
GEORGIA INSTITUTE OF TECHNOLOGY 
OFFICE OF CONTRACT ADMINISTRATION 

SPONSORED PROJECT INITIATION 

Date: August 24, 1979 

Project Title: Syntatic Structure of Information and Information Processes 

Project No: 	G-36-639 

Project Director: Dr. Vladimir Slamecka 

Sponsor: National Science Foundation 

Agreement Period: From 	8/1/79 Until 	1/31/82 	(Grant Period)  

     

Type Agreement: Grant No. IST-7827002, dtd. August 1, 1979 

Amount: $137,790 NSF (G-36-639) 
7,326  GIT (G-36-333) 

$145,116  Total 

   

Reports Required: Annual Progress Report(s); Final Project Report 

Sponsor Contact Person (s): 

Technical Matters Contractual Matters 
(thru OCA) 

 

NSF Program Official 
Edward C. Weiss 
Program Director 
Fundamental and Advanced Research Program 
Division of Information Science and Technology 
Directorate for Scientific, Technological, and 

International Affairs 
National Science Foundation 
Washington, D. C. 20550 

202/632-5818 

Defense Priority Rating: n/a 

NSF Grants Official 
Philip M. King 
MPE/STIA Branch, Section II 
Division of Grants and Contracts 
Directorate for Administration 
National Science Foundation 
Washington, D. C. 20550 

202/632-5965 

Assigned to: ICS (School/Laboratory) 

 

COPIES TO: 

Project Director 

Division Chief (EES) 

School/Laboratory Director 

Dean/Director—EES 

Accounting Office 

Procurement Office 

Security Coordinator (OCA) 

„Aports Coordinator (OCA) 

Library. Technical Reports Section 

EES Information Office 

EES Reports & Procedures 

Project File (OCA) 

Project Code (GTRI) 

Other 	  



Project Title: 

Project No: 

Project Director: 

Sponsor: 

EES Public Relations (2) 
Computer Input 
Project File 
Other 

GEORGIA INSTITUTE OF TECHNOLOGY 	 OFFICE OF CONTRACT ADMINISTRATION 

SPONSORED PROJECT TERMINATION SHEET 

Date 
	

6/15/82 

Syntatic Structure of Information and Information Processes 

G-36-639 

Dr. Vladimir Slamecka 

National Science Foundation 

Effective Termination Date: 	1/31/82  

Clearance of Accounting Charges: 	1/31/82. 

 Grant/Contract Closeout Actions Remaining: 

• 

❑ Final Invoice and Closing Documents 

Final Fiscal Report 

❑ Final Report of Inventions 

❑ Govt. Property Inventory & Related Certificate 

❑ Classified Material Certificate 

❑ Other 	  

Assigned to: 

COPIES TO: 

  

Information and Computer Sciences 

 

(Schoo l /kit:IBM:4HW 

   

      

ci 

Administrative Coordinator 
Research Property Management 
Accounting 
Procurement/EES Supply Services 

Research Security Services 
Reports Coordinator (OCA) 
Legal Services (OCA) 
Library 

FORM OCA 10:781 



NATIONAL SCIENCE FOUNDATION \- 	 FINAL PROJECT REPORT 
Washington, D.C. 20550 	 NSF•FORM 9SA 

PLEASE READ INSTRUCTIONS ON REVERSE BEFORE COMPLETING 

PART I—PROJECT IDENTIFICATION INFORMATION 

1. Institution and Address 
.Georgia Institute of Technology 
•225 North Ave. NW 
Atlanta, GA 30332 

2. NSF Program Information 
Science & Technology 

3. NSF Award Number 

IST-7827002 
4. Award Period 

From 	8/1/79 To  1/31/82 ----- 
5. Cumulative Award Amount 

$137,790 
6. Project Title 

Syntactic Structure of Information and Information Processes 

PART II—SUMMARY OF COMPLETED PROJECT (FOR PUBLIC USE) 

The objects of this long-term research into the syntactic structure of 
information and information processes are the shape of natural language words, 
and the nature of the type-token relation for natural language words in 
contiguous text. 	In the present research phase, advanced instrumentation has 
been developed for eventual measurement of Shannon's redundancy curve as a 
function of sign shape. 	Based on 30,000 word measurements, an Mk VI Vernier 
eidometer has been tested to a precision of 3.8 bpm; the design studies show 
that the instrument will come close to the original design specification of 
5.0 bpm. 	An electronic teescope was designed, built, and tested; and a new 
method was developed for timing the teescope for information measurement. 
The nature of information decay in short-term memory was studied in 
relation to measurement of interpretation errors, and a computer program was 
written to assist this measurement. 

PART III—TECHNICAL INFORMATION (FOR PROGRAM MANAGEMENT USES) 

1. 

NTM(checkamvoiniatebk)cks) 	 NONE ATTACHED PREVIOUSLY 
FU R NISHED 

TO BE FURNISHED 
SEPARATELY TO PROGRAM 

Check ( ✓ ) - 	Approx. Daft 

a, 	Abstracts of Theses 
 

b. Publication Citations ✓ 

c. Data on Scientific Collaborators ✓ 
(1. 	in Iormation on inventions ✓ 
e. 	'IN:finical Description uf Project and Results 7,,7.77..W.W 

,:: ■*' 
...,:',Nz 

If 
f. 	01ber(apcoM 

2. Principal Investigator/Project Director Name (Typed) 

Vladimir Slamecka 

3. Principal I nvi-stigator/Project Director Signature 4. Date 

.1-As/el, 
orrri 9/1/1 (;)• /8) StiptilsnitoS 1111 1.10YliktiN 1 111111111% 	 OM APIMIrifti OMR Nn P1101011 



GEORGIA INSTITUTE OF TECHNOLOGY 
SCHOOL OF INFORMATION AND COMPUTER SCIENCE • ATLANTA, GEORGIA 30332 • (404) 894-3152 

April 28, 1982 

Dr. Edward C. Weiss 
Division of Information Science 

and Technology 
National Science Foundation 
Washington, DC 20550 

Dear Dr. Weiss: 

This letter and its enclosures serve as the final report on our 
two-year NSF grant, IST-7827002, "Syntactic Structure of Information 
and Information Processes." The grant expired on January 31, 1982. 
The attached technical reports (Appendices B-F) emanated from the project 
since the submission of our last report; that report contained papers 
written prior to its date. A complete list of 19 papers produced during 
the two-year grant period appears in Appendix A. 

The objectives of our research were three-fold: advances in 
instrumentation for basic research in information science; explication 
of interpretation errors, a concept used in place of Miller-Bruner-
Postman's original concept of placement error; and measurement of 
Shannon's Redundancy Curve as a function of shape. With respect to the 
first objective, the intention was to develop a more precise version of 
the eidometer, and to design, construct, and develop measurement methods 
for an electronic teescope. The greater part of the effort of the project 
was expended on making 30,000 word measurements for use in designing the 
Mk VI Vernier-scale eidometer. The eidometer achieves a precision of 
3.8 bpm, compared to 2.8 bpm by the older Mk IV design. The word measure-
ments are complete, and the Mk VI design is nearly complete, although 
several months of work will be required to finish it. The design studies 
show that the instrument will come close to the original design requirement 
of 5.0 bpm. 

The design of the electronic teescope was completed and the bid for 
its construction was won by E.J. McGowan Associates of Chicago, who 
subsequently built and delivered the system. A method of timing the 
teescope for information measurements was developed; a paper on this 
technique, authored by Richard Lo, will be forthcoming. 

Substantial progress has been made in studies to determine the nature 
of information decay in short-term memory, and to explicate the inter-
pretation error concept. Four major effects on the cause of most of the 
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Dr. Edward C. Weiss 
April 28, 1982 
Page 2 

loss of information in short-term memory which must be accounted for in 
the measurement of interpretation errors are: transposition errors, 
displaced strings, confusion errors, and serial information decay. A 
computer program was developed to analyze teescope data for these effects, 
and to determine the relative influence each has on the measurement of 
interpretation errors. 

We have not been able to complete the measurement of Shannon's 
Redundancy Curve as a function of shape, or to carry out the final 
analysis of information decay in immediate memory. In part this was 
due to a six-month delay in the delivery of the electronic teescope. 
Also, although the project was completed within the original budget, 
inflation during the three and a half years since the submission of our 
proposal reduced the value of the budget by approximately one-third, 
forcing us to decrease the level of man-effort and to sacrifice in the area 
of instrumentation. 

I trust that you will consider the productivity of the project, as 
represented by 19 papers, to be above the ordinary. In addition, five 
other papers are in the process of being written since the expiration of 
the project. 

On behalf of the School of ICS and my colleagues and students who 
participated in this project, may I take this opportunity to express to 
the National Science Foundation my sincere appreciation for providing 
support for the project. It gives me pleasure to thank you personally 
for your support of our work and for your dedicated guidance of basic 
research in information science. 

Sincerely yours, 

Vladimir Slamecka 
Principal Investigator 

cc: Director, ICS 
Office of Contract Administration 

Enclosures 



APPENDIX A 

LIST OF PAPERS PRODUCED BY 
SYNTACTIC STRUCTURE OF INFORMATION PROJECT 

1. Pearson, C. "The Problem of Communicating Results in Empirical 
Semiotics." Presented at the SIG/ES Workshop on Immediate Problems 
in Empirical Semiotics held at the Second International Semiotics 
Congress; Vienna, Austria; July 2-6, 1979. Submitted for inclusion 
in the published proceedings. 

2. Pearson, C. "Information Decay in Immediate Memory: A Second Order 
Correction to the Law of Word Interpetation." Presented at the 
Experimental Semiotics Session of the Second International Semiotics 
Congress; Vienna, Austria; July 2-6, 1979. Submitted for inclusion 
in the published proceedings. 

3. Pearson, C. "Empirical Methodology in Information Science and 
Semiotics." Presented at the Workshop on Fuzzy Formal Semiotics 
and Cognitive Processes held at the Second International Semiotics 
Congress; Vienna, Austria; July 2-6, 1979. Submitted for inclusion 
in the published proceedings. 

4. Pearson, C. "Theses of Empirical Semiotics." Presented at the 
Theses Session of the Second International Semiotics Congress; Vienna, 
Austria; July 2-6, 1979. Submitted for inclusion in the published 
proceedings. 

5. Pearson, C. "Semiotics and the Measurement of Shape." A Seminar 
presented to the Technische Universitat Berlin; July, 1979. English 
version submitted to Progress in Information Science and Technology; 
German version submitted to Zeitschrift _far Semiotik. 

6. Pearson, C. "Performance Evaluation of the Mk V Eidometer." Presented 
to the Symposium on Empirical Semiotics sponsored by SIG/ES at the 
1979 Annual Conference of the Semiotic Society of America; Bloomington, 
Indiana; October, 1979. 

7. Howell, D.P. "A New Technique for Eidometer Construction." Presented 
to the Symposium on Empirical Semiotics sponsored by SIG/ES at the 
1979 Annual Conference of the Semiotic Society of America; Bloomington, 
Indiana; October, 1979. 

8. Pearson, C. "Attributes of Information." Presented to the session 
on Foundations of Information Science at the Annual Conference of the 
American Society for Information Science; Minneapolis, Minn., 
October, 1979. 



9. Pearson, C. "The Echelon Counter: A New Instrument for Measuring the 
Vocabulary Growth Rate and the Type-Token Relationship." Presented 
to the session on Concepts and Measurement sponsored by SIG/FIS at 
the Annual Conference of the American Society for Information Science; 
Anaheim, California; October, 1980. Published in Communicating  
Information: Proceedings of the 43rd ASIS Annual Meeting, 17(1980), 
p367-369. 

10. Pearson, C. "The Basic Concept of the Sign." Presented to the 
session on Concepts and Measurement sponsored by SIG/FIS at the 
Annual Conference of the American Society for Information Science; 
Anaheim, California; October, 1980. Published in Communicating  
Information: Proceedings of the 43rd ASIS Annual Meeting, 17(1980), 
p367-369. 

11. Pearson, C. "Information Science: The Challenge of a Basic Science." 
Presented to the session on The Challenge of Information Science 
sponsored by SIG/FIS at the Annual Conference of the American 
Society for Information Science; Anaheim, California; October, 1980. 

12. Lo, R.H. "Measurement of Information Transfer Rates." Presented to 
the Symposium on Empirical Semiotics sponsored by SIG/ES at the 
Annual Conference of the Semiotic Society of America; Lubbock, TX; 
October, 1980. To appear in the published proceedings of the 
conference. 

13. Pearson, C. "The Mark VI: A New Eidometer Design Concept." Presented 
to the Symposium on Empirical Semiotics sponsored by SIG/ES at the 
Annual Conference of the Semiotic Society of America; Lubbock, TX; 
October, 1980. To appear in the published proceedings of the 
conference. 

14. Pearson, C. "Scientific Paradigms for Semiotics and Information 
Science." An invited paper presented to the plenary session on 
Paradigms for Empirical Semiotics at the Annual Conference of the 
Semiotic Society of America; Lubbock, TX; October, 1980. Summary to 
appear in the published proceedings of the conference. 

15. Phongphatar, T. "SemLab's Type-Token Program Now Available on the 
Cyber-70." Press release mailed to journals in information science 
and semiotics; August, 1980. 

16. Pearson, C. "The Role of Scientific Paradigms in Empircal Semiotics." 
Invited address delivered to the plenary session on Paradigms of 
Empirical Semiotics at the Annual Conference of the Semiotic Society 
of America; Lubbock, TX; October, 1980. Summary to appear in the 
published proceedings of the conference. 

17. Flowers, J., C. Pearson, T. Phonphatar. "A Method for Generating 
High Order Markov Words." Presented at the 19th Annual Southeast 
Regional ACM Conference; Atlanta, Georgia; March, 1981. 



18 Pearson, C. "The Semiotic Paradigm." Presented to the session on 
Basic Approaches to Fundamental Research in Information Science 
sponsored by SIG/FIS at the 1981 Annual Conference of the ASIS; 
Washington, DC; October, 1981. 

19. Pearson, C. "Application of the Finite-Difference Calculus to 
the Observation of Symbol Processes." Presented to the session on 
The Role of Mathematics in Semiotic Observations sponsored by SIG/ES 
at the Fourth Annual Symposium on Empirical Semiotics held in 
conjunction with the Sixth Annual Meeting of the Semiotic Society 
of America; Nashville, TN; October, 1981. To appear in the 
Proceedings of the SSA. 
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THE ROLE OF SCIENTIFIC PARADIGMS IN EMPIRICAL SEMIOTICS 

Charls Pearson 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, 30332, USA 

ABSTRACT  

The notion of a "scientific paradigm" was popularized by Thomas Kuhn 

in The Structure of Scientific Revolutions, first published in 1962. For 

Kuhn's purposes, it was not necessary to classify scientific paradigms 

into various categories. However, in order to analyze the paradigms of 

empirical semiotics and determine which paradigms in other empirical 

sciences have analogies which carry over to empirical semiotics and which 

do not, it is necessary to classify scientific paradigms into at least 

five categories. These are: 1) conceptual, philosophical, and linguistic 

paradigms; 2) theoretical paradigms; 3) mathematical paradigms; 

4) experimental paradigms; and 5) applicational paradigms. 

This paper summarizes the above classification system and describes 

and characterizes these five paradigm categories. It falls into the 

area of philosophical semiotics. It assumes an empirical approach to 

semiotic knowledge but is independent of any specific theoretical, 

experimental, or mathematical paradigms. Indeed, it sets the stage for 

any later discussion of such paradigms. 



THE ROLE OF SCIENTIFIC PARADIGMS IN EMPIRICAL SEMIOTICS 

Charls Pearson 

School of Information and Computer Science 
Georgia Institute of Technology 
Atlanta, Georgia 30332 

The notion of a "scientific paradigm" was popularized 
by Thomas Kuhn in The Structure of Scientific Revolutions, 
first published in 1962 [1]. For Kuhn's purposes, it was not 
necessary to classify scientific paradigms into various 
categories. However, in order to analyze the paradigms of 
empirical semiotics and determine which paradigms in other 
empirical sciences have analogies which carry over to empiri-
cal semiotics and which do not, it is necessary to classify 
scientific paradigms into at least five categories. These 
are: 1) conceptual, philosophical, and linguistic paradigms; 
2) theoretical paradigms; 3) mathematical paradigms; 
4) experimental paradigms; and 5) applicational paradigms. 

The purpose of this paper is to motivate the above 
classification system and to describe and characterize these 
five paradigm categories. It falls into the area of philo-
sophical semiotics. It assumes an empirical approach to 
semiotic knowledge but is independent of any specific theo-
retical, experimental, or mathematical paradigms. Indeed, it 
sets the stage for any later discussion of such paradigms. 

INTRODUCTION 

Despite its milleniums-long adumbration, semiotics has 
reached no agreed-upon paradigms, in Kuhn's sense of the word, 
and in fact, there is little agreement on what the competing 
paradigms are. The theoretical paradigms are vague and 
imprecise, the experimental paradigms unrecognized, and the 
mathematical paradigms often ignored. All this makes for 
exceeding difficulties in the communication of results within 
empirical semiotics. 



Scientific communication -- the communication of precise 
and rigorous scientific results -- requires the existence of 
universally agreed-upon paradigms -- or at least universal 
agreement on what the disagreed-upon paradigms are -- in 
order to take place effectively. In the present state of 
empirical semiotics this situation does not exist. In fact, 
the negative status of the situation is self-reinforcing in 
that the inability to communicate effectively, engendered by 
the lack of agreed-upon paradigms, in turn hinders the 
development of agreement on satisfactorily evolved paradigms. 

Some way must be found to break this circle of infinite 
regress. Without agreement on what the other competing para-
digms are and even without precise and explicit understanding 
of our own paradigms, we must begin to acknowledge and talk 
about these paradigms and the role they play in empirical 
analysis. At the SIG/ES Workshop on Immediate Problems in 
Empirical Semiotics held at the Second International Semiotics 
Congress in Vienna last July, Pearson proposed a way of 
attacking this problem [5]. 

As modified and finally adopted by the workshop, and 
later adopted last year by SIG/ES also, as a recommendation 
for all papers within empirical semiotics the proposal 
requires each of us in presenting results in empirical 
semiotics to state our own paradigms. In most cases this 
need not be elaborate or precise -- a few sentences should 
do. But we should be aware of our own, and each other's, 
methodology, procedures, and assumptions. Since most papers 
in empirical semiotics emphasize only one of the five para-
digm types of empirical language, theory, experiment, 
mathematical analysis, or application, this proposal was 
specifically to mention, or state explicitly, the three or 
four paradigms other than the one being specifically 
discussed in the paper. 

If this proposal is adopted for the presentation of 
papers in empirical semiotics generally, then we may expect 
that within only a few short years we may reach agreement on 
the broad outlines of what the competing paradigms are, and 
it will gradually become obvious to us all what needs to be 
done to make them more precise and to empirically assess the 
relative merits of one against the other. Indeed, the theme 
of today's symposium was adopted with this in mind. 



It therefore behooves us to examine the concept of a 
scientific paradigm and to attempt to establish a classifi-
cation into categories. 

In the next section, I discuss five categories of 
scientific paradigms that I think will play an important 
role in the development of a scientific semiotics. The 
conclusions are summarized in section 3 and all references 
are listed alphabetically in section 5. 

THE PARADIGMS OF SCIENCE 

The development and progress of science has been shown 
to depend in an essential way on the process of scientific 
communication. Five different kinds of empirical paradigms 
have been recognized and all five are necessary for effec-
tive scientific communication. These are 1) philosophic, 
conceptual, or linguistic paradigms; 2) theoretical paradigms; 
3) experimental paradigms; 4) mathematical paradigms; and 
5) applicational paradigms. 

Conceptual Paradigms and the Language of Science  

Philosophic, conceptual, or linguistic paradigms provide 
the very language in which the scientist carries out his 
thinking, frames his theories, designs his experiments, 
analyzes his results, etc. Linguistic paradigms embody basic 
metaphysical assumptions, either explicitly or implicitly, 
and provide a terminology, a grammar (phraseology), context, 
point-of-view, WeZtanschauung, and a decision on what problems 
and phenomenas are of of interest and which are to be ignored. 
Examples of several major language paradigms are: 1) empirical 
language; 2) religious language; and 3) literary language. 

Languages are to scientists as coordinate systems to 
mathematicians. There are no right or wrong ones, only better 
or worse ones for particular purposes. And a good one can 
work wonders for creativity while a bad one can block even 
the most powerful thinker. They are nonsubstantive in the 
sense that they are like mathematical coordinate systems. 
A circle may be described equally precisely in polar coor-
dinates or rectangular coordinates; these are merely two 
distinct geometrical languages. 

However, their effects may be drastically substantive 



in that certain empirically substantive questions may be 
drastically easier to express in one language than another. 
This is illustrated in figure 1. Figure 1.a shows a circle 
as described by rectangular coordinates and gives the corres-
ponding algebraic equation. Figure 1.b shows the circle as 
described by polar coordinates, and the much simpler algebraic 
equation associated with the polar description. 

Solution procedures may be substantially easier to 
think out in some language different from the usual one, etc. 
As an example, it was drastically easier for Kepler to dis-
cover and state his laws of planetary motion using Copernicus's 
heliocentric language of astronomy than Ptolemy's geocentric 

X 2 ÷ y 2 = r
o

2 

a) 

r=r0  

Fig. 1. The circle described in both rectangular and 
polar coordinates, and both geometrically and algebra-
ically relative to each. 



language. Discovering the best language for a given branch 
of science is a trial and error process. It can only be 
determined aposteriori, and never apriori. Like other 
empirical paradigms, linguistic paradigms evolve as a result 
of our experience in using them and occasionally go thru 
Kuhnian revolutions. 

Several example linguistic paradigms of semiotics are 
1) Peirce's language of logical analysis; 2) continental, or 
French, structuralism; 3) Marxist, or Soviet, language of 
process and action; and 4) my own Language of Menetics which 
was explicitly designed for its use in the statement and 
solution of empirical problemR in semiotics. 

Many of our most important scientific results are 
expressed not in the form of quantitative laws, but only 
qualitatively in the adoption of a system, or language. 
There is no law of Copernicus, for example, only the Coper-
nician system, or heliocentric language of astronomy and yet 
this one change in language has often been credited with 
enabling all of the results of modern astronomy. To come 
closer to home, I will give a linguistic example. We never 
talk of Boas's Law, for instance, we just use the language 
of phonemics and structural linguistics which Sapir was able 
to develop based on Boas's results. And the structuralist 
worldview and the DeSaussurian discussions out of which 
it arises are regarded by many as the beginning of modern 
"Scientific" linguistics. 

In discussions of scientific methodology we are often 
instructed to choose an appropriate notation. But this is 
only an approximation to the true problem, that of choosing 
a good language. A system of notation is not a language --
it is a small, but important part of a language. A language 
includes a notation, as well as a terminology, a viewpoint, 
a selection of which observable phenomenas to be interested 
in, and an approch to integrating all of this. In fine, a 
language is nothing short of a complete Weltanschauung. 
Kuhn [1] indicates an understanding of both the nature and 
role of languages in science. In all cases of creativity, he 
says, one of the first steps is to use the imagination to con-
struct, out of data supplied by memory and observation, a 
framework of ideas that will serve as a foundation for 
further work. This framework with its attendant terminology 
and notation is the language of the investigation. 



As an example of the confusions that can arise in 
discussions of this topic, I have been asked how one could 
characterize Newton's laws of motion as a linguistic develop-
ment. The answer, of course, is that one would not normally 
do so. Newton's work was a piece of pure science carried 
out primarily in the language of the Copernican system as 
modified by Kepler and Galileo. Newton did, however, 
modify the language he received by augmenting it with the 
terminology for "action at a distance" and adding a whole 
new notation system, that of the "fluxions". In order to 
see the development of language at work in physics, we must 
look about 150 years earlier to Copernicus's development of 
the heliocentric system. 

The importance of the linguistic framework is beginning 
to be recognized even among the applied investigators of 
our own field. Newell and Simon in a discussion of the 
nature of computer science, for instance, say: 

All sciences characterize the essential nature of 
the systems they study. These characterizations are 
invariably qualitative in nature, for they set the 
terms within which more detailed knowledge can be 
developed. Their essence can often be captured in very 
short, very general statements. One might judge these 
general laws, due to their limited specificity, as 
making relatively little contribution to the sum of a 
science, were it not for the historical evidence that 
shows them to be results of the greatest importance 
[2,p115]. 

Theoretical Paradigms  

Theoretical paradigms state the basic theoretical 
principles which are to be used in deriving explanations of 
the fundamental phenomenas of interest and the observational 
laws describing them, and provide the translation rules for 
interpreting theoretical concepts in terms of observational 
concepts. Examples of several theories of physics are: 
1) Newton's Theory of Gravitation; 2) Einstein's Theory of 
Gravitation (General Relativity); 3) Maxwell's Electromag-
netic Theory; etc. Theories compete empirically on the basis 
of their ability to explain known phenomenas, their simpli-
city and elegance, and their ability to motivate new 
empirically interesting questions and experimental procedures. 



Examples of semiotic theories are: 1) Rossi-Landi's Theory 
of Economic Sign Structure; 2) Peirce's Theory of Sign Pro-
cess; 3) Morris's Theory of Sign Structure; and 4) my own.  
Universal Sign Structure Theory. 

It is necessary to distinguish clearly between models, 
which are just mathematical functions or other mathematical 
structures, and whose discussion falls within the domain of 
applied mathematics, and theories, which contain models as 
one or more of their components but also contain theoretical 
interpretations in terms of semiotic principles and observa-
tional interpretations in terms of translation rules between 
theoretical concepts and observational concepts. It is this 
ability to interpret a semiotic theory in terms of experi- 
mentally controlled observations that gives it its status as 
an empirical theory. 

Just as in any other empirical science, a scientific 
understanding of semiotic knowledge is gained only by the 
deliberate invention of explicitly testable and mathemati-
cally specified theories whose purpose is to explain how 
semiotic knowledge (the mathematically analyzed data from 
controlled experiments) fits together in a simple and 
unified way. 

The invention of such theories occurs by abduction, or 
Peirce's third mode of reasoning. Since theories are the 
deliberate creation of the fallible human mind they must be 
validated by testing. This occurs by a combination of 
mathematical deduction within the theoretical realm, trans-
lation from the theoretical language to the observational 
language, and comparison to the results of induction on the 
experimental data. 

The results of experimental observation are isolated 
facts, a collection of individual data, ontological singulars. 
Science is not interested in isolated facts per se. By 
induction, invariant regularities in the data are determined. 
These are called 'laws of semiotic nature' and have the status 
of ontological generals. It is this general knowledge which 
is the first goal of science. Laws provide us with semiotic 
knowledge, but they give us no scientific understanding. 
Laws do not explain their own existence, they just exist. 
They do not tell us why they are as they are nor explain 



the relations between themselves. In order to obtain 
this second, or higher, goal of science, theories are 
required. Theories are ontological abstractions. They 
frame hypotheses in terms of nonobservable concepts such 
that if the theories were true* then this would explain why 
the laws are such as they are. 

The results of mathematical deduction on the theories 
are called 'theorems'. Theorems are also ontological abstrac-
tions, but they are necessary in order to subject the theory 
to eventual observational test. This is done by translating 
certain theorems of the theory into the observational lan-
guage. If the translated theorem matches a law, it is 
accorded evidence in favor of the theory. If the translated 
statement accords with no known law, experiments are designed, 
conducted, and the results analyzed in order to search for 
the predicted regularity. Most experiments in science arise 
as a result of this directed search process. If the regu-
larity is found, this also is accorded evidence in favor of 
the theory. Evidence from previously unknown regularities 
is often accorded higher value than evidence from the known 
regularities which motivated invention of the theory. If 
the translated theorem is contradicted by the results of 
observation and the known laws, this is accorded evidence 
against the theory. 

This has been a simplistic presentation, purely for the 
purpose of presenting the concept of scientific theories in 
empirical semiotics, and should not be interpreted as 
implying that theories are abandoned or adopted on the basis 
of an algebraical summing up of the evidence in favor of or 
against them. 

Experimental Paradigms  

Experimental paradigms provide the experimental method-
ologies, the measurement techniques, and the procedures to be 
used in designing and carrying out rigorously controlled 
experiments for submitting questions to nature for her to 

*The word 'true' is used here in an abstract, or meta-
phorical, sense, since by definition theories are abstractions 
framed in non-observational terms and hence are neither true 
nor false in the positivistic sense. 



answer. The Michelson-Morley and Davisson-Germer experiments 
are well-known paradigms of experimental physics. Word 
Recognition and Sentence Comprehension are well-known para-
digms of experimental psychology. Closer to home, Zipf's 
Word Counting Procedure and my own eidometric techniques 
provide paradigm examples from experimental semiotics. 

Experimental paradigms interact with technology in that 
precisely controlled experimental methodologies require the 
use of precise, objective, and reliable instruments for the 
control and measurement of the experimental phenomenas. In 
semiotics these instruments very often have to be invented 
in order to make an experiment possible. The validity, 
reliability, precision, and repeatability of scientific 
instruments must be assayed for the procedures in which they 
will be used. This gives science very much the aspect of 
metrology. Two examples of instruments designed specifically 
for semiotics experiments and having assayed performance are 
the eidometer and the echelon counter. The eidometer measures 
the eidontic deviance of word shapes and the Mk V design 
has an assayed precision of 3.79 bpm when used with the 
procedures required for the Word Interpretation Experiment 
The echelon counter measures word types and word tokens in 
text samples and has an assayed precision of ± 1/n wt where 
n wk is the size of the sample being measured. 

Mathematical Paradigms  

Mathematical paradigms provide tools for reasoning as 
a service to the theoretical, experimental, and applied 
paradigms. They provide the analytical methods and procedures 
for manipulating theoretical principles, solving equations, 
analyzing data, designing experiments, analyzing instrument 
error, and reducing statements in basic science to their 
practical applications. Three well-known mathematical para-
digms in quantum mechanics are: 1) calculus of partial 
differential equations; 2) matrix calculus; and 3) operator 
calculus. Currently, the most useful mathematical paradigms 
in empirical semiotics stem from inferential statistics, 
discrete mathematics, and finite difference techniques. 

Applicational Paradigms  

Applicational paradigms, while not properly a part of 
basic science itself, sometimes help determine the goals of 



theory building and the direction of development for the 
basic science in that they can help determine what feedback 
from practical applications to be sensitive to and which phe-
nomenas to explain. For instance, even though thermodynamic 
laws are what they are because they describe objective and 
general regularities of nature, the way they were discovered 
and the order in which they were discovered was largely 
determined by the goal of explaining the practical phenomena 
of steam engineering. In semiotics today, information tech-
nology is playing much the same role as did steam engineering 
in 19th century physics. The field of computer science is 
also beginning to require explanations in terms of basic 
semiotic laws and theories for its many practical relation-
ships, especially in the field of language design. 

We should be aware of the possibility of "pure science", 
the development of basic science in isolation from any pro-
jected application. Peirce was especially sensitive to this 
possibility, calling it the method of the true scientist: one 
who sought intellectual understanding for the pure joy of 
learning and with no thought of practical benefit in mind. 

CONCLUSIONS AND SUMMARY 

There are five distinct kinds of paradigms required for 
the scientific development of semiotics. These paradigms will 
evolve empirically from our experience with working with and 
revising them. In working with and revising them, they will 
interact with each other. There is no such thing as a 
paradigm in isolation. The linguistic paradigm, theoretical 
paradigm, experimental paradigm, and mathematical paradigm 
fit together as a unit but each must be present. When one 
changes, so too does each of the others to a certain extent. 

We are now very much as physics at the time of Archimedes 
in the stage of our very first paradigms. Our present ones 
are very crude but we must use them to gain empirical 
experience so as to improve the ones we have, test and 
evaluate them, compare between competing paradigms, and 
occasionally even go thru Kuhnian revolutions. 
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REDUNDANCY CURVE AND MARKOV'S LAW 
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ABSTRACT  

In 1951 Claude Shannon published an analysis of 
natural language information systems based on his 1948 
calculus of modal statistics. This analysis contained 
a curve predicting a relationship between the redun-
dancy of an information system approximating natural 
language and the order of the Markov-chain approximat-
ing the source of that language and was able to deter-
mine mathematical upper and lower bounds for this 
dependence. His work was motivated in part by an 
earlier result by A.A. Markov showing that as the 
order of a Markov-chain approximating the source of 
a natural language information system increases, the 
shape of the symbols generated by that system approach 
the normal shape of symbols in the natural language 
from which the frequencies for the Markov-chain were 
compiled. 

Shannon's Curve and Markov's Law are useful 
empirical relations altho their present expression is 
flawed epistomologically by employing one empirical 
and one formal coordinate each. The concept of 
eidontic deviance allows us to correct this in part 
by providing a quantitative empirical measurement of 
the strangeness of a word shape relative to normal 
word shapes in a given natural language. This leads 
to the Law of Word Interpretation and this together 
with the Miller-Bruner-Postman Effect leads to the 
possibility of experimental verification and precise 
measurement for the first time of Shannon's curve. 



1. INTRODUCTION:  

The objective of our research in the Georgia Tech Semiab has been to 
investigate the nature of the sciences underlying computer technology and 
information technology. In investigations reaching back over five years or 
more, and sponsored primarily by two grants from the NSF Division of Informa-
tion Science and Technology, there are many indications that this is the same 
science: semiotics, or the science of signs and sign processes. Thus computer 
technology and information technology are closely related by their common 
scientific underpinnings. For instance, computer technology is not usually 
regarded as the study of wiring, transistors, and the flow of electricity; 
this is a proper part of electrical engineering. Computer technology is 
more fittingly characterized as the study of how computers compute, how they 
process programs, how to design computational processes, and how to design 
languages and operating systems to facilitate such operations. Each of these 
processes involves signs in an integral way and requires a knowledge of semiotic 
structure for a fuller understanding of how to effectively and efficiently 
design them. 

The evidentiary support for the above example is too long and detailed to 
give in the time and space limitations of this paper and is not its purpose 
anyway. The example was given only for background illustration. I'm sure that 
each of you has at least an intuitive feeling for the validity of this claim. 
Likewise the arguments showing that semiotics is the science underlying computer 
technology and information technology are many and diverse, each too long and 
detailed to present here. The main purpose of this paper is to sketch an 
outline of just one of these arguments, one concerning the epistomological 
status of Shannon's redundancy curve and Markov's Law. The background of these 
relations is given in the next section. 

2. BACKGROUND:  

In 1948 Claude Shannon published his calculus of modal statistics [10], 
which has most unfortunately received the appellation of information theory; 
and in 1951 he applied this to the analysis of printed American* [11]. While 
Shannon's 1948 publication is well-known among computational engineers, the 
1951 publication, with its focus on natural language, has received much less 
attention in the computational literature. It contained, however, a curve, 
whose nature has been a source of puzzlement in the information science 
literature for the last 30 years. In [11] Shannon attempted a statistical 
analysis of printed American using the uncertainty function and his calculus 
of modal statistics. He defined the redundancy of an information system as 
one minus the ratio of the actual uncertainty associated with the alphabet 
(or vocabulary, in other situations) as used in a particular information 
system divided by the maximum uncertainty obtainable with the use of that same 

*Which he incorrectly called "English". 



alphabet in any information system, or 

R = 1 - U 
	

(1) 
Umax 

Redundancy is therefore not associated with a particular sign, or message*, 
but with a particular information system and its alphabet (or vocabulary, as 
the case may be). Shannon next attempted to characterize an information system 
by a Markov approximation of its source, using Markov's Law, a statistical 
law of information systems discovered earlier by the Russian semioticist, 
A.A. Markov. Markov's Law states that the higher the order of the Markov-
chain approximating the source of an information system, the more the shape 
of the resulting symbols (or messages) look like the shape of the symbols 
(or messages) of the language from which the relative frequencies of the 
Markov-chain were compiled. A Markov-Chain is a stochastic process yielding a 
sequence of statistical outcomes each of whose probability distributions 
depends on a finite number of the previous outcomes in the sequence. For 
instance the occurence of the letters in printed American have a certain 
frequency distribution, but this distribution is radically altered when the 
letter is known to follow a given previous letter: the frequency of the 
letter 'h' rises dramatically following the letter 't' because of the preva-
lence of the word 'the' in American. The order of a Markov-chain is the number 
of previous outcomes the probability distribution of the next outcome is 
dependent upon, plus one. 

Using this analysis, the known relative frequencies of monograms (letters), 
diagrams (letter-pairs), and trigrams (letter-triples), and purely logical 
reasoning, Shannon was able to show that the redundancy of an information 
system depends on the order of the Markov-chain approximating the source of 
that language, and was able to determine mathematical upper and lower bounds 
for this dependence. These bounds are given by Shannon's curve [11], Fig. 1. 
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Fig. 1: Shannon's Redundancy Curve. 

*A source of great confusion in the literature. 



Altho Shannon established the upper and lower bounds of this curve 
mathematically, it has never been measured experimentally, and some reasons 
for this lack will be discussed lacer in the paper. 

It should be mentioned at this point that despite the success of much 
statistical analysis in both computer technology and information technology, 
much emphasis in modern linguistics (a basic tool of both disciplines) has 
been concentrated on showing that natural language cannot be stochastic. 
This was first proved by Chomsky [1] by an argument that has since been 
repeated and improved several times. I have no quarrel with this proof as 
it has been refined (Chomsky's original proof is correct insofar as it is 
stated explicitly -- he left a gap in the argument that was later filled in). 
The point to be made here is simply that altho natural language cannot be 
ultimately merely a stochastic process, nevertheless stochastic processes have 
many times proven to be excellent approximations of natural language based 
information systems. 

It is time to turn now to some modern attempts to understand the nature 
of this curve and its measurement. 

3. THE UNIVERSAL SIGN STRUCTURE THEORY: 

Of the many extant theories of semiotics, all are nonquantitative, and 
extremely primitive. Only a few, in fact, are even relational in structure. 
Among these latter, the newest and least established is my Universal Sign 
Structure Theory, but it is this last one that has been most successful in 
its attempts to improve our understanding of the relations involved in computer 
technology and information technology. 

The theory involves a relational model, called the Universal Sign 
Structure Model, three theoretical principles, and a calculus. In [9] Pearson 
and Slamecka were able to prove nine representation theorems showing how 
Pearson's theory represneted the nine fundamental kinds of signs or messages. 
The work of [9] also led to the definition of 'meaning' as any one (or combina-
tion of more than one) of the nine internal components of the sign, and of 
'information' as any empirically interesting observable aspect of any of the 
nine external components of the sign. This latter leads to the definition of 
'information measure' as a mathematical model of any empirically consistent, 
aspect of information. 

The Universal Sign Structure Model is shown in Fig. 2 and the three 
principles of the theory are: 

1. The Trinarity Principle:  A sign must consist of a trinary relation. 

To be consistent, therefore, the model has three parts, called the 
Syntactic Dimension, the Semantic Dimension, and the Pragmatic 
Dimension. 
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2. The Principle of Internal/External Balance:  The internal and the 
external structure of a sign must be balanced, consisting of exactly 
one internal component for each external component and vice versa. 

The internal components are the components of meaning, while the 
external components are the generators of information. 

3. The Principle of Additional Structure:  Whenever a sign has more 
than the minimum structure, the additional structure is built up 
from the center out (as per Figure 2), and for each dimension 
independently. 

Details of the theory can be found in [9]. 

Of most interest to us here is the component of 'shape'. The Universal 
Sign Structure Theory tells us that many present-day discussions of 
informaton, especially those dealing with communication systems and informa-
tion storage systems, are dealing with observable aspects of shape. 

The concept of shape in semiotics is a rigorously defined technical 
concept, but like all technical concepts, it is adumbrated within natural 
langauge by an intuitive concept. The technical concept of shape is an 
empirical explication of our ordinary intuitive concept of geometrical shape. 

SHAPE  is that by which two different sign types can be distinguished 
when both occur in the same syntactic context. 

Thus 0 and X can be distinguished by their ordinary geometrical shape, 
while DOG and CAT are distinguished by their spelling so that in written 
information, orthographic shape refers to spelling. Thus the shape of 
messages inside a computer consists of the pattern of electrical pulses and 
no pulses on a wire*, or the pattern of magnetized spots on an oxide coated 
surface, etc. The shape of messages on card I/O is the configuration of 
holes and non-holes in the cards. An extreme, but elucidating, example of 
the technical concept of shape occurs in an information system consisting 
of marine flags. Here many of the signalling elements (the flags) have the 
same shape in our ordinary intuitive sense (geometrical shape) and the 
technical concept of shape refers to the color or color patterns of the flags. 

With this detour into semiotics behind us we are now ready to analyze 
Shannon's redundancy curve. 

4. SEMIOTIC ANALYSIS: 

The Universal Sign Structure Theory explains that Shannon's curve describes 
a relation between the source of an information system and the syntactic 
context of that system. It says in effect that as the order of a Markov 

*Often incorrectly called 'bits' and 'no-bits'. 



information source increases, the relative comentropy* of that source decreases. 
This can be further interpreted by recalling that Markov's Law states that 
for Markov information sources based on natural language statistics, as the 
order of the source increases the shape of the symbols generated by that 
source look more and more like the shape of the symbols of the language on which 
the Markov frequencies are based. Thus Shannon's curve, together with Markov's 
Law, implies that for Markov information sources based on natural language 
statistics, as the shape of the symbols generated by that source look more 
and more like the shape of the symbols of the language on which the Markov 
frequencies are based, the relative comentropy of that source decreases. 
This conclusion relates the syntactic context of a Markov approximation to a 
natural language information system to the shape of the symbols in that system. 
How necessary are the assumption of Markov structure and natural langauge 
structure to this conclusion? In other words, is it possible that the same 
conclusion holds for all natural language information systems no matter what 
mathematical models we use to approximate them; or even for all information 
systems in general? 

This question is an empirical problem in semiotics and its answer is 
beyond the scope of this short paper. However, a necessary first step in 
attempting to answer it requires a determination of the epistomological status 
of the two relations. 

5. EPISTOMOLOGICAL ANALYSIS: 

a) Introduction  

We have seen that semiotic analysis shows that Markov's Law is a relation 
between the source of a natural language information system and the shape of 
the symbols generated in that system, and that Shannon's curve is a relation 
between the source of a natural language information system and the syntactic 
contect of that system. An epistomological analysis would ask further how we 
know these relations and what they mean. To ask how we know a subject is to 
ask how we gain knowledge about it and classically there are two broad, but 
extreme, answers to this question. We can gain knowledge empirically, and 
we can gain knowledge rationally**. 

Each of these answers determines a different method of analyzing the 
meaning of a relationship. These two methods have no overlap so that one must 
proceed to determine the meaning either empirically or formally, but not by 

*Also called 'entropy', 'negentropy', 'uncertainty', and most unfortunately, 
'information'. 

**'empirically" with small e and 'rationally' with small r. These are 
independent of any schools of philosophy such as Empiricism or Rationalsim, 
but which would also have to include many others, such as Pragmatism, and 
Logical Positivism, etc. 
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Fig. 3. Syntactic Structure of an Information System. 

some compromise combination* of the two. The empirical method of analyzing 
the meaning of a relation always starts by asking how the variables entering 
into the relation are measured: "What are their operational definitions?". 
The formal method always determines meaning by asking for the formal defini-
tions of the terms, the axioms which govern the system, and the theorems 
which relate the terms within the system of axioms. 

Suppose we start our analysis by letting the variables tell us which 
method of gaining their knowledge must have been used. Each of the two 
relations involves two variables with either three or four variables being 
involved altogether depending on whether the Markov order variable in one 
relation is the same Markov order variable as the one in the other relation. 
We could begin by supposing that if both variables in one of the relations 
were formal variables then knowledge of the relation itself must have been 
gained formally and conversely if both variables in the relation had only 
empirical meaning then knowledge of the relation must have been gained 
empirically. However, if one of the variables in a relation is purely formal 
and the other is purely empirical then we must conclude either that knowledge 
of the relation can never be gained -- i.e., we can never know this relation 
because it cannot be grasped in a single unified act of knowing -- or that 
something is wrong in our expression of the relation.** 

*This is not to claim that empirical procedures never contain any formal 
subprocedures as aids, or tools, they certainly do; but a given procedure 
itself is either completely empirical or completely formal. 

**It is possible that what is wrong with our expression of the relation 
is that we have "borrowed" a mathematical concept for temporary use to control 
an important empirical variable for which we do not yet have a method of measure-
ment. This "borrowing" occurs frequently in the method of semiotic reinter-
pretation and the paradigm inversion method. 



b) Markov's Law  

But the two variables in Markov's Law are the strangeness of the shape 
of the symbols generated in a natural language information system relative 
to a given natural language, and the order of a Markov approximation 
mathematically modeling the source of that information system. Now a natural 
language information system is an empirical thing. It exists objectively in 
the real world. It is one of nature's great laws that every local gathering 
of human beings in the world, past, present, or future, possesses a natural 
language independently of linguists, semioticsts, or information technicians. 
And the shape of the symbols generated in such a natural language (the 
phonemic patterning in spoken language) is an operationally observable 
variable. It was the great forte of American Structuralism to develop 
detailed manuals describing minutely the operational procedures for field 
recording the shape of the symbols observed in novel languages. Hence the 
shape of the symbols generated by natural language information systems can 
only have empirical meaning. 

But a model of a source (as opposed to that source itself) is a mathe-
matical entity, as is also a Markov-chain (a stochastic process) and the 
order of a Markov-chain (a pure integer -- not even a rational number). 
Hence the order of a Markov approximation mathematically modeling the source 
of an information system has only formal meaning -- it cannot be observed or 
measured, it can only enter into relationships with other formal entities. 
This forces us to conclude either that we can never gain knowledge of Markov's 
Law or that something is wrong in our expression of it. 

But we do have knowledge of Markov's Law. It was discovered by A.A. 
Markov, described to us by him, and has been replicated in every attempt 
since then to verify this relation. Therefore, something must be wrong with 
our expression of Markov's Law because epistemologically speaking, in its 
present form, it is a bastard; it is the offspring of two parent parameters 
which cannot be legally united. 

c) Shannon's Curve  

The two variables in Shannon's Curve are the relative comentropy of a 
natural language information system and the order of a Markov approximation 
mathematically modeling the source of that information system. Again we have 
a natural language information system which is an empirical entity and the 
relative comentropy of the syntactic context of that system is an operationally 
observable variable, all we have to do is count symbol types and symbol 
tokens and construct frequencies. It was Estoup who first noticed the 
importance of doing this and carried out the first experimental observations. 
Of course, G.K. Zipf is best known for his methods of counting types and 
tokens, and it was Mandelbrot who first systematically examined the 
relationship between comentropy and type-token counting. Hence the relative 
comentropy of the syntactic context of a natural language information system 
can only have empirical meaning. 



But as we have already seen, the order of a Markov-chain can have only 
formal meaning. Again we must conclude either that we can never gain knowledge 
of Shannon's Curve or that something is wrong in our expression of it. And 
also again, we do have knowledge of Shannon's Curve. It was discovered by 
him and published in [11]. It has since been verified independently by 
several other investigators, altho it has never been empirically measured as 
yet (but this is a different problem which will be discussed further a 
little later). It has evern been applied successfully to produce additonal 
discovereies in human information processing, as for instance by Miller-Bruner-
Postman in [4]. Therefore as with Markov's Law there must be something 
wrong with our expression of Shannon's Curve. 

d) Measurement  

We saw that Markov's Law describes an empirical relationship. Knowledge 
of it was gained experientially -- Markov counted letters, digrams, and 
trigramn in Eugene Onggin. The meaning of the law must therefore be determined 
by asking how we measure the strangeness of shape relative to a given 
natural language information system and how we measure the source of a 
natural language information system. Also Shannon's Curve describes an 
empirical relationship. Knowledge of it was gained by adding mathematical 
analysis to observed counts of letters, digrams, and trigrams in written 
American. The meaning of Shannon's Curve must be determined by asking how 
we measure the relative comentropy of the syntactic context of a natural 
language information source and also how we measure the source of that system. 

The procedures for measuring the relative comentropy of a natural 
language information system are well known thruout the discipline. They 
are described in every text on "information theory" and several very sophis-
ticated instruments are available to aid in these measurements [5,8]. 

Methods of measuring the source of a natural language information system 
are less well understood. As observed by the transformationalists, natural 
langauge cannot ultimately be merely a stochastic system, and perhaps what 
is apprximated by the Markov order of a source is the empirical degree to 
which a source can be approximated stochastically. There has so far as I 
know been no analysis yet made of this concept. However, if we notice that 
the two formal concepts used in the two relations as approximations are the 
same as far as their approximate nature allows us to determine we can assume 
an identify at the conceptual level and cancel them out in combining the 
two relations together in reaching a very useful result. The two approximate 
concepts both concern the order of a Markov-chain that approximates the 
source of a natural language information system. Our combined conclusion 
would then be that as the order of a Markov chain approximation to the source 
of a natural language information system varies so as to make the symbols 
generated look more and more like that of natural language, the relative 
comentropy of the syntactic context of that information system will decrease.* 

*My Law of Word Interpretation, first announced in [7] indicates that 
this law holds generally and we do not need to restrict it to systems with 
Markov approximations. 



Now the only problem left is to determine how to measure the strangeness 
of the shapes of words in a natural language information system relative to a 
given natural language. The solution to this problem was adumbrated by Miller-
Bruner-Postman [4] in the paper previously cited and not surprisingly it 
concerns the use of Markov information sources. Miller-Bruner-Postman observe 
that they could not measure the shape of their words, but by using Markov 
generators, they had for the first time experimental controls on the degree 
of strangeness. The full solution to this problem was ultimately achieved with 
the concept of eidontic deviance* which measures on an instrument called an 
eidometer the strangeness of word shapes relative to a given language [6]. 
Using this instrument I was able to measure the Miller-Bruner-Postman Effect 
and thereby discover the Law of Word Interpretation which relates ease of 
experimental interpretation to degree of strangeness: 

E = a bS 
p 

where Ep is placement error in letters per word, S is eidontic deviance 
measured in °ED, and a and b are constants. 

(2) 

Eidontic deviance, the eidometer, and the Law of Word Interpretation are 
tools that are now available to reanalyze Shannon's Curve into completely 
empirical form and to measure it experimentally for the first time. This is 
now being done by my student Mr. Richard Lo [2]. 

6. SUMMARY:  

We have seen that Shannon's Curve, and Markov's Law as well, are useful 
empirical relations altho their present expression is flawed epistomologically 
by employing one empirical and one formal coordinate each. The concept of 
eidontic deviance allows us to correct this in part by providing a quantita-
tive empirical measurement of the strangeness of a word shape relative to 
normal word shapes in a given natural language. THis leads to the Law of Word 
Interpretation and this together with the Miller-Bruner-Postman Effect leads 
to the possibility of experimental verification and precise measurement for 
the first time of Shannon's curve. 
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ABSTRACT 

The source of a natural language information 
system can be approximated by an nth order Markov 
information source in which words are generated by 
a stochastic process that selects letters according 
to a probability distribution that is determined by 
the actual outcome of the n-1 preceding letters. 
To approximate a real natural language, the proba-
bilities used in the Markov information source must 
be based onthe observed relative frequencies of 
that language. 

Due to the size of the frequency tables that 
would be required for the observations, no computer 
based Markov information source for words of order 
greater than 3 has ever been built, altho generators 
for order 0 thru 3 are fairly common. A method has 
now been designed that sidetracks this problem. It 
will produce artificial words for all orders 
greater than 3, altho for order 7 or greater, all 
words observed to date have been real words. The 
first version of this method has been implemented 
on the CYBER 70 for written American words. 

The method is based on an application of the 
Law of Zipf and Estoup which involves the rank-
frequency distribution of natural language words. 
The computer algorithm, as implemented, dynamically 
builds all probability tables required while 
restricting the length of these tables using a 
rank-frequency table from a previous type-token 
analysis of natural language text. The structure 
of the algorithm will be discussed and examples of 
actual output words of various orders will be given. 
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1. 	INTRODUCTION:  

A stochastic process is the mathematical abstraction of an empirical 
process whose development is governed by probabilistic laws. A stochastic 
process* is defined to be a sequence of random variables <Xi >. Further a 
zero memory stochastic process is a stochastic process in which the proba-
bility distribution of a random variable Xi  does not depend on the outcome 
of any of the previous random variables in the sequence [1]. 

When the Russian semioticist A.A. Markov** applied the concept of zero 
memory stochastic processes to his study of vowel/consonant alternation in 
Russian [2] he found that the model did not quite fit the facts, but yet 
the process of vowel/consonant alternation was more highly structured than 
required by simple stochastic processes. He found that the probability of 
occurrence of a vowel or consonant depended primarily only on whether the 
immediately preceding letter was a vowel or consonant. This observation 
did not hold for general letter processes, but Markov was still able to 
develop a simple mathematical concept that generalized the concept of zero 
memory stochastic processes and adequately modeled the results of vowel/ 
consonant alternation studies as well as general letter sequence studies. 
Today this mathematical concept is called a Markov-chain and may represent 
the first concept of mathematics that was motivated by a requirement of the 
semiotic sciences.*** 

A Markov-chain of order m is a stochastic process in which the 
probability distribution for a random variable Xi depends only on the actual 
outcome of the m-1 previous random variables, but not on any outcomes 
previous to these. A zero-order Markov-chain by convention is a sequence of 
random variables each of whose outcomes is equally likely. By the above 
definitions, the probability distribution for the outcome of a random 
variable in a first-order Markov-chain, while not necessarily uniform or 
equally likely, does not depend on any previous actual outcomes, (depends 
on the outcome of the 0 previous random variables). Thus zero-memory 

*Strictly speaking, a discrete parameter stochastic process. 

**Better known in the United States as a mathematician 

*** The golden age of mathematics of the 17th, 18th, and 19th centuries 
was stimulated mainly by the requirement for models by the physical sciences. 



stochastic processes consist of zero- and first-order Markov-chains; while 
vowel/consonant alternation in natural language (not just Russian) can be 
modeled mathematically by second-order Markov-chains. 

Markov information sources are information sources whose statistical 
properties can be modeled by finite Markov-chains. They thus consist of 
either a finite alphabet, or a finite vocabulary, plus a transition matrix 
which determines the transition probability from each state consisting of 
the m-1 previous outcomes to each possible new state consisting of the m-2 
previous outcomes plus the occurrence of the next letter, or symbol. 

We have already seen that Markov information sources are useful for 
modeling vowel/consonant alternation phenomena. It is general knowledge 
that Markov information sources are quite useful for approximating general 
information systems. It is a significant result that all natural language 
based information systems can be approximated by Markov information sources. 
In fact, Markov's Law states that the higher the order of a Markov informa-
tion source modeling a natural language, the better the shape of the symbols 
generated by that source approximates the normal shpe of the symbols in the 
language from which the statistics for the Markov-chain were compiled. 

2. MARKOV WORD GENERATORS: 

A Markov word generator is a natural-language based Markov information 
source that generates artificial words that approximate a particular natural 
language. In order to approximate a real natural language, the probabili-
ties used in the Markov information source must be based on the observed 
relative frequencies of that language. Due to the size of the frequency 
tables that would be required for the observations, no computer based Markov 
information source for words of order greater than 3 has ever been produced 
by this method, altho generators for order 0 thru 3 are fairly common. For 
example written American requires 29 letters: 'A' - 'Z', hyphen. apostrophe, 
and blank, and in order to produce mth order approximations, 29 m  frequencies 
are required. Altho many of these frequencies are zero (e.g., no QQQ's occur 
in written American), no memory structure has ever been designed to take 
advantage of this sparseness to reduce the size of memory required for high 
order word generation. 

It is desirable, however, for many purposes involving the design of 
information systems, and especially for experiments in the Georgia Tech 
SemLab investigating the syntactic structure of information, to produce words 
of high Markov-order. A method has now been designed that avoids the above 
problem. It will produce artificial words for all orders greater than 3, 
altho for order 7 or greater, all words observed to date have been real 
words. The first version of this method has been implemented for written 
American words, using a Pascal algorithm for the CYBER 70. 

3. CLASSICAL METHOD: 

Typical Markov word generators use polygram frequency tables as input. 
One such program is WORDGEN used by the Georgia Tech SemLab. WORDGEN has a 
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structure represented by Fig. 1. WORDGEN uses a static polygram table that 
has previously been built in a readable format by another program, GRAMS. 

random number 
generator 

Fig. 1. Typical Artificial Word Generator of Order n. 

WORDGEN obtains a random number from the random number generator, 
selects the next letter from the polygram table based on the m-1 preceding 
letters already generated, and adds this letter to the output string. It 
continues until a blank is generated which terminates the process and the 
word is output for printing. 

WORDGEN uses 29
3 
+ 29

2 
+ 29 frequencies or slightly less than 28,000 

entries in the static polygram table, and generates words of orders 0, 1, 2, 
and 3 relative to written American. If WORDGEN were to generate words of 
order 6, it would require more than 700 million entries in the polygram table. 

4. ALTERNATE METHODS: 

Shannon [3] proposed an alternative to the polygram method of generating 
Markov approximations. He suggested that the required frequencies are self-
contained in the text and that one could simply load a sufficiently large 
sample of text into memory, generate a random number, and find the first 
m-1 letter string following the location given by the random number. One would 
then search the text for the next occurrence of the last m-1 letters of this 
string and append the next letter. This process continues until a blank is 
obtained. 

This method also has problems for computer implementation. For a piece 
of text like the BROWN Corpus which contains a million words, approximately 



on words of memory are required. Altho this is smaller than the 700 
million words required forthepolygram example given earlier, it is still 
large 

 
s core sizes go. In addition, this method is very slow, since on the 

average, most of the text is searched each time a letter is generated. 

Our new method adopts Shannon's basic suggestion but modifies it to reduce 
the storage requirements and increase the processing speed. 

The method is based on an application of the Law of Zipf and Estoup 
which involves the rank-frequency distribution of natural language words and 
holophrases. The algorithm for this method, as implemented, dynamically 
builds all polygram tables (but only those portions actually required at the 
time) using a rank-frequency table from a previous type-token analysis of 
natural language text. 

2 

The rank-frequency table consists of 

1. Rank of the word (in rank order) according to the frequency with 
which that word occurs in the text 

2. Occurrence frequency of the word in the text 

3. Word 

as shown in Fig. 2. 

Rank 	 Freq. 	 Word 
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6387 	 THE 

2861 	 OF 

2191 	 AND 

. 	 . 

. 	 . 

1 	 DISHEARTENING 

Fig. 2. Rank Frequency Table. 

The space required for this algorithm consists of this rank-frequency 
table plus two vectors each of length n associated with the table. Since n 
was 7,000 in our first implementation, this gave us a memory requirement of 
4*7,000 = 28,000 words, or approximately the same size as the polygram method. 

The key to the effectiveness of the method lies in the nature of the 
Law of Zipf and Estoup which says that in natural language text a few words 
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occur a large number of times while most words occur very few times. The 
relation between the rank and frequency is given fairly accurately* by 

F = -77 
	

(1) 

The algorithm essentially replaces all the occurrences of a word by a 
single instance and uses this to compute all the required frequencies. In 
one version of WORDGEN3, the frequency vector itself is eliminated and Eq. 1 
used to approximate the frequency. 

The structure of WORDGEN3 is shown in fig. 3. It is similar to that of 
WORDGEN except that the static polygram table is replaced by three components: 
1) a rank-frequency table; 2) a probability calculation; and 3) a dynamic 
polygram table. 
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Fig. 3. Structure of WORDGEN3. 

*More accurate forms of this equation are known and useful in certain 
applications, but this form is sufficient for our algorithm. 



5. WORDGEN3 ALGORITHM: 

The algorithm is given below in Pascal. 

Algorithm 1.  Build the probability table. 

(* We will use the following vocabulary: 

word(i) 
freq(i) 
length(i) 
occurrence(i) : 

ith word in the Rank Frequency Table 
frequency of word(i) from the Rank Frequency Table 
length of word(i) 
number of times the n-1 substring of preceding generated 

letters occurred in word(i). 	 *) 

The algorithm for building the probability table depends on the Markov 
order m. 

Case 1. 	order m = 1 
prob[1] := length[1]*freq[1] 	; and 
prob[i] := prob[i-1] + length[i]*freq[i] 

Case 2. 	order m > 1 

Case 2.1.  Start by choosing the first n-1 letters. 
prob[1] := freq[1] ; and 
prob[i] := prob[i-1] + freq[i] 

Case 2.2.  prob based on n-1 preceding letters 
prob[1] := freq[1]*occurrence[1] ; and 
prob[i] := prob[i-1] + freq[i]*occurrence[:] 

Algorithm 2.  Artificial Word Generator. 

(* 	no : temporary 
art word : generated word 
order : Markov order 
loc : location in the generated word 
maxlength : maximum length of word to be generated 
no word : number of words to be generated 
required word : required words to generate 
index : index of the word to be selected 
random : random number from random generator 

	 * ) 

begin 
no word := 0 ; 
repeat 

loc : = order-1; 
if loc = 0 then loc := 1; 
repeat 

build prob; (* according to the Markov order *) 
get-random (random); 



(* 	this random rounded up to 
1 T1  random e prob (length-of-prob) 	*) 

search_prob(index); 
if (loc < order-1) and (order <> 1) then 
(* 	move first m-1 letter to art word 	*) 
move (word[index], art word,1,1,order-1) 
else 

begin 
if index = 1 then 

no := mod (random, freq[1]) 
else 

no := mod ((random - prob[index-1],freq[index]); 
if order = 1 then 

move (word[index],art word,no,loc,1) 
else 

begin 
no := search(word[index],artword,loc, 

order-l,no); 
move (word[index],art word,no,loc,1); 

end; 
end; 

loc := loc + 1; 
until (ichar (art word,loc-1) = blank) or loc > max length; 
print (art word); 
no word := no word +1; 

until no word > required word; 
end. 

- procedure move (stringl; string; var string2: string; locin:stringl, 
loc-in-string2, number-of-letter-move: integer); 

(n• 
	move letters at location loc-in-string 1st in stringl to 

string2, at location loc-in-string 2nd, 
number-of-letter-mover letters is moved. 	 * ) 

- procedure buildjrob; 

t * 
	

probability tables are built according to algorithm 1. 	 * ) 

- procedure search-prob (var index: integer); 

(* 	search probability table until 
prob [index-1] 	random prob [index] 

- procedure get random (var random: integer); 

(* 	generate random number 
1 random prob [length-of-prob] 
	 * ) 

function search (stringl, string2: string; loc, order, no: integer): 
integer; 



(* 	search substring of string2 from loc-order to loc-1 until m occurrences 
are found and return the next location in stringl. 	 *) 

function ichar (stringl: string; loc: integer): char; 

(* 
	

return the letter at location loc
th 

of stringl) 
	 * ) 

Trom the algorithm described above, the probability table is rebuilt 
every time a letter is selected. The first m-1 letters (m > 1) are selected 
according to the frequency of the word in the text, and the next letter will 
be selected randomly based on the probability of that letter occurring 
following the preceding m-1 letters in the text (as can be seen from 
algorithm 1. case 2.2). 

For order m = 1 the letter will be randomly selected from the word 
according to the frequency with which the letter occurs in the language. 
(algorithm 1, case I). 

6. DISCUSSION:  

:;() far as we are aware, this is the world's first implementation of a 
high order Markov word generator. It is now available and can be requested 
from the Georgia Tech SemLah.* This version is written in CDC Fortran 
Extension IV and takes advantage of the CYBER 70 architecture. For instance, 
the CYBER 70 has a word length of 60 binits and uses 6 binits to present 
each letter; therefore 10 letters can be stored in each word of core. The 
initial test run used the first 7,000 word-types (wt.) from the output of 
TTKANAL which performed a rank-frequency analysis of the entire A file of 
the BROWN Corpus, consisting of the first 44 samples A01 thru A44. The A 
file contains 11,876 wt. and 88,000 wk. Run time for the initial test run 
was approximately 3 words per minute; however, this has been speeded up and 
is now about 12 words per minute. 

All words produced by WORDGEN3 so far (about 4 weeks of experience) of 
order 7 or higher have been real words of written American. This may be due 
to the small size of the text (88,000 wk.), but also says something about the 
statistical structure of language, altho it is difficult to interpret the 
meaning of this. It reinforces Markov's Law. 

The process has several disadvantages. It cannot generate order 0 words 
at all, and for orders 1 thru 3, it is more expensive than the classical 
polygram methods of word generation. 

7. EXA'.sUDLES:  

The following examples from orders 0 thru 3 are from WORDGEN, a classical 
Markov generator, while the examples for orders 4 thru 6 are from WORDGEN3, 
using our new method. Markov's Law is evident in these examples. As the 
order of approximation increases, the words look progressively more and more 
like written American. 

*Address inquiries to Dr. Charls Pearson. 



Markov Order 0 

DUSN1 
SNVOLJUGCFU 1 GE I SKRZ 
0XWDIP'YDTPHWYIZO-I'ZBVPLFEIFKROK'QMO'CVVXSOW 

RR tti  
WDNES 
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Markov Order  I 	 Markov Order 2  

ERMUNSIAT 	 LIRD 
E 	 MBLD 
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ELLANLEACOIIETLFND 	 INES PORE 
SEIAIEOA 	 CHANS 
REDGA 	 RATHEMIC 
ECPO 	 REST 
DAI 	 INDAT 

KN IAY 
ASHRUSHLLIEYS 	 HENS 
SULVO 	 HECAREND 

Markov Order 3 	 Markov Order 4  

WHIG 	 THROUGHTER 
YOUGHT 	 PEDESTRIBUTIONS 
GROT 	 MATTENDENT 
AMENOT 	 PROGRAPER 
INDATEJEAT 	 SCHOOLESE 
RACTED 	 PRESEARCH 
:WW1: 	 DESPITAL 
DIUMPLLNT 	 OCTOR 
TIONCER I S 	 VICKETS 
WhADERS 	 GALLET 

Markov Order 5 	 Markov Order 6  

LEVELYN 	 PURCHANDIZE 
SINGULATE 	 PERHAPSODY 
WILLIAC 	 °OVERNIGHT 
LEGISTER 	 MATTERDAY 
COLLECTURE 	 NORMANCE 
DETONAL 	 AUTHORIZON 
RESTROUS 	 PERFORMALIZE 
MUSIALED 	 GROUNDERNEATH 
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8. SUMMARY: 

Our new method makes it possible for the first time to generate high 
order Markov words by computer. Altho the longest word in the BROWN Corpus 
is 31 letters which indicates an upper bound of Markov-order 30, above which 
all words generated will be real words actually used in the BROWN Corpus, 
practical experience to date indicates all words of order 7 or greater are 
real words. 
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THE SEMIOTIC PARADIGM 

By Charls Pearson 

ABSTRACT 

Thomas Kuhn defines a paradigm as the language, models, theories, 

methodology, decisions as to important problems, in short the total 

Weltanschauung, by which a science carries on its daily activities. All 

sciences start out in a preparadigm, groping stage in which no useful paradigm 

has as yet been identified. Information Science has often been described 

as still in this preparadigm, prescientific stage. However, several 

investigators, including the author, have adopted a very powerful point-of-

view, called the Semiotic Paradigm which is nothing less than a total 

scientific paradigm. Its background, structure, use, and applications are 

examined in this paper. 

The Semiotic Paradigm contains a language, theory, experimental 

methodology, point-of-view, models, decisions on important problems, etc. 

and is nothing short of a Weltanschauung. As such it would be impossible 

to completely describe it in minute detail in the confines of this short 

paper. Hence the paper is concise, often to the point of being cryptic, 

and many references are made to the author's previous papers. However, since 

most of you have heard or read many of these previous papers covering many 

details of the system, this paper has as its main purpose, the establishment 

of the big picture in a broad perspective and to establish an overview 

that allows later connection to the very many details involved. 

The Semiotic Paradigm does not stand alone as a candidate for the 

scientific paradigm of information science. Several other partial paradigms 

have also recently been suggested for this role. However, among them, only 

the Semiotic Paradigm stands as a complete, total, scientific paradigm, and 

the Semiotic Paradigm stands by itself where scientific paradigms really 

count -- in the productivity of further knowledge, theories, experiments and, 

yes, even applications. 
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1. ABSTRACT:  

Information Science has often been described as being in the preparadigm, 
prescientific stage. However, several investigators, including the author, 
have adopted a very powerful point-of-view, called the Semiotic Paradigm 
which is nothing less than a total scientific paradigm. Its background, 
structure, use, and applications are examined in this paper. 

The Semiotic Paradigm contains a language, theory, experimental methodo-
logy, point-of-view, models, decisions on important problems, etc. and is a 
complete Weltanschauung. As such it would be impossible to completely 
describe it in minute detail in the confines of this short paper. Hence the 
paper is concise, often to the point of being cryptic, and many references 
are made to the author's previous papers. 

Among several other partial paradigms that have recently been suggested 
as candidate paradigms for information science, only the Semiotic Paradigm 
stands as a complete, total, scientific paradigm, and it stands by itself 
where scientific paradigms really count -- in its productivity of further 
knowledge, theories, experiments and, yes, even applications. 

2. BACKGROUND:  

In studies leading back more than ten years it had become evident by the 
early seventies that sign phenomenas constitute the single, all pervasive 
phenomenas of information science, and in an investigation carried out for. 
the National Science Foundation in the mid-seventies it was determined more 
specifically that every problem in information science involves the investi-
gation of some aspect of the structure of signs [17;18;20]. In my lecture 
before the 1979 Annual ASIS Conference, in Minneapolis -- which unfortunately 
did not appear in the published proceedings of that meeting -- I outlined the 
various attributes of information and how each one could be interpreted as an 
observable attribute of signs. Last year in one of my lectures before this 
body [141, I demonstrated that the sign concept is the fundamental concept 
of all information science by showing how each concept of information science 
can be defined in terms of the sign and its ancillary concepts. 

So even if it was with a great deal of naive enthusiasm when I started 
my doctoral research in the early seventies [5j that it seemed obvious 
to me that semiotics constituted the fundamental paradigm of information 
science, it is now with a great deal of hindsight that I say that it is obvious. 
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3, 	INTRODUCTION:  

The notion of scientific paradigms was discussed by Kuhn in [1] where 
he used the concept to analyze scientific revolutions. For his purposes 
it was not necessary to further classify paradigms into subcategories. 
However, in order to analyze the foundations of information science and to 
direct progress in fundamental research as effectively as possible, it is 
necessary to gain a clearer understanding of the kinds of paradigm components 
involved in scientific paradigms, and in [15] I introduced a classification 
into five categories, four of which are always present in any scientific 
paradigm and a fifth which is often present. These categories are: 
1) linguistic, conceptual, philosophical paradigms; 2) theoretical paradigms; 
3) experimental paradigms; 4) mathematical paradigms; and hte optional one 
5) applicational paradigms. All five categories were motivated, explicated, 
and exemplified in [15] which the interested reader may refer to for details. 
The Semiotic Paradigm has component paradigms from each category and these 
will be examined briefly in the following sections altho I will not treat 
them equally. I have given more space to those areas -- theory, measurement, 
and experiment -- that I feel are more important for the purposes of today's 
presentation. The linguistic, conceptual, and philosophical components of 
the Semiotic Paradigm are examined in section 4. THE LANGUAGE OF MENETICS. 
Section 5,'THE  UNIVERSAL SIGN STRUCTURE THEORY,  deals with the theory component 
of the Semiotic Paradigm. Section 6 examines THE NATURE OF EXPERIMENTS  IN 
INFORMATION SCIENCE/SEMIOTICS,  and THE MEASUREMENT OF INFORMATION  is discussed 
in section 7. Section 8 expands on sections 6 and 7 by presenting some LAWS 
OF INFORMATION SCIENCE/SEMIOTICS  and section 9 expands on section 4 and 
prepares the way for section 10 by resolving a terminological ambiguity. It 
contains the AMBIGUITY OF "INFORMATION" MEASURES.  Section 10 is a short 
section which mentions MATHEMATICAL METHODS FOR INFORMATION SCIENCE.  The 
APPLICATIONS OF INFORMATION SCIENCE/SEMIOTICS  is discussed in section 11 under 
the three categories of Refinements to Scientific Language and Theory; Semiotic 
Engineering; and Industrial Management. Section 12, OMISSIONS,  is an apology 
for topics not covered, mostly due to lack of space, and section 13 contains 
some suggestions for the FUTURE OF INFORMATION SCIENCE/SEMIOTICS RESEARCH. 

On objection to the Semiotic Paradigm can be adequately defended in 
this introduction. It concerns the present status of inquiry in both 
semiotics and information science, neither of which is very basic or has 
anything to do with science. Current semiotic writing is predominantly 
speculative and humanistic with most efforts concerned with possible 
applications to such areas as literary criticism, classics, architecture, 
etc. While the current information science literature is more quantitative 
and less humanistic, it is also speculative and dwells on the applications 
in the areas of information engineering and industrial management. For this 
reason, I have tried to capture the fundamental relations involved in the 
basic science with the aphorism (IS) 3  which stands for: 

Information Science IS Instrumentation + Semiotics 

It should be clear that what I am trying to do with this aphorism is to 
separate off the speculative and humanistic aspects from semiotics and the 
speculative and applied aspects from information science and identify the 
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resulting basic sciences. It is this basic science to which the Semiotic 
Paradigm .applies, not the speculative, humanistic, or applied aspects, al the 
I think that even in these areas too the Semiotic Paradigm will prove of use. 

4. 	THE LANGUAGE OF MENETICS: 

The linguistic, conceptual, philosophical component of a scientific 
paradigm establishes the framework and point-of-view in which the scientist 
does his thinking and carries out his analysis. For further details 
concerning these paradigms, see [151. The linguistic, conceptual, philoso-
phic component of the Semiotic Paradigm is the Language of Menetics. It is 
founded on a metaphysics involving an atomistic approach to the carriers of 
information. In this metaphysics of structural atomism information is 
regarded as being carried by messages which are systems of one or more signs. 
Inasmuch as semiotics is the paradigm trinary science and the sign is the 
fundamental relation of semiotics, it is not surprising that semiotics 
provides the paradigm for information science. Details of the metaphysical 
presuppositions of the Language of Menetics are spelled out in [141. 

The Language of Menetics was created in a deliberate attempt to design 
a language that was adequate in all three of Chomsky's senses for talking 
about information and meaning in empirically testable ways. It recognizes 
the fact that most talk of information and meaning is non-empirical and 
non-testable even tho such talk often grapples with important, substantive 
aspects of this topic, and that such partial languages as do exist for these 
topics (psychology, logic, linguistics, etc.) are highly restricted in that 
only a few aspects of meaning and information can be discussed in any one 
language and that few translation rules exist for translating between 
languages in the few cases where the same topic can be discussed in more than 
one language. 

The Language of Menetics is universal in the sense that it is able to 
talk empirically about any aspect of information and meaning that can be 
discussed in any other language, and such discussion is always empirically 
testable even tho the language itself is always deliberately vague where 
empirical explication does not yet exist. The language has been shown to meet 
all three of Chomsky's levels of adequacy. That is, it is observationally 
adequate, descriptively adequate, and explanatorily adequate. By being 
able to discuss data, laws, and theories from different phenomenas and 
different disciplines empirically within one unified, integrated, and 
systematic language for the first time, the relationships between various 
aspects of meaning and information phenomenas can be seen. Not surprisingly, 
some of the phenomenas turn out to be the same as other phenomenas, but 
discussed in a different one of the many narrow languages used previously. 

The Language of Menetics includes a technical, but systematic and 
transparent terminology, a grammar, a semiotic point--of-view, a metaphysics 
of structural atomism, a decision as to what kinds of problems are important 
for the study of meaning and information, what kinds of phenomenas are 
important for understanding these problems, and what kinds of methods are 
useful for analyzing these phenomenas for the purpose of solving the problems 
of choice. Each of these aspects is discussed in detail and the total language 
is presented systematically in [51. 



5. THE UNIVERSAL SIGN STRUCTURE THEORY: 

The theoretical component of a scientific paradigm embodies the abstract 
principles by which all scientific explanation takes place in a unified and 
disciplined way. In the popular mind the theoretical component of a 
scientific paradigm is often equated with the scientific paradigm itself, 
altho this is never the case technically. For further details concerning 
theoretical paradigms, see [15]. 

One of the most powerful and useful theories developed within the 
Language of Menetics has been the Universal Sign Structure Theory, the 
theoretical component of the Semiotic Paradigm. It is a very natural 
development within that language following in very obvious ways just as the 
Geocentric Theory followed at once in an obvious way from Ptolmy's Language 
of Orbits. The Universal Sign Structure Theory is a relational theory 
rather than a quantitative theory as are many theories of the physical 
sciences, and yet it is very powerful. It predicts or explains all of the 
relationships observed among meaning or information phenomenas and suggests 
ways they can be empirically explicated to upgrade their structure to that 
of scientific laws. This was the means by which I was motivated to discover 
my Law of Word Interpretation. 

The theory contains three abstract principles, a relational model 
(equivalent to a digraph), a means for manipulating the principles, and 
rules for interpreting the resulting theorems in terms of observational 
concepts. The relations between various kinds of signs can be captured in 
terms of nine representation theorems. The relations between various aspects 
of information and meaning can be read directly from the relational model. 
Information is defined as any observable aspect of the external structure 
of a sign and meaning is the theoretical aspect of the sign. This explains 
the close relationship between meaning and information. 

There is not room enough here to present any of the details of the theory 
or to show its usefulness other than to suggest a few examples such as its 
use to explain the syntactic structure of Shannon's Information Theory, or 
its use to explain the pragmatic structure of sentential information. 
However, the theory has been given in parts in various papers along with 
examples of its application. The interested investigator may refer to 
[4;5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20] for the details. 

6. THE NATURE OF EXPERIMENTS IN INFORMATION SCIENCE/SEMIOTICS  

The experimental component of a scientific paradigm provides the 
methodology for observing that part of nature that falls within the purview 
of a scientific discipline. It is made up of various task paradigms, 
measurement methodology, methods of data analysis, etc. 

The experimental component of the Semiotic Paradigm is derived from all 
of the semiotic sciences -- but especially experimental psychology -- via 
the Paradigm Inversion Principle [7;11;13;15]. 



The Principle of Paradigm Inversion allows us to take advantage of any 
experimental paradigm in any of the semiotic sciences, some of which are 
much more developed as experimental sciences than information science/ 
semiotics, and use this to design information science experiments and make 
information measurements. The Principle of Semiotic Reinterpretation then 
shows us the empirical foundations of such measurements and shows us how 
to quantify them when they prove useful for further empirical research. 

We do not lose the distinction between information science and 
the semiotic sciences when we do this. In fact, we can use the Principle of 
Paradigm Inversion to clarify the distinction between them. For instance, 
psychology uses the known structure of information to examine the structure 
of behavior while semiotics uses the known structure of behavior to examine 
the structure of information. We can also use the Paradigm Inversion 
Principle to determine how to measure the ephemeral semiotic attributes of 
information in terms of concrete properties of behavior evidenced in some 
one of the semiotic sciences such as psychology. The principle indicates 
the existence of a relationship between semiotics and each of the information 
sciences. It may be used to examine the details of this relationship but 
this has not as yet been done. 

The Paradigm Inversion Principle was motivated in [6;7;11;13;15]. It 
postulates an open experimental structure which is the same for all empirical 
sciences, such as physics, psychology, and information science. The 
differences lie in how this open structure is completed and the use that is 
made of it. These details are developed in [11]. 

The Paradigm Inversion Principle may be criticized for its use of a 
standard set of interpreters or behavioral responders, viz, human beings. 
This criticism states that humans are too subjective or too variable, to 
use as measurement standards. This statement just does not hold up. The 
use of a fixed set of observers as a measurement standard is no more variable 
than the use of a bar of only one length as a length standard and is just as 
complete. We get entirely different concepts of temperature (not just 
different units) if we change our standard thermometer from alcohol to water, 
and mercury gives yet another. It took almost two centuries of experimentation 
to arrive at the theory which incorporated the abstract conception of 
termperature involving ideal gasses. It will also make many experiments 
before we arrive at the proper idealizations to replace concrete interpreters 
in information science but in the meantime experimentation and measurement 
are both possible and necessary. 

7. 	THE MEASUREMENT OF INFORMATION: 

Since the same experimental paradigms generate experiments in both 
information science and the semiotic sciences depending on the type of 
measurement involved, a question is raised concerning the nature of semiotic 
measurement. This question has two parts. The first is, what is the nature 
of individual information measures; how can their empirical foundation be 
determined; and how can their usefulness or lack of usefulness be explained? 



The second is, what is the nature of information measurements in general? 
How are they similar to physical, psychological, and other scientific 
measurements; and what distinguishes them from these other kinds of measurement? 

The first question was answered in Ill] using the Principle of Semiotic 
Reinterpretation in conjunction with classical measurement theory to 
explicate the nature of individual semiotic measures. The second question 
is answered in this paper for the first time and therefore represents a 
definite advance in the development of the Semiotic Paradigm. It relies 
on the Paradigm Inversion Principle and a refinement to the concept of 
experiment presented in the last section to incorporate the concepts of 
instrument and observer. Inasmuch as this is a first examination of this 
question, details are not yet completely worked out. 

The principal thesis of Semiotic Reinterpretation is that all empirically 
useful information measures can be reinterpreted not simply as a 
measurement of some external semiotic property, but as an empirical 
generalization, a natural law, stating an observable regularity in the way 
nature behaves. The natural law relates two measures together, one of which 
is the information measure to be reinterpreted. The second measure may 
be a psychological measure, a physiological measure, a physical measure, 
or any other scientifically important kind of measure, including even 
another semiotic measure. 

Explicitly, the Principle of Semiotic Reinterpretation has two theses: 
1) al definitions of information measures can be interpreted as measures 
(in the measurement theoretical sense) of external properties of signs, 
systems of signs, or sign processes; and 2) the definitions of all useful 
information measures can he reinterpreted as a natural law describing a 
regularity between a semiotic measure and some other measure. It is then 
this natural law which gives the empirical foundation for the usefulness of 
such measures. 

Once such a concept has proven empirically useful, the Principle of 
Semiotic Reinterpretation shows us how to quantify it in appropriately 
useful ways using classical scientific methods. The details of these 
developments are presented in [II]. 

In order to consider the general nature of information measurements 
let us look at the structure of a typical experiment in any science, be it 
physical, semiotic, or information science. It will look like that shown 
in fig. 1. 

For instance, a physical scientist would call S the specimen to be 
measured, a psychologist (a semiotic scientist) would call S the stimulus, 
a semioticist would call S a sign, and an information scientist would call S 
a signal, or message (something containing information. P is the experi-
mental design. In the physical sciences it is the design of the apparatus 
of the experiment; in the semiotic sciences it is the design of the task. 
I is an instrument. In the physical sciences it would be a physical 
instrument, such as a galvanometer, in psychology it may be either a physical 
instrument such as a stop watch or a semiotic instrument such as a word 
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Fig. 1. Intuitive Structure of a Scientific Experiment. 

recognition score, in information science it would be a semiotic instrument 
such as an eidometer. 0 is an observer. He is an integral part of the 
experimental paradigm despite the fact that the physical sciences very often 
completely overlook this aspect of the experiment. Quantum mechanics is 
today paying the penalty for this carelessness. However, in ordinary 
circumstances, the physical sciences are justified in ignoring this aspect 
of their experiments because the experimenter E usually acts as his own 
observer and has access to all of the data of the experiment in the same 
form as 0 has it. In information science and all the semiotic sciences this 
is not the case. There is a sharp distinction between the data available 
to 0 and that available to E and so 0 is a necessary part of the semiotic 
experiment. D is the data of the experiment. It is read from the 
instrument I and the experimental setup P and written down in symbolic form. 
This last step has a big effect in the interpretation of an information 
science experiment as will be seen shortly. E is the experimenter. He 
designs the experiment, administers S, and monitors 1, 0, and D. In the 
physical sciences he very often is the same individual as 0, thus engendering 
the confusion mentioned above. E thinks of himself as both experimenter 
and observer and then mistakenly identifies the two concepts. 

During the measurement process of a physical experiment, an indexical 
relation exists between the experimental paradigm P and the instrument I; 
this causes a displacement of the instrument. An iconic relation between 
the displaced pointer position and the undisplaced pointer position estab-
lishes the size of the effect and, since a suitable numeric scale is 
coordinated to the pointer displacements, a symbolic relation allows the 
pointer position to be read and recorded as data. Because of this, the 
observer 0 is not needed, as the physical experimenter is quite able to 
observe the instrument directly by reading the pointer position for himself 
and record the data in symbolic form. 



In the semiotic experiment no indexical relation exists between the 
experiment and the instrument. An indexical relation is established between 
the experiment and the observer 0. Because of this 0 is an essential part 
of the semiotic experiment. The instrument I then serves as an aid in 
the translation of this indexical relation into au iconic relation directly 
between P and 0. A symbolic scale on I now allows 0 to translate the iconic 
relation into a symbolic relation and hence to record it as data. E may 
observe 0's production of the symbol and may actually record the data himself, 
but because 0's translation processes are cognitive processes easily biased 
by knowledge of the true nature of P, E may not early out the interpretation 
and translation processes himself. 0 and E are necessarily distinct. 

In both kinds of experiments, S, P, I, and E are necessary. But in 
physical experiments, 0 is not necessarily distinct from E, and in semiotic 
experiments 0 is necessary and distinct. In semiotic experiments 0 is 
necessary to produce, in the absence of the indexical relation produced by 
physical effects, the iconic effect necessary for conversion to the symbolic 
data required for precise recording. It is the behavior of 0 that introduces 
the trinary relation into the experiment and it is this that makes it a 
semiotic experiment. By including 0 in the experiment, Er may observe S, P, 
and 0 and thereby observe semiotic phenomena rather than just the physical 
phenomena he could only observe if he employed only S and P, and left 0 out 
of the setup. 

We can now see that the observer in the semiotic experiment plays the 
same role as the pointer in the physical instrument; that is, he establishes 
the indexical relation, translates it into an iconic relation, and finally 
translates it into symbolic form for recording as data by himself or E. The 
semiotic instrument plays the role of the scale portion of the physical 
instrument; that is, it aids in the conversion from indexical to iconic 
and again in the conversion from iconic to symbolic. Therefore it would 
make much sense to reconceptualize the physical instrument as a combination 
of a transducer plus a scale and conceptually lump the transducer and the 
observer together, which we may symbolize as T. The semiotic instrument is 
a scale only, which we may symbolize as C. We then have the revised diagram 
of Fig. 2. 

Fig. 2. Structure of a Scientific Experiment Reanalyzed. 



We see that the structural analysis has not only been unified, it is 
also somewhat simplified by this reanalysis. Under this conceptualization 
the primary difference between a physics experiment and a semiotic experiment 
is that the physical transducer is purely physical, while the semiotic 
transducer necessarily includes a living interpreter, which is called the 
observer 0. It is the presence of the interpreter in the transducer 
component that establishes the trinary relation and makes of this a semiotic 
experiment. 

This is a sketch of the way I intend to incorporate the concept of 
measurement into the Semiotic Paradigm. The details have not as yet been 
worked out and the broad outlines are therefore still subject to revision. 

8. 	LAWS OF INFORMATION SCIENCE/SEMIOTICS: 

The semiotic nature of information science experiments carries 
implications about the structure of the laws of information science. These 
are determined by the Paradigm Inversion Principle. However, before 
examining such structure, it is necessary to delimit exactly what it is 
we are talking about when we say "the laws of information science". In 
modern philosophy laws are distinguished both from observation statements 
and from theoretical principles. Laws, or empirical generalizations, are 
general statements of invariant regularities among the observable concepts 
of nature, whereas observation statements are singular statements about 
observables. This simplistic way of making the distinction is all we can 
do in this limited space but will serve for the purposes of this discussion. 
Also by the term information science we should distinguish sharply from 
three somewhat related but obviously more popular fields of endeavor, 
information engineering, information technology, and management of information 
oriented activities. We are concerned here only with the basic science of 
information science, or what we previously called "semiotics". 

In an experiment of basic information science, a fixed, finite, standard 
set of observers is part of the overall experimental design, and the set 
of stimulus messages is infinitely open. Two or more semiotic variables 
(called information attributes) are measured, let us call them A and B for 
example. Attributes A and B are each measured for each individual sign or 
message observed in the stimulus set. The data is collected and the 
measurements on A and B for the same individual sign or message are identified 
as the two components of a vector and a search is made for regularities 
(this is, of course, grossly simplified). If a regularity results, we can 
set up A and B as two coordinates of a graph and examine the nature of this 
regularity. Since both A and B are semiotic variables and the individuals 
are signs, and the interpreters are standardized, this is a law of information 
science/semiotics. The measurements are made by observing the interpretive 
behavior of the standard set of interpreters, perhaps by averaging some 
response over all the interpreters in the standard set. An example of a law 
of information science is the Law of Redundancy for Natural Language [2;3;16], 
shown in fig. 3. The differences between this law and Shannon's pseduo-relation 
are discussed in [18]. More detailed discussions of the nature of. semiotic 
laws are contained in [11;15;16]. 
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Fig. 3. Law of Redundancy for Natural Language. 

9. AMBIGUITY OF "INFORMATION MEASURES": 

The term 'information measure' is basic to information science; however 
it is often used ambiguously and the sense in which this term is used within 
the Semiotic Paradigm is not the same as the predominant current usage within 
the discipline. There are at least four senses of this term that are 
currently used often enough to warrant mention: 1) a measurement of some 
observable aspect of a sign; 2) an observable aspect of a sign which is 
capable of being measured/interesting enough to warrant measurement; 3) a mathe-
matical model of an observable aspect of a sign; and 4) any mathematical 
function which could potentially be used for modeling such observable aspects. 
This fourth sense is perhaps the predominant usage of the term today. The 
Semiotic Paradigm employs only the second sense for this term. 

By calling a mathematical function an "information measure" a great 
disservice is done to the discipline by confusing the distinction between an 
empirical aspect of nature and a mathematical model of that aspect. Because 
of this confusion, the discipline of information science itself has often 
been confused with a branch of mathematics (viz, NSF). The sine function is 
often used to model vibrations but the distinction between vibrations and the 
sine function is not thereby obliterated. We do not call the ratio of the 
side of a triangle opposite an angle to the hypotenuse of the triangle, the 
"vibration" of that angle. Such mathematical entities already have a useful 
name and there is nothing wrong in using it. It is 'function'. If there is 
some mathematical characterization of all and only those functions that may 



legitimately model information measures, then this is an interesting study 
in its own right and the class of functions thereby determined deserves both 
a mathematical characterization, and a mathematical name. However, such a 
study can only come after a thoro empirical investigation of information 
measures. It is suggested that the current interest in information functions 
is due to a misnomer on the part of Shannon between "information theory" and 
the "theory of modal statistics". In the usage determined by the Semiotic 
Paradigm, an information measure is an observable aspect of semiotic nature 
that is capable of being measured and in which there is enough empirical 
interest to do so. In other words it is an empirically interesting aspect 
of an external sign component. 

10. MATHEMATICAL METHODS FOR INFORMATION SCIENCE: 

The golden age of mathematics was the seventeenth, eighteenth, and 
nineteenth centuries. Most of this development, even in pure mathematics, 
was stimulated by the needs of research in the physical sciences. For this 
reason, the mathematics of binary relations is highly developed, almost to 
the exclusion of any mathematics of trinary relations. 

As the needs of research in the information/semiotic sciences begin to 
stimulate the development of new branches of mathematics the Semiotic Paradigm 
makes it easy to see that many of these branches will concern the mathematics 
of trinary relations. Thus the mathematical methods for information science 
will ultimately look radically different than any of today's mathematics. 

Of the classical methods of mathematics, perhaps three are currently of 
most use in information science research, especially that conducted within 
the Semiotic Paradigm. These are: 1) inferential statistics; 2) calculus of 
finite differences; and 3) set theory and symbolic logic. Already two of the 
newer branches of mathematics have been stimulated as much, or perhaps more 
so, by research in the semiotic sciences. 	The theory of Markov chains was 
founded to satisfy needs arising out of the study of linguistic processes 
(A. A. Markov was a Russian semioticist) and has been successfully applied to 
the study of information sources, state descriptions, and many other problems 
of information science. Graph theory is currently of fundamental importance 
in the study of finite automata, formal languages and language recognizing 
machines, and the transformational grammars of natural languages. However, 
we can guess that the nature of linguistic transformations will ultimately 
produce a new "transformational calculus" with radically new mathematical 
characteristics. 

I believe that ultimately the mathematics of mathematical semiotics 
will look radically different from the mathematics of mathematical physics; 
but it is too early to tell yet the form this mathematics will take. One 
Ching is certain tho. This new mathematics will be developed by semioticists, 
and it will make much more use of the logic of trinary relations than 
current branches of mathematics do. 



11. 	APPLICATIONS OF INFORMATION SCIENCE /SEMIOTICS: 

The applicational components of a scientific paradigm, while not properly 
a part of basic science itself, sometimes help determine the goals of 
theory building and the direction of development for the basic science in that 
they can help determine what feedback from practical applications to be 
sensitive to and which phenomenas to explain. For instance, even tho thermo-
dynamic laws are what they are because they describe objective and general 
regularities of nature, the way they were discovered and the order in which 
they were discovered was largely determined by the goal of explaining the 
practical phenomena of steam engineering. 

In semiotics today, information engineering, information technology, 
and information management are playing much the same role as did steam 
engine technology in 19th century physics. The field of computer science 
is also beginning to require explanations in terms of basic semiotic laws 
and theories for its many practical relationships, especially in the field 
of language design. 

We should also be aware of the possibility of "pure science", the 
development of basic science in isolation from any projected application. 
Charles Peirce, the father of information science, was especially sensitive 
to this possibility, calling it the method of the true scientist: one who 
seeks intellectual understanding for the pure joy of learning and with no 
thought of practical benefit in mind. 

At this stage in the development of information science, one of the 
most important applications of our scientific investigations is further refine-
ment of the scientific language, theory, experimental methodology, and 
mathematical methodology. The Semiotic Paradigm is an initial paradigm 
much like Ptolemy's orbital paradigm of astronomy, developed for the purpose 
of being made obsolete. Already it has undergone radical revision based 
on the outcome of empirical research. For instance, an investigation into 
the difference between lexical information and sentential information 
predicted the pragmatic nature of sentential mood (predominantly a syntactic 
phenomena) and led to a radical refinement in our understanding of the 
pragmatic structure of the sign. These results have currently been 
communicated only in private correspondence and therefore I cannot give you 
any reference to published literature for the details. Similarly, research 
in progress into the coding of information for the cognitive memories, 
suggests that refinements to our theories of semantic structure may soon be 
possible. 

If we define engineering as the systematic and rational application of 
technology and scientific knowledge to human goals and purposes, then it 
becomes evident that about 98% of all effort that is called "information 
science" today is actually semiotic engineering. There is actually very 
little interest in science by most practitioners of "information science". 
Just to name some of these branches of semiotic engineering, we have: 
computer "science"; documentation engineering; library engineering/manage-
ment; information engineering; etc. The advantage of the Semiotic Paradigm 



to these applications is the development of a rational base for the develop-
ment of these engineering disciplines. For instance, a semiotic understanding 
of the syntactic structure of the Type-Token Constellation, including the 
Rank-Frequency Law of Zipf and Estoup, could lead to the ability to derive 
Lotka's Law and Bradford's Law in rigorous form, including the controversial 
"droop" effect, from independently motivated relations concerning the 
structure of information. Lotka's Law and Bradford's Law are the corner-
stone of library engineering. 

In the one deliberate attempt to apply the Semiotic Paradigm to 
information engineering to date, I was able to use the independently known 
syntactic structure of the sign to motivate and explain many of the assump-
tions and methods used in "information theory", the calculus used in the 
engineering of many information systems [17;18;20]. 

The current state of information technology is completely "unscientific". 
It is one in which theory and experiment are completely divorced from 
technology. This can be diagrammed as fig. 4. 
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Fig. 4. The Current State of Information Science and Technology. 

The goal of the Semiotic Paradigm is to provide a useful and rational base 
for linking these together much as fig. 5 with .a resulting increase in 
the power and capabilities of information technology. 

Finally, among the application areas of information science, we have 
information management, or the management of the information industry. This 
has so many aspects in common with other areas of management concern such 
as management of the automotive industry, management of the textile industry, 
etc., and is so different from the concern of science that there should 
actually be no effort within the area of information science to develop 
these applications. Accordingly the Semiotic Paradigm has no applicational 
paradigms in this area, altho I am sure that others more talented than I will 
be able to apply the Semiotic Paradigm even in these remote applicational 
areas. Actually much of what is called "information science" today is this 
information economics, information management applications stuff. 
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12. OMISSIONS:  

This discussion of the Semiotic Paradigm has been very superficial 
due to the confines of space and time. No details have been given except 
for the discussion of information measurement and even that discussion 
presented a sketch only. A fuller discussion would have presented the full 
glossary and grammar of the Language of Menetics; examples of its use; the 
principles, model, definitions, and theorems of the Universal Sign Structure 
Theory; examples of its application; a discussion of semiotic instruments, 
and the design of experimental tasks; a discussion of experimental methodo- 
logy; data collection, reduction, and analysis; several examples of mathematical 
developments; and a full discussion of the applications. Unfortunately, 
this was not possible, but references were given wherever possible so that 
the interested investigator may follow up these details for himself. 

13. FUTURE OF INFORMATION SCIENCE/SEMIOTICS RESEARCH: 

There remain many details of the Semiotic Paradigm to be worked out, 
and now that the paradigm enables serious scientific research to take place, 
many details of the paradigm will continue to be revised. Indeed one hopes 
that it will enable progress to take place at such a rate that we here will 
all of us live to see one of Kuhn's scientific revolutions take place in 
which the Semiotic Paradigm is overthrown by some newer, more powerful paradigm. 
I suspect that when it happens, the new paradigm will also be semiotic in 
nature. 



The Semiotic Paradigm contains some specific implications as to the 
direction of future research and where financial emphasis should be placed 
to encourage as much progress as fast and effectively as possible. Research 
should be directed towards the investigation of sign structure, and in 
order to conduct rigorous research in which all variables known to affect the 
outcome are either held constant or accounted for in the analysis, this 
means that research will involve one or two components of individual 
signs. Such research carries no direct ties to applications. In fact this 
is the epitome of scientific, laboratory, idealization to non-practical 
situations. We, as information scientists, NSF as research sponsors, and 
ASIS as our scientific peers and research evaluators, must learn this 
lesson and apply it. Research will become more experimentally and quanti- 
tatively oriented. This means a new sophistication for information scientists, 
for the NSF evaluators, and for our ASIS peers. No longer will a background 
in library management qualify one as an information scientist. It also 
means research will become more expensive. Lab equipment costs money. Not 
the billions of dollars that good physics experiments are currently costing, 
but a few hundred thousand to a million dollars per experiment, which by 
the older information science standards is very expensive. But by paying 
such amounts for legitimate experiments guided by theoretical questions and 
rigorous analysis of previous research, genuine progress is guaranteed. Not 
for each individual experiment of course, but for a much higher proportion 
than has been customary in the past. 

14. ACKNOWLEDGEMENTS:  

This work was supported in part by grant #1ST-7827002 from the National 
Science Foundation, Division of Information Science and Technology. I would 
also like to thank my colleagues Pranas Zunde, for his intellectual stimula-
tion and challenge, and Vladimir Slamecka, for his continuing support and 
encouragement. Many of the ideas contained herein were tried out and 
discussed with various members of Georgia Tech's Information Science 
Colloquium, including James Gough, Jr., Bill Underwood, Al Badre, and P.J. 
Siegmann, in addition to my two colleagues previously mentioned, whose 
stimulating criticism I sincerely appreciate. The ideas, opinions, and 
conclusions expressed in this paper are, of course, my own. 

15. REFERENCES:  

[1] Kunh, T.S. The Structure of Scientific Revolutions.  U. of Chicago 
Press, 1962. 

[2] Lo, R.H. "The Measurement of Comentropy Transfer Rates". Presented 
to the Third Annual Symposium on Empirical Semiotics held in conjunc- 
tion with the 1980 Annual Meeting of the Semiotic Society of America; 
Lubbock, Texas; October, 1980. To appear in the proceedings. 

[3] Lo, R.H. "Teescope Tuning Procedures for Comentropy Measurements". 
Presented at the First Annual Symposium on Foundations of Information 
Science held in conjunction with the 1981 Annual Meeting of the 
American Society for Information Science; Washington; October 28-29, 
1981. To appear in the proceedings. 

-1 5- 



[4] Pearson, C. "Quantitative Investiations into the Type-Token Relation 
for Symbolic Rhemes". Proceedings of the Semiotic Society of America, 
1(1976), p312-328. 

[5] Pearson, C. "Towards an Empirical Foundation of Meaning". Ph.D. Thesis, 
Georgia Institute of Technology, 1977. University Microfilms; Ann Arbor, 
48106, USA. 

[6] Pearson, C. "The Cognitive Sciences: A Semiotic Paradigm". Presented 
at the National Conference on Mind, Brain, and Machine, Sponsored by 
the Society for the Interdisciplinary Study of the Mind; Gainesville, 
Fla.; April, 1978. To appear in the proceedings, in press. 

[7] Pearson, C. "Empirical Study of Representation as a Unifying Methodology 
for Semiotics". Invited paper presented at the First Annual Symposium 
on Empirical Semiotics, held in conjunction with the Third Annual 
Conference of the Semiotic Society of America; Providence; October, 1978. 

[8] Pearson, C. "A New Law of Information: An Empirical Regularity Between 
Word Shapes and their Interpretation". Presented to the Forty-first 
Annual Conference of the American Society for Information Science; New 
York City; November, 1978. 

[9] Pearson, C. "The Problem of Communication in Empirical Semiotics". 
Invited paper presented at the Workshop on Empirical Semiotics held at 
the Second International Semiotics Congress; Vienna, Austria; July, 1979. 
To appear in the Proceedings. 

[10] Pearson, C. "Decay of Information: A Second Order Correction to the Law 
of Word Interpretation". Presented to the Second International Semiotics 
Congress; Vienna, AUstria; July, 1979. To appear in the Proceedings. 

[11] Pearson, C. "Empirical Implications for Semiotic Methodology". Invited 
paper presented at the Workshop on Cognitive Processes held at the 
Second International Semiotics Congress; Vienna, Austria; July, 1979. 
To appear in the Proceedings. 

[12] Pearson, C. "The Theses of Empirical Semiotics". A "theses" presenta-
tion to the Second International Semiotics Congress; Vienna, Austria; 
July, 1979. Synopsis to appear in the proceedings. 

[13] Pearson, C. "Semiotics and the Measurement of Shape". Seminar presen-
tation at the Technische Universitaet Berlin; July, 1979. German 
version to appear in Zeitschrift fuer Semioti,  American version to 
appear in Progress in Information Science and Technology. 

[I4] Pearson, C. "The Basic Concept of the Sign". Proceedings of the ASIS  
Annual Meeting, 17(1980), p367-369. 

[15] Pearson, C. "The Role of Scientific Paradigms in Empirical Semiotics". 
Proceedings of the Semiotic Society of America, 1980. (In press). 



[16]Pearson, C. "The Epistomological Status of Shannon's Redundancy Curve 
and Markov's Law". Proceedings of the Nineteenth Annual Southeast  
Regional ACM Conference. Atlanta; March 27-29, 1981. (In press). 

[17]Pearson, C; and Slamecka, V. Semiotic Foundations of Information Science. 
Final report for NSF grant #GN-40952. January, 1977. School of 
Information and Computer Science; Georgia Institute of Technology; 
Atlanta, Georgia. 

[18]Pearson, C; and Slamecka, V. "A Theory of Sign Structure". Bull.  
Semiotic Soc. Amer., 1(1977), #2, p1-22. 

[19]Pearson, C; and Zunde, P. "The Kolmogorov Potential as a Measure of 
Algorithmic Information". Toronto Semiotic Circle Monograph, 1980, #4. 
(In press). 

[20]Slamecka, V; and Pearson, C. "The Portent of Signs and Symbols". 
Chapter 5 in The Many Faces of Information Science, (Weiss, E.C., Ed.). 
Westview Press, 1977, p105-128. 



APPENDIX F 

APPLICATION OF THE FINITE-DIFFERENCE CALCULUS 

TO THE OBSERVATION OF SYMBOL PROCESSES 

By Charls Pearson 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, 30332, USA 

October 1981 

Presented to the SIG/ES session on "The Role of Mathematics 
in Semiotic Observations" at the Fourth Annual Symposium on 
Empirical Semiotics held in conjunction with the Sixth 
Annual Meeting of the Semiotic Society of America, in 
Nashville; October 3, 1981. To appear in the Proceedings 
of the SSA. 

0 1981 by Charls Pearson 



APPLICATION OF THE FINITE-DIFFERENCE CALCULUS 
TO THE OBSERVATION OF SYMBOL PROCESSES 

By Charls Pearson 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, 30332, USA 

ABSTRACT 

Many of the methods of the finite-difference calculus have familiar 
analogs in the classical differential calculus altho the methods themselves 
are grounded on drastically different underlying theories and usually have 
drastically different results. For instance, the basic concepts of the 
differential calculus are 'real-valued measurements', 'continuum of the 
system of real numbers', and the 'limit operation'. 	The corresponding 
basic concepts of the finite-difference calculus are 'counting processes', 
'discreteness of integer numbers', and 'summation operations'. Also 
corresponding to the integral of a continuous polynomial function fx

ndx 

we have the summation of a discrete factorial function Zn (n) , with 

xn+1 fxnds = 	C n+1 

where C is a constant, usually determined by boundary conditions, and 

(n+1) 
(x) C ) n+7 

where C(x) is a periodic constant, again determined by the boundary conditions 
of the problem. The trick, therefore, in taking advantage of this particular 
analogy is to be able to transform back and forth between polynomial 

functions xn and factorial functions x
(n) 

and to be able to translate 
between periodic constants C(x) and ordinary constants C. Similar tricks 
abound for utilizing the various other analogies between the two subjects. 

The calculus of finite differences is therefore useful for modeling 
and describing discrete phenomena and discontinuous processes. Such for 
example are symbol relationships and the observation of symbol processes. 
This paper demonstrates the usefulness of the calculus of finite differences 
to model and describe observations of symbol processes. The clearer insight 
into symbol processes thus gained enables further refinements to the methods 
of observation which sharpen the observations themselves. 

ii 



The Vocabulary Growth Rate curve for natural language has never been 
observed because of the low precision of classical counting procedures and 
the large measurement noise introduced by these procedures. These faults are 
due to the observation methods themselves and do not depend on whether the 
observations are carried out manually or by computer. 

By using the finite-difference calculus to model the Vocabulary Growth 
Rate independently of its observability, and to show the relation between 
the Vocabulary Growth Rate and Type-Token Relation, insight is obtained that 
was used to redesign the classical counting methods. The resulting invention, 
the Echelon Counter, enabled measurement of the Vocabulary Growth Rate for 
the first time, as well as improved measurements of the Type-Token function. 

While this paper demonstrates a point in mathematical semiotics, it 
uses an example from the experimental paradigm of Type-Token measurement. 
It is set within the linguistic-conceptual paradigm of Pearson's Language of 
Menetics and the theoretical paradigm of Pearson's Universal Sign Structure 
Theory. 

A mathematical relation is obtained for the Type-Token Relation which 
satisfies all of the known boundary conditions exactly and describes the 
measured values approximately. 

iii 



APPLICATION OF THE FINITE-DIFFERENCE CALCULUS 
TO THE OBSERVATION OF SYMBOL PROCESSES 

By Charls Pearson 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, 30332, USA 

1. 	BACKGROUND: 

Much of the present development of mathematics was originally motivated 
by its applications to problems in the physical sciences; in fact, the golden 
age of mathematics was the eighteenth century while the revolution in the 
physical sciences was still taking place. The physical scientists very early 
learned to appreciate the interrelation between mathematical methods and 
observational methods. This may be said to have originated with Gallileo 
who developed averaging methods in order to produce precise measurements with 
the crude instruments available to him. 

Another golden age of mathematics is coming. It will he motivated by 
the application to problems in the semiotic sciences. But first, semiotics 
must make a science of itself with precise theories and rigorous experimental 
methods. The present paper precedes any of this development with a simple 
example of how a presently existing branch of mathematics may be used to model 
observations in experimental semiotics. 

This paper demonstrates that the calculus of finite differences may be 
used to model and describe observations of symbol processes. The clearer 
insight into symbol processes thus gained enables further refinements to the 
methods of observation which sharpen the observations themselves. This is 
the first known attempt to apply the calculus of finite differences to 
experimental semiotics. 

The Vocabulary Growth Rate curve for natural language has never been 
observed because of the low precision of classical counting procedures and 
the large measurment noise introduced by these procedures. These faults are 
due to the observation methods themselves and do not depend on whether the 
observations are carried out manually or by computer. However, Type-Token 
curves, Rank-Frequency Curves, and Number-Frequency curves obtained with 
classical counting instruments are displayed in figs. 1, 2, 3, 4, and 5. 
Even here the measurement noise and lack of precision are evident. 

By using the finite-difference calculus to model the Vocabulary Growth 
Rate independently of its observability, and to show the relation between 
the Vocabulary Growth Rate and Type-Token Relation, insight is obtained 
that was used to redesign the classical counting methods. 'the resulting 
invention, the Echelon Counter, enabled measurement of the Vocabulary Growth 
Rate for the first time, as well as improved measurements of the Type-Token 
function. 
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While the paper demonstrates a point in mathematical semiotics, it 
uses an example from the experimental paradigm of Type-Token measurement. 
It is set within the linguistic-conceptual paradigm of Pearson's Language 
of Menetics and the theoretical paradigm of Pearson's Universal Sign 
Structure Theory. 

A mathematical relation is obtained for the Type-Token Relation which 
satisfies all the known boundary conditions exactly and describes the measured 
values approximately. 

2. 	INTRODUCTION 

The potential for applying the calculus of finite differences to 
experimental semiotics may be adumbrated by its recent applications to problems 
in some of the other semiotic sciences such as economics, psychology, and 
sociology. Introductory textbooks usually cover such topics as the difference 
calculus, the sum calculus, and finite-difference equations. The calculus of 
finite differences is the study of the general properties of the difference 
operator, A. 

Given a function f(x) we may define the DIFFERENCE OPERATOR, A, by 

Af(x) E f(x 	h) — f(x) 
	

(1 

where h is some given number usually positive and called the DIFFERENCE 
 INTERVAL. If in particular f(x) = x we have 

!fix = 	h) —x= h 
	

(2 

or 
h 
	

(3 

A geometric interpretation of A is given in fig. 6. 

We note immediately the very strong analogy between the definition of 
the difference operator and that of the derivative operator from the 
differential calculus. 

df(x)  _ lim 1,f(x h) f(x)1  
ce■ 	h-4-0 L 

( 4 I  

This analogy is very pervasive and powerful. Many of the methods of the 
finite-difference calculus have familiar analogs in the classical differential 
calculus altho the methods themselves are grounded on drastically different 
underlying theories and usually have drastically different results. For 
instance, the basic concepts of the differential calculus are 'real-valued 
measurements', 'continuum of the system of real numbers', and the 'limit 
operation'. The corresponding basic concepts of the finite difference 
calculus are 'counting processes', 'discreteness of integer numbers', and 
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f(x+h) 

f(x) 

f(x-h) 

x-2h x-h x x+h x+2h etc. 

Figure 6. Geometric Interpretation of Ditference Operation. 

'summation operations'. Also corresponding to the integral of a continuous 

polynomial function jxndx we have the summation of a discrete factorial 

Lx (n) function Lx 	, with  

isndx 
n+1 x  

+C n+1 (5 

where C is a constant, usually determined by boundary conditions, and 

(n) 	x
(n+1) 

n+1 	+ C(x) 
(6 

where C(x) is a periodic constant, again determined by the boundary conditions 
of the problem. A periodic constant has a constant value for integral values 
of h. The trick, therefore in taking advantage of this particular analogy is 
to be able to transform back and forth between polynomial functions xn and 

factorial functions x (n) and to be able to translate between periodic 
constants C(x) and ordinary constants C. Similar tricks abound for utilizing 
the various other analogies between the two subjects. 

The calculus of finite differences is therefore useful for modeling and 
describing discrete phenomena and discontinuous processes. Such for example 
arc symbol relationships and the observation of symbol processes. 



3. 	THE FINITE-DIFFERENCE CALCULUS: 

list the Having defined the difference operator A by eq. 1, we may now 
general. rules of the finite-difference calculus. 

R1: 	A[f(x) 	g(x)] = Af(x) + k1(x) (7 

R2: 	A[af(x)] = ctAf(s) 

where a is a constant. 

( 8  

R3: 	A[f(x)g(x)] = f(x)Ag(x) + g(x+h)Af(x) (9 

Alf(x)1 _ g(x)Af(x) - JILLAI(L) R4: (10 
Ig(x)) 	g(x) g (x+h) 

Those of you familiar with the differential calculus will immediately 
notice the resemblance between these rules and the general rules of differen-
tiation. In which case you might also recall there was a fifth rule of 
differentiation as follows: 

D[f(x)l m  = m[f(x)] m-l Df(x) 	 (11 

where m is a constant. 

This rule does not carry thru exactly to the finite-difference calculus 
as do the other rules of differentiation. In order to perfect the analogy we 
define the FACTORIAL  FUNCTION by 

x (M)  E x(x-h)(x-2h) 	(x-fm-lih) 
	

(12 

m = 1,2,3 ... 

consisting of m factors. The name 'factorial' is motivated because in the 
special case x = m, h = 1, we have 

m (m) = m(m-1)(m-2) ... 2.1 - 	 (13 

i.e., factorial m. In order to make this analogy as complete and systematic 
as possible and to simplify the resulting calculations, we define 

(14 

Also for negative integers we define 



   

(15 
(x+h)(x+2h) 	(x+mh) 	(x+mh)

(m) 

m = 1,2,3, ... 

With our treatment of factorial functions complete we may now list the 
differences of some special functions: 

1. A[c] = 0 (16 

2. A[x (m) ] = mx (m- 1) h (17 

3. A[(ax+b) (m) ] = mah(ax + b) m1) (18 

4. A[bx ] = bx (bh  - 1) (19 

5.  meax )  = eax (eah 	1)  
(20 

6. A[sinax] = 2 sin (ah/2)sina(x + h/2) (21 

7. A[cosax] = -2sin(ah/2)sina(x + h/2) (22 

8. Minx] = ln(/ + h/x) (23 

Note the obvious similarity between these differences and the derivatives 
of the same functions. 

We now prove eq. 17 both as an example of how to prove difference 
relations in general and as an example of the usefulness of our recently 
introduced factorial function. Applying definitions 12 and 1 we have 

x (m) = x(x-h)(x-2h) 	(x-[m-l]h) 
	

(24 

(x+h) (m) = (x+h)(x)(x-h) 	(x-[m-2]h) 
	

(25 

Ax (m) = (x+h) (m)  - x (m) 

= (x+h)(x)(x-h) 	(x-[m-2]h) 

- x(x-h)(x-2h) 	(x-[171-1]h) 

1(x+h) - (x-[m-1]h)](x)(x-h) 	(x-[m-2]h) 

= mhx (m-1) 
	

( 26 

In order to apply these tools to solving problems it is necessary to be 
able to pass back and forth from the differential notation to the difference 
notation. Since the one analogy we have developed in detail relates deriva-
tives of power functions to differences of factorial functions, we develop a 
notation for passing back and forth between power functions and factorial 
functions. This makes use of factorial polynomials. From eq. 12 we find on 
putting m = 1,2,3, ... 

-10- 



(1) x 	= x 

x(2)= x2 - sh 

x(3)= x3 - 3x
2h + 2xh

2 

x(4)= x
4 

- 6x
3h + 11x2h

2 
- 6xh

3 

x(5)= x 5 - 10x
4
h + 35x 3h 2 - 50x

2h 3 + 24xh
4 

etc. 

If p is any positive integer, we define a FACTORIAL  POLYNOMIAL OF  
DEGREE (p)  as 

x a x 	4- 
() 	

a 
(p -1) 

	

0 	
+ 	+ a 

1 

where a0 	0, a1, ..., a are constants. From eqs. 27 we see that a factorial 

polynomial of degree (p) can be expressed uniquely as an ordinary power poly-
nomial of degree p. In fact if one is a master of many mathematical models he 
may recognize the numerical coefficients appearing in equations 27 as the 

Stirling Numbers of the First Kind, sk 
where we define a STIRLING NUMBER OF THE  

FIRST KIND  recursively by 

(28 

sn = 1, s
n 
k
= 0 	for k 0, k at n + 1 where n > 0. n  

This allows us to simplify the transformations of eq. 27 by using the Stirling 
Number notation as follows 

x (n) = X s
n 
x
k
h
n-k 	

(29 
k=1 

Conversely any power polynomial of degree p can be expressed uniquely as 
a factorial polynomial of degree (p). We write the first few: 

(1) x = x 

x 2 = x (2) 4- x (1) h 

x3 - x (3) + 3x (2) h + x (1) h2 
	

(30 

x = x (4) + 73: (3) h + 6x (2) 2 2  + x (1) h3 

x 6 = x (5) + 15x (4) h + 25x (3) h2 	10x (2) 23 + x (1) h4 

(27 

n+1 s  = s
k-1 ns 

with 

etc. 



From this example we see that power polynomials can be expressed uniquely 
in terms of factorial polynomials by 

n 	r 	n (k) n-k 
x = 	S x h 

k=1 
k 

 

where the Sri  are STIRLING  NUMBERS  OF THE SECOND KIND defined recursively as 

n+1 	n 
S
k 

= S
k-1 

* kSn  

,n 
with 	 Sn = 1, o

k  =- 0 fork e 0, k 	n+1 where n > 0. 

This completes our short introduction to the finite-difference calculus 
except for one special relation from the sum calculus that will be used in 
section 6. For completeness, we now state this special result without proof. 

r'1+1) Ix 	_ 7 
x x+h  hF — +1) 

(33 

The function on the right of eq. 33 is called the 'DIGAMMA FUNCTION'  and is 
denoted by T(x). 

4. 	SYMBOL PRODUCTION PROCESSES: 

One of the obvious areas in which to attempt to use the finite-difference 
calculus as a mathematical model is in the study of symbol production processes, 
for the reason that symbol production is by nature a discrete process. One 
can produce a one or two-word text, but not a one-and-a-half word text. It is 
meaningless to conceive of a one-and-a-half word text. It must be either one 
word long or two words long because symbols are produced, and exist, discretely. 
Currently under investigation in the SemLab is a constellation of different 
relationships and symbol production processes, all intertwined in what may be 
called the "Type-Token System for Words in Natural Language" or "Type-Token 
Constellation" for short. These include Zipf's Number-Frequency Law also 
known as the Zipf Integer Effect, the Rank-Frequency Law of Words and Holo-
phrases which is also known as the Law of Zipf and Estoup, the Type-Token 
Curve as a function of sample size, the Type/Token Ratio also as a function of 
sample size, the Vocabulary Growth Rate curve, and many others. In addition, 
several of the useful regularities of information engineering and library 
management such as Lotka's Law and Bradford's Law are closely related to the 
Type-Token Constellation. We will now apply the finite-difference calculus 
to the study of the Type-Token relationship. You saw examples of some of these 
earlier. 

Because the ordinary Type-Token Relation is now statistically independent, 
it cannot be described using the methods of statistical estimation. In 
addition present methods of measurement yield too much measurement noise and 
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too little precision for statistical estimation methods to be useful even if 
they were valid [1]. For this reason the SemLab searched for a type-token 
relationship in which the data satisfies the statistical independence 
requirements rigorously. The search led us to a little-studied relationship 
called the Vocabulary Growth Rate. This is defined as the rate at which new 
vocabulary items, measured in word-types (wt), enter the sample with respect 
to the increase in size of the sample, measured in word-tokens (wk), [2]. 
The relative frequency of new words in the nth position of a sample is Zogially 
independent of the relative frequency of new words in any of the other word 
positions. It turns out that the statistical dependence of the data in each 
of the other type-token relationships arises because each of these other 
relations depends on the Vocabulary Growth Rate in a way that destroys 
independence of the measurements. In addition, and in compensation perhaps, 
this dependence is such that each of these other relations can be derived from 
the Vocabulary Growth Rate. For instance, the Type-Token Relation can be 
expressed as 

T(K) = 	VGR(S) 
	

(34 

S=1 

where TOO is the number of types in a sample expressed as a function of the 
sample size K, and VOR(S) is the Vocabulary Growth. Rate expressed as a function 
of the sample size S. This allows us to concentrate our experimental investi-
gation on observations of the Vocabulary Growth Rate and later obtain each of 
the other relation by means of the finite-difference calculus. 

However, there is a good reason why the Vocabulary Growth Rate relation 
has been little studied: it has never been observed. Therefore semioticists 
do not have even a vague inuition as to an approximate mathematical form for 
describing this relation. Therefore, altho this relation has been mentioned 
in the literature, nothing substantive has been learned about it. 

The reason the Vocabulary Growth Rate curve has never been observed before 
is because of the lack of precision of all previous instruments for measuring 
type-token phenomena. The value of the Vocabulary Growth Rate for any sample 
size S is a real number between 0 and 1. All previous instruments for 
measuring type-token phenomena, including instruments employing digital computer 
techniques, use methods based on raw counting procedures which are precise to 
the nearest whole integer and whose values therefore increase by either 0 or 1 
at each step. Therefore the Vocabulary Growth Rate was completely hidden 
between the cracks of the instrumentation. 

5. MATHEMATICAL DEVELOPMENTS: 

The mathematical relations which model the empirical relations of the 
Type-Token Constellation are related by statistical sampling theory, statis-
tical averaging theory, and the calculus of finite-differences. Given an 
assumed form for the underlying theoretical distribution of the Vocabulary 
Growth Rate curve, the model of a single measurement of the curve can be 
obtained by sampling theory. From this a Vocabulary Growth Rate Number-
Frequency curve can be obtained by finite differentiation and the general 
form of the observed Vocabulary Growth Rate curve can be obtained by averaging 
theory. 



From the assumed theoretical distribution of the Vocabulary Growth Rate, 
the underlying theoretical distribution of the Type-Token curve can be 
obtained by Stieltjes integration which reduces in this case to a simple 
summation. From the theoretical distribution of the Type-Token curve, the 
mathematical model of a single measurement of the curve can be obtained by 
sampling theory. And again, from this a Type-Token Number-Frequency curve 
can be obtained by finite differentiation and the general form of the observed 
Type-Token curve can be obtained by averaging theory. 

From the theoretical distribution of the Type-Token curve, the underlying 
theoretical distribution of the Rank-Frequency curve can be obtained by a 
Stieltjes transform which reduces in this case to a summation transform, or 
what may be called a finite-difference transform. Again, from the theoretical 
distribution of the Rank-Frequency curve, a single measurement of the curve 
can be obtained by sampling theory. And again, from this a Rank-Frequency 
Number-Frequency (or Zipf's Number-Frequency) curve can be obtained by finite 
differentiation, and the general form of the observed Rank-Frequency curve 
can be obtained by averaging theory. However, because of the relationship 
between the transformed variables, the general form of the Rank-Frequency 
curve is exactly the same as a single measurement of this curve. 

Certain key relations can be set out in advance. For intance, the 
theoretical form of the Type-Token curve TOO can be determined from the 
assumed form of the Vocabulary Growth Rate curve Vqi?() by indefinite summa-
tion as follows: 

IC 
T(K) = 	VCrk(S) 

S=1 

(35 

Also noting that max if = T and that the sum over all types of the frequencies 
for each type is just the total number of tokens, we get: 

T(K) 
K = 	F(R) 	 (36 

R=1 

which is to be solved for F(R). This last may be seen more easily with the 
T(K) 

aid of the following diagrams, where 	F(R) is the area under the curve of 
R=1 

fig. 7, and K is the horizontal coordinate of fig. 8. 

In the case where the Rank-Frequency curve is hyperbolic, ?Apt -  [3] 
obtained the Rank-Frequency-Number-Frequency relation: 

= 

 

(17 

 

- 

by carrying out the finite differentiation as follows: let the rank-frequency 
curve be given by the hyperbolic relation 

P 	-- 
	 (38 

-14- 



N = R i  R" = 	
C = 	- 

F 	1/2 	F + 1/2 	(F2  - 1/4) 
(39 

In F 

2 

1-1/2 

1/2 

lg 

lg R 
	 T = maxR 
	

K 

Fig. 7 
	 Fig. 8 

Then the number of types of the same frequency is given by the requirement for 
integer occurrences, 

where F can assume only integer values, as can be seen by the diagram in fig. 9. 

R" 	 In F 

N 	I 

Fig. 9. Zipf Integer Diagram. 
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Derivation of number-frequency curves for the Type-Token relation and 
the Vocabulary Growth Rate relation is similar. 

Arbitrary constants which appear in these equations are to be evaluated 
by means of the known semiotic boundary conditions as set forth in [I]. 

T(0) = 0 	 (40 

T(1) =1 	 (41 

n a m 	T(n) 	T(m) 	 (42 

n finite 	T(n) finite 	 (43 

These last two conditions can be combined into one more powerful condition by 
simply noting that both conditions hold at every point of the Type-Token rela-
tion. This is shown in fig. 10 where we suppose that we have counted the first 
m wk. of a sample giving us T(m) as the wt. encountered up to this point. If 
we count an additionaL n wk. as part of the same sample, we cannot add more than 
n wt. to the vocabulary even if every word-token is an occurrence of a new word-
type. This gives us an upper limit for the projection of T(m + n) past T(m) of 

T(m + n) 	T(m) + n 	 (44 

which is represented in fig. 10 by the dotted line at: 0 = 45 °  projecting from P. 

On the other hand we also see that even if all of the new word-tokens 
are occurrences of word-types already encountered in the sample up to the mth 
token, we cannot decrease the number of word-types already encountered. This 
gives a lower limit for the projection of T(m + n) past T(m) of 

T(m) A T(m + 	 (45 

which is represented in fig. 10 by the dotted horizontal line projecting from P. 
Since the actual observation P', must lie between these two extremes and can 
take on either limit, both conditions must hold simultaneously, giving: 

V(m,n e N ) : 	T(m + n) 	T(m) 	n 	 (46 

where N is the set of natural numbers; i.e., the non-negative integers. This 
is the restricted monotone condition and from it we can recapture both eq. 42 
and ec. 43 as well as another important condition 

0 A T(m) 	n 	 (47 

by substituting m = C and applying condition 40. This is the first time the 
restricted monotone condition has been stated for the Type-Token relation. 

In summary, the Type-Token Constellation consists of three theoretical 
distributions; three general observable relations; and three number-frequency, 
or individual relations: each trio consisting of one each for Vocabulary 
Growth Rate, Type-Token, and Rank-Frequency. These nine relations form a 
mathematically consistent system. 
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6, 	THE ECHELON COUNTER AND THE FINITE-DIFFERLNCE :\MDLE: 

With this much as a preliminary model and using the better understanding 
or our observational limitations that it yielded, we invented an instrument 
for counting types and tokens, called an echelon counter, that yielded much 
higher precision and noise suppression. The Echelon Counter wan described in 
detail in a patent disclosure and its design and performance wan reported 
publicly in [2]. A comparative example of results of measuring type-token 
data with classical counting instruments and with the Echelon counter is 
shown in Figs. 11 and 12. Using the Echelon Counter, the Vocabulary Growth 

\fp 
Rate data was clearly observable and in preliminary studies, --- appears to be 

- h = 1 wk, 
	 (48 

we get 

AT = (S 	1) 
	

(49 

From this we get by a Stieltjes integration 

T (3) .= Aj  A T=  2; 

f(S + 1)  

+ 1) 	- 

= T(S) + C(S) 	 (50 

where TIS) is our old friend the digamma function from eq. 33. 

Let us now attempt to evaluate 0(5; by applying the boundary condiLlons 
eqs. 40, 41, and 46. For S = 0 we have 

'(1) F- 7  + C(S) = -7-- + t.(,) = ( 	 (51 

yielding 	 C(S) - y(S) 	 (Y)  

where y is Euler's C..;ontant 

7.; 0.5772 ... 

 

(53 

and y(S) is appropriately called a 'PERIODIC EULER'S CONSTANT'. 

 

    

We have now used up all of the undetermined factors iu the solution but 
still have two boundary conditions left to satisfy. how shall we take care 
of these? Let us see what needs to be done yet to sntisfy them. Let us 
calculate T(1), we have 

approximately equal to 	+ 1)
-2

; using this and the fact that the spacing 
between text sample sizes is 

F'(2) 
7(i) 	Y(2) - 1. 	 04 
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In other words, the second boundary condition is already satisfied by 
our solution, merely by its form. Likewise the digamma function is mono-
tonically increasing for all positive values of S in a restricted way that 
satisfies eq. 46 thus guaranteeing the satisfaction of the last boundary 
condition merely by the form of the solution. It should be emphasized here 
that this is the first proposed form of the Type-Token Relation that satis-
fies all three boundary conditions by any means, let alone by its form alone. 
This is a significant achievement for the finite-difference calculus. We thus 
have our final relation 

= T(S) 	 (55 

7. CAVEATS: 

It must be emphasized. in the strongest terms that eq. 55 is not our final 
proposal for the Type-Token Relation. It is our final step in this motivation 
of the semiotic usefulness of the finite-difference calculus and with its 
achievement we certainly have accomplished that; however, there are still 
many problems associated with eq. 55 that remain to be cleared up by detailed 
investigations. For one thing, this development takes into account neither 
the peculiar nature of individual languages nor of individual authors, both 
of which are known to affect the Type-Token Relation. Nor does it take into 
consideration the grammatical constraints of natural language as opposed to a 
random string of words. In addition for all values of S greater than 1, the 
function produces too small a value. For instance, 

T(2) - 
F1(5) 

 + -y(3) -`== 2.612 r (3) 
(56 

a value which is approximately 0.48 too small; and 0.48 is easily detected 
by our present instrumentation. It is suggested that the proper Type-Token 
Relationship may be given by a sum of terms 

(f) --,-, VS) + y(S) 	L( 	4- (X5) 4- A(7) 	 (57 

where L(S) is a term determined by the particular language, G(,'T7 ) is a term 
determined by the grammatical constraints of the language, and A(S) is a term 
determined by the particular author. If this were the case, the present 
analysis has succeeded in isolating the first two ol these terms. 

9. 	SUMARY: 

The finite-difference calculus allows us to obtain 
Relation in terms of the Vocabulary Growth Rate as 

K 

the Type-Token 

30.:j VG.,--F(S) (58 
S=1 

with boundary conditions given. by 

= 0 (59 

T(1) = 1 (60 



T(m) 	T(m + 	T(m) + N 	 (61 

If VGR(S) is close to (S + /)
-/ 

as appears to be the case in our initial 
measurements then the Type-Token Relation can he expressed as 

T(S) = Y(S) + '(S) 	 (62 

However, it is more likely that there are several udditional terms to account 
for the individual language, author, and grammatical constraints and the e x pres-
sion may be more like 

T(S) = T(S) 	7S) + 	+ WO..) + A(3) 	
( 63 

In any case it is obvious that the finite-difference calculus is an eceedingly 
powerful tool for the study of symbol production pre,:esses, 
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