Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs

Kazeem A. Kosebinu
East Tennessee State University

Follow this and additional works at: https://dc.etsu.edu/etd
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Kosebinu, Kazeem A., "Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs" (2021). Electronic Theses and Dissertations. Paper 3943. https://dc.etsu.edu/etd/3943

[^0]
Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs

A thesis
presented to the faculty of the Department of Mathematics East Tennessee State University

In partial fulfillment of the requirements for the degree Master of Science in Mathematical Sciences
by
Kazeem Adeyinka Kosebinu

August 2021

Robert Gardner, Ph.D., Chair

Robert A. Beeler, Ph.D.

Rodney Keaton, Ph.D.

Keywords: graph decomposition, mixed graph, orientation of stars, bipartite mixed graph, mixed graph with a hole.

ABSTRACT
 Partially Oriented 6-star Decomposition of Some Complete Mixed Graphs
 by

Kazeem Adeyinka Kosebinu

Let M_{v} denotes a complete mixed graph on v vertices, and let S_{6}^{i} denotes the partial orientation of the 6 -star with twice as many arcs as edges. In this work, we state and prove the necessary and sufficient conditions for the existence of λ-fold decomposition of a complete mixed graph into S_{6}^{i} for $i \in\{1,2,3,4\}$. We used the difference method for our proof in some cases. We also give some general sufficient conditions for the existence of S_{6}^{i}-decomposition of the complete bipartite mixed graph for $i \in$ $\{1,2,3,4\}$. Finally, this work introduces the decomposition of a complete mixed graph with a hole into mixed stars.

Copyright 2021 by Kazeem Adeyinka Kosebinu
All Rights Reserved

ACKNOWLEDGMENTS

First and foremost, I wish to express my gratitude to God for His mercies in my life. I also fully appreciate the Chair of my Advisory Committee Dr. Robert 'Bob' Gardner, for his leadership, guidance and endurance especially for taking time to direct my research work in spite of his tight schedule and multiplicity of official assignments. I would like to thank my committee members Dr. Robert Beeler and Dr. Rodney Keaton, for their input in this process. My special thanks also goes to my family who stood behind me in all my ventures.

TABLE OF CONTENTS

ABSTRACT 2
ACKNOWLEDGMENTS 4
LIST OF TABLES 7
LIST OF FIGURES 8
1 INTRODUCTION AND BASIC DEFINITIONS 9
2λ-FOLD DECOMPOSITION OF COMPLETE MIXED GRAPH INTO
MIXED STARS 17
2.1 Introduction 17
2.2 Necessary Conditions Lemmas 18
2.3 An S_{6}^{0}-Decomposition of λM_{v} 19
2.3.1 Verification and Example 22
2.4 An S_{6}^{1}-Decomposition of λM_{v} 24
2.4.1 Verification and Example 28
2.5 An S_{6}^{2}-Decomposition of λM_{v} 37
2.5.1 Verification and Example 40
3 DECOMPOSITION OF COMPLETE BIPARTITE MIXED GRAPHS
INTO MIXED STARS 48
3.1 Introduction 48
3.2 An S_{6}^{0}-decomposition of $M_{n_{1}, n_{2}}$ 49
3.3 An S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$ 54
3.4 An S_{6}^{2}-decomposition of $M_{n_{1}, n_{2}}$ 61
4 SOME MIXED STAR DECOMPOSITIONS OF COMPLETE MIXED
GRAPHS WITH A HOLE AND CONCLUSIONS 64
4.1 Introduction 64
4.2 Some S_{6}^{i}-decompositions of $M(v, w)$. 65
4.3 Future Research 66
4.4 Conclusion 66
BIBLIOGRAPHY 68
VITA 70

LIST OF TABLES

1 The Edge and Arc Differences of Lemma 2.5 23
2 The Edge and Arc Differences for an S_{6}^{0}-decomposition of $2 M_{11}$ 23
3 The Edge and Arc Differences of Lemma 2.9 33
4 The Edge and Arc Differences for an S_{6}^{1}-decomposition of $2 M_{22}$ 33
5 The Edge and Arc Differences of Lemma 2.11 36

LIST OF FIGURES

1 A complete bipartite graph 10
2 A complete bipartite mixed graph 11
3 A decomposition of K_{7} into 3-cycles 13
4 A (1,3)-directed star 14
5 Mixed triples. 15
6 Partial orientations of 6 -stars with two edges and four arcs 16
$7 \quad$ A schematic diagram of the copies of $M_{8,8}$ as used in case 1 of Theorem
3.5 5110 L-type and R-type star55
$11 \quad S_{6}^{2}$-decomposition of $M_{1,6}$. 62

1 INTRODUCTION AND BASIC DEFINITIONS

Graph decompositions rank among the most prominent areas of graph theory and combinatorics. Results on graph decompositions can be applied in coding theory, design of experiments, X-ray crystallography, radioastronomy, radiolocation, computer and communication networks, serology, and other fields [4].

We give a fairly comprehensive list of definitions for a better understanding of this thesis and we follow the definitions and notations of [3].

A graph G is an ordered pair $(V(G), E(G))$ consisting of a set $V(G)$ of vertices and a set $E(G)$, disjoint from $V(G)$, of edges, together with an incidence function that associates with each edge of G an unordered pair of vertices of G. The graph G is directed (undirected) if all its edges are directed (undirected). A digraph D is a graph with directed edges called arc.

A mixed graph M on v vertices is an ordered triple $(V(M), E(M), A(M))$ where $|V(M)|=v, E(M)$ is a set of unordered $[x, y]$ pairs of elements of $V(M)$, and $A(M)$ is a set of ordered pairs (x, y) of elements of $V(M)$. The ordered pair (x, y) is called an arc and the unordered pair $[x, y]$ is called an edge.

The complete mixed graph on v vertices denoted by M_{v} is the mixed graph in which for every two distinct vertices x and y, the arc set contains $(x, y),(y, x)$ and the edge sets contains $[x, y]$.

The degree of a vertex u of G, denoted by $\operatorname{deg}(u)$ is the number of edges incident to u in G. In a mixed graph, the outdegree of a vertex u of G, denoted by $\operatorname{od}(u)$, is the number of arcs emanating from u. The indegree, denoted by $\operatorname{id}(u)$, is the number of arcs terminating at u. The total degree of a vertex u in a mixed graph M_{v} is the
summation: $o d(u)+i d(u)+\operatorname{deg}(u)$.
A graph G is bipartite if its vertex set can be partitioned into subsets X and Y such that every edge in G has one end in X and the other end in Y. That is if $V(G)=X \cup Y$ and $[x, y] \in E(G)$ then $x \in X$ and $y \in Y, X \neq \emptyset, Y \neq \emptyset$ and $X \cap Y=\emptyset$. A bipartite graph G with bipartition (X, Y) denoted $G[X, Y]$ is called a complete bipartite graph if $G[X, Y]$ is simple and every vertex in X is adjacent to every vertex in Y.

Figure 1: A complete bipartite graph

The mixed graph with vertex set V such that for every pair of distinct vertices $x \in X$ and $y \in Y$, where $V=X \cup Y$, the set of arcs contains (x, y) and (y, x), and the set of edges contains $[x, y]$ is called a complete bipartite mixed graph, Figure 2.

Figure 2: A complete bipartite mixed graph

For each natural number λ, the λ-fold complete mixed graph on V-vertices, denoted by λM_{v}, is the mixed multigraph where, for each pair of distinct vertices v_{1} and v_{2} in G, we have λ copies of $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right)$ and $\left[v_{1}, v_{2}\right]$.

The complete mixed graph on v vertices with a hole of size w is the graph with the vertex set $V\left(M_{v, w}\right)=V_{v-w} \cup V_{w}$ where $\left|V_{v-w}\right|=v-w$ and $\left|V_{w}\right|=w$, edge set $E\left(M_{v, w}\right)=\left\{[a, b]\right.$ such that $\left.a, b \in V\left(M_{v, w}\right),\{a, b\} \nsubseteq V_{w}\right\}$ and arc set $A\left(M_{v, w}\right)=$ $\left\{(a, b),(b, a)\right.$ such that $\left.a, b \in V\left(M_{v, w}\right),\{\mathrm{a}, \mathrm{b}\} \notin V_{w}\right\}$. For a graph G, replacing each edge $\left[v_{1} v_{2}\right] \in E(G)$ with either $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{1}\right)$ or $\left[v_{1}, v_{2}\right]$ is known as partial orientation of G.

A decomposition of a graph G is a family \mathcal{F} of edge-disjoint subgraphs of G such that $\cup_{F \in \mathcal{F}} E(\mathcal{F})=E(G)$. Given that $E(G)$ is the edge set of G and $V(G)$ is the vertex set of G, then a decomposition of a simple graph G into isomorphic copies
of a graph H is a set $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ where $H_{i} \cong H$ and $V\left(H_{i}\right) \subset V(G)$ for all $i, E\left(H_{i}\right) \cap E\left(H_{i}\right)=\emptyset$ for $i \neq j$ and $\cup_{i=1}^{n} E\left(H_{i}\right)=E(G)$, where $H_{i}^{\prime} s$ are the blocks consisting of the subgraphs. Similarly, a decomposition of a digraph D is a family \mathcal{F} of arc-disjoint subgraph of D such that $\cup_{F \in \mathcal{F}} A(\mathcal{F})=A(G)$. Given that $A(G)$ is the arc set of D and $V(D)$ is the vertex set of D, then a decomposition of a simple digraph into isomorphic copies of a graph H is a set $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ where $H_{i} \cong g$ and $V\left(H_{i}\right) \subset V(D)$ for all $i, A\left(H_{i}\right) \cap A\left(H_{i}\right)=\emptyset$ for $i \neq j$ and $\cup_{i=1}^{n} A\left(H_{i}\right)=A(D)$, where $H_{i}^{\prime} s$ are the blocks consisting of the subgraphs. That is, a subgraph in a decomposition is called block.

A Steiner triple system of order n is an isomorphic decomposition of a complete graph $G=K_{n}$ into family \mathcal{F} of subgraphs of G such that each $F \in \mathcal{F}$ is isomorphic to a 3 -cycle [12].

For example, an isomorphic decomposition of K_{7} into 3-cycles is given in Figure 3.

An m-star is a complete bipartite graph $K_{1, m}$. So a decomposition of a graph into stars is a way of expressing the graph as the union of edge-disjoint stars.

Pauline Cain [7] showed that the complete graphs on $r m$ and $r m+1$ vertices, $r>1$, can be decomposed into stars with m edges if and only if r is even or m is odd.

An (s, t)-directed star (Figure 4) is a directed graph with $s+t+1$ vertices and $(s+t) \operatorname{arcs} ; s$ vertices have indegree 0 and outdegree $1, t$ vertices have indegree 1 and outdegree 0 , and one has indegree s and outdegree t. So an (s, t)-directed star decomposition is a partition of the arcs of a complete directed graph of order n into (s, t) directed stars.

Figure 3: A decomposition of K_{7} into 3-cycles
C.J. Colbourn [9] established the necessary and sufficient conditions on s, t, and n for an (s, t)-directed decomposition of the complete graph of order n to exist.

Robert Gardner [12] first addressed the decomposition of complete mixed graphs in the mixed triple systems setting where the necessary and sufficient conditions for the existence of some new triple systems were given. That is, a T_{i}-triple system (Figure 5) of order v exists for $i=1,2,3$ if and only if $v \equiv 1(\bmod 2)$, except for $i=3$ and $v=3,5$.

Robert Beeler and Adam Meadows [2] gave necessary and sufficient conditions for a decomposition of the λ-fold complete mixed graph into partial orientations of P_{4} and S_{3}, where P_{4} is the path on four vertices and S_{3} is the star on four vertices.

The necessary and sufficient conditions for isomorphic decompositions of the complete mixed graph into mixed stars on 7 vertices was given by Chancé Culver and Robert Gardner [10]; that is, the decomposition of M_{v} into copies of partial orienta-

Figure 4: A (1,3)-directed star
tions of 6 stars which have two edges and four arcs. See Figure 6.
The following result was given in [10]:

Theorem 1.1 An S_{6}^{i}-decomposition of M_{v} exists if and only if $v \geq 9$ and

1. if $i \in\{0,4\}$, then $v \equiv 1(\bmod 4), v \geq 9$ and
2. if $i \in\{1,2,3\}$, then $v \equiv 0$ or $1(\bmod 4), v \geq 9$.

We are inspired by the above results to study the λ-fold decomposition of the complete mixed graphs into mixed stars. Combined with Theorem 1.1, we give the necessary and sufficient conditions for such decompositions. We also explore the decomposition of complete bipartite mixed graphs into mixed stars and also the de-

Figure 5: Mixed triples.
composition of $M_{v, h}$, complete mixed graph with v vertices and a hole of size h into mixed stars.

A complete mixed graph (and a λ-fold complete mixed graph) has twice as many arcs as edges. So any isomorphic decomposition of a complete mixed graph (or a complete λ-fold mixed graph) must involve a graph with twice as many arcs as edges.

Figure 6 shows the partial orientations of the 6 -star which has two edges and four arcs where the two edges are $[a, b]$ and $[a, c]$ and the arcs are $(a d),(a g),(a f)$ and (ae). Vertex a is the center vertex. We use the same notation S_{6}^{i} as used in [10] for each orientation where i is the indegree and $4-i$ is the outdegree. So a S_{6}^{2} mixed graph is a star with the center having edge degree 2 , indegree 2 , and outdegree 2 .

We shall explore the difference method in some cases to show that all the arc and edge differences are present and we also show that all vertex labels are distinct. We also give some general sufficient conditions for the existence of S_{6}^{i}-decomposition of the complete bipartite mixed graph for $i=\{1,2,3,4\}$ and then conclude this work

$S_{6}^{0}=[a, b, c ; d, e, f, g]_{6}^{0}$

$S_{6}^{1}=[a, b, c ; d, e, f, g]_{6}^{1}$

$S_{6}^{2}=[a, b, c ; d, e, f, g]_{6}^{2}$

$$
S_{6}^{3}=[a, b, c ; d, e, f, g]_{6}^{3}
$$

Figure 6: Partial orientations of 6-stars with two edges and four arcs
with an introduction of S_{6}^{i}-decompositions of a complete mixed graph with a hole.

2λ-FOLD DECOMPOSITION OF COMPLETE MIXED GRAPH INTO MIXED STARS

2.1 Introduction

There are five partial orientations of 6 -stars as shown in the Figure 6, which have two edges and four arcs. These are considered because there are twice as many arcs as edges in a complete mixed graph. The S_{6}^{i} block with vertex set $\{a, b, c, d, e, f, g\}$ will be denoted by $[a, b, c ; d, e, f, g]_{6}^{i}$, as illustrated in Figure 6 . The center of the star has indegree i and outdegree $4-i$. So an S_{6}^{1} is a star with the center having edge degree 2 , indegree 1 , and outdegree 3 .

There are many results concerning the necessary and sufficient conditions for the existence of the decomposition of a graph into isomorphic subgraphs [4, 11]. In the case of this thesis, the necessary and sufficient conditions for the decomposition of a complete mixed graph into partial orientations of 6 -stars were given for $\lambda=1$ in [10]. We shall explore the use of the difference method in the construction of the decomposition of mixed graph into mixed stars in certain cases.

Consider a simple complete graph. Suppose we want to decompose K_{n} into $K_{n}=C_{3}$, that is, we want a collection of copies of K_{3} which are edge disjoint and union to give K_{n}. For example, a K_{3}-decomposition of K_{7} with the vertex set $\{0,1,2,3,4,5,6\}$ is given by: $[0,1,3],[1,2,4],[2,3,5],[3,4,6],[4,5,0],[5,6,1],[6,0,2]$ (see Figure 3). With the edge $(0,1)$, we associate the difference $1-0=1$, with edge $(1,3)$, we associate the difference $3-1=2$, and with the edge $(0,3)$, we associate the difference $3-0=3$. In general, the difference associated with the edge (x, y) in K_{n}
with vertex set $\{0,1,2, \ldots, n-1\}$ is $|x-y|_{n}=\min \{(x-y)(\bmod n),(y-x)(\bmod n)$ $\}$. The set of differences for edges of K_{n} is $\{1,2, \ldots,\lfloor n / 2\rfloor\}$. Note that in a complete directed graph on n vertices labeled $(0,1,2, \ldots, n-1)$, we associate with arc (a, b) the difference $(b-a)(\bmod n)$. The set of arc differences is $\{1,2, \ldots, n-1\}$. Under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod n)$, all the edges (arcs) with a given difference are in the same orbit.

We now give the necessary and sufficient conditions for the existence of a λ-fold decomposition of the complete mixed graph into mixed stars. In each case, we give a direct construction to establish sufficiency.

2.2 Necessary Conditions Lemmas

An S_{6}^{i}-decomposition of M_{v} does not exist when $v \equiv 3(\bmod 4)$, for $i \in\{1,2,3\}$ and also, a S_{6}^{i}-decomposition of M_{8} for $i \in\{1,2,3\}$ does not exist [10]

In this subsection, we give some necessary conditions for the existence of the decomposition of a λ-fold complete graph into various mixed stars.

Lemma 2.1 For λ odd, if an S_{6}^{i}-decomposition of λM_{v} exists then $v \equiv 0$ or $1(\bmod$ 4).

Proof. We show that if $v \equiv 2$ or $3(\bmod 4)$ and λ is odd, then an S_{6}^{i}-decomposition of λM_{v} does not exist.

Let $v \equiv 2(\bmod 4)$, say $v=4 k+2$. Then λM_{v} has

$$
\lambda\binom{v}{2}=\lambda \frac{v(v-1)}{2}=\lambda \frac{(4 k+2)(4 k+1)}{2}=\lambda(2 k+1)(4 k+1)
$$

edges. But then λM_{v} has an odd number of edges and S_{6}^{i} has 2 edges, so no $S_{6^{-}}^{i}$ decomposition of λM_{v} exists.

Let $v \equiv 3(\bmod 4)$, say $v=4 k+3$. Then λM_{v} has

$$
\lambda\binom{v}{2}=\lambda \frac{v(v-1)}{2}=\lambda \frac{(4 k+3)(4 k+2)}{2}=\lambda(4 k+3)(2 k+1)
$$

edges. But then λM_{v} has an odd number of edges and S_{6}^{i} has 2 edges, so no $S_{6^{-}}^{i}$ decomposition of λM_{v} exists.

Lemma 2.2 If an S_{6}^{0}-decomposition of λM_{v} exists, then $\lambda(v-1) \equiv 0(\bmod 4)$.

Proof. Each vertex of λM_{v} has out-degree $\lambda(v-1)$ and each vertex of S_{6}^{0} has outdegree $0(\bmod 4)$. So if an S_{6}^{0}-decomposition of λM_{v} exists, then we must have $\lambda(v-1) \equiv 0(\bmod 4)$, as claimed.

2.3 An S_{6}^{0}-Decomposition of λM_{v}

In this subsection, we give the necessary and sufficient conditions for an S_{6}^{0} decomposition of λM_{v}. We verify the result using the difference method and then conclude the subsection with an example.

Lemma 2.3 An S_{6}^{0}-decomposition of λM_{v}, where $\lambda=4$, exists for $v \geq 8$.

Proof. Let $v=4 k$ where $k \geq 2$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$. Consider the blocks: $\left\{2 \times[0,2 k-2,2 k-1 ; 2 k, 4 k-3,4 k-2,4 k-1]_{6}^{0}, 2 \times[0,2 k+1,4 k-1 ; 1,2,3,2 k]_{6}^{0}\right\}$ $\cup\left\{[0,4 k-1,2 k ; 1,2,4 k-3,4 k-2]_{6}^{0},[0,2 k+2,2 k ; 1,2,3,4 k-1]_{6}^{0},[0,1,2 k-2 ; 3,4 k-\right.$ $\left.3,4 k-2,4 k-1]_{6}^{0}\right\} \cup\left\{4 \times[0,2+2 i, 3+2 i ; 4+2 i, 5+2 i, 2 k+1+2 i, 2 k+2+2 i]_{6}^{0}\right.$ for $i=$
$0,1, \ldots, k-3\}$. These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{0}-decomposition of λM_{v} where $\lambda=4$ and $v \geq 6$, as claimed.

Lemma 2.4 $A n S_{6}^{0}$-decomposition of λM_{v}, where $\lambda=4$, exists for $v \equiv 2(\bmod 4)$ and $v \geq 8$.

Proof. Let $v=4 k+2$ where $k \geq 1$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$, consider the blocks:

$$
\begin{gathered}
\left\{2 \times[0,1,2 k-2 ; 4 k-2,4 k-1,4 k, 4 k+1]_{6}^{0}, 2 \times[0,2 k-1,2 k+2 ; 1,2,4,2 k+1]_{6}^{0}\right\} \\
\cup\left\{[0,1,2 k+3 ; 2,3,4 k, 4 k+1]_{6}^{0},[0,2 k-2,2 k ; 3,2 k+1,4 k-2,4 k]_{6}^{0}\right. \\
{[0,2 k+1,2 k+3 ; 1,2,3,4 k-2]_{6}^{0},[0,1,2 k-2 ; 3,4,2 k+1,4 k-1]_{6}^{0}} \\
\left.[0,2 k+1,2 k+2 ; 1,4,4 k-1,4 k+1]_{6}^{0}\right\}
\end{gathered}
$$

$\cup\left\{4 \times[0,2+2 i, 3+2 i ; 5+2 i, 6+2 i, 2 k+2+2 i, 2 k+3+2 i]_{6}^{0}\right.$ for $\left.i=0,1, \ldots, k-3\right\}$.
These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{0}-decomposition of λM_{v} where $\lambda=2$ and $v \geq 6$, as claimed.

Lemma 2.5 $A S_{6}^{0}$-decomposition of λM_{v} exists for $v \equiv 3(\bmod 4)$ for $\lambda=2$.

Proof. Let $v=4 k+3$ where $k \geq 1$ and $\lambda=2$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$, consider the blocks:

$$
B=[0,4 k+2,4 k+1 ; 1,2,3,4]_{6}^{0},
$$

$$
\begin{aligned}
& {[0,2 k+1,2 k+2 ; 1,2,4 k+1,4 k+2]_{6}^{0}} \\
& {[0,1+2 j, 2+2 j ; 3+4 j, 4+4 j, 5+4 j, 6+4 j]_{6}^{0}, j=0,1,2, \ldots, k-1} \\
& {[0,3+2 j, 4+2 j ; 5+4 j, 6+4 j, 7+4 j, 8+4 j]_{6}^{0}, j=0,1,2, \ldots, k-2}
\end{aligned}
$$

These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{0}-decomposition of λM_{v} where $\lambda=2$ and $v \geq 6$, as claimed.

Theorem 2.6 An S_{6}^{0}-decomposition of λM_{v} exists if and only if $v \geq 7$ and

1. $v \equiv 0(\bmod 2)$ and $\lambda \equiv 0(\bmod 4)$, or
2. $v \equiv 1(\bmod 4)$ and $\lambda \geq 1$, or
3. $v \equiv 3(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$.

Proof. For $v \equiv 0(\bmod 2)$, we have $v-1$ is odd and by Lemma 2.2 a necessary condition for an S_{6}^{0}-decomposition of λM_{v} is $\lambda(v-1) \equiv 0(\bmod 4)$. So for $v \equiv 0(\bmod$ 2), $\lambda=0(\bmod 4)$ is necessary. For $v \equiv 3(\bmod 4)$, we have $v-1 \equiv 2(\bmod 4)$ and by Lemma 2.2 a necessary condition for an S_{6}^{0}-decomposition of λM_{v} is $\lambda(v-1) \equiv 0$ $(\bmod 4)$. So for $v \equiv 3(\bmod 4), \lambda=0(\bmod 2)$ is necessary.

For sufficiency, when $v \equiv 0(\bmod 4)$ and $\lambda=4$, an S_{6}^{0}-decomposition of $4 M_{v}$ exists by Lemma 2.3. So when $\lambda \equiv 0(\bmod 4)$, by taking $\lambda / 4$ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 1(\bmod 4)$, an S_{6}^{0}-decomposition of M_{v} exists by [10]. So when $\lambda \geq 1$, taking λ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 2(\bmod 4)$ and $\lambda=4$, an S_{6}^{0}-decomposition of $4 M_{v}$ exists by Lemma 2.4 . So when $\lambda \equiv 0(\bmod$
4), taking $\lambda / 4$ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 3(\bmod 4)$ and $\lambda=2$, an S_{6}^{0}-decomposition of $2 M_{v}$ exists by Lemma 2.5. So when $\lambda \equiv 0(\bmod 2)$, taking $\lambda / 2$ copies of such a decomposition gives a decomposition of λM_{v}.

Notice that the converse of S_{6}^{0}, obtained by reversing the orientation of all the arcs, is S_{6}^{4}. Since M_{v} is self converse, Theorem 2.6 also gives the necessary and sufficient conditions for an S_{6}^{4}-decomposition of λM_{v} where $\lambda=2$.

Theorem 2.7 An S_{6}^{4}-decomposition of λM_{v} exists if and only if $v \geq 7$ and

1. $v \equiv 0(\bmod 2)$ and $\lambda \equiv 0(\bmod 4)$, or
2. $v \equiv 1(\bmod 4)$ and $\lambda \geq 1$, or
3. $v \equiv 3(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$.

2.3.1 Verification and Example

We use the difference method in the previous section in details to show how we came about Lemma 2.5 and then check that all the edges and arcs are repeated twice. For $v=4 k+3$ in terms of k, we have $2 k+1$ blocks. Recall that, the set of differences for edges of K_{n} is $\{1,2, \ldots,\lfloor n / 2\rfloor\}$ and the set of arc differences is $\{1,2, \ldots, n-1\}$. So for $v=4 k+3$ and $\lambda=2$ we have the following multisets of edge and arc differences: Edge differences: $\{1,2, \ldots, 2 k+1\}(\times 2)$

Arc differences: $\{1,2, \ldots, 4 k+2\}(\times 2)$.
Now we check if all the edges and arcs are repeated twice (Table 1).

Table 1: The Edge and Arc Differences of Lemma 2.5

Blocks	Edge differences	Arc Differences
$[0,4 k+2,4 k+1 ; 1,2,3,4]_{6}^{0}$	1,2	$1,2,3,4$
$[0,2 k+1,2 k+2 ; 1,2,4 k+1,4 k+2]_{6}^{0}$	$2 k+1,2 k+1$	$1,2,4 k+1,4 k+2$
$[0,1+2 j, 2+2 j ; 3+4 j, 4+4 j$,	$1+2 j: 1,3,5,7, \ldots, 2 k-1$	$3+4 j: 3,7,11,15, \ldots, 4 k-1$
$5+4 j 6+4 j]_{6}^{0}, j=0,1,2, \ldots, k-1$	$2+2 j: 2,4,6,8, \ldots, 2 k$	$4+4 j: 4,8,12,16, \ldots, 4 k$
		$5+4 j: 5,9,13,17, \ldots, 4 k+1$
		$6+4 j: 6,10,14,18, \ldots, 4 k+2$
$[0,3+2 j, 4+2 j ; 5+4 j, 6+4 j$,	$3+2 j: 3,5,7,9, \ldots, 2 k-1$	$5+4 j: 5,9,13,17, \ldots, 4 k-3$
$7+4 j, 8+4 j]_{6}^{0}, j=0,1,2, \ldots, k-2$	$4+2 j: 4,6,8,10, \ldots, 2 k$	$6+4 j: 6,10,14,18, \ldots, 4 k-2$
		$7+4 j: 7,11,15,19, \ldots, 4 k-1$
		$8+4 j: 8,12,16,20, \ldots, 4 k$

Since the arc and edge differences are repeated twice, then the permutation $\pi(i)=i+1$ $(\bmod v)$ produces all stars in the decomposition.

For verification purposes, consider for example, $v=11$ and $\lambda=2$. We have:
Edge differences: $\{1,2,3,4,5\} \times 2$
Arc differences: $\{1,2,3,4,5,6,7,8,9,10\} \times 2$.
We obtain the following blocks: $[0,10,9 ; 1,2,3,4]_{6}^{0},[0,5,6 ; 1,2,9,10]_{6}^{0},[0,1,2 ; 3,4,5,6]_{6}^{0}$, $[0,3,4 ; 7,8,9,10]_{6}^{0},[0,3,4 ; 5,6,7,8]_{6}^{0}$. The arc and edge differences generated by these blocks are shown in Table 2.

Table 2: The Edge and Arc Differences for an S_{6}^{0}-decomposition of $2 M_{11}$

Blocks	Edge differences	Arc Differences
$[0,10,9 ; 1,2,3,4]_{6}^{0}$	1,2	$1,2,3,4$
$[0,5,6 ; 1,2,9,10]_{6}^{0}$	5,5	$1,2,9,10$
$[0,1,2 ; 3,4,5,6]_{6}^{0}$	1,2	$3,4,5,6$
$[0,3,4 ; 7,8,9,10]_{6}^{0}$	3,4	$7,8,9,10$
$[0,3,4 ; 5,6,7,8]_{6}^{0}$	3,4	$5,6,7,8$

When put together, it can be seen that all the edge and arc differences $\{1,2,3,4,5\}$ $(\times 2)$ and $\{1,2,3,4,5,6,7,8,9,10\}(\times 2)$ are repeated twice. Hence, the result.

2.4 An S_{6}^{1}-Decomposition of λM_{v}

A S_{6}^{1}-decomposition of M_{v} exists if and only if $v \equiv 0$ or $1(\bmod 4)$ and $v \geq 9[10]$. In this subsection, we give the necessary and sufficient conditions for the existence of a S_{6}^{2}-decomposition of λM_{v}, where $\lambda=2$.

Lemma 2.8 An S_{6}^{1}-decomposition of λM_{v} exists for $v \equiv 3(\bmod 8)$ and $\lambda=2$.

Proof. Let $v=8 k+3$ and $k \geq 1$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$, consider the following set of blocks:

$$
\begin{aligned}
& \left\{2 \times[0,8 k+2-2 j, 8 k+1-2 j ; 8 k-1-4 j, 1+4 j, 2+4 j, 3+4 j]_{6}^{1} \mid j=0,1, \ldots, k-1\right\} \\
& \begin{array}{l}
\cup\left\{[0,6 k+2-2 j, 2 k+2+2 j ; 4 k-1-4 j, 4 k+1+4 j, 4 k+2+4 j, 4 k+3+4 j]_{6}^{1}\right. \\
\mid j=0,1, \ldots, k-2, \text { and } j \neq k / 3 \text { if } k \equiv 0(\bmod 3)\} \\
\cup\left\{[0,8 k / 3+1,8 k / 3+2 ; 8 k / 3-1,16 k / 3+1,16 k / 3+2,16 k / 3+3]_{6}^{1}\right.
\end{array} \\
& \qquad \text { if } k \equiv 0(\bmod 3) \text { and } j=k / 3\} . \\
& \begin{array}{l}
\cup\left\{[0,2 k+1+2 j, 2 k+2+2 j ; 4 k-3-4 j, 4 k+3+4 j, 4 k+4+4 j, 4 k+5+4 j]_{6}^{1}\right.
\end{array} \\
& \mid j=0,1, \ldots, k-1, \text { and } j \neq(k-2) / 3 \text { if } k \equiv 2(\bmod 3)\} \\
& \cup\left\{[0,(16 k+10) / 3,(8 k+2) / 3 ;(8 k-1) / 3,(16 k+1) / 3,(16 k+4) / 3,(16 k+7) / 3]_{6}^{1}\right. \\
& \text { if } k \equiv 2(\bmod 3) \text { and } j=(k-2) / 3\} .
\end{aligned}
$$

$\cup\left\{[0,4 k+1,4 k+2 ; 3,8 k-3,8 k-2,8 k-1]_{6}^{1},[0,4 k-1,4 k ; 1,4 k+1,4 k+2,8 k+1]_{6}^{1}\right\}$.
These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{1}-decomposition of λM_{v} where $\lambda=2$ and $v \geq 6$, as claimed.

Lemma 2.9 A S_{6}^{1}-decomposition of λM_{v} exists for $v \equiv 6(\bmod 8), v \geq 14$ and $\lambda=2$.

Proof. let $v=8 k+6$ and $k \geq 1$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-2, \infty\}$. The required decomposition is given by the set of blocks:
$[0, \infty, v-2 ; v-5,1,2,3] \times 2,[0,2,3 ; \infty, 5,6,7] \times 2,[0,4,5 ; v-11,8,9, \infty],[0,5,6 ; v-$ $11,8,12, \infty],[0,4,6 ; v-12,9,11,12]$,
and
$\{[0,7+4 j, v-8-4 j ; 8+8 j, 16+8 j, 13+8 j, 17+8 j],[0,8+4 j, v-9-4 j ; 7+8 j, 19+$ $8 j, 14+8 j, 18+8 j],[0,9+4 j, v-10-4 j ; 6+8 j, 15+8 j, 18+8 j, 19+8 j],[0,10+$ $4 j, v-11-4 j ; 1+8 j, 16+8 j, 17+8 j, 20+8 j] \mid j=0,1,2, \ldots, k-2\}$.

These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v-1)$ if $i \in\{0,1, \ldots v-2\}$, and $\pi(i)=\infty$ if $i=\infty$, form an S_{6}^{0}-decomposition of λM_{v} where $\lambda=2$ and $v \geq 14$, as claimed.

Lemma 2.10 $A S_{6}^{1}$-decomposition of $2 M_{v}$ exists for all $v \equiv 3(\bmod 4)$, with $v \geq 7$

Proof. let $v=4 k+3$ and $k \geq 1$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$, consider the blocks:

$$
\begin{aligned}
& \{[0,4 k+2,4 k+1 ; 4,1,2,3] \\
& {[0,2 k+1,2 k+2 ; 4 k-1,2,4 k+1,4 k+2]}
\end{aligned}
$$

$$
\begin{aligned}
& [0,1,2 ; 4 k, 4 k+2,5,6]\} \\
& \begin{array}{l}
\cup\{[0,3+2 j, 4+2 j ; 4 k-4-4 j, 8+4 j, 9+4 j, 10+4 j] \mid j=0,1, \ldots, k-2, \\
j \neq(2 k-4) / 3 \text { when } j \equiv 2(\bmod 3)\}, \text { and } j \neq(k-3) / 2 \text { when } j \equiv 1(\bmod 2)\} \\
\cup\left\{\left[0, \frac{4 k+1}{3}, \frac{8 k+5}{3} ; \frac{4 k+4}{3}, \frac{8 k+8}{3}, \frac{8 k+11}{3}, \frac{8 k+14}{3}\right]\right. \\
\text { if } j \equiv 2(\bmod 3), \text { and } j=(2 k-4) / 3\}
\end{array} \\
& \begin{array}{l}
\cup\{[0, k, k+1 ; 2 k, 2 k+2,2 k+1,2 k+4] \text { if } j \equiv 1(\bmod 2), \text { and } j=(k-3) / 2\} \\
\cup\{[0,3+2 j, 4+2 j ; 4 k-2-4 j, 6+4 j, 7+4 j, 8+4 j] \mid j=0,1, \ldots, k-2,
\end{array}
\end{aligned}
$$

and $j \neq(2 k-3) / 3$ when $j \equiv 0(\bmod 3)\}$, and $j \neq(k-2) / 2$ when $j \equiv 0(\bmod 2)\}$

$$
\begin{gathered}
\cup\left\{\left[0, \frac{4 k+3}{3}, \frac{8 k+3}{3} ; \frac{4 k+6}{3}, \frac{8 k+6}{3}, \frac{8 k+9}{3}, \frac{8 k+12}{3}\right]\right. \\
\text { if } j \equiv 0(\bmod 3), \text { and } j=(2 k-3) / 3\}
\end{gathered}
$$

$$
\cup\{[0, k+1, k+2 ; 2 k, 2 k+2,2 k+1,2 k+4] \text { if } j \equiv 0(\bmod 2), \text { and } j=(k-2) / 2\}
$$

This collection of stars along with their images under the permutation $\pi(i)=i+1$ $(\bmod v)$, form a S_{6}^{1}-decomposition of $2 M_{v}$ where $v=4 k+3$.

Lemma 2.11 An S_{6}^{1}-decomposition of $2 M_{v}$ exists for all $v \equiv 2(\bmod 8)$, with $v \geq 26$.

Proof. let $v=8 k+2$ and $k \geq 3$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$. The required decomposition is given by the set of blocks:

$$
\begin{aligned}
& \{[0, \infty, v-2 ; v-5,1,2,3] \times 2,[0,2,3 ; \infty, 5,6,7] \times 2,[0,4,5 ; v-11,8,9, \infty],[0,5,6 ; v- \\
& 11,8,12, \infty],[0,4,6 ; v-12,9,11,12],[0,7, v-8 ; v-14,13,17,21],[0,8, v-9 ; v-
\end{aligned}
$$

$15,14,15,22],[0,9, v-10 ; v-19,18,19,22],[0,10, v-11 ; v-21,17,20,24],[0,11, v-$ $12, v-17,16,21,24],[0,12, v-13 ; v-24,15,19,23]\}$
and
$\{[0,13+4 j, v-14-4 j ; 7+8 j, 31+8 j, 26+8 j, 30+8 j],[0,14+4 j, v-15-4 j ; 8+8 j, 28+$ $8 j, 25+8 j, 29+8 j],[0,15+4 j, v-16-4 j ; 1+8 j, 28+8 j, 29+8 j, 32+8 j],[0,16+$ $4 j, v-17-4 j ; 6+8 j, 27+8 j, 30+8 j, 31+8 j] \mid j=0,1,2, \ldots, k-4\}$.

These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{1}-decomposition of λM_{v} where $\lambda=4$ and $v \geq 26$, as claimed.

Theorem 2.12 An S_{6}^{1}-decomposition of λM_{v} exists if and only if

1. $v \equiv 0$ or $1(\bmod 4)$ and $\lambda \geq 1$, or
2. $v \equiv 2(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$, or
3. $v \equiv 3(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$.

Proof. For $v=2$ or $3(\bmod 4)$, we have $v-1=1$ or $2(\bmod 4)$. Since λM_{v} has an odd number of edges and S_{6}^{1} has 2 edges. Then by Lemma 2.1, $\lambda=0(\bmod 2)$ is necessary.

For sufficiency, when $v \equiv 0$ or $1(\bmod 4)$, an S_{6}^{1}-decomposition of M_{v} exists by [10]. So when $\lambda \geq 1$, taking λ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 2(\bmod 4)$ and $\lambda=2$, an S_{6}^{1}-decomposition of $2 M_{v}$ exists by Lemma 2.9 and Lemma 2.11. So when $\lambda \equiv 0(\bmod 2)$, taking $\lambda / 2$ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 3(\bmod$
4) and $\lambda=2$, an S_{6}^{1}-decomposition of $2 M_{v}$ exists by Lemma 2.10 . So when $\lambda \equiv 0$ $(\bmod 2)$, taking $\lambda / 2$ copies of such a decomposition gives a decomposition of λM_{v}.

The converse of S_{6}^{1}, obtained by reversing the orientation of all the arcs, is S_{6}^{3}. Since M_{v} is self converse, Theorem 2.12 also gives the necessary and sufficient conditions for S_{6}^{3}-decomposition of λM_{v} where $\lambda=2$.

Theorem 2.13 An S_{6}^{3}-decomposition of λM_{v} exists if and only if

1. $v \equiv 0$ or $1(\bmod 4)$ and $\lambda \geq 1$, or
2. $v \equiv 2(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$, or
3. $v \equiv 3(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$.

2.4.1 Verification and Example

We first show that all vertex labels are distinct in the Lemma 2.8. The blocks

$$
\left\{2 \times[0,8 k+2-2 j, 8 k+1-2 j ; 8 k-1-4 j, 1+4 j, 2+4 j, 3+4 j]_{6}^{1} \mid j=0,1, \ldots, k-1\right\}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
8 k+2-2 j: & 8 k+2, & 8 k, & \ldots, & 6 k+6, & 6 k+4 & \text { even } \\
8 k+1-2 j: & 8 k+1, & 8 k-1, & \ldots, & 6 k+5, & 6 k+3 & \text { odd } \\
8 k-1-4 j: & 8 k-1, & 8 k-5, & \ldots, & 4 k+7, & 4 k+3 & 3(\bmod 4) \\
1+4 j: & 1, & 5, & \ldots, & 4 k-7, & 4 k-3 & 1(\bmod 4) \\
2+4 j: & 2, & 6, & \ldots, & 4 k-6, & 4 k-2 & 2(\bmod 4) \\
3+4 j: & 3, & 7, & \ldots, & 4 k-5, & 4 k-1 & 3(\bmod 4)
\end{array}
$$

The blocks

$$
\left\{[0,6 k+2-2 j, 2 k+2+2 j ; 4 k-1-4 j, 4 k+1+4 j, 4 k+2+4 j, 4 k+3+4 j]_{6}^{1}\right.
$$

$$
\begin{gathered}
\mid j=0,1, \ldots, k-2, \text { and } j \neq k / 3 \text { if } k \equiv 0(\bmod 3)\} \\
\cup\left\{[0,8 k / 3+1,8 k / 3+2 ; 8 k / 3-1,16 k / 3+1,16 k / 3+2,16 k / 3+3]_{6}^{1}\right. \\
\text { if } k \equiv 0(\bmod 3) \text { and } j=k / 3\}
\end{gathered}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
6 k+2-2 j: & 6 k+2, & 6 k, & \ldots, & 4 k+8, & 4 k+6 & \text { even } \\
2 k+2+2 j: & 2 k+2, & 2 k+4, & \ldots, & 4 k-4, & 4 k-2 & \text { even } \\
4 k-1-4 j: & 4 k-1, & 4 k-5, & \ldots, & 11, & 7 & 3(\bmod 4) \\
4 k+1+4 j: & 4 k+1, & 4 k+5, & \ldots, & 8 k-11, & 8 k-7 & 1(\bmod 4) \\
4 k+2+4 j: & 4 k+2, & 4 k+6, & \ldots, & 8 k-10, & 8 k-6 & 2(\bmod 4) \\
4 k+3+4 j: & 4 k+3, & 4 k+7, & \ldots, & 8 k-9, & 8 k-5 & 3(\bmod 4)
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in blue. If $k \equiv 0(\bmod 3)$ and $j=k / 3$, then we have eliminated the block $[0,16 k / 3+2,8 k / 3+$ $2 ; 8 k / 3-1,16 k / 3+1,16 k / 3+2,16 k / 3+3]_{6}^{1}$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,8 k / 3+1,8 k / 3+2 ; 8 k / 3-$ $1,16 k / 3+1,16 k / 3+2,16 k / 3+3]_{6}^{1}$ (which covers the same differences as the omitted block).

The blocks

$$
\begin{gathered}
\left\{[0,2 k+1+2 j, 2 k+2+2 j ; 4 k-3-4 j, 4 k+3+4 j, 4 k+4+4 j, 4 k+5+4 j]_{6}^{1}\right. \\
\qquad j=0,1, \ldots, k-1, \text { and } j \neq(k-2) / 3 \text { if } k \equiv 2(\bmod 3)\} \\
\cup\left\{[0,(16 k+10) / 3,(8 k+2) / 3 ;(8 k-1) / 3,(16 k+1) / 3,(16 k+4) / 3,(16 k+7) / 3]_{6}^{1}\right. \\
\text { if } k \equiv 2(\bmod 3) \text { and } j=(k-2) / 3\}
\end{gathered}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
2 k+1+2 j: & 2 k+1, & 2 k+3, & \ldots, & 4 k-3, & 4 k-1 & \text { odd } \\
2 k+2+2 j: & 2 k+2, & 2 k+4, & \ldots, & 4 k-2, & 4 k & \text { even } \\
4 k-3-4 j: & 4 k-3, & 4 k-7, & \ldots, & 5, & 1 & 1(\bmod 4) \\
4 k+3+4 j: & 4 k+3, & 4 k+7, & \ldots, & 8 k-5, & 8 k-1 & 3(\bmod 4) \\
4 k+4+4 j: & 4 k+4, & 4 k+8, & \ldots, & 8 k-4, & 8 k & 0(\bmod 4) \\
4 k+5+4 j: & 4 k+5, & 4 k+9, & \ldots, & 8 k-3, & 8 k+1 & 1(\bmod 4)
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in red. If $k \equiv$ $2(\bmod 3)$ and $j=(k-2) / 3$, then we have eliminated the block $[0,(8 k-1) / 3,(8 k+$ $2) / 3 ;(8 k-1) / 3,(16 k+1) / 3,(16 k+4) / 3,(16 k+7) / 3]_{6}^{1}$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,(16 k+10) / 3,(8 k+$ $2) / 3 ;(8 k-1) / 3,(16 k+1) / 3,(16 k+4) / 3,(16 k+7) / 3]_{6}^{1}$ (which covers the same differences as the omitted block).

Of course, the individual blocks $[0,4 k+1,4 k+2 ; 3,8 k-3,8 k-2,8 k-1]_{6}^{1}$ and $[0,4 k-1,4 k ; 1,4 k+1,4 k+2,8 k+1]_{6}^{1}$ have distinct vertices. Therefore, all vertex labels are distinct.

We next show that all differences are present. The blocks

$$
\begin{gathered}
\left\{2 \times[0,8 k+2-2 j, 8 k+1-2 j ; 8 k-1-4 j, 1+4 j, 2+4 j, 3+4 j]_{6}^{1}\right. \\
\mid j=0,1, \ldots, k-1\}
\end{gathered}
$$

generate the following edge differences and arc differences:

$$
\begin{aligned}
& 2 \times 1+2 j: 1,3, \ldots, 2 k-1 \text { odd } \\
& 2 \times 2+2 j: 2,4, \ldots, 2 k \text { even } \\
& 2 \times 4+4 j: 4,8, \ldots, 4 k \quad 0(\bmod 4) \\
& 2 \times 1+4 j: 1,5, \ldots, 4 k-3 \quad 1(\bmod 4)
\end{aligned}
$$

$2 \times 2+4 j: 2,6, \ldots, 4 k-2 \quad 2(\bmod 4)$
$2 \times 3+4 j: 3,7, \ldots, 4 k-1 \quad 3(\bmod 4)$.
The blocks

$$
\begin{gathered}
\left\{[0,6 k+2-2 j, 2 k+2+2 j ; 4 k-1-4 j, 4 k+1+4 j, 4 k+2+4 j, 4 k+3+4 j]_{6}^{1}\right. \\
\mid j=0,1, \ldots, k-2, \text { and } j \neq k / 3 \text { if } k \equiv 0(\bmod 3)\} \\
\cup\left\{[0,8 k / 3+1,8 k / 3+2 ; 8 k / 3-1,16 k / 3+1,16 k / 3+2,16 k / 3+3]_{6}^{1}\right. \\
\text { if } k \equiv 0(\bmod 3) \text { and } j=k / 3\}
\end{gathered}
$$

generate the following edge differences and arc differences:
$2 k+1+2 j: 2 k+1,2 k+3, \ldots, 4 k-3$ odd
$2 k+2+2 j: 2 k+2,2 k+4, \ldots, 4 k-2$ even
$4 k+4+4 j: 4 k+4,4 k+8, \ldots, 8 k-4 \quad 0(\bmod 4)$
$4 k+1+4 j: 4 k+1,4 k+5, \ldots, 8 k-7 \quad 1(\bmod 4)$
$4 k+2+4 j: 4 k+2,4 k+6, \ldots, 8 k-6 \quad 2(\bmod 4)$
$4 k+3+4 j: 4 k+3,4 k+7, \ldots, 8 k-5 \quad 3(\bmod 4)$.

The blocks

$$
\begin{gathered}
\left\{[0,2 k+1+2 j, 2 k+2+2 j ; 4 k-3-4 j, 4 k+3+4 j, 4 k+4+4 j, 4 k+5+4 j]_{6}^{1}\right. \\
\qquad j=0,1, \ldots, k-1, \text { and } j \neq(k-2) / 3 \text { if } k \equiv 2(\bmod 3)\} \\
\cup\left\{[0,(16 k+10) / 3,(8 k+2) / 3 ;(8 k-1) / 3,(16 k+1) / 3,(16 k+4) / 3,(16 k+7) / 3]_{6}^{1}\right. \\
\text { if } k \equiv 2(\bmod 3) \text { and } j=(k-2) / 3\}
\end{gathered}
$$

generate the following edge differences and arc differences:
$2 k+1+2 j: 2 k+1,2 k+3, \ldots, 4 k-1$ odd
$2 k+2+2 j: 2 k+2,2 k+4, \ldots, 4 k$ even
$4 k+6+4 j: 4 k+6,4 k+10, \ldots, 8 k+2 \quad 2(\bmod 4)$
$4 k+3+4 j: 4 k+3,4 k+7, \ldots, 8 k-1 \quad 3(\bmod 4)$
$4 k+4+4 j: 4 k+4,4 k+8, \ldots, 8 k \quad 0(\bmod 4)$
$4 k+5+4 j: 4 k+5,4 k+9, \ldots, 8 k+1 \quad 1(\bmod 4)$.

The blocks
$\left\{[0,4 k+1,4 k+2 ; 3,8 k-3,8 k-2,8 k-1]_{6}^{1},[0,4 k-1,4 k ; 1,4 k+1,4 k+2,8 k+1]_{6}^{1}\right\}$.
generate the following edge differences and arc differences:
$4 k+1,4 k+1$
$8 k, 8 k-3 k, 8 k-2 k, 8 k-1$ and
$4 k-1,4 k$
$8 k+2,4 k+1,4 k+2,8 k+1$
Therefore all differences are present.
Next, we verify Lemma 2.9 using the difference method with example. Let $v=$ $8 k+6$ and $k \geq 1$, and $\lambda=2$. We have ∞ and cycle of length $v=8 k+5$. So, we have the following multisets of edge and arc differences:

Edge differences: $\{1,2,3,4, \ldots, 4 k, 4 k+1,4 k+2\} \times 2$
Arc differences: $\{1,2,3,4, \ldots, 8 k+2,8 k+3,8 k+4\} \times 2$.
All the edge and arc differences are repeated twice in Table 3.
For verification purposes, consider for example, $k=2, v=22$, and $\lambda=2$ (Table

Table 3: The Edge and Arc Differences of Lemma 2.9

Blocks	Edge differences	Arc Differences
$[0, \infty, v-2 ; v-5,1,2,3] \times 2$	$\infty, 1 \times 2$	$4,1,2,3 \times 2$
$[0,2,3 ; \infty, 5,6,7] \times 2$	2, 3×2	$\infty, 5,6,7 \times 2$
$[0,4,5 ; v-11,8,9, \infty]$	4,5	$10,8,9, \infty$
$[0,5,6 ; v-11,8,12, \infty]$	5,6	$10,8,12, \infty$
[0, 4, 6; v-12, 9, 11, 12]	4, 6	11, 9, 11, 12
$\begin{aligned} & {[0,7+4 j, v-8-4 j ; 8+8 j, 16+8 j} \\ & 13+8 j, 17+8 j], j=0,1,2, \ldots, k-2 \end{aligned}$	$\begin{aligned} 7 & +4 j: 7,11,15, \ldots, 4 k-1 \\ 8 k-2 & -4 j: 8 k-2,8 k-6, \ldots, 4 k+6 \\ & \Longrightarrow 7,11,15, \ldots, 4 k-1 \end{aligned}$	$\begin{gathered} 8 k-3-8 j: 8 k-3,8 k-11, \\ 8 k-19, \ldots, 29,21,13 \\ 16+8 j: 16,24,32, \ldots, 8 k \\ 13+8 j: 13,21,29, \ldots, 8 k-3 \\ 17+8 j: 17,25,33, \ldots, 8 k+1 \\ \hline \end{gathered}$
$\begin{aligned} & {[0,8+4 j, v-9-4 j ; 7+8 j, 19+8 j,} \\ & 14+8 j, 18+8 j], j=0,1,2, \ldots, k-2 \end{aligned}$	$\begin{gathered} 8+4 j: 8,12,16, \ldots, 4 k \\ 8 k-3-4 j: 8 k-3,8 k-7, \ldots, 4 k+5 \\ \Longrightarrow 8,12,16, \ldots, 4 k \end{gathered}$	$8 k-2-8 j: 8 k-2,8 k-10$ $8 k-18, \ldots, 30,22,14$ $19+8 j: 19,27, \ldots, 8 k-5,8 k+3$ $14+8 j: 14,22, \ldots, 8 k-10,8 k-2$ $18+8 j: 18,26, \ldots, 8 k-6,8 k+2$
$\begin{gathered} {[0,9+4 j, v-10-4 j ; 6+8 j, 15+8 j,} \\ 18+8 j, 19+8 j], j=0,1,2, \ldots, k-2 \end{gathered}$	$\begin{gathered} 9+4 j: 9,13,17, \ldots, 4 k+1 \\ 8 k-4-4 j: 8 k-4,8 k-8, \ldots, 4 k+4 \\ \quad \Longrightarrow 9,13,17, \ldots, 4 k+1 \end{gathered}$	$\begin{gathered} 8 k-1-8 j: 8 k-1,8 k-9, \\ 8 k-17, \ldots, 31,23,15 \\ 15+8 j: 15,23, \ldots, 8 k-9,8 k-1 \\ 18+8 j: 18,26, \ldots, 8 k-6,8 k+2 \\ 19+8 j: 19,27, \ldots, 8 k-5,8 k+3 \end{gathered}$
$\begin{gathered} {[0,10+4 j, v-11-4 j ; 1+8 j, 16+8 j} \\ 17+8 j, 20+8 j], j=0,1,2, \ldots, k-2 \end{gathered}$	$\begin{gathered} 10+4 j: 10,14,18,22, \ldots, 4 k+2 \\ 8 k-5-4 j: 8 k-5,8 k-9, \ldots, 4 k+3 \\ \quad \Longrightarrow 10,14,18, \ldots, 4 k+2 \end{gathered}$	$\begin{gathered} 8 k+4-8 j: 8 k+4,8 k-4 \\ 8 k-12, \ldots, 28,20 \\ 16+8 j: 16,24, \ldots, 8 k \\ 17+8 j: 17,25, \ldots, 8 k+1 \\ 20+8 j: 20,28, \ldots, 8 k-4,8 k+4 \\ \hline \end{gathered}$

4). In this case, we have ∞ and cycle of length 21 with the multisets of edge and arc differences $\{1,2,3, \ldots, 10(\times 2)\}$ and $\{1,2,3, \ldots, 20(\times 2)\}$ respectively.

Table 4: The Edge and Arc Differences for an S_{6}^{1}-decomposition of $2 M_{22}$
$\left.\begin{array}{|c|c|c|}\hline \text { Blocks } & \text { Edge differences } & \text { Arc Differences } \\ \hline \hline[0, \infty, v-2 ; v-5,1,2,3] \times 2 & \infty, 1(\times 2) & 4,1,2,3(\times 2) \\ \hline[0,2,3 ; \infty, 5,6,7] \times 2 & 2,3(\times 2) & \infty, 5,6,7(\times 2) \\ \hline[0,4,5 ; v-11,8,9, \infty] & 4,5 & 10,8,9, \infty \\ \hline[0,5,6 ; v-11,8,12, \infty] & 5,6 & 10,8,12, \infty \\ \hline[0,4,6 ; v-12,9,11,12] & 4,6 & 11,9,11,12 \\ \hline[0,7+4 j, v-8-4 j ; 8+8 j, 16+8 j, & 7,7 & 13,16,13,17 \\ 13+8 j, 17+8 j] \text { for } j=0\end{array}\right)$

Combining all the edge and arc differences give the required result in Table 4.
Now, we verify Lemma 2.10 by showing that all the vertex labels are distinct. The individual blocks $[0,4 k+2,4 k+1 ; 4,1,2,3],[0,2 k+1,2 k+2 ; 4 k-1,2,4 k+1,4 k+2]$ and $[0,1,2 ; 4 k, 4 k+2,5,6]$ have distinct vertices.

The blocks

$$
\begin{aligned}
& \cup\{[0,3+2 j, 4+2 j ; 4 k-4-4 j, 8+4 j, 9+4 j, 10+4 j] \mid j=0,1, \ldots, k-2, \\
& j \neq(2 k-4) / 3 \text { when } j \equiv 2(\bmod 3)\}, \text { and } j \neq(k-3) / 2 \text { when } j \equiv 1(\bmod 2)\} \\
& \cup\{[0,(4 k+1) / 3,(8 k+5) / 3 ;(4 k+4) / 3,(8 k+8) / 3,(8 k+11) / 3,(8 k+14) / 3] \\
& \text { if } j \equiv 2(\bmod 3), \text { and } j=(2 k-4) / 3\} \\
& \cup\{[0, k, k+1 ; 2 k, 2 k+2,2 k+1,2 k+4] \text { if } j \equiv 1(\bmod 2), \text { and } j=(k-3) / 2\}
\end{aligned}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
3+2 j: & 3, & 5, & 7, & \ldots, & 2 k-1 & \text { odd } \\
4+2 j: & 4, & 6, & 8, & \ldots, & 2 k & \text { even } \\
4 k-4-4 j: & 4 k-4, & 4 k-8, & 4 k-12 & \ldots, & 4 & 0(\bmod 4) \\
8+4 j: & 8, & 12, & 16 & \ldots, & 4 k & 0(\bmod 4) \\
9+4 j: & 9, & 13, & 17, & \ldots, & 4 k+1 & 1(\bmod 4) \\
10+4 j: & 10, & 14, & 18, & \ldots, & 4 k+2 & 2(\bmod 4) .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the rows $4+2 j$ and $4 k-4-4 j$, and also in the row $4 k-4-4 j$ and $8+4 j$. For the rows $4+2 j$ and $4 k-4-4 j$, if $j=\frac{2 k-4}{3}$, then we have eliminated the block $\left[0, \frac{4 k+1}{3}, \frac{4 k+4}{3} ; \frac{4 k+4}{3}, \frac{8 k+8}{3}, \frac{8 k+11}{3}, \frac{8 k+14}{3}\right]$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $\left[0, \frac{4 k+1}{3}, \frac{4 k+4}{3} ; \frac{8 k+5}{3}, \frac{8 k+8}{3}, \frac{8 k+11}{3}, \frac{8 k+14}{3}\right]$ (which covers the same differences as the omitted block).

Similarly for $4 k-4-4 j$ and $8+4 j$. If $j=\frac{k-3}{2}$, then we replaced the block $[0, k, k+$ $1 ; 2 k+2,2 k+2,2 k+3,2 k+4]$ with the block $[0, k, k+1 ; 2 k, 2 k+2,2 k+3,2 k+4]$. The blocks

$$
\cup\{[0,3+2 j, 4+2 j ; 4 k-2-4 j, 6+4 j, 7+4 j, 8+4 j] \mid j=0,1, \ldots, k-2,
$$

and $j \neq(2 k-3) / 3$ when $j \equiv 0(\bmod 3)\}$, and $j \neq(k-2) / 2$ when $j \equiv 0(\bmod 2)\}$

$$
\begin{gathered}
\cup[0,(4 k+3) / 3,(8 k+3) / 3 ;(4 k+6) / 3,(8 k+6) / 3,(8 k+9) / 3,(8 k+12) / 3] \\
\text { if } j \equiv 0(\bmod 3), \text { and } j=(2 k-3) / 3\} \\
\cup\{[0, k+1, k+2 ; 2 k, 2 k+2,2 k+1,2 k+4] \text { if } j \equiv 0(\bmod 2), \text { and } j=(k-2) / 2\}
\end{gathered}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$3+2 j:$	3,	5,	7,	\ldots,	$2 k-1$	odd
$4+2 j:$	4,	6,	8,	\ldots,	$2 k$	even
$4 k-2-4 j:$	$4 k-2$,	$4 k-6$,	$4 k-10$	\ldots,	2	$2(\bmod 4)$
$6+4 j:$	6,	10,	14	\ldots,	$4 k-2$	$2(\bmod 4)$
$7+4 j:$	7,	11,	15,	\ldots,	$4 k-1$	$3(\bmod 4)$
$8+4 j:$	8,	12,	16,	\ldots,	$4 k$	$0(\bmod 4)$.

Notice that we have a potential repetition of vertex labels in the rows $4+2 j$ and $4 k-2-4 j$, and also in the row $4 k-2-4 j$ and $6+4 j$. For the rows $4+2 j$ and $4 k-2-4 j$, if $j=\frac{2 k-3}{3}$, then we have eliminated the block $\left[0, \frac{4 k+3}{3}, \frac{4 k+6}{3} ; \frac{4 k+6}{3}, \frac{8 k+6}{3}, \frac{8 k+9}{3}, \frac{8 k+12}{3}\right]$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $\left[0, \frac{4 k+3}{3}, \frac{8 k+3}{3} ; \frac{4 k+6}{3}, \frac{8 k+6}{3}, \frac{8 k+9}{3}, \frac{8 k+12}{3}\right]$ (which covers the same differences as the omitted block). Similarly for $4 k-2-4 j$ and $6+4 j$. If $j=\frac{k-2}{2}$, then we replaced the block $[0, k, k+1 ; 2 k+2,2 k+2,2 k+3,2 k+4]$ with the block $[0, k, k+1 ; 2 k, 2 k+$
$2,2 k+1,2 k+4]$.
Therefore, all vertex labels are distinct.
Next, we verify Lemma 2.11 using the difference method. Let $v=8 k+2$ and $k \geq 3$, and $\lambda=2$. We have ∞ and cycle of length $v=8 k+1$. So, we have the following multisets of edge and arc differences:

Edge differences: $\{1,2,3,4, \ldots, 4 k\} \times 2$
Arc differences: $\{1,2,3,4, \ldots, 8 k-1,8 k\} \times 2$.
Now, we check if all the edges and arcs are repeated twice.

Table 5: The Edge and Arc Differences of Lemma 2.11

Blocks	Edge differences	Arc Differences
$[0, \infty, v-2 ; v-5,1,2,3] \times 2$	$\infty, 1 \times 2$	$4,1,2,3 \times 2$
$[0,2,3 ; \infty, 5,6,7] \times 2$	2,3 $\times 2$	$\infty, 5,6,7 \times 2$
$[0,4,5 ; v-11,8,9, \infty]$	4,5	$10,8,9, \infty$
$[0,5,6 ; v-11,8,12, \infty]$	5,6	$10,8,12, \infty$
[0,4,6; v-12,9,11, 12]	4, 6	11, 9, 11, 12
$[0,7, v-8 ; v-14,13,17,21]$	7, 7	13, 13, 17, 21
$[0,8, v-9 ; v-15,14,15,22]$	8, 8	14, 14, 15, 22
[0,9,v-10; v-19,18, 19, 22]	9, 9	18, 18, 19, 22
$[0,10, v-11 ; v-21,17,20,24]$	10, 10	20, 17, 20, 24
[0,11,v-12,v-17, 16, 21, 24]	11, 11	16, 16, 21, 24
[0,12, v-13; ${ }^{\text {c }}$ - $\left.24,15,19,23\right]$	12, 12	23, 15, 19, 23
$\begin{gathered} {[0,13+4 j, v-14-4 j ; 7+8 j, 31+8 j} \\ 26+8 j, 30+8 j], j=0,1,2, \ldots, k-4 \end{gathered}$	$\begin{gathered} 13+4 j: 13,17,21,25, \ldots, 4 k-3 \\ v-14-4 j=8 k-12-4 j: 8 k-12 \\ 8 k-16, \ldots, 4 k+4 \Longrightarrow 13,17, \ldots, 4 k-3 \end{gathered}$	$\begin{gathered} 7+8 j \Longrightarrow 8 k-8 j-6: 8 k-6,8 k-14 \\ 8 k-22, \ldots, 26 \\ 31+8 j: 31,39,47, \ldots, 8 k-1 \\ 26+8 j: 26,34,42, \ldots, 8 k-6 \\ 30+8 j: 30,38,46, \ldots, 8 k-2 \end{gathered}$
$\begin{gathered} {[0,14+4 j, v-15-4 j ; 8+8 j, 28+8 j,} \\ 25+8 j, 29+8 j], j=0,1,2, \ldots, k-4 \end{gathered}$	$\begin{gathered} 14+4 j: 14,18,22,26, \ldots, 4 k-2 \\ v-15-4 j=8 k-13-4 j: 8 k-13 \\ 8 k-17, \ldots, 4 k+3 \Longrightarrow 14,18, \ldots, 4 k-2 \end{gathered}$	$\begin{gathered} 8+8 j \Longrightarrow 8 k-8 j-7: 8 k-7,8 k-15, \\ 8 k-23, \ldots, 25 \\ 28+8 j: 28,36,44, \ldots, 8 k-4 \\ 25+8 j: 25,33,41, \ldots, 8 k-7 \\ 29+8 j: 29,37,45, \ldots, 8 k-3 \end{gathered}$
$\begin{gathered} {[0,15+4 j, v-16-4 j ; 1+8 j, 28+8 j} \\ 29+8 j, 32+8 j], j=0,1,2, \ldots, k-4 \end{gathered}$	$15+4 j: 15,19,23,27, \ldots, 4 k-1$ $v-16-4 j=8 k-14-4 j: 8 k-14$, $8 k-18, \ldots, 4 k+2 \Longrightarrow 15,19, \ldots, 4 k-1$	$\begin{gathered} 1+8 j \Longrightarrow 8 k-16, \ldots, 8 k, 8 k-8, \\ 28+8 j: 28,36,44, \ldots, 8 k-4 \\ 29+8 j: 29,37,45, \ldots, 8 k-3 \\ 32+8 j: 32,40,48, \ldots, 8 k \\ \hline \end{gathered}$
$\begin{gathered} {[0,16+4 j, v-17-4 j ; 6+8 j, 27+8 j} \\ 30+8 j, 31+8 j], j=0,1,2, \ldots, k-4 \end{gathered}$	$\begin{gathered} 16+4 j: 16,20,24,28, \ldots, 4 k \\ v-17-4 j=8 k-15-4 j: 8 k-15, \\ 8 k-19, \ldots, 4 k+1 \Longrightarrow 16,20, \ldots, 4 k \end{gathered}$	$\begin{gathered} \hline 6+8 j \Longrightarrow 8 k-8 j-5: 8 k-5,8 k-13, \\ 8 k-21, \ldots, 27 \\ 27+8 j: 27,35,43, \ldots, 8 k-5 \\ 30+8 j: 30,38,46, \ldots, 8 k-2 \\ 31+8 j: 31,39,47, \ldots, 8 k-1 \\ \hline \end{gathered}$

Combining all the arc and edge differences in Table 5, we have the required result.

2.5 An S_{6}^{2}-Decomposition of λM_{v}

An S_{6}^{2}-decomposition of M_{v} exists if and only if $v \equiv 0$ or $1(\bmod 4)$ ansd $v \geq 9[10]$. In this subsection, we give the necessary and sufficient conditions for the existence of a S_{6}^{2}-decomposition of λM_{v}, where $\lambda=2$. As usual, we give a direct construction to establish sufficiency.

Lemma 2.14 An S_{6}^{2}-decomposition of λM_{v} exists for $v \equiv 3(\bmod 4), \lambda=2$.

Proof. Let $v=4 k+3$ and $k \geq 1$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-1\}$, consider the blocks:

$$
\begin{aligned}
& B=\{[0,4 k+2,4 k+1 ; 4,4 k, 1,2],[0,2 k+1,2 k+2 ; 4 k-1,1,2,4 k+1],[0,1,2 ; 4 k, 4 k- \\
& 3,4 k+2,5]\} \\
& \cup\{[0,3+2 j, 4+2 j ; 4 k-4-4 j, 4 k-5-4 j, 9+4 j, 10+4 j] \mid j=0,1, \ldots, k-2, \\
& j \neq(2 k-4) / 3, \text { and } j \neq(k-3) / 2 \\
& \cup\{[0,(4 k+1) / 3,(8 k+5) / 3 ;(4 k+4) / 3,(4 k-5) / 3,(8 k+8) / 3,(8 k+11) / 3] \\
& \text { if } j=(2 k-4) / 3\} \\
& \cup\{[0, k, k+1 ; 2 k, 2 k-1,2 k+2,2 k+1] \text { if } j=(k-3) / 2\} \\
& \cup\{[0,3+2 j, 4+2 j ; 4 k-2-4 j, 4 k-3-4 j, 7+4 j, 8+4 j] \mid j=0,1, \ldots, k-2, \\
& j \neq(2 k-3) / 3, \text { and } j \neq(k-2) / 2 \\
& \cup\{[0,(4 k+3) / 3,(8 k+3) / 3 ;(4 k+6) / 3,(4 k-9) / 3,(8 k+6) / 3,(8 k+9) / 3], j=(2 k-3) / 3 \\
& \cup\{[0, k+1, k+2 ; 2 k, 2 k-1,2 k+2,2 k+1], j=(k-2) / 2\}
\end{aligned}
$$

The elements of B, along with their images under the permutation $\pi(i)=i+1(\bmod$ $v)$, form a S_{6}^{2}-decomposition of $2 M_{v}$ where $v=4 k+3$.

Lemma $2.15 A S_{6}^{2}$-decomposition of λM_{v} exists for $v \equiv 6(\bmod 8), v \geq 14$ and $\lambda=2$.

Proof. Let $v=8 k+6$ and $k \geq 1$. Let $\left(\lambda M_{v}\right)=\{0,1,2, \ldots v-2, \infty\}$, consider the following blocks:

$$
\left.\begin{array}{l}
\quad B=\{[0, \infty, 8 k+4 ; 8 k+1,8 k+2,1,2] \times 2, \\
\\
\quad[0,2,3 ; \infty, 8 k, 6,7] \times 2, \\
\\
\quad[0,4,5 ; 8 k-5,8 k-3,9, \infty] \\
\\
\quad[0,4,6 ; 8 k-6,8 k-4,11,12]\} \\
\cup\{[0,7+4 j, 8 k-2-4 j ; 8+8 j, 8 k-11-8 j, 13+8 j, 17+8 j] \mid j=0,1, \ldots, k-2 \text { and } \\
\\
\\
\\
\hline
\end{array}\right)\{[0,8+4 j, 8 k-3-4 j ; 7+8 j, 8 k-14-8 j, 14+8 j, 18+8 j] \mid j=0,1, \ldots, k-2 \text { and })
$$

These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{2}-decomposition of λM_{v} where $\lambda=2$ and $v \geq 14$, as claimed.

Lemma 2.16 An S_{6}^{2}-decomposition of $2 M_{v}$ exists for all $v \equiv 2(\bmod 8)$, with $v \geq 26$.

Proof. let $v=8 k+2$ and $k \geq 3$. Let $\left(2 M_{v}\right)=\{0,1,2, \ldots v-2, \infty\}$ The required decomposition is given by the blocks:
$\{[0, \infty, 8 k ; 8 k-3,8 k-2,1,2] \times 2,[0,2,3 ; \infty, 8 k-4,6,7] \times 2,[0,4,5 ; 8 k-9,8 k-$ $7,9, \infty],[0,5,6 ; 8 k-9,8 k-7,12, \infty],[0,4,6 ; 8 k-10,8 k-8,11,12],[0,7,8 k-6 ; 8 k-$ $12,8 k-16,13,21],[0,8,8 k-7 ; 8 k-13,8 k-14,14,22],[0,9,8 k-8 ; 8 k-17,8 k-$ $18,18,22],[0,10,8 k-9 ; 8 k-19,8 k-16,20,24],[0,11,8 k-10,8 k-15,8 k-20,16,24]$, $[0,12,8 k-11 ; 8 k-22,8 k-14,19,23]\}$
and
$\cup\{[0,13+4 j, 8 k-12-4 j ; 7+8 j, 8 k-29-8 j, 31+8 j, 26+8 j \mid j=0,1, \ldots, k-4]\}$ $\cup\left\{[0,14+4 j, 8 k-13-4 j ; 8+8 j, 8 k-27-8 j, 25+8 j, 29+8 j]_{6}^{2} \mid j=0,1, \ldots, k-\right.$ 4, and $j \neq \frac{k-7}{2}$ if $\left.k \equiv 7(\bmod 2)\right\}$
$\cup\left\{[0,2 k, 6 k+1 ; 4 k-20,4 k+4,4 k, 4 k+1]_{6}^{2}\right.$ if $k \equiv 7(\bmod 2)$ and $\left.j=\frac{k-7}{2}\right\}$
$\cup\left\{[0,15+4 j, 8 k-14-4 j ; 1+8 j, 8 k-27-8 j, 29+8 j, 32+8 j]_{6}^{2} \mid j=0,1, \ldots, k-\right.$ 4 , and $j \neq \frac{k-7}{2}$ if $\left.k \equiv 7(\bmod 2)\right\}$
$\cup\left\{[0,2 k+1,6 k ; 4 k-27,4 k-3,4 k+1,4 k]_{6}^{2}\right.$ if $k \equiv 7(\bmod 2)$ and $\left.j=\frac{k-7}{2}\right\}$
$\cup\left\{[0,16+4 j, 8 k-15-4 j ; 6+8 j, 8 k-29-8 j, 27+8 j, 31+8 j]_{6}^{2} \mid j=0,1, \ldots, k-\right.$ 4 , and $j \neq \frac{k-7}{2}$ if $\left.k \equiv 7(\bmod 2)\right\}$
$\cup\left\{[0,2 k+2,6 k-1 ; 4 k-22,4 k-2,4 k-1,4 k+2]_{6}^{2}\right.$ if $k \equiv 7(\bmod 2)$ and $\left.j=\frac{k-7}{2}\right\}$
These stars along with their images under the permutation $\pi: V \rightarrow V$ defined as $\pi(i)=i+1(\bmod v)$, form an S_{6}^{2}-decomposition of λM_{v} where $\lambda=2$ and $v \geq 26$, as claimed.

We now combine the results of this subsection to give necessary and sufficient
conditions for an S_{6}^{2}-decomposition of λM_{v}.

Theorem 2.17 An S_{6}^{2}-decomposition of λM_{v} exists if and only if

1. $v \equiv 0$ or $1(\bmod 4)$ and $\lambda \geq 1$, or
2. $v \equiv 2(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$, or
3. $v \equiv 3(\bmod 4)$ and $\lambda \equiv 0(\bmod 2)$.

Proof. By Lemma 2.1, $\lambda=0(\bmod 2)$ is necessary.
For sufficiency, when $v \equiv 0$ or $1(\bmod 4)$, an S_{6}^{1}-decomposition of M_{v} exists by [10]. So when $\lambda \geq 1$, taking λ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 2(\bmod 4)$ and $\lambda=2$, an S_{6}^{2}-decomposition of $2 M_{v}$ exists by Lemma 2.15 and Lemma 2.16. So when $\lambda \equiv 0(\bmod 2)$, taking $\lambda / 2$ copies of the blocks of such a decomposition gives a decomposition of λM_{v}. When $v \equiv 3(\bmod$ 4) and $\lambda=2$, an S_{6}^{2}-decomposition of $2 M_{v}$ exists by Lemma 2.14 . So when $\lambda \equiv 0$ $(\bmod 2)$, taking $\lambda / 2$ copies of such a decomposition gives a decomposition of λM_{v}.

2.5.1 Verification and Example

Now, we verify Lemma 2.12 by showing that all the vertex labels are distinct. The individual blocks $[0,4 k+2,4 k+1 ; 4,4 k, 1,2],[0,2 k+1,2 k+2 ; 4 k-1,1,2,4 k+1]$ and $[0,1,2 ; 4 k, 4 k-3,4 k+2,5]$ have distinct vertices.

The blocks

$$
\begin{aligned}
& \cup\{[0,3+2 j, 4+2 j ; 4 k-4-4 j, 4 k-5-4 j, 9+4 j, 10+4 j] \mid j=0,1, \ldots, k-2, \\
& \qquad j \neq(2 k-4) / 3, \text { and } j \neq(k-3) / 2
\end{aligned}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
3+2 j: & 3, & 5, & 7, & \ldots, & 2 k-1 & \text { odd } \\
4+2 j: & 4, & 6, & 8, & \ldots, & 2 k & \text { even } \\
4 k-4-4 j: & 4 k-4, & 4 k-8, & 4 k-12, & \ldots, & 4 & 0(\bmod 4) \\
4 k-5-4 j: & 4 k-5, & 4 k-9, & 4 k-13, & \ldots, & 4 k & 3(\bmod 4) \\
9+4 j: & 9, & 13, & 17, & \ldots, & 4 k+1 & 1(\bmod 4) \\
10+4 j: & 10, & 14, & 18, & \ldots, & 4 k+2 & 2(\bmod 4)
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the rows $4+2 j$ and $4 k-4-4 j$, and also in the row $3+2 j$ and $4 k-5-4 j$. Since we reverse the orientation of one of the outdegree of S_{6}^{1} to obtain S_{6}^{2}, we have that $j \neq \frac{2 k-4}{3}$.

The blocks
$\cup\{[0,(4 k+1) / 3,(8 k+5) / 3 ;(4 k+4) / 3,(4 k-5) / 3,(8 k+8) / 3,(8 k+11) / 3]$, if $j=(2 k-4) / 3\}$
and

$$
\cup\{[0, k, k+1 ; 2 k, 2 k-1,2 k+2,2 k+1] \text { if } j=(k-3) / 2\}
$$

have distinct vertex labels.
Similarly, the blocks

$$
\cup\{[0,3+2 j, 4+2 j ; 4 k-2-4 j, 6+4 j, 7+4 j, 8+4 j] \mid j=0,1, \ldots, k-2,
$$

and $j \neq(2 k-3) / 3$ when $j \equiv 0(\bmod 3)\}$, and $j \neq(k-2) / 2$ when $j \equiv 0(\bmod 2)\}$

$$
\begin{gathered}
\cup\{[0,(4 k+3) / 3,(8 k+3) / 3 ;(4 k+6) / 3,(8 k+6) / 3,(8 k+9) / 3,(8 k+12) / 3] \\
\text { if } j \equiv 0(\bmod 3), \text { and } j=(2 k-3) / 3\} \\
\cup\{[0, k+1, k+2 ; 2 k, 2 k+2,2 k+1,2 k+4] \text { if } j \equiv 0(\bmod 2), \text { and } j=(k-2) / 2\}
\end{gathered}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
3+2 j: & 3, & 5, & 7, & \ldots, & 2 k-1 & \text { odd } \\
4+2 j: & 4, & 6, & 8, & \ldots, & 2 k & \text { even } \\
4 k-2-4 j: & 4 k-2, & 4 k-6, & 4 k-10 & \ldots, & 2 & 2(\bmod 4) \\
4 k-3-4 j: & 4 k-3 & 4 k-7 & 4 k-11 & \ldots, & 5 & 1(\bmod 4) \\
7+4 j: & 7, & 11, & 15, & \ldots, & 4 k-1 & 3(\bmod 4) \\
8+4 j: & 8, & 12, & 16, & \ldots, & 4 k & 0(\bmod 4)
\end{array}
$$

Which are all distinct for the first block, since $j \neq \frac{2 k-3}{3}$ and $j \neq \frac{k-2}{2}$ Therefore, all vertex labels are distinct.

Next, we show that Theorem 2.13 has distinct vertex labels. The blocks

$$
\cup\{[0,7+4 j, 8 k-2-4 j ; 8+8 j, 8 k-11-8 j, 13+8 j, 17+8 j] \mid j=0,1, \ldots, k-2 \text { and }
$$

$$
j \neq(k-3) / 2\} \cup\{[0,2 k+1,6 k+4 ; 4 k-4,4 k, 4 k+1,4 k+4] \text { if } j=(k-3) / 2\}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
7+4 j: & 7, & 11, & 15, & \ldots, & 4 k-5, & 4 k-1 \\
8 k-2-4 j: & 8 k-2, & 8 k-6, & 8 k-10 & \ldots, & 4 k+10, & 4 k+6 \\
8+8 j: & 8, & 16, & 24, & \ldots, & 8 k-16, & 8 k-8 \\
8 k-11-8 j: & 8 k-11, & 8 k-19, & 8 k-27, & \ldots, & 13, & 5 \\
13+8 j: & 13, & 21, & 29, & \ldots, & 8 k-1, & 8 k-3 \\
17+8 j: & 7, & 25, & 33, & \ldots, & 8 k-7, & 8 k+1 .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in blue. If $j=\frac{k-3}{2}$, then we have eliminated the block $[0,2 k+1,6 k+4 ; 4 k-4,4 k+1,4 k+1,4 k+$ 5] that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,2 k+1,6 k+4 ; 4 k-4,4 k, 4 k+1,4 k+4]$ (which covers the same differences as the omitted block).

The blocks

$$
\begin{aligned}
& \cup\{[0,8+4 j, 8 k-3-4 j ; 7+8 j, 8 k-14-8 j, 14+8 j, 18+8 j] \mid j=0,1, \ldots, k-2 \text { and } \\
& j \neq(k-4) /(2)\} \cup\{[0,2 k, 6 k+5 ; 4 k-9,4 k+7,4 k+3,4 k+2] \text { if } j=(k-4) /(2)\}
\end{aligned}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
8+4 j: & 8, & 12, & \ldots, & 4 k-4, & 4 k & 0(\bmod 4) \\
8 k-3-4 j: & 8 k-3, & 8 k-7, & \ldots, & 4 k+9, & 4 k+5 & 1(\bmod 4) \\
7+8 j: & 7, & 15, & \ldots, & 8 k-17, & 8 k-9 & 7(\bmod 8) \\
8 k-14-8 j: & 8 k-14, & 8 k-22, & \ldots, & 10, & 2 & 2(\bmod 8) \\
14+8 j: & 14, & 22, & \ldots, & 8 k-10, & 8 k-2 & 6(\bmod 8) \\
18+8 j: & 18, & 26, & \ldots, & 8 k-6, & 8 k+2 & 2(\bmod 8) .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in blue. If $j=\frac{k-3}{2}$, then we have eliminated the block $[0,2 k, 6 k+5 ; 4 k-9,4 k+2,4 k-2,4 k+2]$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,2 k, 6 k+5 ; 4 k-9,4 k+7,4 k+3,4 k+2]$ (which covers the same differences as the omitted block).

The blocks

$$
\begin{aligned}
& \cup\{[0,9+4 j, 8 k-4-4 j ; 6+8 j, 8 k-10-8 j, 18+8 j, 19+8 j] \mid j=0,1, \ldots, k-2 \text { and } \\
& \quad j \neq(k-2) / 2\} \cup\{[0,2 k+5,6 k ; 4 k-5,4 k-2,4 k+7,4 k+11] \text { if } j=(k-2) / 2\}
\end{aligned}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
9+4 j: & 9, & 13, & \ldots, & 4 k-3, & 4 k+1 & 1(\bmod 4) \\
8 k-4-4 j: & 8 k-4, & 8 k-8, & \ldots, & 4 k+8, & 4 k+4 & 0(\bmod 4) \\
6+8 j: & 6, & 14, & \ldots, & 8 k-18, & 8 k-10 & 6(\bmod 8) \\
8 k-10-8 j: & 8 k-10, & 8 k-18, & \ldots, & 14, & 6 & 6(\bmod 8) \\
18+8 j: & 18, & 26, & \ldots, & 8 k-6, & 8 k+2 & 2(\bmod 8) \\
19+8 j: & 19, & 27, & \ldots, & 8 k-5, & 8 k+3, & 3(\bmod 8) .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in red. If $j=\frac{k-2}{2}$, then we have eliminated the block $[0,2 k+5,6 k ; 4 k-2,4 k-2,4 k+10,4 k+11]$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,2 k+5,6 k ; 4 k-5,4 k-2,4 k+7,4 k+11]$ (which covers the same differences as the omitted block).

The block
$\cup\{[0,10+4 j, 8 k-5-4 j ; 1+8 j, 8 k-11-8 j, 17+8 j, 20+8 j] \mid j=0,1, \ldots, k-2\}$
generates the following distinct vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
10+4 j: & 10, & 14, & \ldots, & 4 k-2, & 4 k+2 & 2(\bmod 4) \\
8 k-5-4 j: & 8 k-5, & 8 k-9, & \ldots, & 4 k+7, & 4 k+3 & 3(\bmod 4) \\
1+8 j: & 1, & 9, & \ldots, & 8 k-23, & 8 k-15 & 1(\bmod 8) \\
8 k-11-8 j: & 8 k-11, & 8 k-19, & \ldots, & 13, & 5 & 5(\bmod 8) \\
17+8 j: & 17, & 25, & \ldots, & 8 k-7, & 8 k+1 & 1(\bmod 8) \\
20+8 j: & 20, & 28, & \ldots, & 8 k-4, & 8 k+4 & 4(\bmod 8) .
\end{array}
$$

Next, we show that all vertex labels are distinct in the Lemma 2.16. Of course, the individual blocks: $[0, \infty, 8 k ; 8 k-3,8 k-2,1,2] \times 2,[0,2,3 ; \infty, 8 k-4,6,7] \times 2$, $[0,4,5 ; 8 k-9,8 k-7,9, \infty],[0,5,6 ; 8 k-9,8 k-7,12, \infty],[0,4,6 ; 8 k-10,8 k-8,11,12]$, $[0,7,8 k-6 ; 8 k-12,8 k-16,13,21],[0,8,8 k-7 ; 8 k-13,8 k-14,14,22],[0,9,8 k-$ $8 ; 8 k-17,8 k-18,18,22],[0,10,8 k-9 ; 8 k-19,8 k-16,20,24],[0,11,8 k-10,8 k-$ $15,8 k-20,16,24]$, and $[0,12,8 k-11 ; 8 k-22,8 k-14,19,23]$ have distinct vertices.

The blocks
$\left\{2 \times[0,13+4 j, 8 k-12-4 j ; 7+8 j, 8 k-29-8 j, 31+8 j, 26+8 j]_{6}^{2} \mid j=0,1, \ldots, k-4\right\}$
generate the following vertex labels (vertex labels for a given value of index j are all
in the same column):

$$
\begin{array}{ccccccc}
13+4 j: & 13, & 17, & \ldots, & 4 k-7, & 4 k-3 & 5(\bmod 4) \\
8 k-12-4 j: & 8 k-12, & 8 k-16, & \ldots, & 4 k+8, & 4 k+4 & 0(\bmod 4) \\
7+8 j: & 7, & 15, & \ldots, & 8 k-33, & 8 k-25 & 7(\bmod 8) \\
8 k-29-8 j: & 8 k-29, & 8 k-37, & \ldots, & 11, & 3 & 3(\bmod 8) \\
31+8 j: & 31, & 39, & \ldots, & 8 k-9, & 8 k-1 & 7(\bmod 8) \\
26+8 j: & 26, & 34, & \ldots, & 8 k-14, & 8 k-2 & 6(\bmod 8) .
\end{array}
$$

The blocks

$$
\begin{aligned}
& \left\{[0,14+4 j, 8 k-13-4 j ; 8+8 j, 8 k-27-8 j, 25+8 j, 29+8 j]_{6}^{2} \mid j=0,1, \ldots, k-4,\right. \\
& \text { and } j \neq(k-7) / 2 \text { if } k \equiv 7(\bmod 2)\} \\
& \cup\left\{[0,2 k, 6 k+1 ; 4 k-20,4 k+4,4 k, 4 k+1]_{6}^{2} \text { if } k \equiv 7(\bmod 2) \text { and } j=(k-7) / 2\right\}
\end{aligned}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
14+4 j: & 14, & 18, & \ldots, & 4 k-6, & 4 k-2 & 2(\bmod 4) \\
8 k-13-4 j: & 8 k-13, & 8 k-17, & \ldots, & 4 k+7, & 4 k+3 & 3(\bmod 4) \\
8+8 j: & 8, & 16, & \ldots, & 8 k-32, & 8 k-24 & 0(\bmod 8) \\
8 k-27-8 j: & 8 k-27, & 8 k-35, & \ldots, & 13, & 5 & 5(\bmod 8) \\
25+8 j: & 25, & 33, & \ldots, & 8 k-15, & 8 k-7 & 1(\bmod 8) \\
29+8 j: & 29, & 37, & \ldots, & 8 k-11, & 8 k-3 & 5(\bmod 8) .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in blue. If $k \equiv 7(\bmod 2)$ and $j=(k-7) / 2$, then we have eliminated the block $[0,2 k, 6 k+$ $1 ; 4 k-20,4 k+1,4 k-3,4 k+1]_{6}^{2}$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,2 k, 6 k+1 ; 4 k-20,4 k+4,4 k, 4 k+1]_{6}^{2}$ (which covers the same differences as the omitted block).

The blocks

$$
\left\{[0,15+4 j, 8 k-14-4 j ; 1+8 j, 8 k-27-8 j, 29+8 j, 32+8 j]_{6}^{2} \mid j=0,1, \ldots, k-4,\right.
$$

and $j \neq(k-7) / 2$ if $k \equiv 7(\bmod 2)\}$

$$
\cup\left\{[0,2 k+1,6 k ; 4 k-27,4 k-3,4 k+1,4 k]_{6}^{2} \text { if } k \equiv 7(\bmod 2) \text { and } j=(k-7) / 2\right\}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
15+4 j: & 15, & 19, & \ldots, & 4 k-5, & 4 k-1 & 3(\bmod 4) \\
8 k-14-4 j: & 8 k-14, & 8 k-18, & \ldots, & 4 k+6, & 4 k+2 & 2(\bmod 4) \\
1+8 j: & 1, & 9, & \ldots, & 8 k-39, & 8 k-31 & 1(\bmod 8) \\
8 k-27-8 j: & 8 k-27, & 8 k-35, & \ldots, & 13, & 5 & 5(\bmod 8) \\
29+8 j: & 29, & 37, & \ldots, & 8 k-11, & 8 k-3 & 5(\bmod 8) \\
32+8 j: & 32, & 40, & \ldots, & 8 k-8, & 8 k & 0(\bmod 8) .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in red. If $k \equiv 7(\bmod 2)$ and $j=(k-7) / 2$, then we have eliminated the block $[0,2 k+1,6 k ; 4 k-$ $27,4 k+1,4 k+1,4 k+4]_{6}^{2}$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,2 k+1,6 k ; 4 k-27,4 k-3,4 k+1,4 k]_{6}^{2}$ (which covers the same differences as the omitted block).

The blocks

$$
\left\{[0,16+4 j, 8 k-15-4 j ; 6+8 j, 8 k-29-8 j, 27+8 j, 31+8 j]_{6}^{2} \mid j=0,1, \ldots, k-4\right.
$$

$$
\text { and } j \neq(k-7) / 2 \text { if } k \equiv 7(\bmod 2)\}
$$

$$
\cup\left\{[0,2 k+2,6 k-1 ; 4 k-22,4 k-2,4 k-1,4 k+2]_{6}^{2} \text { if } k \equiv 7(\bmod 2) \text { and } j=(k-7) / 2\right\}
$$

generate the following vertex labels (vertex labels for a given value of index j are all in the same column):

$$
\begin{array}{ccccccc}
16+4 j: & 16, & 20, & \ldots, & 4 k-4, & 4 k & 0(\bmod 4) \\
8 k-15-4 j: & 8 k-15, & 8 k-19, & \ldots, & 4 k+5, & 4 k+1 & 1(\bmod 4) \\
6+8 j: & 6, & 14, & \ldots, & 8 k-34, & 8 k-26 & 6(\bmod 8) \\
8 k-29-8 j: & 8 k-29, & 8 k-37, & \ldots, & 11, & 3 & 3(\bmod 8) \\
27+8 j: & 27, & 35, & \ldots, & 8 k-13, & 8 k-5 & 3(\bmod 8) \\
31+8 j: & 31, & 39, & \ldots, & 8 k-9, & 8 k-1 & 7(\bmod 8) .
\end{array}
$$

Notice that we have a potential repetition of vertex labels in the two rows in blue. If $k \equiv 7(\bmod 2)$ and $j=(k-7) / 2$, then we have eliminated the block $[0,2 k+2,6 k-$ $1 ; 4 k-22,4 k-1,4 k-1,4 k+3]_{6}^{2}$ that would arise in the first set (and which repeats vertex labels), and replaced it with the block $[0,2 k+2,6 k-1 ; 4 k-22,4 k-2,4 k-$ $1,4 k+2]_{6}^{2}$ (which covers the same differences as the omitted block). Therefore, all vertex labels are distinct.

In this chapter, we have given the necessary and sufficient conditions for the existence of of an S_{6}^{i}-decomposition of λM_{v} for $i \in\{0,1,2,3,4\}$. These results are given in Theorems 2.7, 2.7, 2.12, 2.13 and 2.17.

3 DECOMPOSITION OF COMPLETE BIPARTITE MIXED GRAPHS INTO MIXED STARS

3.1 Introduction

A graph G is bipartite if its vertex set can be partitioned into subsets X and Y, and such that every edge in G has one end in X and the other end in Y. That is if $V(G)=X \cup Y$ and $[x, y] \in E(G)$ then $x \in X$ and $y \in Y$ such that $X \neq \emptyset$, and $Y \neq \emptyset$, and $X \cap Y=\emptyset$. If every vertex of X is adjacent to every vertex of Y, the the graph is called a complete bipartite graph, denoted by $K_{n, m}$ where $|X|=n$ and $|Y|=n$.

The mixed graph with vertex set V such that for every pair of distinct vertices $x \in X$ and $y \in Y$, where $V=X \cup Y$, the set of edges and arcs contains $(x, y),(y, x)$ and $[x, y]$ is called a complete bipartite mixed graph. For positive integers n_{1}, n_{2}, $M_{n_{1}, n_{2}}$ denotes the complete bipartite mixed graph with partite sets of sizes n_{1} and n_{2}.

The following are the few results on the decomposition of a complete bipartite graphs into stars. The complete bipartite graph $K_{n, m}$ has S_{k}-decomposition if and only if $(k-1) \mid n^{2}$ and $n \geq k-1$ [15]. The necessary and sufficient condition for the decomposition of the λ-fold complete bipartite graph into stars and cycles was given in [13]. See [8] and [16] for some decomposition of complete bipartite graphs. However, nothing has been done on the decomposition of a complete bipartite mixed graphs into mixed stars.

In this chapter, we consider the existence of the decomposition of complete bipar-
tite mixed graphs into mixed stars by giving necessary and sufficient conditions.

3.2 An S_{6}^{0}-decomposition of $M_{n_{1}, n_{2}}$

We give the necessary and sufficient conditions of an S_{6}^{0}-decomposition of a complete bipartite mixed graph. Let $M_{n_{1}, n_{2}}$ denote the complete bipartite mixed graph with partite sets of sizes n_{1} and n_{2}. For an illustration of S_{6}^{2}, see Figure 6. Recall also that a decomposition of a mixed graph G is a family \mathcal{F} of edge and arc-disjoint subgraph of G such that $\cup_{F \in \mathcal{F}} E(\mathcal{F})=E(G)$ and $\cup_{F \in \mathcal{F}} A(\mathcal{F})=A(G)$. The necessary condition for an S_{6}^{0}-decomposition of $M_{n_{1}, n_{2}}$ is given in Lemma 3.1 below.

Lemma 3.1 If an S_{6}^{0}-decomposition of $M_{n_{1}, n_{2}}$ exists, then $n_{1}=n_{2}=0(\bmod 4)$.

Proof. Each vertex of S_{6}^{0} is of out-degree 4, so in $M_{n_{1}, n_{2}}$ each vertex must be outdegree $0(\bmod 4)$ and hence $n_{1} \equiv n_{2} \equiv 0(\bmod 4)$ is necessary.

Lemma 3.2 $\operatorname{An} S_{6}^{0}$-decomposition of $M_{8,8}$ exists.

Proof. Consider the partite sets $X=\left[1_{1}, 2_{1}, 3_{1}, \ldots, 8_{1}\right]$ and $Y=\left[1_{2}, 2_{2}, 3_{2}, \ldots, 8_{2}\right]$. The required decomposition is given by the set of blocks: $\left\{\left[i_{1}, 1_{2}, 2_{2} ; 3_{2}, 4_{2}, 5_{2}, 6_{2}\right]\right.$, $\left[i_{1}, 5_{2}, 6_{2} ; 1_{2}, 2_{2}, 7_{2}, 8_{2}\right]$ for $\left.i=1,2,5,6\right\},\left\{\left[i_{1}, 3_{2}, 4_{2} ; 5_{2}, 6_{2}, 7_{2}, 8_{2}\right],\left[i_{1}, 7_{2}, 8_{2} ; 1_{2}, 2_{2}, 3_{2}\right.\right.$, $\left.4_{2}\right]$ for $\left.i=3,4,7,8\right\},\left\{\left[j_{2}, 3_{1}, 4_{1} ; 5_{1}, 6_{1}, 7_{1}, 8_{1}\right]\right.$, $\left[j_{2}, 7_{1}, 8_{1} ; 1_{1}, 2_{1}, 3_{1}, 4_{1}\right]$ for $j=$ $1,2,5,6\}$, and $\left\{\left[j_{2}, 1_{1}, 2_{1} ; 3_{1}, 4_{1}, 5_{1}, 6_{1}\right],\left[j_{2}, 5_{1}, 6_{1} ; 1_{1}, 2_{1}, 7_{1}, 8_{1}\right]\right.$ for $\left.j=3,4,7,8\right\}$.

Lemma 3.3 An S_{6}^{0}-decomposition of $M_{8,12}$ exists.

Proof. Consider the partite sets $X=\left[1_{1}, 2_{1}, 3_{1}, \ldots, 8_{1}\right]$ and $Y=\left[1_{2}, 2_{2}, 3_{2}, \ldots, 12_{2}\right]$. We need 48 stars in this decomposition and the required decomposition is given by the set of blocks: $\left\{\left[i_{1}, 1_{2}, 2_{2} ; 3_{2}, 4_{2}, 5_{2}, 6_{2}\right],\left[i_{1}, 5_{2}, 6_{2} ; 7_{2}, 8_{2}, 9_{2}, 10_{2}\right],\left[i_{1}, 9_{2}, 10_{2} ; 1_{2}, 2_{2}, 11_{2}\right.\right.$, $\left.12_{2}\right]$ for $\left.i=1,2,5,6\right\} \cup\left\{\left[i_{1}, 3_{2}, 4_{2} ; 5_{2}, 6_{2}, 7_{2}, 8_{2}\right],\left[i_{1}, 7_{2}, 8_{2} ; 9_{2}, 10_{2}, 11_{2}, 12_{2}\right],\left[i_{1}, 11_{2}\right.\right.$, $\left.12_{2} ; 1_{2}, 2_{2}, 3_{2}, 4_{2}\right]$ for $\left.i=3,4,7,8\right\} \cup\left\{\left[j_{2}, 3_{1}, 4_{1} ; 5_{1}, 5_{1}, 7_{1}, 8_{1}\right],\left[j_{2}, 7_{1}, 8_{1} ; 1_{1}, 2_{1}, 3_{1}, 4_{1}\right]\right.$ for $j=1,2,5,6,9,10\} \cup\left\{\left[j_{2}, 1_{1}, 2_{1} ; 3_{1}, 4_{1}, 5_{1}, 6_{1}\right],\left[j_{2}, 5_{1}, 6_{1} ; 1_{1}, 2_{1}, 7_{1}, 8_{1}\right]\right.$ for $j=3$, $4,7,8,11,12\}$.

Lemma 3.4 An S_{6}^{0}-decomposition of $M_{12,12}$ exists.

Proof. Consider the partite sets $X=\left[1_{1}, 2_{1}, 3_{1}, \ldots, 12_{1}\right]$ and $Y=\left[1_{2}, 2_{2}, 3_{2}, \ldots, 12_{2}\right]$. The required decomposition is given by the set of blocks: $\left\{\left[i_{1}, 1_{2}, 2_{2} ; 3_{2}, 4_{2}, 5_{2}, 6_{2}\right]\right.$, $\left[i_{1}, 5_{2}, 6_{2} ; 7_{2}, 8_{2}, 9_{2}, 10_{2}\right],\left[i_{1}, 9_{2}, 10_{2} ; 1_{2}, 2_{2}, 11_{2}, 12_{2}\right]$ for $\left.i=1,2,5,6,9,10\right\} \cup\left\{\left[i_{1}, 3_{2}\right.\right.$, $\left.4_{2} ; 5_{2}, 6_{2}, 7_{2}, 8_{2}\right],\left[i_{1}, 7_{2}, 8_{2} ; 9_{2}, 10_{2}, 11_{2}, 12_{2}\right],\left[i_{1}, 11_{2}, 12_{2} ; 1_{2}, 2_{2}, 3_{2}, 4_{2}\right]$ for $i=3,4,7,8$, $11,12\} \cup\left\{\left[j_{2}, 3_{1}, 4_{1} ; 5_{1}, 6_{1}, 7_{1}, 8_{1}\right],\left[j_{2}, 7_{1}, 8_{1} ; 9_{1}, 10_{1}, 11_{1}, 12_{1}\right],\left[j_{2}, 11_{1}, 12_{1} ; 1_{1}, 2_{1}, 3_{1}, 4_{1}\right]\right.$ for $j=1,2,5,6,9,10\} \cup\left\{\left[j_{2}, 1_{1}, 2_{1} ; 3_{1}, 4_{1}, 5_{1}, 6_{1}\right],\left[j_{2}, 5_{1}, 6_{1} ; 7_{1}, 8_{1}, 9_{1}, 10_{1}\right],\left[j_{2}, 9_{1}, 10_{1}\right.\right.$; $\left.1_{1}, 2_{1}, 11_{1}, 12_{1}\right]$ for $\left.j=3,4,7,8,11,12\right\}$.

Theorem 3.5 $\operatorname{An} S_{6}^{0}$-decomposition of $M_{n_{1}, n_{2}}$ exists if and only if $n_{1} \equiv n_{2} \equiv 0(\bmod$ 4), $n_{1} \geq 8$ and $n_{2} \geq 8$.

Proof. Each vertex in $M_{n_{1}, n_{2}}$ must be of out-degree $0(\bmod 4)$ and hence $n_{1} \equiv n_{2} \equiv 0$ $(\bmod 4)$ by Lemma 3.1 . For sufficiency, suppose $n_{1} \equiv n_{2} \equiv 0(\bmod 4)$ where $n_{1} \geq 8$ and $n_{2} \geq 8$. This is established in 3 cases as follows:

Case 1. Suppose $n_{1} \equiv n_{2} \equiv 0(\bmod 8)$. Let $M=n_{1} / 8$ and $N=n_{2} / 8$. With

$$
X_{i}=\left\{1_{1, i}, 2_{1, i}, \ldots, 8_{1, i}\right\} \text { for } i=1,2, \ldots, M \text { and }
$$

$$
Y_{j}=\left\{1_{2, j}, 2_{2, j}, \ldots, 8_{2, j}\right\} \text { for } j=1,2, \ldots, N
$$

for all $i \in\{1,2, \ldots, M\}$ and $j \in\{1,2, \ldots, N\}$ there is an S_{6}^{0}-decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{j} by Lemma 3.2 (since $\left.\left|X_{i}\right|=\left|Y_{j}\right|=8\right)$. This collection of $M N$ decompositions forms an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$. See Figure 7 .

Figure 7: A schematic diagram of the copies of $M_{8,8}$ as used in case 1 of Theorem 3.5

Case 2. Suppose $n_{1} \equiv n_{2} \equiv 4(\bmod 8)$, say $M=\left(n_{1}-12\right) / 8$ and $N=\left(n_{2}-12\right) / 8$. Let

$$
\begin{gathered}
X_{i}=\left\{1_{1, i}, 2_{1, i}, \ldots, 8_{1, i}\right\} \text { for } i=1,2, \ldots, M, \\
Y_{j}=\left\{1_{2, j}, 2_{2, j}, \ldots, 8_{2, j}\right\} \text { for } j=1,2, \ldots, N, \\
X_{M+1}=\left\{1_{1, M+1}, 2_{1, M+1}, \ldots, 12_{1, M+1}\right\} \text { and } Y_{j}=\left\{1_{2, N+1}, 2_{2, N+1}, \ldots, 12_{2, N+1}\right\} .
\end{gathered}
$$

An S_{6}^{0}-decomposition of the complete bipartite mixed graph with partite sets $\cup_{i=1}^{M} X_{i}$
and $\cup_{j=1}^{N} Y_{j}$ exists by Case $1\left(\right.$ since $\left.\left|\cup_{i=1}^{M} X_{i}\right| \equiv\left|\cup_{j=1}^{N} Y_{j}\right| \equiv 0(\bmod 8)\right)$. An $S_{6}^{0}{ }^{-}$ decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{N+1} exists for each $i=1,2, \ldots, M$ by Lemma 3.3 (since $\left|X_{i}\right|=8$ and $\left|Y_{N+1}\right|=12$). An S_{6}^{0}-decomposition of the complete bipartite mixed graph with partite sets Y_{j} and X_{M+1} exists for each $j=1,2, \ldots, N$ by Lemma 3.3 (since $\left|Y_{j}\right|=8$ and $\left|X_{M+1}\right|=12$). An S_{6}^{0}-decomposition of the complete bipartite mixed graph with partite sets X_{M+1} and Y_{N+1} exists by Lemma 3.4 (since $\left|X_{M+1}\right|=12$ and $\left|Y_{N+1}\right|=12$). This collection of decompositions form an S_{6}^{0}-decomposition of $M_{n_{1}, n_{2}}$. See Figure 9.

Figure 8: A schematic diagram of the copies of $M_{8,8}$, and $M_{12,8}, M_{8,12}$ as used in case 2 of Theorem 3.5

Case 3. Suppose $n_{1} \equiv 0(\bmod 8)$ and $n_{2} \equiv 4(\bmod 8)$, say $M=n_{1} / 8$ and $N=\left(n_{2}-12\right) / 8$. Let X_{i} for $i=1,2, \ldots, M$ be as defined in Case 1, and let Y_{j} for $j=1,2, \ldots, N+1$ be as defined in Case 2. An S_{6}^{0}-decomposition of the
complete bipartite mixed graph with partite sets $\cup_{i=1}^{M} X_{i}$ and $\cup_{j=1}^{N} Y_{j}$ exists by Case 1 (since $\left|\cup_{i=1}^{M} X_{i}\right| \equiv 0(\bmod 8)$ and $\left|\cup_{j=1}^{N} Y_{j}\right| \equiv 0(\bmod 8)$). An S_{6}^{0}-decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{N+1} exists for each $i=1,2, \ldots, M$ by Lemma 3.3 (since $\left|X_{i}\right|=8$ and $\left|Y_{N+1}\right|=12$). This collection of decompositions form an S_{6}^{0}-decomposition of $M_{n_{1}, n_{2}}$. See Figure 8 .

Figure 9: A schematic diagram of the copies of $M_{8,8}$, and $M_{12,8}, M_{8,12}$ and $M_{12,12}$ as used in case 3 of Theorem 3.5

Notice that the converse of S_{6}^{0} is obtained by reversing the orientation of all the arcs which gives S_{6}^{4}. Since $M_{n_{1}, n_{2}}$ is self converse, Theorem 3.5 also gives the necessary and sufficient conditions for S_{6}^{4}-decomposition of $M_{n_{1}, n_{2}}$.

3.3 An S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$

Here we give some conditions for the existence of an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$.

Lemma 3.6 If an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$ exists, then $n_{1} n_{2} \equiv 0(\bmod 4)$.

Proof. Let the partite sets of $M_{n_{1}, n_{2}}$ be $X=\left\{1_{1}, 2_{1}, \ldots\left(n_{1}\right)_{1}\right\}$ and $Y=\left\{1_{2}, 2_{2}, \ldots\right.$ $\left.\left(n_{2}\right)_{2}\right\}$. Define L-type and R-type stars as follows (Figure 10): The L-star is a star with partite sets $\left\{c_{1}\right\}$ and $\left\{u_{2}, v_{2}, w_{2}, x_{2}, y_{2}, z_{2}\right\}$ with the center c_{1} "on the left" and the other partite sets with subscript 2 "on the right". Denoted $\left[c_{1}, u_{2}, v_{2} ; w_{2}, x_{2}, y_{2}, z_{2}\right]$ with our usual notation. Similarly, the R-star is a star with partite sets $\left\{c_{2}\right\}$ and $\left\{u_{1}, v_{1}, w_{1}, x_{1}, y_{1}, z_{1}\right\}$ with the center c_{2} "on the right" and other partite sets with subscript 2 "on the left". Denoted $\left[c_{2}, u_{1}, v_{1} ; w_{1}, x_{1}, y_{1}, z_{1}\right]$.

Suppose an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$ exists. Let L and R as the number of Ltype and R-type stars in a decomposition, respectively. Now $M_{n_{1}, n_{2}}$ has $n_{1} n_{2}$ edges, $n_{1} n_{2}$ left-to-right arcs (that is of the form $\left[v_{1}, v_{2}\right]$), and $n_{1} n_{2}$ right-to-left arcs (that is $\left[v_{2}, v_{1}\right]$). Since each star contains two edges then $2 L+2 R=n_{1} n_{2}$. An L-type star has one right-to-left $\operatorname{arc}(\leftarrow)$ and an R-type star has three left-to-right $\operatorname{arcs}(\leftarrow)$. So $L+3 R=n_{1} n_{2}$. An L-type star has three right-to-left $\operatorname{arcs}(\leftarrow)$ and an R-type star has one right-to-left $\operatorname{arc}(\leftarrow)$. So $3 L+R=n_{1} n_{2}$. Hence $n_{1} n_{2}=L+3 R=3 L+R$ or $2 R=2 L$ or $R=L$. Also $n_{1} n_{2}=2 L+2 R=4 L$ and $n_{1} n_{2} \equiv 0(\bmod 4)$, as claimed.

Lemma 3.7 An S_{6}^{1}-decomposition of $M_{8,7}$ does not exist.

Proof. $M_{8,7}$ has 56 edges and S_{6}^{1} has 2 edges, so an S_{6}^{1}-decomposition of $M_{8,7}$ requires 28 stars. This implies that $L=R=14$ by Lemma 3.5. Then there is a vertex v on

Figure 10: L-type and R-type star
the left which is the center of at most one star. This vertex v has a total degree of 21 and so must be in the corona of $21-5=15 \mathrm{R}$-stars. But there is only 14 R -stars. Therefore an S_{6}^{1}-decomposition of $M_{8,7}$ does not exist.

Lemma 3.8 If an S_{6}^{1}-decomposition of $M_{n, 6}$ exists, then $n \equiv 0(\bmod 4)$.

Proof. We know that the number of L-stars equals the number of R-stars in the decomposition by Lemma 3.6. The total number of edges in $M_{n, 6}$ is $6 n$. Since each star contains 2 edges then there must be a total of $3 n$ stars in the decomposition;
$3 n / 2$ of them are L-stars and $3 n / 2$ of them are R-stars.
Define the total degree of a vertex in a mixed graph as the edge degree plus indegree plus out-degree of the vertex. In the subgraph of $M_{n, 6}$ induced by the R-stars, each of the R-vertices must be of total degree a multiple of 6 . Now each L-star contributes exactly one edge or one arc to each of the R -vertices. So the number of L-stars in a decomposition must be a multiple of 6 . Hence it is necessary that $3 n / 2 \equiv 0(\bmod 6)$. That is, $n \equiv 0(\bmod 4)$ is necessary, as claimed.

Lemma 3.9 An S_{6}^{1}-decomposition of $M_{8,8}$ exists.

Proof. Let the complete bipartite mixed graph have partite sets $\left\{0_{1}, 1_{1}, \ldots, 7_{1}\right\}$ and $\left\{0_{2}, 1_{2}, \ldots, 7_{2}\right\}$. Consider the blocks:
$\left\{\left[i_{1}, i_{2},(i+1)_{2} ;(i+2)_{2},(i+3)_{2},(i+4)_{2},(i+5)_{2}\right]_{6}^{1},\left[i_{1},(i+2)_{2},(i+3)_{2} ;(i+1)_{2}, i_{2},(i+\right.\right.$ $\left.6)_{2},(i+7)_{2}\right]_{6}^{1},\left[i_{2},(i+3)_{1},(i+4)_{1} ;(i+7)_{1}, i_{1},(i+1)_{1},(i+2)_{1}\right]_{6}^{1},\left[i_{2},(i+1)_{1},(i+2)_{1} ;(i+\right.$ $\left.\left.6)_{1},(i+3)_{1},(i+4)_{1},(i+5)_{1}\right]_{6}^{1} \mid i=0,1,2, \ldots, 7\right\}$
where vertex labels are reduced modulo 8. These form an S_{6}^{1}-decomposition of $M_{8,8}$.

Lemma 3.10 An S_{6}^{1}-decomposition of $M_{12,12}$.

Proof. Let the complete bipartite mixed graph have partite sets $\left\{0_{1}, 1_{1}, \ldots, 11_{1}\right\}$ and $\left\{0_{2}, 1_{2}, \ldots, 11_{2}\right\}$. Consider the blocks:
$\left\{\left[i_{1}, i_{2},(i+1)_{2} ;(i+2)_{2},(i+3)_{2},(i+4)_{2},(i+5)_{2}\right]_{6}^{1},\left[i_{1},(i+2)_{2},(i+3)_{2} ;(i+1)_{2},(i+\right.\right.$ $\left.\left.\left.6)_{2},(i+7)_{2},(i+8)_{2}\right]_{6}^{1}\right],\left[i_{1},(i+4)_{2},(i+5)_{2} ; i_{2},(i+9)_{2},(i+10)_{2},(i+11)_{2}\right]_{6}^{1}\right],\left[i_{2},(i+\right.$ $\left.5)_{1},(i+6)_{1} ; i_{1},(i+1)_{1},(i+2)_{1},(i+3)_{1}\right]_{6}^{1},\left[i_{2},(i+1)_{1},(i+2)_{1} ;(i+11)_{1},(i+4)_{1},(i+\right.$
$\left.\left.5)_{1},(i+6)_{1}\right]_{6}^{1},\left[i_{2},(i+3)_{1},(i+4)_{1} ;(i+10)_{1},(i+7)_{1},(i+8)_{1},(i+9)_{1}\right]_{6}^{1} \mid i=0,1,2, \ldots, 11\right\}$ where vertex labels are reduced modulo 12. These form an S_{6}^{1}-decomposition of $M_{12,12}$.

Lemma 3.11 An S_{6}^{1}-decomposition of $M_{8,6}$ exists.

Proof. Let the partite sets of $M_{8,6}$ be $\left\{0_{1}, 1_{1}, \ldots, 7_{1}\right\}$ and $\left\{0_{2}, 1_{2}, 2_{2}, 3_{2}, 4_{2}, 5_{2}\right\}$. Consider the collection of mixed stars S_{6}^{1} :

$$
\begin{aligned}
& {\left[0_{1}, 0_{2}, 1_{2} ; 4_{2}, 2_{2}, 3_{2}, 5_{2}\right]_{6}^{1},\left[0_{1}, 2_{2}, 3_{2} ; 5_{2}, 0_{2}, 1_{2}, 4_{2}\right]_{6}^{1},\left[1_{1}, 0_{2}, 1_{2} ; 4_{2}, 2_{2}, 3_{2}, 5_{2}\right]_{6}^{1},} \\
& {\left[1_{1}, 2_{2}, 3_{2} ; 5_{2}, 0_{2}, 1_{2}, 4_{2}\right]_{6}^{1},\left[2_{1}, 0_{2}, 1_{2} ; 2_{2}, 3_{2}, 4_{2}, 5_{2}\right]_{6}^{1},\left[2_{1}, 4_{2}, 5_{2} ; 3_{2}, 0_{2}, 1_{2}, 2_{2}\right]_{6}^{1},} \\
& {\left[3_{1}, 0_{2}, 1_{2} ; 2_{2}, 3_{2}, 4_{2}, 5_{2}\right]_{6}^{1},\left[3_{1}, 4_{2}, 5_{2} ; 3_{2}, 0_{2}, 1_{2}, 2_{2}\right]_{6}^{1},\left[4_{1}, 2_{2}, 3_{2} ; 0_{2}, 1_{2}, 4_{2}, 5_{2}\right]_{6}^{1},} \\
& {\left[5_{1}, 2_{2}, 3_{2} ; 0_{2}, 1_{2}, 4_{2}, 5_{2}\right]_{6}^{1},\left[6_{1}, 4_{2}, 5_{2} ; 1_{2}, 0_{2}, 2_{2}, 3_{2}\right]_{6}^{1},\left[7_{1}, 4_{2}, 5_{2} ; 1_{2}, 0_{2}, 2_{2}, 3_{2}\right]_{6}^{1},} \\
& {\left[0_{2}, 5_{1}, 6_{1} ; 4_{1}, 2_{1}, 3_{1}, 7_{1}\right]_{6}^{1},\left[0_{2}, 4_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 6_{1}\right]_{6}^{1},\left[1_{2}, 5_{1}, 7_{1} ; 6_{1}, 2_{1}, 3_{1}, 4_{1}\right]_{6}^{1},} \\
& {\left[1_{2}, 4_{1}, 6_{1} ; 7_{1}, 0_{1}, 1_{1}, 5_{1}\right]_{6}^{1},\left[2_{2}, 2_{1}, 3_{1} ; 4_{1}, 5_{1}, 6_{1}, 7_{1}\right]_{6}^{1},\left[2_{2}, 6_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 4_{1}\right]_{6}^{1},} \\
& {\left[3_{2}, 2_{1}, 3_{1} ; 4_{1}, 5_{1}, 6_{1}, 7_{1}\right]_{6}^{1},\left[3_{2}, 6_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 4_{1}\right]_{6}^{1},\left[4_{2}, 0_{1}, 1_{1} ; 6_{1}, 4_{1}, 5_{1}, 7_{1}\right]_{6}^{1}} \\
& {\left[4_{2}, 4_{1}, 5_{1} ; 7_{1}, 2_{1}, 3_{1}, 6_{1}\right]_{6}^{1},\left[5_{2}, 0_{1}, 1_{1} ; 6_{1}, 4_{1}, 5_{1}, 7_{1}\right]_{6}^{1},\left[5_{2}, 4_{1}, 5_{1} ; 7_{1}, 2_{1}, 3_{1}, 6_{1}\right]_{6}^{1} .}
\end{aligned}
$$

These stars form the desired decomposition.

Lemma 3.12 An S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$ exists for all $n_{1} \equiv 0(\bmod 8)$ and $n_{2} \equiv 0$ $(\bmod 6)$.

Proof. Suppose $n_{1} \equiv 0(\bmod 8)$ and $n_{2} \equiv 0(\bmod 6)$. Let $M=n_{1} / 8$ and $N=n_{2} / 6$. With

$$
\begin{gathered}
X_{i}=\left\{1_{1, i}, 2_{1, i}, \ldots, 8_{1, i}\right\} \text { for } i=1,2, \ldots, M \text { and } \\
Y_{j}=\left\{1_{2, j}, 2_{2, j}, \ldots, 6_{2, j}\right\} \text { for } j=1,2, \ldots, N,
\end{gathered}
$$

for all $i \in\{1,2, \ldots, M\}$ and $j \in\{1,2, \ldots, N\}$ there is an S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{j} by Lemma 3.11 (since $\left|X_{i}\right|=8$ and $\left|Y_{j}\right|=6$). This collection of $M N$ decompositions forms an $S_{6^{-}}^{1}$ decomposition of $M_{n_{1}, n_{2}}$ for all $n_{1} \equiv 0(\bmod 8)$ and $n_{2} \equiv 0(\bmod 6)$.

Lemma 3.13 An S_{6}^{1}-decomposition of $M_{8,12}$ exists.

Proof. Let the partite sets of $M_{8,12}$ be $\left\{0_{1}, 1_{1}, \ldots, 7_{1}\right\}$ and $\left\{0_{2}, 1_{2}, \ldots, 11_{2}\right\}$. Consider the collection of mixed stars S_{6}^{1} :

$$
\begin{aligned}
& {\left[0_{1}, 0_{2}, 1_{2} ; 4_{2}, 2_{2}, 3_{2}, 5_{2}\right]_{6}^{1},\left[0_{1}, 2_{2}, 3_{2} ; 5_{2}, 0_{2}, 1_{2}, 4_{2}\right]_{6}^{1},\left[0_{1}, 6_{2}, 7_{2} ; 10_{2}, 8_{2}, 9_{2}, 11_{2}\right]_{6}^{1} \text {, }} \\
& {\left[0_{1}, 8_{2}, 9_{2} ; 11_{2}, 6_{2}, 7_{2}, 10_{2}\right]_{6}^{1},\left[1_{1}, 0_{2}, 1_{2} ; 4_{2}, 2_{2}, 3_{2}, 5_{2}\right]_{6}^{1},\left[1_{1}, 2_{2}, 3_{2} ; 5_{2}, 0_{2}, 1_{2}, 4_{2}\right]_{6}^{1} \text {, }} \\
& {\left[1_{1}, 6_{2}, 7_{2} ; 10_{2}, 8_{2}, 9_{2}, 11_{2}\right]_{6}^{1},\left[1_{1}, 8_{2}, 9_{2} ; 11_{2}, 6_{2}, 7_{2}, 10_{2}\right]_{6}^{1},\left[2_{1}, 0_{2}, 1_{2} ; 2_{2}, 3_{2}, 4_{2}, 5_{2}\right]_{6}^{1} \text {, }} \\
& {\left[2_{1}, 4_{2}, 5_{2} ; 3_{2}, 0_{2}, 1_{2}, 2_{2}\right]_{6}^{1},\left[2_{1}, 6_{2}, 7_{2} ; 8_{2}, 9_{2}, 10_{2}, 11_{2}\right]_{6}^{1},\left[2_{1}, 10_{2}, 11_{2} ; 9_{2}, 6_{2}, 7_{2}, 8_{2}\right]_{6}^{1} \text {, }} \\
& {\left[3_{1}, 0_{2}, 1_{2} ; 2_{2}, 3_{2}, 4_{2}, 5_{2}\right]_{6}^{1},\left[3_{1}, 4_{2}, 5_{2} ; 3_{2}, 0_{2}, 1_{2}, 2_{2}\right]_{6}^{1},\left[3_{1}, 6_{2}, 7_{2} ; 8_{2}, 9_{2}, 10_{2}, 11_{2}\right]_{6}^{1} \text {, }} \\
& {\left[3_{1}, 10_{2}, 11_{2} ; 9_{2}, 6_{2}, 7_{2}, 8_{2}\right]_{6}^{1},\left[4_{1}, 2_{2}, 3_{2} ; 0_{2}, 1_{2}, 4_{2}, 5_{2}\right]_{6}^{1},\left[4_{1}, 8_{2}, 9_{2} ; 6_{2}, 7_{2}, 10_{2}, 11_{2}\right]_{6}^{1} \text {, }} \\
& {\left[5_{1}, 2_{2}, 3_{2} ; 0_{2}, 1_{2}, 4_{2}, 5_{2}\right]_{6}^{1},\left[5_{1}, 8_{2}, 9_{2} ; 6_{2}, 7_{2}, 10_{2}, 11_{2}\right]_{6}^{1},\left[6_{1}, 4_{2}, 5_{2} ; 1_{2}, 0_{2}, 2_{2}, 3_{2}\right]_{6}^{1} \text {, }} \\
& {\left[6_{1}, 10_{2}, 11_{2} ; 7_{2}, 6_{2}, 8_{2}, 9_{2}\right]_{6}^{1},\left[7_{1}, 4_{2}, 5_{2} ; 1_{2}, 0_{2}, 2_{2}, 3_{2}\right]_{6}^{1},\left[7_{1}, 10_{2}, 11_{2} ; 7_{2}, 6_{2}, 8_{2}, 9_{2}\right]_{6}^{1} \text {, }} \\
& {\left[0_{2}, 5_{1}, 6_{1} ; 4_{1}, 2_{1}, 3_{1}, 7_{1}\right]_{6}^{1},\left[0_{2}, 4_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 6_{1}\right]_{6}^{1},\left[6_{2}, 5_{1}, 6_{1} ; 4_{1}, 2_{1}, 3_{1}, 7_{1}\right]_{6}^{1} \text {, }} \\
& {\left[6_{2}, 4_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 6_{1}\right]_{6}^{1},\left[1_{2}, 5_{1}, 7_{1} ; 6_{1}, 2_{1}, 3_{1}, 4_{1}\right]_{6}^{1},\left[1_{2}, 4_{1}, 6_{1} ; 7_{1}, 0_{1}, 1_{1}, 5_{1}\right]_{6}^{1} \text {, }} \\
& {\left[7_{2}, 5_{1}, 7_{1} ; 6_{1}, 2_{1}, 3_{1}, 4_{1}\right]_{6}^{1},\left[7_{2}, 4_{1}, 6_{1} ; 7_{1}, 0_{1}, 1_{1}, 5_{1}\right]_{6}^{1},\left[2_{2}, 2_{1}, 3_{1} ; 4_{1}, 5_{1}, 6_{1}, 7_{1}\right]_{6}^{1} \text {, }} \\
& {\left[2_{2}, 6_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 4_{1}\right]_{6}^{1},\left[8_{2}, 2_{1}, 3_{1} ; 4_{1}, 5_{1}, 6_{1}, 7_{1}\right]_{6}^{1},\left[8_{2}, 6_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 4_{1}\right]_{6}^{1},} \\
& {\left[3_{2}, 2_{1}, 3_{1} ; 4_{1}, 5_{1}, 6_{1}, 7_{1}\right]_{6}^{1},\left[3_{2}, 6_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 4_{1}\right]_{6}^{1},\left[{ }_{2}, 2_{1}, 3_{1} ; 4_{1}, 5_{1}, 6_{1}, 7_{1}\right]_{6}^{1},} \\
& {\left[9_{2}, 6_{1}, 7_{1} ; 5_{1}, 0_{1}, 1_{1}, 4_{1}\right]_{6}^{1},\left[4_{2}, 0_{1}, 1_{1} ; 6_{1}, 4_{1}, 5_{1}, 7_{1}\right]_{6}^{1},\left[4_{2}, 4_{1}, 5_{1} ; 7_{1}, 2_{1}, 3_{1}, 6_{1}\right]_{6}^{1},} \\
& {\left[10_{2}, 0_{1}, 1_{1} ; 6_{1}, 4_{1}, 5_{1}, 7_{1}\right]_{6}^{1},\left[10_{2}, 4_{1}, 5_{1} ; 7_{1}, 2_{1}, 3_{1}, 6_{1}\right]_{6}^{1},\left[5_{2}, 0_{1}, 1_{1} ; 6_{1}, 4_{1}, 5_{1}, 7_{1}\right]_{6}^{1},}
\end{aligned}
$$

$$
\left[5_{2}, 4_{1}, 5_{1} ; 7_{1}, 2_{1}, 3_{1}, 6_{1}\right]_{6}^{1},\left[11_{2}, 0_{1}, 1_{1} ; 6_{1}, 4_{1}, 5_{1}, 7_{1}\right]_{6}^{1},\left[11_{2}, 4_{1}, 5_{1} ; 7_{1}, 2_{1}, 3_{1}, 6_{1}\right]_{6}^{1}
$$

These stars form the desired decomposition.
We now give some general conditions for the existence of an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$.

Theorem 3.14 An S_{6}^{1}-Decomposition of $M_{n_{1}, n_{2}}$ exists for $n_{1} \equiv n_{2} \equiv 0(\bmod 4)$ where $n_{1} \geq 8$, and $n_{2} \geq 8$.

Proof. We consider three cases.

Case 1. Suppose $n_{1} \equiv n_{2} \equiv 0(\bmod 8)$. Let $M=n_{1} / 8$ and $N=n_{2} / 8$. With

$$
\begin{gathered}
X_{i}=\left\{1_{1, i}, 2_{1, i}, \ldots, 8_{1, i}\right\} \text { for } i=1,2, \ldots, M \text { and } \\
Y_{j}=\left\{1_{2, j}, 2_{2, j}, \ldots, 8_{2, j}\right\} \text { for } j=1,2, \ldots, N,
\end{gathered}
$$

for all $i \in\{1,2, \ldots, M\}$ and $j \in\{1,2, \ldots, N\}$ there is an S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{j} by Lemma 3.9 (since $\left.\left|X_{i}\right|=\left|Y_{j}\right|=8\right)$. This collection of $M N$ decompositions forms an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$. See Figure 7 again.

Case 2. Suppose $n_{1} \equiv n_{2} \equiv 4(\bmod 8)$, say $M=\left(n_{1}-12\right) / 8$ and $N=\left(n_{2}-12\right) / 8$. Let

$$
\begin{gathered}
X_{i}=\left\{1_{1, i}, 2_{1, i}, \ldots, 8_{1, i}\right\} \text { for } i=1,2, \ldots, M, \\
Y_{j}=\left\{1_{2, j}, 2_{2, j}, \ldots, 8_{2, j}\right\} \text { for } j=1,2, \ldots, N, \\
X_{M+1}=\left\{1_{1, M+1}, 2_{1, M+1}, \ldots, 12_{1, M+1}\right\} \text { and } Y_{j}=\left\{1_{2, N+1}, 2_{2, N+1}, \ldots, 12_{2, N+1}\right\} .
\end{gathered}
$$

An S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets $\cup_{i=1}^{M} X_{i}$ and $\cup_{j=1}^{N} Y_{j}$ exists by Case $1\left(\right.$ since $\left.\left|\cup_{i=1}^{M} X_{i}\right| \equiv\left|\cup_{j=1}^{N} Y_{j}\right| \equiv 0(\bmod 8)\right)$. An $S_{6^{-}}^{1}$ decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{N+1} exists for each $i=1,2, \ldots, M$ by Lemma 3.13 (since $\left|X_{i}\right|=8$ and $\left|Y_{N+1}\right|=12$). An S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets Y_{j} and X_{M+1} exists for each $j=1,2, \ldots, N$ by Lemma 3.13 (since $\left|Y_{j}\right|=8$ and $\left|X_{M+1}\right|=12$). An S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets X_{M+1} and Y_{N+1} exists by Lemma 3.10 (since $\left|X_{M+1}\right|=12$ and $\left|Y_{N+1}\right|=12$). This collection of decompositions form an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$. See Figure 9 again.

Case 3. Suppose $n_{1} \equiv 0(\bmod 8)$ and $n_{2} \equiv 4(\bmod 8)$, say $M=n_{1} / 8$ and $N=$ $\left(n_{2}-12\right) / 8$. Let X_{i} for $i=1,2, \ldots, M$ be as defined in Case 1 , and let Y_{j} for $j=$ $1,2, \ldots, N+1$ be as defined in Case 2. An S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets $\cup_{i=1}^{M} X_{i}$ and $\cup_{j=1}^{N} Y_{j}$ exists by Case 1 (since $\left|\cup_{i=1}^{M} X_{i}\right| \equiv 0$ $(\bmod 8)$ and $\left.\left|\cup_{j=1}^{N} Y_{j}\right| \equiv 0(\bmod 8)\right)$. An S_{6}^{1}-decomposition of the complete bipartite mixed graph with partite sets X_{i} and Y_{N+1} exists for each $i=1,2, \ldots, M$ by Lemma 3.13 (since $\left|X_{i}\right|=8$ and $\left|Y_{N+1}\right|=12$). This collection of decompositions form an S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$. See Figure 8 again.

This result gives only the existence of S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$ where $n_{1} \equiv$ $n_{2} \equiv 0(\bmod 4)$, and where $n_{1} \equiv 0(\bmod 8)$ and $n_{2} \equiv 0(\bmod 6)$. The case for $n_{1} \equiv n_{2} \equiv 2(\bmod 4)$ should also be considered for future research. We leave the case where either n_{1} or n_{2} is odd unaddressed, with the exception of an S_{6}^{1}-decomposition of $M_{8,7}$ which does not exist by Lemma 3.7.

3.4 An S_{6}^{2}-decomposition of $M_{n_{1}, n_{2}}$

Recall that a S_{6}^{2}-block with vertex set $\{b, c, g, d, f, e\}$ will be denoted by $[a, b, d ; d$, $e, f, g]$ as illustrated in Figure 6. Let $M_{n_{1}, n_{2}}$ be defined as in the previous section. A necessary condition for the existence of an S_{6}^{2}-decomposition of the complete mixed graph $M_{n_{1}, n_{2}}$ is that one of n_{1} and n_{2} must be even. This is because in $M_{n_{1}, n_{2}}$, there are $n_{1} n_{2}$ edges and S_{6}^{2} has 2 edges. So if a decomposition exists then we need $2 \mid n_{1} n_{2}$. That is, at least one of n_{1}, n_{2} must be even. As an example, Figure 11 shows an S_{6}^{2}-decomposition of $M_{1,6}$.

Lemma 3.15 An S_{6}^{2}-decomposition of $M_{1,8}$ exists.

Proof. Consider the partite sets $X=\left[1_{1}\right]$ and $Y=\left[1_{2}, 2_{2}, 3_{2}, \ldots, 8_{2}\right]$. Consider the blocks:

$$
\begin{aligned}
& {\left[1_{1}, 1_{2}, 2_{2} ; 3_{2}, 4_{2}, 5_{2}, 6_{2}\right],\left[1_{1}, 3_{2}, 4_{2} ; 5_{2}, 6_{2}, 7_{2}, 8_{2}\right],\left[1_{1}, 5_{2}, 6_{2} ; 7_{2}, 8_{2}, 1_{2}, 2_{2}\right]} \\
& {\left[1_{1}, 7_{2}, 8_{2} ; 1_{2}, 2_{2}, 3_{2}, 4_{2}\right] .}
\end{aligned}
$$

Therefore we can decompose $M_{k, 6}$ by taking k copies of the $M_{1,6}$ case. Similarly, we can decompose $M_{k, 2 l}$ by taking copies of the $M_{k, 2 l}$ case for all $k \in \mathbb{N}, l \in \mathbb{N}$ and $l \geq 3$.

Lemma 3.16 An S_{6}^{2}-decomposition of $M_{2,7}$ does not exist.

Proof. First $M_{2,7}$ has 14 edges. This implies that an S_{6}^{2}-decomposition of $M_{2,7}$ requires 7 copies of S_{6}^{2}. Now, consider the partite sets $X=\left[1_{1}, 2_{1}\right]$ and $Y=$ $\left[1_{2}, 2_{2}, \ldots, 7_{2}\right]$. Each vertex in X has degree 7 . Since we only have two vertices

Figure 11: S_{6}^{2}-decomposition of $M_{1,6}$
in X, then each must be the centre of a star in the decomposition, and so is even degree in each star. So no decomposition exists.

The same result holds for $M_{4,7}$. In fact, the same argument holds for any $M_{2, n_{2}}$ and $M_{4, n_{2}}$, where n_{2} is odd.

Theorem 3.17 An S_{6}^{2}-decomposition of $M_{n_{1}, n_{2}}$ exists if and only if $n_{1} \in \mathbb{N}, n_{2} \equiv 0$ (mod 2), and $n_{2} \geq 6$ (where n_{1} and n_{2} can be interchanged).

Proof. $M_{n_{1}, n_{2}}$ has $n_{1} n_{2}$ edges and S_{6}^{2} has two edges. So if a decomposition exists, then one of n_{1} or n_{2} must be even (say n_{2}). Since S_{6}^{2} is a bipartite mixed graph with one partite set of size 6 , then either n_{1} or $n_{2} \geq 6$. Suppose $n_{2} \in\{2,4\}$ and $n_{1} \geq 6$. Then in an S_{6}^{2}-decomposition of $M_{n_{1}, n_{2}}$, we must have the centre of each S_{6}^{2} as an element of Y (since $|Y| \leq 4)$. Now each vertex of Y has edge degree n_{1}; the edge
degree of the centre of S_{6}^{2} is 2 . So in an S_{6}^{2}-decomposition, n_{1} must be even when $n_{2} \in\{2,4\}$ (Lemma 3.1).

For sufficiency, we consider the following cases where

1. $n_{2}=\{2,4\}$ and $n_{1} \geq 6$ is even
2. $n_{2} \geq 6$ is even and $n_{1} \in \mathbb{N}$.

Since the decomposition exist for $M_{k, 2 l}$ for any $k \in \mathbb{N}$ and $l \geq 3$, then the result holds for $n_{2}=2$ and $n_{1} \geq 6$ is even, if we take $k=n_{2}=2$ and $2 l=n_{1}$. Similarly for $k=n_{2}=4$ and $2 l=n_{1}$. Also since we can decompose $M_{k, 2 l}$ for any $k \in \mathbb{N}$ and $l \geq 3$, then S_{6}^{2}-decomposition of $M_{n_{1}, n_{2}}$ exist if we take $k=n_{1} \in \mathbb{N}$ and $2 l=n_{2}$ for $l \geq 3$.

In conclusion, we have given necessary and sufficient conditions for an $S_{6}^{i}-$ decomposition of $M_{n_{1}, n_{2}}$ for $i \in\{0,2,4\}$ in Theorems 3.5 and 3.17. We have also given some S_{6}^{1}-decomposition of $M_{n_{1}, n_{2}}$ (and hence some S_{6}^{3}-decomposition of $M_{n_{1}, n_{2}}$) in Theorem 3.14.

4 SOME MIXED STAR DECOMPOSITIONS OF COMPLETE MIXED GRAPHS WITH A HOLE AND CONCLUSIONS

4.1 Introduction

We recall that a mixed graph on v vertices is a graph consisting of a set of ordered and unordered pairs, denoted by (x, y) and $[x, y]$ respectively. The ordered pair (x, y) is called an arc and the unordered pair $[x, y]$ is called an $e d g e$. We also recall that the complete mixed graph on v vertices, denoted by M_{v}, is the mixed graph in which for every two distinct vertices x and y, we have the following $(x, y),(y, x)$ and $[x, y]$. The complete mixed graph on v vertices with a hole of size w is the mixed graph with with vertex $V=V_{v-w} \cup V_{w}$, where $\left|V_{v-w}\right|=v-w,\left|V_{w}\right|=w$, and $V_{v-w} \cap V_{w}=\varnothing$, with edge set

$$
E=\left\{a b \mid a \neq b,\{a, b\} \subset V \text { and }\{a, b\} \not \subset V_{w}\right\}
$$

and arc set

$$
A=\left\{(a, b),(b, a) \mid a \neq b,\{a, b\} \subset V \text { and }\{a, b\} \not \subset V_{w}\right\} .
$$

This mixed graph is denoted $M(v, w)$. This is obtained by taking a complete mixed graph on v vertices and removing the edges and arc of a complete mixed graph on w vertices.

An example of a recently presented decomposition of complete graph with a hole can be found in [1]. A C_{4} decomposition of $K(v, w)$ exists if and only if $v-w \equiv 0$ $(\bmod 8)$ and $w \equiv 1(\bmod 2)[6]$. See $[5,6,14]$ for the decomposition of $K(v, w)$ into m-cycles for $m \in\{3,4,5,6,7,8,10,12,14\}$. Notice that when $m=3$, this is equivalent to a Steiner triple system with a hole.

4.2 Some S_{6}^{i}-decompositions of $M(v, w)$.

Notice that we can decompose $M(v, w)$ into a complete mixed graph M_{v-w} and a complete bipartite mixed graph $M_{v-w, w}$. This observation allows us to use the results of Chapters 2 and 3 to get some S_{6}^{i}-decompositions of $M(v, w)$. Thus, the following results show some of the S_{6}^{i}-decompositions of complete mixed graphs with a hole.

Lemma 4.1 An S_{6}^{1}-decomposition of $M(v, w)$ exists for $v-w \equiv 0(\bmod 8)$ and $w \equiv 0$ $(\bmod 6)$.

Proof. We can decompose $M(v, w)$ into M_{v-w} and $M_{v-w, w}$. Since $v-w \equiv 0(\bmod$ 8) then by [10] there exists an S_{6}^{1}-decomposition of M_{v-w}. Since $v-w \equiv 0(\bmod 8)$ and $w \equiv 0(\bmod 6)$ then by Lemma 3.12 there exists an S_{6}^{1}-decomposition of $M_{v-w, w}$. These two decompositions together give an S_{6}^{1}-decomposition of $M_{v, w}$, as claimed.

Lemma 4.2 An S_{6}^{1}-Decomposition of $M(v, w)$ exists for $v-w \equiv 0(\bmod 4), w \equiv 0$ $(\bmod 4), v-w \geq 12$, and $w \geq 8$.

Proof. We can decompose $M(v, w)$ into M_{v-w} and $M_{v-w, w}$. Since $v-w \equiv 0(\bmod$ 4) and $v-w \geq 12$ then by [10] there exists an S_{6}^{1}-decomposition of M_{v-w}. Since $v-w \equiv 0(\bmod 4), w \equiv 0(\bmod 4)$, and $v-w \geq 8$, then by Theorem 3.14 there exists and S_{6}^{1}-decomposition of $M_{v-w, w}$. These two decompositions together give an S_{6}^{1}-decomposition of $M(v, w)$, as claimed.

Recall that the converse of S_{6}^{1} is obtained by reversing the orientation of all the arcs which gives S_{6}^{3}. Since $M_{v, w}$ is self converse, therefore Lemma 4.1 and Lemma 4.2 imply S_{6}^{3} decomposition of $M(v, w)$.

Lemma 4.3 An S_{6}^{2}-Decomposition of $M(v, w)$ exists for $v-w \equiv 0$ or $1(\bmod 4)$, $w \equiv 0(\bmod 2), v-w \geq 8$, and $w \geq 6$.

Proof. We can decompose $M_{v, w}$ into M_{v-w} and $M_{v-w, w}$. Since $v-w \equiv 0$ or $1(\bmod$ 4) and $v-w \geq 8$ then by [10] there exists an S_{6}^{1}-decomposition of M_{v-w}. Since $v-w \equiv 0$ or $1(\bmod 4), w \equiv 0(\bmod 2)$, and $w \geq 6$, then by Theorem 3.17 there exists an S_{6}^{2}-decomposition of $M_{v-w, w}$. These two decompositions together give an S_{6}^{2}-decomposition of $M_{v, w}$, as claimed.

Since $M_{v, w}$ is self converse, therefore Lemma 4.3 also implies S_{6}^{4} decomposition of $M_{v, w}$.

4.3 Future Research

In future research, one could explore necessary and sufficient conditions for the existence of an S_{6}^{1}-decomposition of the complete bipartite mixed graphs. This would complete the results for S_{6}^{1}-decomposition we give in Chapter 3. Necessary and sufficient conditions for S_{6}^{i}-decomposition of $\lambda M_{n_{1}, n_{2}}$ and $\lambda M(v, w)$ are a largely unexplored topic.

4.4 Conclusion

We have given decompositions of various complete mixed graphs into isomorphic copies of partial orientations of 6 -stars which have twice as many arcs as edges.

In Chapter 1 we gave necessary and sufficient conditions for an S_{6}^{i}-decompositions of λM_{v} for all λ and each $i \in\{1,2,3,4\}$, in Chapter 2, we gave necessary and sufficient
conditions for an S_{6}^{i}-decompositions of $M_{n_{1}, n_{2}}$ for $i \in\{0,2,4\}$ and gave some results concerning such decompositions for $i \in\{1,3\}$. In Chapter 4 we used the results from Chapter 2 and Chapter 3 to get some easy S_{6}^{i}-decompositions of $M(v, w)$ for $i \in\{1,2,3\}$.

BIBLIOGRAPHY

[1] R. Back, A.B. Castano, R. Galindo, and J. Finocchiaro. A decomposition of a complete graph with a hole. Open Journal of Discrete Mathematics, 11: 1-12, 2021.
[2] R. A. Beeler and A. M. Meadows. Decomposition of mixed graphs using partial Orientations of P_{4} and S_{3}. Int. J. of Pure Appl. Math., 56: 63-67, 2009.
[3] J.A. Bondy and U.S.R. Murty. Graph Theory. Springer, 2008.
[4] J. Bosák. Decompositions of Graphs, volume 47 of Mathematics and its Applications, East European Series. Kluwer Academic Publishers Group, Dordrecht, 1990.
[5] D. Bryant, D. Hoffman, and C. Rodger. 5-cycle systems with holes. Design, Codes and Cryptography, 8: 103-108, 1996.
[6] D. Bryant, C. Rodger, and E. Spicer. Embeddings of m-cycle systems and incomplete m-cycle systems: $m \leq 14$. International Journal of Pure and Applied Mathematics, 171: 55-75, 1997.
[7] P. Cain. Decomposition of complete graphs into stars. Bull. Austral. Maths. Soc., 10: 23-30, 1974.
[8] B. Coker, G. D. Coker, and R. Gardner. Decompositions of various complete graphs into isomorphic copies of the 4 -cycle with a pendant edge. International Journal of Pure and Applied Mathematics, 74(4): 485-492, 2012.
[9] C. J. Colbourn, D.G. Hoffman, and C. A. Rodger. Directed star decompositions of directed multigraphs. Discrete Mathematics, 97: 139-148, 1991.
[10] C. Culver and R. Gardner. Decompositions of the complete mixed graph into mixed stars. International Journal of Innovation in Sci. and Math., 8(3): 110114, 2020.
[11] R. Diestel. Graph Decompositions. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1990. A study in infinite graph theory.
[12] R. Gardner. Triple systems from mixed graphs. Bull. Inst. Combin. Appl., 27: 95-100, 1999.
[13] H.C. Lee. Multidecompositions of complete bipartite graphs into cycles and stars. Ars Combin., 108(3): 355-364, 2013.
[14] E. Mendelsohn and A. Rosa. Embedding maximum packings of triples. Congressus Numerantium, 40: 235-237, 1983.
[15] S. Shige-eda K. Ushio S. Yamamoto, H. Ikeda and N. Hamada. On clawdecomposition of complete graphs and complete Bigraph. Hiroshima Math. J., 5: 33-42, 1975.
[16] D. Sotteau. Decomposition of $K_{m, n}$ into cycles (circuits) of length $2 k$. Journal of Combinatorial Theory, Series B, 30(1): 75-81, 1981.

VITA

KAZEEM ADEYINKA KOSEBINU

Education:
B.S. Mathematics, Lagos State University, Lagos, Nigeria 2012
M.S. Mathematical Sciences, East Tennessee State
University Johnson City, Tennessee 2021
Professional Experience: High School Teacher, Great Omega International School, Lagos, Nigeria, 2016-2017
Research and Planning Officer, Lagos State Waterways Authority, Lagos, Nigeria, 2017-2019
Graduate Assistant, East Tennessee State University, Johnson City, Tennessee, 2019-2021

[^0]: This Thesis - unrestricted is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact digilib@etsu.edu.

