GcORGIA INSTITUTE OF TECHNOLGGY OFFICE OF CONTRACT ADMINISTRATION
PROJECT ADMINISTRATION DATA SHEET

X ORIGINAL REVISION NO.
Project No. _G—36-661 (continuation of G-36-636) DATE 10/29/81
Project Director: R. A. Demillo School/Lab ICS

Sponsor: _ Office of Naval Research; Arlington, VA

Type Agreement: Contract No. N00014-79-C-0231, Modification No. P00002

Award Period: From 9/1/81 To 1/31/%3.‘1 (Performance) 3/31/83 {Reports)
$489,887 (Mod. 2 only) 7 Contracted through:
N/A GTRI/GKK

Sponsor Amount:

Cost Sharing:
Title: Software Test and Evaluation Study Phases I and II: Survey and Analysis

ADMINISTRATIVE DATA OCA Contact Leamon R. Scott

1) Sponsor Technical Contact: 2) Sponsor Admin/Contractual Matters:
Dr. Robert Grafton Office of Naval Research
ONR 715 206 O0'Keefe Bldg.
Broadway Georgia Tech
New York, N.Y. 10003 Atlanta, GA 30323

Attn: Tom Bryant

Defense Priority Rating: DO-C9 Security Classification: N/A

RESTRICTIONS

See Attached Government Supplemental Information Sheet for Additional Requirements.

Travel: Foreign travel must have prior approval — Contact OCA in each case. Domestic travel regquires sponsor

approval where total will exceed greater of S500 or 125% of approved proposal budyet category.

Equipment: Title vests with GOovernment; except that items costing less than $1K vest w/GIT

upon acquisition if prior approval to purchase is obtained from C.0. items costing $1K

or more may vest w/GIT as determined bv the ACO (ONR).

COMMENTS:
-\23N
ﬁ A 562
A
£ Ke)
5
0 o gLEl yED E”;
\‘% Research Reports ‘R‘f
Cn OeE o
\ec? - ://
Sl //
COPIES TO:
Administrative Coordinator Research Security Scrvices / EES Public Relations (2)
Research Property Management Reports Coordinator {QOCA) Computer Input
Accounting Legal Services (OCA) Project File
Procurement/EES Supply Services Library Other

FORM OCA 4:781

GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION

) N SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

9

NI
O .
\ Date June 12, 1985
s

Project No. G—36-661 L School/KEK ICS

Includes Subproject No.{s} A-2568 (Established Under Prior Project G-36-636)

Project Directorls) _ pr, R.A. Demillo GTRC / GI¥
Sponsor Office of Naval Research
Title Software Test and Evaluation Study Phases I and II: Survey and Analysis
Effective Completion Date: 1/31/84 {Performance) 3/31/84 {Reports)
Grant/Contract Closeout Actions Remaining:
D None
:] Final Invoice or Final Fiscal Report
E Closing Documents
Final Report of Inventions
E Govt. Property Inventory & Related Certificate
D Classified Material Certificate
] on
Continues Project No. G-36-636 Continued by Project No.
COPIES TO: '
Project Director Library
Fesearch Administrative Network GTRC
Research Property Management ' Research Communications (2)
Accounting Project File
Procurement/GTRI Supply Services Other Heyser

,":iﬁﬂ‘—s Services

[Reports Coordinator (OCA Jones

Legal Services

FORM OCA €69.285

“THE OFFICE OF THE SECRETARY ‘OF'BEFENS
'DIRECTOR DEFENSE TEST ANDV EVALUATION

s R,

0SD/DDTAE
SOFTWARE TEST AND EVALUATION PROJECT

PHASES I AND II
FINAL REPORT

Yolume 1
Final Report and Recommendations

by
R. A. DeMillo

and
R. J. Martin

SUBMITTED BY
GEORGIA INSTITUTE OF TECHNOLOGY

T0

THE OFFICE OF THE SECRETARY OF DEFENSE
DIRECTOR DEFENSE TEST AND EVALUATION

AND
THE OFFICE OF NAVAL RESEARCH
FOR

ONR CONTRACT NO. NO0D014-79-C-0231
Subcontract 2G36661

June, 1983

[.,

FOREWORD

This volume is one of a set of reports on Software Test and
Evaluation prepared by the Georgia Institute of Technology for The
Office of the Secretary of Defense/Director Defense Test and
Evaluation under Office of Naval Research Contract NO0O14-79-C-0231.

Comments should be directed to:_ Director Defense Test and
Evaluation (Strategic, Naval, and c31 Systems), O0SD/OUSDRE, The
Pentagon, Washington, D.C. 20301.

Volumes in this set include:

Yolume
Yolume

1: Final Report and Recommendations
2: Software Test and Evaluation:
State-of-the-Art Overview
Volume 3: Software Test and Evaluation:
Current Defense Practices Overview
Volume 4: Transcript of STEP Workshop, March 1982
Volume 5: Report of Expert Panel on Software Test and
Evaluation
6:

Volume Tactical Computer System Applicability Study

PREFACE AND ACKNOWLEDGEMENTS

This series of documents represents the final report and
recommendations for the Software Test and Evaluation Project support
contract. This contract is funded by the Office of the Secretary of
Defense/Director Defense Test and Evaluation and administered by the
Office of Naval Research. The prime contractor 1is the Georgia
Institute of Technology. Subcontracts to support this effort have
been Tlet to Control Data's Atlanta Research Facility, Clemson
University, and a number of independent consultants. The contractors'
ef;grts began in the Fall of 1981 and were completed in the Spring of
1983.

Admiral Isham Linder, Director Defense Test and Evaluation, Mr.
Charles Watt, Deputy Director Defense Test and Evaluation, Mr. Donald
Greenlee of DDT&E, and Dr. Robert Grafton of ONR have provided support
and encouragement. Dr. Edith Martin, Deputy Under Secretary of
Defense for Research and Advanced Technology, not only participated in
the initial planning for STEP, but has made the resources of her
office available.

In addition to these individuals, several organizations have made
generous contributions to the progress of STEP. The National Security
Industrial Association (NSIA) has been an essential partner. General
Wallace Robinson and the staff of NSIA headquarters provided support
and sponsorship of a National Conference on Software Test and
Evaluation. Mr. Ralph San Antonio of NSIA and Dynamics Research
Corporation served as chairman of the conference. Mr. San Antonio
also played a key role in coordinating NSIA participation in the data
gathering phase.

A number of industrial organizations made important contributions
by opening their facilities to the study team surveying contractor
practices. A guarantee of anonymity prevents acknowledgement of these
organizations and individuals by name. However, it is unlikely that
our goals could have been met without the collegial and professional
cooperation of these groups. We thank them for their time and
patience. In addition, dozens of DoD and military personnel and
civilian professionals were interviewed during the data gathering
effort. Their hospitality and spirit of cooperation eased a difficult

task for the survey teams.

Dr. Richard A. DeMillo, Principal Investigator

VoTume_l

Final Report and Recommendations

Table of Contents

Executive Summary

T. Introduction

2.

3.

4
4.1,
4.2.
4.3,
4.4,

Rationale
The Software Test and Evaluation Project

. State-0f-The-Art Assessment

Test Methodologies

4.1.1. Test Strategles
4,1.2, Testing Techniques
Testing Tools

New Technology

Summary of the State-of-the-Art

5. Assessment Of Current Defense Practices

5.1.
5.2.

5.3.

Survey Methodology

Survey Results

5.2.1. HQ and Development Commands
5.2.2. Project Offices

5.2.3. OT&E Agencies

5.2.4, Defense Contractors

Summary of Current Defense Practices

6. Findings And Recommendations

6.1.
6.2,
6.3.

6.4.

Modification of DoDD 5000.3
Other Recommendations to DDT&E

Recommendations Addressed to the Military Services
6.3.1. State-of-the-Art Improvements

6.3.2. Lifecycle Integration
6.3.3. Test Planning

6.3.4. The Testing Process
6.3.5. Test Evaluation

Tri-Service Recomendations

7. Concluding Remarks

Appendix:

Project Organization and Milestones

STEP - Final Report and Recommendations

EXECUTIVE SUMMARY

The Software Test and Evaluation Project (STEP) was initiated in
1981 by the Director Defense Test and Evaluation. The primary objec-
tive of STEP is to develop new DoD guidance and policy for the test
and evaluation of computer software for mission-critical applica-
tions. A number of subsidiary goals have also been established for
STEP. Principal subgoals include the stimulation of tool development,
the support of policy development, and the identification of research
issues and directions in the area of software testing.

STEP is conceived in four phases: information gathering, analysis,
assessment of feasibility, and policy development. The chief goal of
Phases I and II has been to determine the feasibility of modifying and
reformulating Defense policy for the test and evaluation (T&E) of
software. In support of the feasibility assessment, a broad overview
of the state-of-the-art and the current state of Defense practices in
software T&E was constructed. Input was sought from DoD components,
industrial representatives, selected experts and consultants, and spe-
cially convened workshop and symposium participants. In addition,
extensive surveys of both the software T&E 1iterature and vendors of
automated software T&E tools were prepared. These sources provided a
consistent view of software T& needs and capabilities. Phases III
and IV of STEP are yet to be completed. Phase III consists primarily
of the assessment of whether new policy guidance can be formulated.
Phase IV represents the actual development of policy statements and
implementation strategies.

RECOMMENDATIONS

We propose 28 specific recommendations for improvements in soft-
ware test and evaluation. These recommendations have been formulated
by the information gathering and analysis mechanisms described above
and have been influenced by the widest possible participation from
industry, academia and the Military Services.

MODIFICATIONS OF DODD 5000.3

The first three recommendations below address modifications to
DoDD 5000.3 and the Test and Evaluation Master Plan (TEMP). The
effects of the recommendations are to (1) establish a chain of T&E
plans and evaluation criteria that begins at the level of system test
objectives and proceeds through the detailed testing of software
components within development organizations, (2) dinsert existing
technology into the T& process using software that represents the
highest decision risk as the focus of the software test plan, and (3)

STEP - Final Report and Recommendations

establish the TEMP as the major planning document for software testing
and ensure the early incorporation of software test issues into the
overall test program.

1. DoDD 5000.3 (Section D, POLICIES AND RESPONSIBILITIES, Part 6
"Test and Evaluation of Computer Software") should be modified to
include the following requirements:

a. Software components implementing critical functions shall be
identified. These components shall be tested throughout the
development/integration portion of the software lifecycle. Re-
sults of tests shall be objective, repeatable, available to subse-
quent test groups, and interpretable in terms of overall system
objectives. -

b. The level of test of software components that implement criti-
cal functions shall be sufficient to demonstrate that the appro-
priate software evaluation criteria goals for that component are
met or exceeded. The level of tests for these components should
be sufficient to achieve a balanced risk with the hardware on
which they are implemented in an operational environment.

2. DoDD 5000.3 (Enclosure 2) should be modified to require the incor-
poration of software-specific test and evaluation issues in the TEMP
for systems with mission-critical software components. Deviations
from the software-specific portion of the TEMP should be subjected to
critical review. The portions of the TEMP which should include
software-specific information are:

Part I - Description, 2. System, a. Key functions: Should also
TncTude a mission/function matrix relating the primary functional
capabilities of each critical software component that must be
demonstrated by testing to the mission(s) to be performed and
concept(s) of operation.

Part I - Description: Should include a new section entitled
Required Software Characteristics following Required Operational
and Technical Characteristics (ltems 3 and 4). This section
should contain a list of the key software characteristics, goals,
and thresholds.

Part I - Description, 5. Critical T&E Issues: Should include a
New sub-section, c. sSoftware lIssues. 1his sub-section should
briefly describe key software issues that must be addressed by
testing.

Part II - Program Summary, 1. Management: Should also highlight
arrangements éefween participants for software test data sharing.

STEP - Final Report and Recommendations

Part II - Program Summary, 2. Integrated Schedule: Events to be
dispTayed on the schedule should also 1include key software sub-
system demonstrations and software testing tools availability

dates.

Software T&E Outline: This new part should follow Part IV - OT&E
Outline. This part should discuss all planned software T&E, for
software components which implement critical functions, in similar
format and detail as that described in the DT&E Outline (Part
IIT). The Software T&E to Date section, which sets the stage for
discussion of the pTanned software T&E, should summarize the soft-
ware T&E already conducted and emphasize software events and re-
sults related to required software characteristics and critical
software jssues. This section and the Future Software T&E section
should discuss the degree to which the test environment s repre-
sentative of the expected operational environment. The section on
Software T&E Objectives should present the major objectives that,
when achieved, will demonstrate that the software development
effort is progressing satisfactorily. The objectives either
should be presented in terms of, or related to, the software char-
acteristics. The Software T&E Events/Scope of Testing/Basic
Scenarios section shouTd relate the testing to be performed to the
Software T&E Objectives. The Critical Software T&E Items section
should highlight all items the availability of which are critical
to the conduct of adequate software T&E prior to the next decision
point. If appropriate, these critical items should be displayed
on the Integrated Schedule. When the required software T&E infor-
mation is contained in Parts III and/or IV, references may be made
to those sections, as appropriate.

Part VI - Special Resource Summary, 1. Test Articles: Should
also 1identify as test articles each software component that is
identified in the mission/function matrix and key software sub-
systems shown in the Integrated Schedule.

Part VI - Special Resource Summary, 2. Special Support Require-
ments: Should also identify software test tools (including
simuTators) required, justify each tool identified (describe how
the tool supports the software test objectives, achieves a speci-
fied level of test, etc.), and briefly describe the steps being
taken to acquire each tool.

3. DoDD 5000.3 (Enclosure 1) should be modified to include the
following terms and concepts:

Software Lifecycle. Extends from requirements definition and
design through operation and maintenance.

STEP - Final Report and Recommendations

Level of Test. Used in conjunction with a systematic software
test methodoTogy and is used to rank the thoroughness of a test
with respect to the goals set for the evaluation criteria (e.g., -
95% statement coverage vs. 50% statement coverage).

Software Evaluation Criteria. Standards by which achievement of

required software characteristics, or resolution of software
issues may be judged.

Required Software Characteristics. Software parameters that are
primary i1ndicators of conformance to written requirements/specifi-
cations and operational suitability and effectiveness.

OTHER RECOMMENDATIONS TO DDT&E

Whereas the implementation of the recommendations presented above
can be accomplished in the near-term with few changes in the TAF
process and only slight modification of the TEMP, the next three
recommendations address issues that cannot be resolved so easily.
However, if we are to realize the full benefits of the modifications
to DoDD 5000.3, these recommendations must also be implemented.

4, ODDT&E should initiate or participate in an on-going program of
software testing tools development, packaging, evaluation, distribu-
tion, and support to provide a warehouse, catalog, or test environment
of approved testing tools which can be referenced in the software
portion of TEMP without acquisition or further approval.

5. DDT&E should define a model of the software testing process which
is well-integrated with the software development 1ifecycle. In the
event that software T&E cannot be accommodated by the DT&E/OT&E/PAT&E
structure, a separate software T&E program should be developed.

6. DDT&E should define software evaluation criteria for software in’
the following categories: (1) necessary testing on support software,

(2) risk reduction on software that is required for system operation

but does not directly implement mission-critical functions, (3) test-

ing of other software design components. This definition should form

the basis for a quantitative risk model of the software T&E process to

be used in the evaluation of the overall software testing effort.

RECOMMENDATIONS ADDRESSED TO THE MILITARY SERVICES

Implementation of the recommendations listed above requires a co-
ordinated examination of software T&E technology and practice by-'DDT&E
and the Military Services.

STEP - Final Report and Recommendations

The following additional recommendations are intended to (1) im-
plement DD&TE recommendations, (2) support DDT&E recommendations in
areas that are not addressed directly by DoDD 5000.3, and (3) improve
the software testing process.

State-of-the-Art Improvements

7. Major initiatives to improve software technology should include
early provisions for software test and evaluation.

8. The Services should continue research funding at an accelerated
pace for software test and evaluation methodologies and the tools to
supnhort these methodologies. Research should also concentrate on
astablishing wusage contexts for the methodologies, cost/benefit
analyses, and experimental determination of error detection
capabilities.

9. A -major focus of military organizations responsible for software
development environments should be the identification, qualification,
and distribution of tools which implement state-of-the-art testing
techniques.

10. AJPO And the affected Military Services should begin now to modify
and expand. APSE development plans to include substantial provisions
for test support environments. Test support tools should be made
available in the first generation of APSE's that are used to develop
software-intensive systems.

Test Planning

11. Program Offices should encourage and support the development of
written test plans for tests to be conducted during early phases of
software development. These plans should (1) contain a specification
of what constitutes an acceptable approach to testing, (2) explain how
the approach adopted supports objectives of the higher level tests,
(3) be adhered to rigorously by Program Managers, (4) be critically
reviewed for deficiencies, and (5) reflect a realistic, worst-case
estimate of the scope and extent of the required testing effort.

12. Project offices should require documentation of unit and module
tests. Documentation requirements should include resource require-
ments, simulation requirements for inputs, analysis requirements for
outputs, test case .ross references to system requirements and suffi-
cient supporting information to allow the reconstruction and repeti-
tion of tests.

STEP - Final Report and Recommendations

13. Project offices should ensure that provisions are made for regres-
sion testing in all test plans. In the absence of a major improvement
in the state-of-the-art in regression testing, auditing and retesting
procedures for all software, specification, and requirements modifica-
tions and updates should be required.

14. When IV&V is required by the project office, the involvement of
the IV&Y contractors should be planned and integrated into the overall
testing effort. Project offices should ensure that test plans contain

provisions for IV&V involvement.

The Testing Process

15. Project offices should set goals for the testing of the total
software system, including those components not specified in the
TEMP. These goals should be incorporated into a written test plan as
a set of software test objectives. The nature and extent of the test-
ing required for these components should be sufficient to achieve a
balanced risk with mission-critical components.

16. Development test organizations should resolve major software
deficiencies before the start of dedicated OTé&E.

17. Operational test documentation and results should be an integral
part of the overall software test database.

18. Project offices should ensure that unit and module tests exercise
critical functions with a systematic test methodology. In selecting a
test methodology, primary considerations should be the appropriateness
of the methodology, known cost/benefit ratios, established error
detection capabilities of the methodology, and the extent to which
test results are interpretable in terms of software test objectives
set forth in the TEMP., The relationship between tests performed and
the errors to be discovered must be explicit in the test methodology.
This relationship should be a principal consideration in determining
the appropriateness of the test.

19. The Military Services should encourage and support the development
of testing techniques that take into account quality measurements
other than correctness.

20. Implementation of effective practices for software T&E require the
Military Services to initiate on-going programs to develop, package,
evaluate and maintain testing tools. Included in this effort should
be a program to identify and qualify tools for early use in the
development cycle. The qualification requirements should specify
usage contexts for specific tools and comparative analyses of costs
and effectiveness of individual tools should be provided. Provisions
should be made for generalizing and improving tools which implement
state-of-the-art test techniques and strategies.

STEP - Final Report and Recommendations

21, The Military Services through their project offices should consid-
er reevaluating contract funding patterns to allow special purpose
tools developed in support of the contract deliverables to become
deliverable items under the same contract.

22. DDT&E in coordination with the management of STARS and the Mili-
tary Services should investigate the possibility of including the
software T&E tools warehouse in one or more STARS task areas. In
particular, the process of identifying, packaging, qualifying and
distributing test tools for use in support of test plan requirements
should be a key role for the STARS Software Enginerring Institute or
its functional equivalent.

Test Evaluation

23. The Military Services and DDTEE should develop quantitative in-
dices of software testing progress during development. Quantification
should treat both costs and risk: (1) Reliable cost/benefit measures
for testing software should be developed and the cost/effectiveness of
testing tools should be established. (2) Quantitative risk analysis
techniques for software errors should be developed. (3) Cost and risk
should be used as essential factors in determining quantitative
indices.

24, Military labs should expand their efforts to provide an improved
data gathering, reduction, and measurement capability to project
offices and developers. Automated data logging and data base systems
should be developed to track and record errors on software-intensive
systems. The relationship between measurable characteristics of
software products and the processes used to produce them should be
validated. Measurable characteristics which are reliable predictors
of software quality should be applied to enhance the evaluation
process.

25. An effective software quality assurance standard should be
developed.

26, The Military Services should determine the cost/benefit aspects of
IV&V and recommend the conditions under which IV&V should be required.

27. DDT&E and the Service Program Offices should begin now to develop
an integrated decision support system for software T&E that combines
functionally organized test information and evaluations with data that
is required for major programmatic decision points.

Tri-Service Recommendations

28. The Military Services should develop tri-service standards to make
unifig? approaches to software development, testing and evaluation
possible.

STEP - Final Report and Recommendations

CHAPTER 1
INTRODUCTION

The Software Test and Evaluation Project (STEP) was initiated in
1981 by the Director Defense Test and Evaluation. The primary objec-
tive of STEP is to develop new DoD guidance and policy for the test
and evaluation of computer software for mission-critical applica-
tions. A number of subsidiary goals have also been established for
STEP. Principal subgoals include the stimulation of tool development,
the support of policy development, and the identification of research
issues and directions in the area of software testing.

STEP is conceived in four phases: information gathering, analysis,
assessment of feasibility, and policy development. This report is
Yolume 1 of a six volume series prepared under a contract to the
Georgia Institute of Technology in support of the first two phases.
The remaining volumes in the series are the following:

Yolume 2: Software Test and Evaluation:
State-of-the-Art Overview
Yolume 3: Software Test and Evaluation:
Current Defense Practices Overview
Yolume 4: Transcript of STEP Workshop, March 1982
Yolume 5: Report of Expert Panel on Software Test and Evaluation
Yolume 6: Tactical Computer System Applicability Study

The organization and contents of the overall report will be discussed
in the sequel.

"In this volume, we will present the rationale for seeking improved
DoD guidance in software test and evaluation, the organization of STEP
and its support contracts, a summary of our data and information
gathering efforts, and Phase I and II findings and recommendations.

The chief goal of Phases I and II has been to determine the feasi-
bility of modifying and reformulating Defense policy for the test and
evaluation (T&E) of software. In support of a feasibility assessment,
a broad overview of the state-of-the-art and the current state of
Defense practices in software T& was constructed. Georgia Tech and
its subcontractors, Control Data and Clemson University, sought input
from DoD components, industrial representatives, selected experts and
consultants, and specially convened workshop and symposium partici-
pants. In addition, extensive surveys of both the software T&E
literature and vendors of automated software T&E tools were prepared.
These sources provided a consistent view of software T&E needs and
capabilities.

STEP - Final Report and Recommendations

Our findings support the view that there is a need for modified
and improved policy guidance for the testing of software systems
destined for embedded and mission-critical military applications.
Test and evaluation is a risk reducing activity. The Director Defense
Test and Evaluation (DDT&E) is charged with overall responsibility for
testing in the Department of Defense. DDT&E reviews the results of
testing on major weapon and support systems, assesses the adequacy of
tests and planned tests and conveys these assessments to decision
makers in the DoD. The assessment of test adequacy is translated into
statements of risk that are used to determine whether a system is
ready to advance from one programmatic phase to the next. Assessing
the adequacy of tests of more traditional system components is already
a difficult activity. Software -- a critical system component for
which there is no accepted quantitative test/risk model -- presents
even more fundamental problems in planning tests to comply with
guidance and reducing the results of tests to an objective body of
information which can be used to assess past and planned testing.

Improved technology makes a more systematic and rigorous approach
to software testing feasible. In order to be most effective, this
approach must be applied in a planned and coordinated fashion at all
phases of the software development process, beginning at the earliest
design stages and proceeding through operational testing of the inte-
grated system. On the other hand, Tike all of the software sciences,
software T&E 1is in 1its dinfancy. With appropriate attention and
support, the state-of-the-art in software testing can be improved
considerably. Finally, the acquisition environment in which software
components are developed can be improved. Like most T&E activities,
software testing is subjected to budget and schedule constraints that
often compress testing unrealistically. Alternative development
cycles and acquisition strategies that force the examination of soft-
ware components in proportion to their importance to the overall
objectives of the system will give some near-term relief in these
areas,

We recommend below that principal DoD guidance policy, and
associated standards, regulations, and Service practices be modified
along these lines, and that appropriate support be considered for a
major technology upgrade to implement these modifications.

STEP - Final Report and Recommendations

CHAPTER 2
RATIONALE

The role of software in escalating the cost and driving down the
reliability of military systems has been very visible in recent
years. Virtually every major defense system planned or fielded over
the last decade has at least one subsystem consisting of an embedded
computer controlling some mission-critical function. The applications
literally cover the domain of computer applications. Critical func-
tions of the F/A-18 aircraft are controlled by an avionics suite and
the M-1 tank by a fire control system. Complex information gathering,
processing and retrieval networks are major components of the AEGIS
fleet air defense system and the TACFIRE ground tactical system. The
guidance and control functions of such systems as the MAVERICK air-to-
ground missile are driven by embedded computers. The range of tech-
nology spanned by these applications is also broad. PATRIOT contains
microprocessors, while WWMCCS consists of distributed mainframe
computers suitable for general purpose computation. In each of these
instances, the computer subsystems contain two components of equal
importance to the overall operation of the system: hardware and
software.

Although hardware and software contribute in equal measure to the
successful implementation of system functions, there are relative
imbalances in their treatment during system development. In 1974, the
Defense Science Task Force on Test and Evaluation observed: “Whereas
the hardware development was ... monitored, tested, and regularly
evaluated, the software development was not." Since software is
essential to the overall objectives of so many important Defense
systems, inadequacies in evaluating software components -- especially
when the failure of a software component contributes to the failure of
a major system -- tend to be highly visible. So visible, in fact,
that the test and evaluation of software has attracted attention at
the highest levels. For example, the Secretary of Defense has
directed the services to "... give priority to development of tools
and techniques for testing of embedded computers and software...
Testing of software should be sufficient to achieve a balanced risk
with the hardware of the same system ..." The Secretary has also
stated that "These advances are required if the activities are to
provide realistic assessments of system operational capability ..."

Current estimates of increased software costs arising from incom-
plete testing help to illustrate the dimensions of the problem (see
Figure 1). Averaged over the operational lifecycle of an embedded
computer system, development costs comprise approximately 30% of the
total costs. The remaining 70% of the lifecycle costs are absorbed in
maintenance. Maintenance activities can include both system enhance-
ments and the repair of errors. These are errors that might have been

10

Y

- |

[U——

[

STEP - Final Report and Recommendations

‘ _ REQUIREMENTS pd JI%
| 10%
@ |
< ’ 30%
MAINTENANCE o CODE
70% : 2%
TEST & INTEGRATE
m .
SOFTWARE SOFTWARE
OPERATIONAL UFECYCLE DEVELOPMENT LIFECYCLE

FIGURE 1

EMBEDDED SOFTWARE LIFECYCLE COST DISTRIBUTION

11

STEP - Final Report and Recommendations

uncovered by more complete testing during earlier phases. In general,
observers agree that the cost of finding and fixing errors is an
increasing function of the elapsed time from the start of the develop-
ment process. As shown in Figure 2, the relative cost of repairing
errors in software rises dramatically between requirements and speci-
fication phases and the maintenance phase. One investigator estimates
the cost multiplier to be 10**(2d), where d is the elapsed time of the
development effort expressed as a percentage of total development time.

According to the data in Figure 1, costs in the development phase
are distributed as follows: requirements and specification develop-
ment, 20%; design and coding, 35%; test and integration, 45%. Thus,
assuming that half of all maintenance costs are incurred in the repair
of previously undetected errors, approximately one half of the opera-
tional Tlifecycle costs for embedded applications can be traced
directly to testing activities; that is, either these costs are
incurred by testing or are due to errors 1left undiscovered by
testing. Of course, there are other cost implications of undetected
errors in military systems. The mission-critical nature of software
in many modern systems means that software which fails during system
operation can pose considerable risk to both the success of the
mission and the safety of personnel.

Primary DoD gquidance for test and evaluation derives from DoD
Directive 5000.3. This directive applies to both hardware and soft-
ware components of military systems and sets forth the framework
within which more specific military regulations and standards must
operate. Three provisions of DoDD 5000.3 are particularly relevant to
software testing. First, DoDD 5000.3 states that "Quantitative and
demonstrable performance objectives and evaluation criteria shall be
established for computer software during each system acquisition phase
... Decisions to proceed from one phase of software development to the
next will be based on quantitative demonstration of adequate software
performance through appropriate test and evaluation." Second, DoDD
5000.3 requires that software be operationally tested using "typical
operator personnel." Third, DoDD 5000.3 requires that operational
test and evaluation (OT&E) agencies "participate in software planning
and development to ensure consideration of the operational environment
and early development of the operational test objectives."

For a variety of reasons, existing guidance statements have not
had the desired effect. For example, a key factor is the vagueness of
the concept of "adequate software performance” and the perceived
undvailability of techniques which provide the requisite "quantitative
demonstration." While testing of hardware components may result in a
database of quantitative test results against which reliability and
risk models may be applied, software components are seldom accompanied
by objective evidence of the effectiveness of the testing effort. The
critical issue of "how much testing is enough?" for software and how
that testing should be conducted, reported, and integrated into the
key phases of a major system development has simply not been resolved
to a useful degree. The difficulties in planning tests to comply with

12

-

STEP - Final Report and Recommendations

RELATIVE COST

16

14 | S—

12 |

10 |-
RELATIVE COST OF

8 L CORRECTING DESIGN ERR
IN AN OPERAT/OINAL SYS®

6 | | / ‘, J}

4 //]

2 |

0 1 i i 1

REQ/SPEC DESIGN CODING INTEGRATE OPERATION
LIFECYCLE PHASES

FIGURE 2
RELATIVE COST OF ERROR CORRECTION

13

STEP - Final Report and Recommendations

existing guidance, standards and regulations increase with the number
and complexity of embedded software systems. These difficulties are
highlighted in acquisition environments in which schedules and budgets
squeeze the T&E effort.

In recognition of these problems and the developing software
technology which can address them, STEP was initiated by the Director
Defense Test and Evaluation.

14

STEP - Final Report and Recommendations

CHAPTER 3

THE SOFTWARE TEST AND EVALUATION PROJECT

STEP consists of four phases intended to lead to improved DoD
guidance for software test and evaluation. The current report
represents the results of the primary support contracts for STEP
Phases I and II. Phase I was an information gathering effort aimed at
assessing the state-of-the-art and the state of current practice in
software T&E. During Phase I, an extensive survey of known techniques
and tools was compiled., The assessment of the state of current
practice was made by surveying DoD agencies, the Military Services,
program offices, independent test organizations, and selected Defense
contractors. Phase II consisted of an analysis of the information
gathered in Phase I and the formulation of the recommendations which
appear in this report. Phases III and IV of STEP are yet to be
completed. Phase III consists primarily of the assessment of whether
new policy guidance can be formulated. Phase IV represents the actual
development of policy statements and implementation strategies. Thus,
the overall structure of STEP may be represented as shown in the
diagram below.

PHASE I
INFORMATION GATHERING
PHASE II
ANALYSIS
PHASE I1I
FEASIBILITY ASSESSMENT
~
Feasible Not Feasible
PHASE IVa PHASE IVb

FORMULATE POLICY _ TERMINATE PROJECT

The Appendix describes the organization of the support contracts,
the principal milestones of the Phase I and II support efforts, and
the contents of the remaining volumes of this report.

15

STEP - Final Report and Recommendations

CHAPTER 4
STATE-QF-THE-ART ASSESSMENT

Current research in software testing centers almost solely on
testing for correctness; that is, on techniques that raise the users'
confidence that the software functions in accordance with its specifi-
cations. "Testing" refers specifically to the activity of executing
software on data (the test sets) designed to either reveal the
presence of errors or ensure their absence. Therefore, software
testing is distinguished from other activities aimed at increasing
software reliability (such as structured design techniques, formal
program proving, and statistical reliability modelling).

Three aspects of extant research efforts in software testing are
relevant for assessing the state-of-the-art: testing methodologies
(i.e., methodologies for either generating tests or determining the
quality of previously generated test sets), testing tools (i.e.,
~automated systems which implement one or more testing methodologies),
and new hardware and software technologies which impact system relia-
bility. In the subsections below, we will briefly outline the state-
of -the-art in each of these three areas. A more detailed treatment of
each of these topics can be found in Volume 2.

16

STEP - Final Report and Recommendations

4,1. TEST METHODOLOGIES

A test methodology consists of two (not always distinct) compo-
nents. The first is a strategy which guides the overall testing
effort, while the second is a testing technique which is applied
within the framework of a test strategy.

4.1.1. TEST STRATEGIES

Module testing is the process of testing logical units of a
program and integrating the individual module tests to evaluate the
overall system. Main considerations in module testing are the design
of test cases and the coordination of testing multiple modules. Test
cases may be constructed from specifications or by analyzing the
module code. Testing strategies corresponding to these approaches are
called black-box and white-box strategies, respectively. There are
two approaches to combining module analysis: incremental and non-
incremental. Top-down and bottom-up testing are two incremental
approaches. Thread testing 1is another strategy based on system
requirements, Strategies have also been proposed for testing software
throughout its development. Finally, several new strategies have been
proposed based on an "evolutionary" view of the software 1lifecycle.
In one approach, systems are constructed as working subsystems
corresponding to critical functions, and these subsystems are subjec-
ted to development and operational tests.

4.1.2. TESTING TECHNIQUES

A variety of testing techniques have been proposed in the litera-
ture (see, e.g., Yolume 2). These techniques can be classified as
follows: static analysis, symbolic testing, program instrumentation,
program mutation, input space partitioning, functional program test-
ing, algebraic program testing, random testing, grammar-based testing,
data-flow guided testing, and real-time testing.

STATIC ANALYSIS. In static analysis, the regquirements, design docu-
ments, and program code are analyzed without actually executing the
code. Only limited analysis of programs containing dynamic data types
and structures is possible using static analysis. Experimental evalu-
ation of code inspections and walk-throughs has found these techniques
to be effective in detecting from 30% to 70% of the logic design and
coding errors in typical programs.

17

s R RRRRRERTBDRSRSSRRmRRRAmm==RR=RmAmmmmmmmZZmmmmmm

STEP - Final Report and Recommendations

SYMBOLIC TESTING. To test a program symbolically, input data and
program variable values are given formal or "symbolic" values. The
possible executions of a program are also characterized formally. The
execution of the program is then simulated by a symbolic evaluator
which interprets the formal representation of the program and data.
The techniques for building expressions which describe the state of
the symbolic execution of a program lean heavily on techniques
developed for proving program correctness. Studies describing the
effectiveness of symbolic analysis for detecting errors indicate that
it may be an effective technique for moderately large modules.

PROGRAM INSTRUMENTATION. Programs can be instrumented by statements
or routines that do not affect the functional behavior of the program,
but record properties of the executing program. Additional output
statements, assertion statements, monitors, and history-collecting
subroutines may be used to instrument programs. Experimental evalua-
tions of instrumentation techniques indicate that exper1enced testers
can decrease the debugging time for even complex programs us1ng these
techniques.

PROGRAM MUTATION. Program mutation is a technique for the measurement
of test data adequacy. Test adequacy refers to the ability of the
data to ensure that certain errors are not present in the program
under test. In mutation testing, test data is applied to the program
being tested and its "mutants” (i.e., programs that contain one or
more 1ikely errors). If a program passes a mutation test, then either
the program is correct or it contains an improbable error. Experimen-
tal evaluation of mutation testing indicates that the results of
mutation testing are good predictors of operational reliability.

INPUT SPACE PARTITIONING. A path in a program consists of a possible
fTow of control.” In path analysis techniques, the input space of a
program is partitioned into path domains: those subsets of the
program input domain that cause execution of the paths. Path analysis
can detect computation, path, and missing path errors. Domain testing
detects many path selection errors by considering test data on or near
the boundaries of path domains. In partition analysis, the specifica-
tion of a program is partitioned into subspecifications. The subspec-
ifications are then matched with domain partitions to increase the
sensitivity of the test. All of these techniques have been shown
theoretically and experimentally to be generators of high quality test
data, although current technology limits their use to programs which
have a small number of input variables.

18

d

STEP - Final Report and Recommendations

FUNCTIONAL TESTING. In functional testing, the specification of a
program is viewed as an abstract description of its design. Function
and data abstractions are used as guides to identify the abstract
functions of a program and to generate the functional test data.
Functional testing requires the specification of domains for each
input and output variable of the program. Extremal and special values
are the most important values in the domain of a variable. In a study
of errors that occurred in a release of a major software package,
functional testing was effective in detecting 38 out of 42 known
errors.

ALGEBRAIC TESTING. In algebraic testing, program correctness is
viewed as an equivalence problem. Since the general equivalence
problem is undecidable, programs to which this technique is applicable
must fall in a restricted class of programs for which execution on a
small test set is sufficient to infer equivalence. Applications of
algebraic testing to array manipulation programs, polynomial evalua-
tion programs, and other mathematical programs have appeared in the
literature. Monte Carlo methods exist for algebraic testing proce-
dures which make the technique tractable for many problems.

RANDOM TESTING. Random testing is essentially a black-box testing
technique 7n which a program is tested by randomly sampling inputs.
Depending on the sensitivity of the analysis desired, the sampling
technique may be independent of the actual distribution of inputs or
may attempt to accurately reflect the distribution of the operational
environment. Random testing is useful in making operational estimates
of software reliability and has some connection to problems arising in
operational testing.

GRAMMAR-BASED TESTING. Formal specifications of some software systems
can be given by state diagrams. By considering the state diagram to
be a description of an automaton, classical machine ijdentification
experiments can be conducted to determine whether or not a program
implementing the automaton does so correctly.

DATA-FLOW GUIDED TESTING. Data-flow analysis is a method for obtain-
1ng structural information about programs which has found wide appli-
cability in compiler design and optimization. One result of data-flow
analysis is a set of dynamically meaningful relationships among
program variables. Control flow information about the program is then
used to construct test sets for the paths to be tested.

19

/

STEP - Final Report and Recommendations

REAL-TIME TESTING. The characteristic phases of real-time software
testing occur during development (on the development "“host") and
operational testing (on the operation "target"). Systematic tech-
niques for testing real-time software during development, for the most
part, do not make essential use of the fact that the software is
real-time. Testing an integrated system on a development host re-
quires an environment simulator and devices for controlling on-going
processes. In testing real-time software on target machines, overall
test objectives for the hardware/software system are used, and per-
formance becomes a key observable factor in assessing the result of
the tests. While the literature contains very few systematic tech-
niques for real-time testing, some studies of large-scale, real-time
software systems tests have been published, and these experiences may
generalize to other applications.

20

STEP - Final Report and Recommendations

4,2. TESTING TOOLS

Testing tools may be classified by whether they carry out static
or dynamic analysis of the program under test. Static analyzers are
systems that manipulate source code to reveal global aspects of
program logic, structural errors, syntactic errors, varfations in
coding style, and interface consistency. Static analyzers consist of
front end language processors, data bases, error analyzers, and report
generators. Basic operations include data collection, error analysis,
and error report generation. Existing static analyzers differ in
terms of their scope of error analysis, the flexibility of user
command languages, and the nature of ‘error descriptions. Static
analyzers have been used in many reported software development
efforts. Dynamic analyzers, in addition to implementing many of the
techniques described above, are used to generate test data, provide a
convenient test environment, and compare program test output with
expected output.

SYMBOLIC EVALUATORS. Symbolic evaluators implement the symbolic
evaluation testing technique. They provi