will be
below the prestated goal. The choices are to
release a substandard software system to the field
or to spend additional test time to reduce the
number of residual e .ors. Thus, modeling and
sketching the R(t) and MTBF functions during
integration testing provides a valuable means of
judging the progress being made toward the
specified reliability coal as the release time
approaches. Th. MTBF function generally rises
rapidly toward the end of testing, thus a model is
very useful in making an accurate prediction. It
is interesting to examine Eq. 4 for the case where
there is only one error left. At this point the
statistical assumptions of ► ''2 model break down;
however, this value, MTBF e 1/K', can be viewed as
sort of a Limiting value.

3.4 Model Parameter Determination

in order to use the above model, we most
estimate the parameters, K' and E, 	, for the
model. 	We do this by placing the software under
simulated utri•testing at two ° more points during
the integration test phase, and record the number
of failures and operating hours. This allows us
to calculate the measured failure rate A as the
number of fail•ree per hour, and the measured Km
as the reciprocal of the failure rate. In Shooman
1972, 1979, 1983. a simulation program is proposed
as the simulated use test. In Shooman 1979, early
field tests serve as the simulated use test. Musa
1975, discusses the use of the integration test
data along with an adjusrment factor to serve as
the simulated us test.

To use the reliability model described by
Eqs. 1-4, we must have an accurate record of E c ,
and must have a measurement of mrnr at a minimum

or two ditterent points in tne development cycle.
This leads to two simultaneous equations which are
solved for the unknowns K' and E,. Using the
development in Chap. 5 of Shooman 1983, we begin
by writing the reciprocal of Eq. 4 at two

different points.

(5)

A2 - K'(E - E c(r2)) 	 (6)
T

Assuming that the number of removed errors Ii (r)
Is carefully recorded by the configuration control
manager, Eqs. 5 and 6 can be solved for K' and E .
(In statistical terms such a solution is called
the modified method of moments).

Another way of 	estimating the model
parameters is obtained by rewriting Eq. 5 for any
time * r 	and rearranging terms, so that

K (t) * E
T
- 	 (7)

I

If we plot the number of errors corrected at
time ,T Ec (Ti), on the y-axis, and the failure
rate, A i , on the x-axis, we obtain a straight
line. The y-axis intercept is ET, and the slope
is -UK'. A set of software error and failure
rate data taken from Shooman 1979 is given in Fig.
1.

0 	0.4 	0.8 	1.2
	

1.6
FAILURE RATE

Fig.1 Least Squares Fits of Error Data
from Shooman 1979b. (Using TRS-80
Computor and Radio Shack Statistics
Package No.26-1703.)

The parameters can be determined by fitting a
straight line to the data by eye, or by using the
well known technique of least squares estimation,
readily available on most computers.

A powerful statistical method known as
maximum likelihood estimation can also be used to
estimate these parameters. (Shooman 1973, 1983).
In the paper by Shooman and Schmidt 1982, a
comparison is made of moment, least squares, and
maximum likelihood as methods for estimating the
model parameters. Since, no one method seemed to
dominate over the others, the author recommends
that least squares be used since it is the
simplest and also provides a graph which helps to
judge goodness of fit.

4.0 FIELD USE OF SOFTWARE RELIABILITY MODELS

Over the last decade reliability researchers
have continued to develop the theory and apply it
to field data. Although there are many models in
existence, there are three models which have been
celled execution time models (Jelinski 1972,
Shooman 1972, Musa 1975) which are quite similar,

Al 	K'(E - E (r1))
c

LIP

20

a

I-

30.5 days

I 	I 	I 	I 	1

14 11 	IS 19 	2f, 	I 4

8/2

8 	144 	23 	28 	t

W3

Calendar

&item 1 ,r/0

911 t1

t 	I

12 	14 	16

reit lune. I,

_1 	
IN 	211 	22 	24 	26

relatively easy to apply, and have been shown to
yield good results. The key to using these models
in practice is the collection of appropriate data
during the integration test phase of software
development. In fact, some of the comparisons
which have been made in the oast among models have

yielded inconclusive results because of incomplete

data.
The author believes that the best way to

prove the utility of software reliability models
is to cite the evidence which shows that they io
work. The remainder of this section will
summarize several cases in which software
reliability models have been shown to yield good
results. For a further discussion of these cases
the reader is referred to the cited references and
to Shooman 1983, Chapter 5.

4.1 Krror removal data

Dickson, Hesse, Kientz, and Shooman (1972)
studied the error histories for three mainframe
supervisory programs (operating systems) written
by different -manufacturers as well as the ground
based software for four successive NASA Apollo
missions. Data for a Bell Labs switching
computer program (Tm) was later added to the
study. The conclusions were as follows:

1. The error removal data was quite similar
for these 8 projects. The total number
of errors removed per 1,000 lines of
machine language code was 10.2 and the
standard deviation of the data was 4.4.

2. The program sizes varied between 100K
and 240K (machine language
instruct ions).

3. The error removal rates per month were
similar. A similar study was repeated
with dat.I 	 proKrams (I ruin 0.7K
to 5.5K instructions) reported by
Akiyama (1971) and yielded similar
results.

4.2 Miyamoto's Data

Miyamoto (1975) applied the model described
in Sec. 3 to a real-time message switching system
developed between 1968 and 1970. The result of
the study was a MTBF (Miyamoto called it mean time
between software errors, mnsE) curve which rose
steeply near the end of debugging (see Fig. 2).
This agrees with the predicted behavior, since the
MTBF is proportional to the reciprocal of the
number of remaining errors in Eq. 4.
Other interesting details of the study are given
in the paper.

4.3 Musa's Data

Musa (1975) applied his execution time model

to 16 different 	systems 	which 	were 	under
development at Bell Labs. In four cases he
compared the predicted MTBF with the measured MTBF
when the system was placed in use. The results
agreed quite well. The MTBF curve curve given in
Fig. 3 exhibited a growth shape similar to that of
Fig. 2. The first two rows of Table 1 show how
closely Musa's predictions and measurements
agreed.

In another study Musa (1979) investigated the
validity of the assumption that the software
failure rate is proportional to the number of
remaining errors. This assumption is key to
Musa's model and to the one developed in Sec. 3.
Musa's data supported the assumption.

I h1,11/1111111 11141 1, 1.111y%

Fig.2 Growth curve of software reliability (mein
rime between soltwnre errors). (From Mivnmoto.

1979, Fig.b)

Fig.3 MTBF versus test time for project 1. 	(Re-_
plotted from the data of Fig.3,Mnsa,1975)

4.4 Shooman's Data

A software reliability model was used to
study the quality of a software system undergoing
early field/final development testing. (see
Shooman 1979b). The purpose of the study was to
determine whether the present software which had
known problems could be perfected before a new and
better alternate version of the software was ready
in perhaps 6 months. The model predicted that it
would take several hundred work days to perfect
the present software. Based on their intuition
and the analysis, management stopped further
development of the present software and placed all
their efforts behind the alternate system. Thus,
although the data was imperfect, accurate enough
predictions could be made to make management
decisions. A detailed discussion of the project,
the analysis of the data, and the conclusions
appears in the reference.

46

4.5 _ Shooman-Schmidt Analysis

The data colfe•t•d by Mfima (1475) was turther
analyzed by Shooman and Schmidt (1982). The model
developed in Sec. 3 was fitted to the same four
projects described in Table 1. Several
concluminns were drawn Ernie this study:

L. Both the Musa model and the model of
Sec. 3 worked well for the four
projects.

2. The Z error for the Musa model ranged
between 0.3% and 58%, with an average of
34%.

3. The Z error for the model of Sec. 3
ranged between 2% and 60% with an
average of 37%.

4. The 1 error for the model of Sec. 3
varied from project to project
depending on which parameter
estimation technique was used
(Maximum likelihood, least squares,
moments). No method seemed
consistently more accurate.

Details of the study are given in the reference.

P: meet 1 P64rct 2 Prowl 1 Neett4

Aleawored Idiom;
use period

['folioed 1 :11 ."d

of test period) wong
maximum hk011.6.l

pilau estimate

$05 confident

Nmcil

New ne modif
trmlructions'

riliAprogmni

oze

Nuother of
pmgrarnmers

Prihrel length.

moodm

14.6

19 I

13 5-25

19.500

21.700

9

12

11

31.4

35.2

> 19.11

66110

27.700

5

11

30.3

24.4

> 119

11.600

23.400

6

12

9.2

113

64-23.6

9000

33.500

7

M

The conclusions given in Shooman and Richeson
1983 were:

I. It Is f•aalble to gather error and run
time data during the simulation of large
real-time software systems.

2. The model of Sec. 3 can be used along
with this data to predict. the number
or errors, failure rate, and M•RF
during a specified operational period.

3. The number of software DR's (discrepancy
reports) recorded during the first Space
Shuttle mission (critical + major +
minor) was 17. The expected number from
the model was 11, and for a 95%
confidence band, 17 or fewer were
expected.

4. If only critical DR's are considered,
the model predicts that the expected
number is 2 and that for a 95%
confidence band, 4.4 or fewer
critical DR's were expected.
During the mission none were reported.

5. If critical + major DR's are considered,
the model predicts that the expected
number is 5, and for a 95% confidence

hand, 9.8 or fewer critical + major DR's
were expected. During the mission 7
were reported.

Further details are discussed in 	the 	three
references cited

5.0 FUTURE PLANS

Sourre: Slow 119751.

•Size given i ■ the nuniner of ai,einhly nr maehinc language Ovum:thins.

Table 1 Compnrison of measured and predicted MTEF•4

4.6 Richesou's Space Shuttle Data

The model described In Sec. 3 was used to
analyze software data taken during a simulated
NASA mission. The programs, approximately 1.2
million lines of source code, represented the
ground based software for the Space Shuttle
Mission Control Center Data Processing Complex.
(Richeson 	1981a, 1981b, Shooman and Richeson
1981). 	The model predicted the software failure
rate. Multiplying the Failure rate by the mission
duration gives the expected number of mission
software failures. If it is assumed that the
number of failure has a Poisson distribution,
(this is consistent with the exponential model for
time between failures which we have been
considering), then an interval estimate can be
computed.

The evidence cited in the previous section
shows that software reliability models do work if
the proper data exists. Unfortunately, many
practitioners are not familiar with these studies,
while others still wish more evidence. During the
mid 1970's there was substantial DOD funding for
reliability research, however, just as the
research was beginning to bear fruit, this funding
was curtailed. This author suggests that this
situation be reversed. Specific suggestions are
given below:

1. Several demonstration projects be funded
to show how reliability prediction, data
collection, measurement during
development, and field measurements can
be performed as software is developed.
This could best be accomplished via a
University company team.

2. A group of established analysts he
funded to study the major reliability
models and the existing software
reliability data bases and compute the
resulting model constants. This set of
examples along with a clear discussion
or how to apply the various models
would constitute a software reliability
application manual. In [978 a group of
the leading software reliability
modelers offered to work together on
such a project, however, only a small
amount of progress has been made to
date.

3. A group of portable, user friendly, well
documented programs should be developed
to support the application manual
described above. 	Some aspects of
artificial intelligence could be
incorporated to help the inexperienced

4:7

analyst explore the data, look for data

problems, choose among models, etc.

4. More research is needed to develop micro
reliability models. Only early research
results have appeared, and a sustained

effort is needed if further progress is

to be made in this difficult, but

important area.

5. Research is needed to define

quantitative acceptance tests, the
associated consumer and producer risks,

methods for constructing test data, and
demonstration projects, culminating in

a future acceptance test standard.

6. Research should be done to construct
cost/benefit models to help deternine
more scientifically when to stop
furrther testing and release a system.

6.0 REFERENCES

Akiyams, Fusio: "An Example of Software System
Debugging," Proc. IFIP Congress '71, Ljubljana,
Yugoslavia, American Federation of Information
Processing Societies, Montvale, N.J., 1971.

Bartlett,' John: "Sartletes Familiar Quotations,"
Little. Brown and Company, Boston, Fourteenth

Edition, 1968.

Heber, Boris: "Software Testing Techniques," Van

Nostrand Reinhold Co., New York, 1983.

Dickson, J., J. Hesse, A. Kientz, and M. Shooman:
"Quantitative Analysis of Software Reliability,"

Proc. Ann. RyllablIlty and Maintainability Symp.,

IEEE, January 1972.

Freiberger, Walter, ed.: "Statistical Computer
Performance Evaluation," Academic Press, New York,

1972.

Goel, A. L. and K. Okumoto: "Bayesian Software

Prediction Models," RADC TR-78-155, July 1978.

Hetzel, 	William 	C.:"Program Test 	Methods,"
Prentice-Hall, Inc., Englewood Cliffs, N. J. ,

1971.

Jellnskl, 	7.., 	and 	P. 	Moranda: 	"Software

Reliability Research," pp. 465-484 in Freiherger

(1972).

Miyamoto, Isao: "Software Reliability in Online

Real Time Environment," Proc. Inter. Conf. on
Reliable Software, IEEE catalog no. 75CH0940-7CSR,
April 1975, p. 194

Musa, John D.: "A Theory of Software Reliability
and Its Application," IEEE Trans. Software Eng.,

vol. SE-1, no. 3, September 1975, pp. 312-327.

Myers, 	Glenford J.: 	"Software 	Reliability

Principles and Practice," John Wiley & Sons, New
York, 1976.

Richeson, 	George: 	"Software Reliability Data
Analysis and Model Fitting for the Shuttle Data
Processing Complex Real-Time Applications",
Internal Memorandum, Lyndon B. Johnson Space
Center, NASA Houston, Jan. 1981.

Richeson, George: "DR Analysis for STS-1 A

Comparison of Software Reliability Model
Prediction and Actual Error Occurrence", Internal
Memorandum, Lyndon B. Johnson Space Center, NASA

Houston, April 1981.

Shooman, Martin L.: "Probabilistic Reliability: An

Engineering Approach," McGraw-Hill Book Co., New
York, 1968.

Shooman, Martin L.: "Probabilistic Models for
Software Reliability Prediction," pp. 485-502 in

Freiberger (1972).

Shooman, Martin L.: "Operational Testing and
Software Reliability Estimation during Program

Development," Rec. 1973 IEEE Symp. Comp. Software
Reliability, catalog no. 73 CH0741-9CSR, New York,
Apr. 30, 1973, pp. 51-57.

Shooman, Martin L.: 	"Structural Models for
Software Reliability Prediction,"Proc. 2d Int.
Conf. Software Eng., IEEE Computer Society,
October 1976, pp. 268-280.

Shooman, Martin L.: "Software Reliability," Chap.
9 in Computing Systems Reliability, T. Anderson
and 8. Randell, eds., Cambridge University Press,

New York, 1979a.

Shooman, Martin L.: "Software Reliability Data

Analysts 	and Model 	Fitting", 	Workshop 	on
Quantitative Software Models for Reliability,
Complexity, and Coat: An Assessment of the State

of the Art, Kiamesha Lake , N.Y., Oct. 9-11,
1979b, IEEE Cat. No. TH0067-9, New York.

Shooman, Martin I..: "The Transfer of Reliability
Research Results to Engineering Practice,"
presented at the ONR/ARO Reliability Workshop,

Department of Commerce Auditorium, Washington,

D.C., May 1, 1981.

Shooman, Martin L.: "Software Engineering: Design,
Reliability, Management," McGraw-Hill, New York,
1983.

Shooman, Martin L. and Srinivasan 	Natarajan:

"Effect of Manpower Deployment and Rug Generation

on Software Error Models," Proc. Symp. Software

Eng., Polytechnic Press, New York, 1976, pp.

155-170.

Shooman, Martin L., and Henry Ruston, 1979 Final
Report Software Modeling Studies," Report SRS
119/POLY HE 80-006, Vol. I, Polytechnic Institute
of New York, Dec. 31, 1979.

Shooman, Martin L. and R. W. Schmidt: "Fitting of
Software Error and Reliability Models to Field
Failure Data," in "Applied Probability - Computer '
Science the Interface," eds., Disney and Ott,
Birkhauser Boston Inc., 1982, vol. I, pp.

299-327.

Shooman, 	Martin L. 	and George Richeson:
"Reliability of Shuttle Mission Control Center
Software," Proceedings Annual Reliability and
Maintainability Symposium, IEEE Jan. 1983.

48

"Software Engineering Research Review-Quantitative
Software Models," Data and Analysis Center for
Software, Rome Air Development Center, Griffiss
Air Force Base, New York, 13441, March 1979.

Thayer, Thomas A., Myron Lipow, and Eldred C.
Nelson: "Software Reliability: A Study of a Large
Project Reality," North•Holland Publishing Co.,,

New York 1978.

Trivedi, Ashok K., and Martin L. Shooman: "A
Many-State Markov Model Far the Estimation and
Prediction of Computer Software Performance
Parameters,' Proc. Inter.

ABOUT THE AUTHOR

Dr. Martin Shooman is Professor and Director
of the Computer Science Division at the
Polytechnic Institute of New York. He holds EIS
and MS degrees in Electrical Engineering from MIT
and a Doctorate in Electrical Engineering from the
Polytechnic Institute of Brooklyn. He has
published over 100 papers, articles, and research
reports on reliability theory, software
engineering, and control systems, and has
contributed chapters to 8 books. He is author of
"Probabilistic Reliability," 1968 and the recent
text "Software Engineering, " 1983. Professor
Shooman Is a fellow of the IEEE and has received
four best paper awards from the Reliability and
Computer Societies.

49

SOFTWARE ERROR STUDIES

Carolyn Gannon
General Research Corporation

Santa Barbara, California

ABSTRACT

The collection and analysis of data on
errors in software are discussed, to illustrate
the payoff of software error studies and to
generate interest in making such data collection
and analysis an integral part of software
development projects.

Major goals in studying software errors
are reviewed, both near-term and long-term.
Near-term payoffs for collecting and analyzing
error data include:

• Pinpointing problem areas

• Demonstrating reliability (through the
absence ot errors)

• Tracking project status (according to
types of error and the development
phases in which they are detected)

• Guiding the testing process

Long-term payoffs include

• Developing models for software coat and
reliability estimation

• Focusing the development of software
analysis tools

• Refining computer languages

Well-known studies of software errors are
reviewed. These studies, most ot them sponsored by
the US Government, provide insight into the class-
itication of software errors and how they are
sometimes used in estimating software quality and
costs.

Metnods for collecting and •ategorIzing
software error data are described. In particular,
the planning, collecting, analyzing, archiving,
and information diseminating pr•)cesses are
investigated. In conclusion, methantsms are
recommended to aid in the recording and analysis
of software error data.

INTRODUCTION

The primary motivatioe for collecting data
on software errors is to improve the quality of
delivered software. These data are valuable not
only co assess the quality of the software from
which they are gathered but also to provide
"lessons learned" data for the next similar
project. Often errors are repeated, even with the
same programming staff, on several similar
projects merely because of the complexity of the
software and inability to remember the details of
past experience.

Another important use for databases of
software error history is to assist in Independent

Verification and Validation (IV6V) and to provide
actual data on types of errors to be addressed by
future software tools. Software tools are often
developed by companies that do not themselves
generate large quantities of application software.
Therefore, the tool developers must rely on
intuition or 'on published studies to decide what
types of errors their tools should prevent or
detect.

Computer languages are continually under-
going refinement (such as the many dialects of
JOVIAL) and new definition (as in the case of
Ada). While the main purpose of these develop-
ments is to facilitate programming for specific
application areas, there is no reason why the
prevention of common errors cannot also be a
motivating factor for defining certain language
constructs.

Each of these potential payoffs for learning
more about software errors assumes that such data
have been collected and classified. Further, the
data should be accessible in an easy-to-digest
form. For example, a programmer about to
undertake the development of a specific applica-
tion might find it very helpful to know what kinds
of errors have been encountered by colleagues who
used the same computer language on similar
computers for applications of similar character-
istics (program algorithms, size, interfaces,
design, etc.).

In spite of these puyofts, there are many
reasons why good databases of software error
information are not commonly maintained:

• There is no standard classification of
software errors.

• Tools for automatically collecting
error data are not widely used.

• Most projects have no budget ot funds
and time for error data collection.

• Companies do not wish to publicize
their errors (and programmers do not
wish to admit their errors).

Assuming that software error data are
collected and preserved, they must be easily
accessible. For use by a program manager in
scheduling and budgeting an upcoming project, the
most accessible form might be a printed report, in
which the data is already categorized. Tool or
language researchers might prefer the data in raw,
machine-readable form, to be stored in their own
database formats for a variety of analyses,
depending upon the objective. Programmers might
be assisted by an "expert system" with an
underlying database of software errors and a rule
base of symptoms for determing the cause of a
problem. Therefore, once collected, the type of

50

storage and retrieval of software error data is
also an important issue.

A number of sottware error studies have been
performed in the past ten years. Some of these
are describea later in this paper. Several
Government agencies maintain machine-readable
repositories or data from surtuare projects. One
system provides on-line abstracts of problem
reports over the ARPANET 111. With the recent
advances in database querying and in expert
systems, the time seems ripe for consoliusting the
collection, storage, analysis, and selection of
error data into some prototype error-data systems.

COLLECTION OF DATA ON SOFTWARE ERRORS

In 19/H Robert Thibodeau studied the state
of the art in sottware error data collection and
analysis [21. lie found that one of the leaders in
collecting and analyzing project and software data
was Rome Air Development Center (RAUC) at Grittiss
An, New York. Since that time RADC has continued
sponsorship in these areas. To set the stage,
RAUC sponsored a conterence on software data
collection in 1916 131. In 1981 Jane Radatz based
an analysis of 11/6V data on project data available
through RADC [41, ana the Data b Analysis Center
for Software (DACS) offers magnetic tapes and
reports con L g sottware: data 151. Thibudeau's
work, sponsored by the Army Institute for Research
in Management Information and Computer Science
(A118MICS), provides an in-depth survey of software
error aata collection and is summarized here.

Table I lists representative sponsors and
organizations in the field of software error data
collection and analysis. Most of the research in
this field has been directed at measuring or
improving software reliability. Collected project
and error data have tormeu the basis ter the
results of these ettorts.

In addition to the software error data
describtil in reports generateu by the projects
noted in Table I, data collections are available
from

• USAF RADC DACS

• USA Ballistic Missile Defense Systems
Command (SMOSCOM)

• USAF Data Systems Design Center

The DACS set el sottware data include a
magnetic tape. bardcupy Listing, reports, and data
collection tonne. These products are now otferred
on a tee basis. They are the result of a study by
System Development Corporation chat produced an
eight-vulume report lbl. SIC studied a number of
aspects of the data collection problem including
cost, resistance or sottware developers, interfer-
ence in the sortware development process, and
methods of storage and access.

According to 1hibodeau, software error data
collected in the past has suttered in quality for
tour reasons:

I.

	

	The classification criteria were not
clearly aescribed.

2. 	The vIrUCS were nut necessarily
classified by the same persons who
reported the problems.

3. The intensity or extent of testing was
not known.

4. Data subject to change (such as program
size) were not recorded at the same
time that the problems were experi-
enced.

Therefore, some of Thibodeau's recommen-
dations for software error data collection are:

• Explicit requirements for the type of
data should be established before the
data are collected, by setting up a
system of objectives and priorities.

• Methods of automated data collection
should be investigated.

At General Research Corporation, we use PRIS
(Problem Report Information System) [181 for
recording software errors. PRIS is an interactive
menu-driven program that keeps track of open and
closed Problem Reports (PRs). It is the sort of
small tool that can be developed for a project at
Little cost. For each error, PRIS records a
severity level, a PR number, problem description,
reporting person's identification, software
Location or version. The date is embedded in the
PR number. PRIS has menus for inputting new
problems, moditying selected data fields,
displaying error status, one printing the open or
closed set of errors. The primary output is a
concise report of the error status; however, the
PRIS working file or output file could easily be
saved for later analysis of error types or for
archival. Associated with PRIS are two forms:
the PR form, used for recording symptoms too
lengthy or ambiguous to input directly into PRIS,
and a PR -Fix" torn. This torn, tilled out by the
error-correcting programmer, contains information
about what. statements and modules were changed to
correct the error and what versions (or "deltas"
II a contiguration management tool is being used)
reflect the changed code.

Software error data collection begins with a
classification of errors into types. Whether the
classification is for a particular project or for
generalization, the task is not easy. An appendix
to Radatz's IW/ study report [41 provides a
concise list of major error categorizations from
the literature. The next section of this paper
deals with sottware error categories.

SOFTWARE ERROR CATEGORIES

Classifying software errors is a prere-
quisite for measuring the quality of software and
determtning the ettect of applying manual or
automated tools to the software. There are many
error classification schemes in the literature.
Since software errors can be defined as deficien-
cies in design, code, or documentation that cause
the resulting program to perform differently than
intended, the range of error categories is large.

One major difficulty in determining a
standard classification of errors is that some
errors exist only in certain applications.
Another difficulty lies in the distinction between
"symptom" and "error." Sometimes only symptoms
are recognized, and it is months before the real
error is determined.

TABLE 1. SUMMARY OF RESEARCHERS IN THE COLLECTION
AND ANALYSIS OF SOFTWARE ERROR DATA

Research
iilaTrna 	Company

Principal
Author

Topic

USAF/RADC SUC 	 Finfer 	 SW Data Collection

Logicon 	Radatz 	 Impact ot IV&V

RAUC 	 Sukert 	 Reliability modeling

Raytheon 	Willman 	 System reliability history

SOC 	 Willmorth 	 SW data collection

IBM 	 Baker 	 Data collection, project history

IBM 	 Motley 	 Prediction of programming errors

TRW 	 Brown 	 Impact ot programming practices

TRW 	 Thayer 	 SW reliability

PINY 	 Shooman 	 Reliability measurement models

PINY 	 Trivedi 	 Prediction ot SW pertormance models

MITRE 	 Amory 	 Error classification

USAF/SAMS0 Aerospace
	Callender 	 Industrial practices

USAF/ESL 	GRC
	

Graver 	 SW development costs

USAF/AFOSK CRC
	

Gannon 	 SW test techniques

	

USA/BMDATC Logicon 	 Error classification

	

Logicon
	

Lambert 	 Reliable SW study

USA/Franktord SolTech 	Goodenough
	

Test data selection

USA/AlWIICS GRC 	 Thibodeau
	Error data collection

EPRI 	GRC 	 Seib 	 SW validation

NSF
	

Sperry Univac Ostrand 	 Error collection and

NYU 	 Weyuker 	 categorization

NASA 	Aerospace 	Hecht 	 SW reliability measurement

NADC 	NPCS 	 Bradley 	 Structure and errors

52-

TABLE 1 (continued)

Research
Sponsor 	Company

Unknown 	Aerospace

Sponsors Aerospace

Fujitsu

IBM

IBM

Inst. for
Adv. Tech.

Logicon

Logicon

McDon. Doug.

Naval Post.

PINY

RAND

Swedish Nat.
Defense Inst.

SEL

Tracor

USA/SAFEGUARD

USAF/Ogden

USN/ NSRDC

Voest-Alpine

UCSB

Hughes

Principal
Author

Hecht

Reiter

Akiyama

Belady

Endres

Gilb

Walsh

Yourdon

Odin

Dana

Rubey

Moranda

Schneidewind

Shooman

Boehm

Palm

Nausea

Sontz

Dickson

Shelley

Culpepper

Kopetz

Pyster

Bowen

T921E

SW/HW reliability

Test tool overview

Prediction of SW bugs

Large program development

Errors and causes

Unreliability

Structured testing

Reliability measurements

Reliability

Classify/detect errors

SW validation

Predicting SW reliability

Error processes

Programming errors

SW development

Lauguages for reliable SW

Measuring reliability

Quality assurance

Reliability analysis

SW reliability

SW reliability

Error detection

Error classification

Error classification

In 1979 Arthur Pyster 	ran 	some 	experiments • Dana and Blizzard [Ref. 11
at the University of California, Santa Barbara, in • Thayer, et. al. [Ref. 12
which his students cried 	to classify 	errors in 	a • Hartwick [Ref. 13
set of 	programs 	according 	to 	several 	well-known • Endres [Ref. 14
schemata 	171. 	The 	results 	of 	his 	experiments • Bowen [Ref. 15
showed 	the difticulties 	of 	identifying errors • AN/SW-32(V) [Ref. 15
rather than symptoms, and of classifying errors by • Baker [Ref. 16
schemata 	with 	a 	large 	number 	of 	categories 	and
subcategories.

• Fries [Ref. 17

In a recent report, ()strand and Weyuker 181
state that there are serious problems with all
classification schemata available in the liter-
ature. The main problems are that categories are
ambiguous, overlapping, and incomplete. Like
Pyster, they found that many schemata have too
many categories and that there is contusion among
error symptoms, error causes, and actual errors.

In spite of the flaws in existing software
error classifications, it is useful to review them
before deriving a schema to apply to a specific
project. Radatz [41 listed the following error
categorizations:

• Amory and Clapp 	Met. 91
• Rubey 	 [Ref. 101

This paper does not attempt to evaluate
software error classification schemata or
recommend a particular one. The Bowen paper [151
and the Oscrand and Weyuker report (8I, as well as
others, assess several existing classification
schemata along with proposing their own. Schemata
with a relatively small number of major categories
seem to be the easiest to use and to adapt to
particular projects. Several such classifications
are shown in Table 2. Besides these major
categories, some schemata also include subclassi-
fications such as:

• A severity classification (Bowen, ref.
151

• Dimensions of where, what, how, when,
and why (Amory and Clapp, [91)

53

• 	Attribute categorization (Ostrand and
Weyuker, 181)

TABLE 2. COMMON MAJOR CATEGORIES OF
SOFTWARE ERRORS

Thayer, at al. -- 	Computation

Logic

Data input

Data handling

Data output

intertace

Data definition

Database

Operation

Other

Documentation

Amory, Clapp. --
	

Input data

Internal data

Computation procedures

Control procertures

Interface procedures

Bowen
	

Design

Interface

Data definition

Logic

Data handling

Computational

Other

Ostrand, Weyuker 	Data definition

Data, handling

Test (i.e., evaluate a con-
dition)

Test plus process (i.e.,
evaluate a condition and
perform a specific compu-
tation)

Documentation

System

Not all error (problems that
are resolved without chang-
ing the pioducr.)

In all of the error classification schemata,
the phase of the software development during which
an error occurs is an important datum. It is
commonly known that early detection of errors
reduces software cost. Besides the usefulness of
this information in estimating costs, it is
helpful to software tool developers to know
whether an error occurred during the requirements,
design, coding, or post-coding phases (or some
iterative cycle of these phases, in a "rapid
procotypIng with successive refinement" approach
to development). kadatz used "anomaly" categor-
ies geared to the life-cycle phases, in which some
ot the subcategories are intentionally redundant.
This scheme, repotted by Hartwick 1131, is shown
in Table 3.

TABLE 3. ANOMALY CATEGORIES KEYED TO PHASES

Requirements Specification Anomalies
RI. Incorrect Requirements
R2. Inconsistent Requirements
R3. Incomplete Requirements
R4. Other Requirement Problems
R5. Presentation, Standards Compliance

Before-Code Design Specification Anomalies
Dl. Requirement Compliance
D2. Choice ot Algorithm, Mathematics
D3. Sequence of Operations
D4. Data Definition
D5. Data Handling
Db. Timing, Interruptibility
Dl. Interfaces, I/O
INS. Other Design Problems
D9. Presentation, Standards Compliance

Code Anomalies
Cl. Requirement, Design Compliance
C2. Choice of Algorithm, Mathematics
CJ. Sequence or Operations
C4. Data Definition
C5. Data Hanuling
Ch. Timing, Interruptibility
Cl. 	Interfaces, I/U
C8. Other Code Problems
C9. Presentation, Standards Compliance

Atter-Code Design Specification Anomalies
Pl 	Incorrect Documentation
P2. Inconsistent Documentation
P3. Incomplete Documentation
P4. Other Documentation Problems
PS. Presentation, Standards Compliance

Since the purpose of Redatz's study was to
evaluate the effectiveness of IV&V on several very
large projects, it is clear why she selected these
subcategories. Many of them address the issues
that IVO/ contractors are expected to look for,
suet, as incompleteness and inconsistencies. It is
obvious, however, that in such a classification
some errors are more serious than others. Indeed,
depending upon the goals of the developer or IV&V
contractor, both the subcategories and the
weightings can vary. For example, programs

54

developed for a high degree of portability may
weight "interfaces, I/0" more heavily than

"sequence of operations."

While there has been considerable activity

in the classification of software errors, efforts
should continue to specity classes of errors
according to project type, development approach,
and severity. It certain standacd error cate-
gories can be effectively determined (even if they
continue to evolve as Languages and development

approaches change), the ability of LV&V tools to
detect and even prevent errors can be greatly

improved.

COSTS AND PAYOFFS

The long-term benefits of collecting and
analyzing sottware errors cannot be easily

quantified. To do su, one would have to consider

the combined benefits of better software cost
estimating models; tools for software requirements
specification, design, and testing that make use
of knowledge of what kinds of errors are preys-
lent;,and computer languages that have been

developed to be error-resistant. Even in the near
term, within the lite of a project, one can only
guess at the value to managers and programmers of
having an analyzable record of outstanding and
corrected errors.

Alt! gh IV..V is a diaterent activity from

error data collection and analysis, I believe that
the ratios of costs to payotts for the two
activities are similar. Radatz found that IWO/
costs an average of 254 of the software develop-

ment cost of a project (approximately 20Z of the

total software acquisition cost, which includes

administr:.tive costs). Her report provides
numerous charts that justify her statement that
IV&V pays for itself through the early detection
of anomalies. She also showed that LV&V affected
few of the facto's known to intluence programmer
productivity. indicating that the process aid not

add much overhead to the programmers' activities.
The factors that did add overhead are similar to
those that would occur in an error data collection
and analysis acti 'ily. These incluue:

• Docume•tation requirements

• PercenLage of support draft

• Error 	reporting 	and 	correcting
procedures

• Need to share computing facilities

• Classified security environment

• Meetings and intertaces

• Secondary resources (computer time,
documentation reproduction, etc.)

The keys to minimizing the overhead
assoetated with sottware error collection and
analysis as part at a software development project
are to (l) treilitate the error reporting
mechanism and (2) provide efficient feedback to
managers un the status of the sottware and to
prop rammers on the resolution of the errors. To
provide' a quick .end act - at-att. mechanism for error

data recording, the system should he an on-line
proefam (assuming that most programmers are
working at terminals) and "first-person" (that is,
the person discovering the error reports it).

RECOMMENDATIONS

The use of a simple recording and reporting
system (such as PR1S, described earlier) can
greatly reduce the resistance of both programmers
and managers to tracking software errors. It also
provides part of the database of information that
can be used for reseach in software reliability,
test tool development, and software cost estima-
tion. What additional information is necessary
depends on the anticipated use of the database;
most such information can be easily supplied by a
project manager before the data collection
activity begins. As an aid similar to an on - line
error recording system, a project description
system should be available in a sec of project
management tools to input such characteristics as:

• Program description

• Implementation language

• Computer hardware

• Estimated program size

• Programming statt proticieucy levels

• Project schedule

• Software development and test tools to

be used

In order to achieve the near- and long- term

goals for software error data collection and
analysis described earlier, the !allowing
recommendations are made:

I. Determine the objectives of the data
collection effort before it begins.

2. 	Get management support (funding and
schedule) for data collection and
analysis.

J. identity a reasonable set of data to
collect (a minimal set of pertinent
data is much more valuable than a large
sec of vague or superfluous data).

4. Build or acquire easy-to-use data
recording tools.

5. Study the literature for a candidate
error 	classification 	scheme 	(or
customize one for your own needs).

h. 	Store the error data in machine-
readable torm.

I. 	Make the error data and/or analysis
available to other projects within the
company, and to DACS or other institu-

tions for use in research.

Encouragement should also be given to
building additional cools for performing analyses
using the compiled error data. In the future, a
knowledge-based tool (expert system) with access
to an error database could aid in making judge-
ments on error classification, or select (given
the symptoms of a problem) a test tool for
tracking down an error.

55

ACKNOWLEDGEMENTS

l wish to thank Robert Thibodeau for
providing some of the referenced background
material and for his review of this paper. He
made many helpful suggestions. 1 also wish to
thank Sabina Saib and Dana Nance, both from CRC,
for their review and edit.

REFERENCES

1. The AFDSDC ADS Project Approval/Development
Process. AFDSDCM 300-8 (TEST), AF Data Systems
Design Center, Gunter AFS, June 1976.

2. R. Thibodeau, The State-ot-the-Art in Software
Error Data Collection and Analysis, 	General
Research Corporation, NTIS ADA075228, January
1978.

3. N. E. Willmorth. Proceedings of Data Collec-
tion Problem Conference, RADC-1'R-76-329, Vol.
Vl, December 1916.

4. J. W. Rauatz, Analysis of IV&V Data, Logicon,
Luc., H March 1981.

5. DACS Newsletter, RADC/ISISI, GrilLiss AYE, NY,
Vol. Ill No. 5, June 1982.

6. N. E. Willmurth, et al., Software Data

Collection Study (8 vols.), System Development
Oirporation, TM-5524/001/01, December 1916.

7. A. 	B. 	I'yster, The Need for !letter Error
Classification, Computer Science Technical
Report Series, TRCs79-2. University of
Latitornia, February 1919.

h. '1. J. Ustrand and E. J. Weynker, Collecting
and Categorizing Software Error Data In an
Industrial Environment, Tech. Report 41,
August 1982.

9. W. Amory and J. A. Clapp. Engineering of
Quality Software Systems (A Software Error
Classification Methodology), 	KAnC-1K-74-124,
Vol. VII, January 1975.

10. R. J. Rubey, -Ouantitutive Aspects of Software
Validation, - Proceedings of the International
Conference on Reliable Software, Apri1 1915.

11. J. A. Dana and J. U. Bliizard, The Development
ot a Software Error Theory to Classify and
Detect Software Errors, Logicon HR-74012, May
1914.

12. I. A. Thayer, et al., Softwar.. Reliability
Study, TRW Defense and Space Systems Group.
RADC- 1'R- /6-23b, 19/6.

l3. R. D. Hartwick, Software Acceptance Criteria
Panel Report, Joint Logistics Commanders
Joint Policy Coordinating Croun on Computer
Resource Management, Software Workshop, April
1979.

14. A. Kneels, "Au Analysis of Errors and Their
Causes in System Programs." IEEE Tranactions
on Soltware Engineering, Vol. SE - I, No. 2,
limit

15. J. a. Bowen, "Standard Error Classification to
Support Software Reliability Assessment."
National Computer Conference. 19.10.

lb. W. F. Baker, Software Data Collection and
Analysis: Real-lime System Project History,
lief Corporation, RADC-Tk-77-192, June 1977.

1/. M. J. 	Fries, 	Software Data Acquisition.
MK-TR-77-1.W. April 1917.

18. The Software Workshop, "Problem Report
Information System User's Guide, General
Research Corporation, 1(M-2450, 1982.

ABOUT THE AUTHOR

Ms. Carolyn Galloon is the Director of the
Software Technology Department at General Research
Corporation. She is currently managing projects
in the areas of software testing and public safety
command and control systems. Efforts in the area
of software testing have included software error
analysis and development of Automated Verification

Systems for JOVIAL and FORTRAN. Ms. Gannon holds
a Master's degree in Computer Science and
Bachelor's degree in Mathematics, both from the
University of California, Santa Barbara.

56

EXPERIENCE IN TESTING LARGE EMBFDDFD SOFTWARE SYSTEMS

John B. Bowen 	Marion F. Moon
Systems Engineer 	Chief Scientist

Hughes-Fullerton
Fullerton, CA

ABSTRArT

Hughes-Fullerton's approach to test and evaluation (T&E) of large embedded software
systems has emphasized the test-bed environment; however, current research thrusts are
directed toward formalizing individual test phases such as software integration. This paper
presents an overview of the Hughes-Fullerton software development cycle, discusses T&E
results of a current large-scale air detense project, relates experiences in using
simulators, and presents a position on the effectiveness of independent verification and
validation as well as endurance testing.

INTRODUCTION AND BACKGROUND

The test and evaluation of software in large
erMeaded systems developed by Hughes-Fullerton
started over twenty years ago with an air defense
ground environment system for a foreign govern-
ment. At that time testing was performed by a
team of software enginee•:, who had previously
written the requirements specifications. These
engineers, by first writing the functional speci-
fications and then testing the integrated soft-
ware for adherence to those specifications,
performed a closed-loop validation -- but the
developers and evaluators were not organization-
ally independent. ThP programmers performed
their own parameter and assembly tests, and their
methodolpgies and code were rarely evaluated for
quality or standards. Today Hughes employs new
methodologies and Mc:fifties such as slrocturea
de!;irIN and interdclive development. .orJoia ,..
Although we also employ • acne advanced teStind
techniques and tools, we still recognize a need
for improvement. For over fen years we have been
using independent test teams with success, and
are mirsning research in topics such as error
persistency and design for testability.

Hughes-Fullerton 	business 	is 	primarily
large-scale systems that include •mbedded soft-
ware with more than 3,01l0 modules.* We are
currently developing software for sonic twenty
distinct projects. To assist in managing the
quality of sd many activities, the 'ioftware Engi-
neering Division (SED), which provides program-
ming service-, fo• these projects, has promulgated
a set of software engineering procedures. SED
also has a Software Engineering and Technology
Department whos. charter is to keep the work
focused on the ',tate of the art. Their efforts
include tradeoff studies, generation and main-
tenance of devlopment tools, and technology
transfer in area - - such as T&E.

OVERVIIN OF STANDARD SOFTWARE
DEVELOPMENT PROCEDURES

Hughes-Fullerton follows the software devel-
opment phases generally accepted by the inoustry

We define a module as the smallest unit of
program code that can be compiled, loaded,
and invoked by other units. Examples are
procedures and subroutines. Hughes-Fullerton
modules do riot exceed a median of ?5 execu-
table HN statements.

and Lii nov-rnment. Those phases are: 	require-
ments analysi.:., design, coding, parameter and
assembly tosLing (also called unit testing),
software integration, independent testing, system
testing, and installation testing.

Requirements Analysis

The software requirement specifications are
often written by the lead systems engineering
group. Generally SED is consulted or partici-
pates in the generation of these specifications.
However, the first stage that SE0 is officially
responsible for is analysis of the specifica-
tion. This phase consists of assessing the
feasibility of implementing the specifications in
software, determinino if there is existing soft-
ware responsive to similar requirements, and
generating independenl. test plans haceri 1)11 speci-
Iit dl inn riqua irpnwhi

Design

Hughes employs a programmer team concept
organized by Computer Program Component (CPC) or
in some cases by Computer Program Configuration
Item (CPC!). Examples of CPCs are weapons, sur-
veillance, data recording, and diagnostics. The
team leader is completely responsible for the
detailed design, coding, and checkout of the
software in the particular CPC. As a rule,
modules undergo code reviews by the team leader,
and upon successful completion of the review are
usually placed under configuration control.
(Some projects place their modules under configu-
ration control after completion of parameter and
assembly testing.)

Hughes-Fullerton 	employs 	Constantine 	and
Yourdnn's structured design methodology sup-
ported by an automated interactive graphics and
metric tool for decomposition of the software
design to the module level. Intramodule design is
controlled by SED training courses, individual
project standards, and detailed design reviews.

Coding

Hughes coding standards restrict programming
control structure to the five basic structures:
Sequence, If-Then-Else, Do While, Do Until, and
Case. The standards also contain module and data
naming conventions, as well as statement labeling
conventions. Each module must have a single
entry and single exit, and no self-modification

57

of statements during execution is allowed. Most
recent aie defense applications have been coded
in the Jovial high order language, and the direct
code optian has been limited to special timing
situations such as the online performance moni-
toring function. (This function periodically
checks the system status, and cannot interfere
with the application operation cycle.)

Parameter and Assembly Testing

Parameter and assembly tests provide for the
testing of speCific modules or groups or modules
in preparation for integrating them into the
system master version. These tests emphasize the
internal processing of modules and are performed
by the programmer who coded the modules. The
main objective of parameter and assembly testing
is to ensure that the modules under consideration
are reasonably complete before further testing on
a broader scale, and that each module or group of
modules functions properly in isolation. Infor-
mal test procedures and reports are generated by
the programmer and approved by the team leader.

Software Integration

The software integration activity is an
orderly sequence of putting modules together to
perform system functions in accordance with an
integration or build plan. This activity empha-
sizes interfaces between modules, and ensures
that modules will function properly in the latest
system configuration. Some degree of testing
must he performed in integration to provide con-
fidence that a complete string of software
operates properly, but not necessarily that the
entire system operates correctly.

Independent Testing

The independent tests validate that the per-
formance 	specifications 	are 	implemented
properly. The testing is performed by a test
group that is organizationally independent from
the personnel involved in the software design and
coding activities. Test plans and detailed test
procedures are written to validate each require-
ment (i.e., "shall" statements of the functional
(Part I) specification).

System Testing

System tests are formal acceptance demonstra-
tions, which execute the portions of the software
functions that are mutually agreed upon by the
contractor and customer. The instrument for
contractor/customer agreement is the test proce-
dures, which are written against 	the system
specification. 	These tests are also written to
the specification "shall" level, are configured
by CPCI, conducted by the lead systems engi-
neering group, and formally witnessed and
approved by the customer.

Installation Testing

Installation testing or field testing is
essentially 3 replay of the system tests, with
the addition of live tests that cannot he accom-
modated in plant. They are performed at the site
of operation. The final system configuration is
installed at this time, and live or actual inputs
are used. Further operational testing is the

responsibility of the customer with the support
of the developer.

LESSONS LEARNIO ON A RECENT PROJECT

Project Profile

Hughes-Fullerton has recently completed the
development of software for a complex air defense
system. Seven regional control centers supported
by Ah sensor sites provide the command, control,
cmnimnications, and surveillance functions for
this system. 	The system provides for the
transfer of sensor data from the sites to the
regional control centers, the lateral-tell of
track and status information between centers, and
the forward-tell of all information from the
centers to a central operations center. The
system is capable of operating in standard and
degraded modes, and can provide backup capability
for interfacing systems. Nearly 30 positional
consoles and 10 remote access terminals support
the operation of each regional control center.

The embedded software is configured in seven
CPCIs and totals nearly 6,000 modules which are
coded in Jovial (J3). There were approximately
1.000 software changes during development that
were the result of changes to the requirements.
The changes in requirements included both clari-
fications and enhancements. Since the software
has been placed under configuration control,
6,561 actual errors have been detected.

The development was performed in two major
phases: design verification (OVP) and implemen-
tation (IP). At the peak of IP over 100 persons
worked on software development. Approximately 40
percent of the software was "lifted" from pre-
vious air defense projects. Micro-phases com-
pleted within the IP were requirements analysis,
design, coding, parameter and assembly test,
integration, independent test, and system test.
The project is now in the installation phase
which includes on-site verification (OSV) testing
for each of the regional control centers in the
surveillance network. One center has success-
fully completed OSV testing and is operational.

Overview of Testing Activity

In aeneral this air defense system develop-
ment followed the Hughes-Fullerton standard
procedures for software T&E. One exception was
the omission of parameter and assembly testing
for those clusters of modules which were lifted
from existing Hughes systems. Some statistics
about the independent testing activity exemplify
the •;ize of the effort involved in the T&E activ-
ity. There were nine software test engineers,
including a team leader, assigned to the inde-
pendent test team. A total of 143 test proce-
dures with 14,277 test steps were generated and
conducted for the seven CPCIs. The team expended
30,332 manhours over 32 calendar months in per-
forming the independent test activity. The dis-
tribution of etfort for detailed activities was:
test plan generation (15%), test procedure gene-
ration (35%), and test conduct and analysis (50%).

Problems Encountered During T&E

Several lessons have been learned in this T&E
effort which can contribute to more effective

58

efforts in future software projects: One stemmed
from the decision to start the next test phase
based on schedule milestones rather than on cur-
rent test phase status. These decisions placed
too much of an extra burden on independent test-
ing. Eventually the test effort was stabilized
by the group performing independent testing; but
much too late in the development cycle. Another
lesson originated from the lack of a consensus
philosophy on what constitutes a good test
approach. The, verification of the requirement
specifications for consistency and testability
was not emphasized sufficiently, nor was the
planning for the software integration activity.
A more systematic approach to these two phases
would certainlv, have uncovered many errors
earlier in the development.

Requirements Analysis. Of the 11,152 "shall"
statements and 2,445 pages in the project's soft-
ware requirements (Part I) specifications, there
were a number of changes -- many coming late in
the development cycle.

An op-front problem was the requisite quality
of the sottware requirements specifications.
Many requirements were not consistent, clear, or
complete; therefore, at times it was difficult to
map an individual requirement to a test proce-
dure. Some software engineers viewed the
requirements specification as a sacrosanct base-
line (i.e., they would not or could not change
it) and many problems only surfaced as obvious
difficultie; arose during design, code, and test.

Parameter and Assembly Testing. Insufficient
records were kept during parameter and assembly
testing, therefore the effectiveness of such
tests on the project are unknown. Under the rush
to adhere to schedules SED practices for param-
eter and assembly test were not followed. For
example, modules and assemblies were frequently
"promoted" to intenratidn and even ro independent
testing with very little or no unit testing.
When parameter and assembly tests did occur,
sometimes there was no evidence of formal written
objectives or certification.

Integration Activity. 	It is noteworthy that
approximately 40 percent of the total errors
detected after he software was placed under con-
figuration control were encountered during sott-
ware integration. Software integration was per-
formed by a software integration coordinator with
the aid of an dssistant and the services of the
project cool igu -ation control librarian. It is
interesting that 48 percent of the errors encoun-
tered during integration were caused by the Logic
category (e.g., omitted or out-of-sequence logic)
and only perLent were caused by the Interface
category (e.g., inconsistent call parameters).
Intuitively, ono would expect that Interface
errors would be prevalent during software inte-
gration. A possible explanation for these
results is that some of the software modules were
not ready for integration testing.

Independent Testing. Twenty-five percent of
the errors detected during testing were found in
independent testing. The preparation of inde-
pendent tests was time consuming. In addition,
the many changes to the requirements and in turn
to the design and code, as well as expected cor-
rections to the code, required extra effort in

rewriting independent test procedures and in
retesting.

System Testing. Twenty percent of the errors
were found during system testing. A common cause
of errors encountered during this phase was the
regression error caused by an incorrect modifica-
tion.

On-Site Testing. 	Twelve percent of the
errors were detected during on-site verification
tests during the installation phase. Although
this distribution is acceptable, we would prefer
that the distribution reflect the earlier detec-
tion of errors. The multi-installation at the
various sites contributed somewhat to the number
of errors - primarily owing to differences in
adaptation data definitions and to intersite
functions, such as lateral-tell, which were not
completely simulated at the Fullerton test bed.
Analysis of causes of errors during onsite test-
ing reveals a predominance of the omitted or
incomplete logic category. This finding is in
agreement with the study by Glass(12) on per-

errors found (hiring software development
on. the AWACS project.

Recommended Solutions

On future projects, management procedures
need to he devised to ensure that the following
minimum test and evaluation standards are
followed:

• Ilse of checklists to verify all specifica-
tions

• Transition between all development phases
based on accountable completion criteria

• Audits for all source code updates

• Identification and certification of test
tools for early use in the development
cycle

• Documentation, approval, and certification
of parameter and assembly tests

OTHER RELATED EXPERIENCE

Use of Simulation Drivers

Types of Simulation. 	Several kinds of simu-
lation have been and are being used in the eval-
uation and testing of large-scale systems.
Analytical simulations are used to study mathe-
matical properties, interface simulations are
used to simulate the actions of another system,
operator, etc., and environment simulations are
used to mimic the external or real-world in which
the system is to operate.

Analytical simulations are used to investi-
gate everything from satellite orbit controls to
digital filter design for signal processors. In
addition, discrete event simulations have been
used to study computer loads, input-output
queuing, device utilization, communication net-
work congestion, etc. Such simulations usually
support requirements definitions and top-level
software design but rarely are used for testing
of completed products.

59

Interface simulators have also been used in
the development and low-level testing of software
applications. Many of these can be thought of as
"drivers". These are usually used as a substi-
tute for unavailable devices, operators. etc. An
interface simulator can be used to simulate the
actions of a display console and its operator.
The success of these simulators depends on their
fidelity, responsiveness, and completeness.

Interface simulators have been used for
limited acceptance testing and certification
tools when interfacing with the real interface is
unavailable, or too costly. When interface simu-
lators are used for this purpose, they should be
developed by an independent organization but most
often they are not. They should also undergo the
same formal specification and documentation as
the software under test.

Several examples of each of these types of
simulation can be shown; however, a detailed
examination of one environment simulator will
provide more insight into the capabilities,
implementation, usage, and deficiencies of simu-
lation.

Application of Environment Simulator. 	Envi-
ronment simulators are used to represent the
external ur real-world situation. These are used
with the equipment and software in as close to an
operational configuration as possible. In many
cases, these simulators provide the kind of out-
puts that would he generated by a sensor. In
other ra%er., these simulators generate physical
input• into rite son%or. rlic latter are much more
expensive hut provide for somewhat more realism,
particularly if the sensor itself contains soft-
ware which needs to be tested. In either case,
an off-line program is generally used to calcu-
late non real-time aarameters and other scenario
data. This data is then used by the real-time
simulation program to drive the system under test.

rovironment simulators are not only useful
for large-scale systems, but also for medium-
sized systems which may he too expensive to
systematically and rigorously test in a real
environment. Envirommult simulators can he
designed for repeatability, which allows for
testing to find anomalies and for retesting after
changes are made. This repeatability also pro-
vides d convenient tool for systematic regres-
sion testing following sizable revisions and
modifications to the software system. Repeat-
ability 	is 	a 	virtual 	impossibility 	in 	the
real-world.

Enviromaent simulators also provide a vehicle
for certification or acceptance testing of a
software system before it undergoes operational
testing. This implies that the environment simu-
lator should possess a high degree of fidelity,
operate in real-time, and be very complete in all
details. All of these requirements mean that
environment simulators can be quite expensive.
These simulators should also undergo the same
formality of specification as the software under
test.

Example of Environment Simulation. A recent
project ilTustrates what can he achieved with an
environment simulator. The system in question is
a navigation and location system that consists of

a master station and several hundred user units.
An alternate master station provides for back -up
and continuity of operation. Operations can be
conducted with adjacent master stations, which
allows user units to range over a wide area.

Each master station consists of a communi-
cations unit, a display console, a page printer,
a cartridge magnetic tape unit, and three com-
puters -- one providing network control and
communication, one providing unit position loca-
tion and tracking, and one providing display and
data management services.

Each user unit may be programmed by the
network control computer to participate in one or
two relay assignments. Each assignment provides
for cooperative time-of-arrival measurements and
the relaying of messages to and from the master
station. The time-of-arrival measurements are
used by the position location and tracking com-
puter to determine range between user units, and
by triangulation, the location of those user
units. In addition, each user unit may be given
assignments to make passive time-of-arrival mea-
surements from other active relaying units.
These measurements provide additional range mea-
surements for position location and tracking and
also provide "who can hear whom" data for the
automatic network assignment algorithms in the
network control computer.

The contract for this engineering develop-
ment model called for a limited number of user
units to be built -- not enough to test the full
capability of the system. To test the toil capa-
bility, the sponsors required and funded the
development of a real-time environment simu-
lator. This simulator was to provide for the
direct simulation of a network of several hundred
user units. The simulator was to accept all user
unit assignments and messages from the network
control computer, sirlulate all relay processing,
calculate the approp-iate time-of-arrival values
and simulate nearly ill of the passive time-of-
arrival measurements. The results of all of this
activity were to he returned to the network con-
trol computer in a form completely compatible
with communications relay unit. All of this
activity was to he done for several user units
each 250 milliseconfis of real-time, the same
interval the real network operates in.

Implementation. 	The simulation system was
divided into two parts, an off-line function and
a real-time on-line function. The initial goal
was to have all func . ions on-line. The computa-
tional load, however, was too great for the
available computer resource. The computations
included sinmlating user unit motion, probability
of communications based on transmit power and
propagation loss over terrain, time-of-arrival
measurements, and terrain elevation determination.

The off-line scenario generation process con-
sists of five steps or parts. The first step
does an error detec`ion process of the set-up
data. A digitized terrain map is read and re-
digitized to reduce computational loads. The
second step preprocesses motion data and gene-
rates a file of unit positions as function of
time. The third step generates control informa-
tion such as units turning on or off. The fourth
step calculates propagation less data between

60

units. The fifth and last step calculates the
probability of communication matrix using results
of the previous steps onto a magnetic tape for
use by the on-line simulation program.

Some of these steps could be combined. The
long running time for generating large scenarios
(20 hours for several hundred units operating for
30 minutes) suggested that checkpoints would be
needed. So, rather than having classical check-
points, the job was partitioned at logical break-
points.

Usage. The off-line system has been used to
generate several scenarios. The first of these
was a specialized idealized scenario to form the
basis for a certification buy-off test performed
for the systems engineering organization. This
test stressed the ability of the system to locate
and track a network of user units operating in a
sensitive geometric arrangement.

A second scenario was designed to test a full
load of several hundred user units consisting of
man-pack units, surface vehicles, helicopters,
and jet aircraft all operating over an extended
range in rough terrain. This scenario was
designed to run over 30 minutes. This test was
also used to perform stress testing, in that more
units were introduced into the system than the
system had internal capacity for. Stress testing
of this type is very difficult to control and
achieve in real-world situations short of full-
scale exercises or combat.

Other scenarios were generated to fine tune
system parameters for tracking accuracy improve-
ments. Special scenarios were used to confirm
software correctness by comparing analytical
simulations with environment simulations.

Most of these scenarios were re-run at major
update points in the development cycle as regres-
sion tests. In more than one instance, signifi-
cant errors were detected and removed before the
software was reHased. Both the developers and
system engineers feel today that this system
simply could not have been developed to its
present high state without the real-time envi-
ronment simulator.

Critique. 	The results have been quite
useful. 	Much of this success is due to the
inherent discrete nature of the measurement pro-
cess. The discontinuous nature of the proba-
bility of communication matrix is perhaps the
weakest feature. The repeatability of a scenario
however has proved to he a very useful capa-
bility. This is not to imply that the scenarios
are repeatable in microscopic detail; they are
not. The "dither" that results because of vari-
ations in timing has been useful in exposing
certain sequencing problems.

Much of the success of this simulation can he
traced to the basic nature of the system. the
results of a position location system can be dis-
played on the display console. Any deviations
can he quickly recognized by eye; very little
post-run data reduction is needed. This charac-
teristic is not true for many systems.

For all of the success of this environment
simulator, 	t is not without deficiencies. 	The

set-up procedures are tedious and voluminous,
especially for a large number of units operating
over an extended period. The limited off-line
computational resource forced a coarse terrain
digitization. This means the probability of com-
munication matrix is quite crude. The inability
to modify motion data on-line limits testing of
certain geometries. The on-line memory capacity
limits the kinds and amounts of digital messages
which can be generated.

Regression Testing

Myers(19) 	defines 	regression 	testing 	as
"...that testing that is performed after making a
functional improvement or repair to the pro-
gram." Changes can cause previously correct pro-
grams to regress. He goes on to say that regres-
sion testing is important because changes and
repairs are error-prone operations. 	It is
important for other reasons as well. 	Building
software through incremental development may
cause failures due to unusual coupling in
external, real-world processes. The software is
correct according to the specifications, but the
specifications are flawed.

In any case, re-running test cases which were
previously correct is good insurance. Generally
no one test will be adequate and a variety of
tests should be run. Some authors(9) suggest
that a complex test should be run when changes
are made to a complete program and then smaller
specialized tests run to localize any detected
errors. 	This is in reverse order to the kinds
of 	tests normally used during development.
Experience on the navigation system described
above showed that such complex tests could he and
were run during development and not only as a
culmination test.

Regression tests should be easy to run,
should not involve extensive manpower or set-up
time, and results should be easy to analyze. If
these tests violate any of these criteria they
probably won't be run with enough frequency to be
of any value. The argument that regression test-
ing is unnecessary in an incremental development
process, because of the extensive amount of re-
dundant testing done at each step, is a faulty
argument. Most of the "redundant" testing at
each increment generally focuses on newly added
capability and does not re-test existing or pre-
viously' tested programs. Our experience shows
that regression testing can be useful.

Experience 	in 	Independent 	Verification 	and
Valiaaion (IV&V)

Hughes-Fullerton has had very little experi-
ence with independent verification and validation
either as an IV&V contractor or as a contractor
with projects being subjected to an IV&V effort.
This situation is changing, however. The sponsor
of one current project is employing a full-time
IV&V contractor. Other anticipated contracts
will also employ an IV&V contractor. One pre-
vious sponsor used ap IV&V contractor for one
special assignment.(13)

Despite this limited experience, some obser-
vations can be made. It appears the IV&V is
expensive. This isadmitted even by those who do
much of this work.l 22) Whether or not it is

61

cost-effective is not clear. The developer can
be expected to find about 10 times as many errors
as 	he IV&V contractor (1:1000(22) versus
1:1001 3)). 	A "shotgun" approach is probably
not cost-effective nor particularly productive.
The !YU tasks should focus on validation of user
needs and verification of the design and imple-
mentation. These efforts should address products
and not processes. To minimize biases, the IW/
contractor should be precluded from any
follow-on contracts.

Endurance Testing (MtL-STO-1679)

Requirement. Software developed in accord-
ance with MIL-STD-16791 5) is required to pass a
continuous duration test. The specific length is
not quantitatively defined except for systems
which are intended to operate for more than one
day, in which case, the minimum length of time is
25 hours. Folklore says that one author of this
requirement had a program fail to keep the time-
of-day correct after midnight. By extrapolation
then, a system which is intended to operate con-
tinuously for more than a week should also be
tested continuously for the intended period
(month, year, etc.) just to be certain that time
and dates are handled. correctly. While the
intent of this requirement is clear, it doesn't
follow that a test has to be of that duration to
meet the intent. Special purpose tests can he
devised to chow the correctness of handling
special cases. A calendar routine For handling
leap years is a good example: a four year test
would he folly, not prove very much, and cost a
good deal of money. The limit of such tests is
easy to see.

MI! - STD - 16/9 	further' that ii ihe (.011

plexit of the system is such that the intent of
the specification cannot he met, the duration of
the test shall be extended. The authors of MIL-
STD-1679 are very generous with others' money.

Wtfrt then constitutes "endurance" testing and
how i. it best achieved? Endurance testing
appear!". to take two forms. The first is looking
for "r-liability" or "robustness" though neither
can lig adequately defined. Historically some
large-kale systems had failures due to some
internil accretions which resulted in mysterious
operat ins -- spurious bits being turned on,
buffer overflows with light loads, etc. The
failurrs appeared only after long running times,
All to 40 hou• ,. typically.

lho .;•coud lorm ,ipp•ark, to look 	or labit
errors in the software. Note carefully that this
is different than reliability or robustness.
This s arch for errors, however, is better done
by spe . :ific tests which by their very nature will
be of .hort duration. The ability to `ind latent
errors with long running tests would require
comple: test sequences, variations, awl people to
perfon them.

Exi erience. A look at some of our experience
may 5e- rest.

A •adar system was required to perform 100
hours f error-free software test. This require-
ment w. s imposed because the software was assumed
to contribute to system MTBF, and a 100-hour
arror-iree run would "prove" that the software

met its reliability contribution. 	The system,
however, operates for 23.5 hours with one-half
hour down for maintenance each day. Finally, the
basic cycle of software operation is only a few
seconds, that is, the software repeats a basic
cycle every few seconds with almost no variation,
particularly during the 100-hour test.

Another system is intended to operate for
many days at a time. The endurance test requires
25 hours of error - tree operation using a fixed
"full" load with little variation. Pure MIL-STD-
1679. The basic cycle or period of this system
is about 12 seconds with a major cycle of 3
hours. A separate test of a few hours duration
is used to test modifications.

Another radar/weapon system intended to oper-
ate continuously is required to pass a 50-hour
test consisting of 2 hours maintenance, 22 hours
operational software, 2 hours maintenance, 22
hours operational, followed by another 2-hour
maintenance run. The basic cycle of this system
is 2 seconds with a major cycle of 6 seconds. In
practice, this system could be expected to oper-
ate for more than 24 hours upon occasion.

Another radar system intended to operate con-
tinuously is required to pass a 60-hour error-
free test run. This test changes operating modes
and loads at various points in the run. The
basic cycle of this system is a few seconds.

Another radar system intended to operate con-
tinuously does not have a separate endurance
test. The system has a reliability test in which
software failures count as system failures. This
test is rim continually over several months and
incleaw, huth real - tum• 	maiotenahco software
operations. 	The batik cycle of the real-time
software is a few seconds.

Summary. As can he seen from these examples,
seveM-757ferent systems approach the endurance
testing in completely different ways and for
apparently different reasons. A consensus across
many of these projects is that very few if any
errors are found during these endurance tests.
It does appear that testing a program at inter-
vals greatly beyond the basic operating cycle is
probably a waste of money and time. It would
appear that running many shorter tests of greater
variety would be more productive and useful.

RriIMPII- NDAT ION; rok flFSFARCII
ANIt III VI I I tI'Ml

We suggest that the test and evaluation of
large embedded software systems be thought of as
an ongoing experiment that can be reiterated
until the current system is fully mature. We
recommend the development of candidate strate-
gies for planning and monitoring the software
integration process. The aims of these stra-
tegies should he to ensure that the overall
process is sensitive to the structure of the
particular software system being developed and
that it allows for continual feedback of the
status of the activity. Incremental builds,
threads, and iterative enhancement of a skeletal
function are examples of such strategies. The
use of separate design verification and imple-
mentation phases, as they were used on our
example air defense system project, qualifies as

62

a high-level build approach. 	Prototyping is
similar, except :hat the product is normally a
throwaway.

An internal Andy recommended that the most
fruitful areas o research within the SED envi-
ronment are associated with the ability to auto-
matically verify requirements, the implementation
of requirement-tracing aids, and automatic gene-
ration of test cases. The study recommends the
following three areas for improvement of the SED
test environment:

• Developmenl. of Netter original require-
ments and -lesion specifications

• Placement of those specifications in
machine-manipulatable form to allow •oto-
matic verification procedures

rr implementation 	of 	an 	effective
requirement-tracing tool

Since independent testing is a very stable
area in the SED software development cycle, it
would be possible to evaluate an applicable R&D
effort to enhance the current SED methodology. A
great deal of effort is now expended in preparing
and conducting ndependent tests. These tests
are the last significant effort performed on
software prior to performing customer-viewed
system testing, and constitute a major product

TV&V test. 	Consequently, it can he envisioned
that a technology upgrade in inuopondent test
methodology could replace existing, largely
manual, efforts wiLh an automated and improved
product evaluation as well as provide a substan-
tial cost reduction.

AIM' THE AUTHORS

MR. JOHN BOWEN is a systems engineer in the
Research and Analysis group of the Software Engi-
neering Division at Hughes -Fullerton, where he is
performing studies in software quality metrics.
He is currently collecting error data from a
lame-scale air defense system as part of an RAUC
software reliability model study. He recently
completed a software reliability requirements
study task 'or the M1LSTAR terminal for HSAF/ESU
and oartkipated in the design of semi-automatic
erro' seeding technique for the evaluation of V&V
tool sets for NASA -Ames. He has also investi-
gated proposed software complexity metrics such
as cyclomatic number, module size, and software
science measures as reliability predictors. Mr.
Bowen conducted software integration and system
tests for USAF conmiand and control systems 407L,
4731_, and SAGE as well as for the Dal Damage
Assessment Center (DODAC) system. He is the
author of the Computer mago7ine article, "A Sur-
vey of Standards and Proposed Metrics for Measur-
ing Software Quality Testing" which has been
selected twice for reprinting by the IEEE.

MR. MARION MOON is the Chief Scientist for
the Software Proorams Laboratory at Hughes-
Fullerton, which develops embedded software sys-
tems for Hoghe•.-Fullerton's radar, sonar, and
communication product lines. These include ship-
board radar, sonar, and torpedo control systems,
artillery aid cortar firefindor radars, field-
dephied re it i r liclat ion , oystem, and airborne-
contr'illed cmmmilication net manage:dent systems.

As Chief Scientist Mr. Moon is the principal
technical consultant for the some 15 projects
currently being developed in the Laboratory.
Previously he held software technical director
positions on the 115 Navy Advanced Capability MK
48 Torpedo (AUCAP) program and the US Army Posi-
tion Locating and Reporting System (PLRS) pro-
gram. He also headed the Advanced Techniques
Section where new software design methodologies
were perfected and several computer system simu-
lation models were developed for use on Hughes
software projects. While in the US Army, Mr.
Moon tested missile fire control and air defense
systems. He holds a MEE from the University of
Kansas and has done graduate work in computer
science and engineering at UCLA.

REFERENCES AND SELECTED BIBLIOGRAPHY

1. Adrian, W.R., et al, Validation, Verifica-
tion, and Testing of Computer Software, Com-
puting Surveys, vol 14, no 2, pp 159-192
(Jun 1982)

2. Basili, V.R. and Turner, A.J., Iterative
Enhancement: 	A Practical Technique for
Software Development, IEEE Transactions on
SE, vol SE-1, no 1 (Dec 1975)

3. Boehm, R.W., Software Engineering Economics,
Prentice-Hall (1981)

4. Bowen, J.8., A Survey of Standards and Pro-
posed Metrics for Software Quality Testing,
Computer, pp 37-42 (Aug 1979)

5. Chief of Naval Material, Military Standard
for Weapon System Software Development,
MIL-STD-1679 (Navy), (Dec 1978)

6.. Davis, C.G., The Testing of Large, Real Time
Software Systems, Proceedings of the 7th
Texas Conference 'on Computing Systems,
4/25-35 (1978) (Apr 1982)

7. DeMillo, R.A., Software Test and Evaluation
Project (STEP), draft report (Sep 1982)

8. Deutsch, M.S., Software Verification and
Validation -- Realistic Project Approaches,
Prentice-Hall (1982)

9. Deutsch, M.S., Software Project Verification
and Validation, Computer, pp 54-70 (1981)

10. DoD/USDR&E, Department of Defense Directive
5000.3, Test and Evaluation (Dec 1979)

11. Fujii, M.S., A Comparison of Software Assur-
ance Methods, ACM Software Quality Assurance•
Workshop, San Diego (Nov 1978)

12. Glass, R.L., Persistent Software Errors,
IEEE Transactions on S.E., vol SE-7, no. 2
(Mar 1981)

13. Hamilton, M. and Zeldin, S., The Application
of HOS to PLRS, final report HOS-TR-12
(Nov 1977)

14. Kacik, P.J., An Example of Software Quality
Assurance Techniques Used in a Successful
Large Scale Development, ACM Software Qual-
ity Assurance Workshop, 	Sari 	Diego, 	pp
181-186 (Nov 1978)

63

15. Kopetz, H., Software Reliability, Chapter 7
-- Verification of Software, Springer-Verlag
(1979)

15. Lewis, R.O., Software Verification and Vali-
dation (UV), Software. Quality Managment,
Petrocelli, pp 235-753 (1979)

17. Nelson, J.G., Software Testing in Computer-
Driven Systems, Software Quality Management,
Petrocelli, pp 255-774 (1979)

18. Macina, A.J., Independent Verification and
Validation Testing of the Space Shuttle Pri-
mary Flight Software System, NSIA/A1D/SOINASA
1ission Assurance Conference (Apr 1930)

19. Myers, G.J., The Art of Software Testing,
Wiley (1979)

20. Page, J., Methodology Evaluation: 	Effects
of independent Verification on One Class of
Application, Proceedings of the Sixth Annual
Software Engineering Workshop (Dec 1981)

21. Powell, P.3., Software Validation, Verifica-
tion, and Testing Technique and Tool Refer-
ence Guide, MRS Special Publication 500-93
(Sep 1982)

22. Radat7, J.W., Analysis of IVAN Data, ROC-
TR-ai-145 ;Jun 1 98 1)

23. Rustin, R., Debugging Techninues in Large
Systems, Courant Computer Science Sympo-
sium 1, Prentice-Hall (1 97 1)

24. Smith, M.K. and Hudson, D.R., A Survey of
Software 	Validation, 	Verification, 	and
Testing Standards and Practices at Selec-
tive Sites, N8SIR 82-2482 (Apr 1982)

25. Watkins, M.L., A Technique for Testing Com-
mand and Control Software, Coommnication of
the ACM, vol 24(4), (Apr 1982)

64

THE ECONOMICS OF SOFTWARE TESTING - AN INTRODUCTION

Raymond J. Rubey
SofTech, Inc.
Dayton, Ohio

ABSTRACT

Software testing, which has the discovery and elimination of errors as its objective,
has a cost that depends on the number of tests. Errors that go undiscovered by testing
cause costs to be incurred, both to correct the errors and because the software fails to
perform its intended functions. More complete knowledge regarding the cost of tests and
the cost incurred due to errors would enable determination of the economically efficient
amount of testing that should be done. This amount would be achieved when the errors
eliminated by further testing have a total cost less than the cost of additional tests
needed to discover those errors. This paper discusses the factors that determine test
cost and error-associated cost. These test cost factors are related to the likelihood
that errors will be discovered when particular classes of tests are executed.

INTRODUCTION

An often quoted statement asserts that "test-
ing can only show the presence of errors but never
their absence." This statement is based on the
fact that it is impossible to test all alternative
input values, input combinations, permutations of
program decisions, etc. for any non-trivial pro-
gram. In actual practice, our confidence that a
computer program is free from error is achieved
by testing. in spite of the fact that this testing
is imperfect. Fortunately most applications do
not require absolute assurance that the computer
program is free from any error; rather it is
sufficient that the program is very nearly correct.
If we are satisfied with less than perfection, we
can both afford and construct the desired computer
programs. In actual practice, we must decide when
sufficient testing has been done. One of the best
criterion to use is the fulfillment of a compre-
hensive test plan. Unfortunately, the budget often
determines the test duration; when the software
development money has been spent, the testing is
stopped. This is the worst economic criterion; we
must have better ones. The following sections
provide some guidelines and concepts for the
development of such criteria.

First we will begin with a global look at the
economic aspects of testing. We can define an
error cost for a computer program containing
undetected errors (i.e., residual errors) as:

Total Error Cost = R(cost of error r)
r=1

x (probability of error r
occurring)

where R = number of
residual errors.

We can also define the cost of testing as follows:

Testing Cost 	= 	 (cost of executing
t=1 test t) +

(cost of defining
test t)

where t = number of
tests that
are run.

When the cost of testing to find the residual
errors is greater than the cost that would be
incurred if these errors cause the program to fail,
it is no longer economic to continue testing.
Unfortunately we often know very little about such
costs. We can and should make some effort to
improve our knowledge and estimation abilities
however. Let us begin by concentrating on
individual errors rather than on the errors in
total.

INDIVIDUAL ERROR COST

Each individual error in a program has a cost
and it is too much of an approximation to consider
these costs as equal. Simply stated some errors
cost more than others. We can divide the error
cost into three components as follows:

Cost of Error R = "Lost Function" Cost
+ Correction Cost
+ Correction Distribution

Cost

"Lost Function" Cost

A computer program is written to accomplish
functions for a user; these functions can be as
diverse as that of controlling a tuning of an
automobile radio to that of guiding a space
booster. When in a particular situation the pro-
gram fails to do a needed function because of an
error, then a cost is incurred. This cost might
be trivial (e.g., because the radio has been tuned
to the wrong station) or may be enormous (e.g.,
because the space booster has failed to achieve
orbit). This "lost function" cost is clearly a
function of the type of application. If there is
only a single user of the program, the "lost
function" costs might be limited. However if
there are many users (e.g., we have sold a lot of
digitally tuned radios) the sum of all the individ-
ually small costs may be substantial. It would
seem there are an increasing number of applications
with substantial "lost function" costs. In these
applications the total error cost due to residual
errors may be large even though the probability of
these errors is low; thus considerable testing
cost is justified. Software development managers
and especially users should be aware of the range

55

of "lost function" costs for their application.
Of course in most situations, the "lost function"
cost is only incurred when a program is put to use
and need not be considered as being incurred
during development.

It might be argued that software developers
need not pay attention to "lost function" costs
since, unless warranties or other liability
measures are invoked, the "lost function" costs
are incurred by the user. Such an attitude would
quickly reduce the number of users willing to
hazard further ventures with the short sighted
developer.

Correction Cost

When a software error occurs, we usually
attempt to correct or modify the program so that
the error will not occur again. A cost is incur-
red in making the correction. The size of this
cost is, in large part, dependent on the time
between when the error is made and when it is
detected. If the error is made on one day and
detected the very next day, it will usually be
cheap to correct because very little work has been
expended during the short interval. This is a
reason for the advantages claimed by various top-
down and structured development approaches;
testing of parts can be done before the whole has
been coded. If there is a long period between
when an error is made (e.g., in software require-
ments definition) and when it Is detected (e.g.,
in the very last stages of testing before use)
then the correction cost is usually high (1). Many
past studies and reports indicate that the follow-
ing relationship holds:

Relative Correction Cost • 10
2D

where D 	fraction of the
software develop-
ment that has
elapsed between
error creation and
error detection.

Any activity, such as design reviews, walkthroughs,
code reading and programming standards, that re-
duces N will reduce correction cost. Correction
cost, unlike "lost function" cost is fairly
independent of application. Better software
development activities help reduce error costs for
everyone.

Distribution Cost

When an error is detected and corrected in a
program, all users of that program must be given
the corrected version of the program if they are
not to continue to be subject to the "lost func-
tion" cost of the error. If we are still develop-
ing the program, the distribution cost is usually
negligible. For our space booster software
application the distribution cost is very small
since the program has a single user. However, for
our digitally tuned radio and for similar applica-
tions, the distribution cost may be substantial.
Indeed, as developers we may be willing to incur
considerable user discontent to avoid high distri-
bution costs.

TESTING COST

Given this brief look at the cost incurred
when an error occurs, let us examine what it
costs to do the testing. As indicated in the
introduction, there is a cost associated with
actually executing a test and a cost associated
with defining a test. The cost of executing a
test is largely a function of the resources (e.g.,
execution time, memory, input/output devices, etc.)
required by the program being tested. These
resources are partly a function of the software
application and its environment and partly a
function of the software's structure.

Before we can execute a test however we must
define the test itself. Test definition requires
that we specify the inputs for the test, the
expected output of the test, and the method by
which the test outputs will be obtained and
analyzed. Usually the cost of defining a test is
much greater than the cost to actually execute
the test. The cost of defining a test is a func-
tion of the number of inputs, number of outputs,
number of unique input/output combinations, the
number of equivalence classes, the data flow
complexity and control flow complexity of the
software under test. These first two factors may
be determined by simple counting. The input/output
combination factor may be determined by counting
the number of rules in a decision table obtained
from a cause/effect graph mapping of the input/
output relationships. (2) The number of equiva-
lence classes may be determined by a detailed
examination of the software's requirements. (2)
The data flow and control flow complexity may be
determined by metrics, such as the McCabe number,
for the corresponding flow graphs. (3)

It is usually more difficult to define the.
first test to be run than it is to _ define sub-
sequent tests because these subsequent tests are
only variations of the first test. Thus if we
know what it costs to define the first test, as a
function of the factors outlined in the preceding
paragraph, we can estimate the cost of a subsequent
test by calculating the Difference Factor for that
subsequent test. The Difference Factor for a test
would be 1 if the inputs, outputs, input/output
combination, equivalence class, data flow paths
and control flow paths were all changed for the
new test 's compared to All previous tests. The
Difference Factor will be 0 if the inputs, outputs,
input/ouput combinations, equivalence class, data
flow and control flow of a test is identical to
any previous tests. Usually a test will have a
Difference Factor between 0 and 1 and the Differ-
ence Factor is calculated by the following formula:

Difference Factor • Number of actual differences
Number of potential differ-
ences

Obviously it costs nothing to define a test with
a Difference Factor of 0; also it is obvious that
such a test is very unlikely to reveal a previously
unknown error. The best test is one that reveals
a previously unknown error. We could define the
"goodness" or utility of a test by the following
formula:

56

Test Utility = 	(Probability that error r
rkl is detected)

X (Cost of error r)

where R = total number of residual
errors.

The probability that a previously unknown error is
revealed by a new test is proportional to the
Difference Factor of that test. If the Difference
Factor is large, significantly different control
and logic flows will be exercised, previously un-
tested input/output combinations will be demonstra-
ted, and different numeric output values will be
obtained. The error is thus more likely to be
revealed than if the data and control flows and
the inputs and outputs were almost the same as a
previous test. Briefly, good tests cost more than
poor tests.

The Difference Factor can be used to measure
the completeness of a collection of tests. If it
is not possible to define a test with a Difference
Factor greater than 0, then obviously all combina-
tions and alternatives have been tried. However,
if tests with Difference Factors of .5 or more can
easily be defined, then more testing is required.

Given the above understanding, two testing
strategies ire possible. One strategy would be to
execute tests with large Difference Factors early
during the test effort. This would make the test-
ing more expensive but would tend to uncover
errors earlier. This early detection is desirable
because of the previously discussed "Correction
Cost" effect. However an alternate strategy would
be to conduct an orderly sequence of tests, in
which each test differed only slightly from the
preceding test. Test costs would be less although
the cost to correct may be increased because errors
might be found later than was the case for the
first strategy. The most effective strategy is
not apparent at this time.

SOFTWARE STRUCTURE IMPLICATIONS

Up to this stage we have considered the soft-
ware test as a monolithic entity. The software can
and should have a structure. The testing effort
in turn can and should take advantage of this
structure to reduce the cost of the complete test
activity. An effective software structure is
hierarchical and this hierarchy is composed of
modules that each:

1) Have a single entry.

2) Have a single exit.

3) Have explicitly defined inputs and
outputs.

The higher level modules, that invoke or call lower
level modules, contain alternative control paths.
Thus, although the structure itself is fixed, the
sequence of module invocations for any particular
execution of the program will be different.

For a large, complex program, it will be
expensive to define tests with Difference Factors
that satisfy all of the criteria defined in the
previous section. A better approach would be to

test the modules individually, combine them into
an integrated program and test the interfaces
between modules.

if a one-step integration approach is taken
the test cost is:

System Test Cost =
	

Cost of testing
n=1 module n

Cost of testing
m=1 interface m

where J = number of modules
and K = number of intermodule

interfaces.

The cost of testing the individual modules
was discussed in the preceding section. The cost
of testing interfaces is a function of the number
of inputs and outputs shared between each pair
of modules, the number of unique modules invoca-
tions and the number of structural control paths.
An interface testing Difference Factor can be
defined in a manner analogous to the factor
defined for an individual module in the preceding
section. In any but the smallest programs (e.g.,
<10 modules) testing by modules first and then
integrated testing is more economical than
monolithic testing of the total program.

FUTURE DIRECTIONS

The above discussion has outlined only a few
of the economic considerations that are important
in software testing. Important directions for
future work include the effectiveness and cost of
test tools and facilities, the need for and cost
of regression testing, and the incorporation of
probabalistic software reliability models. One
problem requiring continual attention is the
definition of terms used in and associated with
testing. It does little good to worry about the
cost of testing or of errors when we do not have
common agreement on the meaning of the words
testing and error. is debugging different from
testing? if it is, when does debugging stop and
testing begin? To what extent is the programs
failure to detect a user's erroneous input an
error? Answers to questions such as these are
an important step in understanding the economics
of software testing. The simple and informal
discussion of this paper has outlined only a few
of many possibilities in this important area.

REFERENCES

I. Boehm, Barry W., Software Engineering
Economics, Prentice-Hall, 1981.

2. Myers, Glenford J., The Art of Software Testing
John Wiley and Sons, 1979.

3. Mcabe, T.J., "A Complexity Measure", IEEE
Transactions on Software Engineering, SE-2(4)
1976.

67

ABOUT THE AUTHOR

Raymond J. Rubey is Technical' Director of SofTech's
Dayton office. He recently was Visiting Professor
of Engineering at the Air Force Institute of
Technology where he prepared and taught graduate
classes in software engineering, reliability and
management. Mr. Rubey has managed SofTech's
verification and validation contracts for both the
Precision Location and Strike System (PLSS) and

the Electronically Agile Radar (EAR) software.
Prior to joing SofTech, he was with Logicon where
he managed a wide range of projects, including
the verification and validation of the 	avionics
software, the development of test tools and
simulators, the definition of quantitative measures
of software quality and the development of avionics
programming languages and compilers. Mr. Rubey has
prepared and presented seminars on software quality
assurance and testing throughout the United States,
Europe and Japan. He has a Bachelors and Masters
degree in Engineering from U.C.L.A.

68

PROGRAMNING LANGUAGES, TESTING, AND REUSABILITY. *
 Peter Wegner, Brown University

Providence, RI, 02912
Abstract: We present a variety of ideas and opinions on increasing the produc-
tivity and reliability of software. Interface technology and knowledge engineer-
ing are suggested as primary themes for research and development in the 1980s
and 1990s. The impact of programming environments and powerful personal
computers on testing and management technology is considered. The evolution of
programming languages and the relation of Ada to its predecessors is reviewed.
The notion of "capital" and "capital-intensive" are defined in terms of reusability
of resources, and the contribution of Ma to the development of capital-intensive
software technology is examined. The relation between maintainability,
enhancement, and evolution of systems is discussed. The relation between
knowledge engineering and software technology is explored. Coordinated
approaches to making software technology more capital-intensive, such as the
Japanese fifth-generation computer proposal and the DOD software initiative are
examined in the conclusion.

1. Interface Technology and Knowledge Engineering

The evolution of computer science in the second half
of the 20th century may, as a first approximation, be
characterized by the following phases:

1950s: Experimental systems (architectures, languages,
applications)
1960s: Mathematical models (automata, formal languages,
semantics)
1970s: Software engineering (life cycle, abstraction,
methodology)
19805: Interface technology (software, hardware, user
interfaces)
1990s: Knowledge engineering (expert systems, educa-
tion, visual programming)

This view is simplistic but nevertheless helpful. It
suggests that computer science evolved from primarily
experimental origins in the 1950s through a mathemati-
cal phase concerned with the modelling of the
"phenomena" of computer science to an engineering phase
concerned with cost-effective and reliable software con-
struction. The engineering approach focussed on life•
cycle methodology and abstraction in the 1970s. The
focus in the 1980s appears to be on the development of
interfaces for software components, hardware com-
ponents, and users. It is predicted that, in the 1990s, a
Primary concern will be that of making interfaces more
intelligent.

We are in the midst of a computer revolution that
parallels the industrial revolution in the magnitude of its
social and technological changes. Software and
knowledge engineering play a role in the computer revo-
lution similar to that played by traditional engineering in,
the industrial revolution. Interfaces play a key role in,
both industrial and information engineering but require
more explicit, self-conscious definition because informa-
tion structures are more abstract and less tangible than
physical structures such as bridges and buildings. Infor-
mation technology should make use of principles and
techniques of traditional engineering where this is
appropriate, but should adapt its techniques to the fact
that there are differences as well as similarities between
the products of information technology and traditional
technology. These ideas are further discussed in [Wegner,
19824

Our view of interface technology and information
engineering as primary themes (buzzwords) for the 1980s
and 1990s is supported by the fact that fourth-generation
graphics-based personal computers of the 1980s
emphasize interface technology, while fifth generation
computing systems proposed for the 1990s emphasize
knowledge engineering. [Fifth, 1981].

Fourth generation computers have high-resolution
graphical user interfaces with..."windows" to represent a

)` This research was supported in part
by ONR contract //N00014-78c-0656

desktop with multiple ongoing activities. Visual
representation of inputs, outputs, and intermediate states
of a computation increases the bandwidth of the man-
computer interface and provides both a better representa-
tion and greater control of the computing process.

Interface technology at the hardware and display
levels is being matched by modular interface technology
at the language-level in new languages like Smalltalk and
Ada, and by "object-oriented" software-development
methodologies that support interface technology at the
level of applications. The 1980s are concerned with
integrating Interface technology at the level of hardware,
software, and applications so that modular applications
can be easily designed, easily mapped into programming
language and hardware representations, and easily modi-
fied and tested.

Fifth-generation computing systems, which may
become state of the art in the 1990s, will add intelligence
to the high-bandwidth interface provided by fourth-
generation computing systems. The Japanese fifth-
generation computing proposal is a prototype for such
systems. Its proposed hardware includes a database
machine and a problem solving and inference machine. Its
proposed system programming language is a logic pro-
gramming language such as Prolog. Its software includes
support for natural language and speech understanding
and problem solving over a wide set of problem domains.
The project includes not only technical goals such as
increasing productivity and saving energy, but also social
goals such as coping with an aging society. The project is
regarded by some US researchers as overambitious. But it
has a worthwhile set of goals which, even if they are not
achieved in their entirety, can catalyze an integrated
research effort that could give Japan a technological lead
In developing computing systems for the 1990s.

Fourth- and fifth-generation computing technology
emphasizes complementary aspects of information
engineering. Fourth-generation computers emphasize
engineering of the man-computer interface to increase the
bandwidth of man-machine communication and the
potential of man for assimilating knowledge. Fifth-
generation computers emphasize engineering of the inter-
nal representation of knowledge for intelligent problem
solving. They emphasize very high-level problem specifi-
cation that avoids concern with the intermediate stages of
problem solution. while fourth-generation systems allow
flexible representation of and access to intermediate states
of a computation so that "grass-roots" contact with the
"operational semantics" of a computation can be main-
tained while thinking at a high level of abstraction.

The systematic exploration of substantive ideas in
:interface technology and knowledge engineering is
boyond the scope of this paper. However, singling out
these notions as major research and development themes
in the remaining years of the 20th century has non-
trivial implications. It suggests that programming
languages like Ada be evaluated in terms of their module
interfaces for abstraction and concurrency, and that

69

machine architectures, distributed systems, personal com-
puters. and testing methodologies be examined from this
point of view.

2. Impact of New Programming Environments

The overall objective of software technology is to
reduce the cost and increase the reliability of software.
Realization of these goals requires a number of different,
complementary activities.

(1) The development of better design, development, and
maintenance methodologies.

(2) The construction of better testing, verification, and
validation tools.

(3) Compile-time and execution-time redundancy for
error detection and correction.

The primary goal of programming languages is to
facilitate better programming methodology that reduces
errors and makes programs easier to correct and to modify.
Testing is facilitated by tools in the programming
environment for module testing, simulation, and confi-
guration management. In developing Ada it was realized
very early that its success depended on the quality of the
environment as well as the language. Ada aims to contri-
bute to cheaper and more reliable software both at the
language level through improved design methodology and
at the environment level through integrated testing,
simulation. and management techniques.

Testing in the narrow sense is concerned with deter-
mining whether selected inputs in a test data set yield
desired outputs. In a broader sense testing should be con-
cerned not only with correctness, but also with reliabil-
ity, robustness, preformance, and utility [Good, 1979].
Moreover, testing should not be restricted to the "debug-
ging and testing" phase of the software life cycle, but
should be viewed as a continuing activity that is per-
formed formally and informally as a part of every life
cycle activity. This view is reflected in the following
characterization of the software life cycle due to Barry
Boehm [Boehm, 1981].

(1) Feasibility: Defining a preferred concept for the
software product and determining its life-cycle
feasibility and superiority to alternative concepts.

(2) Requirements: A complete. validated specification of
the required functions, interfaces, and performance
for the software product.

(3) Product Design: A complete, verified specification of
the overall hardware-software architecture, control
structure, and data structure for the product, along
with such other necessary components as draft user
manuals and test plans.

(4) Detailed Design: A complete, verified specification of
the control structure, data structure, interface rela-
tions, sizing, key algorithms, and assumptions of
each program component (routine with < 100 source
instructions).

(5) Coding: A complete, verified set of program com-
ponents.

. (6) Integration: A properly functioning software product
composed of the software components.

(7) Implementation: A fully functioning hardware-
software system, including such objectives as pro-
gram and data conversion, installation, and training.

(8) Maintenance: A fully functioning update of the
hardware-software system. This subgoal is repeated
for each update.

(9) Phaseout: A clean transition of the functions per-
formed by the product to its successors (if any).

The above view of the life cycle as a sequence of dis-
tinct phases with explicit interfaces that serve as check-
points for transmitting the project from one group of
workers to the next was appropriate for batch processing
systems and has served as a useful framework for the sys-
tematic exploration of mechanisms for improving
software productivity and reliability. New programming
methodologies will cause a radical shift in our way of
doing business and will require a modified life cycle
model that admits multiple passes to allow rapid prototyp-
ing, iterative feedback and enhancement between life
cycle phases, and system controlled management, testing,

and evaluation.

New programming environments will make com-
munication among different groups working on a large
project much easier by providing a system-wide mail sys-
tem and access to a common data base containing the
current system and its development history. Testing,
verification, and validation may be performed more fre-
quently than before using a time-stamped snapshot of a
developing system without disrupting the progress of the
development group. The system will be able to prompt
the validation group on what is to be tested, and to
prompt managers on configuration control activities.

Programming environments will not only improve
the ease of communication but also its quality. High-
resolution graphics will allow new representations of the
system status that will provide better insight and under-
standing for managers, programmers, and testers.
Research on "visual programming", which is concerned
with the representation of intermediate system states so
that the system comes to life as a dynamically evolving
entity, will allow new forms of test and evaluation based
on -observing" intermediate states of the subsystem being
tested. Graphical interfaces will imbue information
structures residing in a computer with a degree of reality
approaching that of physical structures such as bridges
and buildings, and will serve to reduce the conceptual gap
between hardware and software engineering.

Syntax directed editing will aid in program develop-
ment and guide the programmer in using good program-
ming methodology. Graphics will aid in test and evalua-
tion by providing graphical representations of the process
of program execution and symbolic evaluation. Tools for
functional and structured testing will be provided and
will make use of graphical representations of both the
program execution process and the spaCe of data inputs.
Finer control of both the program development and exe-
cution process will suggest an entirely new set of test and
evaluation tools that make use of monitoring and prompt-
ing techniques and the techniques of visual programming.
The new generation of test tools will be firmly integrated
with compilers, debuggers, editors, and other tools of the
environment.

Programming environments will contain educational
aids to instruct programmers in the purposes of testing
and the use of testing tools. The boundary between edu-
cation, documentation, and productive use of software
tools is fuzzy, since all three activities are concerned with
the management of complexity. Educational display tech-
niques will often find a use in providing additional
insights for program development and testing purposes.
Educational aids will be particularly important for large
systems where testing requires an understanding not only
of general testing principles but also of the details of the
particular application.

The choice of test data and test cases is an art requir-
ing expert knowledge in the domain of application and it
is likely that expert systems for testing will be developed
in broad domains of application. If the total cost of a sys-
tem exceeds one billion dollars it may well be worth
investing in expert systems that apply domain-specific
knowledge not only to testing but also to other phases of
the life cycle. The development of expert systems to
assist in life cycle management and testing for broad

70

application domains is an area that deserves further
research.

Another important research area is the development
of good general-purpose tools for the construction of
testbeds, simulators, and rapid prototypes. Consideration
of these issues is beyond the scope of this paper. How-
ever, we shall briefly illustrate the flavor of testing in
specialized application domains by mentioning a special-
ized testing application in the domain of Ada, namely the
Ada compiler validation project.

The Ada compiler validation project is perhaps the
most 'comprehensive project for testing of compilers that
has ever been undertaken and deserves to be studied as a
well-documented example of a specialized testing system.
The compiler validation aids produced by Softech as part
of its compiler validation project include the following:

a) An implementors guide which "identifies common
errors in Ada compilers, describes compiler implemen-
tation techniques that will avoid difficulties, pro-
vides exemplary programs that illustrate potential
trouble spots in conforming to the standard and clar-
ify intended interpretations of the standard". The
implementors guide will be continually updated to
reflect increasing understanding of Ada implementa-
tion issues.

b) Test programs (approximately 1400 programs with
an average of 50 lines of text) which will include
both class-A tests which demonstrate that legal pro-
grams are accepted and class-8 tests which demon-
strate that illegal programs are rejected.

c) Validation support tools that assist in preparing tests
for execution and in analyzing the results of execu-
tion.

Although testing can never guarantee the correctness
of the compiler, the set of examples has been carefully
selected to test a comprehensive a subset of language
features, including features that are tricky to implement.
Production compilers will be required to pass these tests
before they are accredited as Ada compilers. These tests
are more comprehensive and systematic than for any pre-
vious language and will set objective standards of correct-
ness that will guarantee high quality for the end product.

The availability of both the test examples and the
implementors guide before the first production compilers
are completed provides an opportunity to resolve both
divergent interpretations of implementation issues and
potential differences in program behavior before there is a
large community of users with a vested interest in the
idiosyncracies of a particular compiler. The danger of
proliferating dialects due to subtle differences in imple-
mentation is therefore reduced.

The compiler validation effort illustrates the high
project management standards of the Ada project. Ada is
being developed with considerably more attention to pro-
ject management than previous languages. Careful project
mangement has contributed to clarity and a high level of
documentation for the requirements and design of Ada and
should contribute to achieving well-designed and high-
quality validated Ada implementations. It also illustrates
the very considerable effort that is needed to design test
systems for specific applications, and the fact that the
considerations in developing such systems are related
more to the application domain than to general testing
principles. Compiling is perhaps not typical of embedded
computer applications. Analysis of two or three test sys-
tems for typical embedded systems is needed to provide
bottom-up insights to help design an "application genera-
tor" for the generation of testbeds and simulators for
embedded systems.

3. Programming Language Perspective

In order to provide some linguistic perspective, let's
briefly review the history of programming languages. As

illustrated in Table 1, we can subdivide the development
of programming languages prior to 1970 into first-
generation languages, developed between 1954 and 1958,
second-generation languages developed between 1959 and
1961, and third-generation languages developed between
1962 and 1970.

Example 1:

11954-58: First Generation Languages

Fortran i 	Remarkably large number of features

Algol 58 	of later programming languages

Flowmatic 	already present in embryo form

IPL V

11959•61: Second Generation Languages

Fortran II 	subroutines, separate compilation

Algol 60 	block structure, data types

Cobol 	 data description, file handling

LISP 	 list processing, pointers

1962•70: Third Generation Languages

Fortran + Algol + Cobol
rigorous successor to Algol 80
simple successor to Algol 60
classes, data abstraction

19T0-80: The Generation Gap

Many Languages
None Endured
The Software Crisis
Ada - started 1975. ready for use 1985

Table I: The Development of Programming Languages

First-generation languages include the numerical
languages Fortran I (developed by IBM) and Algol 58
(developed in Europe), the business data processing
language Flowmatic (developed by Grace Murray Hopper),
and the List processing language IPLV (developed by
Newell, Simon and Shaw at the Rand Corporation). Many
of the basic ideas of programming languages were
developed during this period. Fortran I introduced arith-
metic expressions and statements, arrays, IF and DO con-
trol structures, functions and subprograms. Algol 58
introduced the idea of block structure and declarations.
Flowmatic introduced the idea of records and file process-
ing. IPLV introduced the basic concepts of list processing
and the idea of garbage collection.

The second-generation languages include Fortran II,
the most widely used language in numerical program-
ming, Cobol, the most widely used language in business
data processing, Algol 60, which is not as widely used as
Fortran and Cobol but is the conceptual starting point for
later language development, and LISP which has played a
major conceptual role in language development and is
widely used in artificial intelligence.

The second-generation languages integrated the ideas
of first-generation languages into a working system.
Each is a refinement of a specific first generation
language, suggesting that language designs benefit when
the concept formulation and integration phases are
separated by a period of reflection. It is surprising that
the most widely used and influential languages of the
early 1980s were all developed at essentially the same
time (1 960 give or take a year).

PL/I
Algol 68
Pascal
Simula

71

The third-generation languages attempted to refine
the ideas of second-generation languages. But none of
them succeeded in gaining as widespread use or influence
as the second-generation languages.

PL/I attempted to combine the best ideas of Fortran,
Algol, and CaboL It included the arithmetic expression
syntax and separate compilation features of Fortran, the
block structure and declarations of Algol 60, and the
record and file handling of CoboL But it was not able to
integrate these ideas into an elegant, easily implementable
language. PL/I proved to be a baroque language which
was unable to compete with Fortran in simplicity of use
or efficiency of implementation.

Algol 68 was a well-designed language which, if it
had been properly documented, could have been a worthy
successor to Fortran. Unfortunately, it suffered from a
bad reference manual, and was never able to live down its
undeserved reputation for complexity. Algol 88 was
technically adequate as a successor to Fortran, but failed
because of poor public relations.

Pascal was developed by its designer Nicklaus Wirth
as a successor to Algol 60 which supports modern
software methodology but emphasizes simplicity over
rigor in its language design. It has achieved greet popu-
larity, has been widely implemented on microprocessors,
and is widely used as an introductory language in college
level academic computing courses. However, it has some
design deficiencies in its parameter passing and variant
record mechanism and does not adequately support the
development of large programs consisting of many hun-
dreds of modules.

Simula is a well-designed language which, had it
been properly marketed, could have become a successor to
Fortran. It supports modular programming through a
language mechanism called the "class" which is a
forerunner of the notion of packages in Ada, and of the
notion of data abstraction. But Simula was developed in
Norway and never had the backing of a large and influen-
tial user organization.

The attempt to develop general-purpose languages to
replace Fortran and Cobol continued from the 1960s into
the 1970s. By the early 19705 it was realized that the
goal of great expressive power, which was the dominant
goal of language design in the 1960s. should be tempered
with the goal of simplicity of use and of implementation.
It was realized the the software crisis in building large
computing systems was due to our inability to handle
complexity. Attention shifted from concerns of expres-
sive power in language design to concerns of methodology
for the management of software complexity. Pascal was
the first language to strive for the goals of simplicity and
support of software methodology.

Many languages were developed in the 1970s, but
none achieved even the status or influence of third gen-
eration languages such as PIA. The 1970s were a fertile
period for the development of language concepts in areas
such as program verification and data abstraction, but did
not result in an integrated language design challenging
the entrenched languages of the early 1960s. The 1970s
thus constitute a -generation gap" in the development of
comprehensive production-oriented programming
languages.

4. The Ancestors of Ada

Ada is a "Pascal-based" language. Pascal may be
regarded as the "father" of Ada, both because the Ada
designers asserted that their design was "Pascal-like" in
their design proposal, and because the goals of simplicity
and implementability of Pascal are closer to those of Ada
than are the goals of comprehensiveness and expressive
power of PL/I or those of orthogonality and rigor of Algol
88. Programming languages which have influenced the
development of Ada include Simula, which pioneered the

notion of data abstraction, and Algol 68 through its clean
data structure and type facilities. Simula and Algal 88
may be viewed as "uncles" of Ada. Algol 60 was the
father of Pascal, Simula, and Algal 68, and is thus the
grandfather of Ada.

Figure 1: Factors Influencing the Development of Ada

5. What Makes a Language Successful?

The failure to develop a viable successor to Fortran
and Cobol in the 1960s and 1970s is both surprising and
po7Thing, particularly in view of the intensive program-
ming language activity during this period. The design
and development of a new common language is clearly a
very difficult undertaking, in part because the factors
necessary to its success transcend the purely technical
factors of "quality of design".

The factors necessary to the development of a suc-
cessful programming language include the following:

a) High-quality design which supports modularity,
reliability, efficiency, etc.

b) Efficient, user-friendly, implementation

c) Clout (support by a powerful organization such as
the DOD or IBM)

d) Ecological niche (the language must fill a need not
met by an incumbent widely used language)

Thus the criteria for success of a language are cap-
tured by the following "equation":

SUCCESS = DESIGN + IIVPLENENTATION
+ CLOUT + NEED

The failure of the third-generation languages to
replace second-generation languages can be explained by
the fact that they did not sufficiently dominate incum-
bent languages in these four "success factors".

PL/I was strong on clout since it was supported by
IBM, but was weak in its design, late in its implementa-
tion, and, because of its complexity, did not really dom-
inate Fortran in new application areas.

Algol 68 was stronger than PIJI in its design, but
weak on implementation (because of insufficient support)
and weak on clout. Pascal was weaker than Algol 68 in
its design, strong on implementation (because implemen-
tations were relatively straightforward), and strong on
ecological niche (for small academic application). But its

72

niche did not include the large embedded computer appli-
cations that provided the impetus for the development of
Ada. Simula was strong on design and came closer than
other third generation languages to filling the embedded
computer niche, but was weak on clout and implementa-
tion.

Ada appears to dominate third-generation languages
on the above criteria for success. It is strong on design
(although its design could undoubtedly be improved). It is
strong on clout, since it is supported by the DOD and is
being adopted by major computer companies and the Euro-
pean Economic Community. It is strong on "need" because
of the demonstrated inadequacy of current languages for
large embedded computer applications.

Ada is probably closest to Cobol in its political and
technical development. Both Cobol and Ada derived their
initial clout from the "Department of Defense" and were
developed in response to a specific need. A comparison of
Ada, Pascal, Cobol, and PIJI on our four criteria is given
below:

Figure 2: Comparison of Programming Languages

The major question-mark in the development of Ada
is the fact that there are not yet any production-quality
implementations. But all indications are that Ma can and
will have efficient, user-friendly implementations by
1984. Existing experimental compilers have proved
feasibility, production compilers are being undertaken by
software houses with a great deal of experience in
developing compilers of comparable complexity, and the
level of public scrutiny and rigor of validation require-
ments are greater than ever before. All these factors lead
to optimism with regard to both the quality and user-
friendliness of the implementation. If the schedules and
performance expectations of implementations are met
during the next two years, then the probability that Ada
will become the common language of the late 1980's and
1990's is very high indeed.

6. Capital -Intensive Technology and Reusability

One of the parallels between traditional engineering
and software engineering is the role of capital goods in
increasing productivity and reliability. The industrial
revolution led to an economic system called capitalism and
to a process of capital formation which has caused produc-
tion of consumer goods to become progressively cheaper,
more versatile, and more reliable. The "consumer goods"
of software engineering are not as tangible as industrial
goods. But the notion of capital goods, such as program-
ming languages and software tools, for improving produc-
tivity and reliability is just as central to software
engineering as it is to traditional engineering.

A production process is capital-intensive if it requires
expensive tools or involves expenditures early in its life
cycle for the purpose of increasing productivity later in
the life cycle. Software technology, just as traditional
technology, was labor-intensive in its youth and is
becoming increasingly capital-intensive as it matures both
because tools and application programs are becoming more
ambitious, and because modular program development
methodologies require considerably greater expenditures

during program design to reduce expenditures in later
phases of the software life cycle.

The Encyclopaedia Britannica states that "capital" is a
word of many meanings which have in common that cap-
ital is a "stock" rather than a "flow". [EB, 1968.] It asserts
that "In its broadest sense capital includes the human
population; non-material elements such as skills, abilities,
and education; land, buildings, equipment of all kinds;
and all stocks of goods - finished or unfinished - in the
hands of both firms and households." We shall hazard a
simple definition of capital that is consistent with the
above statements, and show that many activities in
software and knowledge engineering are capital-intensive
according to this definition.

"Capital" may be defined as a reusable resource. Capi-
tal goods in conventional engineering, such as a lathe or
an assembly line, are reusable resources for producing
consumer goods. Capital goods in software engineering,
such as compilers and operating systems, are reusable
resources for producing application programs. Application
programs and databases are reusable resources which may
be repeatedly used in computing useful results. Program-
mers are reusable resources in the production of programs.
Capital goods are produced only once and may then be
used repeatedly in the production of economically useful
products. The process of developing capital goods for use
in the production of consumer goods is called capital for-
mation. Technologies for producing consumer goods
which depend heavily on capital goods are called capital-
intensive technologies.

Reusability is a general engineering principle whose
importance derives from the desire to avoid duplication
and capture commonality in undertaking classes of
inherently similar tasks. It provides both an intellectual
justification for research that simplifies and unifies
classes of phenomena, and an economic justification for
developing reusable software products that make comput-
ers and programmers more productive. The assertion that
we should stand on each other's shoulders rather than on
each other's feet may be interpreted as a plea for reusabil-
ity.

The notion of reusability captures the essence Of dis-
tributing capital cost over the set of actual or potential
uses of a capital good. It may be used to justify capital-
intensive activities for physical products of conventional
engineering, conceptual products of information
engineering,. social products such as education, and
abstract products such as concepts and theorems. For
example, the capital cost of education may be justified by
its contribution to the reusability of people, while the
capital cost of research may be justified by the reusability
of research results in improving productivity.

The fundamental economic motivation for the
development of general-purpose computers is the reusa-
bility of computer hardware. Software provides an essen-
tially cheaper and more flexible mechanism than
hardware of realizing a broad spectrum of logical
behaviors on a given physical device. General purpose
computers are a capital-intensive response to the informa-
tion processing needs of society that allow critical com-
puting resources such as the central processing unit to be
reused one million times per second, and less critical
resources such as the computer memory to be reused for a
sequence of jobs with very different behavioral charac-
teristics. Reductions in hardware costs have reduced the
disparity between costs of software and hardware imple-
mentation and have resulted in the proliferation of dedi-
cated computers devoted to single applications. But
software will continue to have the advantage of dynamic
reusability of resources within a single application even
if hardware costs become totally negligible.

There are many synonyms for reusability, including
commonality, portability, abstraction, and generalization.
The development of common programming languages such
as Ada and common families of computers such as the IBM

deSiyA
impltmosta.ton
cloy,-
nice. at

AM Atxmi 661 PL

8 8 C
A 9 R
C A A

A 	8 	it 	8

73

370 and the military computer family [MCF] are capital-
intensive activities that have consumed many thousands
of man years of effort and are expected to have large
economic benefits. Portability allows software written in
one computing system to be reused in other systems.
Abstraction is concerned with capturing the common
(reusable) features of a class of objects, situations or
processes and ignoring their differences. Generalization,
which is closely related to abstraction, extends the
domain of applicability of a concept, situation, or process,
so that it is applicable (reusable) in a broader variety of
situations.

Our definition of capital in terms of reusability is so
broad that it makes almost any activity in computer sci-
ence capital-intensive. But this is not necessarily a flaw
in the definition. It reflects the fact that information is
generally used as a tool to accomplish some larger purpose.
Consumer goods of the information revolution include
newspapers, videogames, and systems such as airplanes
and washing machines in which computers are embedded.
However, computing systems used in program develop-
ment are almost entirely devoted to capital intensive
activities. As society becomes more information intensive
the proportion of resources spent on capital goods is likely
to increase.

Our definition of capital does not distinguish
between public capital goods which are freely available to
all users and private capital goods which are proprietary
or available only under a licensing arrangement. Public
capital goods are more freely available in the software
industry than in conventional engineering industries
because the cost of replicating software products is negli-
gible. This changes the pattern of economic incentives
and may create a discrepancy between the public interest,
which would benefit from free availability of all capital
goods, and the private interest, which can gain a competi-
tive advantage from proprietary capital goods. Thus the
programming language Ada, which was developed by the
Department of Defense as a public capital goohto stimulate
increased productivity in a broadly based user commun-
ity, is viewed with apprehension by some established
software companies because its success could wipe out
their competitive advantage from current proprietary
computer systems. The definition of -capital" in terms of
reusability models the increased productivity resulting
from public capital goods, but not the economics of
private capital goods under -capitalistic" competition.

7. Economic Impact of Ada

Ada was developed in response to the software crisis
of the 1970s to support the design, development, and
enhancement of large, real-time, evolutionary computing
systems. It is a prototypical product of capital-intensive
software technology, requiring ten man-years of elapsed
time and hundreds of man-years of effort to produce and
holding out the promise of great improvements in
software productivity. It involves reusability at several
different levels.

(1) Commonality, which facilitates reusability by a large
user community. It distributes development cost
over a large number of applications, and avoids dupli-
cate expenditures on special-purpose programming
languages and system software.

(2) Portability, which allows system and application
software (written in Ma) to be reused on a variety
of computers. This further distributes development
costs and avoids program duplication.

(3) Modularity, which facilitates the construction of
libraries of reusable software components. Modular
program design is capital-intensive since it increases
expenditures early in the life cycle for the purpose of
later savings. Modularity facilitates maintenance and

enhancement by localizing the effect of program
changes, and allowing existing code to be easily
reused when the code is changed.

(4) Maintainability, which facilitates reusability of
existing software when it needs to be modified. Both
maintenance and enhancement involve relatively
small changes to a large system, and should require a
small effort commensurate with the magnitude of
the changes rather than with the Magnitude of the
system being modified.

(5) Software tools, which extend commonality (reusabil-
ity) from the programming language to the program
support environment. Program support environ-
ments, whether for Ada. Interlisp, or API., require
greater effort to build and result in much greater
benefits than just a language and its compiler. The
term -software tools" consciously suggests parallels
with capital-intensive tools of traditional engineer-
ing.

(13) Methodology, which extends commonality from the
level of system software to the level of concepts and
software practices.

(7) , Education, which contributes to the reusability of
people. Education transfers the stock of knowledge
(conceptual capital) from teachers and textbooks to
the minds of students. It requires reusable text-
books, course materials, and knowledge about pro-
gramming. The stock of (reusable) knowledge in
human minds is the primary capital-intensive start-
ing point of any technology.

The potential benefits of Ada arise from a number of
different kinds of reusability, including reusability of the
language, of programs written in the language, of princi-
ples of program development, and of people whose
knowledge is reusable. Each of these forms of reusability
has generated a large literature both in the context of Ada
and in the larger context of software engineering. Our
purpose here is not to explore the detailed implications of
these forms of reusability but to point out that reusability
is a common principle that may occur in different forms
and contribute in different ways to making software pro-
ducts capital-intensive. The above qualitative examina-
tion of the factors which make Ma capital intensive could
provide a framework for a quantitative cost-benefit
model for capital-intensive software products that com-
plements Boehm's model of the software life cycle.
[Boehm, 1981.]

Ada was developed for the purpose of increasing
software productivity and reliability through federal ini-
tiatives. It is an experiment not only in the development
of a new language and technology but also in the use of
incentive schemes for capital formation. The incentive
structure of the Ada effort appears to have worked well
in the requirements and design phase, and is now being
used in implementation and technology transfer activities.
It has generated considerable derived capital investment in
the private sector. The success of the Ada effort in allow-
ing diverse constituencies to work. together towards a
common goal suggests that public initiatives can play a
major role in making our information environment more
capital-intensive.

Ada started out in 1975 as simply a programming
language, evolved in the late 1970s to include software
tools and program support environments, and has come to
serve as a focus not only for technical but also for social
and educational activities in modernizing software tech-
nology. We shall briefly indicate Ada's technical contri-
bution to interface technology and then review some
non-technical issues required to realize large-scale
changes in technology associated with introducing a new
programming language.

A key feature of Ada is its treatment of module inter-
faces as independent entities that can be separately

74

specified and separately compiled. Interface specifications
are reusable for a variety of different implementations,
including software, hardware, or VLSI implementations,
and provide a basis for a capital-intensive software com-
ponents technology. The interface specification facilities
of Ada are an improvement over those of earlier languages
such as Fortran, Pascal, or PL/I, but still have rough edges
and should be improved in successors to Ada. The fact
that Ada programs will make heavy use of modular inter-
face technology should make the transition from Ada to a
successor easier than that from current languages to Ada.

Ada supports concurrent and real-time programming
through its task facilities. Concurrency may be used to
speed up inherently sequential computations by parallel
execution of independent subcomputations. A more fun-
damental reason for the importance of concurrency is that
banks, ships, and cities are more naturally modelled by
concurrent than sequential processes. Concurrent pro-
gramming languages are intrinsically higher-level than
sequential languages because they avoid the need to
specify the order of execution in cases where this is an
implementation detail. Ada provides logical concurrency
that may be physically realized on a uniprocessing or mul-
tiprocessing computer. Mapping of concurrent processes
onto physical processes is performed by the system rather
than the user.

In order to succeed, a language must be not only
technically adequate, but also accepted and properly used
by the user community. The proper use of Ada requires
new techniques for programming and problem solving
radically different from those used for Fortran and assem-
bly language. An extensive education and technology
transfer program is required to accelerate transition to the
new technology. Techniques of knowledge engineering,
including computer-based teaching, can facilitate the pro-
cess of technology transfer.

Ada is the first language developed by the systematic
use of life cycle technology. Its requirements were
developed in 1975-1978 through a sequence of require-
ments documents culminating in the Steelman require-
ments. Its design phase from 1977 to 1980 resulted in
the preliminary reference manual [Ada, 1982] which is
still being refined with a view to standardization in
1983. The implementation phase started in 1979 and is
projected to be completed in 1984, with implementations
for a variety of computers, including microcomputers.
Implementations will include program support environ-
ments for debugging, testing, and software management
as well as environments for learning Ada that are
integrated with program support environments for using
Ma. The operations and maintenance phase will begin in
1985, and should allow periodic evolutionary enhance-
ment of the language, as well as the possibility of revolu-
tionary transition to a new language.

The life cycle of Ada should include an education
phase and technology transfer phase that runs con-
currently with the traditional requirements, design.
implementation, and operations and maintenance phases,
as illustrated by the following Ada program.

Example 2: Software Life Cycle with Concurrent Activities

procedure LIFE_CYCLE is
task HUMAN RESOURCES; -- task declaration
task body HUMAN RESOURCES is
begin

EDUCATION;
TECHNOLOGY TRANSFER;

end;
begin 	 -- concurrent execution of task

REQUIREMENTS; 	-- with statements of procedure
DESIGN;
IMIPLEMENTATION;
OPERATION AND__MAINTENANCE;

end LIFE__CYCLE;

This program illustrates the use of Ada to specify
concurrent activities that arise in informal discourse - in
this case in the context of the software life cycle. Ada
can be used as a tool for organizing not only programs but
also projects, lectures, and documents, and we shall prob-
ably see the increasing use of Ada by managers to express
organizational structure.

In order to make education and technology transfer
first-class phases of the software life cycle, tools and
management procedures for these life cycle phases must
be developed. It is necessary to identify constituencies to
be educated, develop curricula tailored to each consti-
tuency, and ensure that teaching is properly integrated
with subsequent use of the concepts being taught. Incen-
tives should be heavily used in accelerating the process of
technology transfer. Examples of such incentives are
carrot-and-stick inducements to middle managers to
encourage high-risk retooling for modern technology at
the expense of comfortable but obsolete current practices.
Well-documented case studies tailored to major applica-
tion areas are needed which supplement toy examples of
short courses and textbooks and allow programmers to
learn the new language by speaking it. These issues have
been addressed in a Softech study for the Army [Softech,
1982] and are discussed in [Wegner, 1982a].

8. Maintenance, Enhancement, and System Evolution

In any technology there is a tradeoff between short-
term optimization for a particular product and evolution-
ary flexibility in adapting to change. In industrial tech-
nology the tradeoff is generally in favor of product
optimization. However, software systems must be
designed for evolution to cope with the greater variety of
potential uses, changing environments of use, and a
rapidly changing technology. An evolutionary technol-
ogy is capital-intensive according to our definition, since
evolution requires reuse of present resources in building
future resources. It is also capital-intensive in the intui-
tive sense, since greater expenditures are required up-
front to allow later flexibility.

Complex structures, both natural and social, are gen-
erally the result of evolutionary development rather than
of a single creative act. This is also true of large software
systems constructed by people, whose ability to manage
complexity is very limited. A new programming language
such as Ada evolves from experience in the design and
implementation of previous languages such as Pascal, and
in turn forms a basis for the design of future languages.
Successful programming systems such as UNIX evolved
from small beginnings and have achieved their success by
having a simple core to which facilities can easily be
added. by a wide variety of system programs. Maintenance
and enhancement requires large software systems to be

75

constructed so that modification and evolution can be
accomplished in a time proportional to the magnitude of
the changes rather than the size of the system.

Systems which have the property of being easily
maintained and enhanced when they are large have the
property of being locally modular and of being constructi-
ble in an evolutionary manner from primitive com-
ponents. They can be constructed by incremental "builds"
of subsystems which serve as prototypes in the construc-
tion of larger systems. An adequate solution of the
maintenance and enhancement problem implies evolution-
ary system structure not only for a large system as a
whole but also for its component subsystems. Maintain-
able systems require not only static modularity but also
"dynamic" modularity that facilitates incremental
development, testing, and rapid prototyping. Solution of
the maintenance problem requires an evolutionary life
cycle methodology which allows complex systems to
evolve from a simple core by multiple independent exten-
sions. Failure to find a simple expandable core may result
in system rigidity even if the system has a high degree of
modularity. The additional requirements on modularity
needed to support evolutionary development deserve
further study.

Iterative enhancement [Basili, 1982] is an example of
an evolutionary life cycle approach. It advocates using a
skeletal implementation (rapid prototype) as a starting
point for iterative redesign of what has already been pro-
duced and evolutionary addition of new features until the
system is completed. When the set of tasks to complete a
project can be predicted they can be listed in a project
control list and systematically scheduled. The approach is
useful even when the set of subtasts and the end result
are Incompletely defined. For example the present paper
was developed by iterative enhancement of an incomplete
specification, starting from a brief discussion of the
capital-intensive nature of Ada and growing by iterative
revision and expansion to its present scope and size. The
technique of iterative enhancement was first developed in
the context of software engineering, but may turn out to
be even more pertinent to the writing of papers and
books, where evolution is an inherent part of the process
of creation. Text-editing systems and other computerized
knowledge engineering aids greatly facilitate evolution-
ary development of manuscripts and are likely to have a
profound impact on the writing habits of both technical
and non-technical authors. This paragraph was one of the
later additions during the iterative enhancement process
that led to the present paper.

Lack of evolutionary flexibility contributed to the
failure of technologically advanced countries like Great
Britain in coping with competition of countries whose
industrial development occurred Later in time. It could
similarly lead to dissipation of the current US lead in the
software field to countries like Japan whose software
technology is less dependent on old software systems and
management structures. Inability to adjust to changing
technology was a cause of great pain and social dislocation
in the industrial revolution. Evolutionary flexibility
both for individuals and for the technology as a whole
should be a primary goal of information technology.

The evolution of software systems may be viewed as
a special case of the evolution of organizations with both
human and computer components. There is a considerable
literature on the structure, social dynamics, and adapta-
bility of organizations. At a very general level, Toynbee's
study of the genesis, growth, breakdown, and disintegra-
tion of civilizations is about the failure of civilizations to
adapt to changing environments. [Toynbee, 1947.] The
text "Organizations", which is a source book for Simon's
Nobel-prize winning work on formal models of organiza-
tional behavior, is a good starting point for readers
interested in this area, [March and Simon. 1958.] "Organ-
ization Development" presents an analytical framework
for the development of organizations in terms of flows of
information among their components. [Shein, 1973.]

Holland explores the problem of adaptation for both
natural and artificial systems, emphasizing the response of
such systems to a changing environment. [Holland,
1975.] The similarity of models of large industrial organ-
izations and large computer systems is reflected in the
computer literature in anthropomorphic terminology such
as "actors" and "messages" in the modelling of "societies"
of interacting computer programs. [Hewitt, 1977.]
Milner's Calculus of Communicating Systems is an exam-
ple of a formal (algebraic) model of communicating sys-
tems whose components may be people or computers.
[Milner, 1980.] The study of evolutionary behavior of
mixed man-computer systems, and of interfaces that
allow creativity and growth of people in a computer
environment, is central to the development of a capital-
intensive software technology that combines current effi-
ciency with adaptability to change.

The above discussion suggests a distinction between
"evolution in the large" for very large organizations with
long time horizons measured in decades or centuries, and
"evolution in the small" for smaller (but still large)
organizations and time horizons measured in months or
years. Adaptation to changing technology is concerned
with evolution in the large, while development, mainte-
nance, and enhancement of a particular system is con-
cerned with evolution in the small. Tuning of a system
for a particular set of tasks and time horizons may
increase its cost and reduce its efficiency for narrower
classes of applications and constrain its adaptability for
broader classes of applications.

The problem of evolutionary flexibility arises in its
most acute form in the context of adaptation to a chang-
ing technology. ft is a bottleneck in the adaptation of
embedded systems to changing environments, since
maintenance and enhancement accounts for 807. of total
life cycle costs. Adaptive systems which can acquire and
subsequently use knowledge, such as expert systems or ,
theorem provers, must have databases designed for evolu-
tion, The three examples above are concerned with adap-
tation to different evolutionary goals: adaptation to
changing technology, changing environments and chang-
ing knowledge databases. But in all three cases design for
evolution involves reusability in response to change
Thus evolutionary systems are capital-intensive according
to our definition. Evolution, adaptation and maintainabil-
ity are additional synonyms for reusability.

9. Knowledge Engineering

Knowledge engineering is here defined as "the appli-
cation of systematic techniques to the management and
use of knowledge". It is, in this sense, as old as
knowledge itself. Euclid's Elements is an example of a
magnificent piece of knowledge engineering which pro-
vided a basis for managing geometrical knowledge, while
the classification techniques of Linnaeus are an important
example of knowledge engineering in botany and biology.
Many of the milestones in the development of science are
as important for their contributions to the management of
knowledge as for their contributions to knowledge itself.
Knowledge engineering is capital-intensive in the sense
that reusability is a primary consideration in the develop-
ment of books, expert systems, and other structures for
the management and use of knowledge.

The potential of computers as tools for knowledge
engineering was realized as early as 1945 by Vannevar
Bush, who examined techniques for fundamentally reor-
ganizing knowledge and proposed a device called a memex
for the storage, retrieval, and management of knowledge.
[Bush, 1945.] In the 1960s, Douglas Engelbart proposed a
systematic research program on the use of computer tech-
nology to augment man's intellectual capabilities. [Engel-
bart, 1963.] The personal computer technology of the
1980s may, for the first time, allow us to realize the
pioneering ideas of Bush and Engelbart.

The view that the production of knowledge is an
economic activity governed in part by market forces of
the economy is developed in detail by Machlup in a
comprehensive study of the economics and the substance
of the knowledge explosion. [Machlnp, 1980.]
Knowledge is becoming an increasingly important product
of our economy, as reflected by the size of the education
industry, the growth of the computer industry, and the
fact that the average age when people start contributing
to the economy has increased from the early teens in the
industrial revolution to over 20 for college graduates, and
over 25 for professionals like doctors and lawyers.
Knowledge is a stock of capital goods and its production is
a capital-intensive activity. The growing importance of
the knowledge industry reflects the fact that man is
becoming an increasingly capital-intensive animal

Fourth-generation computers will cause fundamental
changes in our methods of managing, learning, and using
knowledge. New ways of representing and organizing
knowledge to exploit interaction, animation, two amen-
:lanai objects, multiple windows, and other forms of
knowledge presentation will be developed. A more effec-
tive man-computer interface for management of
knowledge will complement artificial intelligence tech-
niques for knowledge acquisition and problem solving by
computers and result in an environment that integrates
human and computational management of knowledge. It
is predicted that, by the 1990s, knowledge engineering
will be as important , a subdiscipline of computer sciences
as software engineering is today. Some of the characteris-
tics of the emerging field of (computer-based) knowledge
engineering will be outlined below.

Knowledge engineering depends on the representa-
tion of knowledge by information structures inside a
computer. The principle that knowledge as well as
numbers can be represented in a computer was recognized
right at the outset and led to work in artificial intelli-
gence, natural language translation, and information
retrieval in the 1950s. However, computer-based
knowledge engineering could not reach critical mass
before the 1980s because of inadequate technology.
Cheap powerful graphics-based personal computers which
may be carried in a briefcase or a pocketbook and used on
a day-by-day basis as an extension of the human intellect
will entirely change the relation between man and com-
puters.

Knowledge engineering bears the same relation to the
management of knowledge that software engineering
bears to the management of software. An item of
knowledge, like an algorithm, is an inherently conceptual
object that can be given a concrete representation by an
information structure and manipulated, "used" or
displayed by a computer. The creation of computerized
knowledge structures representing substantial bodies of
knowledge requires techniques for the management of
information complexity similar to those required for a
large program. The common ancestry of Software- and
knowledge engineering as branches of information
engineering is reflected in the sharing of certain metho-
dological principles. The computer revolution is likely to
spawn many different kinds of information engineering
just as the industrial revolution generated many different
kinds of "physical" engineering disciplines. They will
share with software and knowledge engineering the idea
of representing a class of conceptual objects by concrete
information structures and the need to manage complex-
ity when structures become large and may evolve over
time.

The term ''knowledge engineering" was introduced
by Feigenbaum in the context of artificial intelligence and
defined as the art of bringing the tools and principles of
artificial intelligence to bear on application problems
requiring the knowledge of experts for their solution".
[Feigenbaum, 1977.] This definition views knowledge
engineering as the art of representing knowledge so that
it can be used by computers to perform intelligent tasks.

The present view of knowledge engineering is
broader, since it includes the building of knowledge
structures to aid human understanding. It is closer to that
of Stefik and Conway [SC, 1982], who examine the role
of knowledge engineering in a rapidly evolving
knowledge domain (VLSI), discuss writing of a text for a
rapidly evolving knowledge domain (the Mead-Conway
VLSI book [MC, 1980]), and consider the application of
knowledge engineering techniques by practitioners to the
simplification and refinement of their knowledge.

Knowledge engineering for human understanding is
motivated by a paradigm different from that which
motivates the development of expert systems. Its goal is
to amplify human intelligence rather than to substitute
computer intelligence for human intelligence. Its metho-
dology involves educational technology, cognitive science,
and human-factors research. The technology of managing
the modular presentation of complex knowledge struc-
tures has some of the flavor of software engineering but
requires consideration of human factors associated with
animation, user interaction, multiple windows, and other
techniques for increasing the effectiveness of man-
machine communication.

Knowledge representations should facilitate display
for the .benefit of users, including multiple views and
other forms of redundancy, rather than efficiency and
precision for the benefit of computers. Whereas
knowledge structures for computer understanding must
be very detailed and precise, knowledge structures for
human understanding are concerned, not with the precise
specification of a computational task, but with organising
knowledge for human readers who possess considerable
contextual understanding and are capable of conceptualiz-
ing at a level far above that of the computer.

The restructuring of existing knowledge so that it is
more accessible to humans involves more than putting
existing knowledge repositories such as the Library of
Congress on computers and accessing them through infor-
mation retrieval systems. It involves restructuring exist-
ing knowledge so that it can be flexibly presented in dif-
ferent for:mats for different contexts of use. The technol-
ogy for such restructuring is not well understood, but its
nature can be illustrated by. considering recent develop-
ments in computerized printing technology and
computer-based learning.

Computers are revolutionizing printing technology to
allow high-quality text to be quickly and cheaply pro-
duced. Word-processing systems provide authors with
:much greater control over the production, layout, and
modification of text. Soon computers will be used not
only for writing and printing books but also for reading
them. Book-size computers with flat panel displays will
make "electronic books" a reality. The greater bandwidth
of man-machine interfaces will qualitatively change the
nature of man-machine communication, and will make
communication of knowledge by interacting with com-
puter books more effective than conventional communi-
cation by reading hard-copy books.

Whereas hard-copy books consist of a linear sequence
of pages, materials intended to be read on a computer may
have a graph structure with different entry points for
readers with different backgrounds. Multiple windows
allow the reader to pursue several lines of thought simul-
taneously or view a given object at several levels of
detail. Interactive responses by the user can be used by
the computer to tailor the mode of graph traversal to the
interests and skill level of the student. Each node of the
graph structure can include dynamically animated pic-
tures, texts, and programs. For example, the mathemati-
cian may wish to animate the development of a proof,
while the computer scientist may wish to animate the
process of program development and program execution.

An electronic book is a family of different hard-copy
books that could be obtained by printing out nodes of the
graph structure in a particular linear order for particular

77

kinds of students. It is conjectured that flexibility in
adapting the pace and order of presentation of information
to the student, combined with the power of animation
(possibly augmented by voice input and output) can. if
properly used, increase enormously the student's capacity
to absorb and understand both elementary and advanced
knowledge.

"Knowledge graphs" that may be entered at different
points and traversed in different ways represent a para-
digm for knowledge engineering that imposes a modular,
interactive discipline on both creators (authors) and users
(students). They are a basic representation not only for
electronic books, but also for computer games such as
Adventure which derive their fascination from the fact
that they allow players to explore new graph-structured
worlds. We do not yet have much experience with build-
ing large knowledge graphs since the hardware technol-
ogy to support effective use of such graphs is only just
being developed. Some features of such graphs are briefly
described below.

Knowledge graphs should have a domain-
independent interconnection structure that facilitates
several modes of graph traversal such as browsing,
retrieval, learning, reference, authoring, etc. Each node
will have a domain-dependent internal structure contain-
ing objects such as programs when representing
knowledge about programming, and proofs when
representing knowledge about mathematics. Creators and
users of a graph will have available to them a domain-
independent set of operations for navigating in the graph
and domain-dependent operations for manipulating
objects in each domain. The Zog system is probably the
best known current example of a general-purpose system
of this kind. [EMN, 1981.]

The DOD Software Initiative is concerned with ways
of improving software productivity and reliability so that
the United States can maintain its competitive edge in the
software field and close the widening manpower gap
between the demand and supply of qualified software
personnel. It advocates a three-pronged strategy for
increasing productivity:

(1) Education: Improve human resources by increasing
the quality and number of experts.

(2) Tools: Improve the power of project management
tools, application-independent program support tools,
and application-specific tools (such as testers and
simulators).

(3) Technology Transfer: Increase the. use of tools by
improving business practices and user-friendliness of
tools and by increasing the level of integration and
automation.

This strategy recognizes that the problems of increas-
ing productivity and using new technology effectively
are as much due to educational and social as to technical
factors. The United States excels in volume and quality of
its research and development, but is sometimes slow in
harnessing the resalts.for production purposes. Mechan-
isms which speed up the process of technology transfer
and allow new technologies to be used productively will
have an enormous payoff, and merit expenditures hun-
dreds of times greater than current levels. The time for
new products and technologies to make the transition
from research to production averages fifteen years.
Acceleration of the transition to modern software tech-
nology by a year or qualitative improvement in its use has
enormous leverage, since US software expenditures are
expected to exceed 40 billion dollars per year by 1990. If
software productivity could be improved by even 1%
through systematic education and technology transfer
policies it would be worth 400 million dollars per year.

An appendix on "visions of the future" includes an
"evolutionary scenario" which explores improvements in
productivity by consolidation of tools and techniques
within the traditional life cycle paradigm, and a "revolu-
tionary scenario" which explores improvements in pro-
ductivity through a radically new paradigm based on very
high-level problem specifications and "broad spectrum
languages" which allow users to perform problem specifi- -

 cation, maintenance, and enhancement in terms of very
high-level abstractions, and provide automated verifiable
transformations into lower-Level abstractions. The evolu-
tionary scenario is predicted to increase productivity by a
factor of two by 1985 and by a factor of four by 1990,
and would be just sufficient to close the projected man-
power gap. The revolutionary scenario has higher risk
but could, if successful, improve productivity by consid-
erably more than a factor of four.

Since software technology is pivotal in maintaining
both military and economic competitiveness, we should
simultaneously explore a variety of future technological
scenarios. Our course of action in the next decade is
likely to be somewhere between the evolutionary and
revolutionary scenarios. New computer architectures.
better interface technology, and new approaches to the
management and engineering of knowledge are likely to
cause radical changes in the structure and economics of
the software life cycle. With proper integration of
technical, educational, and social factors the new technol-
ogy could increase productivity by several orders of mag-
nitude. But the introduction of very high level abstrac-
tions, automated verification, natural language under-
standing, and intelligent adaptation is likely to be slow
and difficult. Increases in productivity are likely to
result from integration of current techniques rather than
from automating fundamentally new forms of intelligent
behavior.

10. Conclusion

Software technology is becoming a key factor in
maintaining industrial (anti military) competitiveness.
The development of capital-intensive software technology
is too important to be left entirely to chance or free enter-
prise. It requires coordinated national (and possibly inter-
national) plans and incentive schemes. The development
of long range software technology plans was pioneered by
the Japanese fifth generation computer proposal - a ten
year university-industry effort for the development of an
integrated computing system that combines advanced
interface technology and knowledge engineering tech-
niques. The United States has responded with the DOD
software technology initiative [Software, 1982]. Great
Britain and the European Economic Community have also
produced long-range software plans in 1982.

The significance of these proposals lies not so much
in their detailed recommendations but in the recognition
that the post-industrial information age will require fun-
damentally new ways of doing business and radical tech-
nological adjustments. Further progress in making
software cheaper and more reliable is likely to come from
managerial rather than technological breakthroughs. The
Japanese may capture a disproportionate share of the com-
puter market not because of superior technology but
because of more flexible management techniques that
allow the remits of mainstream sof 1 ware technology to be
harnessed mere quickly and effectively.

The design of assembly lines for automobile produc-
tion by Hen ry Ford represented a major breakthrough in
industrial technology. What is needed is a comparable
management breakthrough in software technology. The
fact that specific technical features of the Japanese propo-
sal (such as the use of Prolog as a system programming
language) are controversial is of minor importance com-
pared with the fact that the Japanese have a more flexible
management structure that can adapt more easily to
changing management requirement::.

78

The role of testing in the emerging technology of the
1990s will differ substantially from its current role both
because of different life-cycle methodologies and because
of new tools for management, testing, and validation.
The nature of these differences cannot be entirely
predicted but are a fruitful topic for discussion and
research.

11. References

[Ada, 1982] Ada Reference Manual, U.S. Department of
Defense, July 1980. Revised Version, Summer 1982.

[Basil, 1975] Baal Victor R. and Turner Albert J., Itera-
tive Enhancement, A Practical Technique for Software
Development. IEEE Transactions in Software Engineering,
December 1975 .

[Boehm, 1981] Boehm Barry, Software Engineering
Economics, Prentice Hall, 1981.

[Bush 1945] Bush Vannevar, As We May Think, Atlantic
Monthly, July 1945.
[EB, 1968] Encyclopaedia Britannica, 1968 Edition.

[Engelbart 1963] A Conceptual Framework the Augmenta-
tion of Man's Intellect, in Vistas in Information Handling,
Vol 1, ed Howerton and Weeks, Spartan, 1963.
[Feigenbaum, 1977] Feigenbaum Edward A., Case Studies
in Knowledge Engineering, Proc. Fifth Int. Conf. on Artif-
icial Intelligence, August 1977.
[Fifth 1981] Preliminary Report on Study and Research
on Fifth Generation Computers 1979-1980, Fall 1981,
Japanese Information Processing Development Center.

[Good, 1979] Goodenough John, A Survey of Testing
Issues, in Research Directions in Software Technology, ed
Wegner, MIT Press, 1979.

[Hewitt, 1977] Hewitt Carl, Viewing Control Structures
as Patterns of Passing Messages, Artificial Intelligence,
June 1977.
[Holland, 1975] Holland John, Adaptation in Natural and
Artificial Systems, An Introductory Analysis with Appli-
cations to Biology, Control, and Artificial Intelligence.
The University of Michigan Press, 1975.

[Machlup, 1980] Machlup Fritz, Knowledge, Its Creation,
Distribution, and Economic Significance, First of Several
Volumes, Princeton University Press, 1980.

[March, 1958] March James G., and Simon Herbert A.,
Organizations, Wiley 1958.

[MC 1980] Mead Carver and Conway Lynn, Introduction
to VLSI Systems, Addison Wesley, 1980.

[MCF] Military Computer Family Report

[Milner, 1980] Milner Robin, A Calculus of Communicat-
ing Systems, Lecture Notes in Computer Science #92,
Springer Verlag, 1980.

IRMN, 1981] Robertson G, McCracken D, and Newell A,
The Zog Approach to Man-Machine Communication, Inter-
national Journal of Man-Machine Studies, 1981

[Schein, 1973] Schein Edgar H. et al, Organizational
Development, Addison Wesley 1973.

[Simula, 1972] Dahl 0. J., and Hoare C. A. R., Hierarchical
Program Structures, in Structured Programming,
Academic Press 1972.

[SC 1982] Stefik Mark and Conway Lynn, Towards the
Principled Engineering of Knowledge, Xerox PARC TR
KB-VLSI-82-18, April 1982.

[Software, 1982] DOD Software Technology Initiative,
October 1982.

[Softech, 1982] Ma Software Design Methods Formula-
tion, Softech Report in Three Volumes, Report for Army
Contract, 1982.

[Toynbee, 1947] Toynbee Arnold J., The Study of History,
Oxford. University Press, 1947.

[Wegner, 1982a] Wegner P., Ada Education and Technol-
ogy Transfer Activities, Ada Letters, August 1982. Also
available as TR CS 82-20, Brown University.

[Wegner, 1982b] Wegner P., Towards Capital Intensive
Software Technologies, TR CS-82-23, Brown University.

ABOUT THE AUTHOR

Peter Wegner was educated in England and taught at the London School of
Economics, Penn State, and Cornell prior to his present position at Brown Univer-
sity. He is the author of six books, including the firSt book on Ada (Prentice Hall,
1980) and an edited book on "Research Directions in Software Technology" (MIT
Press, 1980). His current Interests include programming language design, pro-
gramming methodology, and the use of graphics-based personal computers for
education, technology transfer, and knowledge engineering.

79

IMPACT OF NEW HARDWARE TECHNOLOGY ON SOFTWARE DEVELOPMENT

Dr. D.A. Giese

W.P. Jones, Jr.

TRW Electronic Systems Group

ABSTRACT

This paper summarizes recent experience in software development efforts for systems using new
hardware technology. In particular, the impact of new hardware technology on real-time signal
processing applications utilizing embedded high speed programmable signal processors is reviewed.
The concurrent design and development of hardware and software presents additional problems to
software development and testing. Potential solutions to deal with these problems are discussed
briefly. Finally, areas for further investigation are recommended.

INTRODUCTION

Recent advances in hardware technology are
providing significant increases in system per-
formance. 	However, these new capabilities will
significantly impact all aspects of the software
development process from design through integra-
tion and test. This impact has been felt most
dramatically in advanced systems which require
concurrent hardware and software development
efforts.

Ultimately, advanced hardware technology
provides the means to improve the software
development process. The greatest benefit is the
reduction in program camplexity and improvement in
reliability by eliminating the need for a high
degree of optimization. Programming efforts will
be reduced with rich instruction repertoires that
include high level functions tailored to an appli-
cation. Advanced hardware technology can also
provide sophisticated built-in test capabilities
that can aid in system/software integration and
test activities. In the future, new processing
architectures such as high level language machines
and high performance data base machines will
reduce the programming effort as well as sensitiv-
ities to hardware implementation details.

In the near term, software engineers face 	•
considerable problems in exploiting new hardware
technology since advances in this area have far
outpaced software technology. Typical of the
problems which must be overcome are:

• A "hardware-first" design philosophy is
no longer feasible. Considerations for
programmability and software testing must
be made early in design cycle.

• Hardware changes/modifications cause the
support software environment to be un-
stable. Software engineers must find
ways of coping with this situation.

• Hardware/software integration and testing
will uncover many errors due to lack of
hardware maturity. Better analysis tools
are needed to isolate hardware/software
problems.

This paper summarizes recent experience in
the development of real time signal processing
software for systems using advanced technology.

Technology, in this context, includes both
advanced processor architectures and very large
scale integrated (VLSI) circuits. In the course
of recent software development efforts for high
speed digital processors, several techniques have
been identified which provide a means to effec-
tively use and cope with new hardware technology
insertions. These techniques are briefly discuss-
ed in the following sections.

MULTI-LEVEL SIMULATION

With target hardware unavailable at the start
of software development, multi-level simulations can
provide valuable design information, as well as a
development base. Simulation levels of particular
interest are:

• Functional or algorithmic

• Processor Instruction Set Architecture
(ISA)

The functional simulation models the system
processing without concern for the implementation •
details. It is primarily used as an algorithm test
bed. Through the functional simulation, valuable
information can also be obtained with regards to
candidate hardware modules to satisfy processing
demands, preliminary performance estimates and
suitabile test cases for system level testing. The
Instruction Set Architecture (ISA) simulation
models the hardware operation with proper timing
and functionality. 	It is essentially a virtual
machine hosted on a general purpose processor, such
as a VAX. The results from this simulation should
faithfully reproduce the results on the target
hardware at the bit level. The ISA simulation
provides a means of developing and testing soft-
ware before the target hardware is available. The
ISA simulator should be table driven in some
fashion to allow retargeting for different hardware
configurations as well as adapting to hardware
modifications during development. The ISA simulat-
or development represents a critical schedule item
since it requires detailed hardware design informa-
tion, and must be available for software develop-
ment. Ideally, the fundamental properties of the
hardware architecture would be described in a
Hardware Description Language (HDL) and could be
used with other support tools.

80

RETARGETABLE SUPPORT TOOLS

Current software tools for high speed signal
processors are relatively primitive, with most
support being for machine/assembly language pro-
gramming. Furthermore, the existing support tools
are specialized for each processor.

To fully exploit advanced hardware capabil-
ities, a complete set of software development
tools is needed', allof which should be table
driven as previously discussed. In particular,
retargetable HOL compilers are of prime importance
However, for a retargetable compiler for signal
processors to be feasible, the possible hardware
architectures must be restricted. Even with
architecture restrictions, there would be substan-
tial configuration and implementation freedom
which encompasses a great many of signal process-
ors in existence today. Further study in this
area can have great leverage on system software
development costs.

A retargetable HOL compiler would have the
following components:

• Syntax, semantic analysis

• Functional decomposition (high level
functions into processing primitives
realizable in hardware)

• Resource allocation

• Code generation

Each component becomes successfully more process-
or dependent.

Other hardware dependent support tools in a
signal processing software development environ-
ment include, but are not limited to.

• Table driven assemblers

• Graphical coding support

• Timing analyzer

• Symbolic debugger

• Test instrumentation driver

TEST INSTRUMENTATION

High speed signal processors (using clock
rates up to 100 MHz) provide very limited control
and visibility for integration testing. This
phase of testing requires high speed test
instrumentation, physically located with/or in
the target processors. Only in this manner can
the necessary debugging capabilities (i.e. step,
examine, halt on condition, etc.) be provided.
Even with this test equipment. the architecture
of the processor may mask operations of interest
in testing. This problem is most evident in
microprogrammed processors which are heavily
pipelined at the lowest level. The only effec-
tive way to overcome this problem is to include
testability (for development purposes) as a
design requirement.

Efficient testing of high speed signal pro-
cessors will require hardware resources. This
may take the form of advanced memory architectures
and associated software that allow data element
tracing through the processing sequence and error

trapping. Such a capability would be useful for
integration tests to investigate data sensitiv-
ities.

SUMMARY

This paper has presented a brief overview
of the impact of new hardware technology on
software development and testing. Current practice
for dealing with the associated problems have been
outlines. From this general discussion, it is
possible to identify several areas for further
work:

• Guidelines for better hardware/software
coordination

• Retargetable software support tools

• Programmability guidelines for signal
processors

• Real time software testing concepts

• Standard for high speed test instrumenta-
tion.

ABOUT THE AUTHORS

Douglas A. Giese, Ph.D. is the manager of the
Digital Systems Staff, within the Systems Develop-
ment Organization of TRW, San Diego. The Digital
Systems Staff performs digital systems engineering
for signal processing systems, primarily centered
around Electronic Warfare applications. Areas of
interest include algorithm development, distribut-
ed processing and systems support workbenches.
Doug received his Ph.D.in E.E. from Vanderbilt
University. Since joining TRW, he has been in-
volved with LANDSAT image processing, pattern
recognition and signal processing projects. He
is currently the manager for the VHSIC EW Brass-
board software/algorithm definition work package,
and for a graphical signal processor coding tech-
nique.

Mr. William P. Jones, Jr. is currently manager
of the Systems Development Organization in the
Military Systems Operations of TRW, located in
San Oiego, California. This organization is in-
volved with system/software ievelopments for
advanced military applications. He holds a
Master's degree from Purdue University in Electric-
al Engineering. Since joining TRW, he has been
involved with several signal processing projects,
such as Manual Morse demodulation, software tele-
phone modem for secure voice terminals and auto-
matic signal recognition. In addition, he was the
system engineer for TRW's VHSIC Phase III Software
Architecture Study which resulted in a specifica-
tion for a software support system for VHSIC Signal
Processors. Most recently he has been involved
in the TRW VHSIC Program, in particular the
Electronic Warfare Brassboard Development.

81

IMPACT OF NEW

HARDWARE TECHNOLOGY

D.A. GIESE

W.P. JONES,JR.

FEBRUARY 1983

SOFTWARE DEVELOPMENT AND TESTING MUST

ACCOMMODATE NEW HARDWARE TECHNOLOGY INSERTIONS

INTRODUCTION

SIMULATION

DEVELOPMENT TOOLS

INTEGRATION AND TEST FACILITIES

CONCLUSION

THIS PRESENTATI • N
TYPE OF SOFTWARE DEVELOPMENT

• REAL TIME SIGNAL PROCESSING APPLICATIONS

• SE OF HIGH SPEED PROGRA'.111ABLE SIGNAL PROCES`:_OR 	'HIC.10PS

• CONCURRENT HARM‘ARE AND SOFTY ARE DESIGN LiFoRis

• HARDWARE TECHNOLOGY INCLUDES

• PROCESSOR ARCHITECTURES

• CHIP DESIGNS

CO

ADVANCED HARDWARE TECHNOLOGY WILL SIGNIFICANTLY
IMPROVE OVERALL SYSTEM PERFORMANCE

• IMPROVE SYSTEM PERFORMANCE (I.E. THROUGHPUT)

• REDUCE SOFTWARE COMPLEXITY

HIGH LEVEL FUNCTIONS IN HARDWARE

• REDUCE PROGRAMMING EFFORTS

RICH INSTRUCTION REPERTOIRE

SUFFICIENT PROCESSING RESOURCES

• IMPROVE RELIABILITY AND FAULT TOLERANCE

BUILT IN DIAGNOSTICS, ETC .

• REDUCE OVERALL SYSTEM LIFE CYCLE COSTS

PROVIDE GROWTH CAPABILITY

IMPROVE MAINTENANCE FEATURES

SOFTWARE MATURITY CLOSELY LINKED
TO HARDWARE MATURITY

• TOP DOWN DESIGN METHODOLOGY IS CRITICAL

- "HARDWARE FIRST" DESIGN PHILOSOPHY NOT ADEQUATE

- HARDWARE/SOFTWARE CANNOT BE PROCURRED INDEPENDENTLY
THEN INTEGRATED

• CONCURRENT SOFTWARE/HARDWARE DEVELOPMENT IS RISKY

- SOFTWARE DESIGN REQUIRES HARDWARE CHARACTERISTICS
EARLY IN DESIGN PHASE

- SUPPORT TOOL DEVELOPMENT LAGS HARDWARE DEVELOPMENT

- TEST REPRODUCIBILITY ADVERSELY AFFECTED BY HARDWARE
EVOLUTION

• SOFTWARE FIXES CANNOT SOLVE HARDWARE DEFICIEt!CIES

CLOSE COORDINATION BETWEEN HARDWARE
AND SOFTWARE IS ESSENTIAL

V
 INTEGRATED

SYSTEM
TESTS

'

SYSTEM
REQUIREMENTS

SOFTWARE
REQUIREMENTS

HARDWARE
REQUIREMENTS

HARDWARE SUPPORT TOOLS

SOFTWARE SUPPORT TOOLS

INTEGRATION
AND TEST

FABRICATION

DETAILED
DESIGN p.

PRELIMINARY
DESIGN

	•

PRELIMINARY
DESIGN

I
I

DETAILED
DESIGN

CODING

TESTING

HARDWARE/SOFTWARE
INTERACTION

• DESIGN EFFORTS MUST BE PROPERLY
PHASED

• HARDWARE DEFINITION REQUIRED EARLY
FOR SOFTWARE SUPPORT TOOLS

• HARDWARE MODS OFTEN CAUSE
COSTLY ITERATIONS IN SOFTWARE
DEVELOPMENT.

NEW HARDWARE TECHNOLOGY WILL IMPACT ALL
PHASES OF SOFTWARE DEVELOPMENT

,

PHASE MAJOR IMPACT DEVELOPMENT NEED

REQUIREMENTS ANALYSIS

• ALGORITHM DEFINITION TO TAKE
ADVANTAGE OF HARDWARE
CAPABILITIES

• FLEXIBLE SIMULATION TOOLS

- 	FUNCTIONAL

• NEW DEVELOPMENT/TEST TOOLS MUST - 	SYSTEM PERFORMANCE

BE SPECIFIED EARLY

• ABANDON "HARDWARE FIRST"
APPROACH

• NEW COMPUTER ARCHITECTURES
DESIGN ANALYSIS - 	IMPROVE HW/SW COORDINATION

• NEED FOR EARLY TOOL DEVELOPMENT
• TABLE DRIVEN SUPPORT TOOLS

FOR DIFFERENT ARCHITECTURES

• MORE SOPHISTICATED HARDWARE
CAPABILITIES • HOL COMPILERS

CODING AND ANALYSIS
• TIMING CONSTRAINTS FOR MAXIMUM • RESOURCE MANAGEMENT TOOLS

EFFICIENCY

• HARDWARE NOT GENERALLY/ AVAILABLE
• ISA SIMULATORS - TABLE DRIVEN

MODULE TESTING
•

FOR SOFTWARE TESTING

LARGE VOLUMES OF DATA REQUIRED TO • TEST DRIVERS
FULLY EXERCISE

i

• VERY HIGH SPEED LOGIC MAKES DEBUG • SOPHISTICATED INSTRUMENTATION

INTEGRATION TESTING
DIFFICULT WITH HARDWARE FOR TEST VISIBILITY

• LARGE VOLUME OF DATA ASSOCIATED • DATA GENERATION/REDUCTION
WITH REAL TIME SOFTWARE TESTING TECHNIQUES

MULTI-LEVEL SIMULATION IS NECESSARY
WITH NEW HARDWARE TECHNOLOGY

DETAILED
DESIGN

SYSTEM
REQUIREMENTS

HARDWARE/
SOFTWARE
REQUIREMENTS

PRELIMINARY
DESIGN

	1 	
APPLICABLE TO BOTH
HARDWARE AND SOFTWARE
DEVELOPMENTS

BUILD

MODULE
TEST

INTEGRATION
AND TEST I FUNCTIONAL SIMULATION I

I SYSTEM LEVEL SIMULATION 1

VALIDATION
TEST

I 	 ISA SIMULATION 	I

I
	

SYSTEM TEST DRIVER
	

1

FUNCTIONAL SIMULATIONS ARE INSTRUMENTAL
IN SYSTEM LEVEL TRADE STUDIES

UTILITY

SYSTEM
REQUIREMENTS

• ALGORITHM DESIGN EVALUATION

• SYSTEM PERFORMANCE
ESTIMATES

• IDENTIFY CANDIDATE HARDWARE
MODL LES

ALLOCATION

FUNCTIONAL
DECOMPOSITION

REQUIREMENTS
VERIFICATION

FUNCTIONAL
SIMULATION

HARDWARE
DESIGN

1 	
•

SOFTWARE
DESIGN

ALGOR ITHM
DESIGN

A

TECHNOLOGY
IMPACT

Of INSTRUCTION
INTERPRETER

 MACRO
MICRO

1

CHECKPOINT
FILE

, 	CHECKPOINT
FUNCTION

0.1
PROGRAM
LOADER

VIRTUAL
PROCESSOR
MODEL OUTPUT

OUTPUT
FILE

ISA SIMULATION MUST BE RECONFIGURABLE
FOR DIFFERENT PROCESSORS

SIMULATOR
EXECUTIVE

OF DEVELOPING SOFTWARE SUPPORT TOOLS

• SUPPORT TOOLS AFFECTED BY 	 • MUST BE ABLE TO RETARGET
HARDWARE • SUPPORT TOOLS

• HARDWARE AFCHITECTURES MUST
LE RESTRIC1E.) FOR THIS TO BE
FEASIBLE

• NECESSARY HARDWARE TABLES
SHOULD BE GENERATED USING
HARDWARE DESCRIPTION LANGUAGE

• RETARGETABLE CODE GENERATORS
ARE BEING INVESTIGATED - MORE
NEEDED

HOL COMPILER

ASSEMBLER

CRAPHICAL CODING

TIMING ANALYZER

SYMBOLIC DEBUGGER

SYSTEM SIMULATOR

ISA SIMULATOR

TEST INSTRUMENTATION

RESOURCE MANAGEMENT TOOLS WILL BE
NEEDED TO COPE WITH INCREASED

HARDWARE CAPABILITIES

GRAPHICAL CODING'

TIME 	 N I 	N+1 	I N+2 	I 	N+3 	I 	Nol

• RESOURCE CONFLICTS AUTOMATICALLY
DETECTED

• INTERFACE DIRECTLY TO ASSEMBLER/SIMULATOR

• MODULE TESTING CAN BE PERFORMED IN THIS
FORMAT

• SUCH TOOLS REPRESENT INTERIM

SOLUTION TO .PROBLEM

- HOL COMPILER FOR SIGNAL
PROCESSOR IS ULTIMATE
SOLUTION

• TIMING CONSIDERATIONS CRITICAL

FOR HIGH PERFORMANCE APPLICATIONS

• DIFFICULT TO FULLY UTILIZE HARD-

WARE RESOURCES WITHOUT SOPHISTI-
CATED SUPPORT TOOLS

EX. OVER 500 REGISTERS ACCESSIBLE
IN SIGNAL PROCESSOR

• TOOL SWILL IMPROVE CODE PREPARA-

TION AND MODULE TESTING

CONSTRUCT
DICONIP
L INURE

LOGICAL
CONTROL
Fitt

I ITT /ME
FILE

RESOURCE
ALLOCA TOR

INCLUDES
DATA
ELM
ANAL ISIS

I 	ENRON
 PSG

I KWIC
MAP I 	PI C IICKOCIE

• MAW
IEEE

NosmacT
SIAM

EPEE

I ERROR
PSI

SPOOL
TABLE

Rlst

1 —

COmPILER
FRONT

ENO
EVICT IOTLAL
[(COMPOSER AM

soma
2ZJ 	 ream*
OD

[ERROR
166

SYMBOL
TAIL

ASS TIUICT
SENTAI

TINE

I LOGICAL I
 EUNC T ION

FILE

•

L 	

NOW
CORM
Fitt

RETARGETABLE COMPLIER USES MANY

HARDWARE DESCRIPTION FILES

IALLOCAIIONI
CONSTIULIVIT

DENAMIE DATA SASE CNENTIO
MAINE EACH COMPILATION

INITIAL IZED EMI SYSTEM
BOWE 1 Ell

HARDWARE RESOURCES MUST BE COMMITTED

FOR EFFECIVE INTEGRATION TESTING

• TARGET HARDWARE TESTING WILL ALWAYS UNCOVER NEW PROBLEMS

• REAL TIME APPLICATIONS REQUIRE LARGE VOLUMES OF DATA

- DATA ANALYZER

- STRESS TESTS

• TEST CASES SHOULD BE IDENTICAL TO SIMULATION TESTING
IF FEASIBLE

• IDENTICAL USER INTERFACE FOR SIMULATION AND HARDWARE
DEBUG FACILITIES REDUCE TRAINING

• DEDICATED HARDWARE RESOURCES CAN EASE TESTING PROBLEM

EX. 	DATA TRACEABILITY

DATA 	I ROUTINE TRACE 	I 	STATE 1

	 HIGH-SPEED
IA INSTRUMENTATION

USER
INTERFACE

DEBUG
FACILITY

CLOCK =25-50 MHz

TEST CONTROL
AND EVALUATION

IN PUT /OUTPUT
INTERFACE

SIGNAL
PROCESSOR
HARDWARE

L.....B U ILT- IN TEST

TEST DATA
GENERATION

DATA
PROCESSING

TEST INSTRUMENTATION PROVIDES VISIBILITY NECESSARY
FOR INTEGRATED SYSTEM TESTS

TEST COMPUTER

ISSUES

• HARDWARE FEATURES TO
SUPPORT TESTING

• STANDARDS FOR TEST SETS

• COMMON USER INTERFACE

THERE ARE MANY AREAS FOR FURTHER INVESTIGATION

• GUIDELINES FOR BETTER HARDWARE/SOFTWARE COORDINATION
IN NEW SYSTEM DEVELOPMENTS

• RETARGETABLE DEVELOPMENT TOOLS

- PARTICULARLY HOL COMPILERS

• EXPLOIT SYNERGISM BETWEEN SYSTEM MAINTENANCE REQUIREMENTS
AND TEST FEATURES

PROGRAMMABILITY GUIDELINES FOR NEW SIGNAL PROCESSORS

• STANDARD ISA DEFINITION FOR SIGNAL PROCESSORS

• REAL TIME SOFTWARE TESTING CONCEPTS

• STANDARD FOR TEST INSTRUMENTATION

NEW SOFTWARE DEVELOPMENT CONCEPTS NEEDED
TO EXPLOIT HARDWARE TECHNOLOGY

• ADVANCED TECHNOLOGY HAS POTENTIAL TO
IMPROVE SOFTWARE DEVELOPMENT

• CONCURRENT HARDWARE DESIGN ADDS SIGNIFICANT RISK TO
SOFTWARE DEVELOPMENT

• SIMULATION ALLOWS SYSTEM/SOFTY/ARE TESTING WITHOUT
HARDWARE AVAILABLE

• HIGH EFFICIENCY RETARGETABLE HO! COMPILERS WILL REDUCE
SOFTWARE SENSITIVITY TO HARDWARE

• STANDARDS FOR SIGNAL PROCESSORS MUST BE CAREFULLY
EVALUATED

- PERFORMANCE LIMITATIONS

• TESTING MUST BE AN INTEGRAL PART OF DESIGN PROCESS

SOFTWARE TESTING STANDARDS: POLICY AND APPLICATION

Marilyn J. Stewart
Director, Software Evaluation

Booz, Allen 4 Hamilton
Bethesda, Maryland

ABSTRACT

This paper addresses seven major problems encountered in software testing and discusses
their relationship to current and planned software testing standards. Several of these
problems have their genesis in that they are not addressed in established software testing
standards, while other problems stem from variations among the software testing standards of
each military service. A new tri-service software management policy and standard, developed
by the Joint Logistics Commanders, will provide a unified approach and correct several
shortfalls of the existing standards. Further improvements will be needed to increase our
understanding of how to plan and manage an effective software test program.

INTRODOCT/ON

The purpose of this paper is to discuss
Government standards for software testing.
Government standards exist in two forms,
policy and compliance documents. Policy
consists of regulations or instructions
directing a Government project manager to
conduct an activity, such as software testing,
in accordance with an established approach.
Policy cannot be referenced in a contract and

does not directly govern a contractor's
activities or approach, but rather serves as
guidance to the Government project manager in
managing a contractor. On the other hand,
compliance documents are intended to he
incorporated into a contract by reference,
thereby governing the contractor directly.
Compliance documents, such as Government
standards and specifications, serve as the
usual mechanism for mandating software
development activities, documentation
approaches, and other software related issues.

In addressing the topic of software
testing standards, several aspects of these
standards could be considered. It would be
useful to know what software testing standards
exist and their relationship to software
testing approaches currently practiced by the
DoD Services and other organizations.
Although there is a definate need for a
broader understanding of the various
approaches used by each of these DoD
organizations, the real need of the DOD at
present is to consolidate (rather than
proliferate) software testing standards. In
the process of this consolidation, there is
also the need to address several of the common
shortfalls in existing software testing
standards that often result in difficulties in
achieving an effective software testing
program.

In the evaluation of software testing
approaches proposed by contractors attempting
to comply with existing software testing
standards, certain issues have surfaced and
resurfaced with sufficient regularity to
indicate that they represent major problems in
existing software testing standards. The
following list contains seven common problems
in developing a sound software testing

approach or implementing an effective software
testing program in compliance with existing
software testing standards:

(1) Adequate planning and preparation for
software testing is difficult in the
face of other impending software
deadlines.

(2) Determining the proper balance of
formal vs. informal testing may be
constrained by project resources and
varied views of the system's ultimate
mission.

(3) There are no generally accepted
completeness criteria for software
testing.

(4) For contractors dealing with more
than one DoD organization, 	the
differing DoD software standards can
confuse 	and 	complicate 	the
development of a software testing
approach.

(5) There is no consensus regarding the
extent to which a contractor must
test design components in addition to
testing 	software 	functional
requirements.

(6) Although the Government typically
witnesses formal software testing, it
is often difficult to actually
observe detailed software performance
in a formal testing environment.

(7) Typical software testing approaches
may not meet the Government project
manager's needs for establishing
meaningful 	quantitative 	and
demonstrable evaluation criteria for
software, 	as 	required 	by
DODD 5000.3. (1)

The remainder of this paper addresses how
these problems can best be countered using the
existing software testing standards or
soon-to-be released software standards. In
addition, needs for further enhancement of
these software testing standards is also
discussed.

99

COMMON SOFTWARE TESTING PROBLEMS

Adequate Planning and Preparation

Software development projects are under
constant pressure, with a series of
deliverable specifications, documentation, and
review meetings that create a seemingly
endless chain of impending software

deadlines. 	The 	software 	development
contractor typically perceives the situation

as one in which there is barely sufficient
time and money to develop the next increment
of requirements or design, with little or
nothing to spare for an intensive test
planning effort. The potential outcome is a
sketchy test plan that is not properly related
to the software requirements, then hastily
prepared test procedures that have not been
checked for adequacy, and finally a testing
effort in which tests fail (or cannot be
executed) and testing must halt while the teat
team tracks down the problems that lie in both
the test procedures and the software under
test. At this point, the Government project
manager must decide whether to slip his
testing schedule while the contractor remedies
the problems in the testing approach or to
potentially compromise the testing effort by
accepting less than adequate testing.

Unfortunately, no simple remedy exists for
this problem. it is, or course, important for
the Government project manager to be aware
that early delays or compromises in planning
the software test program are a definite
danger signal. But beyond awareness, the
Government project manager must give adequate
emphasis to software testing, ensuring that
the contractor is fully aware that software
testing is not an aspect of the project to be
compromised. In evaluating the contractor's
early software test planning documents, the
Government project manager should ensure that
the proposed software test program will
adequately serve as a primary means for
determining the acceptability of the software.

One of the preferred software testing
standards is contained in MIL-STD-1679.(2)

 This compliance document requires that the
contractor accomplish software testing on four
levels: module tests, subprogram tests,
program performance tests, and (if the
developed software is as element of a larger
system) system(s) integration tests. Software
tests must be defined in a software test plan,
then further amplified in software test
specifications, and finally detailed in
software test procedures containing
step-by-step instructions for accomplishing
each test.

A similar approach has been adopted by the
Joint Logistics Commanders in forthcoming
policy (3) and a compliance document.(4)
When approved, the Joint Logistics Commanders'
approach will entail unit testing, software
integration testing, and software performance
testing. Software testing may also be
included in system integration testing, if
necessary. The software test program will be
defined in an evolutionary series of
documents, including a software test plan,

software test descriptions, and software test
procedures. Using the Joint Logistics
Commanders' approach to developing software,
the software test plan will be developed in
parallel with software top-level design, the
software test descriptions will be developed
during the detailed design activity, and the
software test procedures will be completed
prior to beginning software performance
testing. This evolutionary approach meshes
perfectly with software development activities

and allows the Government project manager to
gain visibility into and control the direction
of the software test program as it evolves.
It also is consistent with top-down design and
either top-down or bottom-up testing.

To summarize the standards issues related
to planning and preparation for software
testing, it is vital that any software testing
standard promotes the evolutionary development
of the software testing program in parallel
with the evolution of the software itself.
The Government project manager must also
closely review and monitor early software
testing activities, especially software test
planning, to ensure that the software test
program will be effective.

Formal vs. Informal Testing

Each software development project should
include both formal and informal testing of
the software. Formal testing is conducted by
the contractor, with Government witnesses, to
demonstrate that the software performs the
required functions and is suitable for
Government acceptance. The Government must
approve all test plans, specifications or
descriptions, procedures, and results for
formal testing because of the key role that
formal testing plays in determining whether
the Government will accept the software. The
contractor conducts informal testing to
determine that the software is operating
correctly and that the software is ready for
formal testing. Informal testing is subject
to Government review, but remains under the
control of the contractor.

In the software test plan, the contractor
must determine which levels of testing will be
formal and which will be informal. Not
surprisingly, contractors typically bias this
determination towards excessively informal
testing while the Government project manager
pushes in the direction of increased formal
testing. When discussing formal versus
informal testing, the contractor seeks to
minimize the Government's participation in
software testing and the Government seeks to
maximize the Government's monitoring of
software testing.

The difficulty of determining an optimum
balance of formal testing, with Government
witnesses, and informal testing, under
contractor control, stems from the lack of an
accepted definition of the scope of formal
testing. Considering this problem as
objectively as possible, two general consensus
points emerge:

In n

o 	The formal testing must demonstrate
to the Government that every major
software function has been correctly
implemented, otherwise the Government
lacks demonstrable criteria that the
software is acceptable.

o 	The contractor must have the latitude
to conduct check-out testing
informally in order to proceed
efficiently through the check-out
process. Extensive Government
participation in unit-level testing
is usually not cost-effective for the
Government or for the contractor.

These two consensus points are useful in
bounding formal and informal testing. Formal
testing typically includes acceptance testing
but typically does not include check-out
testing.

The proper balance point for versus
informal testing is project specific and lies
between these two boundary points. Formal
testing should also include demonstrations of
all critical intra-system or inter-system
interfaces. In addition, formal testing must
demonstrate the correct operation of any
critical components of the software design.
Testing of these critical aspects of the
software may require that a portion of the
intermediate-level testing be conducted
formally. The amount of formal
intermediate-level testing varies from project
to project, depending on the criticality of
the system, the software design, and the
testing approach.

The Joint Logistics Commanders have
adopted the software test philosophy
summarized above for properly balancing formal
versus informal testing. Of the three
software testing levels (unit testing,
software integration testing, and software
performance testing), unit testing is
conducted as informal testing and software
performance testing is conducted as formal
testing. Additional formal testing is
conducted as part of software integration
testing to confirm correct operation of
critical aspects of the software. The scope
of the formal and informal testing programs is
defined in the software test plan, which is
reviewed and approved by the Government
project manager to ensure that the contractor
has determined the proper balance of formal
versus informal testing.

Test Completeness Criteria

There is an often repeated maxim
concerning test completeness, stating that
testing can reveal the existence of an error
but can never demonstrate that software is
error-free. Early attempts to overcome this
inherent limitation of software testing led to
a concept of software logic path testing, with
the further conclusion that it is impossible
to test all the paths through any non-trivial
program. Experimentation with test data
selection also demonstrated that it is
difficult to determine 'meaningful* test data
for non-trivial programs.

In the meantime, many contractors and
Government project managers have been faced
with the problem of determining whether their
test approaches, plans, and procedures would
completely test developed software. The issue
of test completeness and test acceptance
criteria became a sufficiently pressing issue
to be selected as one of four major problem
areas to be discussed at the first Joint
Logistics Commanders' Software Workshop in
1979.(5)

At that time, the best example of test
completeness criteria was contained in
TADSTAND 9,(6) developed by the Naval
Material Command. TADSTAND 9 was primarily
concerned with the final software testing to
be conducted prior to Government acceptance
rather than incremental software testing at
meaningful events during software
development. Since that time, TADSTAND 9 has
been replaced by TADSTAND E(7) and
MIL-STD-1679,(2) 	which 	requires 	an
incremental software testing approach
culminating in software quality testing prior
to'initial operational use of the system.

The need for test completeness criteria
presently remains an unsolved problem in
software testing. It appears unlikely that a
general set of completeness criteria for
software testing, suitable for all systems,
can be incorporated into a general software
standard. Government project managers will
continue to develop project-specific software
acceptance criteria, including test
completeness criteria. To do so effectively,
Government project managers need guidance,
probably in the format of a military guidebook
containing instructions on developing and
applying software test completeness criteria
within the context of the software development
and acceptance process.

Diverse DoD Software Standards

Let us consider the hypothetical, but not
unrealistic, situation that arises when a
software contractor that achieved an
outstanding software test program for one DoD
service is awarded a software contract by
another service. For example, the
contractor's competency inconducting
Preliminary Qualification Tests and Formal
Qualification Tests (Air Force) may not easily
map into competency in Software Quality Test
(Navy). Contractors are often faced with a
Learning curve as a result of the need to
adopt a different approach and service-unique
terminology.

Differing approaches and terminology are
also a hinderance to joint service programs.
Each participating project manager is
constantly confronted with service-unique
terminology and finds himself dealing with
questions like, *Is DT II (Army) like mr (Air
Force) or is it more like TECHEVAL (Navy)?*
Such problems of understanding arise in
communicating with project managers from other
services and in communicating joint project
information back to one's own service.
Because there are very few individuals who are
fully conversant in the approaches and

101

terminology of all three services, joint
service projects often select the software
policy and standards of one service to be
adopted by all services participating in the
project.

An initial step towards a solution to the
problem of service-unique software policy and
standards, which causes service-unique
approaches and terminology, has been taken by
the Joint Logistics Commanders. The
cornerstone of the Joint Logistics Commanders'
efforts has been the formulation of a software
management policy(3) that is applicable to
all of the Joint Logistics Commanders'
organizations* Air Force Systems Command, Air
Force Logistics Command, Naval Material
Development Command, and Army Materiel
Development and Readiness Command. As a
companion to the tri-service software
management policy, the Joint Logistics
Commanders have also developed a compliance
document for use in software development
contracts.(4) These two documents represent
a tremendous stride in adopting a common set
of software terminology and a common software
management approach that can be easily
utilized by each service.

Approval of the policy and compliance
document for use by Joint Logistics
Commanders' organizations will mitigate the
problem of diverse software standards for
much, but not all, of the 000 community
responsible for developing embedded computer
systems. It is hoped that, after initial
release, the Joint Logistics Commanders'
policy and compliance document are adopted by
DoD for use on all projects that develop of
modify software for embedded computer systems.

Testing Against Requirements vs. Design

A basic dilemma the software test planner
must resolve is whether the software testing
criteria should be derived solely from the
software requirements or also from the
software structure embodied in the design.
Most embedded computer systems automate
mission critical functions of a weapon system
or other defense system, hence software
testing criteria have historically focused on
software requirements.

In extremely critical applications (for
example, nuclear weapons or intelligence
applications), it may also be necessary to
demonstrate that the system is invulnerable to
certain classes of failures or threats. In
addition to the normal requirements-based
testing, this type of system typically
undergoes a set of design-based tests to
demonstrate that the access control logic is
robust or that software algorithms operate
correctly on extreme or boundary values. Such
test cases cannot effectively be devised
without an in-depth understanding of the
design.

Upon further consideration, it is logical
to extend this rationale to more typical
systems containing embedded software. For
example, the software requirements for a
typical fire control system seldom include

explicit requirements for a software executive
that maintains control over the fire control
system. From the perspective of the software
requirements, the need for an executive is
transparent to the system functions to be
performed by the software. From the
perspective of the software designer, a
software executive may be essential to
achieving a timely response to operator
commands. If software testing of such a
system were solely based on software
requirements, the software executive would be
tested only as a black box that enabled other
system functions. Any weaknesses in the
executive would only be detected if the
requirements-based testing scenarios included
the right (i.e., failure-prone) set of
commands. In design-based testing, a software
component such as an executive would be tested
for scenarios that are likely to stress the
limits of its operation, thereby greatly
increasing the changes of detecting an error
in that component.

The need for requirements-based testing
remains clear--requirements should always
serve as the primary basis for determining the
acceptability of the software. In addition to
requirements-based testing, certain components
of the software should be subjected to
design-based testing, particularly when their
functioning is transparent to the software
requirements but critical to achieving major
system functions.

Witnessing Formal Testing

During the test planning phase of the
software development cycle, the Government
project manager carefully reviews the
contractor's approach to testing to ensure
that there is an adequate amount of formal
testing. As a primary basis for determining
the acceptability of the developed software,
formal testing is witnessed by the Government
project manager (or his designated
representative). It often is necessary for
the Government project manager to commit
significant investments of project resources,
including travel to the test site and staff to
witness all formal tests, from start to finish.

Now, consider the extent to which the
Government project manager can determine the
acceptability of the software by observing
data available to him during the formal
testing process. There are several
opportunities for misunderstanding the formal
tests being witnessed. If test procedures
have not been maintained under the proper
change control, the test procedures are often
•red-lined• with last minute changes prior to
commencing a test. If test software, such as
a simulator, is used to demonstrate a software
function, and the test is less than completely
successful, it is often difficult to trace the
problem's cause to the simulator or the actual
software.

Even if we assume that there are no
problems in the test procedures or in the test
software, it is difficult for the Government
project manager to observe the software's
performance in sufficient detail to develop a

102

valid 	determination 	of 	the 	software's
acceptability. For example, is it possible to
positively observe a 100 millisecond delay in
software response time by witnessing system
execution? Is it possible to positively
observe that a velocity calculation is not
accurate to within a one foot per second
requirement? Many of the technical
characteristics of embedded software are
indeed extremely difficult to evaluate by
observing formal testing and reviewing formal
testing results.

It is essential, therefore, that the
Government project manager employ additional
mechanisms for determining the adequacy of
software. It is strongly recommended that the
formal testing process be viewed as the
culmination of a series of evaluations, all of
which contribute to determining whether the
software is suitable for acceptance by the
Government. Use of the activities, products,
reviews, and baselines of the software
development cycle defined by the Joint
Logistics Commanders(3,4) will lead to a
more evolutionary software development
approach with multiple opportunities for
evaluation by the Government project manager.

Specifically related to improving the
Government project manager's visibility into
software testing itself, it is further
recommended that the Government and contractor
jointly determine a suitable level of
participation of the Government project
manager during informal software testing.
This participation may consist of attending
the walk-throughs of designated critical
software modules or may entail monitoring the
informal testing approach and results for
certain high-risk software functions.

The Government project manager should
firmly adhere to the requirement to develop a
test plan, descriptions, and procedures and to
conduct a Test Readiness Review prior to
beginning formal testing. The Test Readiness
Review should assess the contractor's software
test procedures and readiness to commence the
formal software testing program. Results of
informal testing should also be available for
Government review at the Test Readiness Review.

Quantitative and Demonstrable Test Criteria

DoD software testing policy requires that
the Government project manager employ
quantitative and demonstrable test criteria to
demonstrate that the system, including
embedded software, is suitable for use in the
operational environment.(1) Unfortuantely,
most compliance documents that govern a
contractor's implementation of software
testing do not levy a corresponding
requirement on the contractor to maximize the
use of quantitative test methods in place of
qualitative or subjective test criteria.

Certain quantitative testing requirements
for software are found in MIL-STD-1679,
specifically in the requirements for software
quality test.(2) This compliance document
sets firm requirements for a duration test, in

which the software must successfully operate,
continuously, for a period equal to the
anticipated duration of a system mission (or a
maximum of 25 hours for systems that will be
in continuous operation). In addition,
quantitative error and patch limits are set,
along with a requirement for repeating any
tests that detect errors exceeding
predetermined severity thresholds. Finally,
stress testing must constitute one-third of
the duration of the software quality test.

	

Although 	these 	quantitative 	testing
criteria are among the most definitive
available, the Government project manager must
employ further careful judgment in their
application. First, meeting these
quantitative test criteria does not constitute
an assurance of software acceptability and
should not be viewed as a guarantee of project
success. Second, the most meaningful
quantitative and demonstrable testing criteria
for software will reflect project-specific
conerns, such as mission profiles and system
risk areas. The Government prject manager
retains the responsibility for ensuring that
the contractor develops a valid testing
approach that embodies quantitative and
demonstrable software test criteria most
meaningful in the context of a particular
project.

SUMMARY

Software testing standards are, for the
greatest part, defined within the policy and
compliance documents for developing software.
The seven major problem areas discussed above
have persisted despite the application of
existing software testing standards. A strong
potential for improvement is seen in the Joint
Logistics Commanders software management
policy and standards. Of particular
importance 	are 	the 	improved 	software
development cycle, including a more
evolutionary approach to software testing, and
the consolidation of software management
guidance into a single approach for use by all
services. Additional improvements are also
found in specific areas such as formal versus
informal testing and clarification of the need
for design-based testing. Even with this
improved software management policy and
standards, the Government project manager will
retain significant responsibility for ensuring
the adequacy of the software testing program.
The most difficult software testing issues
facing the Government project manager relate
to developing a test approach that embodies
system objectives in the definition of
software testing completeness criteria and
quantitative and demonstrable software
performance criteria.

REFERENCES

(1) DoD Directive 5000.3, Test and Evaluation,
December 26, 1979.

(2) MIL-STD-1679, 	Weapon 	System 	Software
Development, 1 December 1978.

103

(3) Joint Regulation, Management of Computer

	

Resources 	in 	Defense 	Systems, 	(in
coordination).

(4) MIL-STD-SDS, 	Defense System Software
Development, (in coordination).

(5) Proceedings of the Joint Logistics
Commanders Joint Policy Coordinating Group
on Computer Resource Management, Computer
Software Management Subgroup Software
Workshop, 21 August 1979.

(6) TADSTAND 9, 	Software Quality Testing
Criteria Standard for Tactical Digital
Systems, 18 August 1978.

(7) TADSTAND E, 	Software 	Development,
Documentation, and Testing Policy for Navy
Mission Critical Systems, 25 May 1982.

ABOUT THE AUTHOR

MARILYN J. STEWART is the Director of
Software Evaluation within the Defense
Technology Division of Booz, Allen
Hamilton. She manages the independent
software analysis and test evaluation of
communications, tracking, and surveillance
applications. Previously, she was Manager of
the Systems Evaluation Department of Logicon,
where she managed independent verification and
validation for strategic missile and range
safety programs. She also directed a software
technology program that developed advanced
tools and methodology for software analysis
and testing. Ms. Stewart has managed
independent testing and evaluation programs
that have totalled over 150 staff-years of
effort and has developed tri-service policy
for managing the development of software for
defense systems. Ms. Stewart holds 'a
Bachelor's degree in mathematics from
California State University at San Diego and
is a member of ACM and IEEE.

104

SOFTWARE QUALITY ASSURANCE AND ACQUISITION POLICY

Captain William P. Nelson, USAF

Electronic Systems Division

Hanscom AFB, MA

ABSTRACT

A brief review of current Air Force Systems Command (AFSC) and Electronic Systeme
Division (ESD) software quality assurance reauirementa is given. Current policy and guidance
changes being considered by an AFSC work group are presented. An ESD program for reviewing
contractual implementations of software quality assurance is described and results of seven
such reviews are presented. The conclusion drawn is that contractual implementations tend to
be weak and that this is caused by a weak specification. The implication is that current and
future Department of Defense efforts should concentrate on developing a clearer standard for
software quality assurance reouirements. A need to provide a training program to
alleviate a perceived shortage of software quality assurance personnel is also noted.

INTRODUCTION

Software quality assurance is not a new
concept. What does appear to be new is the
increased amount of attention being paid to it,
and the number of different concepts and
techniques that now have a software quality
assurance label attached to them. This paper
will not attempt to delineate all the different
approaches possible or recommend one particular
approach over another. What will be presented is
one approach to requiring a software quality
assurance program on contracts for defense
systems with software. Some results of this
approach will also be presented.

For the purpose of this paper, software
auality assurance will be discussed in terms of
the reauirements of the military specificaton
MIL-S-52779A, Software Quality Assurance Program
Requirements. While this is not the only
military specification or standard that addresses
software oulaity, it is the primary one used on
contracts at the Electronic Systems Division. It
is also the only one for software specifically
called out in current Air Force Systems Command
Quality assurance regulations. Many different
specifications and standards affect the total
ouality of both the software and the system.
MIL-S-52779A is the primary one used to require a
contractor to implement a software Quality
assurance program.

Four areas will he discussed. The first will
be a brief overview of the current policies for
requiring software ouality assurance on contracts
overseen by Air Force Systems Command and the
Electronic Systems Division. This will he
followed by a discussion of newly evolving
policies. The third major topic will he a view
of how successful some contractors have been in
implementing Electronic System, Division's
expectations of MIL-S-52779A. This will be based
on reviews performed by the technical staff.
Finally, some opinions on the underlying reasons
for contractor implementations will be given.
How these should affect future Department of
Defense efforts in the area of software Quality
assurance will also be briefly discussed.

CURRENT POLICY

Air Force Systems Command Policy. The
requirements for applying software quality
assurance is stated in AFSC Regulation 74-1,
Quality Assurance Program, with guidance on
application given in AFSC Pamphlet 74-4, Guide
for Quality Assurance Managers. The 29 July 1980
version of the regulation requires that "For
contracts with significant computer software
development, MIL-S-52770A, Software Quality
Assurance Program Requirement., will be
contractual reauirement but may he tailored for
individual program needs" (4:4). Chapter 18 of
the pamphlet gives very high-level guidance on
the use of MIL-S-52779A. The 22 July 1980
version suggests that the specification is
"applicable to complex software programs" and
that it "should also be considered for use with
nondeliverable software which is used to
manufacture, inspect, or test deliverable
contract items," but notes that the specification
must be selectively applied in such cases
(5:33). The detailed implementaton of
MIL-S-52779A has basically been left to the
individual divisions, centers, and ranges of the
command. Chapter 18 of AFSCP 74-4 references the
regulations and guidance used by the different
organizatons (5:33). This approach has changed
in the last year to one of providing more
detailed coamend-wide guidance based on the
consensus of a command working group, as will be
discussed in more detail later.

Electronic Systems Division (ESD) Policy.
At ESD, policy has been to have a software
quality assurance program reouired on all
contracts involving software development. Prior
to the issuance of the "A" version of the
specification in 1979, MIL-S-52779(AD), dated 5
April 1974, was used. An ESD Software Quality
Assurance Guidebook was developed to aid in its
application (6). While this guidebook is now
outdated, the differences between the "A" and
"AD" versions of the specification are relatively
minor so that the guidebook is still used as
reference document. The primary document used
for interpreting MIL-S-52779A has become DLAH
8250.1, Evaluation of a Contractor', Software

105

Quality Assurance Program, dated May 1981. This
handbook has been republished as MIL-HD8K-334,
same title, which is the actual document in
current use. Updated guidance on application has
been prepared by the division technical staff for
publication in a general software acquisition
guide for the division.

Contractual Application. In practice, the
typical contractual application of software
Quality assurance on an ESD contract has been a
single paragraph in the statement of wort
recuirinm the contractor to implement a software
quality assurance program in accordance with
MIL-S-52779A. The software cuality assurance
(SQA) plan reauired by the specification is
usually asked for as a deliverable. The SQA Plan
is usually either included in the computer
program development plan (which is a complete
description of the contractor's development and
management methodology for software), reauired as
a separate deliverable, or included in another
plan (typcially an overall company ouality
assurance plan). It should be noted that the
first of these methods, inclusion in a computer
program development plan, is allowed by AFSCR
74-1 (4:4) and recommended by AFSCP 74-4 (5:33).
Although the specification itself states that it
is applicable to all software, both deliverable
and nondeliverable (1:1), it is usually only
applied by ESD program offices to deliverable
software. The primary exception is that it is
expected that the contractor will apply it to
software tools used to develop other software,
and to any software used to manage the
configuration of deliverable or nondeliverable
software (e.g. compilers, operating systems,
automated computer program library systems, or
the like). The responsiveness of contractor
implementations has been mixed. Findings
concerning some implementations will be discussed
later.

EVOLVING POLICY

Within approximately the last year, Air Force
Systems Command has begun to take a more
comprehensive look at software Quality
assurance. Specifically, the Air Force Systems
Command Quality Assurance Council directed the
formation of a Software Quality Assurance
Subgroup. All command activities involved in
aoftwere acauisition are invited to participate.
The subgroup met three times in 1982 with a
fourth meeting planned for March of 1983. The
result has been a valuable exchange on applying
software cuality assurance (SQA) to defense
systems contracts, and the evolution of more
comprehensive command policy and guidance on
SQA. The following paragraph will highlight the
issues studied by the subgroup. (This
summarization is the interpretation by the author
of discussions at the meetings and of the
published minutes. It should not be considered
the official positions, recommendations, or
actions of the subgroup or the Air Force Systems
Command.)

Standard Terminology

One of the first issues addressed by the
group was the need for a standard terminology for

software within the auelity assurance community.
While standard definitions existed within
computer resource related regulations for most
software or computer terms, the consensus was
that these definitions were not widely Known or
used by cuality assurance personnel. Using the
Defense Acquisition Regulations and current
Department of Defense and command regulations as
a hese, the subgroup agreed upon definitions for
such terms as products, technical data, computer,
computer software, computer program, embedded
computer resources, and firmware. While there is
nothing new in the definitions, and in fact most
are drawn from existing regulations, a standard
usage of the terms within the Air Force Systems
Command cuality assurance community is now agreed
on. The definitions examined will he submitted
for inclusion in NIL-STD-109B, Quality Assurance
Terms and Definitions, on its next update.

Use and Deliverability of Software Quality
Assurance Plans

Another area addressed by the subgroup at
its first meeting was the government's handling
of contractor software cuality assurance plane.
The two basic issues were whether plans should he
delivered to the government, and whether the
government should approve software Quality
assurance plans, delivered or not. Air Force
Systems Command policy has been that no aualitv
assurance plan should he approved by the
government (5:3). Additionally, the contractor
is seldom required to deliver hardware cuality
assurance plans. Instead, the program office
depends on the cognizant contract administration
office to review contractor cuality assurance
efforts and use disapproval of programs when
necessary. On the other hand, a program office
almost always has a contractor deliver a computer
program development plan documenting his
technical and management approach to software.
The plan is often recuired as part of
contractor's proposal and is always subject to
approval by the government. It is made
contractually binding by either including it in
the compliance document section of a statement of
work or by including a task in the statement of
work that reouires the contractor to prepare,
update, and follow the computer program
development plan (CPDP). As previously noted,
the software cuality assurance plan can he
included in the CPDP. This causes a policy
conflict and a departure from the practice of not
requiring Quality assurance plans for delivery.
While there was support and rationale for many
approaches among subgroup members, the consensus
was that at this time there does not appear to he
a preferred method. It was decided to clarify
the policy statement on delivery and approval of
plans in the governing regulation, but to leave
the actual decision to approve or disapprove the
software cuality assurance plan to the individual
program offices. Approval should be used
sparingly and only when carefully defined so as
to avoid conflict with other recuiremente of the
contract, with provisions of Defense Acquisition
Regulations, and with other Quality standards.
This position should be included in an update to
AFSCR 74-1 expected in early 1983.

106

Application of MIL-S-52779A

Statement of Command Requirements. A
position of some subgroup members was that the
command reouirement for software Quality
assurance on contracts was vague. As noted
earlier, the governing regulation requires
MIL-S-52779A for all contracts with "significant"
software development. The pamphlet that gives
further guidance uses the term "complex software"
as the decision driver. The group consensus was
that these terms were too sublective to guarantee
any standard application of the specification It
was agreed that generally MIL-S-52779A should he
applied to any contract with deliverable software
or with nondeliverable software used in the
acceptance or Quality testing of deliverable
items. The exact policy change will be contained
in the expected early 1983 update of AFSCR 74-1.

Application to Non-Deliverable Software.
Additionally, the guidance on what parts of
MIL-S-52779A should he made applicable to
nondeliverable software was felt to he weak.
Guidance was therefore developed for tailoring
the application of the specification to
nondeliverable software depending on which of
five possible categories a given item of
nondeliverable software fell into. The
definitions of the categories (which include two
categories for automated test systems as well as

categories for support tools, computer aided
design, and computer aided manufacturing
software) and a table showing suggested tailoring
will be included in a revision to AFSCP 74-4 to
be released in early 1983. (It should be noted
that primary creait for writing the guidance
belongs to the Air Force Contract Management
Division.)

Contractual Tasking. A third area in
applying MIL-S-52779A addressed by the subgroup
VAS how to best express reouirements for it in
the statement of work. A related issue was how
to strengthen areas of the specification
perceived to be weak. The Electronic Systems
Division technical staff has drafted a model
tasking paragraph for a statement of work. The
tasking is a short paragraph that requires a
contractor to plan, develop, and implement a
software auality assurance program in accordance
with a tailored application of MIL-S-52779A.
While this requirement may seem self-evident from
putting the specification on contract, statements
of work have been written that reauire a
contractor to write a plan without requiring him
to implement it or update it. Drafting of
suggested revisions to the specification will
probably be overcome by other Department of
Defense efforts, notably the expected release in
1983 of a draft MIL-STD-SQAM, Software Quality
Assessment and Measurement, produced under the
auspices of the Joint Logistics Commanders. Work
on the draft statement of work tasking will
continue so that it can he used in the interim.
Final action will depend on member comments, but
it is likely that the result will be added to
AFSCP 74-4 as additional guidance in using
MIL-S-52779A. The subgroup will probably try to
present a consensus opinion on the MIL-STD-SQAM
when it is available for review.

Government Roles and Responeihilites

Organizational Roles. A problem expressed
by some subgroup members was reaching agreement
on the roles and responsibilities of the
different government activities typically
involved in software acauisition. The question
is still being addressed. Each subgroup member
is working on a statment of the roles and
responsibilities of his organization as viewed
internally. The expected result of this effort
Is not a redefinition of roles, but a better
understanding within the command of how the
different organizations support acouisition of
software within defense systems acouired by the
command buying agencies.

Contract Administration Office Support. An
opinion expressed by some members was that
program offices were generally unaware of what
contract administration offices could do for them
in the area of software Quality assurance. This

area tams already being at least partially
addressed by the Air Force Contract Management
Division. They had been working on a checklist
of possible items to be included in a Memorandum
of Agreement or a Quality Letter of Instruction
written between a program office and an Air Force
Plant Management Office. This checklist has been
through several draft iterations and is not yet
in final form. However, the draft versions have
been used on several occasions at the Electronic
Systems Division as the starting point in
reouesting contract monitoring support for
software by not only Air Force plant personnel,
but also with Defense Contract Administration
Office Personnel. When final concurrence on the
checklist is reached it will probably be included
in AFSCP 74-4.

Application of Other Quality Assurance Standards
to Software

A final malor area addressed by the
subgroup is the applicability of other military
auality assurance standards to software.
Specifically, the subgroup has addressed the
applicability of MIL-Q-9858A, Quality Program
Requirements, MIL-STD-1535A, Supplier Quality
Assurance Program Requirements, and
MIL-STD-15208, Corrective Action and Disposition
System for Nonconforming Material.

MIL-Q-9858A. In general, MIL-Q-985RA is
considered to apply to software as the "umbrella"
under which all other military auality assurance
standards and specifications, including
MIL-S-52779A, fall. Its provisions are also
considered to apply to software in the absence of
MIL-S-52779A on contract.

MIL-STD-1535A. The subgroup concluded that
the subcontractor control portions of
MIL-S-52779A were comparatively weak, but at any
rate did not conflict with MIL-STD-1535A
reouirements. MIL-STD-1535A was considered to he
general enough to he applied to software without
revision, but in order to strengthen its
application to software some revision was felt to
be necessary. In drafts so far, this consists
primarily of adding a few software peculiar items
to the lists of products and services covered by

107

various paragraphs of the standard, an example
addition being software developement facilities.
This action is currently in progress and it is
expected a final draft revision will he ready for
consideration at the next meeting of the subgroup.

MIL-STD-1520B. The subgroup members could
not reach a decision concerning the applicability
of MIL-STD-1520B to software. While there was
general agreement that some revision would be
reouiree, the nature or the revision could not be
agreed upon. Discussion tended to revolve around
reservations by some members that basic concepts
necessary for implementation were not well
defined enough across industry to permit
implementation of a standard for correction and
disposition of nonconforming software. Examples
of concepts felt to be ill-defined in the current
state-of-the-art are exactly what constitutes a
software error, how to define nonconforming
software, wnat a suitable error classification
system for software should consist of, and
whether or not the provisions of current software
auality assurance and computer resource contract
requirements are sufficient for error correction
and reporting needs. It was decided that a task
proposal should be submitted to the Air Force
program office for Computer Resources Management
Technology to contract for a more detailed study
of the Issues. A final position on this Issue is
not expected in the near future.

EXPERIENCE WITH IMPLEMENTATIONS OF MIL-S-52779A

Program for Assessing Software Quality Assurance
Implementations

Background. Policy on software auality
assurance at the Electronic Systems Division has
been evolutionary. Current policy is based on
the concept that the ultimate auality of a
delivered system, while the responsibility of a
program manager, can only be implemented or
acheived by the organization responsible for
physically building the system. The approach of
the technical staff has therefore been one of
making sure that appropriate technical and
management reouirements are on contract, and then
assisting the program offices in monitoring the
contractor's implementation and progress. While
this is accomplished in many different ways, one
form of assistance is especially pertinent to
this discussion. This is the review of
contractor's software auality program
implementation by the technical staff. Since the
results to be presented shortly are the product
of these reviews, the method of conducting them
will be briefly discussed.

Review Purpose and Product. The purpose of
the review is not to provide a passing or failing
mark for a contractor's software auality
assurance (SQA) program, but to give a government
program manager an independent view of how well
the contractor's implementation of SQA is meeting
contract reeuirements. The review is typically
performed prior to prelimary design review in
order to help insure that the program is on the
right track as soon as possible. A report is
produced from the review that goes only to the
program manager. It is intended to provide him
with information and associated recommendations,

and is not directive in nature. Any decisions on
resultant actions are solely his. The technical
staff is available, however, to provide further
assistance either in implementing recommendations
or by providing follow-up reviews.

Review Preparation. Reviews typically
follow the same pattern. Computer resource
personnel assigned to the technical staff meet
with program office personnel to discuss the
general oblectives of the review. The purpose of
the initial meetings is to find out if the
program office has any specific concerns relative
to software or software duality assurance, and to
coordinate a date for an in-plant review of the
contrator's efforts. The review team (usually
two people) then review documents related to the
contractor's efforts. An important part of this
review is the analysis of the contractor's
computer program development plan (CPDP). As
noted under the policy discussion, the CPDP is

expected to he a detailed presentation of the
contractor's methods for developing software and
managing the associated efforts. This is
important because 'Quality will be built into the
software eased on the development method and
environment. It is also expected that any SQA
program will he closely tied to development
tecnnioues and methods. The document containing
software duality assurance planning is alAn
reviewed if this data le not container, in the
CPDP. The review team also examines any
delivered software productA (primarily
specifications given the timing of the review in
the development life cycle). These documents are
not reviewed for the purpose of providing a
technical assessment, but to get a general view
Of the development effort and the system a• a
whole. The meetings with the program office and
the document reviews are followed ey an in-plant
visit to the contractor's software development
facility.

In-Plant Visit. The in-plant visit is
actually the shortest part of the review, but is
also the most intensive. A date is coordinated
with the contractor, through the program office,
at least two weeks in advance of the visit. To
shorten the time necessary for the visit, the

review team provides Question. in advance to the
contractor based on the team's review of plane
and documents. The intent is to let the
contractor know what areas the team wishes to
discuss and to allow him adequate time to prepare
while trying to prevent any negative impact on
his operations. The visit itself is usually two
days long. On the first day, the team meets with
the lead software development manager, the lead
software auality assurance manager, and some of
their key personnel to discuss the software
development environment and software auality
assurance program. The set of prepared auestions
previously sent to the contractor forms the
initial base of the discussion. The second day
is used to examine the actual implementation of
the contractor's software auality assurance
program and to clarify any additional auestions
the team may have as a result of discussions. At
the end of the review, the team will usually give
the contractor an overview of their general
findings. Normally, a presentation of detailed
findings is left to the government program

108

manager. A final aspect of the in-plant review
is that the team will meet with the cognizant
government contract administration office
personnel for the contract. These personnel will
also have been informed of the visit and will he
asked to participate in all meetings with the
contractor. Additionally, the team will discuss
the capability of the in-plant government
organization to monitor the contractor's software
development and quality assurance efforts.

Review Close-out. The final result of the
review is a written report of the findings to the
program manager. Often, an informal briefing on
the major findings is also given. The report
covers the good points of the contractor's
program as well as any areas the review team
feels could be improved. A second major portion
of the report will cover the team's meeting with
contract administration office personnel and
their capabilities relative to software. For any
areas in which improvement is suggested, either
contractor implementation or government
monitoring, the team will make recommendations.
While the report closes out the review, the
technical staff will assist in implementing
recommendations or providing follow-up reviews on
request.

Basis of findings.

The findings presented below are based on
review of seven contractor software quality
assurance programs, as well as several associated
follow-up reviews on some of these same
programs. No attempt is made to relate the
findings to size of development effort, cost of
software being developed, or similiar factors.
Each review was guided by the contractual
requirements on that particular contract.
Further, the teams did not attempt to give a
pass/fail mark, as discussed above. The primary
question being answered in each case was "How

well does this implementation meet contractual
reauirements for software quality assurance and
can it be improved to obtain maximum
effectiveness?" In all cases, the basis of the
contractual requirements was MIL-S-52779A or the
earlier MIL-S-52779(AD) version.

Inadequacies of SQA Implementations

SOA Manning. In five of seven reviews, the
manning assigned to software quality assurance
was deemed inadequate. This judgement was not
based on any magic number or ratio, but on the
perceived ability of the assigned personnel to
implement contractual SQA requirements in a
manner appropriate to the size of the development
effort. It should be noted that the problem was
sometimes caused by factors not under the control
of the contractor, such as having personnel leave
the company. More commonly it seemed due to a
failure to seriously analyze and schedule SQA
activities. An early undertaking of such
planning would have demonstrated a shortage of
manpower. In one case, however, the contractor
was inexperienced in the application of
MIL-S-52779A and admitted to underestimating the
workload involved in its implementation.

Corrective Action. In four programs, the

involvement of software quality assurance (DOA)
personnel in corrective action was inadequate.
Typical shortcomings were no involvement of SOA
personnel at all, no formal tracking procedures,
or no independent verification that errors were
corrected properly. In the latter case, the only
procedure for assuring correction was the action
of the individual programmer to effect the
change. The expectation of the review teams was
that quality assurance would play m prime role in
corrective action, especially in verifying that
any given software error had been corrected
without causing more error..

SQA Procedures. All programs but one made
an attempt to delineate the procedures to be used
by SQA personnel. Unfortunately, in four
programs there were no written directions or
checklists to be used in accomplishing the
procedures. In such cases, SQA personnel had a

general idea of what they wanted to accomplish
but could give no specifics of how they would do
it. The review teams felt that without some form
of written guide or checklist, there would he no
uniformity or consistency in the application of
software quality assurance.

SQA Involvement in Reviews and
Walkthroughm. In four of the examined programs,
SQA involvement in reviews and weikthroughm could
have been improved. The review teams did not
expect to find SQA participation in every review
and walethrough (especially since, if taken at
all levels, there could conceivably he several
hundred total). They did expect to find SQA
involvement in all formal reviews (e.g.
preliminary and critical design reviews) and some
sort of sampling of less formal reviews and
welwthroughs. While the worst case was nn
attendance by SOA personnel at any reviews and
walethroughs, the more common problems were
spotty, undocumented attendance or participation
in formal reviews only. The review teams felt
that unless SOA has a scheduled involvement
throughout the entire development process,
accompanied by some sort of written audit report,
quality cannot he adequately assured.

Other Problems. All shortcomings discussed
so far occurred on at least four of seven
programs. There were other problems that
occurred in common on two or three programs.
These were inadequate software library
procedures, inadequate SQA involvement in formal
test, and inadequate review of deliverable
documentation. Two problems noted with libraries
were lack of backup provisions and lack of formal
control procedures. In SQA involvement in formal
test, there was a lack of any planned
participation. In the case of deliverable
documentation, SQA personnel were not required to
"sign-off" in any way on software documentation
before release to the government.

Positive Aspects of Implementations

The presentation of findings so far has been
on the negative side. There are several positive
aspects that should also he stressed about the
examined programs. On two of tee seven programs,
overall implementation was Judged to he quite

109

good with only minor improvements to be made. In
practically all cases, independence of the
quality assurance organization was good. The
people assigned to software quality assurance
were typically well-qualified, experienced
personnel. Programs were usually in place, and
with one exception they all presented at leant a

good partial implementation of MIL-S-52779A
reauirements. When follow-up reviews have been
performed an improved program has been witnessed.

Contract Administration Office Support

As described in the review approach, the
review teams also met with cognizant contract
administration office (CAO) personnel. The
organizations involved were Air Force Plant
Representative Office (AFPRO) and Defense
Contract Administrative Services (DCAS) Offices.
In four of seven cases, the cognizant CAO did not
have personnel with experience or background in
software Quality assurance. The review teams
felt that these organizations could not provide
adequate verfication of contractor efforts in
SQA. The root of the problem seemed to be a lack
of SQA qualified personnel. In addition to this
problem, the teams found that in almost all canes
tasking from the program office to the cognizant
CAO did not include SQA concerns. Again, the
problem seemed to be a lack of personnel
knowledgable in software quality assurance, this
time in the program offices.

Analysis of Findings

It is difficult, if not dangerous, to
generalize from only seven cases. But even if no
firm conclusions can he drawn, analysis of the
results from the seven reviews leaves some strong
impressions.

Weakness of MIL-S-52779A Perceived as
Possible Cause of Inadequacies. Contractor,
appeared to be willing to implement software
quality assurance programs in accordance with
MIL-S-52779A, Out the actual implementations
tended to be weak. Yet, when presented with
suggestions for improving their programs they
generally accepted them. No common thread can
definitely be picked out, but it is possible that
this vagueness in programs could he due to the
vagueness of the basic specification. A reading
of MIL-S-52779A generally leaves one with an idea
of what general areas should be covered in a
software quality assurance program, but with few
specific requirements. From one aspect this is
good, since the government doesn't want to
constrain a contractor or tell him how to do the
100. But we shouldn't he surprised if our
expectations aren't met when they don't exist in
writing.

Government Monitoring Week. A second
impression left by an analysis of the reviews is
that a contractor will only be an serious about a
requirement as the government 11. This is not
meant to Imply that the contractor is at fault.
In fact, response to suggested improvements was
good, as lust noted. However, if the government
stresses delivery schedules and end results, a
contractor will probably respond favorably in
those areas also. The point being that if we're

going to put a .software nualitv assurance
reouirement on contract but not seriously examine
its implementation, we again can't he surprised
if the contractor's implementation reflects our
interest.

Shortage of Software Quality Assurance
Personnel. Finally, a word about manning. Low
manning could be caused by many things. It could
he a simple failure to assign personnel in
adenuete numbers. After ati, these contractor
personnel assigned to software quality assurance
were typically qualified, experienced personnel.
But there were also cases of personnel having
left the company and difficulties in filling
vacancies. No software quality assurance
organization seemed to have an over-staffing
problem. This parallels the observed contract
administration office shortage of software
quality assurance personnel. The impression is
that software quality assurance personnel are not
easy to come by.

CONCLUSIONS AND IMPLICATIONS FOR FUTURE POLICY

Stronger Software Quality Assurance Standard
Needed

A good deal of work has been done within
Air Force Systems Commend (AFSC) to improve the
application of software await, assurance to
defense system contracts. A fair part of *his
work has dealt with whet the recuirements should
really he. In examining contractor software
quality assurance programs, the Electronic
Systems Division technical staff has found weak
applications. Although not specifically
discussed in terms of the AFSC effort, an
underlying cause of both observations seems to he
a vagueness within MIL-S-52779A of what is
required. The conclusion drawn is that a
software quality assurance standard of some sort
is needed either in addition to, or in place of,
MIL-S-52779A. Such an effort has already been
undertaken be the Joint Logistic Commanders in
the drafting of a Military Standard for Software
Quality Assurance and Measurement. The
Department of Defense, while insuring the
standard does not become too directive in nature,
should also insure that it contains actual
minimum standard reauirements for software
quality assurance implementation.

Software Quality Assurance Training Program Needed

In conlunction with a more explicit
standard, the Department of Defense needs to
stress software quality assurance training. It
may he necessary to establish a formal training
program, since while some courses exist, there is
no clear training progression. Establishing one
is a reasonable approach to alleviating the
soortage of qualified software auslity assurance
personnel.

110

REFERENCES

1. Software Quality Assurance Program
Requirements, MIL-S-52779A, 1 August 1979. US
Army Computer Systems Command, Fort Belvoir, VA
22060.

2. Evaluation of a Contractor's Software Quality
Assurance Program, DLAH 8250.1, May 1981.
Headquarters Defense Logistics Agency, Cameron
Station, Alexandria, VA 22314.

3. Evaluation of a Contractor's Software Quality
Assurance Program, MIL-HDBK-334, 15 July 1981.
US Army Computer Systems Command, Fort Belvoir,
VA 22060.

4. Quality Assurance Program, AFSC Regulation
74-1, 29 July 1980. Department of the Air Force,
Headauarters Air Force Systems Command, Andrews
Air Force Base, DC 20334.

5. Guide for Quality Assurance Managers, AFSC
Pamphlet 74-4, 22 July 1980. Department of the
Air Force, Headquarters Air Force Systems
Command, Andrews Air Force Base, DC 20334.

6. Neil, George and Gold, Harvey I. Software
Acquistion Management Guidebooks: Software
Quality Assurance, August 1977. Produced for
Electronic Systems Division, Hanscom AFB, MA.
National Technical Information Services (NTIS)
accession number AD A047318.

ABOUT THE AUTHOR

CAPTAIN WILLIAM P. NELSON is currently chief
or the Computer Systems Engineering Branch within
the Deputy of Technical Operations and Product
Assurance, Electronic Systems Division. He is
responsible for aiding in the implementation of
computer resource policies and providing
technical assistance to the program offices. He
holds a Masters degree In'Computer Science from
the Air Force Institute of Technology (AFIT). In
his previous assignment he was an Instructor in
the Electrical Engineering Department, School of
Engineering, at AFIT. He taught courses In
introductory digital engineering, systems
software, and software accuisition management.
He has also been assigned to the Air Force Data
Systems Design Center where he was responsible
for maintaining, modifying, and providing user
support to an automated medical materiel
management system. He is a member of the ACM,
the IEEE Computer Society, and holds a
Certificate in Data Processing.

111

AIR FORCE SOFTWARE TESTING/ACQUISITION POLICY

Major Arthur E. Stevens

Deputy Director, Computer Resource Policy and Practices

HQ Air Force Systems Command

Andrews APS DC

ABSTRACT

This paper identifies the Air Force policy for software testing during the weapon system
acquisition process. The implementation of this policy is through development test and
evaluation (DT&E) and operational test and evaluation (CT&E). Testing is systems oriented
within AFSC with requirements eminating down fran the system level to the subsystem/con-
figuration item and ultimately to software components and modules. The typical acquisition
cycle for a weapon system is discussed outlining the mechanisms that exist for ensuring
software requirements, including testing, are identified and satisfied during the various
acquisition phases. Many of these mechanisms have been available to program managers for
sometime but required considerable management innovation to utilize effectively. These
mechanisms have been modified and new ones have been created to acoonmodate the expanding
role of software in weapon systems. Finally, program managers are being required to utilize
these mechanisms in determining and reporting program development status.

Introduction

The DOD and Services are undergoing an
evolutionary change in how they acquire and
manage software-intensive weapon systems. The
need for this change is readily apparent when one
investigates the problems that have plagued the
development of software-intensive weapon systems
over the past ten years. Who has not heard at
least a few of the horror stories associated with
developing weapon systems with embedded
computers? The "software acquisition disease"
has many professed symptoms, several of the most
common being: long delays in fielding a system
that is often operational deficient when
delivered, huge cost overruns associated with
software development, software not supportable
with government resources, and even program
termination. Since future weapon systems are
expected to have increased need for embedded
processing, the disease can only get worse if a
cure is not found.

The DOD and Services are working closely
together to identify the causes of the "software
acquisition disease" and are developing new
strategies to curtail and eventually cure the
disease. Many initiatives are in progress today,
or are planned in the near future, that will
investigate almost all facets of weapon systems
acquisition and will make recommendations,
develop new policy, and even create new
mechanisms for improving software development.
One element of this investigative effort is
software testing.

Software Testing Policy

DOD policy requires software be considered a
major component of the overall system. FOr
software-intensive weapon systems, software
performance and test objectives must be
identified and evaluated to determine the level
of software maturity at each phase of the
acquisition process. The Air Fbrce acquisition
policies for software-intensive weapon systems

compliment the DOD policy and are specifically
directed at improving the management and
engineering process for software.

Within Air Force Systems Command (AFSC),
overall policy for testing remains systems
oriented. All testing eminates fran the system
level and filters its way down to the
subsystem/configuration item (CI) level and
ultimately to software components and modules.
Allocation of system test, and often as difficult
as, requirements is comparable to the allocation
of system performance requirements. In fact test
objectives must support the system performance
requirements. One major problem associated with
requirements allocation is that a certain level
of system definition and design must be completed
before an adequate allocation of testing or
performance requirements to all system con-
ponents, including software, can be accomplished.

Once testing requirements are allocated, a
decision has to be made as to "how much" software
testing is required. There are a number of
factors which must be considered in making this
determination, a few of the factors being risk
(technical, schedule, and cost), existence of any
nuclear safety requirements, and mission
criticality of the weapon system. Ultimately the
final decision on "how much" software testing
rests with the weapon system program manager.

Testing within the Air Fbrce consists of
development test and evaluation (DT&E) and
operational test and evaluation (OT&E). Where
DT&E is directed towards demonstrating that
system engineering, design, and development are
complete and satisfy the specified requirements,
OT&E is conducted to ascertain whether the system
satisfies the users operational requirements when
operated and supported by Air Force personnel in
the actual operational environment. The
management plan for the conduct of DT&E and OT&E
is the Test and Evaluation Master Plan (LUMP).
Development of the TEMP is the responsibility of

112

the AFSU program manager with OTSE inputs
provided by the Air Some Test and Evaluation
Center (AFTEC).

The TEMP is designed to bring all major test
requirements together for the system and its
components to insure that a correctly functioning
system is demonstrated that satisfies operational
needs. DOD policy requiring establishment of
quantitiative and demonstrable performance
objectives for canputer software is reflected in
the TEMP. In addition, the TEMP is responsible
for identifying software test objectives and
defining responsibility for accomplishment of
these objectives during both DTSE and OT&E. It
must be recognized that the TEMP is a management
plan and does not include detailed test
procedures, evaluation criteria, etc. Specific
details of DISE and OISE are usually contained in
detailed test plans developed by AFSC and AFTSC.
It should also be noted that creation of the TEMP
and detailed test plans actually requires close
coordination with the Air Force using and
supporting agencies.

AFSC Test Implementation

At the system, subsystem/CI, and assamment
module levels, practically all testing is
conducted by the development contractor in
accordance with government-approved test plans
and procedures. EMphasis within AFSC is placed
on ensuring that tests for all levels are
properly specified to demonstrate
documented/baselined requirements and that they
are sufficient to demonstrate realistic
performance. In almost all cases, AFSC relies on
the contractor's development facility for the
conduct of the initial DrsE tests moving to an
operational site for final system DTSE. The OPSE
within the Air Force is conducted by AFTEC
utilizing Air Force operators and maintenance
personnel in as near an operational environment
as possible.

EMphasis upon software testing revolves
around the development of test plans and
procedures that demonstrate B-5 specification
requirements (as defined in MIL-STD-483).
Contractor-prepared test plans and procedures are
reviewed in-depth by government personnel to
ensure proper and complete testing. Tests at the
subsystem/CI level are formally witnessed by AFSC
with deficiencies and discrepancies noted for
resolution. Internal contractor testing exists
at the component, module, and can utter program
configuration item (CACI) levels in the form of
preliminary qualification tests (PQM) and formal
qualification tests (MM. PQTa and SOTS are
not generally witnessed by government personnel.
As software is integrated into and tested as part
of the system, AFSC software engineers are
responsible for ensuring the adequacy of and
compliance with CPCI, subsystem/CI, and system
level requirements.

Once the software is integrated into the
system, its functions become intricately
intertwined with subsystem and system functions.
It becomes very difficult to identify strictly
software performance and test objectives at the
system level. AF1 has wrestled with this
problem for several years and has not been able

to adequately segregate software performance from
system performance. OTSE requires an integrated
system at which point software pefoomance becomes
part of the system. Also once a system is
integrated, performance tests are directed
against system requirements which generally do
not require vigorous testing of the integrated
software to satisfy general operational
_requirements.

The point being made is that extensive
software besting at the °Deponent and module
level must occur prior to system integration.
System buildup is a phased process that requires
successful accomplishment of each phase prior to
beginning the next phase. Each phase becomes
progressively more complex until at the system
level software component and module deficiencies
may be difficult to detect or even isolate if
encountered. Detailed and successful testing of
software at the component and module level will
allow a smoother integration of
CPCIs/C/s/subsystems. Although there will exist
software intensive subsystems, particularly in
support areas, where detailed software testing
can continue throughout DFSE and OTSE, most
weapon systems utilizing embedded processors do
not have this luxury.

Acquisition Policy changes

The Air Force has made a number-of
improvements to its acquisition practices that in
many instances canpliment the improved software
testing policy. Existing, as well as proposed,
changes to the acquisition policy are directed at
improving the quality, integration,
supportability, overall performance, and
timeliness of weapon systems software. when
successful, the combination of these acquisition
policy changes should improve the quality, ease
of integration, and testability of software. The
following paragraphs address the major
improvements to acquisition policy within the Air
Force that collectively are expected to improve
the overall software development process.

Software Requirements

Present policy requires identification of
software performance and testing objectives as
previously discussed, but at what point in time
during the acquisition process can or should this
requirement be satisfied? The answer is as soon
as software is defined sufficiently to allow
proper allocation of system performance and
requirements. Initial efforts should begin as
early as the Statement of Operational Need (SON).
At the time the SON is generated the system
design, to the level required to understand the
details of the software, is generally unknown for
a new system, but certain software requirements
may be known and should be addressed, e.g.,
performance based on upgrade or replacement of an
existing system and whether a software support
facility/capability is required.

Generation of the request for proposal (REP)
is the next major step where software
requirements need to be identified. This is an
extremely critical activity which actually
initiates the design and development process.
The RFP identifies the requirements which the

113

contractor most satisfy during system development
including testing. Where contractor flexibility
in design is desired, requirements should be
general, but where specific software performance,
test, and support requirements are known they
most be expressed in sufficient detail and
clarity for a contractor to accurately determine
his development approach and estimate costs.
Software documentation and development facility
requirements need to be addressed when known.
Casts for these items escalate considerably when
they are identified during program development.

The following are the major changes that have
been implemented to improve the RFP generation
and contractor selection process.

- Use of Air Force Contract Management
Division expertise to review RFPs, review
of RFPs by the using, supporting, and
testing organizations.

- Ensuring the most qualified government
personnel are identified for the source
selection evaluation.

- More emphasis during source selection on
analysis of prospective bidders management
and technical proposals.

- Greater use of pre-award surveys to
determine the soundness and past per-
formance of each prospective bidders
management organization and technical
expertise.

Several groups exist to ensure that software
requirements are adequately covered for testing,
performance, and support. Several documents
exist that provide a formal vehicle for
identifying system, including software, require-
ments and, when necessary, problems. In most
instances, these documents, and the groups that
develop then, are direct inputs to the program
manager to support him in determining system
development progress. I have already mentioned
the SCN and RFP. Also included is the Program
Management Directive (PMD) which identifies the
overall acquisition policy and organizational
responsibilities for accomplishing the weapon
system acquisition and provides the basic charter
for creation and operation of the program office.

Test Planning Working Group (TPWG)

The TPWG exists to integrate all test
requirements for a weapon system and to advise
the program manager on all test matters. The
TPWG is tasked with ensuring that all resources
necessary for support and accomplishment of
testing are identified and available for DT&E and
OT&E. The TPWG includes representatives from the
DT&E and OT&E organizations.

Test and Evaluation Master Plan (TEMP)

As previously discussed, the TEMP is the
master plan for ensuring adequate DT&E and OT&E
and identification of test responsibilities.
Test objectives, including software, as well as
critical system issues and overall system test
philosophy are identified. This is a coordinated
document between the program office and testing
organizations.

Camputer Resources Working Group (CIUG)

The CRWG is convened by the program office
for the primary purpose of identifying all
requirements of the using and supporting
organizations for supporting the weapon systems
software after program management responsibility
transfer (PMRT). Management and support
responsibilities are identified and all resources
required to manage and support the software are
determined. The CRWG will also recasnend the
level of independent verification and validation
(IV&V) that should be provided. As in the case
of the TPWG, the CRwG provides recommendations
and status on computer resource issues to the
program manager but the program manager has
significant latitude in making management
decisions.

Computer Resources Integrated Support Plan (CRISF2

The CRISP is developed by the CRWG and
documents the software support approach, to
include resource requirements and organizational
responsibilities, for the fielded operational
software. The CRISP is directed at software
management and support after PMRT but can also
identify such requirements for the pre-PMRT
phase.

Independent Verification and Validation (IV&V)

Utilization of an independent verification
and validation (IV&V) is receiving stronger
emphasis. IV&V can be a powerful tool when
applied effectively during program development.
The level of IV&V can range fram requirements and
design validation to actual software testing.
IV&V can be performed by: a contractor with
existing tools to support IV&V tasks, the
eventual Air Force support agency, or a mix of
contractor and Air Force personnel. The latter
two cases allow early involvement by the
supporting agency and can provide a smoother and
more timely transition for Air Force support of
the operational software.

Most of these tools created early in a
program's development continue throughout the
acquisition period to monitor and evaluate system
and software design, integration, test, and
production progress. In fact the CRWG continues
throughout the life of the program. IV&V,
although initially the program manager's tool,
can easily transition to the operational phase to
the extent it supports future software support
requirements.

System Design

Following contract award, many activities,
mechanisms, and documents are initiated that are
directed towards ensuring system and software
requirements are adequately reflected in the
system design and demonstrated during Dr&E and
OT&E. Increased emphasis is being placed on the
software design process to the extent that a
separate software requirements review has been
proposed for conduct prior to the preliminary
design review. Software design most undergo the
rigors of the preliminary and critical design
reviews as well as development of appropriate

114

development and product specifications for each
computer program configuration item (C CI).

Present activity in this area includes
development of a software development standard, a
more concise set of software documentation/data
requirements, and development of a software
quality assessment and measurement program.
Initiatives are in progress to investigate new
tools, both management and technical, that will
aid the program manager in determining the
adequacy of the software design and development
progress.

System Integration and Test

Although this area was briefly discussed
earlier, it is important to identify the
mechanisms that exist for ensuring the adequacy
and actual aocaaplishment of system and software
testing. Planning includes the TPWG and
preparation of the TEMP and is supported by
government approved contractor test plans and
procedures, the DTSE test plan, and the OTIS test
plan. The quality of the test program is
strongly dependent upon the quality of these
plans and procedures. The success of the test
program requires adherence by the program manager
to a vigorous test, and he must be critical of
deficiencies encountered at any level of
integration and testing.

Initial software testing is accomplished by
the contractor at the component, module, and C2C1
levels culminating in POTs and PQM DTIE is
first used to demonstrate successful integration
of CIs and CPCIs into a system by the contractor.
Government DTIE begins once contractor testing
(sometimes called contractor test and evaluation
(Cro)) is complete. Ideally OISE follows a
complete and successful DT&E. In reality,
schedule economics are forcing preliminary OT&E
to be conducted concurrent with UTSE and
dedicated OISE is often begun with significant
known deficiencies unresolved from CT&E.

Finally, functional and physical
configuration audits (PCA/PCA) are performed to
ensure all requirements are met, all deficiencies
are dommented for resolution, and the
deliverable products (docunentation and code) are
accurate. Completion of FICA/POA establishes the
product baseline for the system.

Summary

Many tools, mechanisms, and activities exist
to support the program manager in monitoring and
assessing the progress and adequacy of software
development throughout the acquisition process.
Additional tools and technology are being
investigated particularly in the area of software
quality amemseent and measurement. The program
manager is the sole focal point for successful
implementation of the tools and activities
discussed in this paper. He also has significant
flexibility in making management . decisions. How
the program manager utilizes the data produced by
these tools and activities will determine how
smoothly a system will be acquired including the
resolution of problems, and how well it performs
and is supported. Although a program manager's
decisions are effected by a nutter of factors
such as costs, schedules, and political enviroft.
ment, the judicious use of these tools can
significantly improve the acquisition of better
quality software in a - more timely manner.

ABOUT THE AUTHOR

Major Arthur E. Stevens is presently assigned
to the acquisition logistics directorate at HO
A. He is deeply involved in the development
of acquisition policy for computer resources.
Major Stevens has been involved with the acquisi-
tion, modification, installation, and testing of
Air Rome weapon system computer resources since
1968. His first assignment with AFLC gave him
the opportunity to get his "hands dirty" in soft-
ware support. He modified maintenance and
diagnostic software for phases array radars and
installed third generation processing systems at
two space track radar sites. While at Space
Division, he helped acquire AFSATCOM terminals
and managed improvements to the Defense Support
Program. His last assignment was to the Air
Porte Test and Evaluation Center (AIMIE) where he
prepared operational software test approaches for
a variety of cruise missile, avionics, space, and
electronic warfare programs. He was also
involved in AFTEC's initial efforts to develop
standardized evaluation tools for determining
software supportability.

•

115

ACQUISITION PROBLEMS INFLUENCING SOFTWARE DEVELOPMENT
AND OPERATIONAL TESTING

Michael A. Blackledge, Lt Col, USAF

Walter G. Murch, Major, USAF

HQ Air Force Test and Evaluation Center
Kirtland Air Force Base New Mexico 87117

ABSTRACT

This paper outlines the basic acquisition process for embedded computer systems and examines
the "real-world" problems inherent in this process. The concepts of software development
testing and operational testing are next examined, and finally the cause and effect rela-
tionships between the acquisition structure and the operational testing world are contrasted.
Recommendations are presented for improving each phase, both through changes in Government
policies and procedures with regard to contractors, and through adherence to software
development standards. Although examples are drawn from Air Force acquisition experience,
the problems are common and recommended solutions are applicable to many embedded computer
resource acquisition and testing programs.

I. 	INTRODUCTION

There are numerous problems influencing develop-
ment testing and operational testing, those two
separate and not altogether distinct activities
that must be a part of every successful acquisi-
tion program, in particular any embedded compu-
ter system software acquisition. Embedded
computer systems (ECS) account for more than
half of the Department of Defense's multibillion
dollar budget for software and are an inherent
part, if not the heart, of every major commun-
ications system and weapon systems being
acquired today. The development and opera-
tional testing of these systems is an essential
part of their acquisition. Development testing
is generally thought of as testing against the
developing specifications and operational test-
ing is usually considered to be testing against
the user's requirements, as performed in the
user's defined operational environment. However,
the actual differences are somewhat more subtle
than this.

There is considerable blurring of any boundary
lines between development and operational test-
ing. This paper will define the two types of
testing, outline who usually does what specific
types of testing as pertains to software,
examine the differences and similarities between
the two, describe the problems involved with
both, and then summarize the overall influence
of the acquisition process on these areas. The
paper will present viewpoints and recommendations
primarily from experience with Air Force systems,
but the problems described and the relationships
explored are expected to be common throughout
the software community.

The president of International Test and Evalua-
tion Association, Dr A. R. Matthews, has
recently stated (1) that

"OT&E clearly directs its role into
performance...but this role is
not exclusive of OT&E performance
testing. OT&E operational performance
testing primarily concerns application
and is downstream in the time-phased
program conducted by definition with
operational personnel in an operational
environment without extensive instrumentation.
This latter fact emphasizes the need for
technical performance and preliminary
operational performance during DT&E to
ensure avoiding final changes that are no
longer cost effective or within the required
time schedule."

Department of Defense Directive 5000.3 (2)
describes development test and evaluation
(OT&E) as that test and evaluation conducted to
verify attainment of technical performance
specifications and objectives. The same direc-
tive describes operational test and evaluation
(OT&E) as that test and evaluation conducted to
estimate the system's operational effectiveness
and operational suitability, identify needed
modifications, and provide information on tactics,
doctrine, organization, and personnel require-
ments.

To establish the background against which both
development and operational testing must operate,
let us take a brief look at the initial acqui-
sition process in the Air Force as it affects
the quality of a delivered system. The process
is similar to that in any service, and compari-
sons can be made to industry as well

116

II. THE ACQUISITION PROCESS.

There are two critical phases of the acquisition
process during which the foundations are laid
for both development and operational testing.
Rather than attempt to rephrase these phases in
terms of the recent acquisition improvement
program, they will be referred to as the require-
ments definition phase and the full scale
development phase. Let us examine these phases
and what should be done during them to control
the length of the acquisition process while
strengthening the basis for testing.

PHASE I - REQUIREMENTS DEFINITION.

This phase is generally a Government activity
which establishes the quality of the rest of the
acquisition process. In particular, it directly
affects the amount of both development and oper-
ational testing that will be needed. There are
a number of activities and critical milestones
associated with this phase, some of which are
described below. There is only one area that
transitions to the second phase and physically
influences acquisition activities: development
of the statement of work (SOW) (weapons require-
ment document) as part of the request for
proposal (RFP) and source selection process.

a. System Program Office (SPO) Planning.
This planning is done with the best intentions
of arriving at a reasonable cost/schedule for
the upcoming acquisition. Depending on internal
pressures for estimates, the program office tries
to determine a reasonable system configuration.
assess the risks for elements of the system, and
develop the cost and schedule profiles. This is
one of the first places that problems can develop.
If the program office has been a priori con-
strained on cost or schedule, the estimates and
rationale can be shakey. Optimism, misreading of
availability of technology, lack of understanding
of development cycle, ignoring major features
(e.g., support equipment, adequate software
development facility, sufficient time/effort for
an adequate integration test period), among other
factors, can lead to badly flawed estimates of
cost/schedule.

b. OSD/Air Staff Approval. At these levels,
the staff is at least one step away from the
planning environment for the system in question
and are, perhaps, a part of the budget cycle.
Thus the politics/motives are different. In
order to shoe-horn an acquisition into the budget
to insure its continuation, adjustments to cost/
schedules are made, sometimes with little appre-
ciatiod or concern for the actual down-stream
effects. And this happens yearly, causing a
continuing redefinition of system effort. Further,
politics dictate the definition of "planning
milestones" such as initial operating capability
(IOC), defense system acquisition review council
(OSARC), etc. These dates then become "holy",
Presenting (from a system development viewpoint)
artificial schedule milestones.

c. Contract Prework at SPO. This is the
point where the previous work is performance/
schedule/documentation/qualification requirements
to be levied on a contractor. All the generaliza-
tions of step a above now get more specific in
the statement of work. The problem is that the
level of effort implied in the statement of work
may be inconsistent with the generalized
schedules and costs (which themselves may not be
good). Contract milestones (e.g., preliminary
design reviews (POR)), are overlayed on the
schedule--sometimes without adequate thought of
the implications. For example, PORs scheduled
early in the contract without consideration for
contractor hiring problems, length of time for
new people to understand operational requirements,
time span to really get documents developed,
delivered, authenticated... the result is a
procurement document consistent with steps a and
b, but which may not be consistent with reality.
This leads to the next block.

d. Statement of Work (SOW). The SOW must
accurately and unambiguously reflect known and
required (not necessarily desired) operational
requirements for a specific weapon system. Two
critical problems occur at this point in the
acquisition "definition:" the developers of the
SOW over-specify in areas where requirements are
not really understood and could not be easily
verified during testing, and/or known requirements
are not specified in detail. This latter
problem causes considerable anguish during the
initial phase of contractor design and development
when various individuals confuse the issues with
"what the Government meant was...." It is
absolutely essential that Government distinguish
and understand the difference between hard and
fast system requirements, for which an operational
need exists, and areas of general functional
performance where the development contractor
should be allowed to research and propose the best
cost effective alternatives. The SOW should
reflect this difference, with the contractors
allowed to describe their system expertise in
their response to the RFP in those areas where
tradeoffs exist.

e. Administration of the RFP/SOW. This is
the transition point to the second phase, namely
contract award and full scale engineering
development. A well-written SOW makes contractor
selection easier. Two critical errors occur at
this point: the Government does not adequately
consider all contractor proposals and the contract
is awarded primarily on least cost. Included
here is the issue of small business awards to less
than fully qualified contractors.

Regardless of how well the SOW is written, the
Government should make available the most knowl-
edgeable people, both on the. system being procured
and on the development process, to form the source
selection team. In addition to evaluating the
technical components of the contractor's RFP
response, those areas that most affect development
need to be evaluated in more detail: the contrac-
tor's organization (for the weapon system being
developed, not necessarily that used in past
successes), contractor's past performance in
similar/other Government programs, cost and
schedule proposals based on the contractor's
understanding of requirements, etc.

117

The source selection team should not be hindered
by irrelevant or unrealistic external factors
such as arbitrarily imposed review limitations or
access to the contractors for more detail. Time
used at this point, if used effectively, will
save time by many factors later during the devel-
opment process. If during the source selection
review, Government personnel notice an ambiguity
based on a poorly-stated, or overstated, Govern-
ment requirement, there should be an easy
mechanism to correct, update, and improve the SOW
as problems are encountered., If it is not done
at this time, it will create numerous waivers,
engineering change proposals, and confusion
during system development.

In the final selection of the development con-
tractor, realistic consideration should be given
to past contractor performance. If major dif-
ferences occur in the cost proposals, a debate
between contractors to discuss differences is not
unrealistic to provide the Government a better
insight into contractor's attitude, abilities,
etc. Too often, we have seen the winning con-
tractor selected according to lowest cost and
later find out the more competent contractor
easily pointed out the pitfalls associated with
the winning contractor's proposal. We should
not place so much emphasis on proprietary infor-
mation. If the contractors don't want to share,
we can always find one that will.

Last point. Some companies have technical
proposal teams with extremely qualified personnel,
but once the contract is awarded, less qualified
and less knowledgeable people are put in charge
of the program. The Government should be
extremely concerned when one contractor
significantly underbids all competitors.

Summary Recommendations to Improve this Phase

(1) Spend more time on all weapon system
SOWs to reduce ambiguities, overstated and under-
stated requirements, and to ensure the SOW
requirements can be translated into realistic and
testable requirements. This might require a
special technical board with engineers, operators,
contracts people, etc., to review SOWs.

(2) Make the source selection effort realis-
tic and effective by selecting good personnel and
giving them the time, authority, and flexibility
to do their job.

(3) Give more emphasis to past performance
in selecting winning contractors and take special
review action when a significant difference
exists between competing contractors.

(4) Let the contractors prepare cost and
schedule milestones.

(5) Along this same line, artificially
imposed operational dates cause numerous problems.

_ Although such dates on paper cause no problem,
forcing the contractor to design a system by
working backwards from a fixed date is unreal-
istic. The contractor should be allowed to

propose a realistic development schedule; then
the Air Force should define, perhaps with some
negotiation, realistic operational availability
dates.

(6) At the time of RFP release, emphasis
should be placed on having the contractors propose
weapon systems from a system perspective for hard-
ware and software development. Too often, computer
hardware is proposed by the contractor based on
what he thinks the Government wants to see or
because the Government specified the hardware in
the SOW. The result is a system design with no
hardware flexibility and possibily incompatible
functional requirements and allowable software
design. We must realize that standardization
often conflicts with design flexibility. One of
the first deliverables should be a life cycle
costs/benefits study of standardization vs new
hardware to help make this decision. And the
Government's budget should be based on the most
expensive decision. NOTE: Although there are
numerous other factors that affect this phase, e.g.,
preordained development, test, and production
schedules or contract types, most of these "other"
factors tend to be political or artificial. We
feel if a commitment is made to improve the
statement of requirements for new systems and the
methods of contractor selection, there can be
significant improvement in the acquisition process.

PHASE II - FULL SCALE DEVELOPMENT.

The second phase is full scale engineering
development or popularly known as contractor
interpretation of AF requirements into a physical
system. There are too many problems associated
with this phase to discuss them here. The
majority of the problems in the authors' opinions
are related to too much Government interference
in the development when the contractor should be
allowed flexibility and too little Government
involvement in the areas of contract administra-
tion and general contractor internal management
when it would be most effective. Assuming a
competent contractor is selected and the Govern-
ment has confidence in its selection process,
the contractor should be allowed the flexibility
to propose and design the system that meets SOW
requirements. What too often occurs is that the
Government (always different people than were
involved in the first phase activities) starts
playing the requirements changing game or "inter-
pretation" game. If a new requirement is not
absolutely essential or the contractor's inter-
pretation is at least minimally acceptable, "LEAVE
THE CONTRACTOR AND CONTRACT ALONE." Provide con-
tractual incentives for exceeding specified
system performance thresholds or for adding
improved performance where not specified.

Artificially imposed design milestones should not
be established. Technical interchange meetings
are mandatory and so is a systems requirements
review as a reliability check to be sure the con-
tractor's proposal and his program management
after contract award are in agreement. The con-
tractor should be allowed to identify in his
proposal realistic design review milestones.

118

The Government should impose "strict" penalties
if the contractor cannot meet his own proposed
milestones. Note that penalizing a contractor
for Government-imposed milestones is risky even
if the contractor agrees with the milestones.
"Insufficient information at time of agreement"
is a good rebuttal when schedules slip or
inadequate reviews are held.

To ensure that the contractor supports his end of
the bargain, the Government should spend more
time evaluating the contractor's administration
and management activities. Often times development
delays are caused by incompetent or even deceptive
contractor practices that may or may not be
evidenced through technical development.

Those areas in- which Government is least knowl-
edgeable and yet cause numerous problems, e.g.,
software' development, integration, and testing,
should be supplemented by well-qualified com-
mercial organizations. A major problem is that
the Government does not effectively utilize
independent contractor support. Too often, we
let independent contractors propose to the Govern-
ment what is required rather than the Government
having enough knowledge on the system to know
what is needed. This causes two problems: wasted
Government funds during a period when funding is
critically monitored and not addressing critical
development problems because of misdirected
activities in both critical and noncritical
areas.

Summary Recommendations to Improve this Phase.

(1) Contractor, if selected with confidence,
be given more freedom in design, development, and
schedules.

(2) Government emphasize and monitor con-
tractor management and contracting practices.

(3) Penalize the contractor for not meeting
his own milestones and reward him for efficient
development. This requires more flexibility in
selecting the type of contract to be awarded
(getting away from preordained contracting philos-
ophies, e.g., fixed-fee, no-incentive contracts).

(4) Utilize independent evaluators more
often and more effectively.

(5) Take steps to minimize the impact of
budget revisions on the SPO. Considerable SPO
management time is consumed rearranging resources
every time the budget process changes the SPO's
available funds. Any time the SPO spends
managing this problem is time not spent managing
development problems, with the resulting
implicit delays.

III. CHARACTERISTICS OF TEST PROGRAMS FOR SOFTWARE

DEVELOPMENT TESTING (SOFTWARE).

Planning for test and validation of a software
intensive project must begin early in any soft-
ware development project. The project manager
must ensure that test and verification and
validation plans are included in the system (and

software) requirements and design specifications.
Both the testability of those specifications and
providing sufficient "hooks" for independent
verification and validation contractors must be
provided.

Two of the basic concepts in writing system
(and software) requirements are to ensure that
those requirements are complete, feasible, and
testable, and to establish validation and test
criteria. For the development of system require-
ments, fault-tolerant requirements must be specified,
and any known conflicts and omissions in the
requirements must be identified and corrected.
For the development of software requirements, a
requirements-level test plan should be developed.
Later, during the development of the software
design specification, a specification-level test
plan should be written.

Finally comes the time for unit and integra-
tion testing. Here it is very important to out-
line testing concepts and goals. The tester
must develop a test strategy, keeping in mind
that the primary test objective is striving to
uncover failures, not trying to "get by." The
test plans developed during this phase must
relate to the system requirements and specifications.
The "build-a-little, test-a-little" philosophy can
be put to practical use at this time, by carefully
planning for test scheduling, reporting, and
control. The tester must quickly learn how to
avoid test bottlenecks and other problems--a con-
figuration management control process can provide
some real control here.

The test plans and test design and test case
specification documents are important to accom-
plishing a good test program. Developed from the
requirements documents and concurrent with the
design process, these documents identify resource
requirements, simulation requirements for inputs,
analysis requirements for outputs, test case
cross reference to system and software requirements,
etc. Without a systematic planning at this, a
thorough test program cannot be assured. Further,
after completion of the test program, reconstruction
of what was tested is difficult. Our experience
is, however unfortunately, that this level of test
planning documentation is not available. This
non-availability also affects the ability of
support agencies to maintain the software.

For unit testing itself, the developer must
design test cases that include exercising critical
software functions and boundary checking para-
meters. It is important to generate sufficient
test data to perform these functions, and often
times program "stubs" and test driven programs
must be written before the "test-a-little" can be
accomplished. Provisions must also be made for
retesting after an error condition has been
encountered.

In preparation for integrating the modules
into a system, it is advisable to build from the
top-down, and to build horizontally as much as
possible rather than vertically, in order to
allow crucial interfaces to be exercised often, and
as much testing as possible down parallel paths.

119

During this phase, the test driven modules and
program stubs are replaced with actual program
modules, and stepwise integration and regression
testing can be initiated. Special testing
techniques must be employed to test real-time
functions.

There are a number of specialized tools and
techniques to assist the tester. These may vary
depending on whether the system uses a stand-alone
development system, or a host-target machine con-
figuration, but in general they include the
following: an automatic test data generator,
environmental simulators, and interactive
debugging tools.

Now the tester is ready for system verifica-
tion and test. Keep in mind that the purpose
and goals of system verification are to: (a)
verify that the system performs as required, (b)
revalidate any revised requirements, (c) measure
performance under maximum load conditions, and
(d) verify the completeness and correctness of
the system documentation.

One of the more valuable tools available to
the developer, albeit a costly one, is independent
verification and validation, or IV&V. The Air
Force has made it a policy that this structured
process must be considered for use on all
software intensive systems. Definitions and some
details will be published in the revised AFR
800-14, but in short, IV&V has considerable value
in high-risk applications, and there are now a
number of companies experienced in this dis-
cipline.

Who will perform the system and acceptance
testing? Hopefully, it will be an individual
somewhat removed from the development work
itself, someone like a quality control engineer.
There should be scripts and documented techniques
for the system test for the individual to use,
and he should have available both unit and
integration test results. The capability should
exist both to simulate hardware failures, and to
test any system/user interfaces. Even minor
deviations from the procedures should be viewed
with a jaundiced eye, and above all, the
integrity of the configuration management scheme
must be maintained.

There is no question that software failures
are going to occur throughout the development
cycle. Studies have shown that the most costly
of these errors to correct are those that were
created early and discovered late, such as errors
resulting from implementing improper or misunder-
stood requirements. Particularly because of the
inherent complexity of computer systems embedded
in defense systems, the often vague under-
standing of needs which typically characterizes
defense system development during the early
stages renders defense system software develop-
ment particularly prone to requirements specifi-
cation 'errors." (3).

OPERATIONAL TESTING (SOFTWARE)

Operational testing is that testing done in
an operational environment, using representative
operational and maintenance personnel. As a con-
sequence, the software is evaluated, not as an
entity unto itself, but as part of the system
level test. The software is thus evaluated on a
"by exception" basis, in situ. Here the focus is
operational reliability (e.g., are operational
requirements complete, are there any latent defects
in the software?) Then the test scenarios are
designed against operational effectiveness
objectives.

OT&E brings to the system development cycle an
independent view. The OT&E team, by observing
system development activities throughout the
development cycle, can provide independent advice
on critical operational issues. This operational
influence can best be exerted on the system
development early in the cycle before significant
resources have been committed to "metal-bending."

Goodenough (4) says, in discussing computer
program quality,

Correctness is not necessary for a program
to be usable and useful. Nor is correctness
sufficient. A correct program may satisfy
a narrowly drawn specification and yet not
be suitable for operational use because,
in practice, inputs not satisfying the
specification are presented to the program
and the results of such incorrect usage are
unacceptable to the user. If the program is
correct with respect to an inadequate
specification, its correctness is of little
value.

Consequently, although testing for correctness
is the most common andbest understood testing
goal, correctness is by no means the only
important property of usable software--relia-
bility, robustness, efficiency.... are also
of significant importance. But these properties
are less commonly the focus of testing activities.-

OT&E provides the bridge between DT&E and opera-
tional use. DT&E activities focus on specifica-
tion compliance. As Goodenough points out, this
is likely not an adequate test of operational
usability. The focus of the software OT&E should
be, then, not on compliance with specifications,
but rather on the characteristics of software
which are incompatible with actual operational
conditions. The intent is to determine the
acceptability of the system to the user, not only
from a mission effectiveness point of view, but
from a supportability point of view. In this
context "the term 'acceptable' implies that the
user must determine what he considers to be a
failure; this usually depends on the effect of
the particular behavior of the system in question
on the user's operations, costs, etc."

120

OT&E provides an opportunity to influence the
operational characteristics of the software system.
With access to program documentation, the OT&E
team can independently assess the operational
effect of specification (or other contractual)
changes. Apparent adverse effects can be used
as a basis for test design. Software OT&E can
also provide a basis for suggesting parameters/
locations within software for redesign or
modification.

IV. OVERALL RELATIONSHIP BETWEEN DEVELOPMENT AND
OPERATIONAL TESTING

Having examined the background against which both
development and operational testing must take
place, and the problems encountered, let us now
summarize the overall relationship between DT&E
and OT&E, in six major points.

First: All . initial testing, whether DT&E or OT&E,
FicilTies from requirements levied in program
definition.

a. 	OT&E objectives are dynamic and reflect
near "real time" performance requirements of the
system.

b. 	DT&E requirements are nearly static due
to contractual commitments to early defined
requirements.

Second: Test assets for DT&E and OT&E should be
similar.

a. Test assets for all testing are defined
early in program development.

b. Changes in program development do not
adequately get reflected in OT&E support require-
ments, i.e., failures during DT&E require addi-
tional testing and assets during OT&E.

c. Test assets are similar but the man-
power and flavor of testing are significantly
different between DT&E and OT&E.

c. 	Test assets are similar but the manpower
and flavor of testing are significantly different
between 078E and OT&E.

d. 	Data reduction analysis of test data
are similar for both test phases and need to be
defined early during development, especially for
operational usage.

Third: DT&E is a transitional lead-in to OT&E to
ensure readiness for operational stressing.

a. This hand-shake concept falls short
when DT&E and OT&E are combined, and the sharing
of test assets (test articles, personnel, support
equipment, funds, and time) is required.

b. Sharing of information and delaying OT&E
until the system "passes" DT&E is an ideal
situation rarely achieved.

c. Too much competition between the program
office (to get the job done on time, within cost
no matter what) and the OT&E organizations (ensure
an operational and supportable system).

d. Requirements of OT&E often only high-
light program office problems regardless of the
actual causes (e.g., lack of funds, imposed con-
gressional or Air Staff direction.)

Fourth: Emphasis on type of assets differs:

a. Development testing is more concerned
with mission hardware and software to verify
accomplishment of mission essential performance
parameters.

b. Although system oriented, reality often
forces development of mission essential subsystems
at the expense of support systems.

c. Regardless of - program direction, opera-
tional testing is concerned with total system
capability and supportability.

d. Development testing can often be satis-
fied with simulated environment and prototype
system (or components) to test satisfaction of
requirements.

e. Operational testing is often required to
use nonoperational environment but stresses real-
istic environment and representative system for
test.

Fifth: Both OT&E and DT&E are subject to the same
program shortfalls, but DT&E gets their require-
ments first.

a. 	Both subjected to unrealistic, inflexible
schedules.

(1) Slips in OT&E often impose short-
ening of IOT&E schedule.

(2) Failures in DT&E cause shortages
in OT&E test assets without contingency funding.

b. 	Program Office often plans optimistically
for DT&E test assets and test schedule.

(I) Real life testing for most complex
weapon systems has resulted in need for pessimistic,
worse case planning.

(2) Problems caused in optimistic
planning are passed on to OT&E.

Sixth: Management goals differ between DT&E and urcr
a. Program office/DT&E responsible testing

organizations are concerned with meeting con-
tractual schedules, whether such schedules are
realistic or not.

b. OT&E agencies are concerned with
meeting Air Force operational requirements
schedules.

c. Both agencies are often up against
unrealistic program schedules provided by DOD or
Congress.

121

V. 	CONCLUSIONS AND OVERALL RECOMMENDATIONS

In summary, we have seen that there are inherent
problems that affect both development and opera-
tional testing, particularly for software.

a. Program budgets are normally baselined
and approved without inputs from proposed con-
tractors or test agencies.

b. Contractors typically underestimate the
level of work for weapon systems. Their objec-
tive seems to be for them to get their "foot in
the door" (lowest bidder) and then have the
option of increasing the price later.

c. Poor software configuration management
practiced by the contractors.

d. Poor software design provided by the
contractor--often caused by poor statement of
system requirements.

e. High order (software) language
standardization not progressing fast enough.

f. Inadequate time allowed for hardware
and software integration.

g. IOCs are unrealistic. IOCs should be
realistically stated in terms of a full concept
of employment and then exercised to demonstrate
performance to that concept (e.g., 30 days
deployment exercise).

h. IOT&E started too early, before system
is mature.

The duration of the acquisition process and the
total testing time might be shortened by extending
the period of source selection. In most source
selections, many people who are not very familiar
with the proposals are asked to review hundreds
of pages of documentation from several contractors
in just 1 or 2 weeks. If this period could be
lengthened to one or two months (perhaps requiring
some of the documentation to arrive before others)
so the reviewers could take more time, they would
most probably find the major differences among
the proposals and provide better information
with which to select a contractor. If the con-
tractor with the better ideas is indeed chosen,
fewer time consuming problems should arise in
the development phase.

There should be more emphasis on establishing the
software development capabilities of a potential
contractor prior to contract award. This would
include preaward surveys and, perhaps, establish-
ing IG-like teams of software evaluators to
assess contractor's management and software
production capabilities.

There should be increased emphasis on successful
accomplishment of design and system integration
milestones before allowing progress to later
milestones such as DT&E and IOT&E.

BIBLIOGRAPHY

1. Matthews, Allan R., "Personal Viewpoints,"
pg 22-23, ITEA Newsletter, April 1982, Volume II,
Number 1.

2. Department of Defense Directive 5000.3, "Test
and Evaluation," December 26, 1979.

3. Joint Logistics Commanders, Joint Policy
Coordinating Group on Computer Resource Management,
"Proposed Military Standard on Defense System
Software Development (MIL-STD-SOS)" 15 Apr 82.

4. Goodenough, J. B. and C. McGowan, "Software
Quality Assurance: Testing and Validation,"
IEEE Procedinqs, September 1980, p 1093.

ABOUT THE AUTHORS

Lieutenant Colonel Michael A. Blackledge is the
Deputy Chief of the Software Evaluation Division,
Directorate of Logistics, Air Force Test and
Evaluation Center, Kirtland Air Force Base, New
Mexico. He is currently responsible for assisting
in directing some 20 computer systems analysts and
engineers in the designing and planning of soft-
ware operational test and evaluation, administering
tests, analyzing data, and reporting results to
the Air Staff. He is a graduate of the United
States Naval Academy, and holds a master's degree
from North Carolina State University in Mathematics.
He was formerly the Chief of the Computer Support
Division for Tactical Air Command's Studies and
Analysis Agency, where he was responsible for
large scale war gaming simulation of the air-land
battle. In previous assignments, he provided
computer modeling support for Defense Communications
Agency to the Joint Chiefs of Staff, course
directed in the Mathematics Department of the U. S.
Air Force Academy, and supported high-altitude
nuclear effects calculations at the Air Force
Weapons Laboratory.

Major Walter G. Murch is the Chief of the Space/
Strategic Software Evaluation Branch at the Air
Force Test and Evaluation Center, Kirtland Air
Force Base, New Mexico. He is currently
responsible for activities and personnel in the
evaluation of software during operational test
and evaluation for Air Force systems. He holds
a master's degree from Air Force Institute of
Technology in Electrical Engineering and a
masters in Business Administration from the
University of Utah. He was formerly Chief of
the Satellite Control System Engineering and
Test Division in the NAVSTAR Global Positioning
System system program office (SPO) where he was
responsible for development, integration, and
test for the GPS ground segment. In previous
assignments, he was responsible for test design
and analysis for inertial guidance systems,
inertial navigation systems, and inertial
components.

122

THE SOFTWARE TEST AND EVALUATION PROJECT:

A PROGRESS REPORT

Richard A. DeMillo
School of Information and Computer Science

Georgia Institute of Technology
Atlanta, Georgia

R. J. Martin
Control Data Corporation -- Government Systems

Atlanta, Georgia

ABSTRACT

The Software Test and Evaluation Project was initiated by the Deputy Director
for Test and Evaluation in 1991. The primary objective of the project Is to
develop new DoD guidance and policy for the test and evaluation of mission
critical computer software. The information-gathering and analysis phases of
the project are now complete. This article gives a summary of the status of
the project, sketches of the state-of-the-art and current practice in soft-
ware test and evaluation, and a summary of the preliminary findinos and re-
commendations.

INTRODUCtION

	

The Software Test and 	Evaluation
Project (STEP) was intitiated by the
Deputy Director for Test and Evaluation in
1981. The primary objective of STEP is to
develop new DoD guidance and policy for
the test and evaluation of computer
software for mission critical applica-
tions. A number of subsidiary goals have
also been established for STEP. Principal
subgoals include the stimulation of tool
development, the support of guidelines
development, and the identification of
research issues and directions in the area
of software testing.

STEP Is conceived in four phases:
information-gathering, analysis, assess-
ment of feasibility, and policy
development. The contributions repre-
sented by the papers in these proceedings
are part of the information-gathering and
analysis phases of STEP. The National
Software Test and Evaluation Conference,
conducted with the generous support of the
National Security Industrial Association
(NSIA) Software Group and co-sponsored by
the Office of the Secretary of Defense, is
Intended to provide a national forum for
discussing the state-of-the-art and
current practices 	in 	the 	test 	and
evaluation of military software.

In this article, we will present the
the rationale for seeking improved DOD
guidance in software test and evaluation,
organization and current status of STEP,
an overview of the state-of-the-art in
software testing, an overview of current
Practice in software testing, and a sketch
of our preliminary findings.

RATIONALE

The role of software in escalating
the cost and driving down the reliability
of military systems has been discussed
extensively in recent years (1,21. As a
result, the relative imbalances in the
testing of hardware and software have
become increasingly visible to the defense
acquisition community. In 1974, the
Defense Science Task Force on Test and
Evaluation observed: "whereas the hard-
ware development was...monitored, tested,
and regularly evaluated, the software
development was not."

Current 	estimates 	of 	increased
software costs arising from incomplete
testing help to illustrate the dimensions
of the problem (see Figure 1). Averaged
over the operational lifecycle of an
embedded 	computer 	system, development
costs comprise approximately 30% of the
total costs. 	The remaining 70% of the
lifecycle 	costs 	are 	absorbed 	in
maintenance. maintenance activities can
include both system enhancements and the
repair of errors. These are errors that
might have been uncovered during by more
complete testing during earlier phases.
Costs in the development phase are
distributed as follows: requirements and
specification development, 20%, design and
coding, 35%, test and integration, 45%.
Thus, assuming that half of all
maintenance costs are incurred in the
repair of previously undetected errors,
approximately one half of the operational
lifecycle costs for embedded applications
can be traced directly to testing
activities; that is, either these costs
are Incurred by testing or are due to
errors left undiscovered by testing.

123

A simple breakdown of costs does not
reflect the impact which undetected errors
have on total operational costs. As shown
in Figure 2, the relative cost of repair-
ing errors in software rises dramatically
between 	requirements and specification
phases and the maintenance phase. 	Of
course, there are other implications of
undetected errors in military systems.
The mission critical nature of software in
many modern systems means that software
which fails during system operation can
pose considerable risk to bOth the success
of the mission and the safety of the
personnel.

Primary DoD guidance for test and
evaluation derives from DOD Directive
5000.3. This directive applies to both
hardware and software components of
military systems and sets 	forth 	the
framework 	within 	which more specific
military regulations and standards must
operate. 	Three provisions of DoOn 5000.3
are particularly relevant to 	software
testing. 	First, Don 5000.3 states that
"Quantitative and demonstrable Performance
objectives and evaluation criteria shall
be established for computer software
during each system acquisition phase...
Decisions to proceed from one phase of
software development to the next will be
based on quantitative demonstration Of
adequate software performance through
appropriate test and evaluation." Second,
DoOD 5000.3 requires that software be
operationally tested using "typical
operator personnel." Third, DoDD 5000.3
requires that operational test and
evaluation (OTGE) agencies "participate in
software planning and development to
ensure consideration of the operational
environment and early development of the
operational test objectives."

For a variety of reasons existing
guidance 	statements have not had the
desired effect. 	Operational tests and
test objectives are freouently stated in
terms of overall system requirements with
little or no attention to the software
components. Although "typical operator
personnel" may be essential for a tnorougn
operational test, user involvement at
earlier stages of development is widely
thought to be desirable for effective
design. while testing of hardware
components may result in a database of
quantitative test results against which
reliability and risk models may be
applied, software components are seldom
accompanied by objective evidence of the
effectiveness of the testing effort.

THE SOFTWARE TEST AND EVALUATION PROJECT

STEP consists of four phases intended
to lead to improved DOD guidance for
software test and evaluation (ME). Phase
I was an information gathering effort
aimed at assessing the state-of-the-art
and the state of current practice in
software ThE. During Phase I an extensive
survey of known techniques and tools for
software testing was carried out. A
summary of the state-of-tne-art conclu-
sions is presented below. The assessment
of the state of current practice was
accomplished by surveying DOD agencies,
the military services, program offices,
()TILE agencies, and Defense contractors.
The survey methodology and a summary of
the results is also presented.

An important activity in Phase I was
a workshop held at the Defense Systems
management College (DSMC) in March, 1982
(3). "Attendees at this workshop included
representatives of Do0 agencies, the
military services, OTGE agencies, DSMC,
and NSIA. The goal of the workshop was to
Provide input to tni STEP contractors on
various aspects of software TGE at the
start of the data gathering effort.
Presentations given 	at 	the 	workshop
included 	a summary of STEP goals, a
Presentation of the Embedded 	Computer
Resources Initiative, a presentation of
the Software Technoloav Initiative, and a
summary Of the Ada Initiative. Views and
activities of DSMC, NSIA, DCA, and the
Army, Navy, and Air Force OTGE agencies
were also presented.

STEP Phase II consists of an analysis
of the state-of-the-art and current
Practice in software ThE. In addition to
evaluating the data gathered under Phase
I, a panel of advisors was assembled to
provide input from a cross section of the
military, industrial, and university
communities involved in software testing.
Phase II will culminate with a set of
recommendations being submitted to MTGE
concerning the feasibility of formulating
new policy for software T&E.

Phases III and IV of STEP are yet to
be conducted. Phase III consists primar-
ily of the assessment of whether new
guidance can be formulated, while Phase IV
is the actual development of policy
statements.

124

STATE-OF-THE-ART OVERVIEW

Current research in software testing
centers almost solely on testing for
correctness, that is, on techniques that
raise the users' confidence that tne
software functions in accordance with its
specifications. "Testing" refers specifi-
cally to the activity of executing
software on data (the test sets) designed
to either reveal the presence of errors or
insure their absence. Therefore, software
testing is distinguished from other
activities aimed at increasing software
reliability (such as structured design
techniques, formal program proving, and
statistical reliability modelling).

Three aspects of extant 	research
efforts in software testing are relevant
for assessing the state-of-the-art:
testing methodologies (i.e., methodologies
for either generating test sets or
determining the quality of previously
generated test sets), testing tools (i.e.,
automated systems which implement one or
more testing methodologies), and new
hardware and software technologies which
Impact system reliability. In the sub-
sections below, we will briefly outline
the state-of-the-art in each of these
three areas. A more detailed treatment of
each of these topics can be found in the
"STEP State-of-the-Art Overview" (4).

Test Methodologies. 	A test methodology
consists of two (not always distinct)
components. The first is a strategy which
guides the overall testing effort, while
the second is a testing technique which is
applied within the framework of a test
strategy.

Test Strategies. Module testing is
the process of testing logical units of a
program and integrating the individual
module 	tests to evaluate the overall
system. 	Main considerations in module
testing are the design of test cases and
the coordination of 	testing 	multiple
modules. Test cases may be constructed
from specifications or by analyzing the
module code. Testing strategies corre-
sponding to these approaches are called
black-box and white-box strategies,
respectively. There are two approaches to
combining module analysis: incremental
and nonincremental. Top-down and bottom-
up testing are two incremental approaches.
Thread testing is another strategy based
on system requirements. Strateoies have
also been proposed for testing software
throughout its development. Finally,
several new strategies have been proposed
based on an "evolutionary" view of the
software lifecycle: systems are construc-
ted as working subsystems corresponding to
critical functions, and tnese subsystems
are subjected to development and
operational tests.

Testing Techniques. 	A variety of
testing techniques have been proposed in
the literature (see, e.g., the biblio-
graphy of [4]). These techniques can be
classified as follows: static analysis,
symbolic testing, program instrumentation,
program mutation, input space parti-
tioning, functional program testing,
algebraic program testing, random testing,
grammar-based testing, data-flow guided
testing, and real-time testing.

Static Analysis. In static analysis,
the requirements, design documents, and
program code are analyzed without actually
executing the code. Only limited analysis
of programs containing dynamic data types
and structures is possible usina static
analysis. Experimental evaluation of code
inspections and walk-throughs has found
these techniques to be very effective in
detecting from 30% to 70% of the logic
design and coding errors in typical
Programs.

Symbolic Testing. To test a program
symbolically, 	input 	data and program
variable values are given 	formal 	or
"symbolic" values. The possible execu-
tions of a program are also characterized
formally. The execution of the program IS
then simulated by a symbolic evaluator
which interprets the formal representation
of the program and data. The techniques
for building expressions which descibe the
state of the symbolic execution of a
Program lean heavily on techniques
developed for proving program correctness.
Studies describing the effectiveness of
symbolic analysis for detecting errors
indicate that it may be an effective
technique for moderately large modules.

Program Instrumentation. 	Programs
can 	be instrumented by statements or
routines that do not affect the functional
behavior 	of 	the program, but record
properties of the executing program.
Additional output statements, assertion
statements, monitors, and history-
collecting subroutines may be used to
instrument programs. Experimental evalu-
ations of instrumentation techniques
indicate that experienced testers 	can
decrease 	the debugging time for even
complex programs using these techniques.

program mutation. 	Program mutation
is a technique for the measurement of test
data adequacy. Test adequacy refers to
the ability of the data to insure that
certain errors are not present in the
Program under test. In mutation testing,
test data is applied to the program being
tested and its "mutants" (i.e., programs
that contain one or more likeley errors).
If a program passes a mutation test, then
either the program is correct or 	it
contains an improbable error. 	Fxperi-
mental evaluation of mutation 	testing
indicates that the results of mutation
testing are good predictors of operational
reliability.

125

Input Space Partitioning. A path in
a program consists of a possible flow of
control. In path analysis techniques, the
input space of a program is partitioned
into path domains: those subsets of the
Program input domain that cause execution
of the paths. Path analysis can detect
computation, path, and missing path
errors. Domain testing detects many path
selection errors by considering test data
on or near the boundaries of path domains.
In partition anlYsis, the specification of
a program is partitioned into subspecifi-
cations. The subspecifications are then
matched with domain partitions to increase
the sensitivity of the test. All of these
techniques have been shown theoretically
and experimentally to be generators of
high quality test data, although current
technology limits their use to programs
which have a small number of input
variables.

Functional Testing. 	In functional
testing, the specification of a program is
viewed as an aostract description of its
design. 	Function and data abstractions
are used as guides to identify the
abstract functions of a program and to
generate the functional test data.
Functional testing reauires the specifica-
tion of domains for each input and output
variable of the program. Extremal and
special values are the most important
values in the domain of a variable. In a
study of errors that occurred in a release
of a major software package, functional
testing was effective in detectina 38 out
of 42 Known errors.

Algebraic Testing. 	In 	algebraic
testing, program correctness is viewed as
an equivalence proolem. Since the general
equivalence 	problem 	is 	undecidable,
Programs to which this techniaue Is
applicaole must fall in a restricted class
of programs for which execution on a small
test set is sufficient to infer equiva-
lence. Applications of algebraic testing
to array manipulation programs, polynomial
evaluation programs, and other mathe-
matical programs have aopeared in the
literature. Monte Carlo methods exist for
algebraic testing procedures which make
the tecnniaue tractable for many problems.

Random Testing. 	Random testing is
essentially a black-box testing tecnniaue
in which a program is tested by randomly
sampling inputs. Depending on the sensi-
tivity of the analysis desired, the
sampling technique may be independent of
the actual distribution of inputs or may
attempt to accurately reflect the
distribution of the operational environ-
ment. Random testing is useful in making
operational estimates of software relia-
bility and has some connection to problems
arising in operational testing.

Grammar-based Testing. Formal speci-
fications of some software systems can be
given by state diagrams. By considering
the state diagram to be a description of
an automaton, classical machine identifi-
cation experiments can be conducted to
determine whether or not a program
implementing 	the 	automaton 	does 	so
correctly.

Data-Flow Guided Testing. Data flow
analysis 	is 	a 	method for obtaining
structural information about programs
which has found wide applicability in
compiler desian and optimization. One
result of data flow analysis Is a set of
dynamically meaningful relationships among
Program variables. Control flow informa-
tion about the program is then used to
construct test sets for the paths to be
tested.

Real-time Testing. 	The character-
istic phases of real-time software testing
occur 	during 	development 	(on 	the
development 	"host") 	and 	operational
testing (on the operation "target").
Systematic techniques for testing real-
time software during development, for the
most part, do not make essential use of
the fact that the software is real-time.
Testing an integrated system on a
development host requires an environment
Simulator and devices for controlling
on-going processes. In testing real-time
software on target machines, overall test
objectives for the hardware/Software
system are used, and performance becomes a
key observable factor in assessing the
result of the tests. While the literature
contains very few systematic techniques
for real-time testing, studies of large-
scale real-time software systems tests
have been published, and some of these
experiences may generalize to other
applications.

Testing Tools. 	Testing tools may 	be
classified by whether they carry out
static or dynamic analysis of the program
under test. Static analyzers are systems
that manipulate source code to reveal
global aspects of program logic, struc-
tural errors, syntactic errors, variations
in coding style, and interface
consistency. Static analyzers consist of
front end language procesors, data bases,
error analyzers, and report generators.
Basic operations include data collection,
error analysis, and error report
generation. Existing static analyzers
differ in terms of their scope of error
analysis, the flexibility of user command
languages, and the nature of error
descriptions. Static analyzers have been
used in many reported software development
efforts. Dynamic analyzers, in addition
to implementing many of the techniques
described above, are used to generate test
data, provide a convenient test environ-
ment, and compare program test output with
expected output.

125

Symbolic Evaluators. Symbolic evalu-
ators implement the symbolic evaluation
testing technique. They provide the user
with the ability to input loop and control
point assertions and symbolic values for
Input variables. They also allow the user
to monitor the symbolic execution of the
Program.

Test aata Generators. 	A test data
generator is a tool which assists the user
in the preparation of test sets. Three
types of generators have aopeared in the
open literature: pathwise test gener-
ators, specification-based generators, and
random generators. Pathwise test
generators have four basic operations:
program construction, path selection,
symbolic 	execution, 	and 	test 	data
generation. Specification-based oener-
ators provides the user with a language
for constructing test case specifications:
the system carries out the actual
generation of test files from the tet
specifications. kandom test generators
choose random values from the input domain
according to statistical parameters set by
the user.

Program /nstrumentors. These systems
gather execution data to reveal character-
istics of a program's internal behavior
and performance. In practice, instrumen-
tation tools are the principal tools used
to detect errors that cannot be detected
by static analysis. Systems exist which
provide coverage analysis, monitors and
assertions, and detection of data flow
anomalies. In addition, instrumentation
subsystems can be found in several other
types of testing tools.

Mutation Tools. An automatic muta-
tion system is a test entry, execution,
and data evaluation system that evaluates
the quality of test data based on the
results of program mutation. In addition
to a mutation "score" that indicates the
adequacy of the test data, a mutation
system provides an interactive test
environment and reporting and debugging
operations which are useful for locating
and removing errors.

Automatic Test Drivers. 	Automatic
test drivers are software systems that
simulate an environment for running module
tests. They may provide standard notation
for specifying test cases and automating
tne testing process. Some systems also
compare the resulting output with the
expected output and report discrepancies.
Some test drivers operate on object
modules, while others operate on source
modules. Since the automation of the
testing process is an integral part of
most test tools, automatic test drivers
appear in some form in most systems.

Comparators. 	A comparator 	is 	a
system that compares two versions of data
to identify differences. Comparators are
used in the validation process to limit
the scope of re-testing of revised
software. The main differences among com-
parators lie in the form of the data and
the flexibility in specifying tolerances
for each comparison.

The report CC contains a catalog of
existing tools in each of these categories
and a summary of their availability and
support. Generally, however, it appears
that testing tools which are available as
supported, nonproprietary packages are
rare. It is more common that testing
tools are systems that are constructed and
customized to a single software develop-
ment project. Generalization, documenta-
tion, marketing, and support of such
custom tools is capital intensive and is
seldom carried out.

New Technology. 	Two aspects 	of 	new
technological developments are relevant to
software testing. First, there are new
technologies 	that hold some hope for
improving the programming process. 	New
languages such as Ada, new views of the
software 	lifecycle, 	prototyping, 	and
reusable software all give software
developers new tools and concepts to work
with. Modern operating systems give
Programmers collections of tools which
will aid in the testing effort. Standard
architectures ease the transition from
host environments to target environments.
It has also become possible to "freeze"
certain critical system components is
custom hardware. While, the problems of
determining correctness of design remains
in transitions to hardware implementation,
the static nature of nardware and the
visibility of hardware interfaces may
reduce 	the 	severity of many testing
problems.

Second, new technology presents many
new reliability problems. New appli-
cations such as distributed computing and
communications 	rely on complex inter-
actions of concurrent processes. 	These
systems have thus far been as resistent to
systematic testing techiques as older,
real-time applications. Since many of
these systems come equipped with stringent
reliability requirements, new testing
techniques are clearly needed. Customized
hardware designs, in addition to providing
benefits such as those mentioned above,
also present new difficulties. As the
density of functions that can be placed on
a single chip increases, so does the
complexity of the testing effort needed to
determine that the designs are correctly
implemented in the hardware. Existing
hardware verification techniques do not
appear to be adequate.

127

6ummary of the State-of-the-Art. 	There

exists 	a 	body 	of 	software testing
technology which can be applied to
increase the level and sensitivity of
development testing. At present, there is
little to guide software test groups in
the choice of one technique over another,
and choices will for the present be made
on economic grounds. 	It seems obvious

that 	using a systematiC technique is
superior to ad -hoc testing, but there is
very little objective evidence to support
this observation. The best approach is
probably to cnoose a combination of
techniques and tools which gives a level
of test aoprOpriate to the required
reliability of the software and can be
justified on the basis of overall system
costs. Except for the few tools that are
either in the public domain or available
from tools vendors, testers will -- in the
near term -- have to construct their own
tools.

OVERVIEW OF CURRENT PRACTICES

In order to suggest improvements to
the current practices in software test and
evaluation for DoD applications, one must
first know what those current practices
are. Therefore, a survey of the state-of-
the-practice was conducted.

§urvey Methodology. 	The approach taken
was to interview selected representatives
of the military and industry on such
subjects 	as 	.military regulations and
standards, 	reviews 	and 	inspections,
testing techniques, tools, quality
assurance, independent verification and
validation, and risk assessment. To aid
in the accomplishment of this effort, a
set of data gathering guides were
developed. Each guide was tailored with
respect of tne function of the group being
interviewed. These groups included HO and
Development Commands for the military
services, Program Offices for selected
programs, OT4E agencies, and Defense
contractors. Although the guides were not
administered as formal questionnaires.
they did ensure that the same type of
information was gathered during interviews
with representatives of each functional
group. In addition, the use of personal
interviews rather than the mass mailing of
questionnaires helped circumvent the
problem of differing terminologies.

Survey 	Results. 	In 	the 	following
subsections, we will describe the type of
information requested of each of the
functional groups during the interview
process. Due to the amount of data
gathered, it is not possible to present
specific results in this article.
Therefore, only general impressions of the
state-of-the-practice in software TtE will
be discussed. For a detailed presentation
of the information gathered, see "STEP
Current Practices Overview" (5).

HO 4 Development Command Interviews.
were 	conducted Interviews with

representatives of the Headquarters and
Development Commands for the Army, Navy,
and Air Force. The primary purpose of
these interviews was to determine what
guidance the Headquarters receive from the
Department of Defense with respect to
software TtE, what guidance they pass on
to the Development Commands, and how the
Development Commands are assisting the
Individual project offices.

As was described earlier, the primary
guidance given to the DOD components for
software T&E is Do00 5000.3. Each of the
military services has implemented DoDD
5000.3 in regulations applicable to their
speCifiC circumstances. Those regulations
of interest to us are, primarily, Army
Regulation 70-10, the Navy TADSTANDS, and
Air Force Regulations 80-14 and 800-14.

Military Standards also exist tor use
by contractors who are developing software
for military applications. These include:

NIL -STD 1679 (NAVY)
- weapons System Software Development

MIL-S 52779A
- Software Duality Assurance Program

MIL-STD 1521A (USAF)
- Technical Reviews and Audits

MIL-STD 490
- Specification Practices

MIL-STD 483 (USAF)
- Configuration Management Practices

For a summary of the contents of
these Military Standards and other
guidance documents, see 153.

In 	addition 	to 	the 	existing
standards, the Joint Logistics Commanders
have been directing efforts to produce
tri-service standards. This has resulted,
in part, in MIL-STD SOS on "Defense System
Software Development". MIL-STD SOS estab-
lishes requirements with respect to
software requirements analysis, design,
code, testing, configuration management,
quality programs, and project planning and
control. It should be noted that although
MIL-STD 505 is currently in the review
Process, some contractors are requesting
waivers to use it as an alternative to
other standards. The potential benefits
of MIL -STD SDS are that it addresses the
entire software life cycle, provides
uniform terminology and definitions, and
is for use by all of the military
services.

128

Project Interviews. Interviews were
conducted with representatives of specific
Project offices for major systems which
are currently under development. During
these interviews, information was gathered
on project status and history, military
regulations and standards invoked, reviews
conducted, development test and
evaluation, acceptance testing, quality
assurance programs, independent verifi-
cation and validation activities,
operational test and evaluation, and risk
assessment. One result of these
interviews 	was 	the discovery of tne
complete faith which the military
acquisition organizations place in their
contractors. This is evidenced by the
lack of formal procedures for tracking
Progress during the coding, module
testing, and integration testing phases of
the software development life cycle.

DUE Agency Interviews. Each of the
military 	services has an organization
which has been given the mission 	to
operationally test and evaluate new and
modified systems. These CUE Agencies are
the Operational Test and Evaluation Aaency
(OTEA - Army), the Operational Test and
Evaluaion Force (OPTEVFOR - Navy). and the
Air Force Test and Evaluation 	Center
(AFTEC). 	Since the testing which is
performed by these organizations is
operational testing of systems. software
is usually singled out on an exception
only basis. However, due to the special
section in DoDD 5000.3 on Test and
Evaluation of Computer Software, groups
which specialize in software T&E have been
formulated within each organization.
These specialists, in some cases, are
involved with the development of new
systems from the time of conception. They
attend the Computer Resource Working Group
meetings, Preliminary and Critical Design
Reviews, and may even witness acceptance
testing. Another example of the OT&E
agencies' increased Interest in software
is a set of handbooks which has been
developed by the Software Evaluation
Element of AFTEC for use when evaluating
the operational effectiveness and
suitability of software.

Defense 	Contractor 	Interviews.
Interviews 	were conducted with twelve
defense contractors. 	These contractors
are involved in the development of
applications software, the development of
support software, and the independent
verification and validation of military
software systems.

	

Applications 	Software 	Developers.
Six 	contractors were interviewed with
respect to their efforts toward developing
applications 	software for embedded or
mission critical computer systems. 	The
customers dealt with spanned the three
military services and many other 	DoD
components. The subjects discussed
included military and internal standards;
requirements, design, and code analysis
techniques; the levels of testing
performed; tools: quality assurance;
independent verification and validation;
and risk assessment. Most of the testing
conducted exercises system functions with
very little attention being paid to the
coverage achieved. Few testing tools,
other than simulators, and no metrics,
were found in use within this population.
In general, the methods used to determine
whether or not a program is ready for the
next phase of the developemnt process,
whether that be Integration or release,
are both manual and subjective.

'Support Software Developers. 	Two
organizations 	which 	develop 	support
software were also interviewed. Although
the subject areas discussed were identical
to those discussed with the applications
software developers, the interviews
conducted with these contractors centered
upon the development and certification of
compilers. The major difference between
the testing of applications software and
support software is the degree of
automation used. In each case, a standard
and extensive set of certification tests
are run prior to each release. Very
little human intervention is needed either
when running these tests or when checking
the results.

IV&V 	OroanIzations. 	Independent
Verification and Validation (IV&V) is a
risk reducing technique which is applied
to many major programs under development
today. Four industry contractors whose
primary function is to conduct an
independent evaluation of the software
development efforts of another contractor
were interviewed. Due to the high cost of
IV&V, the activities described were
usually only performed for a portion of
any software system. The information
gathered during these interview pertained
to the military regulations and standards;
the scope of the IV&V effort and the time
of initial involvement; the relationship
to the project office and development
contractors; 	requirements, design, and
code analysis techniques: 	independent
testing: 	tools; 	metrics; 	and risk
assessment. 	The 	most 	promising
information which resulted from these
interviews relates to metrics. One of the
IV&V contractors is working toward
applying the metrics framework described
in RADC reports to a major program.

129

Summary ot Current Practices. In general,
the personnel involved in the development
of military software are doing the best
they can with the resources available to
them. Unfortunately, those resources fall
short of the resources needed to produce
systems which meet the required
operational reliability. There is a lack
of qualified personnel in the acquisition
organizations to track the progress of the
Defense contractors. The testing tools
which could help the Defense contractors
ensure that the software systems they
Produce are of high quality are not
available. And, of course, when the
budgets are cut or the schedules slip, the
activities which suffer are testing and
quality assurance activities.

PRELIMINARY RESULTS

Two trends are evident in the studies
conducted in Phases I and II. The first
relates to the state- of - the -art. Even
though research and development efforts in
software testing are still quite immature.
a number of testing methodologies exist
which yield reasonably nigh -quality tests
of programs. Further refinement of these
teenniaues, the development of tools for
their implementation, and the appearance
of new techniques should make systematic
testing of mission critical software a
realistic goal of every development
Project. The second trend relates to tne
conduct of software testing in practice.
There is a growing realization in the
acquisition community that there is a need
to monitor and control the software
development process, and testing is an
important part of that process. At the
Same time, software developers do not see
any helpful guidance from project offices
wnich deals in a specific way with
software testing.

A number of weaknesses in software
TEE as it is currently practiced were
identified quite early in our study (3):

1. Lack of TEE Planning. when there
is no planning for TEE, or when planning
does not occur early enougn, there is a
Problem in recognizing the scope of the
reouired testing effort. This problem Is
most apparent in development testing. DoD
guidance in TEE addresses operational
requirements, but planning for thorough
tests of critical software components is
rare.

2. Lack of TEE Resources. 	Testing is
labor-intensive. 	At 	the 	development
level, 	studies 	have 	indicated 	that
systematic 	testing 	consumes 	as mucn
resources as the original 	programming
effort. 	In addition, the development of
customized test environments and other
tools may comprise a small development
subproject. without adequate resources
these activities can be only neglected
stepchildren of the project. During
operational tests, personnel support is
equally critical.

3. Lack of Testing Requirements, 	Test
requirements are most frequently
formulated in terms of overall system
requirements. For example, specifications
that set performance Criteria are
difficult 	to 	test 	prior 	to system
integration.

4. TEE Shortcuts. There is a tendency to
shortcut testing efforts due to budget and
scnedule 	pressures. 	This 	forces
incomplete testing, testing to obsolete
requirements, and inadeauate management
and documentation of the testing effort.

5. Unrealistic Deadlines. 	It follows
that 	since 	TEE 	consumes 	resources
(including time) deadlines must be
sensitive to the scope of the testing
effort. In practice, requirements force
unrealistic deadlines on the testing
phases.

6. Lack of Indeoendent Test Teams. 	In
general, 	developers 	have 	too 	much
involvement in tne testing effort. 	The
transfer of development personnel into
testing organizations as the 	software
Proceeds from the coding and unit testing
phases to integration is common. 	Many
errors are simply carried along in this
manner.

7. Lack of Regression Testing Techniques.
Retesting software which has been modified
is too expensive. minor changes in large
systems that have not been designed with
test requirements in mind, that require
human operator involvement, or that have
been 	poorly 	Partitioned 	can 	demand
retesting far out of proportion to the
scope of change. Not only does this waste
scarce testing resources. it indicates
that system maintenance will also 	be
costly.

B. Lack of TEE Tools. There has been a
lack of investment in software tools for
TEE. Tools which are created for a given
project are seldom transferred to more
general settings. As a result, many
development efforts have a large
•throw-away" component. In addition, TEE
tools such as simulators, which can bridge
the gap between development and
operational testing, are rarely given the
support needed to be useful components of
the test environment.

9. 	Educational Problems. 	There is a
widespread lack of sensitivity to the
special problems of software testing.
Managers with hardware or weapons systems
backgrounds avoid treating software as a
critical system component. By the same
token, tecnnical personnel with software
backgrounds often do not view themselves
as part of an engineering effort,
assigning software problems a soecial
status and isolating them from standard
engineering approaches.

130

10. Lack of Quantitative Models. 	While
hardware components of systems generally
come equipped with physical models and
objective 	data 	on 	which 	to 	base
reliability and risk estimates, the
evaluation of software is usually viewed
as subjective. Objective measurements --
when they can be taken -- are seldom used
in the decision making process, either
because of resource constraints or due to
the lack of validation of underlying
models.

major revision of DoDD 5000.3 and the
attendant modifications to more specific
regulations and standards will have a
significant impact on these problems.
However, the usefulness of new guidance in
software TiE will be mediated by how
rapidly the - research, development and
acquisition communities move toward
state-of-the-art application of existing
technology. One of the most significant
needs is support for tool development.
This may involve modifying contract
funding patterns, 	and 	may 	initially
increase project costs. However, there
seems to be a consensus that testing
cannot be justified on narrow economic
grounds. Total lifecycle costs must be
taken into account. Along the same lines,
incentives mut be provided for improved
testing throughout the
development/lntegration portion of 	the
lifecycle. This may require major
revisions of the development process. For
example, build-test-build approaches to
software comoonents that implement high
risk functions may be developed.
Regulations that address detailed unit and
module testing requirements will also
help.

New guidance and regulations must
also be realistic. If developers and
testers find themselves too constrained by
regulations, they will not have the
desired effect. It has been noted, for
example, that not all software components
are created equal: some implement
critical functions and others do not (31.
To require the same level of testing and
therefore the same resources for all
components is probably not realistic.

Software developers and requirements
writers must eventually strike an accord.
On one hand development groups should
recognize that neither requirements nor
specifications are likely to remain static
-- they must learn to cope with change.
On the other hand, those who formulate
requirements cannot assume that software
is arbitrarily malleable: software
changes 	may 	be 	as 	expensive 	and
far-reaching as changes to any 	other
system component. System retests and
budget/schedule shortages are currently
victims of the tension between
requirements and development groups.

Finally, basic research is needed.
There is no quantitative risk model for
software. Software measurement techniques
are still at an early stage of development
so that objective data is still only a
goal. 	Testing techniques, methodologies
and tools need further development. 	The
cost-quality 	tradeoffs 	for 	various
techniques 	must 	be 	quantified 	if
developers and testers are to make a
choice from among the existing techniques.

CONCLUDING REMARKS

It is certainly feasible to formulate
new DoD guidance for software T&E. We
have already sketched the state-of-the-art
and current practices in software ME.
New guidance must address the problems
listed in the previous section, either
directly or indirectly by encouraging new
technology and acquisition procedures.
with such encouragement, the technological
"window" will move to provide more
effective techniques for software ThE.
New guidance should be general;
development testers and operational test
groups should not feel bound by mandated
test procedures that fit neither their
application nor their environment. The
exact form that such guidance will take
and its ultimate effect on the reliability
of future military systems awaits furtner
study.

REFERENCES

111 Research 	Directions 	in 	Software
Technology, P. wegner, editor, MIT Press,
1979.

(21 "Candidate R&D 	Thrusts 	for 	the
Software 	Technology 	Initiative," 	S.
Redwine, E. 	Siegel, and G. 	Berglass,
Department of Defense, 1981.

(31 "Transcript of Proceedings: 	Software
Test and Evaluation workshop," Defense
Systems Management College, Fort Belvoir,
VA, 	March, 	1982 	(Technical 	Feport
GIT-ICS-62/13. 	Georgia 	Institute 	of
Technology, Atlanta, GA, 30332).

(41 "STEP State-of-the-Art Overview" (to
appear 1983).

(51 "STEP Current Practices Overview" (to
appear 1983).

131

oaw MOM.

EMBEDDED SOFTWARE COSTS
	

EMBEDDED SOFTWARE COSTS
FIGURE 1(a)
	

FIGURE 1(b)

OPERATIOWL UFECYCLE DEVELOPIAENT CYCLE

RELATIVE COST OF ERROR CORRECTION
FIGURE 2

MAIM UNIT

11011r/11111111• ►11111 O•II•MIO•L

ABOUT THE AUTHORS

1•

IS

1•

•
•
a

•

RICHARD A. DEMILLO is Professor of
Information and Computer Science at the
Georgia Institute of Technology in
Atlanta, Georgia. In addition to being
the Principal Investigator for the STEP
Phases I and II contracts, he teaches and
conducts research in software engineering,
computer security and theoretical computer
science. Dr. DeMillo received his Ph.D
from Georgia Tech in 1972. Prior to
returning to Georgia Tech in 1976, he was
on the faculty of the University of
Wisconsin. He has also been associated
with the Los Alamos National Laboratory
and with a number of government and
private organizations as a consultant.

R. 	J. 	MARTIN 	is 	a 	Research
Scientist with Control Data Corporation,
Government Systems, in Atlanta. She is
currently Project Manager for the STEP
Phases 1 and Il subcontracts. Ms. Martin
is completing the M.S. degree in
Operations Research at the Georgia
Institute of Tecnnolooy. Prior to joining
Control Data in 1981, she was affiliated
with IBM Corporation in Houston and
Atlanta. In addition to her interests in
software ThE, she is currently directing
an NSIA study for the Air Force Electronic
Systems Division on C2 Software
Development and Acquisition.

132

NSIA/OSD
NATIONAL CONFERENCE ON SOFTWARE TEST AND EVALUATION

PANEL DISCUSSIONS

Introduction

At the end of formal presentations for each of the three days of
the conference, the speakers* were assembled as a panel to answer
questions from the audience. The panels for each day were:

February 1, 1983: Dr. Richard A. DeMillo, Chairman

Dr. Edward Miller
Dr. Richard J. Lipton
Dr. James F. Leathrum
Dr. Leon Osterweil
Dr. Leon Stucki
Dr. Victor R. Basili
Mr. Ralph San Antonio
Dr. Martin Shooman

Ms. Carolyn Gannon

February 2, 1983: Ms. R.J. Martin,

Mr. Marion F. Moon
Mr. Raymond J. Rubey
Dr. Peter Wegner
Dr. Douglas Giese
Ms. Marilyn J. Stewart
Captain William P. Nelson

Mr. James Hess

Major Edward E. Stevens
Lt. Col. Michael A. Blackledge

Mr. Sam DiNitto

Software Research Associates
Princeton University
Clemson University
University of Colorado
Boeing Computer Services
University of Maryland
Dynamics Research Corporation
Polytechnic Institute of New
York
General Research Corporation

Chairman

Hughes Aircraft
Softech
Brown University
TRW
Booz-Allen and Hamilton, Inc.
USAF Electronic Systems
Division

US Army Materiel Development
and Readiness Command
USAF Systems Command
USAF Test and Evaluation
Center

RADC

* In addition to the presentations given by the authors of the papers
in the preceding pages, presentations were made by: Mr. James Hess
(Test Procedures and Project Management); Mr. Sam DiNitto (Software
Technology for Adaptable, Reliable Systems); Colonel J. Frank Campbell
(Army Perspectives); Captain David Boslaugh (Navy Perspectives); and
Colonel Edward Akerlund (Air Force Perspectives).

133

February 3, 1983: Dr. Richard A. DeMillo, Chairman

Mr. Donald R. Greenlee

Colonel J. Frank Campbell

Captain David Boslaugh

Colonel Edward Akerlund

Ms. R. J. Martin

Office of the Director, Defense
Test and Evaluation

US Army Materiel Development
and Readiness Command
Navy Materiel Command

Air Force Systems Command

Control Data

The following is an edited transcript of those panel discussions.
Questioners were given the opportunity to identify themselves and
their affiliations. Those who did not identify themselves appear in
the transcript as anonymous questioners.

134

1 FEBRUARY - PANEL DISCUSSION

DR. RICHARD DEMILLO (GEORGIA INSTITUTE OF TECHNOLOGY): 	I have a
question for Lee Osterweil. Your analogy to carpentry tools breaks
down in the following sense: in order to build a house you have to
drive nails into the wood, to build software you don't have to have
the tools. Does that figure into your definition of what a tool is?

DR. LEON OSTERWEIL (UNIVERSITY OF COLORADO): I guess I would claim
that to build software, you really do have to have some kind of tools;
you need a compiler and things like that. To build a house you really
don't need to have anything very much fancier than a screwdriver and a
hammer. The more you have, the better the product looks at the end.
I think that is the point. The quicker you can get it done, the
better you can get it done. People built houses long before they had
fancy collections of tools. People build software, today, even
without fancy collections of tools. It is simply a question of being
able to do it better when you have better tools and to do it more
effectively.

MR. SAM REDWINE (MITRE): I have a lot of interests, but I'm going to
address one particular problem because it came in front of me
recently. I was advising some people about what they ought to put in
an RFP, and I said you clearly ought to put in a requirement to
collect a bunch of data, the kind that you know is good to collect.
Then I looked around and tried to find, from DACS or elsewhere, a
description that could be contractually referred to, and I found
none. I wondered if anyone could address that problem.

DR. DEMILLO: Is that to anyone in particular, or to the panel?

MR. REDWINE: Anyone who can answer with a positive answer, but I
don't have any preference.

DR. MARTIN SHOOMAN (POLYTECHNIC INSTITUTE OF NEW YORK): 	You're
talking about specifications and how to submit that into DACS, what
kind of data, is that what you're referring to?

MR. REDWINE: Well, that was my simple first approach, but when I
talked to various people, it turns out, for example, they're right now
in process between their old definitions and their new description of
what sort of data they may want. That is some time away in the frame
of when you look at the schedule on which the RFP is being prepared.
Nor is it entirely clear to me that their definition is the one that
we should reference. It is certainly the one that came first to my
mind.

135

DR. SHOOMAN: I think that there has not been sufficient work done
between the analysts who would want to use the data and the people who
would collect it. There has not been specific movement afoot to
collect data in a form so that it would fit model 1, 2 and 3, and so
that it would satisfy the analytical questions of analysts A, B, and C
and modeler X, Y, and Z. I'm sure that if you tried to do that you
would find that you couldn't satisfy them all, but maybe you could
satisfy 50-60% of that group. I think they have tried to do that, but
to my knowledge, it hasn't been perfected yet. Maybe in the new
effort it will be. Some of the studies that have been done with the
data, in fact, have found that key data such as the number of test
hours or number of failures during tests, which are needed for a lot
of the models, were not recorded. Just the total number of errors
were recorded, and no time sequence of when those errors occurred were
recorded. It just said that over a period of 15 months we found 600
errors. Nobody said that during the first month we found this many
errors, the second month we found this many errors, and we tested 25
hours during the first month, 50 hours during the second. That is the
sort of data most needed. That was there for some models, but not for
others. Perhaps, that's the newer data that's being recorded, but, I
don't know.

MR. REDWINE: Let me ask the question differently to the entire
panel. Let's say that you have the job of writing the paragraph in
the RFP that is going to require builders of the software for DoD to
report data. Not that you have the problem in the narrow sense, that
it has to work in your model, but you have a broader expectation of
what might eventually be done with it. What would you do?

DR. VICTOR R. BASILI (UNIVERSITY OF MARYLAND): I think you have to
have a very specific idea of what you want to do with the data before
you collect the data. That is what Marty is saying. You have to
first establish what your goals are, that is why you want the data,
Then you establish what your hypotheses or models are that you're
going to measure. Then you have to look at what the ingredients for
that particular set of models are and that is how you specify what you
want. But, you have to choose those models beforehand.

MR. REDWINE: 	OK. 	I understand that, if I'm using the data,
particularly in this development. But if I'm collecting the data for
posterity, as well as having potential uses in this development, what
do I do?

DR. BASILI: Well, you can collect it for posterity, but that may not
be useful. I want to argue that that is not the way to do it, not
just to collect data for posterity, but to have a goal from the very
beginning. Otherwise, you will end up with the wrong information.
Once you specify what your models are going to be or what your
questions of interest and hypotheses are going to be, that drives the
data collection process. If you haven't thought about that issue
beforehand, sure enough there is going to be another model you want,
and you will not have the data for it.

136

DR. DEMILLO: Anyone else?

MS. CAROLYN GANNON (GENERAL RESEARCH CORPORATION): Let me just add
that that is one of the issues I was trying to get across when I said
that the customer and the project manager, and the programmer, should
get together at the project outset to determine what the goals of the
data collection activity are. Posterity can be one of those goals,
however, it can't be so general that you get "the world". When I gave
the example of two missile projects: you're going to collect data now
and pay the little bit of extra overhead on collecting the data now in
hopes that on the next missile project there will be enough similarity
that you can benefit by the kinds of errors that were recorded. You
still have to narrow your scope.

DR. ED MILLER (SOFTWARE RESEARCH ASSOCIATES): I think the comment I
would make is that even though you can specify what you want in the
way of data, it is going to be difficult because of the people who are
actually doing the work to record and collect the data. Then a second
layer of difficulty occurs when you want them to release that to you.
It kind of goes against tradition. It's always been the tradition
that the developer of software is up to his own devices. So, that
includes private data. One way of achieving this is perhaps to
incentivize and contractualize, but certainly to make sure that you've
made a good relationship with the person who you might ask to supply
the data so that they will give it willingly and not create a conflict.

DR. DEMILLO: Vic, does your remark mean that historical data is
suspect?

DR. BASILI: No, that's not what I meant. What I meant is that I'm
going to specify what data I need to collect. I have to know
beforehand why I want it and what model it's going to fit so it can be
specified. What I am saying is that there is an infinite amount of
data that I can collect. So if I'm going to collect for posterity, I
would have to collect everything that happened. It's too expensive,
and I can't do that. So, I have to single out what I want by setting
some set of goals and base some of those goals on models or whatever
it is and start to collect data driven by that specific purpose. I
can't always second guess.

DR. DEMILLO: What about the data you are using now? Was that
collected for a specific purpose?

DR. BASILI: It has always been driven by a set of goals. We have a
paradigm: a set of goals, questions of interests, our hypotheses
followed by a set of metrics, and we check that these are collected by
the forms. Then, in fact, you had better go back and make sure you're
interpreting that data in the context of the goals you established for
it, because that colors how you collected that data.

QUESTIONER: How can you make it public?

137

DR. BASILI: I'm saying that you've got to establish a set of goals.
My goal may be, for example, that I'm interested in evaluating the
reliability in the model I'm choosing. It may be a very specific
model, the mean time to failure, in which I need time between
failures, say in computer time rather than in calendar time. So I've
got to specify that I need the computer time, I need the errors, I
need certain classes of errors. But that's based on that model, based
on that goal which is that I want to be able to evaluate the
reliability. I can't just say let's collect some numbers; I must say
let's collect time. What time? It's got to be tied back to a very
specific model of time.

DR. SHOOMAN: Let me just comment very briefly on the aspect of
historical purposes. There is a set of data that was taken back
during the 1950's for hardware reliability that plotted the
reliability of a group of electronic circuits versus the number of
years of experience of the designers. It showed that there was almost
a direct proportionality between the more experienced designers and
the more reliable circuits. Now, suppose it turns out that you want
to go back and study that fact with regard to data that has been
taken, with regard to software errors. Unless somebody said, when we
first started collecting those errors, I want you to also tell me the
number of years experience of the programmers who worked with these
programs, there is no way of doing it. Alright, but, unless somebody
has some suspicions that this is going to be worthwhile to study, that
it is important, then nobody would bother reporting this data. So,
it's relatively impossible to record all those relevent parameters.
You have to start with a collection of objectives to satisfy a broad
enough interest so that it is worthwhile, and work with that. Then as
you go along, you may very well find that in 2-3 years, you need more
data because people have learned more and people want more data on
other things. This is an evolving concept. People have been
collecting hardware reliability data since 1947 or 1948, and they
still go on doing it. They have to get more data. There is a set of
military handbooks on failure rate data, this started out as version
a, b, c; they are up to d now. But, why do we keep doing this?
Because they are learning more, the data keeps changing. The data
collected now is far more sophisticated than the data collected 30
years ago. A lot of money and a lot of effort have been spent. Much,
much more than has been spent for software. I think this is one of
the reasons why we have made slow progress on software. There was a
relatively large effort in the 1950's to collect failure-rate data. I
don't think there has been anything like that in terms of scope and
size to collect software data.

DR. DEMILLO: I think it is time to go onto the next question.

QUESTIONER: I have some questions for Dr. Stucki on the Argus. Is
Argus available to the general public, does it automatically do
dataflow diagrams for you, are the hierarchy structures linked to the
dataflow diagrams, and what microprocessor does it run on?

138

DR. LEON STUCKI (BOEING COMPUTER SERVICES): The answer to the first
one, "is it publically available?". It was done on internal money, so
that probably answers that. Is it available? Everybody has a price
at some point. OK. "Are the dataflow diagrams linked to each
other?"..Right now, they are not. The linkage is between the dataflow
diagram as an entry vehicle for entering information into the design
data base. That link does in fact work between levels in the
diagram. Right now, they are entered as separate diagrams. They can
have commonality between them, and all of that information is linked
in the database. But, we don't decompose the dataflow diagrams with
the tools automatically, today. That is something that is planned.
Do you have any other questions?

DR. DEMILLO: What was the machine?

DR. STUCKI: The machine, currently, it is running on an ONYX, which
is based on a Z8000, but it is really not dependent on that particular
machine. In fact, we have large portions of it working on a VAX right
now.

QUESTIONER: What language is it written in?

DR. STUCKI: Most of it was originally written in PASCAL. We had too
much trouble with portability. It's almost all written in C now, and
the remaining modules that are currently in Pascal are scheduled to be
converted to C.

QUESTIONER: One other question. How much did it cost to develop?

DR. STUCKI: 	I don't know. 	I've tried not to add the thing up
totally. It's pretty expensive.

DR. DEMILLO: Next question, please.

QUESTIONER: 	I have two questions. First, to Dr. Shooman, in the
references at the end of your paper, which is the book that you kept
referring to?

DR. SHOOMAN: That is the one that's "Software Engineering Design,
Reliability, Management", MacGraw Hill, 1983.

QUESTIONER: The second question is much more general. This is in
terms of software quality assurance, generally. I think one of the
building blocks is persuading creative software developers to write
software in a disciplined manner. I think that is not easy. I think
it poses cultural problems, introducing this kind of discipline, and
none of the speakers have addressed this issue at all. I would like
to hear some comments.

139

DR. OSTERWEIL: What I think we are dealing with here, as I said in my
talk, is a basic industry. It has to be approached that way. I feel
that there is a sort of Darwinism that's going to be at work here. I
think of the early days, when flyers used to fly around in leather
helmets and silk scarfs and take a lot of risks. Those people don't
fly commercial airliners anymore. The analogs of those people in the
software industry are slowly but surely going to be ground out. I see
signs of this happening already. There are a lot of ways in which it
is going to be accelerated, I suspect. I really do believe that as we
put tools at people's disposal, whose job it is to relieve people of a
lot of the tedium, we are going to find that people are going to be
much more willing to be responsible and to submit to procedure because
an awful lot of humdrum stuff is going to be taken off their backs by
our computing systems. Slowly, we are going to find that responsible
people are going to stay and be responsible. People who are less
responsible will have a lot of push to have a machine do a lot of the
tedious work for them, and the ones who won't submit to that sort of
thing just won't be around for very long. We are building one of the
cornerstones of society, I honestly believe, and all the forces are
there for us to do it in a responsible way. All of the things
presented here will in one way or another contribute to making it
easier to do the right, responsible kind of job.

DR. MILLER: 	I just want to comment. 	I think that it is less
difficult than you may think to get people to change their ways. I
agree with Lee that it is going to take some time. Most of the time
if you change the boundary conditions, the underlying, substrata of
assumptions for the development of code, then people behave pretty
much in the right structured discipline. The statistic that we often
think of that illustrates this is that the cost per man-month today is
about equal to the cost to buy and install a million instructions per
second in hardware. So, if you teach programmers that the right thing
to do is to burn machine cycles because that is cheaper than people
cycles, they will build smaller modules. 	That takes some head
shaping. 	It is a head shaping process and it takes some time to
convince people of the overwhelmingly compelling advantage to
structured techniques and disciplined techniques. But, it does work
out, I believe.

DR. STUCKI: I don't know if you noticed or not, but one of the
guiding philosophies that we espoused was reasonably well stated in
one of the slides that I threw up real quick, and you probably didn't
get a chance to read. But, my philosophy is if you are doing a good
job on designing and building tools, it ought to be, from the user's
perception, easier to get his/her job done using the tools or the tool
system, than any other way. If you achieve that, you create a usable
tool. If you haven't, you have an unusable tool. I don't think they
have to be mutually exclusive. I think that if you define your
methodologies and tools properly and implement them in such a way,
that the average person will realize that "hey, I really got this
thing done faster this way", then, that's really where it's at. That
is where we are heading.

1.40

MS. GANNON: I think we were really fortunate to have the speaker at
lunch time that we did, because education is definitely an area where
software engineering practices can start at an earlier age. I think
that it is very important that they be taught in the universities.
However, I think the panelists who have spoken on your question so far
have made the situation sound a little bit better under control than
it really is. This morning, Dr. Lipton talked about rapid
prototyping. In the last couple of years, we have all gotten used to
the software development waterfall chart lifecycle engineering
approach to developing and testing software. Yet, he was bringing up
actually quite a different approach, which I think possibly is just as
viable and may be even more relevant to developing large systems than
the usual waterfall chart with no feedback loops. So, I don't think
that, in spite of the tools that we have developed over the years, we
have even hit upon the best development methodologies yet.

DR. SHOOMAN: Let me just comment very briefly on this too. In terms
of education, there is a major amount of education to be done in
middle and top management in companies. You don't get into middle and
top management in most companies unless you are over 40. If you are
over 40, you never took any software courses in school, by and large.
You probably got most of your experience doing hardware development.
Unless you're an exceptionally inquisitive person with a wide
viewpoint, you probably didn't learn much about software development.
So, here you are in charge of a large hardware/software complex, and
you understand the hardware because you've done it before. But you
don't understand the software. And now, you got burned in the early
1960's when people wasted all your money, and didn't deliver a
product. You learned that what you must do is ask them how much of
the code has been coded and tested. If it is 50%, and they spent 50%
of the money, it's OK. If they spent 40% of the money, they are
heroes. If they spent 60%, they are bad boys. Now, you go ahead and
do a top-down development for a manager like that, and you spend
40-50% of the money, and he asks you how much of the code has been
written and tested. You say about 5%, I wrote the control structure,
I tested it. He's not going to even listen to the rest of what you
say. He's just going to be thinking of, who do I replace this clown
with?

So, before you do something like this, develop, and use any new tools
or new development philosophy, you better be pretty sure that
management understands what you are doing and understands that when
they ask you questions, they have to ask you different questions. If
they had asked you in a top-down development, at what level in the
design process are you, have you designed the interfaces, have you
designed this, how long do you think it will take you when you're
finally ready to code ... those are questions you can answer. So, in
the same way, using any tools, unless management understands, you're
going to be in great difficulty. Because even if you get the
programmers to do it, management doesn't understand. They know that
when management tells them not to do something, they don't do it, even
if they think it's good.

141

DR. STUCKI: I can't let it go just quite like that. There are a
couple of things that I think are totally overlooked here, and with
all due respect, I disagree with the last statement somewhat. I think
that, the over 40 part is probably OK, and the background is probably
OK, but I think there is one thing that is really important ... we
need to tell management and make sure that management understands that
there is more to software than just counting the lines of code.
That's why, when I said the phrase "computer-aided design and
manufacturing for software", I made a big point of the fact that I'm
producing a lot more than code, I'm producing documentation and a lot
of other things. So, when I go in and give my pitch and say I spent
50% of the money and here is 5% of the code, I can also say here is
85% of the design documentation, by golly, and here is 75% of the test
plan, because I've already thought about the test plan ahead of time,
and stuff like this, then I think it is a new ball game. I just had
to get that much in.

QUESTIONER: I would like to address an issue to the panel at large.
One observation is that there are many levels of software testing, and
I think perhaps we talked about software testing at one edge of the
spectrum. But, particularly with embedded microcomputers, etc., the
distinction between software testing and system testing blurs
somewhat, particularly when you begin to do acceptance testing, like
flight testing, sea trials, etc. And, the comment that comes to mind,
I'm not sure that it's been thoroughly addressed, is that testing is
hard work. I think that was one of the first points made at the
conference, and it seems to me a very key issue of that hard work is
trying to come up with very detailed test specs and test cases that
really relate back to the original system requirements or B5 specs,
Part 1 specs, whatever, as well as the more detailed lower level
specs. It seems to me that only in this way could the customer and
the company management be reasonably assured that when you're through
testing, the software really does what it's supposed to do. I think
that as of yet this hasn't been addressed very heavily.

DR. DEMILLO: Comments from the panel?

DR. MILLER: 	I really couldn't agree more. 	In fact, I'm not
apologizing for the software engineering community, but there's a
certain sense of this, maybe my colleagues here will nail me for it,
but there is a certain sense of solving the problem that's rather easy
to solve rather than those that are harder to solve. So, while we can
analyze individual program structures and figure out test cases in a
fairly simple manner, there being no general structural theory of
systems and there being no mathematically tractable body of techniques
for handling system level behavior, we kind of look at that and say,
that isn't quite as interesting, so we don't work on that one. There
is a kind of avoidance of by far the most critical issue facing
someone who is purchasing a system. That is how to answer in a simple
yes or no manner; "Is this acceptable or not?". I think, however,
that may be an oversimplification. I see a lot of systems which are
built according to good techniques, and then there's this formal
acceptance test. My suspicion is that the formal acceptance test is a
piece of window dressing that probably ought to be eliminated in favor
of a more detailed check-out phase or several months of investigative
analysis of the program behavior. I don't know, maybe that will get
the discussion going.

142

DR. SHOOMAN: I could suggest a different kind of acceptance test,
which I propose. That is that the customer develop a set of N test
cases, say 110, whatever number it is, including some stressful ones.
Let's say he does this testing in three phases. The first 10 cases
test major features of the program. You run these first 10, and the
developer has these first 10. The only purpose of that is to make
sure he brought the right disk or right reel of tape with him. You
know that something is not strange, he tested all those and expects
those to work. Then you take another 100 that he doesn't know about.
You run those, and perhaps 95 of those 100, nothing is perfect, so you
can't expect all of them to work, if 95 out of those 100 work, it
passes. Then you get him to fix up those other 5 cases, and to take
care of those bugs is a minor manner. If it doesn't pass, then
perhaps he pays a penalty equal to the cost to make up a new 100 test
cases. You give him the first 100 and say go back and do your
homework again, and come back and we will have the new 100 test cases
for you. This is perhaps a way of testing the software. But of
course, this only is useful if you can make up a representative set of
test cases, and if you know how big that number is, and if you know
whether 90% is a passing grade or 80%. If you put a ridiculous figure
on that, then nobody passes. You do yourself no good, you do the
developer no good.

DR. MILLER: Your concept is absolutely correct, but the practical
reality is that there are very few formal acceptance tests which don't
succeed, and the reason is that the numbers of tests involved are
small enough, and the people who are running the tests have run them
in advance, and everything is successful. Yet systems still are
accepted with enormous error content.

MR. RALPH SAN ANTONIO (DYNAMICS RESEARCH CORPORATION): I wanted to
point out that we do have a presentation tomorrow by Dr. Giese from
TRW who will be looking at the impact of new hardware technology on
this testing process. Also, another thing. I agree with your overall
statement about the general void, particularly in the area of
integrated hardware/software testing. In fact, another presentation
on the docket for tomorrow is one by Marilyn Stewart, which will be
addressing some of the current problems in the acquisition framework
and how some of the new policies and procedures that are being
promulgated will overcome those problems. One area which I don't feel
is adequately addressed in the new forthcoming policy is the area of
integrated hardware/software testing. You mixed a couple of things in
with your question, because you were talking about hardware/software
issues at one point, and then later spoke of tying it back to a
software requirements specification, and, subsequently, a higher level
specification. If we talk about the software requirements
specification, you've allocated the requirements to the software. You
know you are dealing with software. But when you truly go back to the
higher level systems specification, then I think that is where we do
have some real voids in the system, right now.

DR. DEMILLO: Let's move along to the next question.

fin

MR. KENNETH MOORE (AT&T): Earlier today, Dr. Lipton was talking about
the rapid prototyping, and it was mentioned that the prototype was the
seed or the beginning of the software project that is now grown from
that prototype. What I would like to find out from the panel is some
comment on the suggestion that the use of a prototype be solely to
validate the user requirement for a system and to aid in the
development of the metrics to be used in the test phase, and then to
end the prototype phase at that point and begin the full system
development from those requirements, instead of building a prototype
and then incrementally adjusting it.

DR. OSTERWEIL: You are describing what I sometimes euphemistically
call a software life spiral. The main trouble with most life cycle
models, as a number of people have observed, is that they don't have
any cycles in them. Everything goes from requirements to a design to
code, and then to a complete operational system. What you are
suggesting, in fact, is that in the beginning we go through this
procedure very quickly and produce something that actually runs and is
intended to be the back-to-the-beginning, namely, the requirements
process. And that we then take this as being a more detailed
requirement specification and we run through the cycle in more detail,
therefore more slowly, produce another prototype at the end, which
then feeds back into the beginning, so my spiral spirals out and gets
larger and slower. There are a number of people I have spoken to that
claim they have never write finished systems, they just write a
succession of prototypes, and that supports the point of view that
maybe there is something to be said for this. My own perspective,
namely the tools perspective, says that this is probably fine. What
we should do is simply facilitate the process by enabling the
succession of stages to go more easily, by means of more tool
support. I don't think there is anything much wrong with the paradigm
at all.

DR. STUCKI: I think you pointed out something rather interesting and
I think we reinforce the way most people do, in fact, take for granted
that you are going to use the prototype for the next system. This is
almost implied by what Lee was saying. I think sometimes it would be
nice to associate with a prototype, like in Mission Impossible, the
idea that it will self destruct in so many minutes after it's done
with whatever you want to use the prototype for. I think we, for some
reason, have a very hard time throwing the prototype away, and it's
probably a mistake on our part that we don't do that more often.

DR. BASILI: 	One comment, and that is back to the goal driven
business. There are different ways of talking about a prototype. One
is one that you create and throw away, another one is one that I start
taking a subset of the problem and iterate until I build the whole
system. Why I would pick one approach over another one, and I don't
mean there are just two approaches, depends on what I want to do. For
example, if what I am interested in is getting an overall statement
from the user's point of view of the full system, I might pick a
prototype that I can throw away, i.e., build the whole system to throw
away. If I am interested in getting some experience with development
or low level experience with a user, then I might build a subsystem.
I feel I know how I could do it right. So, again, it is goal

144

generated. There are a lot of different options, I have to decide
what I care about the most and why I'm building that prototype. One
option of building a full prototype is that I also have a simulation
that I can use, that I know what my test results should be, I have my
oracle. So, when I finally do my testing, at least the results should
correspond with the earlier process.

MR. SAN ANTONIO: When I was listening to you formulate your question,
it appeared that what you had recommended was something similar to the
classical way we acquire or theoretically acquire systems in software
now. That is you go into a phase, sometimes it is referred to as a
validation phase, where you develop prototypes and validate the
concept and, yes, this is in fact what we want to build. Then, you
throw that away and go into a later phase where you go out and build
the prototype production models. In that sort of system, whereby you
say, OK once we finish this we are going to scrap it and start over, I
think the user tends to get the feeling that he's got one shot in the
barrel after you've thrown it away. Therefore, he wants to get all
his requirements packed in that one development activity. What Dick
was recommending this morning was a slight variation. That is, you
start out with the premise that you are going to essentially keep
modifying that system, and, lo and behold, you may in fact throw large
portions of it away, but, as a concept, you're not saying I'm going to
finish it and throw it away because that conjures up all kinds of
ghosts in people's minds.

DR. DEMILLO: Next question, please.

MR. NELSON ALLAN (GENERAL ELECTRIC COMPANY): 	I have a couple of
questions. Software quality requirements are very high in some flight
critical control systems in aircraft. You may want it be extremely
improbable that an error could occur that could cause a significant
event, possibly an aircraft crashing, which sometimes comes out with
something like 1 in 10 to the ninth probability of one thing in 10 9

 opportunities. I wonder if the panel feels that the models that were
discussed, particularly by Dr. Shooman on reliability, are valid to
this range of probability of error; if it is not available now, when
could we expect it would be in the future? And secondly, Dr. Stucki,
when will the aircraft companies be willing to accept software for
flight critical systems with known, expected errors in them?

DR. SHOOMAN: Let's take the system that we, as the general public
know best, which is the Space Shuttle, which is again a flight
critical system. If the re-entry control system fails, the astronauts
are stranded in space. Given the catastrophic situation which may
occur, what was done? Five computers were on board, with four
on-line, the fifth was stored somewhere from what I read, I don't know
if it was in the glove compartment or underneath the seat. It was not
on-line. The only reason I can figure out it was not on-line was they
were afraid that a power surge might wipe out four of the computers
and they would have this one that they could energize and put up. The
computers were in a redundant checking arrangement, using a voting
scheme, they were compared. One of the four had a different program.
It had redundant software. Now, I guess I would interpret your
question as, could one analyze a configuration like this in terms of

1/1C

software reliability. The answer is yes. I'm not sure how accurate
the model would be, because people don't write redundant software,
very often two different algorithms, implemented as programs by two
different groups to do the same job so that, externally, they should
give the same answers, yet have different algorithms so that
presumably, at the same time, wouldn't have the same software. Could
we analyze this with the kinds of models I've talked about? Yes,
presumably. How well would it turn out? I don't know, I've never
tried it. Do I think it would be accurate enough to ensure the very,
very high reliabilities? To be honest, I would have to spend a month
or so trying it out, studying it, and then maybe I could give you an
intelligent answer to that. On the surface, there is no reason why it
could not be applied to such a problem. How would the details work
out? You see one critical problem in this case, you are going to only
get very, very high reliability in software if you have either
tremendously low error content, which probably would not apply to
these models, or if you have redundant software. In the case of
redundant software, what you are most worried about is common load
failures, in other words, something that causes both software programs
to fail. If a portion of the algorithm is the same in both cases, and
it has an error, your wonderful redundant software didn't help you one
bit. One would have to look for those. The answer is I don't know.
It would be very interesting to try.

DR. DEMILLO: The second question is for Leon.

DR. STUCKI: Let me rephase it to make sure I understand. Basically,
you asked the very interesting question, "when will the airplane
company be willing to accept software", right?

MR. ALLAN: With known errors in flight critical applications.

DR. STUCKI: OK. I'm not sure about the known errors part, but let me
comment on the following. You probably realize through the
advertisements that Boeing has produced two new airplanes that have
just recently been certified. Don't quote me, I'm not a Boeing
spokesman on this because I don't know the exact details, but I
understand that there are somewhere between 60 and 80 microprocessors
on the new airplanes. But, they were certified. Most of the functions
that Boeing has chosen to have automated assistance with have manual
backup procedures and techniques. It is different from, say the Space
Shuttle, which I was told, and this is the way I understand it now,
there is no way on earth to land that thing manually. There is no
manual system for landing the Space Shuttle. That is not true with
the commercial airplanes. If all of the computers failed, they can
still land. In fact, they were certified without the flight critical
software systems being certifed. It's not to say that it's an easy
problem. The flight critical functions that were software controlled
have not yet been certified and constitute, in my opinion, a rather
interesting dilemma. They have certainly caused high level management
in Boeing to sit up and take heed of what's going on. One thing that
may be interesting. Some people won't like to hear this, but when I
first came to Boeing in the mid-70's, I started hearing about what
they were planning to do with respect to this. At that time, I asked
them the question, "well, have you defined some software standards and

146

standard languages to be used?", and the answer was "no". I said that
was going to be a real cause of concern, and now the people, I think,
agree with that. Many of the systems are coded in different languages
and all sorts of interesting problems occur because of that.

DR. RICHARD J. LIPTON (PRINCETON UNIVERSITY): To add two cents to
your question, I think it is a very good point. I think most of the
tools in testing have the basic assumption that all tests, rather all
faults or errors, essentially have the same cost or the same value of
importance, which is clearly false. I think what we need are testing
techniques and tools that will allow you to be very selective and say,
well, I have certain properties of my system which are mission
critical. Faults must not be there or I must have some great
confidence that they are absent, but other faults will be less
critical and I will live with some reasonable range. So, we need to
have methods that can weigh faults in a very non-uniform way. That's
the only way to probably get the kinds of reliabilities that you want
in a cost effective manner.

DR. DEMILLO: I would like to ask the question of what the questioner
had in mind when he said, "accept the software?"

MR. ALLAN: Well, it's kind of hard to get people to accept software
that has an error in it in the anticipation that if the error were to
occur at the wrong time in the flight the airplane would crash.
Nobody, either the airlines or the FAA would normally accept software
like that. You have to demonstrate that it's error free; I think
everybody in the panel agrees that it is very hard to do that. So,
the prediction model that Dr. Shooman was presenting was one approach
to show a very low probability of errors. We have to talk about
extremely low probabilities; I guess the model he mentioned is not
quite adequate for that few a number of errors in the software.

DR. STUCKI: One quick point. I believe that if I'm not mistaken,
most of the FAA procedures are predicated around the probability of
some event occurring being extremely low. I don't believe they are
predicated upon the impossibility of any particular event.

DR. SHOOMAN: I don't think anybody can logically or philosophically
talk about hardware which never fails, therefore, you can't talk about
software which never fails. It's only the terms. I was under the
impression that the FAA and the airlines industry did not use the term
failure, they used the term non-scheduled maintenance. So, in other
words, we would talk about the number of non-scheduled maintenances to
the hardware being very low, we talked about the number of
non-scheduled maintenances to the software being very low, and that's
the way to approach it. Whenever somebody says "zero" failures, when
we know that philosophically it can't happen, that, to me, is like
saying perpetual motion. 	You don't make progress in mechanical
engineering by looking for perpetual motion machines. 	You make
progress by looking for low friction bearings that have friction
levels of 10 to the minus something. The same way, I don't think you
make any progress by talking about no software failures.

1117

DR. DEMILLO: I for one have to take an airplane home. Next question,
please.

MR. SAM BERNARD (GENERAL DYNAMICS): The first question ... as far as
testing goes, which people in an organization should write the test
procedures to do the test? It's been stated by several authors that
your best and most creative people who are software writers should be
pulled off to write the tests for the software. Does the panel have
any opinion on that.

DR. DEMILLO: The panel may want to respond, but tomorrow we will have
speakers on managing the testing process. Those speakers may also
want to respond to this question.

MS. GANNON: Could I just take a shot at what my opinions are? You
mentioned test procedures, but I think you would like to not limit it
just to the procedures but actually whole test plan, because the
procedures, of course, just tell you how to carry out whatever the
test criteria are. I feel that the customer or the user should have
to shoulder the burden of specifying the acceptance criteria. If the
person cannot state the criteria by which he is going to judge the
product, it's hopeless. You'll never agree that the product meets the
specification, so I think the customer should come up with the
acceptance criteria or at least be guided into it by the developer,
but, agree that he will take those as the acceptance criteria. Then,
based upon this now written down set of acceptance criteria, you can
develop a test plan. It should have a section of functional tests.
If you use a specification language you may have a test for each part
that then is developed and is specified by the language. It should
also require structural types of tests which then come out of the way
the software is designed. So, I think it is a cooperative effort that
should start with the user, who is the customer, coming up with
acceptance criteria, and then a quality assurance group within the
developing organization coming up with a test plan. The QA group has
to know both what the product functions are going to be and also what
the software design looks like so they can make sure the design is
carried out.

DR. STUCKI: I would like to add one thing. I think that what she
said is right, but I would broaden the definition of what she said is
the customer to include any agent of the customer who is involved in
specifying the requirements for the system. For each and every
requirement for that system, that person who documents that
requirement has the responsibility, in my opinion, to include with
that requirement, the measuring stick against which that requirement
is going to be assessed. If the customer knows that, great. If the
customer doesn't, and defers to a technical assistant of some sort,
then that technical assistant has as a part of his/her task to include
the yardstick against which the requirement is going to be judged.
This, together with possibly an independent view from an independent
quality assurance perspective is what I would think.

14R

DR. MILLER: I was going to add that if you interpret your question in
a slightly different way as far as testing goes, who should write the
test, meaning who's good at writing tests, I could add from our
experience that people who are essentially mathematically skilled seem
to make the best testers of programs because they have the best
analytical skills, the most precise and careful discipline qualities,
and trained forms of thinking. This does not mean that programmers
are not good at finding errors in programs, it's just that it's not
the primary indicator, analytical skill is.

MR. BERNARD: Second question. I noticed that you all advocate a
top-down design and testing approach. When should a bottom-up
approach be used and when should stub programs be used to fill in when
the code that's necessary for a given module isn't developed as yet?

DR. OSTERWEIL: 	I really think you're asking basically the same
question as far as I'm concerned. The answer is that there is a need
for both kinds of things to go on. I think that when you talk about
bottom-up testing, you're basically talking about acceptance testing,
basically talking about having the user or purchaser exercise the
thing and see whether it seems to work or not. That doesn't rule out
the necessity, quite the opposite, for doing the other sort of thing,
mainly looking to see that the thing which has been built is
structurally sound. There is a definite advantage to using the
so-called life cycle approach, and many people have objections to
doing this, but the life cycle approach does indicate that the
development of a software program goes through phases. Some of those
phases, in my opinion, are simply not "customer land" phases. You get
down inside detailed design, then you are really looking at something
which has to be thought of as a top-down activity. It may not be
carried out as a top-down activity, but it has to be thought of, when
it is complete, as being a top-down activity, and it should be subject
to top-down analysis. At that point, you are looking at testing which
is done by some internal organization, which is good at doing
structural analysis because they are good software engineers. The
bottom-up testing is the sort of thing the customer does at the end to
see that the product is really is doing what the customer wanted it to
do. I think at different points in the life cycle, you do different
things.

MR. BERNARD: Bottom-up testing should only be done by the customer is
what you are saying?

DR. OSTERWEIL: I don't think it has to be done only by the customer,
but it certainly has to be driven by the customer, as was observed
earlier on. The customer knows what it is that he/she wants, so that
the customer is in the best position to see that's what's being
delivered.

149

DR. JAMES F. LEATHRUM (CLEMSON UNIVERSITY): 	The question of
appropriate design discipline is something I wanted to comment on a
minute ago, and this is another opening to add a comment. I have had
some concern about the top-down stepwise refinement sort of discipline
applied rigidly because it fails to identify the commonality that one
might achieve in designs, and thus limit the number of modules
maintained in which, that commonality can be identified. A different
light on that subject came to my attention when I was discussing this
conference with a colleague and I asked him how he designed for the
purpose of testability or with testing in mind. He said he purposely
tried to combine modules that were designed such that they were used
for multiple purposes. This seems to be the opposite of the usual
notion of cohesion for achieving a single purpose in a module. He
pointed out that the ability to find the defect in a module may be a
function of the amount of traffic through the module. I could use an
analogy, if I wanted to test this carpet I would put it out there in
the main hall, have multiple uses for the carpet in order to determine
its servicability. I purposely gave credit for that thought to
somebody else, but I didn't want to take the credit, but I won't name
him, I don't want to blame him either.

MR. GEORGE NEEMAN (US ARMY MATERIEL DEVELOPMENT AND READINESS
COMMAND): I guess this is for you, Lee. Your analogy of the
screwdriver and hammer, and I take it that's your assessment of where
we are right now, about how many years, or tens of years, or hundreds
of years do you think it will take before we get to the full toolbox,
where we know what we are doing and we know how to require a
contractor or tell the contractor what we want and expect a quality
product.

DR. OSTERWEIL: I think we are a little farther than just having a
hammer and screwdriver. I think those are the ones we are familiar
with. I think there are an awful lot of other things out there that
are potentially very good, very useful tools. The question of when
they get to the point of what I would call totally good, complete and
accepted tools, there are basically two forces that have to come into
play. First, there has to be an awful lot of investment into bringing
these things to the point where they are handed to a lot of people who
can evaluate them and decide how good they are. The other one works
in the opposite direction. I think that if everybody in the panel
here magically today got tools which we all magically agreed were
perfect, fit together perfectly, and we all decided that that was
great, by the time these tools impacted the whole world and were
finally accepted by the people all the way in the back of the room, I
think many years would pass. I believe that in the software
engineering community, good ideas eventually catch on. They have to
be developed. There has to be capital put into the development of
them, but once that takes place and they are put out there, there's a
grapevine phenomenon. People pass the word from one to the other to
the other, and eventually something catches on because it is good. I
think UNIX is an example of that. It wasn't forced on the world, but
a lot of influential people decided that it was a really helpful
thing, and they got their work done better because of it, and the word
spread. After a while, everybody was using it. I think that is an
indication of how long it takes a good idea, once it's been adequately

150

capitalized and put out there for people to use. It really catches
on. But, I would say that with enough push and enough capital
investment, we are still looking at on the order of several years,
maybe a decade or two, before we finally get to where it is we have to
get with tools.

DR. STUCKI: Let me just make a couple of quick comments. First of
all, I don't think there is such a thing as a perfect toolset that you
can just slap on any RFP or whatever you want to do. Look in the
carpentry profession, I know a little about woodworking. When I want
to build or make a certain piece of wood or perform a certain project,
I have radial arm saws, I have tables saws, I have mitre box saws, I
have hand saws. You get three or four carpenters in here and tell
them to work on the same project, they may not use the same tools.
So, I'm not sure we are ever going to use exactly the same toolset,
and I'm not sure there is such a thing as a perfect toolset that we
are really striving toward. That doesn't mean we can't invest in some
other kind of screwy saw that's better than all of them sometime in
the future anyway.

The other thing is, I think with Lee, that there are a lot of good
tools out there. At least there are a lot of good tool ideas out
there, and for various reasons, maybe because of the resources
required to use them initially when the hardware was expensive, when
the tools first came out, there are a lot of reasons for why some of
the tools weren't used in their current packaging. It doesn't mean
you can't take some of the good ideas they had with slightly different
packaging, maybe put some of them on micros, maybe put a better user
interface on them, maybe do a little bit of juggling around. It
really has not too much to do with the basic depth of the tool. I
think there is a lot of technology out there, in fact, most of the new
tool systems you see, including a lot of the things we are trying to
do, they're not really grandiose new inventions. They are really
better packaging on many existing ideas, and novel ways of combining
existing ideas that other people have talked about before.

MR. NEEMAN: A follow-up question on that. In the meantime, how does
the government try to require the contractor to use a particular
tool? For example, if I hear from word of mouth, that the Boeing tool
is just the greatest thing since apple pie, and I want to put it in my
competitive contract or even a sole source contract for some other
contractor. How can the government try to overcome the reluctance of
first, the government itself, the program manager saying, this tool is
going to slow down the program, require more cost, schedule, etc., and
second of the winning contractor saying that we are not experienced
with this tool, we're reluctant to use it, therefore, we are going to
price it high and hope that you don't accept it. Maybe that's just a
fact of life at this point, but have any of you found a way around
that or a way that could help the government require some of those?

DR. STUCKI: I have mixed feelings on commenting on this. A couple of
years ago, the government wanted to encourage contractors to use more
"modern programming practices", such as structured programming, etc.
When the RFP's went out with those terms in them, there weren't any
respondees to those RFP's that I know of that didn't agree to do
that. They may have interpreted some of the phrases differently,
which they did very often, but, they did agree to do them. I think
the customer in some sense is in the driver's seat, the customer is
always right. There is a little bit of that philosophy that if the
customer is willing to wield the big axe, and the big staff, he can do
it.

DR. OSTERWEIL: 	I think in a very real sense, it's kind of a
non-problem. The best comparison I can make is the higher level
languages. There was, at one time, a lively argument about whether
you should code operating systems, for example, in machine code or
whether you should use high level languages. You really don't hear
that controversy anymore. Most systems software is written in higher
level languages. It is simply because people have found that it is
more cost effective to do that. I don't believe I ever saw anyone
prove it. I don't believe I ever saw anybody with a definitive set of
statistics that showed it was absolutely, positively it was more
effective to write system software in high level langauges. It's just
simply that people went out and did it and discovered that was a good
thing to do and became comfortable with it and they just simply did it
that way.

I think the same thing holds with what you're trying to talk about. I
don't believe any customers ram any use of tools down any contractor's
throat. The customer that tries that on a contractor who can't use
the tools effectively is going to regret it. Eventually, contractors
will come to the point where they have tools they are comfortable with
and they're effective in employing. They will bid based on their sure
confidence in their use of tools, and they will be able to produce
software more effectively, and it is simply going to happen. I don't
believe it is useful to try to ram it down anybody's throat. I don't
believe that it ever will be adjudicated in a meeting like this.
People just finally get the work done better that way, and that is the
end of that.

MR. NEEMAN: If I can just say one more comment. Then what you are
really saying is the government ought to continue the way they have
for the past number of years in putting the general phrases in the RFP
that say: "please respond in a manner that would be technically
acceptable", or "use a methodology that would gain these overall
concepts", rather than require specific tools, even though, up till
now, we realize that we've done that, and we're still getting poor
quality products?

152

DR. STUCKI: 	I'll address his question. 	It seems to me that the
prudent thing you could do is say we would request the prospective
contractor to propose for us to demonstrate in his response to this
RFP the methodology, that he would use and the tools that he would
use. In particular, we would like him to address issues. You could
make some suggestions, like will he include analysis of the
specifications, all of PSL or something equivalent to that. You could
make some sort of suggestions that would encourage them to either
think seriously about using the tool or come up with a good reason why
they've got a better way to do it without the tool. Maybe they can
come up with a better tool, who's to stop them from doing that? You
don't really want to discourage them. In fact, the last thing that I'd
like to see in a RFP is something that said thou shalt do it with
PSL. I'd like to see instead something that says thou shalt do it
with a formal methodology, such as PSL or something equally as good,
where the burden is put on you to at least look at the thing and take
some kind of a stance pro or con, and justify why you are doing it.

MR. SAN ANTONIO: It does to some extent relate to the point on
MIL-STD 1679 because you were dealing with standards, but you posed a
couple of interesting questions. First of all, if you do not own
something, if something is proprietary, it belongs to a single
contractor, then you obviously can't go out in a specification. If
you truly believe that it is something that you want, then you're
going to have to invest the monies up front to procure it and then to
make it available to everyone. We've seen that. We see that now,
with the development of Ada and the Ada Programming Support
Environment. One program that immediately came to mind when you were
talking about it was a program of the Air Force's Aeronautical Systems
Division. They essentially capitalized contractors to use a certain
tool to enhance and automate the manufacturing of aircraft. I don't
know what the statistics are on that program in terms of what the
actual dollar savings were, but I know there was a great deal of
consideration to investment strategies and how they should invest in
that technology and the expected benefits to be derived from that.
Relating to the question on 1679, it is very difficult to write all of
the criteria in the standard when you go out and prescribe a general
requirement to be satisfied, and then come back and have sufficient
criteria to measure whether or not someone is adequately going to
respond to that. We are still trying to do it though. As new
technology comes along, sometimes that is your only alternative,
because you don't own the tools but you want to see something like one
of those tools used on your program. It's a hard nut to crack and
your real control mechanism then is in the evaluation of the
contractor's proposal, but then you're betting on the fact that the
way you weight the contractor on the specific item will determine the
outcome of the contract award. In the case of software, that
typically doesn't happen.

1F/

DR. DEMILLO: Leon Stucki mentioned that when people were talking
about structured programming, trying to decide what it was and who
should use it, and the government was thinking about requiring
structured programming in RFP's, there was a great deal of interest in
automatic structuring of programs. This sort of gave you the idea
that there were people out there who were thinking: "If this is a
requirement that we have to satisfy, we'll satisfy it, but you won't
get the product that you want out of it." That is a the danger of
requiring a tool, or requiring something specific, of that nature, in
an RFP. In doing some of the data gathering for STEP, we came across
people who told us: "Sure, you can write a requirement like that into
a contract, and we will do our best to get around it, to formally
satisfy the requirement, but to get around it, if we don't like it."
Any other questions?

MR. MICHAEL MERRITT (BELL LABS): My question is
the panelists, Ralph San Antonio and Vic Basili.
saw as a contradiction in two of your slides. I
from Ralph's slide that, subjective evaluation
Then there was Victor's discussion about the
requirements documents and code, seemingly a
subjective evaluation techniques. I was wondering
identified a disagreement? Do you have a comment?

addressed to two of
I detected what I

believe I'm quoting
undermines control.
value of reading

proponent of, such
if I have, in fact,

DR. BASILI: Looking for errors in a requirements document isn't a
subjective evaluation of anything. It's a start, and certainly is: "I
have found an error or I haven't". It's a fact, and I can demonstrate
that there is an inconsistency or ambiguity or something of that
kind. I don't know if that's the subjective issue, but let me go on
and say I happen to believe that some subjective data isn't bad.

MR. SAN ANTONIO: I agree with you that subjective data is of value,
but the point there was, if you're faced with telling someone that
they didn't pass the exam, that they've just failed, it becomes a very
sticky situation as to exactly what is required and whether or not
they met the objective or met the requirement at that particular point
in a contract. I am speaking very specifically about acquisition
programs where you are going back to a contractor and saying I'm
rejecting this data item because it doesn't contain a certain
prescribed set of information or you did not satisfactorily complete
this milestone. At that point in time, you have to be very
definitive, and my point is that if you can be quantitative you might
be convincing. But, if you are not quantitative, and it's just my gut
feel or I didn't get a warm feeling from the presentation, then you
have really lost a great deal of control.

DR. BASILI: Let me come back to the subjective data. There are a lot
of uses for that. For example, it is very hard to give an objective
evaluation of something like the use of a methodology. I might want
to quantify that and give you a rating of 1-5, and then have to
justify why I gave you a 3, if you didn't use in the right manner and
here are the reasons. Those are things you would like to know about,
and we just don't have any quantification mechanisms.

154

DR. STUCKI: Let me put one plug in . For those who have heard
various of us talk about various tools and so forth, there is
something coming up in the immediate area here in the summer that a
few of you might be interested in, the "Soft Fair". It's going to be
a software engineering tools fair in Crystal City in the end of July.
You might want to look around for that. That'll be showing the state
of the art tools, many of which are not publically available, from
research labs and universities, from companies and so forth, but it's
a technology interchange to actually show you the what the state of
the art of tools is. For the person who asked Lee how long it might
be, you might judge for yourself after you've partaken something, an
activity such as that. It's sponsored by IEEE, ACM, National Bureau
of Standards, Ada Joint Program Committee, IFIP, and a couple of
others.

155

2 FEBRUARY - PANEL DISCUSSION

MS. R. J. MARTIN (CONTROL DATA): First of all, I would like to ask
Ray Rubey about the economics of testing theory, that he discussed
this morning. I would like to know how useful it is in practice. Do
you see the main use of the theory to be the conclusions you draw from
it or has anyone actually tried to go through the calculations? If
so, how detailed are the calculations, do you calculate dollars only,
how do you calculate loss of life, and so on?

MR. RAYMOND J. RUBEY (SOFTECH): I guess the easiest thing is to
convert everything into dollars. We don't get so gruesome as to
calculate loss of life as far as lost function costs. I see at least
two purposes to the model. One is you suggest doing some modeling,
you like to try to put some numbers in and see how much this error
costs, how much this application's lost function cost might be and how
much testing then might be justified. Really, that s more of a
research type of thing. The most practical thing is to start to
define some terms so we can start to talk, in particular with
management, the developers, the customers, about what things are
important, and why you should test them out. One problem we have
always had in testing is we talk about, different things. Part of the
purpose is to define some terms and ideas.

MS. MARTIN: Has anyone tried to actually do the cost functions?

MR. RUBEY: I'm doing some of it.
yet. Just constructing models, what
what is the testing process amount
dollars what kind of errors would we
of testing.

I don't really have any results
if this, then what about this,
in man-months, translated into
have to get out for that amount

MS. MARTIN: One thing I would like to note has to do with something
Marilyn Stewart was talking about. The terms and definitions for
MIL-STD-SDS are currently being reviewed by EIA. Someone from EIA
contacted me last week relative to that review. So, if anyone here
would like to be involved in the review process of the terms and
definitions, feel free to contact me. I can tell you who to contact
at EIA.

MR. JAMES HEIL (ITT): One of the points made in one of the talks was
the advantage over the life cycle of software providing some degree of
flexibility. I- guess in the last 18 months or so, in industry, we've
noticed the use of reprogrammability concepts. For example, where
certain system parameters, so-called user data bases, etc., and in
some cases, even software templates are incorporated into
reprogrammable devices such as EA ROMS, etc., with the implications
that in operational use, somehow, based on changes in the environment
or new algorithms, whatever, the operational user can actually modify
the software and ergo, the system performance. Now, this has some
rather interesting advantages in capability, but it is also
frightening from a testing point of view. This is obviously an
element of injection of, in some sense, new technology and obviously
impacts software testing in the broad sense. I wonder if anybody
would like to comment on the opportunities and threats involved in
that emerging process.

156

MR. SAM DINITTO (RADC): I guess I didn't realize they did that much.
As far as the users being able to reprogram, we feel there is a
certain class of problems that will allow this sort of thing.
Obviously, the testing is of great concern. Obviously, we don't want
to give that power to the guy out in the field who is just supposed to
be checking the connections. I think before the Air Force, or the
DoD, takes out something like that, obviously the testing technology
and guidelines are going to have to be concrete. I would hope that
any modification like that would be a fielded system modification, not
just an isolated case. Although, I will say, in the EW area, we've
come a long way in that the people out there maintaining those
systems, maintaining their software, having to change it because of a
different threat scenario, have done a pretty good job. They can turn
it around in a few hours now, based on modifying some tables. Those
people know what they are doing. I hope that the DoD will not be so
foolish as to give everybody that capability.

MR. RUBEY: Responding to the same question, I hope with an optimistic
viewpoint. Based on some of the experiences of templates, they just
add a little more complexity to testing. Not an enormous amount
more. But one of the ways to consider it is if you're changing the
value of a parameter in there, it's just another input that can vary,
as if the user is supplying the input or, the environment in which the
software was used was supplying an input. So, if you know that in
advance when it is going to be tested, a parameter or a set of
parameters can be varied, and you make certain that during testing
that you test the limits of this variation as if it were a normal
program input variable. In some systems it becomes advantageous to
build in the self checking as part of the system so as you use the
data or you exercise the system, there is code in there to re-run the
test or do data validity checks on the system. This in itself is just
like a built-in test on the software.

MS. CARAL GIAMMO: I have a comment on the question you had. It
doesn't matter how careful you are in that deployment when someone
messes up and the last exercise is to send out a software correction
by a message, by a number of other means, and send out a validation
package to one of the major sites, they install it, the validation
package works the first day of the exercise, the proper software is
operating, then the system crashes, and one of the operators on one of
the night shifts reloads one of the old versions of the software. We
went five days into an exercise, and that system crashed, because they
didn't have the proper latest correction to the software. So, I don't
know how you control it. My question, I don't think the people on the
panel are the proper persons to answer the question, but I'll ask it
anyway. They have all brought up a very similar problem which has to
do with the fact that, in the life cycle, one of the reasons the
government is in so much trouble is that we don't have enough people
to manage the whole cycle and properly monitor what is going on during
the acquisition cycle. To solve this, we have gone out and developed
things like IV&V contractors, where you are going out and buying an
IV&V contractor because you can't do it yourself in-house. Now, here
you've got a $10 million project, you've got a 5 person office, one of
whom is the secretary. You're going out now and trying to sell the
idea that you need to spend another $5 million or another $2 million

157

for an IV&V contractor, and that you need 2 more people to monitor the
work of the IV&V contractor to make sure they are really doing the
work. How do you do it? How does DoD start to, or what's going on
within DoD to try to, solve the people problems that I hear people
talking about?

CAPTAIN WILLIAM P. NELSON (USAF ELECTRONICS SYSTEMS DIVISION): Being
a foolish young captain, I'll answer part of that. It turns out that
we do have that kind of concern in Electronics Systems Division, and
I'm sure the other product divisions do. In fact, the presentation I
gave on software quality assurance is one of our answers to that
solution. There is a section in "52779A" that says the contractor is
responsible for only delivering software that works. 	We believe
that. 	So, we feel it's the government's job to monitor the
contractor, using his own software quality assurance organization.
That's one of the reasons we are trying to push it and why we are
going out into contractor plants doing software quality assurance
reviews. We don't advertise it that widely, but as a short term
solution, that's one of the few things we can do. We can't get more
people. We don't have any control over that at our level, but we can
try to get the contactor to do the right things so we can watch him.
Hopefully, by watching the software quality assurance organization, it
limits the amount of effort we have to spend. The other thing we can
try to do is that we're trying to get the program offices more
effectively used, things like Defense Contract Administration Services
and the Air Force Contract Management Division. Those people are not
in program offices, but they're the people in DoD with the in-plant
responsibility for monitoring the contractor. They should be doing
more to keep us out of trouble. That's basically the kind of
solutions we've been going after in ESD.

MR. DINITTO: Within the Department of Defense, and within the Air
Force, we have an effort right now to establish a speciality code for
embedded computer systems,. I know the Navy, for all of DoD, is
undertaking a study to establish a special series on the civilian side
called software engineers. The problem again that we have is that we
cannot compete dollar-wise. What we do hope to do is to come up with
some other training programs. In fact, in a meeting we had a couple
of weeks ago within the Air Force where we were looking at the
initiative, looking at those high-task areas, a very good point was
brought up. People said, "why do we say we want a software
engineer?" It's just like a software problem. One problem. Why
don't we start thinking about some special specialty codes, dealing
specifically with testing, dealing with some of the project
management, dealing with some of those other aspects of the life cycle
or different facets of software, rather than saying any software
person can fit in anywhere. The initiative, as I said, has a heavy
emphasis on the human resources area, in the training period. We see
the problem not just within the Department of Defense, we see it an
awful lot in industry, the lack of qualified people. At the
university we don't have to speak to that, industry is hiring them
away too.

158

DR. DOUGLAS GIESE (TRW): I don't think you can really get to the end
of the system and then test. I think you have to follow this stuff
all the way through. The first time you start writing the
requirements, is it testable, how can I test it? As you develop the
system, just to make sure that you are implementing what you're
supposed to be implementing, verifying it as you descend down from the
requirements to the specs to the design, that the process is
consistent and each level implements the level above, and you have to
do simulations or analysis to show that you're following the path.
You can't just shoot the arrow and hope it hits the target and go down
at the end and measure what your error was and try to feedback.
You've got to follow it's path all the way to the target. I think
that is what the contractors can do.

MS. GIAMMO: I believe in all that stuff. My question is how do I
convince Congress to give me five more people to do that?

DR. GIESE: That's not my problem.

MS. MARILYN STEWART (BOOZ-ALLEN AND HAMILTON, INC.): About the only
thing I can point you to is a study done by RADC on the cost
effectiveness of IV&V. The bottom line of that study was that if you
started early, IV&V would pay for itself .in life cycle cost savings in
errors not committed, not built into the software. I can refer you to
that document, which is entitled "Analysis of IV&V Data" and is
available through DACS and standard DoD documentation services. I
could refer you to that. There is no simple answer other than to
start planning for it as early as you can. If you've got your funding
profile already defined and find out you're in trouble, and now you
need $5 million extra for IV&V, you're going to have a lot harder time
justifying it than if you put it into the POM, or whatever your
original funding documents are, at the very outset of your program.
All I can say is, just program for it early.

LT. COL. MICHAEL A. BLACKLEDGE (USAF TEST AND EVALUATION CENTER):
There is half the answer on the budget part, the other half on the
people part. What we've advocated in the Air Force is to use a hybrid
team for IV&V anyway. You get some of those people that are going to
end up maintaining that software, and they are part of your IV&V team,
along with the contractor. If you can get enough of them, perhaps you
don't need a contractor if they're well enough qualified. But, you
line up some of those people, and you don't need to take your own
slots if you can take them out of the maintaining people. That way,
they also get trained on the software they are going to be taking over
anyway.

MR. JAMES HESS (US ARMY MATERIEL DEVELOPMENT AND READINESS COMMAND):
Let me address for a minute a couple of the steps we are taking in the
area of training. I can't help you get the people either. One of the
things DoD has done in the past several years is to implement a course
at Defense Systems Management College, entitled Management of Software
Acquisition, a very good course, a short course to bring some people
in. Unfortunately, or maybe fortunately, people in the services and
industry recognize the value of the course. The last time I talked
with Ken Nidiffer, he was booked up for the next two years. So, we
are taking steps. People recognize the need and are trying to avail
themselves of it.

1

MR. DENNIS GACKE (SPERRY UNIVAC): There is a lot of movement afoot in
the defense to consider firmware as software, and software as
software, i.e, treating it alike. Therefore, test requirements apply
equally to firmware as well as all kinds of software. That's the
difference between the different types of software as well as
firmware. The thing that we get into in the development of a computer
itself that consists of emulation firmware, diagnostic firmware,
operator panel firmware, power tolerance all that kind of stuff, each
one of those is just a little bit different, and has to be, in my
mind, treated differently and tested differently. There doesn't seem
to be too much recognition of the fact that there are different types
of software in different departments. That's the first question to be
addressed. Secondly, we have gotten involved in the independent
in-house testing, down at the unit code level. The unit code was
arbitrarily set at 150 lines of micro code. There is expressed a lot
of difficulty in doing the testing of that, from the standpoint of how
do you verify that it meets design requirements, how does it meet its
performance requirements. Most of the testing, as it turns out, is
more of a structural nature where you just verify that the code
executes without error. Maybe somebody has some insight there.

MS. STEWART: 	Well, let me say this. 	Unit testing is usually
conducted as structural testing. It usually is at that level, i.e.,
testing to design. So, that is the normal intent. Unless you've done
something special with your methodology to build requirements
traceability into the process and back-up at the unit testing level to
requirements, that's about how you would expect it to come out. You
would expect unit testing to accomplish exactly what it is
accomplishing. On the firmware question, I think all we can say is,
within the DoD at large, that's still out for study. It's been a
known problem for some time. The existing policy drafts just treat
firmware as software, unless a waiver is granted. The kinds of
consideration that you're raising are granted on a program by program
basis. So, we don't have a simple solution to that problem at this
point.

CAPT. NELSON: On the software versus firmware, maybe I shouldn't
admit to it, but there is a white paper written by Dr. Sylvester at
ASD that talks about hardware intensive versus software intensive
firmware, and the fact that you should treat them differently. Most
of us tried to kill that paper, and we effectively did so. I know for
a fact that we just reviewed a RFP at ESD, where we allowed the term
software versus hardware intensive firmware, because the program
office did an excellent job of defining them, did a very good job of
lining out the types of requirements they wanted, and they addressed
some of the concerns you have, the fact that there are different ways
to test it, and it has different maintainability requirements and
such. So, that is kind of echoing there that when you have a program
by program basis, such things are allowed to happen, if it's
reasonable and well-defined. There was a Monterey conference, the
Joint Logistics Command Workshop, Monterey conference, and Panel B,
specifically addressed that whole issue. There again, the thing's
filed in DTIC, so if you just use Joint Logistics Command, you can run
it down from there.

160

MR. RUBEY: Let me address the second part of your question and share
some experiences. Very often, people say we are having trouble
testing or we're having trouble defining some reasonable tests. If
you question them a little bit, you'll find out the reason they're
having trouble in testing is because they really don't know what the
requirements are. This particularly becomes significant at the module
or unit level or some low level, because the module's been defined
without laying out what the requirements are. I suspect that nobody
knows what the requirements are that they are supposed to test that
the unit or module satisfies. Once you know what the requirements are
that the unit is supposed to do, then it becomes very easy to do
something other than structural tests. When you do not know what the
requirements are, then you test the structure and elevate the question
to a higher level.

QUESTIONER: I want to comment on testing the modules against the
requirements. A lot of times you'll have several modules that go
together to satisfy one requirement, so that makes it rather
difficult. 	I think that most of the trouble comes from very
ill-defined high level requirements. 	From our experience, we've
experimented with automated unit test tools and have found them to be
extremely successful on scientific types of code where you have a very
specific input and a very specific output that is governed by some
type of equation, that works very well. But, for other applications,
we've pretty much had to tailor each test to each specific application
if at all possible.

MS. MARTIN: I would like to expand on the question that was just
asked in reference to firmware versus software. I think that another
way to state that question is, if you just think about software, are
all errors created equal? The testing requirements or standards don't
really seem to make a distinction between how testing should be done
in terms of the criticality of failure. Is any work being done in
those areas?

MS. STEWART: A standard V&V approach is to do criticality analysis of
all of the software requirements, and that's based on the premise that
all requirements and all errors are not created equal. Obviously,
when you are dealing with mission critical weapon systems, this just
tends to fall out. The kinds of functions that do mission data
recording for post-mission analysis are not equal to those that
protect the guy in the airplane from being fired on. It's just a
fairly simple fall-out of the system mission. The work that's being
done in this area is to base testing on a criticality analysis, which
sorts out which errors are more important than which other kinds of
errors, and testing against requirements, using that as the
foundation.

LT. COL. BLACKLEDGE: MIL-STD-1679 gives a definition of different
severity classes of errors, and even goes so far as to say what the
passing criteria are. You can have zero of class one of the most
severe errors and so on. So, there is something, I don't know what
SDS has in it.

151

MS. MARTIN: In MIL-STD-1679, when it describes the testing that must
be done for a system, such as module testing, subsystem testing, and
so on, is there anything in there that says you don't have to be quite
so thorough here if it's a non-critical module?

LT. COL. BLACKLEDGE: I don't think it defines modules as critical.
It just goes through the errors. It does say you can have a lot more
non-critical errors than you can have critical errors. It makes a
differentiation that way. It does not go into a module
characterization.

MR. STEVE HABER (SANDERS ASSOCIATES): The last two days we have heard
a lot about life cycle costs and development. We've heard it from a
variety of perspectives and the panel members presently in front of us
represent a very good cross-section, in my opinion, of different
viewpoints of the life cycle. Now, I would like to know, based upon
the various opinions and experiences and viewpoints, are we moving
towards really implementing life cycle costs or are we still in
development and acquisition perspectives regarding the acquisition
life cycle costs? We talked about having to do more up front, but I
still see schedule slips, squeezes of schedules, everyone talked about
various squeezes of schedules on the unrealistic approach. I wonder
if anyone would like to comment on is the trend really changing or is
it just verbiage?

MR. RUBEY: 	What I see in life cycle costs... I think the DoD
community is very serious about life cycle costs. I think that's the
selling point on many approaches, many systems, and behind their
emphasis in pushing the higher level language. I think where there is
not much interest, not much emphasis in life cycle costs, is with the
contractors and developers, and they're only going to do very many
things in life cycle costs reductions as they get pushed by the DoD.
.The contractor doesn't care once he's got it accepted. His part of
the life cycle is over. Right? That characteristic will never
change. It will be the DoD that pushes life cycle costs improvement.

COL. HAL FALK (WRIGHT PATTERSON AFB): Although perhaps part of my
concerns have been allied to some of the comments that have been made,
I would like to read this to IV&V. I understand there has been an
analysis on the usefulness of IV&V and perhaps that was based on how
we developed software in the past or on systems that were developed in
the past. We used the approaches that have occurred in the past, and
I would hope that we have learned to better manage and develop
software, and we've heard some of those ideas expressed here today.
IV&V costs a lot and, perhaps I'll be shot by most of the people in
here if I talk it down, but from a cost standpoint, I would like to
talk about other approaches. Are there other alternatives, using,
enforcing good development practices, tools, methodology, quality
assurance that we've heard about today, and is there some approach,
except in perhaps the most critical software, where we don't have to
have IV&V but can use a single contractor to provide us good and error
free software?

162

LT. COL. BLACKLEDGE: Before I let Marilyn answer that. The ideal
situation, the ideal solution is to have the people in the program
management office experienced enough in software so that they can
monitor the contractor, so that they are their own IV&V team. As you
saw by that 13%, nobody raised their hand, that's not found. You
don't find that kind of software expertise in a program office. Why?
Because they're in short demand right now, they're spread out
otherwise. Failing that, the next best thing is to draw in expertise,
as I mentioned on Caral Giammo's question, to draw in expertise from
the people that are going to have to maintain that software. That
would be, if not as good, at least it would be something that would
give you some training for those people. They may not be IV&V
experts, but they're going to be the type of people who are going to
have that software dumped on them someday. Those would be cost
effective, if you could do that. Failing that, you go to the IV&V
contractor.

MS. STEWART: Well, I guess as spokesperson for IV&V, let me say
this. There have been a lot of statistical studies on where the
costly errors are in software and where does IV&V detect errors? The
kind of things you are talking about, with automated aids, can attack
errors in the coding process. They can reduce the amount of errors
that are made in the first place. However, the bad news is that the
most expensive errors and the most difficult to detect are the
conceptual errors, errors in the requirements definition in the first
place, and in the design, the development of an architecture that
implements that. We have a long way to go before our technology makes
that process more error proof. We have some techniques that are good
for adding rigor to the process, but we aren't going to see errors of
those kind, conceptual errors, not introduced for a long time.

COL. FALK: Just one thing to add. Is there anyone here in the room
or on the panel that can cite an example of a fairly significant
software development that was accomplished successfully without IV&V?

MS. STEWART: Not me.

COL. FALK: Is there a Boeing representative in the crowd?

CAPT. NELSON: I can't swear this is true, but what is claimed by
Electronics Systems Division is that the PAVE PAWS effort was a very
successful effort that did not have an IV&V contractor. It has been
sold as one of the most successful acquisitions at ESD. I want to
make one comment on the IV&V question in general. There are other
alternatives. In fact, we see them. At ESD, some programs go out and
they basically hire two contractors up through PDR or up through CDR,
and they try to get the bugs out that way rather than hire an IV&V
contractor. Another option is to hire an engineering management
support contractor, which is what a lot of people really need, and
call it IV&V anyway. The key there is that those all cost money too.
The whole point is you're short people, which is probably why you went
to an IV&V contractor, because you couldn't do it yourself. No matter
how you solve that problem, it's going to cost money. Just pick the
best solution, and it might be IV&V.

163 •

DR. GIESE: I'm not sure how much IV&V was done on the site defense
program, that TRW delivered. I know we had set up quite a bit of
internal controls within the company. Just speaking from that, I know
we had fairly exhaustive control boards and as we got closer to the
final delivery, any changes had to go through a number of different
review processes, internal to the company, which is basically our own
internal QA. That was a fairly large project that was delivered on
time.

COL. FALK: I just wanted to add a few more comments on V&V. One of
the experiences on the PAVE PAWS system was that ESD spent an awful
lot of time at the various reviews, going over the software. A very
large percentage of the time was spent specifically on the software.
So, they really wrung out a lot of the software problems, and I know
the sizes. For example, the tactical software C5 was about 2,000
pages. It was wrung through thoroughly, and similiarly, I think, the
B5 was approaching 800 pages just for that tactical software CPCI. It
was a very, very intensive thorough up-front effort, and certainly by
most standards, was a very successful program. 	On a slightly
different note, relative to the V&V effort. 	It would be an
interesting question if you assumed that all of the review points,
including the TRR, are really complied with, plus the spirit of the
software QA program is enforced where each contractor really has a
very thorough software QA program. All of these things together
suggest, if an internal software QA effort may be run 6-8%, and you
have to ask them, is it cost effective. In addition to that, if there
is some assurance that there is a very good internal procedure, what
is the incremental benefit of having a complete V&V effort, and would
it be worth the incremental cost? I'm sure there are two schools of
thought on that subject, so I will get out of range quickly.

MS. STEWART: The main thrust of IV&V is towards detecting technical
errors, whereas the main thrust of SQA is typically to see that good
development procedures are set up in the first place and followed,
that kind of thing. Now, if those good development procedures do get
set up, they certain enhance IV&V, but they typically do not include
the detailed engineering assessments that fall out of IV&V. So,
that's the question you've got to ask yourself. That's got to come
from somewhere. It sounds like on PAVE PAWS, it came out of the
project office itself. In other areas where the project office
doesn't have that kind of manpower, they turn to an independent
contractor, or they may go to life cycle support agent. There are
many ways of doing it, but you've got to have that kind of engineering
assessment.

MR. RUBEY: One comment, reflecting here, is, has anybody thought of a
major project that was successful without IV&V, and maybe we are able
to come up with one. Can anyone think of a project that failed
without IV&V? We probably don't have to dredge our minds very deep to
come up with projects that failed. I am an advocate of IV&V. I don't
think it's a magic procedure, by any means. It could be done by lots
of people, including the contractors themselves, if they established
an independent group and staffed it properly with the same kind of
people. The problem with the development contractor doing it is that
he puts all of his good people on the development phase, and weakens

164

the IV&V end. The advantage of getting somebody independent in there,
whether it's an independent contractor, independent government agency,
which probably the government agency is the best, is that agency will
put their best people on it. They won't put their worst, that's their
job and their responsibility. 	Since I've been in IV&V, I've
challenged my friends in development. 	You people have a golden
opportunity, you can put us out of business doing IV&V if you don't
leave anything around for us to find. If your product is perfect,
then the next time around the customer, the Air Force or Navy or Army
won't need any IV&V. Sometime, probably when we do get much better in
development, IV&V will disappear. It's a crutch we're carrying with
us because we're just barely learning to walk.

CAPT. NELSON: I've got to make one comment on the SQA/IV&V question.
That question gets asked about every other time I give the briefing to
a program manager, because I tell them 5-10% of the development costs
for software quality assurance, and 10-40% for IV&V, and then we peel
them off the roof. I tend to agree with the answer Marilyn gave
because that is basically the program we take. They are, IV&V and SQA
are, basically complimentary processes. IV&V is concerned with the
technical product we feel, and SQA with the development process. So
they complement each other. The other thing is, I won't mention the
system, but on one of the reviews we just finished after I wrote the
paper, not only has there already been one IV&V contractor, they're
hiring a phase two IV&V contractor. We just did a SQA review and the
program manager wants us to go back again and do another one. The
program manager has decided software is his critical element, and he
wants SQA and he wants IV&V, and he's going to pay for them both.
He's going to pay us money to go visit the contractor to make sure
everything is happening. So, it's a question of where your risks are
and whether or not you really think it's worth spending the money.
Some program managers think it is.

MR. RUBEY: One final comment. The easiest person to market IV&V
itself is somebody who has been on another program that has used
IV&V. The hardest person to market IV&V is somebody who hasn't used
it before. So, I think that sets sort of a selling point, we have a
lot of repeat customers.

MS. GIAMMO: Marilyn talked about the study at RADC, which I know
about, but no one is mentioning the study at the software engineering
lab over at NASA-Goddard, where they used IV&V, and not only was it
costly, slowed down the project, the software came in at worse quality
than other projects where they didn't use IV&V. That one is
available. I'm sorry that Vic Basili wasn't here to talk about that,
but there's another side to IV&V. NASA-Goddard has a software
engineering lab, and the head of that is Price McGary, and Vic Basili
at the University of Maryland are members of the consortium. They, in
computer science and software engineering labs , did a study on some
space flight software at Goddard.

165

CAPT. NELSON: I just want to make a comment on that. IV&V is just
another contract. If it's not managed properly, it will fail. There
are cases of IV&V contracts that failed. So, there's a question of,
just because you're going to do IV&V, you still have the problem of
selecting a qualified contractor and having the people to manage it.
It's not a panacea, but it's a tool that can work. How can you tell
if an IV&V contractor is doing his job well? The same way you tell if
a prime contractor is doing the job well. You've got to monitor him,
you have to look at his product, and you have to evaluate him just as
you do the prime.

MR. RUBEY: From a lot of experience in IY&Y, I would say, if he
doesn't come up with any mistakes, he's not doing a very good job.
You're not taking much of a risk if you criticize him for not finding
many mistakes. One refinement on that, what I usually say is one of
the best ways to evaluate an IV&V contractor is what I call the "cry
wolf" ratio. The IV&V contractor will be giving you reports and
reporting errors. If 95% of the time he says this is wrong, and it
turns out that the development contractor scratches his head and
murmurs and cries, and says "I'll fix it", OK. But, if half the time,
he says this is wrong, the development contractor says "wait a minute,
this turkey doesn't understand what he's doing, then you've got a
pretty bad IV&V contractor. You have to have a high percentage of
hits, and he should be firing off the guns fairly often too.

QUESTIONER: Next question, back to the resources. Because of the
limited resources in government, do you government representatives,
feel, since we have much more today than yesterday, is the government
going to more specific requirements now on RFPs, and if so, do we have
the resources in the government to evaluate deliverables under that,
or are we going more towards what the industry people recommended
yesterday that we put in the RFP to use a tool like this one, or one
as good as that one, and then don't we take more resources to evaluate
a deliverable under that type system?

CAPT. NELSON: I guess I'll take a shot at that. One of things I
usually try to avoid is source selection. I think we are going to
more specific requirements in RFP's, because we're getting to a point
where we know what the requirements are. The key question is where
they fit in the RFP, they may be there by reference. There may a
reference to MIL-STD-SDS, whatever it ends up being. That's still a
requirement in the RFP. Right now, I mentioned earlier today that we
have a 7 page paragraph that we put into the A spec, we also have
about an 11 page statement of task path for software development that
we try to get into every contract with software development. We put
very specific requirements in there, as specific as we can get, all
based on mistakes we have made in the past. I feel that MIL-STD-SOS
and some of these other things, as they evolve, may not be part of the
basic RFP package, but they will be there by reference, and it will be
more specific because we've learned a little bit along the way.

166

QUESTIONER: But do you have the personnel to allow you to evaluate
that 7 page statement of work? Or whatever gets delivered based on
that 7 page statement of work? You've told me basically that you have
a small office, and it takes you between 1 and 2 months to do a
snapshot review of a program. Obviously, the Air Force has more than
6 programs. Even if you only do it on a yearly basis, you're telling
me that some of them want you to come back next year. So, you're
saying that you're looking at 5 or 6 or maybe even 10 programs, and
the rest you're not really worrying about.

CAPT. NELSON: I think the point that should be made is that the
technical staff aren't the only people that have computer written on
them at ESD. There's approximately currently 150 computer resources
which are distributed to program offices based on a workload
forecasting model, that says here's how much work computer resources
are going to do. It says this program needs three, this program needs
four. I think this number may not be accurate, you never heard me say
it, but I think the current manning level is around 70%. Everybody
gets to be equally undermanned. That's true Air Force-wide. There
are efforts going on way above my level to try to alleviate that
problem. We're doing the best we can in the meantime. If a program
has software, there are people who carry the label software assigned
to that program to the maximum capability of ESD. We do try to have
the people there to evaluate those issues, plus in theory they can
come to the technical staff and ask us for assistance.

QUESTIONER: Another follow-up for the Captain. You mentioned DCAS,
and you're trying to use them as much as possible. There are many
people that believe DCAS is having enough trouble trying to monitor
hardware contracts, and that since they are generally GS 9's or 11's,
and you're obviously having problems keeping software people that are
12's or 13's, what do you really expect from DCAS? Do you think they
can do anything?

CAPT. NELSON: One of the points I make in the paper is that we found
that DCAS and CMD have the same trouble getting software quality
individuals that contractors in ESD has. It's a real problem. They
are beginning to get people that are qualified. The key issue here is
that a DCAS or AFPRO is only going to do what a program office asks
them to do. If we don't task them to support software quality
assurance, they won't support it. If we do task them and we keep
repeating it, they'll eventually hire the people and train them. In
fact, the Contract Management Division at Kirtland has a training
program underway which we have been supporting with traveling
instructors to train their people in software and software quality
assurance. It's a problem. There's not enough qualification now, but
is being addressed at many levels within DoD to try to alleviate this
somewhat.

167

MR. HESS: Let me address the first part of your question. We talked
about the standards part of what we require on our contracts, on the
other hand, we are also looking at requiring specific tools. The
principle tool that we are now looking at requiring is the Ada
language itself, if you want to consider that a tool. I see that
happening more as the Army and other Services get more experience with
requiring specific tools to be applied to their projects.

MR. CARL FISHER (JLR, CORPORATION): Captain, first of all, I totally
agree with your attitude about DCAS or AFPRO, I've not seen one yet
that has those qualifications, but your awareness is gratifying. The
real question I have is a human problem. It deals with the
relationship that a project office gets with its contractor, and the
strong need to succeed. You won't make General if you're on a project
that doesn't work well, so you don't tell anybody about it. If the
IV&V contractor works for you, you don't tell anybody about that, you
work it so that the report is somehow sanitized. We already have a
good many wickets that we have to go through. We have reliability
audits, we have PDRs, CDRs, but after you've been in a program for a
while, the group, as a whole, from project office, acquisition
manager, down to subcontractor, gets to have a siege mentality of, "we
have to protect ourselves from all of those guys out there who are
trying to find out what's wrong." I would like the panel to comment
on that problem, that I perceive to be very real. I don't know that
it has a solution, but more wickets doesn't necessary solve that
problem.

MR. RUBEY: Let me comment on the siege mentality, or, I don't want to
hear any bad news. From an IV&V attitude, the IV&V contractor has to
be providing problems and information to the Air Force or DoD agency.
That's how they should be judged. They want the program to succeed,
the project office wants this project to succeed, the developer wants
it to succeed, and the IV&V agency wants it to succeed. But, the IV&V
agency's contribution towards making the project succeed, and in some
sense the project office's contribution toward making the project
succeed, is by identifying problems very early in the process, as was
mentioned before. Their job is to find errors early when there is
time to do something about. The IV&V agency has failed, the project
office has failed, if all the money has been spent and time is gone,
then you say "hey, we've got a problem". What you have to do is find
the problems early, and that's the way you make projects a success.
I've never seen a project that didn't have lots of problems. The
difference between a successful one and a failed project is how fast
the problems are found and corrected. If you find them fast and
correct them early, you can make the project a success. If you don't
know them, if you hide your head in the sand, it will be a disaster.
Eventually, any project office has to prove performance. The guy's at
AFTEC are going to get their shot in.

168

MR. FISHER: That's true. I think what I'm hearing is if you have a
good, well-managed project, it's going to work out alright. You'll go
through all the wickets and ask all the right questions. But, we all
know there are lot of projects for one reason or another that don't
work out right, and they still go through all the wickets, one way or
another. That's the concern. I'm not objecting to IV&V at all. It's
what do we do about this other problem that does exist.

MR. RUBEY: I agree with you. You can get through all the wickets if
the wickets are rubber stamped, mixing of metaphors. In fact, if I
can go back to the previous question, I think one of the reasons the
Air Force very often, or the DoD, needs high staffing in project
offices is because they're doing much of the management that should be
contractor's responsibility. The only reason they get involved in
making the wickets high and hard to get through is because internally
the contractor hasn't done very much to get through the wickets.
Sometimes, the only reason any substance is put into a design review
or test requirement review is at the insistence of the project office
and the management within the development organization could care less
about it. I think we need a lot of people in project offices that
make those wickets high, so that getting over the wickets means
something. If we are going to fall flat on our face, let's fall flat
on our face at the early wickets.

QUESTIONER: I would like to make a few comments about IV&V. We do
have large software development projects in my company that are
successful without IV&V. We also have disasters on our hands that are
very heavily involved in IV&V. We have incompetent software managers,
and we have very competent software managers, and there's a direct
correlation between which is which and when we use IV&V. With good
managers who attract good engineers, and do a good job, the customer
does not need IV&V. The customer knows very quickly when he has the
other situation and begins talking in terms of IV&V. The point is,
let's be honest about it. It has to do with people. We're dealing
with people problems. One of the things I like about the software
initiative is that it begins to deal with competency in software
engineering, and how you develop software. Until we get that, we're
going to need IV&V for the incompetently run project, and we don't
need it for others. We're going to need to upgrade our profession
until we are all comfortable that we know how to do this job and do it
well, and provide the kind of products that do the job.

MR. RUBEY: Let me respond to that. I don't think we use IV&V or a
high level of monitoring by a project office just when there is
incompetence in the developing contractors. I believe there is at
least one other factor, and that's a factor of how important the
system is that is being developed to the government agency that's
buying the system. For example, I've had experience in two systems,
the Minuteman and the Bl. Both of those have had a long, long history
of IV&V, and I would not criticize in any way, shape or form the
development group. Very well managed development group, good software
development activity. But, both of those were very, very important
systems. As was said in the beginning, they were not going to have a
Bi sitting out there, flunk its flight test, not have a successful
flight test, so we will take out this extra insurance policy on IV&V

169

although the software development was a super group. Same thing is
true for Minuteman. It's a cheap insurance policy, given the cost for
it in respect to the system. Get back to the paper. Think of the
lost function cost. What good is all the billions spent on a
Minuteman if the software doesn't work? If I have to spend a few
hundred million validating it, that's probably a cheap price. Same
thing on the Bl. There's another factor besides the quality of the
people doing it. How important is it that it works correctly?

QUESTIONER: Just two comments. First of all, I think it might be a
very interesting element of research to identify several eminently
successful projects that either did have IV&V or not, and try to
determine what the anatomy, what was the underlying reason for the
success of those projects either way, and try to plagarize the things
that went right and use them in future projects. A second comment
related to some of Captain Nelson's points. I think that the
assessment of a contractor's past performance and his current plan as
perhaps witnessed with a CPDP that comes along with a proposal; does
he really know how to manage a software intensive project; what is his
track record in the past? I think it would be a very useful thing to
give more emphasis, so that you don't end up awarding a contract to
the lowest bidder. If you take a less qualified bidder, and buy a
cheap insurance policy with a V&V contract, I'm not sure if you really
end up ahead in a global sense. One comment from the Colonel from ASD
is that a project office also has to be very concerned with the
quality of an IV&V contractor. Properly done, if he's doing his job,
it can be an asset. I think some of the prime contractors here can
also cite cases where an IV&V person has deflected key management
resources from the real problems into addressing literally pounds of
nitty-gritty, comma kind of points. So, I think the Colonel's point
is very well taken that a good IV&V program is a real asset. One that
is poorly managed can actually have a negative effect for the DoD
projects.

CAPT. NELSON: 	For a while we weren't allowed to use past
performance. I think we can do that again. Although we're not doing
a lot in that area right now, I think it's worth noting that Mr. Phil
Babel of ASD, who is the computer resources focal point there, has
been working on a rather thick list of questions for pre-award surveys
which would basically, hopefully give us a tool to do that. There
was, in fact, a letter signed out by Lt. General Bond about a year ago
that said you should try to do pre-award surveys for software, and
maybe Steve can help me out on this. If I'm not mistaken, the new
AFSC supplement to 800-14 that just got published also says you should
think about doing pre-award surveys. So, we've got the policy, now
all we need is that implementation part that always seems to be
lacking.

170

MS. STEWART: I have one comment on V&V as an insurance policy. I can
state from first hand experience that it is no fun, and not very
effective, to take a poor contractor and try to keep them in line by
applying a lot of V&V. It really is a management headache, both for
the V&V'er and for the project manager. I don't even like to hear
that suggested as a way out. An approach for picking a low price
bidder, you're not really sure, but then you buy V&V as an insurance
policy. It's going to be headaches all the way around. There's
occasionally just more errors than you have the resources to detect.
It's just really not cost effective.

MR. RUBEY: I agree 100%. I think the ground level that is urged on
program offices is that IV&V can only tell you when there is a
problem, they can't straighten the thing out. So, if it's an
incompetent development contractor, all I can tell you is that you're
on a sinking ship, so abandon ship. They can't go around and start
repairing the ship. The development contractor is sailing the ship
and keeping it off the rocks. In regard to your first comment, there
isn't much literature, much discussion of the effectiveness of IV&V, a
recent report was one of the few mentioned. It might be good sometime
to have a panel discussion having a representative of, say, three
projects, and for each one of those projects, have a person that had a
prominent role in the IV&V, a prominent role in the development
contractor, and a prominent role in the customer or program office and
see how their IV&V worked, how their working arrangements were,
whether it was effective. Very often, after an IV&V agency has worked
with a development contractor for a while, a fairly appreciative bond
develops both ways. The development contractor likes the IV&V
contractor.

DR. PETER WEGNER (BROWN UNIVERSITY): I imagine that in the future,
when we have to make a decision between bailing out sick projects by a
lot of IV&V, or throwing it away and starting anew, you might
increasingly go in favor of throwing it away. This goes back to
something that Richard Lipton said yesterday about rapid prototyping.
The whole idea that of the producing things that we should consider
throwing away and starting over will be something that will be made
easier by the new, better access to computing facilities and richer
tools that we have.

171

3 FEBRUARY 1983 - PANEL DISCUSSION

MR. DONALD R. GREENLEE (OFFICE OF THE DIRECTOR, DEFENSE TEST AND
EVALUATION): Tom Burley likes to tell the old one about the drunk who
exceeded his normal standards of revelry one night, staggered to his
car, drove home very uncertainly, carefully parked it on his lawn,
staggered out of his car, fumbled for his key, put the key in the
lock, and managed after a great deal of difficulty to get the door
open, fell flat on his face on the floor. Who would be standing there
but his wife, who looked down and said "well, what've you got to say
for yourself?". Summoning all the dignity he could, he said, "well, I
don't have any prepared remarks, but I'll be glad to address questions
from the floor."

DR. DEMILLO: First question.

MR. MIKE KRESS, (SUNDSTRAND DATA CONTROL, INC.): 	There's a very
comprehensive article in this month's issue of "High Technology
Magazine" on Ada, written by James Fawcett, who is the publisher of
"Defense Electronics Magazine". One of the interesting comments that
I noticed was that "despite the push for Ada, some programming gurus
strike a cautious note, observing that Ada is extremely complex and
requires highly skilled programmers to write effective programs".
And, then he quotes from a Mr. Michael Ryer, who is head of the Ada
Program Office at Intermetrics, saying that "Ada will be completely
successful or a total failure. We will know by 1985, when the first
Army contracts mandating Ada will be nearing completion". I was
wondering if perhaps Colonel Campbell could address whether that seems
to be a valid perception of the complexity of Ada, and if so, has that
been considered in the decision to embrace Ada? And, are we really
looking at this serious a problem that we would probably have to send
our programmers back to school for a week or a month to learn to
program in Ada?

COL. J. FRANK CAMPBELL (U.S. ARMY MATERIEL DEVELOPMENT AND READINESS
COMMAND): A couple of comments. Number one, you might be wondering
why the Army is pushing so hard for Ada. Going back to '79, TACPOL
was our standard language at the time, and had widespread use in four
systems. We looked around and saw what was happening, and it really
didn't make sense for us to invest a lot of money in that particular
language at that time. Ada was on the horizon, and we put our money
there and have been pushing hard. We've sort of got an advantage over
the other services, they have their standard languages. Incidentally,
we use those in many of our systems. We had that wonderful
opportunity of proliferation that we had to do something about, so we
did go for Ada. Two things I would say. Number one, part of the
complexity that people are dealing with in Ada exists in our current
systems. Yet there is no programming language that can deal with this
complexity, it is done primarily with assembly language. Maybe there
are other ways to ensure that this is dealt with, using Pascal, C, and
that sort of thing. You could put those two together and do
essentially the same thing. So, I think that the complexity is there,

172

and to have a language that handles that complexity, indeed, it is
going to be complex, there's no two ways about it. The other thing, I
will challenge you a little bit, is that from a testing standpoint,
the little bit I know about engineering, the thing that you use to
test with is, in general, more complex than the thing you are testing,
just by nature. Admittedly, Ada has a lot of features in it that
would help us during the life cycle. It has a lot of features in it
to correct or to find the errors that are normally done by
programmers. The complexity probably deals in two or three or four
percent of the language. My perception is that if we get to the point
where we have to block out some of those features in order to make Ada
really usable, we will have given it a good shot. Admittedly, Ada is
complex, but it's complexity is directed to put the things in the
compiler to take the load off the programmer to do a lot of checking.

MR. KRESS: Will the familiarity to use Ada require formal training
for programmers, who will have to go back to school for a week or can
they pick this up reasonably in the self-taught mode?

COL. CAMPBELL: There, again, it depends on where you are coming
from. We've got some efforts going on evaluating that. Who needs to
know what? You don't train a systems programmer in college, he learns
a little bit about JCL, etc., but the guy that actually designs that
is an experienced guy. I am, by no means, an expert in programming.
The little bit that I've had in Fortran and Pascal, there are very few
concepts that I can't grasp very quickly. Whether or not I could put
them to good use and write good code, that will take some experience.

MR. MOORE: 	Earlier, Capt. Boslaugh talked about testing the
requirements and the design of the software. The first day of the
conference, Mr. San Antonio gave us an overview of how to,
quantifiably measure the design specification once it was mechanized.
My observation is that once we mechanize a design specification, it
becomes software, open to all the errors that are possible in
software. But, don't we also have a problem insofar as the
proliferation of these character-string, generic, design aids, that we
are really just glossing over? We've been talking about four
different ones in the course of this conference. Is there any work
being done to perhaps standardize these design aids?

CAPT. DAVID BOSLAUGH (NAVY MATERIAL COMMAND): If I may, I would like
to take a crack at that. You're absolutely right. Over the last few
years in preparation for trying to design an all up software
engineering environment and to design a software factory, we surveyed
the tools. I will tell you one thing. We've sure got plenty of
tools. We've got tools that address every part of the software life
cycle, and we've got tools for everything. The trouble is that
they're in bits and pieces. They're written in many different kinds
of languages, many are unique to different instruction sets and unique
to processes. One of the first things we want to do in the
conceptualizing of an overall environment is exactly that, is cut down
the tools to a few good ones, first of all, and also make the tools
compatible so the output from one tool flows logically into the next
one. Also, if we can do it right, get as much automated production of
documentation from those tools, as we can. But, you're right, the
next part of the software monster that's going to eat us up is going
to be an incredible proliferation of tools that don't fit and match
each other.

173

QUESTIONER: Providing we get that solved. The next problem would be,
is there any work being done in perhaps establishing a stronger link
between the metrics that Mr. San Antonio talked about for measuring
the design specification and the metrics used in the evaluation of the
actual executable software? If that takes place, would it be possible
also to perhaps measure a system specification with a view of that as
being a prototype?

COL. EDWARD AKERLUND, (AIR FORCE SYSTEMS COMMAND): Are you asking, is
a specification a prototype?

QUESTIONER: Provided the metrics are in hand to the point where their
is consistency to the metrics used to judge the completeness of the
design specification, matching that to the actual design specification
for the executable software, wouldn't we be able to perhaps flush out
problems more right at the design area as opposed to waiting until we
have executable software?

COL. AKERLUND: Are you talking about going through the program design
language and specifications?

QUESTIONER: Yes. PSL's or whatever.

COL. AKERLUND: And you would associate metrics with the PDL?

QUESTIONER: Yes.

COL. AKERLUND: I don't know of any work that tracks through all of
that. I'm not completely familiar with all our laboratories'
activities either.

DR. DEMILLO: I can respond to that. Yes.
people who are interested in executable
specifications, and look at specification
That's not the growth area in testing right
interest.

In general, there are
specifications, testable
as a programming task.
now, but, there is some

QUESTIONER: 	Just 	a 	question 	considering 	life 	cycle 	cost
implications. Has there been any effort to look at tools to provide
documentation, automatic generation of documentation, not only for the
developer, but also over the entire life cycle. I think one of the
big problems is that the documentation many times ends up as a last
minute job, written by programmers, who perhaps did not develop the
original code, etc., etc., and of course, in many cases, frankly it
gets worse, it goes downhill from there, over the 10-20 years of the
useful life of the system. I'm just wondering if there are any
attempts to include some guidance relative to documentation tools to
ensure that the documentation supports the life cycle use of the
system?

174

CAPT. BOSLAUGH: I mentioned our hopes for a complete comprehensive
software engineering environment which would cover the entire life
cycle, and as one of our strong desires, we would like automated
documentation production. One of the reasons we would like it is that
we think that is a good way to get contractors and other agencies to
use the standard environment, to drop out the documentation in the
form of the contractual data item definitions that the government asks
for. Now, that's our desire. I don't know how much work is going on
in those lines. I've heard of bits and pieces of technology that's
slanting toward automated documentation production. I think there is
probably an awful lot of work to do. We very definitely want this
kind of capability in an environment, and as part of the products of
the DoD Software Initiative, we hope to be able to specify that in a
lot greater detail.

COL. CAMPBELL: Let me just add one thing to that. The same thing
applies in a lot of other areas in terms of documentation. The ILS
package, the TecData package for hardware, runs, in general, that
depends on size, complexity and a lot of other things, a million and a
half or two per copy. That's one of the areas that we've seen our
reduction of kinds of computers helping tremendously. The
circumstance is that a guy out of my office works weekends right now,
and otherwise, on a team that's looking at the way to do that with the
new video disc technology and other technology. Part of our problem
is to come to some agreement as to the environment of the data base.
As it now stands, with some 40 different software environments, that
we would have across that system, it's uneconomical to try to do
something like that, and very definitely that is why we're trying to
get to a common environment. We know it's not going to stay constant,
its going to be changing, etc., and has to be improved on each
system. But, that's one of the things that we hope will come.

COL. AKERLUND: A quick comment on documentation. Many times I've
been asked about why the government wants so much documentation on
software. What I've been trying to communicate to industry, is that
the documentation we want is the same documentation that the software
developer needs. That is, if the designer leaves in the middle of the
design, or if the coder leaves in the middle of the code, can the next
person pick up without sizable delay in completing the software
package and testing? If it's documented to the point that the person
who's working on it can leave, and another person can pick up using
the documents that are available, to complete the task, then the
documents are at a level that we need to support that system. Today
where complex systems are created by many different agencies, keeping
that document current and related to the systems, is most difficult
and probably one of our most important tasks.

MR. RUBEY: Let me address a question to Ronnie and other people in
STEP, and that's the recommendation to develop tools, which has come
through very strong in the last couple of days. Maybe we're pushing
forward, I would suggest, as a skeptic, a little too fast for tools.
We're not very good in testing techniques and methodologies. We don't
really know how to do the process manually very well; our fault is in
imagination and thinking of better ways to test the software. What
are your feelings of why you think just being able to do things

175

automatically is going to solve that problem? We can't do it
manually. We go back to our carpenter analogy, it is as if we're
going into the Sears tool department, we're looking around, but we've
never been in carpentry before, and we buy the fanciest and most
elaborate radial arm saw. I'm afraid some of these expensive tools,
like that radial arm saw, are going to sit there unused or we'll start
hacking up pieces of wood. Rather than build a nice software house,
we'll have a lot of firewood with the tools.

DR. DEMILLO: I think that's true. I think there's a chance that a
fancy tool will be unused. As Lee Osterweil said, the tool's that are
out there that he sees don't qualify as tools by his definition,
because they aren't usable enough, they're not friendly. That is
certainly a danger, but, I don't think the issue is do it manually
versus do it automatically. There are things that you can not do
manually. Where there are things that you do manually that have only
subjective results, and manual testing is often a code word for
debugging. I think there is a difference between testing and
debugging. For the kinds of software systems we're looking at, the
test cases have to be large, the test harnesses have to be complex,
the data that has to be recorded through various testing phases is
voluminous and has to be documented. I don't think there is a choice
between doing it manually and doing it automatically.

MR. RUBEY: The question I have is do we know enough to even do it
manually, given enormous labor? Then we might think of defining a
tool. My scepticism is that if we're not smart enough to even be able
to do it manually, then a tool isn't going to help us i f we don't know
what we should be doing. We're given a powerful tool , and we apply
the tool, regardless of what the need is.

DR. DEMILLO: I have a comment, but I'll let Ronnie or Don respond
first.

MS. MARTIN: First of all, your analogy made me come with another
one. One of the things that was discussed is that we are at a level
of a hammer and a screwdriver. If you give me a piece of wood and a
hammer and a screwdriver, and I want to cut that wood up, it's going
to be real messy. It's not going to do a very nice job. That's kind
of the same thing as the manual testing. There are some things, as
Rich said, you can't do manually. There are certainly deficiencies in
all areas, in terms of methodologies and whether or not we really know
what we're doing anyway. As we said in one of the recommendations,
there needs to be an analysis, an objective analysis, of the various
tools and methodologies to determine which ones are better than the
others. We're not saying we have all the answers there. But, at the
same time, we do need some kind of tools that are available to the
general public, instead of proprietary tools that are redeveloped by
each organization over and over again for their specific projects.
That's a very large waste in terms of money and time, and everything
else. Some tools are definitely needed. But, there does need to be
research in terms of exactly which tools and which methodologies are
the most effective. Does that answer your question?

176

MR. RUBEY: I think that answers my question. I think the effective
thing in your report would be a specific recommendation of a
particular tool you think would be effective rather than, because of
the limited time we have had just talking generically. The best thing
to say is we need hammers, saws, screwdrivers, and with this we can
build a good house, rather than saying, let's go to Sears and buy a
big box of tools and hope there will be some in the box that will
eventually prove useful.

DR. DEMILLO: There's really no way of making that kind of comparison
right now. The kind of data you would need to be able to select out a
specific set of tools and recommend these is not there. It's a very
dangerous thing to do in the second place. When you do that, you tend
to focus the attention on those tools, and that's a kissing cousin of
standardization anyway. It would tend to freeze the technology. The
technology is not that advanced right now, but it's better than none.
You can expect it to get better. That's not a reason for not using
the tools.

MR. NEEMAN: In light of the software idea first, OSD has been saying,
and many of the speakers have expressed concern about. What steps
have OSD and the services taken to acquire additional resources, both
personnel and high grades to provide this emphasis and what success
has been met with by OSD and so on? And as an example, what happens
when a new PM is chartered? Do we say 50% of the cost of the new
system will be software, therefore, 50% of the engineering services in
the PM, the personnel must then be software qualified or work on the
software areas? Is anybody working on those type of techniques?

COL. CAMPBELL: I guess the three of us were in a meeting earlier this
week and talked about those same sorts of things, if I recall. There
is a real problem there, and I had that in my chart software is
manpower. I find it not true just in the military, but I find it true
elsewhere in industry. That guy just cannot take on more because he
doesn't have the talent or the capability there to do it now. I think
it's a generic problem. The approach that we've got in the Army,
again with the little diagram of the post-deployment software support
center? We do have some resources scheduled to come in there, and we
will build some knowledge bases, there. I don't call them centers of
expertise or anything like that. At any rate, there will be a
knowledge base there eventually to transfer. It's a real problem, and
I don't know where the people are coming from.

CAPT. BOSLAUGH: You really like to rub salt in the wounds, don't
you? You're talking about a very real problem, a source of constant
frustration, especially during a time when even though the defense
budget, they keep telling us it's going up. There's a very tight lid
on manpower of any sort, especially a lid on the high grades. That
coupled with a nationwide, what seems to be a growing shortage of
software smart people, really makes our job fun. There are
indications of at least some people at high places that are starting
to get sensitive to this. I'll give you an example. The people who
got the DoD Software Initiative in motion were at least perceptive
enough to realize that it wouldn't go anywhere unless some additional
ceiling points were identified with that Initiative, and actually

177

given to the military departments to manage it. That is a sign of
enlightenment, it's not a lot of ceiling points, it's just a handful,
but at least, it's a sign that some very senior people are starting to
realize that we don't have enough people nor the right kinds of people
to really grapple with the software monster. I wish I could say that
more is really being done, but, it isn't.

MR. NEEMAN: Let me add a part to that. I realize everybody is saying
we need more people, and everybody tends to throw up their hands and
say, we can't do anything about that. We have more and more studies,
and we get a few people here and there, and they take a few from
somebody else, and say, well, now it's your software even though you
were yesterday a chemical engineer, or something. I just don't see a
concerted effort either from OSD or even all the services saying we
have to do this. Maybe we have to get people that are trained in
trying to get more resources, which as far as I know, we don't have
any of those that are working on these types of problems. Maybe we
do, and I'm not trying to say it's not a difficult problem, but I just
don't see a concerted effort. It seems like everybody is saying, we
can't do much about that.

COL. CAMPBELL: Let me just add a couple of things. Just in the
instance of our headquarters, at least they recognized the fact and
they put 17-20 people together in a group to try to do something about
it, and that was done last year. I talked to a guy in the Air Force
that is on one of the other groups that we are on. He said he started
with something like 200 people eight years ago, and now it's more like
1700. Those things will happen, but they're not going to happen
overnight. I know in terms of even trying to put my office together,
I couldn't have handled 50 people in one year and gotten them
organized. It just takes time to do that. So, I refer to it as a
social process that we will all become a little bit smarter over
time.. The harder we work at it, the quicker we will get there, but
it's not going to happen overnight, that's my personal opinion.

DR. DEMILLO: I would just like to add that that's not a problem
that's unique to the military. Manpower shortage in computer science,
data processing, cuts across academic sectors, military, industry and,
I think there is, if not a concerted effort, there are at least
pockets of concern for that. The draft Software Technology Initiative
included a significant upgrade of support to graduate computer science
programs in universities, which I think addresses the problem
directly.

CAPT. BOSLAUGH: One way we see out is, first of all, we're always
going to have to depend on a certain cadre of very skilled master
software crafters. Also, we can do a lot in the way of allowing
everybody to be their own programmer, and a big thrust in environments
is to build very user friendly environments in which the main
qualification you will have to have to write a program is to know what
you want your system to do. The environment will then help you write
your program. I think the programming is going to have to move down
and turn everybody into their own programmer. That's one of the ways
we know we have to go to solve the problem.

70

COL. AKERLUND: One more comment on personnel from the Air Force
perspective. We've have trouble trying to identify the people who
have the skills. They are out there, but they're not classified.
We've taken a new approach. I'll tell you about it. It's not
happening yet, but, for the Systems Command, the command who's
responsible for acquiring the system, we have built a software
survival course. The intent is to have everyone that comes into
Systems Command attend this course first before they enter the program
office. It's actually a two phase course, there is an acquisitions
part of it, and then there's the software survival course, which I
view somewhat as a laboratory for the acquisition course. We're
planning on a pilot in March and expect it to be going full speed in
October. It is an attempt at bringing folks who are coming into the
command, second lieutenants and the young civilians coming aboard, to
get them not only knowledgeable with the acquisition process, but
knowledgeable about how to acquire software, how to plan for it, how
to make sure it is appropriately managed while we are acquiring it.

COL. FALK: Maybe my question is in a couple of phases. We've heard
about the Software Initiative, and 3200 some million being applied to
that, whatever that is, and I'm part of it, over the next few years.
Do we have a fund to accomplish the tool development and other
initiatives that this report is going to report out on, your T&E
report, is going to report on? Or, will you join the Software
Initiative and put your wants on the list of things that has developed
or will be developing over the next years?

MR. GREENLEE: I'm sorry Sam DiNitto is not here to address that
because I can't talk to the Software Technology Initiative at large as
well as others here can. It's my understanding that the funding that
will be spent by the STI will cover major research needs. Before
that, and I think it was well commented, that we need to determine
that there is a requirement for further tools. That's been surfaced
as a potential recommendation of this group. I believe that we owe
ourselves a very careful evaluation as to whether we need more tools
or simply need to make available the ones that exist. The details of
the STI, in my understanding, are yet to be fleshed out. I believe
that Sam commented, there is a workshop later this month, there's an
executive committee meeting at the end of the month, and I'll stand
ready to be corrected, as far as to where the bucks go and to what
areas, I don't believe it's been specified yet. With reference to
earlier questions though, I would remind us all that development of
personnel was one of the specific objectives of that STI.

COL. CAMPBELL: He didn't say anything about another pot of money.

COL. FALK: That was the point I wanted to clear up. This question
was prompted by a question phrased in a little different way, by a two
star Air Force General to Dr. Martin. What else have you got going in
the DoD, after she had told the executive committee about the software
initiative or after Col. Druffel had briefed the executive committee.
She reported that one of the things was this project, and we reported
to General Welch that we were coming over to find out what this was
all about.

179

MR. GREENLEE: 	OK. 	I talked to General Welch at that meeting
afterward, and explained to him directly that there was not in the
offing any funding out of the T&E community to support tool
development. We construe our efforts as distinct from, but hopefully
not uncoordinated with, the STI at large. That in my understanding,
will be the source of funds for any research initiatives, including
software tool development, should that be deemed a requirement. That
is a good question.

DR. DEMILLO: 	None of the presentations this morning mentioned
networking distributed computing systems of processes that are loosely
coupled and the software that runs them and controls them. There is a
whole bunch of reliability problems that come up in those settings.
Is there an awareness of that in the services?

COL. CAMPBELL: I probably didn't do a good job of describing, but the
one chart that I showed, at the various nodes, in fact I didn't have
time to describe it. The one thing that we see is that in that five
sided thing that I had up there on a diagram perhaps 50 if not more,
somewhere between 40-75% of that kind of software could be common
between those nodes. We don't see a reason then to have different
processors for similar kinds of things, developing that software on
different ISA's. In addition to the things that I showed up there
today, we do have two projects right now, in fact, there were reviews
this week, for standard operating systems for the military computer
family. That's in the initial definition stage, writing the
requirements for it, and as the Nebula machines become available,
etc., there will be a build phase to arrive at something to handle
that. But, that's one of the reasons we feel we need a standard
environment and a standard operating system available in as many
places as we can. We'll never get one that does everything in every
kind of system.

COL. AKERLUND: One other comment. Systems of systems, that can be
used for a loosely connected set of word processors, between buildings
in a network, or could describe very complex communications systems,
including massive antennas, satellites, communications processors, or
even weapon systems associated with it. Someone needs to be really
thinking about the testing of that system, are the pieces part of the
performance or is the whole the performance? System control. That's
a very important part. We anticipate seeing a lot of systems control
being passed through communications protocol, other parts of the
system understand what the other parts are doing. How do you test for
that? What is considered reliable and what isn't? Really important
thing to think about.

COL. CAMPBELL: One of the problems you run into, particularly in the
command and control environment, I remember in 1979 we had an old
system a lot of people have heard bad things about. I never will
forget going up to OSD, and the guy wanted us to structure a task down
at Ft. Hood in a period of six months that would take that command and
control system, put it into three different configurations, and run
exercises, if you will, to determine which alternative was the best
one. If anybody has ever tried to set up an office and automate it
and you get your SOP's and everybody knows what the software is doing

180

and what the input and what the outputs are; and then pull another
group together, write another SOP for office operation, and do that
again, and then do it a third time in six months, and compare the
results, I defy you to do it. I defy you to even tell me what the
measures of performance are, how you measure it, we have a long way to
go in that category.

MR. EDWARD G. JACQUES (NAVAL SEA SYSTEMS COMMAND): Several of the
problems you have been discussing are relating to more than just
software tools in the generic sense. I think you are getting into an
area of simulation involving many systems. In a case like this, the
system cannot really be tested at the contractor's plant for obvious
reasons of funding and scheduling to develop such a facility. Can any
one comment, in general, on what the services are doing to have a
service laboratory responsible for a particular product area and
testing it at that laboratory where a transition is made at one point
in the development?

CAPT. BOSLAUGH: I'll mention one which you are probably involved in,
and that's the Naval Ocean Systems Center in San Diego. The prototype
aircraft carrier, operational test site and the other test sites for
combat direction systems. NAVELEX, Navl Electronics Systems Command,
is going to be building their first C4 software factory in the next
few years, which will have a massive simulation capability and the
ability to bring in real live command and control type communications
inputs. There are not enough of these centers being planned and
designed yet, though, is my own personal feeling.

COL. AKERLUND: In my experience, we end up at the nth hour doing
simulation devices because we realize that systems can't be physically
put together or you can't always obtain all the pieces. It becomes a
very difficult problem. Even the systems we are seeing today are
larger than laboratory environments, they really go across many
different disciplines, it becomes a very difficult problem. And, it
needs to have the frontend planning, that people here have been
talking about, very important. Some of our laboratories are working
in very specific areas, but when you get these massive complex
systems, including weapons systems, communications, and other things,
the test of that system is most difficult.

MR. JACQUES: I agree with you, but I don't think the PM can really
take that initiative. Because of planning requirements, I think it
takes some higher level initiative. I'm more familiar with the NOSC
from the torpedo simulation work that they've been doing for quite a
number of years. It's a very successful tool used by many
contractors. But, I don't always see this in other areas. It also
puts the government in a position where they are able to control the
testing of the final product.

181

MR. GREENLEE: There are basically two ways that the land based test
sites get established and funded. One is as you indicate, by the
program manager who needs such a facility to bring out his system.
There's also an institutional fund administered within each service
for the general improvement and modernization of test ranges and test
sites, including operation and maintenance. Normally, to speak in
rough terms, a small test site is deemed to be the responsibility of
the benefiting program manager. A large test site, such as the TRITAC
facility at Ft. Huachuca, particularly if there's more than one
benefiting service, is typically funded institutionally by either a
lead service or split funding among the benefiting services. So, it's
not always a case of, if the PM can't afford it, we don't have it.
There is a mechanism which is monitored at OSD level. The money is
fenced, and protected. Hopefully, major needs are met in that way
without taking it out of the pocket of the program manager.

DR. DEMILLO: That closes our final panel. I'd like to thank you all
for your participation over the last two and a half days. I'd also
like to thank our speakers and the sponsoring agencies, NSIA and OSD.

ry,

•■-•,r• 	 • 	• "Or. ..nem- •••.!..- .. .•

. -

- ••

+'
..... 	

..

ETWARE -..TLs 1 AND :_EvALuATI A
,...... 	 . 	 ..

r.r'-',..:- , 4tr... --.kahrn4Aque.,.. 	#1,4 -$.: 	 hL

. T !, ." 	 :...

••.!, Itk,• -•i*,,

	

A 	, • 	 ..„ 	 _ 	; 	„ 	 - 	 • 2.4

...,..,....' - i,itt ,,,... 4:.;;;;,.;,t.......,.. T. 	 '..., ,, :_..,..--.c..... ..--, ,..... r•-•....1. ' ..1,1.-. - ..:..,..1.....-t--, -102 .i. , .-rii-awA -, •-•,..- ..-•:1....;.....:I'.7:474.1:7i.7 4.,..;...4".-

	

'4..:7-xt, :•,•• 4" 5 ., ,-....` . • 	' 	' 	
,..., ..r.,..pe..- 	",dor Iltr. - 	- ''...- 2.1.: 01 " ..,.... ;!

. •7:,;,...-...-0,40.....: 	 P 0 ,
•

- • 	 '1.4.77"...
; 	. 	 • •

VOLUME 6
TACTICAL COMPUTER SYSTEM

APPLICABILITY STUDY
BY

JAMES F. LEA THRUM

•

SUBMITTED TO
THE OFFICE OF THE SECRETARY OF DEFENSE

DIRECTOR DEFENSE TEST AND EVALUATION
AND 	•

THE OFFICE OF NAVAL RESEARCH
ONR CONTRACT . NUMBER N00014-79-C-0231

SCHOOL OFJNFORMATION AND 'COMPUTER ISCIENC

	

:,,•••,..„410...°.....2,;„;,. 	GEORG IA ' INSTITUTE -OF:TECHNOLOGY , 	. 	r. 	..,. 	.• 	.7.......,. ,...._ 	,.. 	r 6 , ., 	 , 4, 	 , 	 ... 	 , 	 ; 	 .4 	 , . , 	 , .,

	

.-, `"I'-' . ' ...--,. r.1...,.-•.•••' •• • ' , • - - .', 4...r0; -i‘.; - 	
: ATLANTA, '. GEORGIA 3O332,_ 	.. 7 -- • - 	 •,,i ■••: 4,0 • .it". 	'

	

.A;•:',..K,, ...r....-.. 	f-•I''''''• 	'.. 'S.--; ...-:.-•—•--.•••••'•••?"

., 	- , 	: 	'.". • ''' 	•-• 	7. .:' -4...i.A` 	,-- - 	 . 	 ..A

• -,...".., '-,, 	' : ••••,, 	-.,,,,-..'•'.•••,•*•".' • 	 40 	i . r. •
... 	,_. -

. 	• 	- ••• 	.
. 	 . 	•

. 	

...

- 	. -

°

OSD/DDT&E
SOFTWARE TEST AND EVALUATION PROJECT

PHASES I AND II
FINAL REPORT

Volume 6
Tactical Computer System Applicability Study

by

J. F. Leathrum

Department of Electrical and Computer Engineering
Clemson University
Clemson, SC 29631
(803) 656-3190

SUBMITTED BY
GEORGIA INSTITUTE OF TECHNOLOGY

TO

THE OFFICE OF THE SECRETARY OF DEFENSE
DIRECTOR DEFENSE TEST AND EVALUATION

AND

THE OFFICE OF NAVAL RESEARCH

FOR

ONR CONTRACT NO. N00014-79-C-0231
Subcontract 2G36661

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director Defense Test and
Evaluation under Office of Naval Research Contract N00014-79-C-0231.

Comments should be directed to: 	Director Defense Test and
Evaluation (Strateg•c, Naval, and C 3 I Systems), OSD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Volume 1: Final Report and Recommendations
Volume 2: Software Test and Evaluation:

State-of-the-Art Overview
Volume 3: Software Test and Evaluation:

Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and

Evaluation
Volume 6: Tactical Computer System Applicability Study

Contents

1.

Abstract

Modelling the Tactical Computer System (TCS) 	

PAGE

1

2

1.1 	Introduction 	 2

1.2 	Modelling the TCS's Digital Input/Output 	 4

Module (DIOM)

1.3 	Structure of the Simulation Facility 	 7

1.4 	Device Interactions with the Simulation 	 11

Environment

1.5 	Simulatin Results 	 12

1.6 	Multi-bus Models 15

2 . Analysis of Message Traffic 	. 	 19

2.1 	Projected Message Sizes and Frequency 	 20

2.2 	Hardware Loading 26

3. Memory Resource Contention 	 27

3.1 	A View of the TCS Memory Allocation Scheme . 	• • 27

3.2 	Testing the Allocation Scheme 	 30

4. References 32

Abstract

As part of the on-going development of the Tactical Computer System

for the U. S. Army, this study develops a modelling methodology for com-

munications networks. The models are based upon the paradigm that all

the critical components; i.e. buses, communications controllers, memo-

ries, etc., are processors. The models are composed of multi-task

abstractions of processor networks.

The impact of the work reported here is best viewed in the context

of a period which began with no quantitative tools to use in the appli-

cability evaluation of the Tactical Computer Systems and which culmi-

nated in a decision to re-design the systems software. Although a

complete model was never implemented, the increasingly quantitative

insights obtained from modelling raised questions which soon indicated

that the system was quite over-designed in its raw message handling

capability. The lack of flexibility in the memory management software

ultimately proved to be a critical shortcoming which was uncovered in

field tests. This report describes the tools developed to bring the

message handling capacity for the system into focus.

1. Modelling the Tactical Computer System (TCS1

1.1 Introduction

Computer systems modelling, or systems modelling in general, is an

activity characterized by difficult and unprecedented choices of levels

of abstraction. The problem of generation and validation of appropriate

models may be addressed along several dimensions:

1. Appropriate representation of detail,

2. Analytic tractability,

3. Tools of composition of complex models from simple, primitive

ones.

Because of the presumably deterministic behavior of computer systems,

one is naturally drawn to modelling them at the extreme of minute

detail. Such models are often as difficult to build and maintain as the

system itself and, thus, offer little assistance in engineering judge-

ments about performance. Amongst the most successful classes of models

of computer systems have been those derived from queuing theory. The

various components of a computer system are viewed as service centers

for jobs passing through the system. Queuing would be permitted at each

component such as device controller, bus, memory, processor, etc. These

models often suffer from a combination of too high a level of abstrac-

tion as well as mathematical intractability (C581, La81). The alterna-

tive of an "operational model" represents an even higher level of

abstraction with an attendant gain in tractability (DB78, Z5EG82). If

one is to maintain some flexibility in the level of detail and tract-

ability, simulation presents a possible alternative provided the process

2

of constructing a simulation can be automated and simplified. Simula-

tion languages have been under development for several decades now, and

they have proven to be very useful tools provided the systems composi-

tion process adheres to rules which are often determined by limitation

of the language's host. Most notably, the user of most extant simula-

tion languages finds himself imposing artificial and irrelevant sequenc-

ing and procedureness upon the system being modelled.

Given the need for a generic modelling facility of the sort that

would address some of the performance issues related to the TCS, and

given that the TCS, itself, is a generic design which is almost certain

to undergo radical change before being fully applied, it seems appropri-

ate to address some of the problems which arise in composing simula-

tions. It is not proposed that the approach taken here should be

exclusive of more analytic and more approximate methods, but only that

readily composed simulations are an important part of the mix of useful

tools.

The paradigm adopted for the simulation facility developed herein is

that "everything is a processor". Here, a processor is characterized by

clearly identifiable interpretation cycle, some resources dedicated to

communications with other "processors", and a queue of active processes.

In addition to processors as we know them, we will model device control-

lers, buses, human beings, etc. as all being processors. In addition to

the obvious composibility of such simple one-of-a-type primitive parts,

this view of computer systems is further sustained by the empirical

observations that computer related hardware tends to undergo a "wheel of

reincarnation". That is, as the need for a new device is realized, it

is first built to satisfy the stated need. As the device's capability

is enhanced, it tends to evolve toward being a processor. At some point

this ultimate processor may spin-off new devices which, in turn, are

re-incarnated as processors.

For the purpose of modelling and simulation, it is convenient to

capture the re- incarnation at the point of being a processor. Less

developed components can usually be approximated by choice'of parameters

in the processor. (i.e. a bus processor with a maximum queue size of 1

is a good approximation to a UNIBUS.) There are numerous examples of

the re-incarnation of processors to wit: disk controllers, multi-plex-

ers, terminals, and, most recently, buses.

Thus, our model of a computer system will be a collection of inter-

connected processors. To capture the reality of any one instance of a

system, the individual processors will be parameterized as a means of

limiting the generality of their behavior.

1.2 Modelling the TCS's Digital Input/Output Module (DIOM)

In an earlier analysis of the TCS, P. Enslow (En81) concluded that

there was some reason the question whether the Digital Input/Output Mod-

ule (DIOM) of the TCS could handle the projected message load. This

question motivated the choice of this component as the focus of the

first attempt to apply the modelling strategy outlined in the previous

section. The DIOM is viewed as a processor with a number of devices

(i.e. processors) connected to it and attempting to pass data along the

4

Devices

Memory

Central Processor
DMA Processor

DIOM

■••■•■••■■■*1

DION. Functionally the DIOM is very similar to a bus, but some

distinction must be made in the TCS between the processor-memory bus and

the DIOM. For the message handling applications, the-central processor,

P , is driven entirely by interrputs from the devices. Thus, for all

practical purposes, the P is the DIOM processor. The configuration may

be thought of as:

3

The particular subset of immediate concern is:

Primary

Memory, Mp

Central Processor
DMA Processor

DI OM

Secondary

Memory

High Speed

Serial Contzoller

The question to be addressed by simulation is whether such a system can

sustain the expected data rates between the devices.

5

1.3 Structure of the Simulation Facility

The simulation facility proposed in the previous section has been

implemented as a prototype of the approach wherein the components are

universely viewed as processor. For the purposes of the prototype, the

processors are classified either as the bus which serves as the master

processor or devices which are characterized by having interfaces with

an external environment. With respect to a single message, the interac-

tion may be viewed as:

Data Data Data Data

Address Address Address .00E—ipw Address

Control Control Control Control

L 	J
Device A
	

Bus
	 Device B

Thus the interfaces are defined by:

interface =>data 	: MESSAGE

Addt 	: address RECORD

COnt7t 	: control record

address record =>datination 	: DEVICE

Zocation 	: INTEGER

control record => comm type 	: S OR R

wt to complete : BOOLEAN

.i.nteNtupt 	: BOOLEAN

int enabte 	: BOOLEAN

dma count 	: INTEGER

pt.Zonty 	: INTEGER

S OR R::=> 	 SEND

IRECEIVE

The bus, in turn, has associated with it a queue of pending data trans-

fers

bus queue => seq of_ queue elements _

queue element => interface

(Note: The "Diana" formalism is used above to describe the essentials

of the internal structures (GW81)) The bus processor handles the trans-

fer of the interface structures from the source device to the destina-

tion device. The mechanism for the transfer may be viewed as:

bus cycle: 	I Update Clock

I Device Poll*

I Interrupt Service*

Data Transfer

(Here, vertical ordering will indicate rough sequencing, * will indicate

iteration, and o will indicate selection) The update of the clock in the

Move data to the bus

Queue up the interface

bus will provide sychonization with an external clock if necessary. The

device poll module will handle interaction with external data sources or

sinks.

Device Poll:

Interrupt Service:

Update Clock

External Poll

Interrupt Service

Set Bus Interrupt

Data Transfer: Unqueue Interface

Move data across the bus

Interrupt the destination device

The bus cycle and device poll components' are purposely shown to be very

similar in structures. They are, in fact, implemented as parallel

tasks, and the control records serve as semaphores which synchronize

their respective cycles. Thus, each device and the bus are instances of

processes. The distinction between a device and a bus is a matter of

convenience in that the device must interact with the simulation envi-

ronment, but the bus interacts only with devices and other buses.

1 0

1.4 Device Interactions with the Simulation Environment

Each device in the simulation system must routinely interact with

the outside world. This interaction is standardized by specifying the

languages which describe the events arriving at the device and the lan-

guage generated by devices responses. The arrival of events is

described by:

device process ::= events

• event ::= time control part data part.

control part ::= auto No. of events

Mean Interarrival time

'single

data part ::= In DMA Count Data

Destination Location

Out

lin Data--Dma case

The responses are characterized by:

Message ::= Message received on Device Location

!Request received on Device Location

With respect to the arrival of events, the device tasks are viewed as

interpretors of the language described by the "device process" grammar.

Before a "message" can be generated by the device, that same device must

encounter a "out" data part in its event sequence.

11

1.5 Simulation Results

As a demonstration of the utility of the simulation facility, the

identification of bottlenecks in the DIOM was chosen as a test case.

Using the paramaters suggested by Enslow (En81), the TCS input/output

module was modelled as a high speed controller, a primary memory, a sec-

ondary memory, and the bus. The designed date handling rates are:

Bus: 16 MBPS

High Speed Controller: 2 MBPS

The primary memory is presumed to be as fast as the bus on the average,

and, for this exercise, the secondary memory is presumed to be running

at one half the rate of the bus on the average. Since the TCS processor

is interrupt driven, the interrupt handling rate-is also an important

parameter and is taken to be

104 interrupts/sec.

Using a message structure for the high speed controller of:

(a) 400 words per message

3 interrupts per message

(uniformly distributed over the message)

16 bits per word

(b) 64 words per message

1 interrupt per message

16 bits per word

(Note: Case (a) was used by Enslow (En81). Case (b) is a more recent

12

understanding of the message structure.)

It is apparent that the interrupt handling rate is the limiting factor.

The smallest unit of time to be considered is the interrupt service

time. Each device will incur interarrival times of:

(1) Memory: 1 bus cycle/interrupt

(2) Secondary Memory: 2 bus cycles/interrupt

(3) High Speed Controller:

Case a: 10.67 bus cycles/interrupt.

Case b: 	5.12 bus cycles/interrupt.

Where a bus cycle is taken to be the minimum interrupt service time of

10
-4 sec.

Each of the above cases is considered in the context of 300 messages

(with acknowledgement) being passed from the high speed controller to

the primary memory and 150 messages passing from the secondary control-

ler to the primary memory. All devices are assumed to have the same

priority. The bus queue is allowed to be either unlimited in size or of

unit size. The latter bus queue is appropriate for the TCS.

13

(a) Maximum Queue Size = 2 (Note: This configuration allowed

interleaved DMA transfers)

	

Mean 	 Mean

Interarrival 	 Event*

	

Time 	 Backlog

(Bus Cycles) 	(No. of Events)

High Speed Controller
	

10.67 	 .92

Secondary Memory
	

2.00
	

4.68

High Speed Controller
	

5.12 	 .95

Secondary Memory
	

2.00
	

4.47

(b) Maximum Queue Size = 1 (Note: In all cases the secondary

memory obtained first access to the bus)

High Speed Controller
	

10.67 	 2.92

Secondary Memory
	

2.00 	 .32

High Speed Controller
	

5.12 	 10.30

Secondary Memory
	

2.00 	 .32

(*The mean event backlog is the mean queue size of events associated

with the device. It includes the event which is in process by the bus.)

14

1.6 Multi-Bus Models

The simulation facility described in Section 1.3 has been extended

to include multi-bus architectures. The technique used to achieve this

has been to allow the various busses to treat each other as devices as

in:

The Dij are devices in the conventional sense and are realized as indi-

vidual tasks being driven by an event sequence.

The interface nodes, B2 and B1 , are treated locally as devices in

that there is an applicable event sequence. However, the data is not

provided by the data record of the event, but, instead, arises from the

bus-to-bus connection. Thus the B 1 , B2 pair are not sources or sinks

for data, but most act as transfer devices only.

The synchronization of the B 1 *, B2 * was accomplished by requiring

that the sender be treated as a receiving device by its host bus. That

is, if data is flowing from B 1 to B2
 , then B 2 * is a receiving device

with respect to B 1 . The receiving device (in this example, B 1
*
 i) is

15

Control Processo 	 1-
DMA Processor, 	-------010,

Primary
Memory,

MP2 DIOM2

required to be in a DMA node such that it expects auto-generation of

data. When the event of B1 ,

•

 interrupting B 2 occurs, it has the effect

of not only initiating the transfer across 3
2 ,

but it also frees B* 2

for subsequent transfers across l

•

The effect is a single message

buffer at the bus-to-bus interface. The allocation of delays to the

various devices follows the same rules as with the single bus access.

As an example of the type of configuration which can be simulated,

consider two buses connected according to:

Secondary
Memory, MS1

1
Control Processo
DMA Processor,

DIOM1

High Speed
Controller,

HSC1

Secondary
Memory, MS2

High Speed
Controller,

HSC2

16

Using this configurations, message events were created using the follow-

ing interarrival times:

Device Mean Interarrival Time, Host Bus Cycles

MSI 20.00

HSCI 15.12

MS2 10.00

HSC2 5.12

MP2 1.00

The two buses may be operated with respect to independent clocks, but

for the purpose of this example, the buses run at the same speed (i.e.

10 4 messages per second). The buses, DIOM1 and DI0M2, establish event

sequences for the sending and receiving of messages respectively. The

event sequences were random and occurred at mean interarrival times of

Sends by DIOM1 : 10.0 host bus cycles

Receives by DI0M2 : 15.0 host bus cycles

The results of the simulation for the case where each bus has a maximum

queue size of 1 are shown in Table 1.1.

17

Table 1.1

Message Load and Mean Event Backlogs

Device Total Delays No. of Messages Mean Event Backlog

MSI 6865 50 6.870

HSC1 4991 150 2.200

MS2 200 150 .133

HSC2 1038 300 .676

MP2 650 650 1.000

Sends by
DIOM1 1221 200 .610

Receives by
DI0M2 143 200 0.048

18

2. Analysis of Message Traffic

In order to assess the likelihood of resource contention problems

associated with the message flow intensity, AMSAA prepared some esti-

mates of the message sizes and arrival rates (AM82). This information

included:

Inclosure 	 Description

	

1 	 Block Diagram of TCS.

	

2 	 Block Diagram of DIOM.

	

3 	 DIOM Input/Output Controller Block

Diagram and Function Description.

	

4 	 DIOM's Bus Signal Assignments.

	

5 	 Physical Performance Characteristics

of TCS to be modeled.

	

6 	 Specific Hardware Configuration of TCS

to be modeled.

	

7 	 Message traffic that can be simulated to

represent a TCS under "expected load".

	

8 	 OTHER ENVIRONMENTAL SIMULATION CONDITIONS.

	

9 	 Display/Keyboard Analyst traffic load.

	

10 	 OPTADS TCS Communication Design Memorandum.

Of particular interest to the modelling activity inclosures 7, 8, and 9

which establshed the expected message load on the TCS.

The immediate concern is whether this expected load approaches the

capacity of either the high speed controller, the CPU, or the DIOM.

19

These critical capacities are:

High Speed Controller: 8000 to 32000 bps (Inclosure 6)

CPU: 104 interrupts per second.

DIOM: 16 mbps

2.1 Projected Message Sizes and Frequencies

The traffic loads were analyzed in terms of worse case conditions,

i.e. the largest messages being handled at the highest expected rates.

Likewise, each character is presumed to consume a whole word. The mes-

sage loads have been converted to units of primitive messages per second

where

Primitive Message: 64 words of data

64 words of address (Inclosure 8)

16 bits per word.

User Message: Integral number of primitive messages

Acknowledgements: One primitive message per user

message

Interrupt Service Rate: Primitive messages per sec.

(i.e. 10 4 primitive messages per sec)

Note that Inclosure 8 states that one word of address must be transmit-

ted for every word of data. This seems to defeat the purpose of the DMA

controller, but the additional load was included for completeness.

The expected message traffic intensities were reduced to those shown

in Tables 2.1 through 2.3.

20

Table 2.1

High Speed Controller's

Expected Message Load

In-Coming 	 Out-Going

Channel 	Primitive messages/sec 	Primitive messages/sec

1 .0261 .0244

2,3 .0239 .0239

4,5,6,7 .178 .101

8,9,10,11,12,15,16 .182 .239

13 .0284 .0213

14 .0414 .0371

Net Load 0.4805 0.4447

21

Table 2.2

Data Logging: Expected Message Load

Source Channel Primitive Messages/Sec.*

1 .0243

2,3 .0218

4,5,6,7 .169

8,9,10,11,12,15,16 .164

13 .0278

14 .0399

Net Load 0.4468

*No acknowledgement is transferred

22

Table 2.3

Floppy Disk Output:

Expected Message Load*

Source Channel Primitive Message/Sec

1 .00289

2,3 .00347

4,5,6,7 0

8,9,10,11,12,15,16 .0651

13 .00868

14 0

Net Load 	 0.0801

*This load represents one-third of the SITREP

load received, (AM82, Inclosure 8)

23

Table 2.4

Display/Keyboard:

Expected Message Load

Characters/Sec Inter-arrival time, min 	-

Primitive

Messages/Sec

500 4 .0326

1100 6 .0477

1600 15 .0278

650 3 .0564

Net Load 0.1645

24

Table 2.5

Summary of Message Loads

Primitive

Messages/Sec.

Load,

Bits Per Sec. Device

High Speed Controller 	 0.9252 	 1895

DIOM Bus 1.616 	 3311

25

2.2 Hardware Loading

Even under conditions of the largest expected messages arriving at

the highest expected

resources remain

rate, 	it is 	apparent that the

under utilized, i.e.

Load, 	Capacity,

critical hardware

Per Cent

Device bits/sec bits/sec of Capacity

High Speed

Controller 1895 8000 to 32000 2.37 to 5.9

DIOM Bus 3311 16 X 10 6 .021

Thus, it is apparent that the projected message loads described in

(AM82, inclosures 1 through 10) do not come close to reaching the capac-

ity of the ICS in handling message traffic.

25

3. Memory Resource Contention

The purpose of this section is to establish a framework for the

analysis of the utilization of random access memory by the TCS. The

system is designed to allow the inclusion of up to 512K words of memory,

but the partitioning of this memory is a potential source of contention

between the various active tasks.

3.1 A View of the TCS Memory Allocation Scheme

In focussing upon the WORAM as a possible source of resource alloca-

tion problems, it is helpful to distinguish between a physical view:

MEMORY::= SEQUENCE OF PAGES

PAGE::= SEQUENCE OF WORDS

Where 	IMEMORYI< 1024 pages (implementation dependent)

'Pagel= 1024 words

and a logical view:

USER MEMORY::= SEQ OF PAGES

IUSER MEMORYi< 64 Pages

No. of Users< 8

27

The addressing in each view reduces to

Physical Addressing: 	10 bit page no.

10 bit word no.

Logical Addressing: 	3 bit user no. (CPU controlled)

6 bit page no.

10. bit word no.

The CPU has two modes for assigning user numbers

(a) Executive 	 (b) Executive

DMA 	 DMA

User 	 User Program area

User 	 User Data area

User Program area

User Program area

•

The translation from logical to physical addresses is handled by a map

vector:

map_vector::= SEQUENCE_OF_PAGE_DESC

PAGE DESC=> Physical_page_no: 10 bits

Protection part:
	6 bits.

The physical page numbers in the PAGE_DESC may be shared amongst several

descriptors thus allowing sharing of program and/or data areas amongst

23

the users.

It is useful to reflect upon some more-or-less obvious implications

of the design. First, in a fully implemented design, (i.e. IMemoryl =

1024 pages), there is no possibility of complete allocation since the

user has only a 19 bit address. Thus, the effective maximum memory size

is 512K as indicated by the full logical address. Secondly, the extent

of contention for memory is going to depend upon the sophistication of

both the operating system and the applications programmar. There is an

apparent bias toward dividing-up the memory at configuration time. The

executive gets the first 65K and the DMA controller gets at least 1K

words per communications channel. There seems to be an assumption that

the executive will get the 64K on the CPU chassis, and the DMA and user

would divide the rest. Given the speed differential between the CPU

memory and the WORAMmemory, the allocation between the executive and the

users could be redesigned in the interest of overall speed. For

instance, the generating system could spawn "users" for one-time actions

or it could use data areas allocated in the user space for infrequently

accessed items. Likewise, the user-to-user boundaries in memory could

be restructured to allow sharing of memory.

If memory is cheap, why should one worry about the sophistication of

the allocation scheme? The total capacity is not the only issue here.

The ability to work around bad memory boards, and bad pages may be of

critical importance in the field maintenance of the system. If the

whole system is relying upon the executive residing in a simple critical

resource, then perhaps one should examine the possibility of configuring

the system without that resource.

70

3.2 Testing the Allocation Scheme

With respect to probes on the memory allocator, one would assume

that there is an allocation bit vector someplace in the CPU or RMU which

maintains the allocation status of each page. This would be 32, 16 bit

words where each bit would indicate whether the corresponding page is in

use. The bit vector would appear as

1101111001 	

and the quantity of interest is the total number of pages allocated over

time (i.e. the number of ones in the bit vector). An equally interest-

ing (and perhaps more available quantity) is the total size of each

map vector over time. The total allocated pages is bounded from below

by the sum of the map vector sizes. A typical format for the map vector

might be

Header

Page desc
— 	1

Page desc2

where the header would contain the size information needed. Another

possibility would be to place a software probe in the allocator and de-

33

allocator routines of the executive to keep a running count, by user and

total, of the pages in use.

31

REFERENCES

(AM82) 	AMSAA, Personal Communications (from P. Ward), 1982.

(CS81) 	Chandy, K, Sauer, C.H. Computer Systems Performance Modeling,

Prentice-Hall, (1981).

(DB78) 	Denning, P. J. , Buzen, J. P., The Operational Analysis of

Queuing Network Models, Computing Surveys, Volume 10,

(1978), p.225.

(En81) Enslow, P. H., The U. S. Army Tactical Computer System: A

Study of its General Purpose Applicability (1981).

(GW81) 	Goos, G., Wolf, W. A., Diana Reference Manual, (1981).

(La81) 	Latouche, G., Algorithmic Analysis of a Multi-programming Mul-

tiprocessor Computer System, January ACM, Vol.28, (1981),

p.662.

(ZSEG82) Zahorjon, J., Sevick, K. C., Eager, D. L., Galler, B., Bal-

anced Job Bound Analysis of Queuing Networks, CACI,

Vol. 25, (1982),p.134.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459
	Page 460
	Page 461
	Page 462
	Page 463
	Page 464
	Page 465
	Page 466
	Page 467
	Page 468
	Page 469
	Page 470
	Page 471
	Page 472
	Page 473
	Page 474
	Page 475
	Page 476
	Page 477
	Page 478
	Page 479
	Page 480
	Page 481
	Page 482
	Page 483
	Page 484
	Page 485
	Page 486
	Page 487
	Page 488
	Page 489
	Page 490
	Page 491
	Page 492
	Page 493
	Page 494
	Page 495
	Page 496
	Page 497
	Page 498
	Page 499
	Page 500
	g-36-661_288888_0002.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431
	Page 432
	Page 433
	Page 434
	Page 435
	Page 436
	Page 437
	Page 438
	Page 439
	Page 440
	Page 441
	Page 442
	Page 443
	Page 444
	Page 445
	Page 446
	Page 447
	Page 448
	Page 449
	Page 450
	Page 451
	Page 452
	Page 453
	Page 454
	Page 455
	Page 456
	Page 457
	Page 458
	Page 459
	Page 460
	Page 461
	Page 462
	Page 463
	Page 464
	Page 465
	Page 466
	Page 467
	Page 468
	Page 469
	Page 470
	Page 471
	Page 472
	Page 473
	Page 474
	Page 475
	Page 476
	Page 477
	Page 478
	Page 479
	Page 480
	Page 481
	Page 482
	Page 483
	Page 484
	Page 485
	Page 486
	Page 487
	Page 488
	Page 489
	Page 490
	Page 491
	Page 492
	Page 493
	Page 494
	Page 495
	Page 496
	Page 497
	Page 498
	Page 499
	Page 500

	g-36-661_288888_0003.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138

