
OFORGIA r::71- 1111E OF TECH :OLOGY 

OMCE OF CON 1- 11.',CT AU%11NIST RA 1 -  ION 

SPONSOR I'D IT OJFC F INI FIATION 

Date: 	8114/80 

Project Title: A Workshop on the Gathering of Information For Problem 
Formulation 

Project No: 	G-36-651 

Project Director: Dr. Albert N. Badre 

Sponsor: Defense Supply Service-Washington; Room 10-245, The Pentagon; 
Washington, D.C. 20310 

Agreement Period: 
	

From 	 3/1/80 	Until  9/1/81 (Contract Periof) 

Type Agreement: Contract No. MDA903-80-C-0144 and Modification No. 1 

Amount: $31,131 (G-36-651) 
4,286  (G-36-339) 

$35,417  TOTAL 

Reports Required: Quarterly Progress Reports; Final Technical Report 

Sponsor Contact Person (s): 

Technical Matters 

Contracting Officer's Technical 
Representative (COTR) 
Dr. E. N. Johnson 
AIR 
5001 Eisenhower Avenue 
Alexandra, VA 22333 
(202)274-8921 

Contractual Matters 
(thru OCA) 

Office of Naval Research 
Resident Representative 
325 Hinman Research Building 
Georgia Institute of Technology 
Atlanta, GA 30332 

Defense Priority Rating: DO-S1 under DMS Reg. 1 

Assigned to: 	Information & Computer  Sceinces  

COPIES TO: 

 

(School tU5NNR) 

 

Project Director 
	

Library, Technical Reports Section 

Division Chief (EES) 
	

EES Information Office 

School/Laboratory Director 
	

EES Flepor ts Procedures 

Dean/Director—EES 
	

Project F 	(OCA) 

Accounting Office 
	

Projoct Code (GIRO 

Procurement Office 
	

Other 
	

C_ 	Smith 
Security Coordinator (OCA) 

k. Reports Coordinator (OCA) 

CA- 3 (3/76) 



Research Security Services 
Reports Coordinator (OCA) 
Legal Services (OCA) 
Library 

EES Public Relations (2) 
Computer Input 
Project File 
Other 

GEORGIA INSTITUTE OF ITCHNOI OGY OFFICE OF CONTRACT ADMINISTRATION 

S P ONS 01 :l D Plzen' ( 	II IZ\IIN \ IION •111-1...T 

Date 3 /5 / 82 

  

Project Title: A Workshop on the 
• 	Formulation 

Project No: 
G-36-651 

Gathering of Information for Problem 

Project Director: Dr. Albert N. Badre 

Sponsor: 	
Defense Supply Service - Washington 

Effective Termination Date: 	9/1/81  

Clearance of Accounting Charges: 	9/1/81  

Grant/Contract Closeout Actions Remaining: 

Final Invoice and Closing Documents 

❑ Final Fiscal Report 

Final Report of Inventions 

❑ Govt. Property Inventory & Related Certificate 

❑ Classified Material Certificate 

❑ Other 	  

Assigned to: 	ICS 

COPIES TO:  
k I 

Adininistrative-Ccorclinetor 
Research Property Management 
Accounting 
Procurement/EES Supply Services 

	 (School/LA)•6-Miry) 

FORM OCA 10:781 



Gathering Information for 
Problem Formulation 

The First Quarterly Progress Report 

Albert N. Badre 

For 
The U.S. Army Research Institute 

for the Behavioral and Social Sciences 

March 1, 1980 to May 31, 1980 

Grant No.: MDA903-80-C-0144 

School of Information. and Computer Science 
Georgia Institute of Technology 



The First Quarterly Progress Report 

on 

Gathering Information for 
Problem Formation 

During the first quarterly period of this project, the 

work that was done was minimal and no expenditures were in-

curred. The reason that no expenditures were incurred was 

that the project was funded retroactively with a starting 

date of March 1st without the awareness of the principal 

investigator. This first report is delayed in delivery 

because Dr. Albert Badre was not aware of the quarterly 

report dates until the end of August. 

Accordingly, it may be necessary to request a three 

month extension for completion of this project as there 

were no expenditures during the first quarterly period. 

During this period, at no cost to the project, the 

principal investigator had some preliminary discussions on 

the direction and scope of the workshop symposium with the 

technical officer and representatives of the Army Research 

Institute. It was agreed that the overall theme of the 

symposium should be limited to the problems of represen-

tation in the context of human-computer language interface. 

The plan during the next quarterly period is to develop 

the above identified theme into a set of concrete topics. 



Also, the principal investigator will begin to identify and 

contact key people who will be candidates for participating 

in the symposium. 



Gathering Information for 
Problem Formulation 

The Second Quarterly Progress Report 

Albert N. Badre 

For 
The U.S. Army Research Institute 

for the Behavioral and Social Sciences 

June 1, 1980 to August 31, 1980 

Grant No.: MDA903-80-C-0144 

School of Information and Computer Science 
Georgia Institute of Technology 



The Second Quarterly Progress Report 

on 

Gathering Information for 
Problem Formulation 

In the second phase of this project, the main effort 

was concentrated on defining the scope and limits of the 

symposium. After extensive discussion with the U.S. Army 

Research Institute's technical personnel, it was finally 

agreed that the overall theme of the symposium may be 

directed at the problem of representation in the context 

of human-computer language interface. It was suggested 

that a reasonable topical title is "Knowledge Representation 

and Human-computer Language Communication." 

The purpose of the symposium would be to consider and 

review the current research in some of the areas of know-

ledge representation and language formulation for human 

computer communication. The symposium will focus on both 

the theoretical and practical aspects of human computer 

dialogue. 

The theme of the symposium is based on the following 

scenario: 

To the computer operator, human computer 

communication refers to what he/she enters at the 



display station (and how it may be entered) and 

what he/she sees in return (and how it is given 

back to him/her). An end user communicates with 

the computer system by using a designated lan-

guage. For most current systems, the mode of 

linguistic communication is predominantly tex-

tual. An operator interacts with the computer 

system by writing (typing) command statements 

for communicating with the operating system and 

by stating queries for communicating with the 

data base in a language that can be understood 

by the machine. The machine, on the other hand, 

communicates with the operator by displaying on 

the screen written messages, words, codes, sen-

tences, and passages. 

Accordingly, the intent is to emphasize the following topics 

in selecting speakers and organizing panels for the sym-

posium: 

1. Psycholinguistic factors in computer communication 

2. Compatible knowledge and memory structures for 
computer communication 

3. Representing and structuring displayed information 
in computer communication 

4. Representing information for decision, learning, 
and help processes in computer communication 



The principal investigator, Dr. Albert Badre, has been 

in contact with the ACM Southeast Regional Conference Committee 

who plan to hold their conference at the end of March in 

Atlanta. The theme of the conference is Human Factors in 

Computer Systems. There is a possibility that we may hold 

our symposium at about the same time, sharing hotel facilities, 

as our topic is related to their theme. 

The plan during the next three months is to have con-

tacted all of the people that would possibly participate in 

the symposium and to have the initial outline of a program 

with firm dates for the symposium. 

The following personnel have participated in the second 

phase of this project: 

Principal Investigator 	 Albert N. Badre 

Assistant 	 Lynn Daley 

Secretary 	 JoLynn Thompson 



Gathering Information for 

Problem Formulation 

The Third Quarterly Report 

Albert N. Badre 

for 

The U.S. Army Research Institute 

For The Behavioral and Social Sciences 

September 1, 1980 to November 30, 1980 

Grant No.: MDA903-80-C-0144 

School of Information and Computer Science 

Georgia Institute of Technology 



The Third Quarterly Report 

on 

Gathering Information for 

Problem Formulation 

During the third period of this project, the total effort 

was placed on contacting and inviting key persons who are 

currently active in research in the general area of language 

representation and human-computer interaction. 

The project director made initial contact with about 

thirty people by telephone. Of those thirty, twenty-four 

persons were interested in receiving more information. A 

letter of invitation and a thematic paragraph were sent to 

each potential participant.(See attachments) Of the twenty-

four to whom letters were sent, five were not able to accept 

our written invitation. We are expecting to receive paper 

abstracts by the first week in February. At that time we 

will be able to make a final count. We are expecting 

abstracts from the following people: 

Name 	 Location  

Dr. James H. Bair 	BNR Inc. 
Mountain View, California 

Dr. Jaime Carbonell 	Carnegie Mellon University 
Pittsburg, Pennsylvania 



Dr. S.L. Ehrenreich 	U.S. Army Research Institute 
Alexandria, Virginia 

Dr. Jim Foley 	 George Washington University 
Washington, D.C. 

Dr. Nancy Griffeth 	Georgia Institute of Technology 
Atlanta, Georgia 

Dr. Janet Kolodner 	Georgia Institute of Technology 
Atlanta, Georgia 

Dr. Michael Lebowitz 	Columbia University 
New York, New York 

Dr. Lance Miller 	 IBM Watson Research 
Yorktown Heights, New York 

Dr. Mark Miller 	 Texas Instruments 
Dallas, Texas 

Dr. Frank Moses 	 U.S. Army Research Institute 
Alexandria, Virginia 

Dr. Jean Nichols 	 U.S. Army Research Institute 
Alexandria, Virginia 

Dr. Phyllis Reisner 	International Business Machines 
San Jose, California 

Dr. Michael Schneider 	Sperry Univac 
Blue Bell, Pennsylvania 

Dr. Ben Shneiderman 	University of Maryland 
College Park, Maryland 

Dr. Elliot Soloway 	University of Massachusetts 
Amherst, Massachusetts 

Dr. Al Stevens 	 Bolt Beranek and Newman, Inc. 
Cambridge, Massachusetts 

Dr. John Thomas 	 International Business Machines 
Armonk, New York 

Dr. Bonnie Weber 	University of Pennsylvania 
Philadelphia, Pennsylvania 

Dr. Michael Williams 	Xerox PARC 
Palo Alto, California 



This is a follow-up to our telephone conversation 
regarding your participation in the symposium/workshop 
on human computer interaction to be held in Atlanta on 
March 26 and 27, 1981. Thank you for agreeing to 
present a paper. As I mentioned, the workshop which 
is being sponsored by the U.S. Army Research Institute 
for the Behavioral and Social Sciences, has a two-fold 
purpose: (a) to provide a forum for reporting and 
discussing current research methods and results in the 
area of human computer interface; and (b) to identify 
research trends and potential significant directions. 

I am attaching a thematic paragraph and a list of 
a few potential topics which may help you focus your 
presentation. I would like to request a three to seven 
page summary of your presentation by February 1st. The 
plan is to compile and distribute the summaries to all 
the participants two weeks before the workshop. The 
final program and session topics will be determined on 
the basis of the submitted summaries. 

If you have any questions, please call me at 
(404)-894-2598. I look forward to hearing from you 
and will be in contact again. 

Sincerely, 

Albert N. Badre 
Associate Professor, 
Information and 
Computer Science 

Enclosure 

ANB/jlt 



The plan during the next quarterly period is to finalize 

participants and organization of the program. 

The following personnel have participated in the third 

phase of this project: 

Principal Investigator 	Albert N. Badre 

Assistant 	 Lynn Daley 

Secretary 	 JoLynn R. Thompson 



LANGUAGE REPRESENTATION 

AND 

THE HUMAN COMPUTER INTERFACE 

To the computer operator, the human computer interface 

refers to what he/she enters at the display station (and how 

it may be entered) and what he/she sees in return (and how 

it is given back to him/her). An end user communicates with 

the computer system by using a designated language. For most 

current systems, the mode of linguistic communication is 

predominantly textual. For example, an operator may interact 

with an operating system by writing (typing) command statements 

or with a database by stating queries in a language that can 

be understood by the machine. The machine, on the other hand, 

communicates with the operator by displaying on the screen 

written messages, words, codes, sentences, and passages. 

The purpose of the symposium/workshop is to consider and 

review some of the current research work in the area of human 

computer interface. The intent is to focus on both the 

theoretical and practical aspects of human computer dialogue. 

The following are some suggested topics: 

1. Psycholinguistic Factors in Computer Communication 

2. Compatible Knowledge and Memory Structures for 
Computer Communication 

3. Representing and Structuring Displayed Information 
in Computer Communication 

4. Representing Information for. Decision, Learning, 
and "Help" Processes in Computer Communication 



Gathering Information for 
Problem Formulation 

The Fourth Quarterly Report 

Albert N Badre 

for 
The U.S. Army Research Institute 

For the Behavioral and Social Sciences 

December 1, 1980 - February 28, 1981 

Grant NO: MDA903--80-C-0144 

School of Information and Computer Science 
Georgia Institute of Technology 



The Fourth Quarterly Report 

on 

Gathering Information for 
Problem Formulation 

During the fourth period of this project, the 

effort was placed on finalizing plans to hold the work-

shop. The workshop proceedings was printed and sent to 

all participants in advance of the workshop date in 

order that they may familiarize themselves with the 

papers to be presented. In addition, each participant 

received the workshop program, name of participants, and 

addresses ( see attachment). 

A total of thirty-five people have been invited to 

attended the symposium. At this time 18 presentations 

are scheduled to be presented. 

During the next period of the project, the workshop 

will be held and work will begin on the final report. 

The following personnel have participated in the 

fourth phase of this project: 

Principal Investigator 	 Albert N. Badre 

Assistant/Clerical 	 JoLynn R. Thompson 



Grant Number MDA903-80-C-0144 

Gathering Information for Problem Formulation 

Financial Report for the period March 1, 1980 - February 28, 1981 

Budget 
Months 	$ 

Principal Investigator 

Expended Through 	Balance 
2/28/81 	As of 3/1/81 

Months 	$ 	Months 	$ 

Albert N. 	Badre 	 3.4 8,889 .9 2,690 	2.5 6,199 

Staff 	 3.0 4,173 (.1) 1,285 
Lynn Daley .5 488 
JoLynn R. Thompson 2.6 2,400 

Subtotal 	 6.4 13,062 4.0 5,578 	2.4 7,484 

Retirement Benefits 934 299 635 

Office Supplies and 1,200 319 881 
Equipment 

Workshop 5,800 5,800 

Travel 600 600 

Overhead 9,535 4,072 5,463 

Total 31,131 10,268 20,863 

Matching Contribution 
Personnel Services (Retirement Benefits and Overhead Not Included) 

Albert N. 	Badre 	 .8 	2,336 	.5 	1,402 	.3 934 



Workshop/Symposium 

on 

Human Computer Interaction 

March 26 and 27, 1981 

Atlanta, Georgia 

Albert N. Badre 

Sponsored by the U.S. Army Research Institute for the 
Behavioral and Social Sciences in conjunction with 
Georgia Institute of Technology, School of Information 
and Computer Science 



Table of Contents 

PAGE 

Table of Contents 	  

Schedule of Events 	  1 

Albert N. Badre 	  2 

Introduction 

Richard Burton 	  4 

Experiences with a Natural Language Interface to an 
ICAI System 

Jaime G. Carbonell    5 

Towards a Robust, Task-Oriented Natural Language 
Interface 

Sam L. Ehrenreich 	  14 

Creating an Algorithm for Generating Abbreviations 
to be Used in User-Computer Transactions 

Jim Foley    16 

Tools for Designer of User Interface 

George W. Furnas 	  28 

Psychological Structure in Information Oranization 
and Retrieval: Arguments for More Considered 
Approaches, and Work in Progress 

Mark D. Jackson and Judith E. Tschirgi 	  32 

The Nature of User-Generated Commands for Interacting 
with a Computer 



Janet Kolodner 	  34 

A Conceptual Approach to Natural Language Fact 
Retrieval 

Thomas K. Landauer and Susan T. Dumais 	  45 

Psychological Investigations of Natural Command and 
Query Terminology 

Michael Lebowitz    48 

Organizing Memory for Use in Understanding 

Mark Miller and Paul R. Michaelis 	  55 

Artifical Intelligence and Human Factors: A Necessary 
Synergism for the Interface of the Future 

Franklin L. Moses 	  87 

Overview of Selected Display Formatting and Clutter 
Reduction Techniques 

Phyllis Reisner    92 

Formal Grammar Representation of Man--Machine 
Interaction 

Elaine Rich and Aaron Temin 	  96 

A Role Based Help System for Scribe 

Michael L. Schneider 	 107 

Models for the Design of Static, Software Systems 

Ben Shneiderman  	 118 

System Message Guidelines: Positive Tone, 
Constructive, Specific, and User Centered 

Elliot Soloway and Jeff Bonar 	 125 

Empirical Evaluation with Novice Users of Some 
Programming Language Constructs 



Albert L. Stevens, Michael D. Williams, and James D. Hollan 	134 

An Advanced Human Interface for Computer Assisted 
Instruction in Propulsion Engineering 

John C. Thomas  	 135 

Metamorphosis through Metaphor 

Michael D. Williams and J. Hollan 	 140 

A System for Computer Aided Memorization 

APPENDIX A 	 142 
Names and Addresses of Participants 



Workshop on Human Computer Interaction 

Revised Schedule 

Thursday, March P6,  19P1 

	

9:30 - 1i, :00 	Coffee ant.' hnuohduts 

	

10:00 - 10:45 	Operiru Session 
A. Baare 
S. Halpin 

	

10:45 - 12:3' 	Modelina the 0ser 
E. Rich and A. Temin 
M. Schneider 
E. Soloway and J. Bonar 

	

12:30 - 	1 :30 	Luncheon 

	

1:30 - 7 :0 0 	Tnterfaces - Development 
J. Foley 
M. Miller and P. Michaelis 
J. Thomas 

	

3:00 - 	 Freak - Coffee and Soft-irirf, F 

	

- 
	 Desinninr.7 Inteliioent Interfaces 

R. Burton 
J. Carbonell 
A. Stevens, M. Williams, and J. Hollan 

Friday, 'larch 27,  19P1 

	

8:39 - 9:00 	Coffee and roughnuts 

	

9:00 - 11:00 	Homan Factors of Interactive Lor - ua-e 

S. Ehrenreich 
G. Furnas 
T. Landauer and S. Dumais 
M. Jackson and J. Tschirgi 

	

11:00 - 11:15 	Preak 

	

1 1:15 -1?:45 	Armory Structures for Puran-Computer Co-tnicitior 
J. Kolodner 
M. Lebowitz 
M. Williams and J. Hollan 

	

12:45 - 	1:4c 	Luncheon  

	

1:45 - 	 Vessa,es and Hsrlays• 
F. Moses 
P. Reisner 
B. Shneiderman 

	

3:0 0  - 3 :15 	freak - Coffee and Soft Brinks 

	

3:15 - 	4:15 	r,ener,,, l Discussion and .',ummary 

	

4:311  - 	 Panel 

1 



THE HUMAN COMPUTER INTERFACE 

INTRODUCTORY REMARKS 

Albert N. Badre 

When asked to sit down at a computer terminal and perform what 

is considered an elementary task, most novice operators are likely 

to be confused and frustrated. Even the simplest of tasks seems to 

require an excessive level of computer sophistication or the 

motivation to read and understand an over abundance of accompanying 

documentation. 

The population of computer users is growing at a very rapid 

pace, and an increasingly large number of this generation of new 

users is not data processing or computer trained. Yet, 

- the language that the operator must use to interact with 

the machine 

- the documentation, whether on-line or off-line, that 

he/she has to read in order to learn how to instruct the 

machine; and 

- the system messages that are displayed 

are couched in the vocabulary and language habits of the computer 

expert. 

2 



Accordingly there is a growing consensus in the computer science 

community that the user-compatibility of the human interface should 

be considered and incorporated into the design of all computer systems 

at the initial stages of development. "Information processing" 

systems are likely to be more user compatible if they are designed to 

adapt to the information processing capabilities and limitations of 

the user. It is becoming, therefore, increasingly necessary to 

explore and identify the human information processing factors, 

constraints, and variables that are associated with making the 

interface more user compatible. This means identifying and 

considering factors relating to what the operator "does" at the 

display station in order to perform a desired task and what the 

system does in return. 

In this workshop symposium we will be dealing with six inter-

related topics that revolve around the user interface theme. These 

are: Modeling the user, interface development factors, design 

considerations for intelligent and adaptive interfaces, memory 

structures, the human factors of language interaction, and messages 

and displays. 

3 



Experiences with a Natural Language 

Interface to an ICAI System 

Richard Burton 

4 



Towards a Robust, Task-Oriented 
Natural Language Interface 

Jaime G. Carbonell 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

A bst ract 

This paper analyzes the inception of a new generation of robust, task-oriented natural language 
interfaces in light of new theoretical advances and analysis to avoid limitations of previous efforts. 
Three key ideas are discussed: 1) dynamic selection of parsing strategies, 2) exploiting domain-
specific semantics and grammatical constructions, and 3) integrating recent theoretical findings into 
task-oriented parsing. An implemented natural language interface conforming to some of the new 
objectives is discussed, as are current plans for a more-general-scope natural language interface. 

3 February 1981 

5 



Towards a Robust, Task-Oriented 
Natural Language Interface 

Jaime G. Carbonell 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

1. Objectives and Historical Perspective 
Natural language comprehension has been studied from two primary perspectives in Artificial 

Intelligence: 

• As a vehicle to investigate and simulate human cognitive processes embodying 
components of either a linguistic or psychological theory of language comprehension. 

• As a means of implementing task-oriented "natural language front ends" to complex 
computer systems. 

The "basic science" approach has produced some significant principles and techniques (e.g., 

expectation-based language analyzers [7, 1]), but no truly robust parsers for computer-naive users 

have been developed in this paradigm. 

The applied "engineering" approach has proceeded by either building the domain of application 

into the parser itself, or by relying on syntax-only linguistic parsers. Neither approach has proven 

wholy satisfactory. The former suffers from virtual lack of transferability to new domains, while the 

latter suffers from extreme fragility: the inability to cope with any input not strictly conforming with its 

rigid internal grammar. However, it must be noted that some successful parsers have emerged from 

these limited approaches, such as LIFER [5] and LUNAR [8]. Both of these efforts, unfortunately, 

required man-years of development and tuning before their performance approached the user-

acceptance level. Their primary contributions were in the computational mechanisms they 

introduced, which could later be incorporated into more sophisticated parsers. 

A major objective in the design of task-oriented parsers is to provide the user maximal flexibility 

(within the semantics of the domain) to express his utterance. For example, the graceful interaction 

project [4] is a recent attempt at coping with limited ungrammaticality in a task-oriented parser. The 

means by which recent task-oriented parsers strive for robustness and flexibility is to incorporate 

domain semantics into their parsing knowledge bases (but not into the programs themselves). Here, 

we go one step further and exploit domain knowledge to dynamically choose the optimal parsing 

strategies. Moreover, the work described in this paper attempts to take full advantage of lessons 

learned from more theoretical natural language research. Our objectives can be summarized as 

follows: 

6 



• Create a robust parser, in the sense that it must tolerate common ungrammaticality, 
ellipsed constructions, and different phrasings within its domain of application. 

• Implement the parser in a modular mariner with respect to its knowledge sources. This 
means that domain knowledge necessary for the parser ought to be divorced from the 
program, from general semantic knowledge, and from linguistic knowledge. Hence, only 
one knowledge base need be altered in transfering the parser to a new application 
domain. The program itself is general with respect to the choice of task domain. 

• Exploit new advances in natural language processing not previously incorporated into 
task-oriented parsers. Some well-established powerful methods developed to simulate 
human language understanding (most notably expectation-based disambiguation) have 
not previously been used in task-oriented approaches, although they have proven 
computationally effective in more general domains. 

• Minimize the time required to transfer the parser to a new domain. This goal is furthered 
by our modularity consideration, but in addition I want to work towards a uniform method 
of incorporating new domain knowledge, including knowledge of technical jargon 
particular to a given domain. 

In order to further these ends I developed an initial parser that combines partial pattern matching, 

semantic-grammars [5] and equivalence transformations. II applied this parser to the task of building 

and querying a semantic-network [2] data base. The central lesson learned from this exercise is that 

the combination of the three parsing strategies yields not only a more robust parser than a single-

strategy method, but surprisingly the time it took develop its domain application (admittedly not a very 

complex task) was considerably less than expected (less than three weeks). 

A crucial (and perhaps unintuitive) fallacy of previous task-oriented parsers is their commitment to a 

simple uniform parsing strategy. Since natural language is a complex phenomenon (even in task-

oriented domains), this design criterion had the effect of pushing the complexities into the domain 

grammars, dictionaries and other domain-specific components of the parser. In the clearer vision of 

hindsight, this design decision greatly complicated the application of existing parsers to new 

domains. Is it not more desirable to incorporate all the decision-making complexities required to parse 

natural language structures into the kernel program itself? Once built, this program need not be 

redesigned for a new task domain. Minimizing the requisite complexity and size of domain-dependent 

components is an extremely productive venture. Parsing-strategy selection, semantic matching 

routines, and other domain-independent components should be provided as a kernel parser, which is 

augmented by domain-specific knowledge bases in each applications domain. 

In designing the kernel parser, a dominant criterion is that it select the parsing strategy in 

accordance with the type of natural language construct it attempts to parse. Some information can be 

expressed more naturally and more parsimoniously in one form (e.g., linear patterns) while other 

information is best expressed as case structures, equivalence transformations, or semantic grammar 

7 



productions. To illustrate this point, I attempted to encode all the knowledge in my parser as a pure 

semantic grammar. This task has more than tripled the size of the task-specific knowledge base, and I 

have not yet finished (nor do I intend to finish) the conversion. The primary reason for the relative 

increase in size is that much of the information must be stated with a high degree of redundancy and 

often in an awkward, round-about manner when it must be coerced into a uniform, context-free 

representation. 

2. The DYPAR Parser 
DYPAR 1  combines three parsing strategies: 

• A context-free semantic grammar component, grouping domain information into 
hierarchical semantic categories useful in classifying individual words and phrases in the 
input language. 

• A partial pattern match component, represented as pattern-action rules. The patterns 
may contain individual words, semantic categories (from the semantic grammar), wild 
cards, optional constituents, register assignment and register reference. This method 
enables the semantic grammar non-terminal categories to be applied in a much more 
effective context -sensitive manner than would be the case is a pure context -free grammar 
recognizer. 

• Equivalence transformations map domain-dependent and domain-independent 
constructs into canonical form, requiring a fraction of the patterns and semantic 
categories that would otherwise be necessitated. If a phrase-structure can be expressed 
in several different ways, while retaining the same meaning, it is clearly beneficial to first 
map it into canonical form, rather than being forced to include all possible variants in 
every context where that constituent could occur. 

Below I give an example of each type of linguistic information used in DYPAR. In order to 

understand these examples, a few notational conventions must be introduced: <BRACKETS> denote 

a non-terminal semantic grammar symbol. A word starting with an exclamation mark (e.g., 

!REGISTER) denotes the name of register. A vertical bar (I) denotes disjunction in a pattern. A # in 

a pattern matches a single word. An asterisk (*) matches an arbitrary sequence of words. The 

construction (!REGISTER pattern) assigns whatever matches the pattern to the register specified. A 

colon (:) before a constituent in a pattern indicates that constituent is optional. 

DYPAR, as we see in the dialog below, is the front end of a semantic network data-base update and 

query system. Therefore, its domain knowledge consists of language constructs relevant to this task. 

First, consider a fragment of its semantic grammar: 

1 Robust multi-strategy "DYnamic PARsing" is still in its infant stages, requiring frequent changes. 

8 



<INFO-REQ> -> (<WHAT-Q> I <INFO-REQ1>] 
<INFO-REQ1> -> (: <POLITE> <INFO-REQ2> : <WHAT-Q>] 
<INFO-REQ2> -> (TELL <me-US> : ABOUT I GIVE <me-US> I PRINT I TYPE ] 

This fragment, together with the rewrite rules for the other non-terminals above (e.g., <BE-PRES>, 

whose rewrite is all the present-tense conjugations of the verb "to be") recognizes the initial segment 

of information-request queries such as: "What is "Tell me what is ...", "Tell me about...", "Would 

you give me ...", etc. 

Now, consider a pattern-match rule: 

(: <det> Oval #) <be-pres> : <DET> (!PROP #) OF 
: <DET> ( !NAM #) : <dpunct>) 

-> 
(LTM-STORE !NAM OVAL !PROP) 

This rule recognizes sentences such as: "Felix is a friend of Fido", or "Reagan is president of the 

USA", and passes the information to the data base manager for consistency checking and storage. In 

order to pass the information gathered in the pattern match process, the registers are assigned 

appropriate values. For instance, in the second example, !NAM is assigned "USA", !PROP is assigned 

"president" and OVAL is assigned "Reagan". 

The equivalence transformations also use the pattern matcher. For instance, consider the following 

simple (but useful) transformation: 

(( !Si *) ( IW1 #) <POSS> ( IW2 #) (152 *) : ( IP <PUNCT>)) 
::> 
(NCONC 1S1 1W2 (LIST 'OF) 1W1 1S2 1P) 

This transformation maps possessive constructions into attribute-value constructions, which we 

chose as canonical. For instance "Tell me about the VAX-785's performance." is mapped into "Tell 

me about the performance of the VAX-785." The latter construction is recognized by a pattern-action 

rule. Since possessive constructions can occur in many contexts, the single transformation above 

saves us from duplicating pattern match rules for each different context where an attribute-value 

construction can occur. 

The control structure of DYPAR is essentially an applicative condition-action cycle, which halts 

upon no rules being applicable (in which case a partial pattern-match strategy is attempted), or upon 

one of the pattern-action rules firing and passing its information to the data-base manager. Let us see 

a brief dialog with DYPAR. For simplicity, we start out with an empty data base. Items in italics below 

were typed in by the user. Everything else was output by the system. Items in UPPER CASE are 

paraphrases of internal semantic network relations output by a rudimentary English generator. 

* (parser) 

You can build and query a simple semantic network 

9 



by stating information and questions in English. 

+Fido is a nice dog. 

Storing assertion in semantic net: 	FIDO IS DOG. 

[COMMENT: When DYPAR does not recognize concepts in the input, it prompts 

the user for additional information required by the integrity-checker 

in the data-base manager.] 

What is NICE? 
+Nice is a disposition. 

Storing assertion in semantic net: 	NICE IS DISPOSITION. 

Is it correct to say that THE DISPOSITION OF FIDO IS NICE? 
(Y,N): Yes. 

Adding new assertion: 	THE DISPOSITION OF FIDO IS NICE. 

+Fido's cousin is Felix. 

Transforming (FIDO $S COUSIN IS FELIX PERIOD) 
Into ::> 	(THE COUSIN OF FIDO IS FELIX PERIOD) 

Transforming (THE COUSIN OF FIDO IS FELIX PERIOD) 
Into ::> 	(FELIX IS THE COUSIN OF FIDO PERIOD) 

Adding new assertion: 	THE COUSIN OF FIDO IS FELIX. 

[COMMENT: To illustrate the parsing process in a bit more detail, 
the rule tracer was activated for the following interaction.] 

+Cousin is a symmetric relation. 

Parse is: 
Rule RUL19 
Action will be: (PROGN (LTM-STORE !NAM !VAL (QUOTE ISA:)) 

(LTM-SPEC !NAM !VORP NIL NIL T)) 
With bindings: 
(!VAL RELATION) 
(!VORP SYMMETRIC) 
(!NAM COUSIN) 

I already knew that: COUSIN WAS A RELATION. 

Is it correct to say that THE RELATION OF COUSIN IS SYMMETRIC? 
(Y,N): yes. 

Adding new assertion: 	THE RELATION OF COUSIN IS SYMMETRIC. 
Inference: Adding new assertion: 	THE INVERSE OF COUSIN IS COUSIN. 
Inference: Adding new assertion: 	THE COUSIN OF FELIX IS FIDO. 

+Cat-chasing isadog'shobby. 

Transforming (CAT-CHASING IS A DOG $S HOBBY PERIOD) 

10 



Into ::> 	(CAT-CHASING IS A HOBBY OF DOG PERIOD) 

Adding new assertion: 	THE HOBBY OF DOG IS CAT-CHASING. 

[COMMENT: Since the program never heard of "dog" or "lido" 
it does not know whether to express them with or without a determiner. 
"Fido" is a proper name, therefore it needs no determiner, but "dog" 
in all the examples above looks strange without one. Now, we fix that 
problem by providing the program with the necessary information (in 
English, of course).] 

+The concept of dog is generic. 

Transforming (THE CONCEPT OF DOG IS GENERIC PERIOD) 
Into ::> 	(GENERIC IS THE NODE-TYPE OF DOG) 

[COMMENT: In our domain "concept" and "node-type" are synonyms. In 
future output, "dog" will be printed with a determiner when appropriate.] 

Adding new assertion: 	THE NODE-TYPE OF DOG IS GENERIC. 

+Could you tell me what a dog's hobby is? 

Transforming (COULD YOU TELL ME WHAT A DOG $S HOBBY IS QMARK) 

Into ::> 
	

(COULD YOU TELL ME WHAT IS A DOG $S HOBBY QMARK) 

Transforming (COULD YOU TELL ME WHAT IS A DOG $S HOBBY QMARK) 
Into ::> 
	

(COULD YOU TELL ME WHAT IS THE HOBBY OF A DOG QMARK) 

THE HOBBY OF A DOG IS CAT-CHASING. 

+give me everything you know about fido. 

FIDO IS A DOG. 
THE HOBBY OF FIDO IS CAT-CHASING. 
THE COUSIN OF FIDO IS FELIX. 
THE DISPOSITION OF FIDO IS NICE. 

+Napping is the hobby of Fido. 

That contradicts what I could infer by inheritance. 
THE HOBBY OF FIDO WAS CAT-CHASING. 
Should I add the assertion anyway? (Y,N): no. 
OK, discarding new assertion. 

+Exit this program. 

Leaving natural language interface. Back to LISP. 
(CPU-SECONDS: 12.056 GC-TIME: 6.780) 

As we see in the above example, robust communication with the user requires not only a flexible 

11 



domain-oriented parser, but also an interactive query capability and a natural language generator. 

However, the latter two processes are conceptually simpler, and not the topic of this paper. 

3. Future Directions 
DYPAR illustrates the harmonious integration of three parsing strategies. However, it is only the first 

step in exploiting the multi-strategy approach to develop real-world, robust, natural language 

interfaces. In terms of sophistication, DYPAR straddles the boundary between an advanced toy and a 

rudimentary real-applications system. One direction of continued development is to enhance the 

pattern matcher, build additional general transformations, and create a sub-interface to facilitate 

extensions to the grammar by a domain expert (not necessarily a natural-language expert). A first step 

in the direction of automating and simplifying user extensibility has been taken in the development of 

the KLAUS system [6]. At CMU, we are focusing on a complementary, and perhaps more fundamental 

research direction. 

If the gestalt performance of integrating three parsing strategies has proven more effective than the 

application of any single strategy, why not extrapolate this result to include additional parsing 

strategies? Indeed, we have designed a flexible control structure for integrating case-instantiation as 

the central parsing strategy -- calling upon other strategies discussed in this paper, in addition to 

more domain-specific strategies, when appropriate [3]. Case-frame instantiation is the most general 

parsing strategy capable of exploiting domain semantics. Hence, it should provide a quantum jump in 

the general applicability of our task-oriented parser. Moreover, techniques such as expectation-driven 

disambiguation [7, 1] developed by the non-applied school of natural language processing, can now 

be brought to bear in real-world applications. The reason why case-frame parsers have not been 

developed in task-oriented domains is that while they capture general principles admirably, they fail to 

recognize specific idioms, compound nouns and the like. However, the addition of partial pattern 

matching (idealiy suited to detect idiomatic expressions) integrated with case-frame instantiation and 

other parsing methods should provide a high degree of generality without sacrificing robustness. 

Graceful interaction with the user is a worthy goal for any natural language front end whose users 

may be computer-naive. People invariably produce ungrammatical utterances, leave out words, add 

interjections, and use terms outside the vocabulary of any system [4]. It is essential that a real-world 

system "fail soft" in such circumstances, and interact with the user to enable graceful recovery. We 

saw some simple examples of this in DYPAR. However, ale expectation-setting provided by a case 

system incorporating domain knowledge can be a more powerful tool to minimize failure. 

Consider, for instance, a file-management system where a user may type "Transfer the flies in my 

directory to the accounts directory." It is fairly clear to us humans that the user meant to type "files", 

even if we know perfectly well that "flies" is a legitimate word in our vocabulary. A case-frame system 

12 



knows that the objective case in the transfer imperative (as applied to the file-management domain) 

requires a logical data entity, which "flies" is not. Realizing this violated semantic requirement, it can 

proceed to see whether by spelling correction, morphological decomposition, or detecting potential 

omissions it can map "flies" into a known filler of that case. Here, spelling correction works, and the 

system can proceed to inform the user of its correction (allowing the user to override if need be). 

I conclude by reiterating my central theme: Integration of multiple parsing strategies is perhaps the 

single most powerful principle in the development of robust, task-oriented natural language 

interfaces. 

4. References 

1. Birnbaum, L. and Selfridge, M., "Conceptual Analysis in Natural Language," in Inside 
Computer Understanding, R. Schank and C. Riesbeck, eds., New Jersey: Erlbaum Assoc., 
1980, pp. 318-353. 

2. Brachman, R. J., "On the Epistemological Status of Semantic Networks," in Associative 
Networks, N. V. Findler, ed., New York: Academic Press, 1979. 

3. Carbonell, J. G. and Hayes, P. J., "Dynamic Strategy Selection in Flexible Parsing," 
Proceedings of the 19th Meeting of the Association for Computational Linguistics, (Submitted 
1981) 

4. Hayes, P. J. and Mouradian, G. V., "Flexible Parsing," Proceedings of the 18th Meeting of the 
Association for Computational Linguistics, 1980 , pp. 97- 103. 

5. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J., "Developing a Natural Language Interface to 
Complex Data," Tech. report Artificial Intelligence Center., SRI International, 1976. 

6. Hendrix, G. G. and Haas, N., "Acquiring Knowledge for Information Management," in Machine 
Learning, Michalski, R., Carbonell, J. G. and Mitchell, T., eds., Palo Alto, CA: Tioga Pub. Co., 
1981. 

7. Riesbeck, C. and Schank, R. C., "Comprehension by Computer: Expectation-Based Analysis 
of Sentences in Context," Tech. report 78, Computer Science Department, Yale University, 
1976. 

8. Woods, W., Kaplan, R. and Nash-Webber, B., "The Lunar Sciences Natural Language 
Information System: Final Report," Tech. report 2378, Bolt Beranek and Newman Report, 
1972. 

13 



CREATING AN ALGORITHM FOR 
GENERATING ABBREVIATIONS TO BE USED 

IN USER-COMPUTER TRANSACTIONS 

Sam Ehrenreich 
US Army Research Institute for the 

Behavioral and Social Sciences 

The US Army is in the process of developing automated tactical systems. 

These systems will incorporate a dialogue mode (e.g., form-filling, menu, query 

language) for communicating between the user and the computer. For the con-

venience of both, much of this communication will involve abbreviations. The 

Army Research Institute (ARI) is engaged in preparing an algorithm for use by 

system designers in creating easy to use abbreviations for these systems. The 

algorithm will not only be concerned with generating abbreviations for command 

terms. Rather, the primary domain of the algorithm will be the lexical terms 

used in exchanging information between the user and the computer. 

This summary describes the empirical issues that were investigated in ARI's 

abbreviation project. The data that was collected, along with an algorithm for 

generating abbreviations, will be presented at the workshop. 

All of the experiments for this project have already been completed. 

However, a few still remain to be analyzed. The participants used in these 

experiments were enlisted Army personnel. The stimuli used were words which are 

likely candidates for abbreviation on an automated tactical system. However, it 

is believed that the nature of both the participants and the stimuli are such 

that the resulting algorithm will be applicable for use with most classes of 

operators and with most sets of words. 

The general abbreviation techniques which were considered as candidates for 

forming the basis of the algorithm are: (1) truncation, i.e., delete all but the 

first few letters of a word; (2) contraction, i.e., remove all of the word's 

vowels except for vowels occurring as the first letter; and (3) abbreviation 

14 



by the consensus of a committee. In order to create the desired algorithm, the 

empirical questions which were investigated are: 

1. What are people's personal preferences with regard to the abbreviations 

formed by the different abbreviation techniques? 

2. How do the different abbreviation techniques compare when participants are 

presented with a word and asked to recall its abbreviation (i.e., encoding)? 

How do the methods compare when the task is decoding? 

3. When participants are asked to produce abbreviations of their own choosing, 

what abbreviation method do they tend to naturally use? 

4. When participants' experiences with a word and its abbreviation increases, 

do the absolute and relative effectiveness of the different abbreviation tech-

niques change? 

5. When participants are instructed in the rule system underlying the different 

abbreviation techniques, do the absolute and relative effectiveness of the 

abbreviations change? 

6. Should abbreviations be of a fixed or variable length? 

7. How can different words that result in identical abbreviations be handled 

(e.g., when using the truncation method, both TRANSLATOR and TRANSPORT are 

abbreviated as TRAN)? 

8. Can endings (e.g., -ed, -ing) be effectively incorporated into abbreviations? 

The answers to these questions will represent the empirical basis on which 

an abbreviation algorithm is formed. The desired algorithm is one which is 

completely deterministic in the abbreviations it forms. Using the algorithm, 

the system designer should have minimum input in determining the abbreviation to 

be created. Although the algorithm that will be created will not be based on a 

complete investigation of all possible variables, it is expected that it will 

result in abbreviations which are significantly easier to use than the arbitrary 

and inconsistent abbreviations presently used on Army systems. 

15 



Tools for the Designers of User InterFaces* 

James D. Foley 

March, 1931 

Institute for Information Science and Technology 

Department of Electrical Engineering and Computer Science 

School of Engineering and Applied Science 

The George Washington University 

Washington, D.C. 20052 

REPORT GWU-IISY-81•07 

This paper was presented at the Workshop/Symposium on Human 
Computer Interaction, sponsored by the U.S. Army Research 
Institute and Georgia Institute of lechnology. 

*This work is being carried out by the author and M.B. 
Feldman, co-principal investigator, H. Holmes, Visiting 
Scientist from Lawrence Berkeley Laboratory, J. Thomas, 
Visiting Scientist from Battelle Northwest Laboratories, 
Research Assistants T. Bleser and G. Rogers, Graduate 
Research Assistant A. Kamran, and P. Chan. The work is 
partially sponsored by the U.S. Department of Energy (Grant 
DE-AS05-79ER1052) and the U.S. Army Research Institute 
(Grant MDA 903-79-0-01). V.L. Wallace of the University of 
Kansas is co-principal investigator with the author for the 
work entitled "Evaluation of Interaction Techniques." 



Tools For the Designers of User Interfaces 

Our research objective is to develop methodologies and 

tools which can aid in the design of user—computer 

interfaces. We want to impose structure on the typically 

very complex task of designing a user--computer interface, so 

the design can be divided into manageable pieces, each of 

which can be dealt with in a systematic, rigorous and at 

least partially quantitative way. We believe this will help 

make User Interface Design more of a science and less of an 

art, and lead to improved design. 

The actual process of designing a user interface can be 

accomplished as four major steps, which we call the 

conceptual, semantic, syntactic, and lexical design steps. 

Each step can be dealt with in sequence, one after the 

other, with an occasional reexamination of a previous step. 

We call these four steps a design framework. 

The Design Framework 

The conceptual design is the definition of the key 

application concepts which the user of the interface must 

understand in order to use the system. For a simple text 

editor, the key concepts are files, lines of a file, and 

operations (add, delete, move) on lines. The conceptual 

model, as in this case, typically defines objects, relations 

between objects (a line is in a file), and operations on the 

17 



objects, and sets the stage for the semantic design of the 

user—computer interface. 

The semantic design deals wih the functionality of the 

system to be accessed via the intermediary of the user 

interface. The user performs certain actions, 

calculations/processing ensues, and information is presented 

to the user. At the semantic design level we are concerned 

only with the meanings of the inputs, the processing, and 

the Outputs: we are not concerned with the form or the 

sequence of the inputs and outputs. 

The syntactic design deals with the sequence of the 

inputs and outputs. nor the input, sequence is akin to 

grammar--the rules by which sequences of words in a language 

are formed into legitimate sentences. The types of words in 

an input sentence are typically commands, quantities, names, 

coordinates, or arbitrary text. As in English, the words 

are the units of meaning in the input and cannot be further 

decomposed without losing their meaning. to include the 

spatial domain as well. Therefore the output syntax 

includes the 2D or 3D organization of a display as well as 

any temporal variation in the form. The "words" in the 

output sequence, by analogy to the input sequence, represent 

the units of meaning being conveyed from the computer to the 

user. The units of meaning are often conveyed graphically as 

symbols and drawings made up of lines, curves, and points 

rather than as words made up of letters. 

18 



The lexical design determines how words in the input 

and output are actually formed from the available hardware 

capabilities. For input, this involves designing the 

interaction techniques for the application. An interaction 

technique is a way of using a physical input device (tablet, 

keyboard, mouse, etc.) to input a certain type of word 

(command, value, coordinates, etc.). For example, some of 

the interaction techniques for command specification are 

selection from a menu with a iiht pen or with a cursor 

controlled by a mouse, typing of the command name on a 

keyboard, and speaking the name of the command into a speech 

recogni zer. 

For output, 	lexical design means forming the symbols 

and shapes which are to be presented to the user, using the 

available hardware lexemes. For text output, this reduces 

to selecting text attributes such as font, size, color, 

background color: the spelling (i.e., combination of 

hardware lexemes, the character set) of words is already 

defined in the dictionary. In other cases, such as 

situation displays, the symbols used must be designed and 

composed from Iexemes such as lines and other grahics 

primitives, and the symbols must be assigned attributes such 

as color, intensity, linestyle, and size. 

The nub of this four—level framework for design are 

found in formal language theory: the framework has been 

successively refined and reported in a series of papers 

19 



CFOLE74, FOLE78, FOLE80, FOLEB1b]. 	We have worked/are 

working with this Framework in several ways: the 

organizatin of design principles, the evaluation of existing 

user—computer interfaces, the evaluation of interaction 

techniques (which are the lexical—level design of the 

input), 	the formal specification of the syntactic and 

lexical design of input and output, 	the calculation of 

metrics of "goodness" based on the Formal specification, and 

the design of an "abstract interaction handler" to remove 

much of the syntactic and lexical design from the 

application program. 

Organizing Design Principles 

The past ten years have seen several user interface 

designers setting forth their design principles EBENN76, 

BRITT77, ENGE75, HANS71, WALL76I in the form of general 

objectives and specific do's and dont's. These papers plus 

personal experience form the knowledge base available to 

most designers. Often the criteria are soundly—based: a 

useful start in developing tools for designers is to 

organize the principles, showing how they apply at the 

conceptual, semantic, syntactic, and lexical design levels. 

This process has been partially completed, as reported in 

FOLE81b, for principles dealing with feedback, error 

correction, 	response 	time, 	consistency, 	and 	display 

structure. 

Evaluating User—Computer Interfaces 

20 



Given an organized set of design criteria, 	it is 

possible to perform a systematic evaluation of existing 

user—computer interFaces by a combination of watching others 

use 	the interface and learning to use the interface 

oneself. In this process it is critical to note 

idiosyncratic Features of an interface when they are first 

encountered, lest one adjust to the features. Two such 

evaluations have thus far been conducted: the first 

CHERBSOI of DIDS, the Decision InFormatin Display System 

used by the federal government for policy studies; the 

second [ELEM.] of SEED'S, the Sociv—Economic Environmental 

Demographic Information System developed at Lawrence 

Berkeley Labs. A third evaluation will be of a new 

user—interface design, prior to its implementation, for 

Battelle Northwest Labs' ALDS (Analysis of Large Data Sets) 

system. 

Evaluation of Interaction Techniques 

Recall that an interaction technique is a way of using 

a physical input device to input a word, and hence is the 

lexical level input design. In F-CLEBla we have described 

and organized the interaction techniques by their purpose, 

which can be to make a selection, designate a position, 

orientation, or sequence of positions and orientations, 

input a value, or input a character string. A number of 

germane human factors design issues have been identified for 

the techniques by drawing on the literature and the 

21 



guidelines mentioned above. Nine experiments dealing with 

interaction techniques are also critically reviewed. A 

method of interaction technique diagrams is created, to aid 

in understanding, analyzing, and documenting the techniques 

and experiments. A diagram shows the cognitive, motor, and 

perceptual steps which the user of a technique performs. 

The report is meant as a guide to aid designers in selecting 

appropriate interaction techniques and devices. 



Formal Specification and Metrics 

The syntactic and lexical designs of a user interface 

should be describable by formal language tools, in the 

spirit (but not necessarily in the image) of BNF, regular 

expressions, and flow expressions. We are developing formal 

tools for describing both the input and output of a user 

interface, as well as the relationship between input and 

output. The input definition deals with concepts such as 

token types (which are the purposes of interaction 

techniques, as described above), sequences of tokens, and 

the binding of tokens to sequences of actions wth physical 

devices. The output definition deals with concepts such as 

screen areas and their contents, and attributes (such as 

color, font, and line•tyle) of tokens within various areas. 

Metrics treat issues such as complexity and consistency of 

syntactic rules, consistency in the use of codings, 

continuity of visual attention on the display, continuity of 

tactile motion with the interaction devices, and time 

required to input commands. The metrics draw upon the 

guidelines mentioned above. 

The designer of a user interface will use the tools to 

describe the interface. This in itself helps create a more 

disciplined design environment. In addition, the formal 

definition will be processed, metrics 	evaluated, 	and 

potential design problems flagged for further attention by 

the designer. In the long run, the user interface definition 

23 



will be input to an interaction handler which will actually 

implement the user interface. 



Abstract Interaction Handler 

Writing an interactive application program involves 

coding the semantic, syntactic, and lexical designs, 

typically using FORTRAN, PASCAL, or a similar language. 

There are two problems with this. First, the procedural 

languages are not well—suited to programming the syntactic 

and lexical designs. Secondly, it is easy to intertwine the 

code which implements each of the three levels, making later 

changes to any of the levels difficult. The abstract 

interaction handler is being designed to implement the 

syntactic and lexical aspects of input, and those parts of 

the syntactic and lexical output design having to do with 

interaction, such as menus, prompts, and error messages. 

This approach allows much of the user interface to be 

changed by modifying the interface definition made available 

to the interaction handler rather than by reprogramming. It 

will be possible to use two completely different user 

interfaces, such as menu driven and command—Language driven, 

with the same application program, and to "fine—tune" the 

details of a given user interface. Within the interaction 

handler, syntactic and lexical level designs will be 

separated, so that one can be easily changed without 

affecting the other. A preliminary design of an interaction 

handler can be found in FELD81. 



References 

BENN76 Bennett, J., "User-oriented Graphics Systems for Decision 
Support in Unstructured Tasks," Proceedings of 
ACM/SIGGRAPH Workshop on User-Oriented Design of 
Interactive Graphics Systems, Pittsburgh, PA., October 
1976, pp. 3-11. 

BLESS1 Blesser, T., P. Chan Mei Chu, "A Critique of the SEEDIS 
User Interface," The George Washington University, 
Institute for Information Science and Technology Tech. 
Report GWU-IIST-81-04, March 1981. 

BRIT77 Britton E., 	"A Methodology For the Ergonomic Design of 
Interactive Computer Graphics Systems, and Its 
Application to Crystallography," University of North 
Carolina at Chapel Hill, UNC Report No. TR-77-011, 
November 1977. 

ENGE75 Engel., S. , and R. 	Granda, Guidelines for Man/Display 
Interfaces, IBM Poughkeepsie Laboratory, TR 00.2720, 
December 1975. 

FELDS1 Feldman, 	M., 	"Preliminary 	Design 	of an Abstract 
Interaction Handley," The George Washington University, 
Institute for Information Science and Technology Tech. 
Report GWU-IIST-81-06, Washington, D.C., 1981. 

FOLE74 Foley, J. and V. Wallace, "The Art of Natural Graphic 
Man-Machine Conversation," Proceedings IEEE 62(4), April 
1974, pp. 462-470. 

FOLE78 Foley, 	J., 	"The 	Human 	Factors-Computer 	Graphics 
Interface," Proceedings of Symposium on Human Factors and 
Computer Sciences, Computer Systems Technical Interest 
Group, Human Factors Society, June 1978, pp. 103-114. 

FOLE8O Foley, J., "The Structure of Command Languages," in R. A. 
Guedi, et al., eds., Methodology of Interaction, 
North-Holland, Amsterdam, 1980, pp. 227-234. 

FOLE81a Foley, J., V. Wallace, and P. Chan, "The Human Factors of 
Interaction lech ► iques," the George Washington 
University, Institute for Information Science and 
Technology Technical Report GWU•IIST-81-03, Washington, 
D.C., March 1981. 

FOIE81b Foley, J., 	"A Methodology for the Design and Evaluation 
of User Computer Interfaces," The George Washington 
University, Institute for Information Science and 
Technology Technical Report GWU-IIST-81-05, Washington, 
D.C., March 1931. 

26 



HANS71 Hansen, W., "User Engineering Principles for Interactive 
Systems," Proceedings 1971 Fall Joint Computer 
Conference, pp. 523-532. 

HERBSO Herbert, T., "Evaluation of the User—Computer Interface 
Design of the Dome'tic Information Display System," The 
George Washington University, Department of Electrical 
Engineering and Computer Science Technical Report 
GWU—EELS—S0-07, Washington, D.C., 1980. 

WALL76 Wallace, 	V., Summary ca "Conversational Ergonomics" 
Session, ACM/SIGGRAPH Workshop on User—Oriented Design of 
Interactive Graphics Systems, Pittsburgh, PA., October 
1976, pp. 121-122. 



Psychological structure in information organization and retrieval: 
Arguments for more considered approaches. 

and work in progress. 

George W. Furnas 
Computer-user Psychology Research Group 

Bell Laboratories, Murray Hill, NJ 

Any given artificial storage and retrieval system forces structure 
on the information stored within it. Psychologically, however 
many kinds of structures exist for the representation of 
information, and each has domains where it is well suited and 
domains where it is at best misfit. The motivating assumption here 
is that. if one wishes to make information systems humanly 
accessible, more serious consideration is needed of the variety of 
representations characterizing human knowledge, coupled with the 
necessary invention of new compatible retrieval interfaces. 

A textile dyer would no doubt be exasperated by a menu-driven. or 
even key word, specification of colors. Our knowledge of color 
space argues that adjusting three knobs. or perhaps moving a light 
pen on a graphics screen would probably be much better. In 
contrast, asking zoo visitors to access information about 
individual animals by this same three-knob technology would be 
ridiculous. Menus or keywords would be very appropriate. The 
domain of animals has a very different structure than does that of 
color. and to use the same retrieval system for the two is a 
mistake. 

Not much experimental evidence exists regarding implications for 
computer access. but from the standpoint of reflecting 
psycholoFical similarity, recent work by Pruzansky. Tversky and 
Carroll (1980) emphasizes the diversity of appropriate 
representations. Using currently available scaling procedures in 
a large survey of categories. they typically found the domains to 
differ strongly in the relative suitability of tree and 
multidimensional structures for capturing people's similarity 
judgements. 

There are of course even more representational structures than the 
two investigated by Pruzansky. et al. From the context of 
similarity scaling alone, one might mention. in addition to 
multidimensional spaces and hierarchical clusterings. additive 
trees. more general graphs, factor-analytic structures. additive 
clusterings, etc. These structures differ in many ways. including 
continuity, contingency constraints on structural components. 
complexity, and symmetry. All of these properties presumably 
affect representational adequacy. 

28 



Scaling techniques. among others, can help to identify 
psychological adequacy of representations. but in constructing 
retrieval systems, a further issue arises: How can any of the 
variety of possibly appropriate representational structures be 
accessed? Hierarchical tree structures lend themselves to 
classical menu-tree schemes, and multidimensional configurations 
with suitable properties (e.g. low number of dimensions. 
separability?) may perhaps be accessed by various analog input 
devices. But what of other types of structures, especially as we 
seek richer structural representations? 

Thus cognitive considerations motivate the search for nonstandard 
database interface solutions... new structures. and new access 
processes. The work presented here represents a simple ongoing 
effort in that direction. It basically involves a generalization 
of tree structures, and of the corresponding familiar menu access 
mechanisms. 

Standard menu systems present a screenful of choices subdividing 
the domain of a database. The user makes a selection from 
these. resulting in a new set of more detailed selections, further 
subdividing the selected set. k sequence of choices from a 
succession of menus eventually brings the user to some final 
target item. Typically, the menus are organized into trees. That 
is. there is usually only one sequence of choices that will arrive 
at any given target. While some systems have exceptions to the 
unique path rule. these tend to be infrequent, and certainly not 
essential to the character of the system. 

Note that in menu trees, there are many choices, a whole menu 
full, presented at each step when moving down Ahrough the 
structure. There are occasions. however, when one must move back 
upward in generality. as in recovering from a mistake or changing 
targets in mid-searcn. Then, unlike when moving downward. there 
is no choice given: Trees have many "down' choices at any point. 
but only one up - . The concept being explored here revolves 
around allowing menus for upward choices, as well as the usual 
downward ones. 

The psychological motivation goes as follows: Consider a given 
node, or point of menu presentation in the structure. to represent 
a conceptually defined class of possible targets. A given 
conceptual class can certainly contain many different subordinate 
classes. enumerated in the downward menu. but often in rich 
domains the class can also be contained in many superordinate 
classes. A traditional tree representation is forced to organize 
on the basis of only one superordinate at each level. In so far 
as these different superordinates may each be useful in different 
circumstances, this psychological organization should be reflected 
in the access structure. by giving users choice when moving to 
superordinate levels. 

2 9 



Imagine. for example, one had a computerized system for retrieving 
cooking recipes that was being used to plan a meal. Imagine 
further that the user had proceeded down to a screenful of choices 
about types of salad (CAB6AR, SPINACH &. MUSHflUUM. etc.). but had 
just decided after all, against any salad for the real, and was 
ready to retreat back up the structure to other categories of 
choices. Conceivably, the user would have been interested in an 
alternative in the form of some other cold food. say cold cuts 
instead of salad, so that a superordinate of CuLD FOOD would be 
appropriate in the structure. Alternatively, it might have been 
that the user wanted some other vegetable dish, so that a 
VEGETABLE node would have been the most useful superordinate. Or 
perhaps the user wanted a different early course for the meal, say 
soup instead of salad. Thus. any of several superordinates (COLD 
FOODS, VEGETABLE DISHES. EARLY COURSE DISHES) might have been what 
the user wanted. Why not give the user exactly such a choice, in 
an Up menu from the salad node, in addition to the typical Down 
menu? If the user's head prominently figures a certain form of 
representation, externalize it in the organization of the data, 
and take advantage of it in the access mechanism. 

We are in the midst of exploring the concept of up/down menu (MUD) 
systems on a small artificial data base of a few hundred target 
items. There are a number of implementation choices that require 
research. most notably regarding how to construct the MUD 
structures: In using normative categorization data. various 
verification and - garbage collection" ideas must be invoked to 
ensure that links exist everywhere they are appropriate. and 
nowhere else. We currently ask subjects to construct "isa" 
networks by repeatedly nominating successive superordinates from 
each node. and then use frequency thresholds on nodes and links 
produced across subjects. 

When other subjects are then allowed to use the MUDs. several more 
profound issues arise. A necessary result of having multiple Up 
choices is that Down choices are not always partitions of the 
conceptual class encompassed by a node. The consequence that that 
some choices overlap is of mixed advantage. Under some 
circumstances it allows subjects the benefit of approaching a 
target with different interests in mind or with a different 
psychological "set," but it can also mean that subjects must not 
only decide whether a given choice will lead to their target. but 
weigh the relative merits when several reasonable choices exist. 
Another issue is that MUD structures lack the systematic traversal 
algorithms that trees have. Thus it is more difficult to be 
exhaustive, i.e. to make sure all nodes have been seen at least 
once, and efficient. i.e. to avoid unnecessary repetitive 
viewing of nodes. Circumstances exist where these considerations 
might be important. A third issue is that the class of targets 
actually subsumed by any downward choice is constant. while the 
users interpretation of the choice can be effected by the history 
of superordinates just passed through. In a tree, there is only 
one possible ancestral history. so no ambiguity arises_ but not so 
in a MUD structure, so users can interpret a choice variably. due 
to the different emphases of different superordinates. 

30 



Some issues also arise in working with MUDs that are perhaps even 
more relevant to tree structures. Transitivity of class inclusion 
is critical to any system based on conceptual hierarchy. Pigh 
level choices require inferring the targets subsumed under 
intermediate level nodes. Intransitivity can foil this: Suppose 
one is looking, in a lay person's botanical guide. for Scrut Oaks 
which are classified under OAKS. and that OAKS are in turn 
classified as TREES. The problem is that Scrub Oaks are not 
popularly considered trees (rather, say. shrubs). This lack of 
transitivity. due perhaps to fuzzy classification systems, would 
lead one away from a correct choice of TREES in the pursuit of 
Scrub Oaks. MUD structures have an advantage over menu trees since 
they can allow other routes to Scrub Oaks that are perhaps free 
from intransitivities. 

While this work represents only one modest example of exploration 
of more diverse psychologically motivated structures, we believe 
that efforts like it can lead to systems of greater help to human 
users. 

31 



The Nature of User-Generated 

Commands for Interacting with a Computer 

Mark D. Jackson 

Judith E. Tschirgi 

We describe the results of an experiment investigating 

user conceptions of a natural language for interacting with 

a computer information system. Novice and experienced 

computer users performed text editing and information 

retrieval tasks using a simulated interactive system. For 

each task, a script or sequence of actions was presented 

to the user. At each step, users read a description of an 

action, such as correcting , errors in text or selecting a 

page of information to view, and typed a command that they 

thought was a natural request for the action. If their 

command was inappropriate, they were asked to reword their 

attempt; otherwise there were no constraints on their input. 

A diverse set of command terms was generated by both 

groups of users, with few actions eliciting common terms 

from within or across groups. Novices used more English-

like command formats whereas the experts followed computer 

dialogue conventions learned from experience. When correcting 

commands, novices were more likely to use strategies applicable 

to normal conversation. In general, the responses generated 

32 



by our users under instructions to produce "natural" commands 

depended critically on the user's experience. 

We have shown that computer experience affects users' 

spontaneous approaches to interacting with a computer. 

Our results suggest that no single command syntax or set 

of lexical items will be consistent with the expectations 

of all users without additional training. Thus, future 

research must determine the characteristics of easily 

learned person-computer dialogues that are "natural" across 

all levels of experience. 

33 



A Conceptual Approach to Natural Language Fact Retrieval 

Janet L. Kolodner 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, GA 30332 

1. The problems 

person: What's been going on in the world recently? 
computer: The last hostage was finally released from Iran. 
person: I thought the hostages were released all at once. 
computer: She wasn't really one of the hostages, but was 

arrested later when she traveled to Iran as a 
journalist to cover the Iranian revolution. 
She's been referred to as the 53rd hostage. 

person: Why was she arrested? 
computer: Trumped—up espionage charges. 

Suppose we wanted to build an intelligent fact retrieval system 

such as the one above. What would that require? It would have to be 

able to deal intelligently with a human user, giving answers containing 

not only the appropriate information, but also the right amount of 

information. It would have to be able to analyze the intent of a human 

question or response, figuring out what the questioner really wanted to 

know. The system would also have to be able to search its memory in a 

smart way, so that as the memory grew, it would still respond in a 

reasonable amount of time. 

There are three major problem areas to be addressed in designing 

such a system: 

1. Interfacing with the user: analyzing his natural language 
questions, and deriving search keys from them 

2. Memory search 

3. Memory organization and maintenance 

34 



These problems cannot be solved independently of each other. 	The 

organization of memory constrains the types of retrieval and updating 

processes the memory can have. On the other hand, memory organization, 

and therefore procedures for adding information to memory, must be 

designed based on retrieval requirements. Similarly, memory's organiza-

tion and content, and the relationship between items and categories in 

memory should be taken into account in interpreting the intent of user 

questions. 

The CYRUS system has dealt with aspects of all three of these 

problems. CYRUS has a long term memory which was designed to store 

information about important political dignitaries. It has been used to 

store and retrieve information about former Secretaries of State Cyrus 

Vance and Edmund Muskie. CYRUS automatically adds new information to 

its memory, maintaining good memory organization in the process. It can 

be queried in English, and uses retrieval strategies and knowledge about 

the organization of its memory to search for answers. A successor to 

CYRUS, TED, will keep track of events in the life of Ted Turner, a 

celebrity, sports figure, businessman, and broadcasting figure. 

The remainder of this paper will outline some of the problems 

involved in designing a fact retrieval system which will communicate 

effectively with people. Interactions between the interface, memory 

search, and memory organization will be described. It will also outline 

the solutions to these problems, as implemented in CYRUS and described 

in Kolodner (1980). 

In considering these problems, we will assume a memory organized by 

conceptual categories, with events indexed and sub—indexed in those 

categories by their salient features. Thus, memory processes will 

35 



manipulate conceptual information, or the meaning of the data in the 

memory, and will not be concerned with the words used to express those 

concepts. 

2. Retrieval requirements 

2.1 Choosing a category for search 

Searching a memory organized in categories requires specification 

of a category or categories to be searched. Consider, for example, the 

following question: 

(01): Mr. Vance, when was the last time you saw an oil field 
in the Middle East? 

If "seeing oil fields" were one of memory's categories, then this 

question would be fairly easy to answer. "Seeing oil fields" would be 

selected for search. If it indexed an episode in the Middle East, that 

episode could be retrieved from it. Similarly, if "seeing objects" were 

a memory category, it could be selected for retrieval and events in the 

Middle East and events at oil fields could be retrieved. 

If neither of these categories existed, however, a category for 

search would have to be chosen. We can imagine the following reasoning 

process being used to do that: 

Al: An oil field is a large sight, perhaps I saw an oil field 
during a sightseeing episode in the Middle East. 

Using information about episodic contexts associated with "large 

sights", a "sightseeing" category can be chosen for retrieval. Its 

contents can be searched for an episode at oil fields in the Middle 

36 



East. If the sightseeing category organized its episodes according to 

the type of sight and its part of the world, and if there had been an 

episode in the Middle East at an oil field, then "a sightseeing episode 

at an oil field in the Middle East" could be retrieved. 

The problem of choosing a category for search is both an interface 

problem and a search problem. Search requires specification of a 

category to be searched. For a very complex data base, however, we can-

not expect a user to know all of memory's categories. Nor can we expect 

that every natural language question asked of a data base will specify a 

category for search. 

In CYRUS, this problem is solved by associating with each concept 

in memory the categories it is related to. Thus, the concept "large 

sights" has "sightseeing" associated with it, while "international 

contract" has the category "political meetings" associated with it. In 

the first step of the retrieval process, the conceptual representation 

of the question (produced by a conceptual analyzer) is checked to see if 

it already specifies a category for search. If not, contexts are chosen 

from among the categories associated with each of the question com-

ponents. 

2.2 Non—enumeration 

One of the most important problems to address in designing an 

interactive retrieval system is the following: 

Retrieval should not have to slow clown as memory grows. 

This requirement constrains both the retrieval processes and the memory 

organization. In terms of the retrieval processes, it requires the fol-

lowing: 

37 



Retrieval from a category must be able to happen without 
enumeration of the category. 

In fact, this interface problem depends on both memory organization and 

retrieval processes for a solution. If categories cannot be enumerated, 

then there must be some other way of searching a category. This can be 

done by indexing items intelligently in categories, and then by specify-

ing and following appropriate indices during retrieval. 

This method of retrieval brings up special problems. Retrieval is 

easy if a question specifies features which are indexed. This is not 

always the case, however. Two solutions to this problem have been 

implemented in CYRUS -- automatic generation of plausible indices, and 

search for alternate contexts. 

2.2.1 Index fitting and generation of plausible features 

Just as we cannot expect a user to know all of memory's categories 

or to specify a category in his question, we cannot expect him to know 

memory's indexing scheme. Thus, features specified in a question might 

not correspond to features indexed in memory. In that case, given 

features must be transformed  into indexed features. 

Inferring indexed features is a way of directing search within a 

memory category without enumerating the category. Generated features 

can be followed to find the target item in the category. In addition, 

there must be a way of recognizing that two different descriptions refer 

to the same item. One way to do that is by transforming one description 

into the second one. 

Continuing with the example above, suppose sightseeing episodes 

were not organized in a category according to the type of sight or by 

38 



their place in the world. In that case, the following elaboration of 

the initial retrieval specification might be appropriate to answer the 

question: 

A2: Which countries in the Middle East have oil fields? Iran 
and Iraq have oil fields, and Saudi Arabia does. ... 

If sightseeing episodes are organized according to the country they 

took place in, then elaborating on "the Middle East" and specifying 

particular countries in the Middle East would enable retrieval of 

episodes that took place in each of those places. Instead of searching 

for "sightseeing at an oil field in the Middle East", search for each of 

the more specific episodes "sightseeing at an oil field in Iran", "sigh-

tseeing at an oil field in Iraq", etc. could be attempted. 

The process of transforming given features into indexed ones is 

called index fitting. Index fitting is done in CYRUS by component—

instantiation rules. These rules use information about components in 

context to infer additional features of a specified item. The 

nationality of participants in a political meeting, for example, is 

known to correspond to the sides of the contract being discussed at the 

meeting. Given the participants in a meeting, that information can be 

used to infer aspects of the meeting topic. Component instantiation 

rules generate plausible features for a targetted item. These features 

correspond to indices which should be traversed to retrieve that item 

from memory. 

2.2.2 Alternate context search 

Elaboration of plausible features is only one way of directing 

search, and it is not always successful. Suppose, for example, that 

39 



there was not enough information to narrow a search key to an easily 

enumerable (i.e., small) part of the data base. In a memory where 

records refer to other contextually related records, it might instead be 

appropriate to search memory for an alternate, more retrievable context. 

In other words, retrieval can proceed by searching for a related context 

which (1) might be more retrievable than the target item, and (2) might 

refer to the item targetted for retrieval. 

Since CYRUS' memory is organized in event categories, alternate 

context search in CYRUS corresponds to search for an episode related to 

the targetted event. Since sightseeing in the Middle East would have 

had to happen during a trip to the Middle East, retrieving a trip to the 

Middle East could aid retrieval of an appropriate sightseeing 

experience. 	Thus, the following reasoning would also be appropriate to 

answer the question above. 

A3: In order to go sightseeing in the Middle East, I would 
have had to have been on a trip there. On a vacation 
trip, I wouldn't go to see oil fields, so I must have been 
taken to oil fields during a diplomatic trip to the Middle 
East. Which countries might have taken me to see their 
oil fields? Saudi Arabia has the largest fields, perhaps 
they took me to see them. Yes, they did when I was there 
last year. 

Why does it seem reasonable to search for "trips" when a "sigh-

tseeing" episode should be retrieved? How can search for alternate 

events be constrained? Only alternate contexts that might be related to 

an event targeted for retrieval should be searched for. 

In general, for search to 'be constrained to relevant contexts, 

memory categories must hold generalized information concerning the 

relationships of their items to items in other memory categories. In 

CYRUS, alternate context search is facilitated by three things: 

40 



1. knowledge of the usual relationships between 	event 
categories 

2. a set of context construction rules for constructing a new 
context based on that knowledge 

3. a set of search strategies for directing search for the 
target event within the context of the alternate event 

Thus, CYRUS knows about the usual relationship between sightseeing and 

trips, how to construct a trip context based on a sightseeing context, 

and how to search the sequence of events of the trip to find a sigh-

tseeing experience once an appropriate trip is found. 

2.3 Maintaining a conversational context 

Maintenace of a conversational context is necessary for resolution 

of ambiguous references, anaphora, and pronominal reference. Suppose, 

the question above were followed in conversation by the following one: 

(Q2): Did you talk to the workers there? 

In order to understand what "there" means, the answer to the previous 

question must be consulted. In order to understand which workers are 

being talked about, the context of "visiting oilfields", plus knowledge 

about oilfields themselves must be used. 

Maintenance of a conversational context can also constrain memory 

search. Often, it is necessary to search only the context of the answer 

to the previous question to find an answer to the current one. In the 

example above, for example, only the events involved in Vance's visit to 

the oilfield in Saudi Arabia need be searched for an answer. If the 

previous context is maintained, it can constrain search to that episode 

only, so that all of memory does not have to be searched. 

41 



2.4 Summary of retrieval 

The retrieval process described can be seen as a process of 

reconstructing  what might be true, and checking memory to make sure it 

indeed was. To retrieve an episode of "seeing oilfields", a hypothesis 

was made about the type of event it might have been (sightseeing), where 

it might have happened (Iran, Iraq, Saudi Arabia, etc.), and what else 

might have been going on at the time (a trip). 

Judging from this example, the process of retrieval requires at 

least the following processes: 

1. selection of a category for search 

2. search within the category for the targeted event 

3. elaboration on the specification of the event to be 
retrieved 

4. search for episodes related to the target event 

3. Requirements on the memory organization 

The ability of memory to support retrieval without enumeration is 

also dependent on the memory organization. The traditional solution 

within computer science to the non—enumeration problem is to index items 

within categories. An event should be indexed in a category by those of 

its features that are salient to the category. In that way, specifica-

tion of an indexed feature will enable retrieval of items with that 

feature without enumerating the whole category. 

If memory categories are heavily indexed by salient features, 

retrieval processes will have a large selection of features to specify, 

any of which might specify a target event. The retrieval process will 

42 



be made easier since the easiest elaborations can be attempted first. 

The richer the indexing, however, the more space is needed for 

storage. Indexing must be controlled so that memory does not grow 

exponentially. In CYRUS, similarities between events are used to 

control indexing. Memory keeps track of the similarities between events 

within a category, and limits indexing to the differences between 

events. Thus, if almost all the events in a "diplomatic meetings" 

category are with foreign diplomats, indexing them according to the 

occupations of their participants would be redundant and therefore 

unnecessary. It would not divide the category into significantly smal-

ler parts. If, however, one of those meetings were with someone other 

than a foreign diplomat, indexing the meeting by that feature would 

differentiate it from other events in the category. In fact, the 

similarities which constrain indexing correspond to the generalized 

information necessary for retrieval. 

Finally, a memory for events should maintain itself. This means 

that the process of selecting indices should be automated. It also 

means that events must be sub-indexed within the sub-categories that are 

formed when multiple events are indexed in the same way. Otherwise, the 

sub-categories would have to be enumerated. 	This places another 

requirement on the updating processes. 	In order to constrain later 

indexing, and in order to guide the retrieval strategies, the automatic 

updating process must also keep track of the similarities between events 

in each newly-created sub-category. If we don't want retrieval to slow 

down as new events are added to memory, then memory must be able to 

maintain its organization, creating new conceptual categories when 

necessary and building up required generalized information. CYRUS does 

43 



this through a series of organizational strategies. 

Another aspect of maintaining memory's organization 	involves 

monitoring memory search. More frequently requested information should 

be more accessible than less frequently requested information, and more 

recently accessed information should be more accessible than less 

recently accessed information. This involves both reorganization of 

memory taking frequency of access into account and restructuring the 

organizational strategies themselves, so that more frequently asked for 

types of information will automatically be organized for accessibility 

as they are added to the data base. This, and other memory maintenance 

problems which have not been described here, are being addressed in 

current and future research. 

44 



Psychological Investigations of 
Natural Command and Query Terminology 

Thomas K. Landauer 
Susan T. Dumais 

Computer-user Psychology Research Group 
Bell Laboratories, Murray Hill, NJ 

It is frequently asserted that unsophisticated users would 
find computer systems more congenial if communications with 
them were to employ more "natural" words. In a series of 
empirical studies, we have (1) developed a method for iden-
tifying natural command words for a particular task, (2) 
tested the value of the resulting natural command lexicon 
in the initial stages of transfer from manual to automated 
task performance, and (3) induced people to form "natural" 
data queries and analyzed the language they used. 

Identification of "natural" command terms. Twenty-two stu-
dents in secretarial schools and twenty-six high school 
students with typing skills were given manuscripts with 
author's marks. The author's marks indicated a variety of 
desired corrections corresponding systematically to the 
kinds of changes that are accomplished in manual or compu-
ter text-editing operations. The students were asked to 
write instructions to another typist, who did not have the 
author's marks, specifying what was to be done to the 
manuscript. This method produced verbal descriptions of 
actual editing operations (e.g. "take out the word the") 
as contrasted to description of the author's marks (e.g. 
"crossout") or goal (e.g. "fix the spelling"). Among 
noteworthy resulting observations were the following: 
(1) There was little agreement on word use; e.g. the three 
most frequent operational verbs used accounted for no more 
than 33% of descriptions of any one correction, (2) The words 
used were not like those commonly employed by computerized 
editing systems, e.g. the verb "delete" was never used, and 
(3) Unlike many computerized text-editing systems, students 
and secretaries tended to use different words to describe 
operations on characters and blanks, but the same words to 
describe similar operations on whole lines and line-internal 
strings (e.g. "change 'string a or line a' to'string b or 
line b'"). 

Testing the value of natural command terms for initial learning. 
We devised a set of miniature text-editing systems, each con-
sisting of only append, delete, and substitute operations plus 
start and stop commands. For one version, the verbs used in 

45 



the operation commands were "append", "delete" and "substitute", 
terms often used in computer text-editors. For another, they 
were the verbs most frequently used by secretaries and typists 
to describe the required action, "add", "omit", and "change", 
respectively. A third variant used randomly chosen English 
verbs, "cipher", "allege", and "deliberate" as a baseline 
control for lexical naturalness. In addition, the text- 
editors varied (a) with respect to whether the command verb 
was to be spelled out or abbreviated to its first letter, 
and (b) with respect to whether the same command word applied 
to both line-internal strings and whole lines (e.g. "omit /a/" 
for within - and "omit" for whole•line) or used different 
command words (e.g. "change /a//" for within-line and "omit" 
for whole-line). Forty-eight secretarial and typing students 
each spent about two hours studying an introductory self-
instructing manual and simultaneously doing a series of on-line 
learning and test exercises. The manuals varied only in neces-
sary ways (essentially only in command names) and as little 
extra help as possible was provided. 

The main results of interest were as follows: (1) The time 
to perform test exercises was not significantly influenced by 
command name variations; subjects performed as well when they 
were learning to "allege", "cipher", and "deliberate" as when 
they were learning to "add", "omit" and "change". However, a 
post-session questionnaire revealed some subjective preference 
for the more familiar terms. It is also important to note 
that the subjects were learning a very simple system with very 
few terms, and that they were not required to remember the 
terms over substantial periods. It is possible that "natural" 
terms would be advantageous in larger lexicons or when long-
range recall was necessary. However, natural words do not 
appear to provide substantial benefit during the highly cri-
tical first few hours of introduction to the new and exotic 
computer aided text-editing environment, as one might have ex-
pected and/or hoped. (2) Abbreviated command names were 
slightly more time-consuming to use at first, but became sig-
nificantly less so after some practice. (3) In this case, at 
least, the use of different command names for whole-line and 
within-line operations resulted in better performance than 
using the same name for both. This is contrary to subjects' 
usage in spontaneous descriptions. We hypothesize that the 
requirement to use different syntactic constructions in our 
editors was responsible; that differing command words make it 
easier to learn and use differing constructions even if the 
operations are naturally thought of as similar. 

Characteristics of natural data specifications. Three hundred 
and thirty-seven college students tried to specify verbal 
objects. They were given a list of items like "newsweek", 
"Empire State Building", etc. and asked to try to specify each 
so that another student or (in other cases) a computer would 

46 



respond with the provided word. There were no restrictions 
as to the form or content of the descriptions (except, of 
course, that they could not contain the target item). 

Among interesting characteristics of the response were these: 
(1) Students rarely used boolean expressions more complicated 
than simple conjunction. (2) Specification by exclusion 
(e.g. "a popular weekly newsmagazine other than Time")  was 
very infrequent despite the intentional inclusion of items 
that easily admitted of such specification. (3) The most 
common specification techniques were simple lists of positive 
attributes or a single immediate superordinate, followed by a 
list of attributes (e.g. "a tall building in New York located 
on 34th Street and 5th Avenue"). (4) Specifications were 
often very  vague and depended heavily on presuppositions about 
preferred responses of the target person or system (e.g. "a 
tall building in New York", a specification that: apparently 
assumes that one member of a large class will be known to be 
most representative or most dominant and will be given in the 
absence of further specification). 

We have no evidence as yet as to whether systems allowing 
"natural" query specifications would be easier to use. 
However, it does seem apparent that the use of more precise 
expressions cannot be expected without special, perhaps dif-
ficult, training. 

47 



ORGANIZING MEMORY FOR USE IN UNDERSTANDING 

by 

Michael Lebowitz - Columbia University 

1 Introduction 

Episodic memory plays an important role in the understanding of natural 

language. It can be used to provide context for top-down processing, to 

determine the segments of a text that should be focused upon, 

situation-dependent defaults, and so forth. While this should come as no 

great surprise, it is the case that most of the work relating memory (in the 

form of databases) and language understanding has emphasized the utility of 

natural language front-ends for database query ( [Harris 78, Kaplan 77, Woods 

and Kaplan 72], for example), rather than the ways that memory can be used in 

language processing. Furthermore, what work there has been on using memory 

for language processing has been in the form of question answering, ignoring 

entirely the crucial issue of using existing knowledge in memory to help 

acquire more information. The use of memory in the process of reading text 

for the purpose of updating memory - and the effect this has on memory 

organization - is extremely important, and is the issue I will address here. 

In the course of this brief presentation I will be using examples from a 

computer model that is concerned with the relation between language and 

memory. IPP (the Integrated Partial Parser), written at Yale, is able to read 

news stories about terrorism and record them in a coherent memory. It makes 

generalizations that help organize the memories of the events described and 

are used to assist in later processing. IPP is fully described in [Lebowitz 

80]. A second program, RESEARCHER, is in the early stages of development. It 

48 



will be based upon IPP, but will include a memory of a scientific domain, 

built up by reading technical abstracts. Due to the complexity of the 

material that RESEARCHER will be reading, the use of memory in the 

understanding process will be extremely important. 

The point that I want to stress here is that the need for applying 

information from memory during understanding (knowledge acquisition) must be 

considered while attempting to determine an appropriate memory organization. 

In the space available here I will give several examples illustrating the need 

for the application of episodic memory to understanding, and then outline an 

appropriate memory organization that keeps this use in mind. 

2 Why we need to use memory in understanding 

The following story is rather typical of those read by IPP. 

Figure 1: Attack on kibbutz 

- UPI, 7 April 80, Israel 

Israeli troops today stormed a children's dormitory in a kibbutz on 
the Lebanese border to free hostages seized nine hours earlier by 
gun-blazing Palestinian guerrillas and killed all five raiders. 

There are two problems in understanding story Si that memory can help 

overcome. The first involves the meaning of the word "stormed", which in this 

domain can refer to either terrorists attacking a building or government 

officials counterattacking a group of terrorists. A similar problem arises 

with "seized", which could plausibly refer to either a kidnapping or a 

building takeover. The later ambiguity is in fact never resolved in this 

text. Each of these problems is easily overcome by accessing the proper 

information from memory, generalizations such as those in the next figure, 

made after reading earlier stories. 

49 



Figure 2: Generalizations about extortion in Israel 

Israeli troops carry out counterattacks against terrorists. 

Palestinians in Israel engage in extortion by taking places over. 

Both ambiguous words in S1 can be resolved by assuming that when relevant 

generalizations exist, words should be disambiguated so that the new story 

fits the existing generalizations. The first generalization allows the 

disambiguation of "stormed" as it is read, using this rule. Similarly, we 

assume "seized" indicates a takeover, since that corresponds to the second 

generalization. Had the generalization stated that extortions in Israel were 

usually kidnappings, then "seized" would have been assumed to refer to such an 

event. 

Notice that we cannot expect a person (or computer program) to be 

pre-supplied with all the generalizations necessary to resolve problems of 

this sort. Instead, these observations must be developed by reading (or 

otherwise learning about) specific events and generalizing from them. 

The following story also requires information from memory. 

Figure 3: Basques implicit in attack 

S2 - New York Times, 24 August 79, Spain 

Bombs exploded in a French bank and a French immigration office in 
northern Spain early today, causing damage but no injuries, according 
to police. 

This story does not specify the identity of the terrorists who set off 

the explosion described. However, most people with some knowledge of Spain 

are aware that this was probably a Basque attack. Such a conclusion comes 

from a previously made generalization about terrorists in Spain. 

50 



The next figure shows how IPP handles story S2 when it has existing in 

memory a generalization that Basques are the attackers in bombings in Spain. 

Figure 4: IPP inferring default role filler features 

Generalization (BASQUE-GEN) already in memory: 
S-DESTRUCTIVE-ATTACK with: 
ACTOR 	(1) DEMAND-TYPE SEPARATISM 	<<< 

NATIONALITY BASQUE 	 <<< 
METHODS (1) AU 	 $EXPLODE-BOMB 
LOCATION (1) AREA 	WESTERN-EUROPE 

NATION 	SPAIN 
RESULTS (1) AU 	 CAUSE-DAMAGE 

*(PARSE S2) 

Story: S2 (8 24 79) SPAIN 

(BOMBS EXPLODED IN A FRENCH BANK AND A FRENCH 
IMMIGRATION OFFICE IN NORTHERN SPAIN EARLY TODAY 
CAUSING DAMAGE BUT NO INJURIES ACCORDING TO POLICE) 

>>> Beginning final memory incorporation ... 

Feature analysis: EV16 (S-DESTRUCTIVE-ATTACK) 
RESULTS 	AU 	 CAUSE-DAMAGE 
METHODS 	AU 	 $EXPLODE-BOMB 
LOCATION 	AREA 	WESTERN-EUROPE 

NATION 	SPAIN 

Indexing EV16 as variant of BASQUE-GEN 

Inferring feature ACTOR DEMAND-TYPE SEPARATISM 	<<< 
of EV16 

Inferring feature ACTOR NATION BASQUE 	 <<< 
of EV16 

>>> Memory incorporation complete 

In this example, IPP recognizes that S2 is an instance of a 

generalization that it has made previously (BASQUE-GEN) and uses that 

generalization to supply default characteristics of the terrorists. In 

51 



particular, IPP assumes, corresponding with the generalization, that the 

terrorists are Basque separatists. The determination of defaults of this sort 

is a major use of generalizations. IPP also indexes this event as an instance 

of the most relevant generalization, so that it can retrieve it later to make 

further generalizations. I will say more about this last point below. 

3 Organizing memory for understanding 

Examples such as S1 and S2 place several constraints upon the 

organization for memory. In particular: 

1. It must be possible to access generalizations based on partial 
information so that relevant information can be applied during 
understanding, and not just after it has been completed. 

2. Many different features of a generalization must provide access to 
that generalization, so that instances with different relevant 
features mentioned explicitly can all be identified. 

3. Generalizations must lead to memories of actual events so that 
further generalization can occur. 

These constraints suggest a possible memory scheme. This scheme, as 

implemented in IPP, has several tree-like structures, each consisting of more 

and more specific versions of generalizations. The generalizations in the 

tree are used to organize actual memories of events. The trees are associated 

with high-level knowledge structures that are used to describe events in the 

domain at an intentional level. (For terrorism these include extortion and 

attacks on individuals). 

A typical tree of generalizations in IPP's memory might look something 

like the next figure. 

A tree of generalizations such as the one in Figure 5 multiple indexing 

between each generalization and its more specific versions. Normally each 

52 



I 
Figure 5: An IPP Generalization Tree 

S -EXTORT 

G1 - kidnappings of 	G2 - hijackings of 
businessmen 	 German planes 

V 
G3 - kidnappings of businessmen 

in Italy by the Red Brigade 

V 
the kidnapping of a shoe manufacturer 

in Milan in August 

novel feature of a generalization is used as an index for that node in memory. 

(Some exceptions for common features are mentioned in [Lebowitz 80].) So in 

Figure 5, generalization G1 could potentially be accessed once a story has 

been identified as an extortion that is a kidnapping or an extortion with the 

hostage being a businessman. This kind of identification is exactly what we 

need to do during the processing of a story so that the remaining information 

in a relevant generalizations can be used to help processing in the ways 

indicated above. 

The processing scheme that uses such a memory involves identifying the 

most specific generalizations relevant to a story as it is read, using any 

features accumulated from the story along with the corresponding 

generalization index tree. Then the remainder of the story can be interpreted 

in terms of these generalizations. Further, by having actual events stored 

under the generalizations, by the time we have finished reading a story we 

have available similar events that might be suitable for additional 

generalization. 

53 



5 References 
[Harris 78] 

[Schank 80] 

[Woods and 

[Lebowitz 80] 

[Kaplan 77] 

[Kolodner 80] 

Harris, L. R. 
Natural language processing applied to data base query. 
In Proceedings of the 1978 ACM Annual Conference. Association 

for Computer Machinery, Washington, D. C., 1978. 
Kaplan, S. J. 
Cooperative responses from a natural language data base query  

system. 
Technical Report, Moore School of Engineering, University of 

Pennsylvania, 1977. 
Kolodner, J. L. 
Retrieval and organizational strategies in conceptual  memory:  A 

computer model. 
Technical Report 187, Yale University Department of Computer 

Science, 1980. 
Lebowitz, M. 
Generalization and memory in an integrated understanding  

system. 
Technical Report 186, Yale University Department of Computer 

Science, 1980. 
PhD Thesis. 
Schank, R. C. 
Language and Memory. 
Cognitive Science 4(3):243 - 284, 1980. 

Kaplan 72] 

'14rhetrl tiaencice 
Kaplan, 
	  language information system: Final  

report. 
Technical Report BBN Report 2265, Bolt Beranek and Newman, 

Inc., Cambridge, MA, 1972. 

Similar schemes for organizing memory have also shown to be useful in 

explaining reminding phenomena 	[Schank 80] and human memory retrieval 

[Kolodner 80]. 

4 Conclusion 

Clearly the memory scheme devised for IPP somewhat too simple. For more 

complex types of data (such as in the scientific domain that will be dealt 

with by RESEARCHER), memory will clearly have to be more strongly 

interconnected, resulting in a structure that is more a network that a tree. 

However, the organization used for IPP indicates how the organization of 

memory must be appropriate for the process of knowledge acquisition, and not 

just the retrieval of information. 

_;4 



Artificial Intelligence and Human Factors Engineering: 
A Necessary Synergism in the Interface of the Future 

WORKING DRAFT 

Paul Roller Michaelis and Mark L. Miller 

Computer Science Laboratory 
Central Research Laboratories 
Texas Instruments Incorporated 
M.S. 371, P.O. Box 225621 

Dallas, Texas 75265 

ABSTRACT 

In 	the 	coming 	decade, 	a 	new 	generation 	of 
computer-based systems offers the potential to do for the 
human mind what the industrial revolution did for human 
muscle. 	To 	realize 	this 	potential, we must study 
sophisticated kinds of software, 	in which the computer 
performs tasks previously thought to require human 
intelligence. We must also study how to organize such 
hardware/software systems to interact most effectively with 
their human masters. 

TI's Computer Science Laboratory is attempting to 
construct and evaluate experimental prototypes of such 
systems. Their design has required unique combinations of 
talent from diverse disciplines. We are combining expertise 
from two fields in particular: artificial intelligence and 
human factors engineering. This talk will illustrate 
synergistic effects of cooperation between these two fields. 
Examples will be drawn from current research projects in 
natural language processing and advanced computer based 
instruction. 

Cflindr;f, 1(6 	) 

55 



AT 

4 
u . 

• 
c • 

etJ c th 



TABLE OF CONTENTS 

1.0 INTRODUCTION 

2.0 INTERACTIVE NATURAL LANGUAGE SYSTEMS 

2.1 Description of the Problem 

2.2 What Human Factors Contributes 

2.3 What Artificial Intelligence Contributes 

3.0 INTELLIGENT TUTORING SYSTEMS 

3.1 Description of the Problem 

3.2 What Human Factors Contributes 

3.3 What Artificial Intelligence Contributes 

4.0 CONCLUSION 

5.0 REFERENCES 



1.0 INTRODUCTION 

People will have trouble performing a physical task if 

the demands of the task exceed their physical capacities. 

To many of us nowadays, that seems like simple common sense. 

However, it was not until the late 1890's that Frederick W. 

Taylor made his pioneering studies of how how to design jobs 

and tools so that they more closely match the physical 

capacities of people. (As an aside, what Taylor studied was 

shovels and how best to use them.) 

The field of human factors engineering had its birth 

during World War II. The founders of the field recognized 

that errors can occur in man-machine systems when the man's 

job in these systems overloads his mental  capacities. 

Before going any further, let's first examine what is meant 

by "man-machine system." In a man-machine system, one or 

more of the components is a person, and the person must 

interact with the machine components. The designs, goals 

and complexity of these systems vary considerably. Figure 1 

shows a schematic of a simple man-machine system. 

Show Foil Number -1- Here. 
(Man-machine system cartoon from Chapanis, 1965) 

During World War II it was found that many errors in 

human-machine systems, such as airplane accidents due to 

"pilot error," could in fact be traced to the design of the 

controls and displays. These are the components of the 

58 



THE WORK ENVIRONMENT 



system through which the human and machine components 

exchange information. Researchers such as Alphonse Chapanis 

and Paul Fitts discovered that certain control and display 

designs virtually invited even experienced people to misuse 

or misinterpret them. The solution lay in redesigning the 

controls and displays so that they operate in manner more 

compatible with the mental capacities of people. 

The 	TI 	Computer 	Science 	Laboratory 	develops 

human -machine systems in which the machine is a digital 

computer whose software is intended to be (more or less) 

"intelligent." Efforts to create such artificially 

intelligent systems have been underway for only a few 

decades; 	the founders of the field (e.g., McCarthy [1965], 

Minsky (19651, and Newell & Simon [].9721) are still 	active 

contributors. 	In even this short time, much has been 

accomplished. There are systems that can play master-level 

chess, solve complex integrals, understand and obey commands 

stated in simple English, speak in a human-like voice, 

recognize objects in scenes, solve analogy problems, and so 

on. Central themes, such as the notion of a problem space, 

means-ends analysis, and heuristic programming have emerged 

to organize thinking in the field. AI software techniques 

such as semantic network knowledge representations, 

augmented transition networks and chart 	parsers, 	and 

production 	rule 	deduction 	systems 	have gained wide 

acceptance even as better approaches appear. 

60 



The long term goal of this work is to 	develop 

"intelligent interactive systems" which do for people's 

minds what the industrial revolution did for their muscles. 

Accomplishing this goal requires combining the skills of 

human factors engineers and AI specialists. The purpose of 

this talk is to describe the benefits of a synergistic 

relationship between these two fields. 	Two 	research 

projects currently underway at TI serve to illustrate these 

benefits. 

2.0 INTERACTIVE NATURAL LANGUAGE SYSTEMS 

2.1 Description Of The Problem 

Chapanis (1975) has demonstrated that 	interactive 

natural language dialog is remarkably unruly, with many 

misspellings and grammatical errors. Although progress has 

been made in getting computers to process pristine English 

text, it will be many years before computers will be able to 

process unlimited interactive natural language dialog. 

As our group works toward a system that interacts in 

true natural language, another project is under way that is 

oriented toward intermediate results. The goal of this 

project is to define a human engineered subset of natural 

language. This subset would retain all of the user—oriented 

benefits of unrestricted natural language dialog. However, 

its use would greatly reduce the processing burden that true 

61 



AI and HF: A Necessary Synergism 	 Page 6 

natural 	language interaction places on the computer. This 

is clearly a goal that can best be accomplished 	by 

cooperation 	between 
	

artificial 	intelligence and human 

factors specialists. 

2.2 What Human Factors Contributes 

Ford, Weeks and Chapanis (1980) and Michaelis (1980) 

reported a series of experiments that were conducted in the 

human factors laboratory at Johns Hopkins. In these 

experiments, two-person teams exchanged information over a 

telecommunications medium in order to solve problems. Half 

of the teams were rewarded solely for correctly solving 

their problems. The other half had their correct solution 

reward diminished for each word token they used. Thus, 

these latter teams were encouraged to keep their 

communication 	as brief and concise as possible. 	The 

problem-solving task assigned to the subjects in 	the 

Michaelis experiment 	is typical of the type used in these 

studies: One team member was given a completely assembled 

prism-shaped wooden model and was required to assist the 

other member, who had to build an identical model from the 

separate parts. In these experiments, the team members were 

in different rooms. In the Ford et al. study, half the 

teams 	communicated 	by voice and the other half via 

teletypewriters; 	in the Michaelis study, all communication 

was over teletypewriters. 

62 



AI and HF: A Necessary Synergism 	 Page 7 

In both studies. there were dramatic and 	highly 

significant differences between the two experimental groups. 

However. it is important to note that problem-solving 

accuracy was not affected by self-imposed brevity. 

Show Foil Number -2- Here. 
(Summary of the data presented in the next paragraph.) 

Among the significant differences noted in both studies 

are that the self-limited teams generated, on the average, 

about one fifth as many word tokens, one third as many word 

types, and one third as many messages. In a linguistic 

analysis of the protocols from their study, Ford et al. 

found that the self-limited subjects used proportionally 

more nouns (41.9 vs. 26.1%, p < .001), fewer pronouns (5.5 

vs. 11.9%, p < .001), fewer verbs (10.3 vs. 16.9%, 

p < .001), more adjectives (18.3 vs. 	10.4%, 	p < .001) 	and 

fewer prepositions (8.9 vs. 	11.3%, p < .035). 

Show Foil Number -3- Here. 
(Summary of data presented in next paragraph.) 

Probably the most interesting finding of these studies 

is that on the average, the self-limited teams solved their 

problems faster than their unlimited counterparts, 14.9 

versus 19.3 minutes in the Ford et al. study and 20.5 

versus 27.6 minutes in the Michaelis study. This difference 

was not statistically significant in the Ford et al. study. 

However, in the Michaelis study, which tested more teams (48 

63 



When compared with the unlimited teams, the self—limited 
teams generated: 

o One fifth as many word tokens. 
o One third as many word types. 
o One third as many messages. 

Mean Percentenages of Parts of Speech Used by Teams in the 
Two Word Usage Conditions. (from Ford, et al., 1980) 

Parts of speech 	Self—limited 	Unlimited 
	

p 

Nouns 	 41.9 	26.1 	.001 
Pronouns 	 5.5 	11.9 	.001 
Verbs 	 10.3 	16.9 	.001 
Adjectives 	18.3 	10.4 	.001 
Prepositions 	8.9 	11.3 	.035 



Average Number of Minutes for Teams to Solve Their Problems 
in Both Experiments and Word Usage Conditions. 

Experiment 	Self-limited 	Unlimited 	p 

Ford et al. 	14.9 	 19.3 	N.S. 

Michaelis 	20.5 	 27.6 	( 0.005 



AI and HF: A Necessary Synergism 	 Page 8 

vs. 	32). the p value was less than 0.005. This is strong 

evidence that requiring people to be concise does not hurt 

their ability to communicate; 	it may even help. 

2.3 What Artificial Intelligence Contributes 

At this point, natural 	language specialists 	in the 

Texas Instruments AI group became involved. They contrasted 

the limited and unlimited protocols from the Michaelis 

study. Their goal was to determine how the dialog 

limitation might affect the processing burden of natural 

language computer systems. They were specifically concerned 

with contrasting the effects on systems that do a syntactic 

analysis first and then pass the results to a semantic 

component. versus those which integrate the semantic and 

syntactic components during analysis. 

Pronominal 	reference 	and 	the 	attachment 	of 

prepositional phrases, two stumbling blocks for many present 

syntactically based systems. occur somewhat less frequently 

in the limited condition. However. in the limited protocols 

over one third of the utterances were ungrammatical. while 

in the unlimited case this was closer to one tenth. They 

therefore believe that syntax—first approaches will have 

significantly more problems parsing the limited condition 

utterances than systems which have less reliance on syntax. 

66 



AI and HF: A Necessary Synergism 	 Page 9 

The word types used in the limited condition are 

virtually a subset of those used by the unlimited users; 

apparently, many of the words used by the unlimited subjects 

were not necessary for the solution of the problem. This 

finding has also been reported in a study of interactive 

limited—vocabulary dialog (Michaelis, Chapanis, Weeks, & 

Kelly, 1977), and suggests that the conceptual coverage of 

the limited protocols is less than that of the unlimited. 

Therefore, a semantics based system, such as a semantic 

grammar (c.f. Burton, 1976) or conceptual analyzer (c.f. 

Schank, 1975), could possibly gain efficiency from the 

language limitations. 

The protocols were also analyzed to examine whether the 

problem solving strategies used were different between the 

unlimited and limited conditions. The protocols were 

classified according to the problem solving strategies used 

and the ordering of their subgoals. No statistically 

significant differences were found between the unlimited and 

limited conditions in the number of teams using the 

different strategies. 

In 38 of the 48 protocols (nineteen in each condition) 

the subjects used subgoals characteristic of classic 

means—ends analyses (Newell & Simon, 1972). These teams 

established two major subgoals of the task, building the 

triangular sides and building the rectangular base. The 

order in which these were performed did not significantly 

67 



AI and HF: A Necessary Synergism 	 Page 10  

differ between the limited and unlimited conditions. 

The ten remaining teams did not have obvious subgoals; 

six used an approach in which they described the appearance 

Of the model, and the remaining four used a strategy of 

making small pieces and then connecting these together. 

Again, no significant differences were found between the two 

conditions in the number of teams using each strategy. 

Show Foil Number -4- Here. 
(Conclusions from NLP research) 

To summarize the findings thus far in this research 

effort, human factors specialists found no evidence that the 

dialog restriction discussed in this paper will hurt the 

user's efficiency. Indeed, the Michaelis study suggests 

that the efficiency of the users may actually be improved by 

well chosen limitations on the interactions. Further, the 

language restriction could not be shown to significantly 

change the problem solving strategies used by the subjects. 

The protocol analyses performed by artificial intelligence 

specialists suggest that semantically based interactive 

natural language processing systems might also benefit from 

this restriction. 

68 



Conclusions 

From a human factors perspective: 

o No evidence that the dialog restriction hurts people's 
ability to communicate. 

o No evidence that the dialog restriction changes people's 
problem solving strategies. 

From an AI perspective: 

o Some evidence that a semantically based interactive 
natural language processing system might benefit from 
this dialog restriction. 

69 



AI and HF: A Necessary Synergism 	 Page 11 

3.0 INTELLIGENT TUTORING SYSTEMS 

A second illustration of the AI/Hr synergism involves 

the development of "intelligent tutoring systems" intended 

to teach elementary computer programing. Such systems 

represent enhancements over conventional "drill and 

practice" or "frame—based" multiple—choice branching systems 

because they incorporate considerable knowledge about the 

task, the student, and about tutoring per se. The long—term 

goal is to provide a computer—based educational experience 

comparable to a one—on—one interaction with an expert human 

tutor. 

3.1 Description Of The Problem 

Three systems intended to teach elementary computer 

programming are examined. The first system, HIP (for "BASIC 

Instructional Program") [Harr, Beard and Atkinson 1976] 

serves as a problem solving laboratory wherein students 

solve programming exercises in the BASIC language. The 

second system, SPADE-0 (for "Structured Planning and 

Debugging Environment") [Miller 1979], was developed as an 

AI exercise. Its purpose was to articulate the underlying 

programming knowledge involved in writing graphics programs 

in the LOGO [Papert 1980] language. A third system, 

currently under development, blends both AI and human 

factors considerations. 

70 



INTELL / 6cfuTs 
-ravro R iN 6- 



AI and HF: A Necessary Synergism 	 Page 12 

BIP 	is 	an 	effective 	working 	computer-based 

instructional system which has been in use by the Navy for 

some time, both as a research vehicle and as a practical 

tool for teaching BASIC programming. It serves as a useful 

representative of previous work on programming tutors. (BIP 

has been in use in our laboratory for over a year.) SIP is 

able to individualize the sequence of tasks encountered by a 

given student, on the basis of a skills model inferred from 

performance on prior tasks. 	Hence, not every student 

encounters every task; 	and some encounter tasks in a 

different order than others. We present a (slightly edited) 

excerpt from a session with this system to illustrate its 

capabilities and limitations. 

COMPUTER: On the first day of XMAS, someone's true love 
sent him a partridge in a pear tree. On the 
second day, they sent two turtle doves plus 
another partridge (3 gifts, 2nd day). This 
continued through the twelfth day, when the 
true love sent 12 lords, 11 ladies, ... all 
the way to yet another partridge. Write a 
program that computes and prints the number 
of gifts sent on that twelfth day. (This is 
not the same as the TOTAL number of gifts 
sent for all 12 days!) 

STUDENT: HINT? 

COMPUTER: This program requires a loop. Each execution 
of the loop involves accumulating the value 
of the index into a total. 

STUDENT: HINT',  

COMPUTER: Finding a total almost always means you need 
two things: 
(1) Setting a variable to 0 before the loop. 
(2) Accumulating values into that variable 

within the loop. 

72 



AI and HF: A Necessary Synergism 	 Page 13 

BIP has impressive features for creating flow diagrams 

and does an excellent job of sequencing tasks. However, its 

understanding of the domain is limited to a flat collection 

of language constructs. Based on informal analyses, BIP 

often rejects answers that students believe to be correct; 

it tries too hard to elicit a single solution, which is not 

always appropriate in complex domains such as programming. 

BIP was hampered by its lack of understanding of 

planning and debugging, two central AI concerns. While BIP 

could individualize the sequence of tasks, 	it could not 

individualize the hints given within a task. 	Thus, all 

students who encountered the XMAS task and requested two 

hints would see the same two hints shown above. To improve 

upon BIP's pre—stored hints, our problem was twofold: 	to 

represent 	the underlying knowledge and to apply that 

knowledge in a fashion helpful to the human user. 

3.2 What Human Factors Contributes 

The goal of the AI 	specialists 	is 	to 	design 

"artificially intelligent" computer environments that tutor 

students in much the same way that a human teacher might 

tutor his students. The AI technology has progressed to the 

point that some very basic questions must be answered before 

progress can continue: What makes an intelligent human 

tutor successful? What are his techniques for diagnosing 

student problems and misconceptions? What are his 

73 



AI and HF: A Necessary Synergism 	 Page 14 

techniques for advising students? In short, how does he use 

his intelligence to provide tutoring superior to that 

provided by pre—stored hint systems like HIP? All of these 

questions relate to the human—computer interface, so the AI 

specialists at TI took the questions to the human factors 

group. 

Job and task analyses are two of the basic tools of 

human factors engineering. The human factors group 

addressed the AI specialists' questions by setting up a 

system in which a computerized intelligent tutor is 

simulated by having an intelligent human playing the role of 

the computer tutor. Very simply, the human tutor observes a 

student's efforts by watching a monitor that is slaved to 

the student's work terminal. The tutor makes judgments 

about the student's problems and misconceptions, and types 

appropriate help messages that appear on the student's help 

terminal. It is important to recognize that, in this 

paradigm, the human tutor bases decisions on exactly the 

same information that would be available to the computer 

tutor, and similarly provides help the same way that the 

computer tutor should. 

In these studies, the human tutor 	is 	carefully 

evaluated. Human factors specialists meticulously record 

all his activities, along with verbal protocols in which he 

explains the rationale behind his decisions. These studies 

are not yet complete, but a clearer model of the intelligent 

74 



AI and HF: A Necessary Synergism 	 Page 15 

human tutor is already emerging. 	One important trend 

observed thus far is that the level of sophistication 

required for a successful himmametutor might not need to be 

as great as was originally expected. 

Show Foil Number -X- Here. 
(The following paragraphs, including the BASIC code.) 

Here is an example of a problem a student had that was 

easily diagnosed by the human tutor. The student was 

learning how to program in BASIC, using the SIP problem set. 

In this particular problem, the student was asked to take 

two numbers, M and N, and compute their sum, difference, 

product, and quotient. This is what the student typed: 

10 PRINT "WHAT IS THE FIRST NUMBER" 
20 INPUT M 
30 PRINT "WHAT IS THE SECOND NUMBER" 
40 INPUT N 
50 LET A = M + N 
60 LET B = M - N 
70 LET C = M * N 
80 LET D = M 

At this point, the student paused for over a minute, 

then asked for help. Quite clearly, the student's problem 

was that he did not know the symbol for division. This sort 

of problem is representative of the type solved by the human 

tutor that would not have been solved by a pre-stored hint 

tutor like SIP. Note that even a very simple means-ends 

analysis model 	involving sequential 
	

accomplishment 	of 

subgoals is adequate to provide a correct hint here. 

:75 



The student was asked to write a BASIC program that would 
take two numbers, M and 	N, and compute their 	sum, 
difference, product, and quotient. Here is what he did: 

10 PRINT "WHAT IS THE FIRST NUMBER" 
20 INPUT M 
30 PRINT "WHAT IS THE SECOND NUMBER" 
40 INPUT N 
50 LET A : M + N 
60 LET B,: M — N 
70 LET C M * N 
80 LET D M 

When he got to this point, the student paused for over a 
minute, and then asked for help. What information does he 
need in order to continue? 

76 



AI and HF: A Necessary Synergism 	 Page 16 

3.3 What Artificial Intelligence Contributes 

The crucial contributions of AI to CAI derive from 

representing the underlying knowledge. In the case of 

programming. representing the domain knowledge requires 

asking such questions as, "What is it that the expert 

programmer knows that the novice does not?" Miller's SPADE-0 

project was more an attempt to investigate and formalize 

this type of knowledge than to build a useful programming 

tutor. It represented knowledge about programming plans 

(i.e., procedural templates independent of the particular 

programming language) and debugging techniques. 

SPADE-0 built upon AI work in automatic planning and 

debugging developed in HACKER [Sussman 1973], MYCROFT 

[Goldstein 1974], and NOAH [Sacerdoti 1975]. SPADE-0 could 

prompt the student through hierarchical planning processes, 

encouraging the student to postpone premature commitment to 

the detailed form of the code. (This AI planning technique 

grew out of such systems as ABSTRIPS [ref].) SPADE-0 

provided a vocabulary of concepts for describing plans, 

bugs, and debugging techniques, and handled the routine 

bookkeeping tasks involved in simple program development. 

Figure XX illustrates a sample 	interaction 	with 

SPADE-0. The key feature is the system's deeper analysis of 

the underlying knowledge. This is manifested by commands 

for editing the plan -- rather than merely the code -- of 

the student's program. However, the design of SPADE-0 

77 



Si'it DE-0 

PLAN NELL.) 
ReptAT y lber ► ES 

t<staiLta -t IDC7 

Cti 6.1-  no c#J ? 

> Run (A) Lti 
	

evevelin 4 G.1V •• • Pont. T 

6,J 	r%O '.J  

> DeibtAj WELL 

Welt use% a 1? f PE Ti 710 iy es 4N . 	r At .74-i 
r 

level 	cogocf a ■ns 	07  des I's h cleciL'iods . 	"Mere a r -E. 

Warn In1 3.; on tlie- tdde for 64611 - 5 f DE > . 



AI and HF: A Necessary Synergism 	 Page 17 

ignored human factors considerations, 	imposing its own 

technical vocabulary on the student, and adopting a style of 

interaction that took away much of the initiative. 

Our current work is an attempt to extend the underlying 

AI knowledge represented by SPADE-0 and merge it with the 

improved human factors guidelines resulting from careful 

analyses of what good human tutors do. Like HIP, it will 

dynamically select tasks from a curriculum database; but 

like SPADE-0, it will build a model of the student's problem 

solving skills (rather than simply recording which 

programming language constructs have been mastered). The 

key AI aspect is fine—grained diagnosis of student errors to 

provide custom—generated (rather than pre—stored) advice. 

We are basing the design of our new tutoring module on 

human factors studies in which a human simulates this 

module. As the system implementation progresses, additional 

tasks will be taken over by the computer, and the need for 

the human tutor to intervene will be 	correspondingly 

diminished. 	The proportion of tasks successfully performed 

by the computer tutor is a measure of our progress. 

Earlier "intelligent tutoring systems" such as HIP and 

SPADE-0 used their intelligence to build models of the 

student. However, the interface between the intelligent 

tutor and the student remained crude. By working with human 

factors engineers, the AI specialists now better understand 

how human tutors interact with students. The emphasis of 

79 



UEC r.,1 SI EY, 2G 

Task Selector 

Help or Hint 
Keypress 

Session 
History 

Tutor Output 
to Speech Box 

Anal zed Keyboard Editor 
outout 

_Ltzt).  



COMPARISON OF HINTS FROM 'DUMB' TUTOR AND 'SMART' TUTOR 

0 DUMB TUTOR: "REMEMBER TO SET UP THE CORRECT HEADING AND LOCATION OF YOUR 
TURTLE BEFORE STARTING NEW SUBTASKS.' 

0 SMART TUTOR: 'You HAVE SUCCESSFULLY COMPLETED THE SUBTASKS OF DRAWING A 
TRIANGLE AND SQUARE. HOWEVER, YOUR TRIANGLE IS INSIDE THE SQUARE NOT 
ABOVE IT. CORRECTING THE INTERFACE BETWEEN THE SQUARE SUBTASK AND 
TRIANGLE SUBTASK WILL FIX THIS.' 



the AI work has now shifted to modelling this tutor/student 

interface. 

4.0 CONCLUSION 

In closing, it is worthwhile to review a central human 

factors problem: 	the division of labor between human and 

machine in human—machine systems. 	In any well—designed 

system, tasks are allocated to those components best suited 

to perform them. Textbooks on human factors engineering 

typically state that machines tend to be superior to humans 

in such tasks as calculation and coordination of many 

simultaneous activities. Conversely, they state that humans 

tend to excel 	in such tasks as problem solving where 

originality 	is required, pattern recognition, and decision 

making based on incomplete or conflicting data, or when 

unlikely or unexpected events occur. Thus, these guidelines 

would allocate responsibility for calculation to the 

machine, but leave the human responsible for recognizing 

patterns in the results of those calculations. 

	

As artificial 	intelligence continues to 	progress, 

machines will begin to achieve superiority over humans in 

many aspects of tasks traditionally assigned to humans. 

This might lead to speculation that research on 

human—machine interfaces may be unnecessary, since the need 

for the human component will disappear. For certain kinds 

of menial tasks presently performed by humans, this line of 

82 



HUMANS ARE BETTER AT 
	

MACHINES ARE BETTER AT: 

PATTERN RECOGNITION 	 : ACCURATELY AND RAPIDLY PERFORMING 
: COMPLEX CALCULATIONS 

APPLYING ORIGINALITY IN SOLVING 
PROBLEMS 	 : COORDINATING AND PERFORMING MANY 

: SIMULTANEOUS ACTIVITIES 
MAKING DECISIONS BASED ON 
INCOMPLETE OR CONFLICTING DATA 	: PERFORMING ROUTINE OR REPETITIVE 

TASKS 
MAKING DECISIONS WHEN UNLIKELY 
OR UNEXPECTED EVENTS OCCUR 
	

: MONITORING 



AI and HF: A Necessary Synergism 	 Page 19 

reasoning is probably sound. However, it is our expectation 

that. as work in artificial intelligence and human factors 

engineering continues to advance. the nature and power of 

the human-computer interface will become more critical and 

sophisticated. The art and science of interface design will 

never become obsolete. Obsolescence is faced only by our 

traditional task-allocation guidelines. 

This paper has described two examples of research 

projects in which AI and human factors specialists have 

collaborated. From these projects and others like them, we 

have learned to stop thinking in terms of separate 

disciplines 	that 	merely 	benefit 	from 	cooperation. 

Particularly in the design of "intelligent interactive 

systems," the borderline between these two fields has 

blurred in our eyes. Human factors specialists are learning 

to exploit the tremendous benefits for the human component 

made possible by more intelligent software components; AI 

specialists are learning to write software that is sensitive 

to the needs, capacities, and limitations of the human 

component. Due to this kind of synergism, the well-designed 

human-computer interface can become a link between the 

creative thoughts of men and machines, contributing to a 

technological revolution that offers to do for the human 

mind what the industrial revolution did for human muscle. 

84 



5.0 REFERENCES 

Harr, Avron, Marian Heard and Richard Atkinson. 	The 
Computer as a Tutorial Laboratory: the Stanford HIP 
Project. International Journal of Man-Machine Studies, 
8, 1976, pp. 567-596. 

Burton. R.R. Semantic Grammar: 	An Engineering Technique  

for 	Constructing 	Natural 	Language 	Understanding  
Sustems. HHN Report No. 3453, 1976. 

Chapanis. A. 	Man-Machine  Engineering. 	Belmont, California: 

Brooks/Cole. 1965. 

Chapanis. A. 	Interactive human communication. 	Scientific  
American, 1975, 232(3), 36-42. 

Ford, W. 	R., Weeks, G.D., & Chapanis, 	A. 	The effect of 
self - imposed 	brevity 	on the structure of dyadic 
communication. The Journal  of Psychology. 	1980. 104, 
87-103. 

Goldstein, 	Ira. 	Understanding Simple Picture Programs.  
Massachusetts 	Institute 	of 	Technology Artificial 
Intelligence Laboratory, Technical Report ???, 1974. 

McCarthy, John, et al.. LISP 1.5 Programmer's Manual. 	MIT 
Press, 1965-6. 

Michaelis, P.R. 	Cooperative problem solving by 	like- and 
mixed-sex 	teams 	in 	a 	teletypewriter mode with 
unlimited, self-limited, 	introduced 	and 	anonymous 
conditions. 	JSAS Catalog of Selected Documents in 
Psychology, 1980, 10, 35-36 (Ms. No. 2066). 

Michaelis, P.R., Chapanis, A., Weeks, G.D., 	and 	Kelly, 	M. 
J. 	Word usage 	in interactive dialog with restricted 
and unrestricted vocabularies. 	IEEE Transactions on 
Professional Communication, 1977, PC-20, 214-221. 

Miller. Mark. 	"A Structured 	Planning 	and 	Debugging 
Environment for Elementary Programming." International  
Journal of Man-Machine Studies, January 1979. 

85 



Minsky. Marvin. "Matter, Mind, and Models." Proceedings of 
International Federation of Information Processing, 

1966. 

Newell, A., & Simon, H.A. Human problem Solving. 	Prentiss 

Hall, 1972. 

Papert, Seymour. Mindstorms. Basic Books, 1980. 

Sacerdoti, Earl. 	A Structure for Plans and Behavior 

Publisher???, 1975. 

Schank, R.C. Conceptual Information Processing. New York: 

Elsevier, 1975. 

Sussman, Gerald, A Computational Model of Skill Acquisition.  

Massachusetts 	Institute 	of 	Technology Artificial 

Intelligence Laboratory, Technical Report 297, August 

1973. 

86 



OVERVIEW OF SELECTED DISPLAY FORMATTING 
AND CLUTTER REDUCTION TECHNIQUES 1 5 2  

Franklin L. Moses 
Human Factors Technical Area 

US Army Research Institute for the Behavioral and Social Sciences 
Alexandria, VA 

System and software designers for graphic applications have a real 
dilemma. Designers often are given the type of symbols to be displayed, 
the amount of information to be portrayed, and the hardware to be used. If 
they cannot change the symbols, reduce the data, or replace the hardware, 
what can be done to make a display speak to the user with the clarity 
desired? One solution is to format the information so that the display is 
compatible with the user's perceptual abilities and task requirements. 
The essence of such formats is to highlight information relevant to a task 
and thereby make it stand out from the irrelevant information. 

The goal of creating "good" displays is to present information so that 
user needs can be satisfied quickly and efficiently. However, one problem 
created by adding more information to a display screen, even if it is rele-
vant to the user, is generally called clutter. For the sake of discussion, 
clutter exists when the extraction of information from a display is hindered 
by the density or similarity of symbols. A number of alternative formatting 
techniques can be suggested to reduce clutter. Of course, some methods 
will work better than others, depending on the situation. 

Although the examples of formatting in this paper all relate to Army 
applications, the principles should easily generalize. Army representations 
of the battlefield illustrate a classic problem for displays: or users 
try to display more information, they end up extracting less due to clutter. 
Formatting guidelines are needed to help reduce the clutter problem. 

Formatting Situation Displays 

Figure 1 is a typical, albeit ficticious, Army battlefield map. Anyone 
who has seen a real one will recognize this one as a severely stripped down 
version. It shows only the most essential information: terrain (mountains, 
rivers, roads and forests); the unit type (artillery, infantry, armor); and 
the unit sizes (division, brigade, and battalion). Yet, it already is clut-
tered. Consider the time and effort that a person would need to compare the 
number of armor, artillery, and infantry units, even on such a simplified 
display. Alternative formats using the same symbols and the same information 
can help to make such tasks easier for the user. Several suggestions, based 
on Army Research Institute (ART) work, should allow more information to be 
meaningfully displayed without adding hardware costs or decreasing user 
performance. 

1An earlier paper by Leon H. Gellman (currently at Sarah Lawrence College, N.Y.) 
was presented at the US Army Second Computer Graphics Workshop, Virginia Beach, 
VA, September 1979, and used as a basis for the current report. 
2
The views expressed by the author do not necessarily reflect the views of the 

US Army or of the US Department of Defense. 

87 



• 1.. ;•••  



Redundant Codes  

The first formatting technique to be discussed is based on the re-
search of Vicino, Andrews and Ringel (1965). They doubly or redundantly 
coded information on a battlefield display, thereby allowing users two 
chances to find the information. Redundant coding takes information which 
is already on the display and repeats it in a salient code that helps the 
user to organize the display. For example, Figure 2 presents the map with 
redundantly coded unit symbols. The code is the heavy broken line for 
artillery, the heavy rectangle for armor and the heavy X for infantry. 
There is no more or less information here; rather, there are two ways of 
identifying the units. The double code has been used to maximize the saliency 
of unit types making similar units seem to stand out together. When 
Vicino et al. used this technique, they increased the speed of information 
extraction by 97% when compared with a single code. Redundant codes will 
not necessarily increase processing speed this much in all situations. 
However, processing should be easier and the cost of such formatting is 
minimal. Redundant coding can be done with any number of stimulus dimensions 
such as blinking, size, intensity and color. 

Sequential Formats  

Sequential Presentation by Topographic Segments.  So far, the discus-
sion has centered on using codes to organize display content. If a display 
has to show a lot of detail, then a second type of format, called sequential 
presentation, organizes the information by breaking it up into component 
parts. This is accomplished by showing information in segments over time. 
Sequential presentation reduces clutter by showing less information per 
screen and, for similar reasons, it increases the amount of detail that users 
can see. The technique is particularly useful for showing standard topo-
graphic information that easily exceeds state-of-the-art display resolution 
capabilities. 

Sequential formats require users to depend on their ability to inte-
grate information over time. Thus, an important formatting question con-
cerns whether to display segments of an entire map by scanning them or by 
sequentially presenting static (i.e., discrete) views. Based on an ARI 
experiment by Moses and Maisano (1979), static views with overlaps of 
around 25% are more efficient for users than continuous scanning methods 
of sequential map presentations. When resolution and clutter are serious 
problems, sequential presentation should be considered as a solution. 

Sequential Presentation by Data Dimension.  The final formatting 
technique to be discussed is also a sequential presentation method, but 
this one displays information by data dimensions. The idea is once again 
to segment information. This is accomplished by presenting a limited num-
ber of data dimensions simultaneously while removing other information from 
the screen. Of course, questions such as how many separate data dimensions 
can be shown per screen and what is the effect of user control over selection 
of dimensions need to be considered. These and other inquiries about sequen-
tial presentation are topics for possible future investigation at ARI. 

89 



FIG. 2 



Summary 

This paper discusses the problem of putting too much information on 
a display and outlines four formatting techniques which may alleviate 
some effects of clutter. The suggested formatting techniques are only a 
few of many methods available to the graphic system designer. The question 
that remains is: Which format should be used? The answer can only be found 
by determining the format that optimizes task performance for display users. 
Clearly, none of the recommendations made here will provide an unconditional 
solution to graphic problems. However, it is incumbent upon the designer 
and programmer to use every trick at their disposal to provide graphics 
which have the impact and clarity commonly believed possible. The Workshop 
presentation will consider this goal in more detail along with some guide-
lines for attaining it. 

References 

Moses, F.L. and Maisano, R.E. User Performance Under Several Automated 
Approaches to Changing Displayed Maps. ARI Technical Paper 366, 
June 1979. 

Vicino, F.I., Andrews, R.S. and Ringel, S. Conspicuity Coding of Updated 
Symbolic Information. APRO (now ART) Technical Research Note 152, 
May 1965. 

91 



FORMAL GRAMMAR REPRESENTATION OF MAN-MACHINE INTERACTION 

Phyllis Reisner 
IBM Research 

5600 Cottle Rd. 
San Jose, CA 95193 

End users communicate with a computer system by using a language. The 

language might be, for example, a query language, a natural language, or 

an "action language 11 - a sequence of button presses, typing actions, 

cursor or lightpen actions, etc. These user input languages can be 

represesented in the same way as any other language - by a formal grammar 

which shows the permitted strings and also shows the structure of the 

language. 

The work to be described in this talk attempts to use a formal description 

of the user input language as a design tool to improve the ease-of-use of 

a man-machine interface. The talk will first describe earlier work, which 

uses a BNF-like grammar in the context of a color-graphics system for 

making slides. It will then discuss current work using a formal grammar 

to describe text editing. The current work is first attempting to make 

some of the concepts introduced informally in the earlier work 

sufficiently precise that people with a variety of backgrounds can use 

them. 

The field of human factors, which attempts to measure and improve the 

ease-of-use of products, is largely experimental. It uses techniques of 

behavioral science as its primary methodology. The intent of the work 

with the color-graphics system was to demonstrate that a formalism could 

92 



be applied in this area which is usually considered soft, or even ad hoc. 

The intent was also to explore the possibility of using the formalism to 

compare alternative designs for ease-of-use and to located design flaws 

that might cause user problems. We wanted to see whether a tool could be 

developed that had some predictive  potential. One problem with the usual 

behavioral approach to interface design is that it must frequently await 

the existence of a prototype or working model. We wanted to augment this 

approach with a more analytic one. 

The color-graphics system, ROBART, existed in two versions, ROBART 1, 

which was designed without explicit attention being paid to ease-of-use, 

and ROBART 2, a redesigned version with the end-user a major focus of 

attention. It was an experimental, interactive system for creating slides 

for technical presentations. It was intended to be used by people without 

computer training doing non-routine tasks. The function available in both 

versions was essentially the same, but the design of the human interface 

differed. 

To explore the issues discussed, the 	action language II of the first 

version was described, using a BNF-like notation. 	(In this action 

language, the user selected colors by dipping a cursor into a paintbox of 

colors on a CRT screen by using a joystick, selected shapes such as lines, 

circles, rectangles, etc. by verious combinations of switch selections 

and button presses on an external switc:hbox, indicated the location and 

orientation of the shapes by combinations of cursor positioning and button 

presses. It was also possible to type textual material on the screen, in 

color). Portions of the action language for ROBART 2 were also described, 

93 



also using the BNF-like notation. 

The next step was to make predictions, from these formal descriptions, 

about very specific differences in the ease-of-use of the two versions, 

and then to test the predictions to see if they were in fact 

substantiated. The goal was to see if formal grammar could be used as a 

predictive tool and if the predicted differences were indeed measurable. 

This did indeed turn out to be the case. Among others, we predicted that 

the action of selecting shapes would be more difficult in ROBART 1 than in 

ROBART 2, for each of the shapes available. We also predicted that users 

would make a particular error in "initiating" shapes (the first action to 

indicate location and orientation) in ROBART 1 and would not make an error 

in the same step for ROBART 2. Since the same error was not expected to 

occur in ROBART 2, we felt that the problem would indeed be attributable 

to the interface design and was not inherent in the function itself. 

In an exploratory experiment with temporary office workers, the 

predictions were in fact substantiated. 

Current work, in the context of text editing, is first attempting to 

clarify some of the concepts and techniques used in the above work. The 

concepts were intuitive, but not precise enough to develop into a design 

tool to be used by a variety of people with different backgrounds. For 

example, we introduced the notion of a "cognitive" terminal symbol, since 

we thought that what the naive user has to learn and remember will be of 

major importance in the ease-of-use of a system he uses intermittently. 

94 



This notion clearly needs to be made more precise. We also used a 

quasi-automatable technique for locating structural inconsistencies in 

the language. We expected these structural inconstencies to cause users to 

make mistakes. Neither the notion of "structural inconsistency" nor the 

technique have been made explicit. These and other related issues will be 

discussed. 

95 



A RULE BASED HELP SYSTEM FOR SCRIBE 

ELAINE RICH 

AARON TEMIN 

2s February 1981 

96 



People need access to help it they are doing to use complex 

cornouter systems effectively. There will not always oe other 

People or even manuals around to heir them. So we need tine 

computer itself to be able to provide tne nelo its users neen. 

Tnis is not a new argument, See, for example , (Pirtle 681, 

tue extent to which anyone can help someone else is limited by 

the depth of the helper's own Knowledge. So if computers ere 

going to heir) people, they must have a great deal of knowledge 

about *bat they do. 

fiut tne usefulness of help information to a person seeking help 

Is a direct function of tne extent to which the information 

answers the specific question the user nad. So simply mumpina an 

entire manual or even large chunks of it on a user every time me 

asks a ouestion is useless. 

People who need help are missing some information about how the 

system works. 50 they cannot oe counted on to describe their 

problem in terms of specific system commands so that the relevant 

parts of the manual can be found and fed back to tnem, (Tnis 

precludes simple keyword based nelp systems such as [Shapiro ;51 

or [Kehler 80].) 

These obvious facts force us to the conclusion that to provide 

a good interactive help facility will require a large data base 

of knowledge about the operation of the system in duestion. This 

data base must re structure() in such a way that it can he 

accessed from descriptions at a variety of levels about what tne 

program did and what the user wanted. To investigate the issues 

97 



raised by such constraints, we are building a help system for the 

document formatting program Scribe [Reid 80]. 

The knowledge base used oy the system is a set of rules that 

describe Scribe's behavior at a variety of levels. Top level 

rules describe the behavior of the system in terms of fairly high 

level functions. other rules then describe tnose functions in 

terms of lower level functions, and so tortn, we plan initially 

not to try to provide rules that describe Scribe down to the 

lowest level, at wnich individual cnaracters are placed on tne 

Page. This will of course limit the ability of the system to 

answer questions about that aspect of tne system's performance. 

But this is analogous to tne situation that occurs with human 

consultants. There comes a point where, unless they are familiar 

with the details of the code of the system, they simply cannot 

answer a question. This rule based, successive decomposition 

approach, however, prevents us from oeing locked 	into 	a 

Particular level of description. New rules that provide 

additional levels of description can be added at any time, 

Each rule in tne system contains a left side that describes 

when it can be invoked, and a right side tnat describes tne 

sequence of actions that will result. The left side consists of 

two parts, a command or a piece of tne input tile, whicn tries to 

trigger the rule, and a list of auxiliary conditions that must be 

let in order for tine rule to be able to oe invoked, For example, 

the following rules describe how Scribe orocesses the @ref(ard) 

comiant1, wnich substitutes for tne string "fliref(arg)", tne 

reference indicated oy tne string arg. (Commands to Scribe are 

98 



signalled by the cnaracter "@",): 

1 	l'ref(arg) and lookupsymooltaole(arg) NEO 0 -> 
send(maintext, lookupsymnoltahle(arg)) 

2 	'Ilref(arg) and lookupauxfile(arg) NEO 0 -> 
send(maintext,lookupauxtile(arg)) 

3 	@ref(arg) ■ > 
send(maintext0c(arg)) 
send(errorfile,"undefined reference",arq) 

The order of the rules in the data base reflects the order in 

which Scribe cnecks for things. In this example, Rule 1 says 

that if tnere is a ref command with a particular argument and it 

there is an entry in the internal symbol table indicating a 

previous definition of that argument, tnen print in tne output 

the appropriate value as indicated by the definition, Otnerwise, 

if tnere is a definition of the argument in the AL'X file (a file 

containing the symbol table that was built the last time Scribe 

processed this file) tnen use tnat definition, it there was no 

definition in eitner place, then simply insert into the text tne 

string tnat was the argument to ref, but capitalize it, Also 

make a note of this error in tne error log file, 

Tne actions indicated ny these rules are fairly niqn-level. 

They indicate that text should be placed in outout files. 	They 

do not indicate how. 	They do not specify such things as tne 

liargins or the type font to be used. Those things are specified 

in tne rules tnat describe the operation of tne send function. 

Some of tne actions, such as send, can only be generated by tne 

operation of otner rules. Utners, such as @c(text), could also 

nave occurred in tne input file. The fact that tne Scribe system 

99 



is very well structured makes it easy to describe tne operation 

of one function in terms ot a well defined set of other 

functions. This one-step-atea-time description is very important 

for tne generation of responses to user's ouestions. No one 

wants a bit level answer to every question they ask. People 

usually want a description in terms one or perhaps two levels 

higher or lower than tne level at which they asked the question. 

The set of rules provides a static description of tne way 

operations in Scribe are performed in terms of other, lower level 

operations, As scribe executes, it °lands a senarate 

nierarchical structure tnat reflects the block structure of toe 

specific document that is oeind Processed. For example, a 

document could contain toe sequence: 

@beqin(quotation) 

thegin(itemize) 
Ogle 

mend (itemize) 

'!iend(quotation) 

The quotation environment snecifies that the margin snould he 

moved in and that the text snould be printed single spacea. The 

itemize environment specifies that the margins snould ne moved in 

and that paragraphs should ne numoered. inese specifications 

nest, so that toe margins inside tne itemize will be narrower 

than for the rest of the quotation, whicn will he narrower than 

the surrounding text, 

To answer a user's questions, the help system will match pieces 

of toe user's question against nieces of rules, and use unmatcneu 

100 



nieces of the rules or patterns of chaining through the rules as 

answers to the questions. Many questions can ue answered by 

referring only to tne static description of Scrioe's operation. 

However, when a question refers to something specific tnat 

napoened at a particular point in the user's file, it may be 

necessary for the help system to build A piece of the dynamic 

tree, mirroring that built uy Scrioe during execution, so that it 

will now enougn context to be able to identity tne rules that 

were applied. 

une of tne most common types of questions a help system must 

answer is 
	

by did X occur?". Tnis usually means tnat tne user 

expected that something else would occur. 	To answer such 

questions, the vela system finds the rules wnose riqht hand sides 

specify the effect the user has described. Let's assume, for 

simplicity, tnat there is exactly one such rule. Now a 

superficial answer to the question is simply to state the lett 

side of that rule. 	3ut much of what is tnere is usually 

redundant. 	For example, the user knows wnat command he 

s p ecif i e d . what the help system will do is to compare the rule 

it found to others wnose left sides are different. The 

differences in the left sides are the soecific reasons wny the 

observed effect occurred, rather than some other. So, for 

example, if the user asks why nis @ref command resulted in the 

label and not the thing to wnich it referred being printed, the 

system ooserves tnat this happened because the label was not 

Previously detinea. It concluded this by comparing Rule 3, the 

one that describes what Scribe dia, to Rules 1 and 2, whicn 

101 



describe what it would have done if tninds had been slightly 

different. 

Sometimes there may be a great many rules wnose lett sides 

almost match the selected rule. It may tnen he necessary for the 

helper to ask tne user what he expected to have happen. Then 

only the rules whose right sides match that expected action need 

to be considered. Ideally the system would maintain a good model 

of tne user so that such ouestions would rarely need to be asked. 

Sometimes general Knowledge about the way people use tne system 

will help nere. For example, people usually expect some fairly 

direct connection between the commands they issue and tne results 

they see. lney rarely expect a command to be a no•op. Hut tnere 

will always be times knen an individual has an idiosyncratic 

misunderstanding of the system and nothing short of a direct 

question will Point this out, For tnis reason, tne process of 

answering a question must be thougnt of as a dialogue ratner than 

as a one-shot question and answer, 

Anotner common type of question is what c'enesereth 	ICenesereth 

781 calls the "kowdo" question, For example, "How do I get my 

footnotes to come out at the end of my document rather than at 

the end of each page?", riowdo questions are answered oy matcning 

tne user's description of what he wants to do against the right 

sides of tne rules to find tnose that can produce the oesireo 

effect. If tnere are more than one, then the cnoice amon g them 

will be made by considering such things as the complexity of tne 

constructs involved and the user's level of expertise with the 

syste ,o. Tne left side of tne chosen rule describes what is 

102 



necessary to accomplish the desired effect, 	►  tut it may contain 

conditions that tne user cannot specify directly. 	So the help 

system must chain backwards throuGh tne rules to find the 

commands that will cause tnose conditions to be true. 

Yet anotner common tyne of inquiry is the "what is the 

difference between" guetion. For example, a Scrloe user might 

ask, "wnat is the difference between the itemize and enumerate 

commands?". These questions can oe answered easily ny this kind 

of rule based system without naving been anticipated in advance. 

It need merely find tne rules that descrioe tne operation of each 

command by matching against left sides, In toe simple case, 

there will be one rule for each and the answer to tne question is 

simply a list of the differences between the corresponding right 

nand sides. in more complex cases, it will be necessary to 

compare left nand sides also to determine the eitect of various 

otner factors on toe operations of the two commands. 

!me of the most common situations in which users as questions 

is wnen they have gotten some kind of error message from tne 

system. Talkind about sucn errors is easy for a rule nasea 

system. The rules mescribe all the things tne system can do and 

the situations in onich it will do thern, Errors do not need to 

be rehresented explicitly. They are implied by tne absence of 

rules. if the user wrote a cowArland X and tnere are no rules for 

cow;And X whose other preconditions were satisfied at tne time 

the command occurred then an error will arise, me system can 

explain the error cry coiwaring tne existing state to the required 

preconditions and reporting the differences, this is extremely 

103 



useful, since for a complex system the numner of Possible error 

configurations can he very large and it 40uld be very difficult 

to hdve to oescrioe each of them explicitly, 

A good help system must tailor its responses to the needs of 

individual users, 	in this it is no different from other 

interactive systems 	(Rich 791. One way to represent a model of 

a Scribe user would be as a set of rules, presumably a subset, 

Possibly witn errors, of the rules that tne system Knows. witn 

such a model, some question would be very easy to answer. For 

example, why questions could oe answered oy comparing tne user's 

rules against the system's correct rules to find the difference 

and report it. Tnis technique was suggested 'Dv Burton and brown 

[Berton 76) as a way an intelligent CAI system could discover 

ougS in a student's Knowledge. alit it is unreasonaole for a help 

system to maintain sucn a massive amount of information about 

each user. Instead, we pronose to record a very small numoer of 

facts about each user, such as a measure of his expertise with 

the system, Each of tne objects used in the system will have 

associated Aitn it some properties, some of wnich can he matched 

against user characteristics to determine tne appropriate rules 

to use in generating a response to tne question, So, for 

example, commands will be marKea as Simple, intermediate, or 

advanced. Otner factors tnat should be included in the model of 

each user are his inclination toward being a hacKer (i.e. does ne 

want to learn fancy new commands or does ne want to Know a way to 

get by with the commands ne Knows?) and nis familiarity with 

computer Science concepts (such as olocK structure, one pass 

104 



system, Symbol tables). 

une of the major advantages of this rule based representation 

of the knowledgP reauired by an intelligent helper is that it 

mirrors the structure of the system for wnicn the help is Peinu 

Provided. (Ur at least it does if the system is well 

structured,) This suggests tnat the top down process of writing 

the rules could be used to produce a well structured program dna 

its help system simultaneously. le would liKe eventually to try 

to build an entire system tnis way, 

105 



REFERENCES 

[Burton 76.1 Burton, Richard & John Seely Brown, 
A Tutoring and Student Modelling Paradigm for 

Gaming Environments , 
In Egoc. of toe Simposium on Comautex Science and 

Education. 1976. 

[Genesereth 78] 
c.,enesereth, michael. 
Automated Consultation La; L'omplex Coakoutaz 

Systems. 
Phn thesis, Harvard, 1978. 

(Kehler SO1 	Kehler, T. P, & M, Barnes. 
Alternatives for On-line Help Systems, 
In ELoc. Atia ACz SICLICC Use; Sezmices =Laze/Ice. 

1480, 

[Pirtle 68) 	Pirtle, N.elvin, 

in Corauecsational C4amiauters, 	0ohn Ailey & sons, 
New YorK, 1968. 

[Reid 80) 	Reid, grian. 
Saxitle: A a:act:mg:it Sauci4lcatioa Lau:Lama& and its 

Lcimullez. 
PnD thesis, Carnegie-Mellon, 1960, 

[Rich 19) 	F,Ach, Elaine, 
user modeling via Stereotypes. 
Cowaitilte Science :329-354, 1979. 

[SnaPiro 75) 
	

Soapiro,Stuart & Stanley Kwasny, 
Interactive Consulting via iatural Language, 
Cammunicatilaas Qt. t44 ACAI :459-463, August, 1975. 

106 



Models for the Design 
of Static, Software Systems 

M.L. Schneider 
Sperry Univac 

Blue Bell, Pa 19424 

1. INTRODUCTION 

One of the "axioms" for ease-of-use is: "Help systems are necessary" 
(Clark 1980). While an increasing number of of software systems 
provide some form of user assistance (Relies 1979), the information is 
usually provided without regard to its useage. In general, assistance 
is nothing more than an "electric reference manual." 

When factoring exists, it usually consists of a layered approach; the 
user can request additional details about a specific topic. This 

addresses the problem of verbosity, but only indirectly considers the 
expertise level of the requester. 

This paper proposes cognitive factors that may impact ;nformation 
factoring: different levels of user sophistication (the User Taxonomy) 
and different segments of task performance (the Transaction Taxonomy). 
The interaction between these two taxonomies can provide guidelines 
for improved static information factoring in assistance systems. 

2. USER SOPHISTICATION TAXONOMY 

The developmental levels of computer language acquisition defined in 
this taxonomy are 

1. Parrot 

2. Novice 

3. Intermediate 

4. Advanced 

5. Expert 

Each level is characterized by skills in language production: item, 
field, or statement chunking; breadth of language scope; and degree of 
generalization or abstraction of concepts. The change in system 
knowledge is manifested through an increased competence in the 
commands that are regularly used and an awareness of additional 
functions available within the system or language. 

107 



The basis for this taxonomy arises from qualitative observations of 
computer usage in a wide variety of software systems and the 
relationship between the observed computer productions to those 
observed in the natural language development. This taxonomy describes 
an individual's expertise or sophistication in a single software 
system or language (or subset thereof) and may not be transferable. 
The level at which an individual stops progressing appears to depend 
upon a number of factors related to the learning of complex tasks and 
the demands placed upon the person by the task requirements. 

2.1. THE PARROT 

An individual at the lowest level in the taxonomy, the Parrot, has 
minimal knowledge of the computer system. The Parrot approaches the 
computer system and types commands. This individual does not think, 
question, understand, or synthesize the commands. These commands, or 
sequence of commands in some cases, may be moderately complex. 
Satisfaction is derived simply by having the computer perform the 
task. 

When the question "What am I doing?" is asked, the Parrot is ready to 
progress to the next stage of sophistication: the Novice. 

2.2. THE NOVICE 

With experience, a user begins to understand several isolated concepts 
and is able to choose a specific lexical entry (command) for a 
function. The user is required to know specific but not complex 
information. Semantically, the items are considered in the concrete, 
not in the abstract. The Novice may ask, "What does this command item 
do?" not "What can it do?" By now, the user has a minimal command of 
the grammar, but is only able to operate on an item-by-item basis. 
For example, the Novice may recognize a verb and one or more objects 
in a command, even if the grammar allows modifiers in the verb phrase 
or in the object phrase. 

Unlike the Parrot, the Novice analyzes each item, thus extracting 
lexical information. The language components now have meaning and can 
be used in a flexible manner. 

2.3. THE INTERMEDIATE 

The Intermediate is a level between the Novice and the Advanced user. 
Whereas the Novice concentrates on items in isolation, the 
Intermediate operates with items in fields and with fields in 
statements. A statement now becomes the primitive conceptual unit. 
The use of a larger chunk encourages syntactic and semantic 
conciseness in the grammar, allowing the user to minimize keystrokes. 

108 



At times, the Intermediate user may link statements into command 
"chains" such as compile...collect...execute. Even so, each command 
is still considered in isolation. The user generally waits until a 
function has been completed before proceeding to the next request, 
wishing to see the result of a command before continuing with the 
task. 

The Intermediate begins to concentrate on the task rather than its 
components. Use of the full language may be restricted by a lack of 
knowledge. Thus, the Intermediate continues to expend significant 
effort on language details. At this point in the user's development, 
the more subtle grammatical rules become evident. A Novice would use 
a default, unaware of the fact that an item can be specified. An 
Intermediate would consciously use a default in order to reduce 
keystrokes or save time. Initially the Intermediate uses knowledge in 
a specific problem domain. Later, this information is generalized, 
allowing new problems to be solved. 

Toward the end of the Intermediate level, considerable skill in the 
understanding and manipulation of a segment of the command set has 
been achieved. With the increased use of larger syntactic chunks each 
requires less attention. This is the process of automatization. 
Thus, increased attention can be given to the entire task, rather than 
to the mechanisms required for its performance. 

With further experience and increased task requirements, the 
Intermediate can evolve into an Advanced user, subordinating the 
computer language to the task. 

2.4. THE ADVANCED USER 

Whereas the Intermediate attempts to solve problems via a series of 
isolated commands, the Advanced user realizes that an interconnected 
collection of statements can be more productive for certain tasks. At 
this level a program or procedure, rather than a single statement, 
results. Because commands are now interrelated, the scope of the 
syntax and semantics expands. The syntactic elements are abstract 
rather than concrete. Data structures provide the vehicle for 
producing abstract objects. For example, a variable would be used to 
represent a filename or a string. The Advanced user continues to 
retain the command, together with other defined procedures, as 
language primitives. 

Control structures are useful if the direction of flow between 
statements is to be modified. Using these structures requires a 
modification of the user's thought process. A Novice or Intermediate 
user may not foresee the success or failure status of a command as an 
object on which operations are defined. An Advanced user thinks about 
the possible outcomes of commands and has the ability to take 
appropriate action. While Novice and Intermediate users operate with 
concrete syntactic constructions, existing with in a specific, 
restricted semantic scope, the Advanced user expands his language 
knowledge to cope with complex structures and abstractions. 

109 



Practically speaking, the Advanced user has the ability (though not 
necessarily the need) to accomplish any function within the system. 
The Advanced user is completely facile with the language and can deal 
with the language at the global "metalinguistic" level. 

2.5. THE EXPERT 

The Advanced user has the ability to use the language with relative 
ease. Since any computer language is restricted in scope, it can 
limit a user (fc :example, the inability to have abstract data types 
in FORTRAN 77). The Advanced user, knowing the scope of the language, 
is constrained when faced with a new problem whose solution cannot be 
derived from existing functions or objects within the system. The 
Expert transforms this finite system into a generative one. When 
faced with the above situation, he creates, not derives, a new 
syntactic element within the system. Thus the Expert expands the 
existing system, creating new objects and functions. 

3. TRANSACTION TAXONOMY 

While the sophistication level of the user is important, it is 
necessary to know how a transaction is processed in order to acquire 
additional assistance information. A transaction is defined as the 
task contemplated by the user (For example: writing a program, 
"checking-in" an airline passenger, or performing a data base query). 

The five stage transaction taxonomy shown below builds upon a simple 
taxonomy (command and data input, processing, and system output) by 
expanding the first operation, input, into its semantic and syntactic 
components as suggested by Shneiderman (Shneiderman 1979). 

STAGE 	 ACTION 

	

I 	 Task Analysis 

	

II 	 Semantic Analysis 

	

III 	 Syntactic Analysis 

	

IV 	System Performance 

	

V. 	Response Analysis 

3.1. STAGE I -- TASK ANALYSIS 

In the first stage the user decomposes a single conceptual task into 
its component subtasks and determines the specific commands required 
for task completion. The user asks the question, "What steps and 
commands are necessary to perform the overall task?" For example, 
running a program (the single conceptual task) may require the 
following subtasks: editing, compilation, collection, and execution. 
It is possible that more than one step can be included within a single 
command (for example a compile--load-go) or more than one subtask is 
required within each subtask (for example operations with the editor). 

110 



The cognitive processes at this stage may include all or some of the 
following steps: 

1. Identification of the full task. 

2. Decomposition of the task into its subtasks or steps. 

3. Definition of the conceptual operation for each step. 

4. Choice of the appropriate command for the implementation of 
each step. 

It should not be assumed that all commands will be chosen at the 
outset. It is highly probable that an individual will determine the 
conceptual operation for the first subproblem, choose an appropriate 
command, perform it, assess the result, then progress to the next 
conceptual operation, the choice of which may be influenced by the 
result of a previous task. 

Once the conceptual operation has been defined, a user may wish to 
examine the set of commands for its implementation. It is possible to 
relate commands and conceptual operations in two ways: define a 
conceptual operation for commands that are conceptually related, or 
its antithesis, to extract from a conceptual operation its constituent 
commands. By iterating between these perspectives, it should be 
possible for the user to determine a command that allows the 
conceptual operation to be performed. 

A command subset of a hypothetical editor illustrates this iterative 
approach. Consider the command "LOCATE" (this searches the text 
printing the lines whenever a string occurs). The specific to general 
relationship would be: 

"LOCATE" 

 

>search 
print  

 

The general concept print  may refer to a number of commands that, if 
successfully executed, print a line: 

print  

 

>"PRINT" 
"LOCATE" 
"FIND" 
"GOTO" 
"NEXT" 

 

If all commands of the concept search  print a line, then the structure 
could be represented as: 

print 

 

>"PRINT" 
"GOTO" 
"NEXT" 
search 

  

  

>"LOCATE" 
"FIND" 

   

      

111 



A similar grouping can occur for "GOTO" and "NEXT". 

When explanations are provided (basic semantic information) within the 
above framework, the user can obtain the information in a unified 
manner. 

3.2. STAGE II -- SEMANTIC ANALYSIS 

In the second stage, the scope of the command is considered by the 
user. Upon entry to the semantic analysis, the command is conceptual 
in the broadest sense. Now it must be refined into its detailed 
semantic components. 

The question: "What do I want to do?" is asked by the user. The user 
must be cognizant of two semantic concepts: definition of the data and 
the control of the process. A sorting program illustrates the type of 
information considered by the user. A user must be aware of the data 
restrictions (eg. numerics only, alphanumerics, maximum number of 
items, maximum number of fields, etc.) and the method(s) of data 
storage or entry. In addition, information is required to control the 
processing (ascending, descending, key(s), collating sequence, etc.). 
At the semantic stage, it is unnecessary to know how to encode this 
information. 

3.3. STAGE III -- SYNTACTIC ANALYSIS 

When a user reaches the third stage, encoding the information, the 
correct function has been chosen and the semantics for task completion 
are understood. Now the question is, "How do I do it?" The 
translation of the conceptual operation into the input format is 
purely mechanical. The user requires syntactic information and 
techniques that facilitate this transformation. The form of the 
human-computer interface (command language, dialogues, menus, function 
keys, etc.) has a primary impact at this stage. 

3.4. STAGE IV -- SYSTEM PERFORMANCE 

System response, the fourth stage, can be treated as a "black box". 
The underlying architecture that supports the interface is outside the 
scope of this paper. 

3.5. STAGE V -- RESPONSE ANALYSIS 

The analysis and interpretation of the response produced by the 
software is the final stage of a transaction. The user now asks, 
"What have I done?" The primary goal of a response is to provide the 
user with relevant information. Unnecessary details that obscure this 
information should be avoided. Two independent topics should be 
considered: verbosity and information content (Schneider 1980). 

112 



For example, if the task is to assign the file, MYFILE, there are a 
number of possible responses if it is successful (ordered by 
increasing verbosity and content) 

1. > 	{a prompt for the next command} 

2. READY {, OK, COMPLETE,...} 

3. File MYFILE has been assigned. 

4. MYFILE assigned with the PUBLIC, and CATALOG options. 

5. File MYFILE has been assigned. It can be used by anyone 
(PUBLIC) and will exist for one day (CATALOGUED) unless 
otherwise requested. To keep the file longer than one day 
contact the file administrator. 

The last response is an example of layering. Three items of 
information have been displayed: 

1. The name of the assigned file 

2. The file attributes 

3. The administrative procedure required to keep the file. 

In a similar manner, it is possible to design a layered HELP function 
(a user initiated request for assistance). 

A command may not always terminate successfully. Useful and 
meaningful error messages are important. Good error reporting should 
provide sufficient information for the user to: 

1. Understand the nature of the error; 

2. Understand the source of the error; 

3. Understand the methods for recovery or correction. 

Again the questions of verbosity and information content are 
important. Verbosity may be correlated with the number of times an 
individual has seen the message, while information content should be 
related to the levels in the user taxonomy and task requirements . 

4. INTERACTIONS BETWEEN TAXONOMIES 

The user and transaction taxonomies should not be considered in 
isolation. Based upon the sophistication level of the user, the scope 
of assistance may vary. Different segments of the transaction 
taxonomy need to be emphasized or deemphasized. The method of 
assistance presentation provided to individuals at different 
sophistication levels for the same transaction may differ. For 
example: 

113 



C: FILE MYFILE HAS BEEN ASSIGNED 
u: attributes 
C: PUBLIC CATALOGED 
u: physical 
C: SIZE - 12 TRACKS. LOCATED ON D2734. UNFORMATTED 

In order to better understand the type of assistance applicable at 
each level of use, it is necessary to examine the requirements of 
users at each sophistication level. 

4.1. PARROT 

A Parrot operates in a simple "transcription mode." There is no 
consideration of input variability. The best form of input assistance 
is an example or a single choice from a single level menu system. The 
latter is analogous to function keys. By careful design, either of 
these approaches can be extended to assistance forms suitable for a 
Novice. 

Only two basic responses can exist for the Parrot: the function 
completed successfully, or it was unsuccessful. If an unsuccessful 
response is provided, it can only state that the command was 
incorrectly entered and should be entered again (a Parrot does not 
comprehend the command's contents). If the system is unable to 
perform the task at this time, it can be suggested that the user try 
later. Since task completion is the reward for successful command 
entry, this information should always be provided to the user. 

Thus at the Parrot level there is only one type of input assistance: 
an example. 

4.2. NOVICE 

The Novice may not distinguish between the first three stages of a 
transaction (Task, Semantic, and Syntactic Analysis). Thus, these 
stages should not be differentiated if the user's perspective is to be 
reflected in the interface. The system should lead the user from the 
determination of the subtask(s), through the isolation of the correct 
command and the determination of its semantic components, to the 
encoding of the information. 

Once the user is ready to provide data for the command, a number of 
techniques can be applied. As stated earlier, continuity between the 
first three stages is important; the user should be unaware of any 
distinct phase of the transaction. Since the traditional command 
format may be inapplicable to the Novice, menus could be used for 
stages I and II followed by a mixture of menus, dialogs, and 
"fill-in-the-blanks" for stage III. 

114 



This expands the syntactic assistance to two levels: 

Assistance 
	 Sophistication 

Type 
	 Level 

Example 
	 Parrot 

Simplest Form 
	 Novice 

Irrespective of the technique, the computer should take the 
initiative; the Novice may not know what information is required, or 
even if it is available. Thus, it is incumbent upon the assistance 
system to announce its existence. Information for clarification, 
however, should be provided only upon demand. To do so automatically, 
may unnecessarily confuse or annoy the user. 

Responses, aside from providing information to the user, should 
indicate the successful completion of the command in a non-null form 
(something more than a prompt). A Novice, lacking confidence in the 
ability to control the system, may require this positive 
reinforcement. 

2.1. INTERMEDIATE 

Because the Intermediate is familiar with the system, the user, not 
the computer, should take the initiative. An individual at this 
sophistication level has the ability to decompose a task into its 
subtasks and determine an appropriate command (Stage I). Since the 
components of the system are known to exist, even if not understood, 
information should be factored into the following topics: command 
semantics, command syntax, and field or keyword semantics and syntax. 
Since individuals generally employ a subset of commands (Huckle 1980), 
assistance is still required for those used less commonly. 

Assistance in the semantic and syntax analyses (Stages II and III) 
require additional information. As a user gains experience with a 
command, defaults are better understood, overridden, or modified. 
Thus, the scope of the command perceived by the user is extended. The 
semantic and syntactic expansion of commands requires that two new 
levels of assistance must be added: 

1. The most common form of the command. This will occur when 
some commonly defaulted items are overridden. 

2. The command is used in its full form. This occurs when no 
item is defaulted. 

Thus, the number of levels are increased to four: 

Assistance 
Type 

Example 
Simplest Form 
common Form 
Full Concrete Form 

Sophistication 
Level 

Parrot 
Novice 
Intermediate 
Intermediate 

115 



When the semantics and syntax of a command are not complicated, two or 
even one of the above forms may fulfill the information requirements. 

Because the Intermediate operates in a terse mode, abbreviated forms 
of the command should be provided. This includes, not only contracted 
forms of the strings within the command (name, keywords, flags, etc.), 
but the items that can be defaulted and the values supplied. 

The layered approach for responses should be available. As in case of 
information required for the input of a command, the user should be 
able to request specific information. The advantages (terseness and 
specificity) of requesting specific information is offset by the need 
for a query language. 

2.2. ADVANCED 

The needs of the Advanced user differ from the Intermediate in three 
ways. 

1. The transaction stages considered prior to entering a 
command require a different emphasis because data and 
control structures are now a part of the user's command 
repertoire. 

2. There is a need for assistance in the monitoring of an 
executing command since they are executed in a "batch 
environment". 

3. A different type of response structure is needed since it 
must be interpreted directly by a command within the 
software without human intervention. 

Within the first two stages, an increase in the type of information 
exists, reflecting the added control and data structures employed by 
the Advanced user. These new structures may be implemented within an 
existing command or via new commands. Assistance and instruction in 
the methods of building macros, procedures and programs are useful for 
the Advanced user. These new functional elements are reflected not 
only in Stages II and III, but their concepts must be included in 
Stage I. 

Control and data structures are now used in the development of 
procedures. This places additional demands upon the response segment. 
Whereas in the lower sophistication level interfaces, the responses 
must be understood by a human, in a procedures, responses must be 
understood by the software. 

The abstract nature of the command requires additional syntactic 
information. When a command has constructs that relate only to these 
structures, they must exist only in the information supplied to the 
Advanced user. Thus, in addition to the three assistance levels 
applicable to the Novice and Intermediate users, a fourth level, 

116 



containing the expanded language view must be included. The five 
levels of assistance are shown below: 

Assistance 
Type 

Example 
Simplest Form 
Common Form 
Full Concrete Form 
Full Abstract Form 

3. CONCLUSION 

Sophistication 
Level 

Parrot 
Novice 
Intermediate 
Intermediate 
Advanced 

On a theoretical basis, it is possible to factor software user 
assistance information into three independent categories: 

1. verbosity 

2. user sophistication 

3. task segmentation 

Although it is possible to prepare guidelines for the further 
classification of information within each category, only experimental 
investigations will validate these suppositions. At the present time, 
studies of specific topics are in progress. 

4. REFERENCES 

Clark, I.A., 1980, How to "Help" Help, IBM Report HF022, IBM United 
Kingdom Laboratories Ltd. (Hursley Park). 

Huckle, B.A., 1980, Designing a Command Language for Inexperienced 
Users, Command Language Directions (D. Beech ed.), 199-212 (Amsterdam: 
North-Holland Publishing Company). 

Relies, N., 1979, The Design and Implementation of User-Oriented 
Systems. Madison WI, Univ. of Wisconsin. Ph.D. Thesis. 

Schneider, M.L., Wexelblat, R.L., and Jende, M.S., 1980, Designing 
Control Languages From the User's Perspective, Command Language 
Directions (D. Beech ed.), 181-198 (Amsterdam: North-Holland 
Publishing Company). 

Shneiderman, B., and Mayer, R., 1979, Syntatic/Semantic Interactions 
in Programmer Behaviour: A Model and Experimental Results, Journal of 
Computer and Information Sciences 7, 219-239. 

117 



SYSTEM MESSAGE GUIDELINES: 

POSITIVE TONE, CONSTRUCTIVE, SPECIFIC, AND USER CENTERED 

Ben Shneiderman 
University of Maryland 

Department of Computer Science 
College Park, MD 20742 

January 27, 1981 

*** Draft paper prepared for Workshop on Human Factors in 
Interactive Systems, Georgia Institute of Technology, March 
26-27, 1981, Atlanta, Georgia. 

Prompts, explanations, error diagnostics, and warnings play a 
critical role in influencing user acceptance of software systems. 
Programming and command languages and application systems are 
appreciated not only for the functionality they offer but for the 
phrasing of system messages in a specific implementation. This 
is true for batch systems, but it is more important for 
interactive systems in which the impact of a message is immediate 
and more dramatic. 

The wording of prompts, advisory messages, and system responses 
to commands may influence user perceptions, but the phrasing of 
diagnostic messages or warnings about improper conditions is 
critical. Since errors occur because of lack of knowledge, 
incorrect understanding or inadvertent slips, the user is likely 
to be confused, feel inadedquate, and be anxious. Messages with 
an imperious tone, which condemn the user for an error, can 
heighten user anxiety, making it more difficult to correct the 
error and increasing the chances for further errors. Messages 
which are too generic, such as the ubiquitous "SYNTAX ERROR", 
obscure "FAC RJCT 004004400400", or mystical "OC7" offer little 
assistance to the novice user. 

These concerns are especially important with respect to the 
novice user whose lack of knowledge and confidence amplify the 
stress related feedback which can lead to a sequence of failures. 
The discouraging effects of a bad experience in using a computer 
are not easily overcome by a few good experiences. In fact, I 
suspect that systems are remembered more for what happens when 
things go wrong than when things go right. Although these 
effects are most prominent with novice computer users, 
experienced users also suffer. Experts in one system or part of 
a system are still novices for many situations. 

118 



Awareness of the d ifficulties that novices encounter has prompted 
the development of student-oriented compilers for some languages, 
which emphasize good diagnostic messages and even limited error 
correction. The early DITRAN effort (Moulton and Muller, 1967) 
and CORC (Freeman, 1964) were followed by the WATFOR/WATFIV 
compilers (Cress, Dirksen and Graham, 1970) and the PL/C compiler 
(Conway and Wilcox, 1973). These efforts demonstrate what can be 
accomplished if the developers are sincere about their concern 
for ease of use. PL/C and WATFIV are widely used in academic 
environments not only because of their diagnostic messages but 
also because of their rapid compilation speeds. These systems 
demonstrate that although there may be a greater development cost 
for good diagnostics, the production costs can be kept low. 
Although I am not aware of any controlled experimental research 
which proves that students using these compilers learn faster, 
make fewer errors or have a more positive attitude toward 
computers, these hypotheses are shared by many people. Rigorous 
human factors studies would be useful in evaluating the 
improvement brought about by these systems and would be helpful 
in convincing skeptics about the importance of designing good 
system messages. 

Producing a set of guidelines for writing system messages is not 
an easy task because of differences of opinion and the 
impossibility of being complete. Inspite of these dangers, I 
feel that producing such guidelines could yield better systems. 
Input parsing strategies, message generation techniques, and 
message phrasing can be changed without affecting system 
functionality. Hopefully, more attention to system messages will 
lead to instrumentation of systems to capture data on error 
frequency distributions. Such data will enable system designers 
and maintainers to revise error handling procedures, improve 
documentation and training manuals, alter instructional 
materials, or even change the programming or command language 
syntax. Focusing increased attention, on system messages should 
compel system developers to include the complete set of messages 
in user manuals. This high visibility will produce even more 
concern for the quality of these messages. 

These comments are the result of experience and subjective 
evaluation. Controlled psychologically-oriented experimentation 
would be useful in verifying these conjectures. 

BE SPECIFIC  

Messages which are too general make it difficult for the user to 
know what has gone wrong. The simple minded and condemning 
messages such as "SYNTAX ERROR" or "ILLEGAL ENTRY", or "INVALID 
DATA" are frustrating because they do not provide enough 
information about what has gone wrong. Improved versions might be 
"Unmatched left parenthesis", "Legal commands are: Send, Read, 

119 



File, or Drop", or "Days must be in the range of 1 to 31." 

Even in widely appreciated systems like WATFIV there is room for 
improvement. Messages such as "INVALID TYPE OF ARGUMENT .■1 
REFERENCE TO A SUBPROGRAM" or "WRONG NUMBER OF ARGUMENTS IN A 
REFERENCE TO A SUBPROGRAM" might be improved if the name of the 
subprogram were included and the correct type or number of 
arguments were provided. The APL system which has so many nice 
human factors-oriented features comes out poorly when evaluated 
for system messages. The extremely brief "SIZE ERROR", "RANK 
ERROR", or "DOMAIN ERROR" comments are too cryptic for novices 
and fail to provide information about which variables are 
involved. On the plus side, the standardization (most systems 
use the APL360 messages) of messages does make it easier for 
users to move from one system to another. I have long felt that 
language standardization efforts should include standardization 
of at least the fundamental messages. 

Execution time messages in programming languages should provide 
the user with specific information about where the problem arose, 
what variables are involved and what values were improper. When 
division by zero occurs some processors will terminate with a 
crude message such as "DOMAIN ERROR" in APL or "SIZE ERROR" in 
some COBOL compilers. PASCAL specifies "division by zero" but 
may not include the line number or variables that the PLUM 
compiler offers (Zelkowitz, 1976). Maintaining symbol table and 
line number information at execution time so that better messages 
can be generated is usually well worth the modest resource 
expenditure. 

Systems which offer a code number for error messages are also 
annoying because the manual may not be available and consulting 
it is disruptive and time consuming. In most cases, system 
developers can no longer hide behind the claim that printing 
complete messages consumes too many system resources. 

BE CONSTRUCTIVE  

Rather than condemning the users for what they have done wrong, 
where possible tell them what they need to do to set things 
right. Nasty messages such as "DISASTROUS STRING OVERFLOW. JOB 
ABANDONED." (from a well-known compiler-compiler), "UNDEFINED 
LABELS", or "ILLEGAL STA. WRN." (both from a major manufacturer's 
FORTRAN compiler) can be replaced by more constructive phrases 
such as "String space consumed. Revise program to use shorter 
strings or expand string space.", "Define statement labels before 
use", or "RETURN I statement cannot be used in a FUNCTION 
subprogram". 

120 



It may be difficult for the compiler writer to write code which 
accurately determines what the user's intention was, so the 
advice to be constructive is often difficult to apply. I believe 
that error correcting compilers should be extremely conservative 
for the same reason. Automatic error correction has the danger 
that users will fail to learn proper syntax, and become dependent 
on the compiler making corrections for them. 	For interactive 
systems 	the user can be consulted before corrections are 
automatically applied. 

BE USER-CENTERED 

By user-centered I mean that the user controls the system rather 
than the system directs the user what to do. This is partially 
accomplished by avoiding the negative and condemning tone in 
messages and by being courteous to the user. If the system will 
take a long time to respond to a command then the user should be 
informed with a simple estimate of the time. Prompting messages 
should avoid the imperative forms such as "ENTER DATA" and focus 
on user control such as "READY FOR COMMAND" or simply "READY". 

Brevity is a virtue, but the user should be allowed to control 
the kind of information provided. Possibly the standard system 
message should be less than a line, but by keying a "?" the user 
should be able to get a few ]Lines of explanation. Two question 
marks might yield a set of examples and three question makks 
might produce explanations of the examples and a complete 
description. The CONFER teleconferencing system provides 
appealing assistance similar to this. The PLATO computer 
assisted instruction system offers a special HELP button and 
other options to provide explanations when the student needs 
assistance. 

The designers of the Library of Congress' SCORPIO system (Woody 
et al., 1977) for bibliographic retrieval understood the 
importance of making the users feel that they are in control. In 
addition to using the properly subservient "READY FOR NEXT 
COMMAND" the designers avoid the use of the words "error" or 
"invalid" in the text of system messages. Blame is never 
assigned to the user but instead the system displays "SCORPIO 
COULD NOT INTERPRET THE FOURTH PART OF THE COMMAND CONTENTS, 
WHICH IS SUPPOSED TO BE A 4-CHARACTER OPTION CODE." The message 
then goes on to define the proper format and present an example 
of its use. 

USE AN APPROPRIATE PHYSICAL FORMAT 

Although professional programmers have learned to read upper case 
only text, most novices prefer and find it easier to read upper 
and lower case messages. Messages that begin with a lengthy and 

121 



mysterious code number only serve to remind the user that the 
designers were insensitive to the real needs of users. If code 
numbers are needed at all they might be enclosed in parentheses 
at the end of a message. 

There is some disagreement about the placement of messages in 
program listing. One school of thought argues that the messages 
should be placed at the point in the program where the problem 
has arisen. The second opinion is that the messages clutter the 
listing and anyway it is easier for the compiler writer to place 
them all at the end. This is a good subject for experimental 
study, but I would vote for placing messages in the body of the 
listing assuming that a blank line is left above and below the 
message so as to minimize interference with reading the listing. 
Of course, certain messages must come at the end of the listing 
and execution time messages must appear in the output listing. 

Some application systems ring a bell or sound a tone when an 
error has occurred. This can be useful if the error could be 
missed by the operator, but it is extremely embarrassing if other 
people are in the room and potentially annoying even if the 
operator is alone. The use of audio signals should be under the 
control of the operator. 

The early high level language, MAD (Michigan Algorithmic Decoder) 
printed out a full page picture of Alfred E. Neuman if there were 
syntactic errors in the program. Novices enjoyed this playful 
approach, but after they had accumulated a drawer full of 
pictures, the portrait became an annoying embarrassment. 
Highlighting errors with rows of asterisks is a common but 
questionable approach. Designers must walk a narrow path between 
calling attention to a problem and avoiding embarrassment to the 
operator. Considering the wide range of experience and 
temperment in users, maybe the best solution is to offer the user 
a choice of alternatives this coordinates with the 
user-centered principle. 

2. EXPERIMENTAL RESULTS  

2.1 COBOL Compiler Messages 

A pilot study was run to explore the impact of improved messages 
on the ability of programmers to locate and repair bugs. The 
experiment, carried out by Patrick Peck and David Fuselier under 
the direction of the author, was administered to 22 second term 
COBOL students at the University of Maryland in Fall 1979. 

Five bugs were included in a 132 line COBOL program yielding the 



following messages from a UNIVAC COBOL compiler: 

1) RESERVED WORD USED AS PARAGRAPH OR SECTION NAME IGNORE 
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR 

2) DANGLING ELSE OR WHEN; TREATED AS AN IMPERATIVE 

3) UNDEFINED DATA ITEM STATEMENT OMITTED 
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR 
PREVIOUS ERRORS CAUSE LOSS OF OBJECT CODE 

4) WORD NOT A VERB; SCAN SKIPS TO NEXT VERB 
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR 

5) BLANK MISSING BEFORE OPERATOR OR LEFT PARENTHESIS 
BLANK MISSING AFTER ARITH/COND OPERATOR OR PUNCTUATION 

A second version of the listing was produced with the following 
five improved messages: 

1) PERIOD IN PREVIOUS LINE CONTAINED IN IF STATEMENT, DELETE 

2) EXTRANEOUS ELSE IN PREVIOUS LINE, DELETE 

3) BLANKS IS UNDEFINED DATA ITEM, MUST USE SPACES 

4) USE AFTER PAGE INSTEAD OF AFTER 1 PAGE 

5) SPACE REQUIRED BEFORE OPERATOR 
SPACE REQUIRED AFTER OPERATOR 

Code numbers and severity levels were eliminated in the improved 
messages and a single blank line was left above and below the 
improved messages. Eleven copies of each of the listings were 
produced and randomly distributed to the subjects. Seven minutes 
were allowed to locate and repair the bugs. One point was given 
for locating the error and two points were given for correcting 
the bug, yielding a maximum score of 10 points. 

Subjects with the UNIVAC COBOL compiler listing had an average of 
6.6 points while those with the improved messages had an average 
of 8.5 points. A t-test yielded a significant difference at the 
5% level. 

The results of this pilot study should be considered exploratory. 
Replications should be performed with other messages, 
professional subjects, and different languages. A more realistic 
study could be performed if two versions of the same language 
compiler were available. One group of subjects would be required 
to work with the standard version and the other group of subjects 
would work with the improved message version. Capturing 
performance in actual projects over longer time frames could 



demonstrate the true impact of improved messages. 

2.2 COBOL Compiler Messages: Tone  and Specifity 

2.3 Presence  or Absence  of Text Editor  Messages  

2.4 Tone  and Content  of Text Editor Messages" 

2.5 Job Control Language Messages 

3. CONCLUSIONS 

REFERENCES 



Workshop -- The Human Computer Interface 

ELILD121 Ptbstrac .A 

Empirical Evaluation with Novice Users of Some 
Programming Language Constructs 

Elliot Soloway and Jeff Bonar 

Computer and Information Science Department 
University of Massachusetts 
Amherst, Massachusetts 01003 

This work was supported by the Army Research Institute for the 
Behavioral and Social Sciences, under ARI Grant 
No. MDA903-80—C-0508. 

Any opinions, findings, conclusions or recommendations expressed 
in this report are those of the authors, and do not necessarily 
reflect the views of the U.S. Government. 

125 



Workshop -- The Human Computer Interface 

I. Introduction  

Language designers and language proponents are often given 
to making claims about the "readability," "debug—ability," 
"understandability," "learnability," "naturalness," etc. of a 
(their!) particular programming language. For the most part such 
claims are psychological in nature, and thus open to empirical 
inquiry. The problem is that this type of research is difficult 
to carry out and, frankly, only lip service (and "lip resources") 
to its need is given by the computing community. Moreover, with 
the major push behind Ada and methodologies appropriate to large 
scale software development, the needs of novice programmers have 
gotten particularly short shrift. We increasingly see the 
attitude that a "programmer" is a' .person who works on a 100 
person team on some massive project not someone tailoring 
their home "mail network" or interacting with a computerized --
"programmable" -- toy. This view of programming seems a bit 
narrow. 

With that introductory polemic, let us turn to the specifics 
of our presentation. We have been looking at how novice Pascal 

. users cope with problem solving in Pascal. {1} In this extended 
abstract we shall first highlight several Pascal constructs which 
are particularly troublesome. Next, we shall make a more general  
statement, based also •on empirical data, on the need to keep 
procedurality in programming languages. 

II. Performance Analusis: Reasl jazocess  j  vs. Process i/Read  

Consider problem 3 in Table 1. 	For this problem, the 
stylistically correct solution in Pascal requires a curious 
coding structure: 

read first—value 
while (test ith value) 

process ith value 
read next—ith value 

The loop must pat be executed if the test variable has the 
specified value, and this value could turn up on the first read; 
thus, a read  outside the loop is necessary in order to "get the 
thing going." However, this results in the loop processing being 
"behind the read; it processes the ith input and then fetches 
the next—i. We call this structure "process i/read next—i." 

{1} One goal of our project, which will riot be reported on in 
this summary, is to build a Run—Time Support Environment for 
novice Pascal users. This system, components of which are 
currently being built, will attempt to catch run—time bugs (not 
compile time errors, which are adequately handled in other 
systems) in students' programs, and provide remediation with 
respect to the underlying mental misconceptions. 

126 



Problem 1. Write a program which reads 10 integers and then 
prints out the aver* e. Remember, the average of a 
series of numbers is th e SUM of those numbers divided 
by how many numbers there are in the aeries. 

Problem  2. 	Write a program which repeatedly reads in 
integers until their sum is greater than 100. After 
reaching 100. the program should print out the average 
of the integers entered. 

Problem 3. 	Write a program which repeatedly reads in 
integers until it reads the integer 99999. After 

seeing 99999, it should print out the correct  average. 
That is, is should not count the final 99999. 

of Ch.Verrt-4  
Table I. Problems used in our test instrument../ These problems 
were given to an introductory programming class ,on the last day 
of the course. They are designed to test student knowleage of 
key differences between different loop constructs in Pascal. 

program Studentkprobles3; 

var Count, Sum, Number : integer;  Average : real; 

begin  
Count :. 0: 

Sum.= 0; 
Read (Number): 

while Number <> 99999 do 
begin  
Sum :. Sum 4. Number; 
Count Count 1; 
Read (Number) 
end; 

Average 	Sum / Count; 
Writeln (Average) 
end. 

Figure 	A stylistically correct solution to problem 3 in table 
1. Note the need for two Read calls and the curious "process the 
last value, read the next value" semantics of the loop body. 
This 	program 	was minimally edited for presentation here. 
Stucents wrote these programs in a classroom. 	They were never 
submitted to a translator. 

=lam Stunent7Problem3; 

var N, Sum, X : integer; 

 Average : real; 
Stop : boolean; 

begin  
Stop :. false; 
N := 0; 
Sum 	0; 
while not Stop do --___  

begin  
Read (X); 

if X = 99999 
then Stop := true 
else begin  

Sum := Sum + X; 
N 	N 	1 
end 

end; 
Average 77Sum / N; 
Writeln (Average) 

program Stusentl6problem3; 

var Count. Sum, Num : integer;  Average : real; 

begin  
Count := -1; 
Sum := 0; 
repeat 

Count := Count + 1; 
Read (Num); 
Sum :. Sum + Num 

until Num 	99999; 
sum :. Sum - 99999; 
Average 	Sum / Count 
end. 

Figure “ These programs are attempts at problem 3 described in 

table 1. They are typical of the contortions students will go 

through to make this problem fall into a "read a value, process 

that value" Frame. These programs have been minimally edited for 

presentation here. Students wrote these programs in a classroom. 
They were never submitted to a translator. 

	

Read //Process i 
	

Process i/Read Next-i 
	

Other  

used 
	

used 

repeat loop 
	

while loop 	other 	repeat loop while loop 

Correct 
	

4 
	

2 
	

2 
	

1 

Incorrect 
	

3 	 5 
	

4 
	

2 

Table  2 
The numbers in this table refer to the actual number of students, 
not percentages. 

127 



Workshop -- The Human Computer Interface 

One of the authors -- the one with less Pascal experience --
intuitively felt this coding strategy to be unnecessarily awkward 
and downright confusing. Perhaps a more "natural" coding 
strategy would be to read the ith value and then process it 	we 
call this the "read i/process i" coding strategy. 	Others have 
noticed this problem before, but treated it largely as a coding 
inconvience. Their response was baroque looping constructs which 
eliminated writing the same code twice. We are not as concerned 
with elegence as with learnabPite. Do novice programmers use 
the stylistically correct coding strategy (process i/read 
next—i), or do they add extra machinery to a while or repeat loop 
(e.g., an embedded j  test tied to a boolean variable) in order 
to force the code into a read i/process i structure? 

Table 2 lists the performance of those students 	who 
attempted the problem with either a Wkile or repeat loop. Of the 
9 who solved it correctly, only 2 used the stylistically correct 
"process i/read next—i" coding strategy. (See Figure 1 for a 
solution using this coding strategy.) In order to correctly 
solve the problem using either a rucA.,t or while, loop and the 
read i/process i coding strategy requires extra machinery; 
Figure 	2 shows student programs which use this strategy. 
Nonetheless, the vast majority of students attempted 	this 
solution; 	given the extra complexity needed for a correct 
solution, it is not surprising that many Failed. 

It is tempting to conclude that with respect to these types 
of problems, Pascal requires that students circumvent their 
"natural" problem solving intuitions. BeFore we can actually 
assert this conclusion, more research needs to be done {1}. But, 
since we must live with Pascal for some period of time to come, 
it would only be responsible for teachers to explicitly teach 
their students about this peculiar coding strategy. 

{1} We have designed and pilot—tested the following experiment: 
we first ask all students to write a plan or design for problem 3 
in Table 1 (the same one examined in this section), in a language 
other than a programming language. We then ask half the students 
to write the program in Pascal. For the other half of the group, 
we provide a one page description of constrained version of the 
Ada loop ... 	loop construct in which only one exit from the 
Loop body is allowed. 	While the sample size was small (13 
students in total), the data is suggestive: invariably the plan  
of the students was worded in terms of a read i/process i. 
However, the Pascal versions were typically coded with a process 
i/read next—i strategy. 	Hut, those programs written using the 
Ada loop ... 	loop  were coded using the read i/process i 
strategy. 	Thus, the program coded in Ada more closely matched 
the students' plans than did those program coded in Pascal. 	We 
plan to run this experiment on a larger group. 

128 



Workshop -- The Human Computer Interface 

III. Performance ►nalusis: Gettino  a Map! Value  

In all 3 problems (Table 1), a correct solution required 
that the program "get a new value with a read." 23% of all the 
student written programs did not perform this function correctly. 
Often students try to get the previous or next value of a 
variable by subtracting or adding one (see Figure 3). {1} We 
also found programs in which we felt students assumed that each 
use  of Next value automaticallu  retrieved a new value. 

As "expert programmers" we have a great deal of deep 
knowledge about how to program. In particular, we know that 
variables have not Just types, but also roles. Different coding 
stratagies are needed to realize like operations on variables 
whose roles are different. For example, "getting the next value" 
implies adding one for a counter variable, reading for a 
New_value variable, and adding in the New value for a 
Running total variable. (The problems in Table 1 need one 
variable in each of these roles.) Perhaps students committing 
the above errors did not understand or garbled these different 
variable roles. 

Misunderstanding this "deep" knowledge about Pascal -- mind 
bugs -- could result in many different student errors -- surface 
bugs. Perhaps students committing the above errors did not 
understand that read  is actually Just a special case of 
assignment.. If so, then a language which treated I/O calls as 
special values which can be assigned "to" or "from" might be more 
palatable to beginning programmers, e.g., 

New value := Read_From_terminal, or 
Write_to_terminal := Running.sum / Count. 

Another possible mind bug which could result in some of the 
observed errors would be that students incorrectly 
overgeneralized from the Counter variable. That is, since the 
next value of a variable functioning as a counter can be 
retrieved by simply adding a 1 to the variable, why not get the 
next value of anu  variable by simply adding a 1 to it! While 
reasonable, this is incorrect. 

IV. Performance Analusis:  ILE "Demon" in the while loop  test 

Based on our examination of student programs, and on 
analysis of audio—taped, individual interviews, we felt that 
there was a great deal of confusion surrounding the time  at which 
the terminating test in the while  loop gets evaluated: is it 

{1} "Backing up" may be needed when a student does problem 3 in 
table 1 with a read i/process i strategy. 

12 9 



program  Student30Problem2: 

var N. Sum, Score : integer;  Mean : real; 

begin 

N :e 0; 
Sum 	0; 
Score ::- 0; 

while (Sum Cs 100) do 
begin  

Score :e Score • 1; 
Sum :e Sum • Score; 
N :e N • 1 
enc; 

Mean 	Sum / N; 
( ' the mean e 	, Mean:10: 10) 

enc. 

program  Student 19_Problem1: 

var Num, Prev_mes. Count : integer;  

begin 
Count 	0; 
Read (Num); 
Sum :e 0; 

e at 
Prev_nura :e Num - 1; 
Sum :e Num + Prevnler: 
Sum :r Sum • 1; 
Count :e Count + 1; 

until Count e 10; 
Average :e Sum / Count; 
Writeln ('Average of ten integers is equal to ': 2) 
end. 

Figure 3 These programs are attempts at the problems described 
in table 1. 	They illustrate student problems with getting a 

New value. These programs have been minimally edited for 
presentation here. Students wrote these programs in a classroom. 
They were never submitted to a translator. 

Problem  jr„ 

Given the following statement: 

At the last company cocktail party. for every 6 people who drank 
hard liquour. there were 11 people who drank beer." 

Write a computer program in BASIC which will output the number of 
beer drinkers when supplied Cvia user input at the terminal) with the 
number of hard liquour drinkers. Use H for the number of people who 
drank hard liquour. and B for the number of people who drank beer. 

Sample Size 
	Correct 	7G Incorrect 

$2 	 69 	 31 

Problem W.L 

Given the following statement: 

"At the last company cocktail party. for every 6 people who drank 
hard liquour. there were 11 people who drank beer." 

Write an equation which represents the above statement. Use H for the 
number of people who drank hard liqueur, and D for the number of 
people who drank beer. 

Sample Size 
	

Z. Correct 	IC Incorrect 

51 
	

45 

Probability of these results on the assumption that errors on each 
problem were equally likely is p < .05 

Table  3 



Workshop -- The Human Computer Interface 

evaluated once, at the top of the loop, or is the test 
continually evaluated during the execution of the body of the 
loop? The program given below was also on a written test taken 
by the 31 summer school students. 

program  Problem4; 

var Count : integer; 

begin  
Count := 0; 
while  Count < 7 12 

begin , 

Writein ('*'); 
Count := Count + 1; 
Writein ('/') 
end 

If the students felt that the terminating test was evaluated 
Lontinuallu,  then the loop 'Would terminate before  an '/' were 
printed, thus providing one more se° and '/'.{1} In otherwords, 
it is as if the test were a "demon" watching the statements in 
the loop body, and waiting for its condition to become true. Of 
the 31 students, 347. made the above mistake. Given the ubiquity 
of the while  construct in programs and in the instructioli, and 
given the lateness in the course (the end of the semester), we 
felt that this was a surprisingly high percentage. 

We feel that the basis for this confusion is grounded in the 
mismatch between the semantics of while in a programming language 
context, and the semantics -- the meaning -- of 'while' in "every 
day experience." In the latter case, 'while' has a global sense: 
durim  the course,  of some event. In contrast, the programming 
language while  requires a local, narrow interpretation: at a 
specific point in time. Clearly, the names of programming 
language constructs must rely on real world semantics of their 
analogs. However, care ought to be exercised in their selection. 
Again, we are unlikely to change Pascal or the while loop 
construct, but educators must take note of this error, and pay 
attention to it in their instruction. 

V. Too Need or Procedurali4g  in Languages for Novices  

ill We were not interested in the actual number of 1 .14. 1  and 1 / 1 , 
i.e., we were not studying the "off--by—one" bug in this 
particular problem. 

131 



Workshop -- The Human Computer InterFacc 

There is a definite trend in programming langauge design and 
programming methodology towards more "formality." For example, 
"logic" and production rules have been seriously suggested as 
progamming languages. Dijsktra suggests that the process of 
writing a program should be akin to that of writing a 
mathematical proof. Backus' new language takes a different, yet 
similar approach: take procedurality out of the programming 
language and make it algebra based to facilitate program proofs. 
While these langauges and approaches might be appropriate for 
experts, we are quite skeptical of their appropriateness for 
novices. We are seriously concerned that programming not be 
equated with mathmatics. For whatever reasons, most people have 
a great deal of trouble learning and using mathematics. We 
believe, and we are not alone, that there are aspects of 
programming which uniquely lend themselves to the demystification 
of mathematics. The formal programming people propose to remove 
exactly those aspects of programming while increasing required 
math ability. In our increasingly sophisticated world, just 
plain folks will need to "program", and our formal programming 
friends have no answers for these non—professional programmers. 
We are not willing to write off just plain folks. 

In the following, we take a less polemical, and more 
evidence based look at one of the "unique aspects of programming" 
alluded to above, namely, procedurality. 

Erocedural 	Non—Procedural:  'hat is the Question . 

The first study which we feel supports the need to keep 
procedurality in programming languages for novices was done by 
Welty and Stemple C1981]. They compared the ability of novice 
subjects to write database queries in languages with different 
amounts of procedurality. In all issues except procedurality, 
the languages were identical. A typical query in SOL, the less 
procedural language, is: .  

SELECT NAME 
FROM STUDENTTABLE 
WHERE HOMESTATE = 'OHIO' 

The equivalent query in TABLET, the more procedural language, is: 

FORM OHIOANS FROM NAME, HOMESTATE OF STUDENTTABLE 
KEEP ROWS WHERE HOMESTATE = 'OHIO' 
PRINT NAME 

In their paper they formalize "amount of procedurality" based on 
the number of variables, the number of operations, and the degree 
to which the bindings and operations are ordered by the language 
semantics. The two languages were learned by subjects working 
largely on their own. The same example problems and order of 
Presentation was used for each group. The experiment showed that 
subjects who learned the more procedural query language, TABLET, 

132 



Workshop -- The Human Computer Interface 

wrote 	difficult queries better than those using the less 
procedural language SOL. 

The second study which we feel supports our claim is being 
carried out by Soloway and his colleagues at UMASS. In our work, 
we explored the performance of students on "ratio" type word 
problems. Typically, half the students in a low—level 
programming class were asked to solve a word problem with an 
algebraic equation, while the other half were asked to solve the 
same problem with a program (Table 3). As the results indicate, 
significantly more students got the problem correct in the the 
programming context than did those in the algebraic context. A 
number of these experiments have been run in which various 
paramters were varied (e.g., problem wording). In all cases the 
results were similar to those in Table 3. 

We have a number of specific hypotheses which could account 
for this performance difference. The basis for all of them, 
however, is procyduralitu,  Some students who used algebra as the 
solution language seemed to view the equation as a "picture 
description:" there are more beer drinkers than hard liquour 
drinkers, thus 11B, which represents the beer drinkers, is 
related to 6H, the hard liquour drinkers, via 11B = 6H. 
Alternatively, some students viewed the algebraic equation as 
"label descriptors," much like "3ft. 1yd." (1) On the other 
hand, programming appears to encourage students to view the 
equation as an active poeration,  or transformation. That is, the 
fact that variables have values, and that variables are acted 
upon by operations, appear.more under standable to students in the 
programming environment. Thus, the procedural nature of 
Programming seems to be a key factor in understanding and using 
such basic concepts as variable, operation, equal sign. 

c.oncjwansi RemarJC s  

Clearly, this note is only a "teaser;" a fuller discussion 
of these issues must await the workshop. We genuinely solicit 
your comments, and look forward to an active interchange at the 
workshop. 

(11 These hypotheses are based on the analysis of many hairs of 
video—taped clinical interviews with individual students as they 
solved problems of the above sort. 



Steamer: An Advanced Computer Aided Instruction 

System For Teaching Propulsion Engineering 

Albert L. Stevens 

Michael D. Williams 

James D. Hollan 

In this presentation, we describe the current state 

of Steamer, an intelligent CAI system with a graphics-

based human interface. Steamer includes a math model of 

a steam plant, an interactive graphics front end and a 

qualitative modelling component. The math model and 

graphics interface allows the student to control and 

observe a simulated steam plant. The qualitative model-

ling component enables Steamer to explain in casual 

terms the operation of components and subsystems. The 

design of the graphics interface is based on object-

oriented programming to allow much more modularity and 

flexibility than is normal with computer graphics. The 

qualitative modelling component is based on incremental 

qualitative simulation to model systems in terms of 

psychologically meaningful events. 

134 



METAMORPHOSIS THROUGH METAPHOR 

J.C. THOMAS 

IBM CHQ Armonk,NY 

The problems that mankind faces in the twentieth century 

sometimes seem insurmountable. Nuclear weapons, the 

population explosion, rising demand and falling levels of 

most natural resources provide a potentially devastating 

combination. In addition, our new lifestyles have provided 

a number of unwelcome ecological surprises. 

The organism and the environment are necessarily in an 

intimate relationship. Yet, we humans are, seemingly by 

choice, changing our environment much faster than we can 

adapt biologically. It seems suicidal. 

The only major way out of these dilemmas is for effective 

human intelligence to increase dramatically over the next 

century. This could theoretically be accomplished 

biochemically, educationally, or through more effective group 

problem solving procedures. 

The fourth possibility, which is addressed in this 

paper, is that of the computer augmenting effective human 

intelligence. By augmenting effective human intelligence I 

mean that by using a computer, people will operate so as to 

bring greater short and long term happiness to themselves, to 

mankind, and to life than they will without the computer. 

135 



The major obstacle to this goal is not the lack of 

progress in computer technology: we are able to build 

smaller,faster, cheaper components. (That progress, of 

course, is what enables us to address the next problem). 

What we have been slow to achieve is a computer that is 

anything near optimally designed to help a human being do a 

more effective, higher quality job. In order to accomplish 

this latter goal, we need some notion of what humans can do, 

what they need to be able to do better in order to solve 

their problems and what the capabilities of the computer are. 

In this paper, I will focus on part of this problem. First, 

I will present a model of how the person approaches and 

learns to use a new tool. Second, I will point out where in 

this process there is likely to be a critical breakdown 

which prevents the person from using the tool in an effective 

fashion (e.g., to solve previously insoluble problems). 

Third,I will present a theory of what the tool should look 

like and provide some suggestively supporting evidence based 

on experimental work of my own and of other investigators. 

Fourth, in the area of office systems, I will present some 

examples of how my recommendations might be implemented. 

136 



The model of mind is multi-viewed; at the current state 

of integration of behavioral science no single view (e.g., 

behavioristic or cognitive) provides as sufficient a scope as 

does a multi-viewed approach. 

The presented model is novel in the context of 

human-computer interaction in the notion of resource 

allocations with differentiably usable resources, in an 

emphasis upon motivational issues, and in the analysis of 

primary, secondary and tertiary memory limitations. 

The model implies that under certain conditions a kind 

of "gambler's ruin" phenomenon will occur in which the 

aspiring learner of a potentially useful system will stop 

short. An even more common case of essentially the same 

phenomenon will occur among those learners who learn enough 

about the system to do what they did before only marginally 

better. Rarely, a user will learn an interface so that they 

are truly facile with the facilities. 

Still rarer are cases in which the computer-tool allows 

a qualitative change in the user's work. Yet for augmenting 

effective human intelligence, it is this last category that 

we would like to contain the majority of users. For such a 

qualitative change to occur, the interface must be designed 

to allow a more optimal allocation of the user's 

psychological resources. 

137 



One way of accomplishing this latter goal is through the 

use of an appropriate metaphorical interface presented to the 

user along with a well though-out mapping inside the computer 

system  that translates the actions the user takes in the 

metaphorical space into the appropriate state changes in the 

machine, and translates the machine state changes into the 

appropriate presentations in the user's metaphor. 

A large body of empirical evidence strongly suggests 

that "meaningful" material can greatly affect the user's 

performance quantitatively and in some cases qualitatively. 

"Meaningfulness" can exist at many levels. Editing commands 

that are more English-like are better than their 

abbreviational counterparts (Ledgard, et als (1980). 

Non-programmers can learn an English-like query language 

better than its symbolic counterpart (Reisner, 1975). Older 

subjects particularly, but younger ones as well, are aided in 

learning by the addition of "extra" mnemonic material (Thomas 

& Rubin, 1972). 

The implications of these findings for a particular 

domain - office systems is drawn in some detail. A number of 

objects, organizing schemes, features, and actions that 

138 



people are  familiar with are reviewed along with the way in 

which these can be combines to let the user know what is 

going on. The model explains how using such metaphors can 

increase comprehension, motivation, and performance of given 

tasks and how such metaphors can be used to improve the 

effective intelligence that goes into the user's solutions. 

In addition to using metaphors, a better allocation of 

the user's psychological resources can be achieved by making 

more complete use of various input and output 

characteristics of human beings. People can discriminate 

better when information is presented on a large number of 

channels (rather than a single channel). People can also 

output at greater data rates over several channels. In 

traditional, pencil and paper editing, non-verbal, spatial 

symbols are used as the metalanguage for the verbal 

material. In film directing, on the other hand, much of the 

metalanguage is verbal. We need to become more sensitive to 

this kind of "division of labor" in our computer interfaces. 

139 



A SYSTEM FOR COMPUTER AIDED 
MEMORIZATION 

Michael D. Williams 

Xerox Palo Alto Research Center 

Palo Alto, California 

James D. Hollan 

Navy Personnel Research and Development Center 

San Diego, California 

and 

University of California, San. Diego 

La Jolla, California 

We are constructing an intelligent computer based instructional system to facillitate students in 

the memorization of a large collection of facts. The system consists of a series of games played on a 

microprocessor, a relational data base to drive the games, a student model, and a computer coach. 

To the student the system appears as a series of games played with a table top computer against a 

computerized opponent. Example games are twenty questions, flash cards, a property specification 

game where students successively enhance the definition of an object until one or no objects match 

the cumulative description, a picture recognition game, and a concentration-like table fill-in game. 

The data base can be modified to allow a variety of topic matters. Present iata bases include US 

and Russian ships, their radars and weapons, South American geography, the anatomy of the 

human hand, and a fantasy data base on star trek trivia. The student model consists of a simple 

marking of the relations in the data base. The computer coach consists of a series of opponents of 

variable "intelligence" and a scheme for focusing game activity on portions of the data base where 

the student is weak and the information important. 

Our principle student population are Naval Officers learning the properties of Russian ships, 

radars, and weapons. The data base they arc attempting to master consists of thousands of facts. 

Approximately 3 and 1/2 weeks of a 6 week course on tactical decision making arc taken up with 

lectures, practice, and tests to support this memorization. 

Our primary scientific goal in this work is to explore the process of remembering. We are 

using this computerized memorization system as a tool to gather data as well as a forcing function 

to drive the development of of our theory. An issue that anyone building a computerized 

140 



instructional system must confront is what information to present a student and when to present the 

information. The goal for our theory of remembering is to determine the implications of learning 

any particular piece of information with regard to the durability of what the student knows, 

flexibility of retreival, errors in recall, incidential information recovered, and speed of retrieval. 

We come to the problem with the view that remembering is a complex process of 

reconstruction from an array of fragments. An essential observation is that people memorize more 

than just the facts in the data base. A large amount of their learning seems to focus around 

abstractions drawn, in part, from the regularities within the data base. Thus, a student might notice 

that all ships which carry a scoop-pair radar also carry shaddock missiles (this is because the scoop-

pair radar is the guidence radar used to control that particular missile, it has no function without 

the missile). In effect, students seem to be building a "theory" of the data base from which they 

can reconstruct the portion they need to answer any given query. Given that this is the case, what 

we are looking for are the particular mnemonic effects of these "abstractions", and principled 

reasons for these effects within a reconstructive theory or remembering. 

Our primary engineering goal in this work is to build a system which provides substantial 
facilitation to students who must memorize some collection of facts. In this role we are investing 

substantial efforts in what we call the pragmatics of the system design. Thus we are using computer 

games to enhance motivation, have spent large amounts of time designing and tuning the interface 

betweeen student and machine, and are using a technique of in situ development to tune the system 

toward realistic user needs. 

141 



Names and Addresses of Participants 

Albert N. Badre 

Richard Burton 

Jaime G. Carbonell 

Susan T. Dumais 

Sam L. Ehrenreich 

Jim Foley 

George W. Furnas 

Stanley M. Halpin 

School of Information and Computer Science 
Georgia Institute of Technology 
Atlanta, Georgia 30332 
(404)-894--2598 

Xerox PARC 
3333 Coyote Hill Road 
Palo Alto, California 94304 
(415)-494-4000 

Carnegie Mellon University 
Department of Computer Science 
Schenley Park 
Pittsburg, Pennsylvania 15213 
(412)-578-3064 

Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 
(201)-582-2054 

U.S. Army Research Institute 
Attention: Peri-OS (S.L. Ehrenreich) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 

Department of Electrical Engineering 
and Computer Science 

George Washington University 
Washington, D.C. 20052 
(202)-676-4952 

Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 
(201)-582-6128 

U.S. Army Research Institute 
Attention: Peri-OS (Stanley M. Halpin) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 



Mark D. Jackson 

Janet Kolodner 

Thomas K. Landauer 

Michael Lebowitz 

Paul R. Michaelis 

Bell Laboratories 
Room 6A3048 
Warrenville and Naperville Roads 
Naperville, Illinois 60566 

School of Information and Computer Science 
Georgia Institute of Technology 
Atlanta, Georgia 30332 
(404)-894-3285 

Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 
(201)-582-4324 

Department of Computer Science 
406 Mudd Building 
Collumbia University 
New York, New York 10027 
(212)-280-2564 

Texas Instruments 
Computer Science Lab 
Post Office Box 225936 
Mail Station 371 
Dallas, Texas 75265 
(214)-995-7081 

Mark Miller 	 Texas Instruments 
Computer Science Lab 
Post Office Box 225936 
Mail Station 371 
Dallas, Texas 75265 
(214)-995-7081 

Franklin L. Moses 	U.S. Army Research Institute 
Attention: Peri—OS (F.L. Moses) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)•274-8905 

Jean Nichols 	 U.S. Army Research Institute 
Attention: Peri—OS (J. Nichols) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 

Phyllis Reisner 	 IBM 
Department K54/282 
5600 Cottle Road 
San Jose, California 95193 



Elaine Rich 

Michael L. Schneider 

Ben Shneiderman 

Elliot Soloway 

Albert L. Stevens 

John C. Thomas 

Judith Tschirgi 

Michael D. Williams 

Department of Computer Science 
University of Texas 
Austin, Texas 78712 
(512)-471-7316 

Sperry Univac 
Post Office Box 500 
Blue Bell, Pennsylvania 19424 
(215)-542-4011 

Department of Computer Science 
University of Maryland 
College Park, Maryland 20742 
(301)-454-4245 

Department of Computer Science 
University of Massachusettes - Amherst 
Amherst, Massachusettes 01002 
(413)-545-1324 

Bolt Beranek and Newman, Inc. 
50 Moulton Street 
Cambridge, Massachusettes 02238 
(617)-491-1850 

IBM 
Old Orchard Road 
Armonk, New York 10504 
(914)-765-1900 

Bell Laboratories 
Room 6A304B 
Warrenville and Naperville Roads 
Naperville, Illinois 60566 
(312)-462-5976 

Xerox PARC 
3333 Coyote Hill Road 
Palo Alto, California 94304 
(415)-494-4000 



FINAL CONTRACT REPORT 

A WORKSHOP ON THE GATHERING OF 
INFORMATION FOR PROBLEM FOR: UIATION
(HUMAN-COMPUTER INTERACTION) .  

BY 
Dr. Albert N. Badre 
Associate Professor of Information and.Computer Science 
404) 894-2598 

PrePxed for 

DEFENSE SUPPLY SERVICE -- WASHINGTON 
THE PENTAGON 
WASHINGTON, D.C.20310 

GIA 
A' UNSTOP THE uNivansrrir SYSTEM OF GEOGIA 

OOL OF OWOOMMON AND ComPyTEA SCIENCE 



DISCLAIMER STATEMENT 

"The views, opinions, and findings contained in this report are 

those of the author(s) and should not be construed as an 

official Department of the Army position, policy, or decision, 

unless so designated by other official documentation. 



SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

1. REPORT NUMBER 

Final Report 

2. GOVT ACCESSION NO. 3. 	RECIPIENT'S CATALOG NUMBER 

4. 	TITLE (and Subtitle) 

A WORKSHOP ON THE GATHERING OF 	INFORMATION 

FOR PROBLEM FORMULATION. 

5. TYPE OF REPORT & PERIOD COVERED 

Final Report 
3/1/80 - 9/1/81 

6. PERFORMING ORG. REPORT NUMBER 

G36-651 
.---. 

7. AUTHOR(a) 	 '-, 

Albert N. Badre %,,,, 
f"`"' '''' 

8. CONTRACT OR GRANT NUMBER(s) 

MDA 903-80-C-0144 and 

Modification No. 1 
9. PERFORMING ORGANIZATION NAME AND ADDRESS 

Georgia Tech Research Institute 
School of Information and Computer Science 
Atlanta, Georgia 	30332 

10. PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERS 

11. CONTROLLING OFFICE NAME AND ADDRESS 
Defense Supply Service - Washington 
Room 10-245, The Pentagon 
Washington, D.C. 	20310 

12. REPORT DATE 

September 1, 1981 
13. NUMBER OF PAGES 

148 
14. MONITORING AGENCY NAME & ADDRESS(it different from Controlling Office) 

Office of Naval Research 
Resident Representative 
325 Hinman Research Building 
Ga. Institute of Technology, Atlanta, GA 	30332 

Unclassified  

15. SECURITY CLASS. (of this report) 

15a. 	DECL ASSI Fl CATION/ DOWNGRADING 
SCHEDULE 

 

16. DISTRIBUTION STATEMENT (of this Report) 

Approved for Public Release; Distribution Unlimited 

rl. 	DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 

19. SUPPLEMENTARY NOTES 

19 	KEY WORDS (Continue on reverse aide if necessary and identify by block number) 

Human-Computer Interface 
Interactivity 
Information Processing 

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) 

The purpose of this workshop was to bring together a group of research 

scientists from various disciplines to discuss and report their research 

findings on the topic of problem representation for interactive information 

processing. 	During the planning phases of the project, it was agreed that 

Dr, FORM 1473 6,  1 JAN 73 	
EDITION OF 1 NOV 65 IS OBSOLETE 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered) 

the proposed general topic should be limited to the problems of representation 

and information processing in the context of human-computer interface. Based 

on this theme, a set of topics were developed and used to select and organize 

speakers and panels. These were: 

1. Psycholinguistic factors in computer communication, 

2. Compatible knowledge and memory structures for com t'er 

communication, 

3. Representing and structuring displayed information in 

computer communication, 

4. Representing information for decision, learning, and help 

processes in computer communication. 

The end result was a very sucessful workshop that included a total 

of twenty presentations and forty participants. 

SECURITY CLASSIFICATION OF THIS P AGE(When Data Entered) 



Workshop/Symposium 

on 

'Human Computer Interaction 

March 26 and 27, 1981 

Atlanta, Georgia . 

Albert N. Badre 

Sponsored by the U.S. Army Research Institute for the 
Behavioral and Social Sciences in conjunction with 
Georgia Institute of Technology, School of Information 
and Computer Science 



Table of Contents 

PAGE 

Table of Contents 	  

Schedule of Events 	  1 

Albert N. Badre 	  2 

Introduction 

Richard Burton 	  4 

Experiences with a Natural Language Interface to an 
ICAI System 

Jaime G. Carbonell 	  5 

Towards a Robust, Task—Oriented Natural Language 
Interface 

Sam L. Ehrenreich 	  14 

Creating an Algorithm for Generating Abbreviations 
to be Used in User—Computer Transactions 

Jim Foley 	  16 

Tools for Designer of User Interface 

George W. Furnas 	  28 

Psychological Structure in Information Oranization 
and Retrieval: Arguments for More Considered 
Approaches, and Work in Progress 

Mark D. Jackson and Judith E. Tschirgi 	  32 

The Nature of User—Generated Commands for Interacting 
with a Computer 



Janet Kolodner 	  34 

A Conceptual Approach to Natural Language Fact 
Retrieval 

Thomas K. Landauer and Susan T. Dumais 	  45 

Psychological Investigations of Natural Command and 
Query Terminology 

Michael Lebowitz 	  48 

Organizing Memory for Use in Understanding 

Mark Miller and Paul R. Michaelis 	  55 

Artifical Intelligence and Human Factors: A Necessary 
Synergism for the Interface of the Future 

Franklin L. Moses 	  87 

Overview of Selected Display Formatting and Clutter 
Reduction Techniques 

Phyllis Reisner 	  92 

Formal Grammar Representation of Man—Machine 
Interaction 

Elaine Rich and Aaron Temin 	  96 

A Role Based Help System for Scribe 

Michael L. Schneider 	 107 

Models for the Design of Static, Software Systems 

Ben Shneiderman 	 118 

System Message Guidelines: Positive Tone, 
Constructive, Specific, and User Centered 

Elliot Soloway and Jeff Bonar 	 125 

Empirical Evaluation with Novice Users of Some 
Programming Language Constructs 



Albert L. Stevens, Michael D. Williams, and James D. Hollan 	134 

An Advanced Human Interface for Computer Assisted 
Instruction in Propulsion Engineering 

John C. Thomas  	 135 

MetamorphoO,s through Metaphor 

Michael D. Williams and J. Hollan 	0 	 140 

A System for Computer Aided Memorization 

APPENDIX A  	 142 
Names and Addresses of Participants 



Workshop on Human Computer Interaction 

Revised Schedule 

lhursdy, Harch 	1‘y 5 1 

P:3.1 - 1 
	

Coffec 	rcuhnut!..., 

	

111:0n — 1":4 	'OperirL; ressi,, n 
A. Badre 
S. Halpin 

	

lc:45 - 	 the Hsvr 
E. Rich and A. Temin 
M. Schneider 
F. Soloway and J. Bonar 

	

1 2:3 1  — 	 1: 7 1 	Luncheon 

1 : 3 	
— 	 7 :flo 	Interfaces — 	tr'velopoEnt 

J. Foley 
M. Miller and P. Michaelis 
J. Thomas 

	

— 	3:74 r; 	reak — CGffee FInd F-oftdrirler 

3:7 	— 	r'esinninn Intellient Interf7cFs 
R. Burton 
J. Carbonell 
A. Stevens, M. Williams, and J. Hollan 

'arch 77, 

	

:3' — 	Coffee 	Pc, u ,:hruts 

	

9:00 — 11:0C 	oim,r Factors of rntfroctivo L,r L9 Pc 

S. Ehrenreich 
C. Furnas 
T. Landauer and S. Dumais 
M. Jackson and J. Tschirgi 

1 1:k: 	— 11:1 c, 	'real( 

	

—1?: 4' 	4mory 	tructures for Purr 	 (rJr,(nic , tio ,  

J. KoLodner 
M. Lebowitz 
M. Williams and J. Holtan 

	

— 	1:4c 	Lunchion 

	

1:45 — 	 else . es and 
F. Poses 
P. Reisner 
P. Shneiderman 

	

— 3:15 	i'reak — Coffee and 	nft rricks 

3:15 — 

— 

enerJA. Discussien and .71.i(7Jrary 

1 



THE HUMAN COMPUTER INTERFACE 

INTRODUCTORY REMARKS 

Albert N. Badre 

When asked to sit down at a computer terminal and perform what 

is considered an elementary task, most novice operators are likely 

to be confused and frustrated. Even the simplest of tasks seems to 

require an excessive level of computer sophistication or the 

motivation to read and understand an over abundance of accompanying 

documentation. 

The population of computer users is growing at a very rapid 

pace, and an increasingly large number of this generation of new 

users is not data processing or computer trained. Yet, 

- the language that the operator must use to interact with 

the machine 

- the documentation, whether on-line or off-line, that 

he/she has to read in order to learn how to instruct the 

machine; and 

- the system messages that are displayed 

are couched in the vocabulary and language habits of the computer 

expert. 

2 



Accordingly there is a growing consensus in the computer science 

community that the user-compatibility of the human interface should 

be considered and incorporated into the design of all computer systems 

at the initial stages of development. "Information processing" 

systems are likely to be more user compatible if they are designed to 

adapt to the information processing capabilities and limitations of 

the user. It is becoming, therefore, increasingly necessary to 

explore and identify the human information processing factors, 

constraints, and variables that are associated with making the 

interface more user compatible. This means identifying and 

considering factors relating to what the operator "does" at the 

display station in order to perform a desired task and what the 

system does in return. 

In this workshop symposium we will be dealing with six inter-

related topics that revolve around the user interface theme. These 

are: Modeling the user, interface development factors, design 

considerations for intelligent and adaptive interfaces, memory 

structures, the human factors of language interaction, and messages 

and displays. 

3 



Experiences with a Natural Language 

Interface to an ICAI System 

Richard Burton 

4 



Towards a Robust, Task-Oriented 
Natural Language Interface 

Jaime G. Carbonell 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

Abstract 

This paper analyzes the inception of a new generation of robust, task-oriented natural language 
interfaces in light of new theoretical advances and analysis to avoid limitations of previous efforts. 
Three key ideas are discussed: 1) dynamic selection of parsing strategies, 2) exploiting domain-
specific semantics and grammatical constructions, and 3) integrating recent theoretical findings into 
task-oriented parsing. An implemented natural language interface conforming to some of the new 
objectives is discussed, as are current plans for a more-general-scope natural language interface. 

3 February 1981 

5 



Towards a Robust, Task-Oriented 
Natural Language Interface 

Jaime G. Carbonell 
Carnegie-Mellon University 

Pittsburgh, PA 15213 

1. Objectives and Historical Perspective 
Natural language comprehension has been studied from two primary perspectives in Artificial 

Intelligence: 

• As a vehicle to investigate and simulate human cognitive processes embodying 
components of either a linguistic or psychological theory of language comprehension. 

• As a means of implementing task-oriented "natural language front ends" to complex 
computer systems. 

The "basic science" approach has produced some significant principles and techniques (e.g., 

expectation-based language analyzers [7, 1]), but no truly robust parsers for computer-naive users 

have been developed in this paradigm. 

The applied "engineering" approach has proceeded by either building the domain of application 

into the parser itself, or by relying on syntax-only linguistic parsers. Neither approach has proven 

wholy satisfactory. The former suffers from virtual lack of transferability to new domains, while the 

latter suffers from extreme fragility: the inability to cope with any input not strictly conforming with its 

rigid internal grammar. However, it must be noted that some successful parsers have emerged from 

these limited approaches, such as LIFER [5] and LUNAR [8]. Both of these efforts, unfortunately, 

required man-years of development and tuning before their performance approached the user-

acceptance level. Their primary contributions were in the computational mechanisms they 

introduced, which could later be incorporated into more sophisticated parsers. 

A major objective in the design of task-oriented parsers is to provide the user maximal flexibility 

(within the semantics of the domain) to express his utterance. For example, the graceful interaction 

project [4] is a recent attempt at coping with limited ungrammaticality in a task-oriented parser. The 

means by which recent task-oriented parsers strive for robustness and flexibility is to incorporate 

domain semantics into their parsing knowledge bases (but not into the programs themselves). Here, 

we go one step further and exploit domain knowledge to dynamically choose the optimal parsing 

strategies. Moreover, the work described in this paper attempts to take full advantage of lessons 

learned from more theoretical natural language research. Our objectives can be summarized as 

follows: 

6 



• Create a robust parser, in the sense that it must tolerate common ungrammaticality, 
ellipsed constructions, and different phrasings within its domain of application. 

• Implement the parser in a modular manner with respect to its knowledge sources. This 
means that domain knowledge necessary for the parser ought to be divorced from the 
program, from general semantic knowledge, and from linguistic knowledge. Hence, only 
one knowledge base need be altered in transfering the parser to a new application 
domain. The program itself is general with respect to the choice of task domain. 

• Exploit new advances in natural language processing not previously incorporated into 
task-oriented parsers. Some well-established powerful methods developed to simulate 
human language understanding (most notably expectation-based disambiguation) have 
not previously been used in task-oriented approaches, although they have proven 
computationally effective in more general domains. 

• Minimize the time required to transfer the parser to a new domain. This goal is furthered 
by our modularity consideration, but in addition I want to work towards a uniform method 
of incorporating new domain knowledge, including knowledge of technical jargon 
particular to a given domain. 

In order to further these ends I developed an initial parser that combines partial pattern matching, 

semantic -grammars [5] and equivalence transformations. I applied this parser to the task of building 

and querying a semantic-network [2] data base. The central lesson learned from this exercise is that 

the combination of the three parsing strategies yields not only a more robust parser than a single-

strategy method, but surprisingly the time it took develop its domain application (admittedly not a very 

complex task) was considerably less than expected (less than three weeks). 

A crucial (and perhaps unintuitive) fallacy of previous task-oriented parsers is their commitment to a 

simple uniform parsing strategy. Since natural language is a complex phenomenon (even in task-

oriented domains), this design criterion had the effect of pushing the complexities into the domain 

grammars, dictionaries and other domain-specific components of the parser. In the clearer vision of 

hindsight, this design decision greatly complicated the application of existing parsers to new 

domains. Is it not more desirable to incorporate all the decision-making complexities required to parse 

natural language structures into the kernel program itself? Once built, this program need not be 

redesigned for a new task domain. Minimizing the requisite complexity and size of domain-dependent 

components is an extremely productive venture. Parsing-strategy selection, semantic matching 

routines, and other domain-independent components should be provided as a kernel parser, which is 

augmented by domain-specific knowledge bases in each applications domain. 

In designing the kernel parser, a dominant criterion is that it select the parsing strategy in 

accordance with the type of natural language construct it attempts to parse. Some information can be 

expressed more naturally and more parsimoniously in one form (e.g., linear patterns) while other 

information is best expressed as case structures„ equivalence transformations, or semantic grammar 

7 



productions. To illustrate this point, I attempted to encode all the knowledge in my parser as a pure 

semantic grammar. This task has more than tripled the size of the task-specific knowledge base, and I 

have not yet finished (nor do I intend to finish) the conversion. The primary reason for the relative 

increase in size is that much of the information must be stated with a high degree of redundancy and 

often in an awkward, round-about manner when it must be coerced into a uniform, context-free 

representation. 

2. The DYPAR Parser 
DYPAR 1  combines three parsing strategies: 

• A context-free semantic grammar component, grouping domain information into 
hierarchical semantic categories useful in classifying individual words and phrases in the 
input language. 

• A partial pattern match component, represented as pattern-action rules. The patterns 
may contain individual words, semantic categories (from the semantic grammar), wild 
cards, optional constituents, register assignment and register reference. This method 
enables the semantic grammar non-terminal categories to be applied in a much more 
effective context-sensitive manner than would be the case is a pure context-free grammar 
recognizer. 

• Equivalence transformations map domain-dependent and domain-independent 
constructs into canonical form, requiring a fraction of the patterns and semantic 
categories that would otherwise be necessitated. If a phrase-structure can be expressed 
in several different ways, while retaining the same meaning, it is clearly beneficial to first 
map it into canonical form, rather than being forced to include all possible variants in 
every context where that constituent could occur. 

Below I give an example of each type of linguistic information used in DYPAR. In order to 

understand these examples, a few notational conventions must be introduced: <BRACKETS> denote 

a non-terminal semantic grammar symbol. A word starting with an exclamation mark (e.g., 

!REGISTER) denotes the name of register. A vertical bar (I) denotes disjunction in a pattern. A # in 

a pattern matches a single word. An asterisk (*) matches an arbitrary sequence of words. The 

construction (!REGISTER pattern) assigns whatever matches the pattern to the register specified. A 

colon (:) before a constituent in a pattern indicates that constituent is optional. 

DYPAR, as we see in the dialog below, is the front end of a semantic network data-base update and 

query system. Therefore, its domain knowledge consists of language constructs relevant to this task. 

First, consider a fragment of its semantic grammar: 

Robust multi-strategy "DYnamic PARsing" is still in its infant stages, requiring frequent changes. 

8 



<INFO-REQ> -> (<WHAT-Q> 1 <INFO-REQ1>] 
<INFO-REQ1> -> (: <POLITE> <INFO-REQ2> : <WHAT-Q>] 
<INFO-REQ2> -> (TELL <me-US> : ABOUT 1 GIVE <me-US> 1 PRINT 1 TYPE ] 

This fragment, together with the rewrite rules for the other non-terminals above (e.g., <BE-PRES>, 

whose rewrite is all the present-tense conjugations of the verb "to be") recognizes the initial segment 

of information-request queries such as: "What is ...", "Tell me what is ...", "Tell me about...", "Would 

you give me ...", etc. 

Now, consider a pattern-match rule: 

(: <det> (Ival #) <be-pres> : <DET> (IPROP #) OF 
: <DET> (INAM #) : <dpunct>) 

•> 
( LTM-STORE INAM IVAL IPROP) 

This rule recognizes sentences such as: "Felix is a friend of Fido", or "Reagan is president of the 

USA", and passes the information to the data base manager for consistency checking and storage. In 

order to pass the information gathered in the pattern match process, the registers are assigned 

appropriate values. For instance, in the second example, !NAM is assigned "USA", !PROP is assigned 

"president" and !VAL is assigned "Reagan". 

The equivalence transformations also use the pattern matcher. For instance, consider the following 

simple (but useful) transformation: 

((1S1 ') (IW1 #) <POSS> (IW2 #) (IS2 4 ) 	(IP <PUNCT>)) 
: : > 
(NCONC 1S1 1W2 (LIST 'OF) IW1 1S2 1P) 

This transformation maps possessive constructions into attribute-value constructions, which we 

chose as canonical. For instance "Tell me about the VAX-765's performance." is mapped into "Tell 

me about the performance of the VAX-785." The latter construction is recognized by a pattern-action 

rule. Since possessive constructions can occur in many contexts, the single transformation above 

saves us from duplicating pattern match rules for each different context where an attribute-value 

construction can occur. 

The control structure of DYPAR is essentially an applicative condition-action cycle, which halts 

upon no rules being applicable (in which case a partial pattern-match strategy is attempted), or upon 

one of the pattern-action rules firing and passing its information to the data-base manager. Let us see 

a brief dialog with DYPAR. For simplicity, we start out with an empty data base. Items in italics below 

were typed in by the user. Everything else was output by the system. Items in UPPER CASE are 

paraphrases of internal semantic network relations output by a rudimentary English generator. 

* (parser) 

You can build and query a simple semantic network 

9 



by stating information and quer;tions in English. 

+Fido is a nice dog. 

Storing assertion in semantic net: 	FIDO IS DOG. 

[COMMENT When OYPAR does not Fcogniie concepts in the input, it prompts 
the user for addctional information required by the integrity - checker 
in the data-base manager.] 

What is NICE? 
+Nice is a disposition. 

Storing assertion in semantic net: 	NICE IS DISPOSITION. 

Is it correct to say that THE DISPOSITION OF FIDO IS NICE? 
(Y,N): Yes. 

Adding new assertion: 	THE DISPOSITION OF FIDO 1S NICE. 

+Fido's cousin is Felix. 

Transforming 	(FIDO SS COUSIN IS FELIX PERIOD) 
Into ::> 	(TM. COUSIN OF FIDO IS FELIX PERIOD) 

Transforming 	(THE COUSIN OF Ei)(., 	1E1.1X PERIOD) 
Into ::> 	(FELIX IS THE COUSIN OF LIDO P[RIOD) 

Adding new assertion: 	IHF COUSIN OF FIDO IS FELIX. 

[COMMENT: To ills sttate Lire pars -Hi process i, a Lit more detail, 
the rule tracer was activated for tie loll ctitng interaction.) 

+Cousin is a symmetfic relation. 

Parse is: 
Rule RUL19 
Action will be: (PROGN (LTM-STORF !NAM !VAL (QUOTE. ISA:)) 

(LTM-SPEC !NAM !VORP NIL NIL T)) 
With bindings: 
(!VAL RELATION) 
(!VORP SYMMETRIC) 
(!NAM COUSIN) 

I already knew that: COUSIN WAS A RELATION. 

Is it correct to say that THE RELATION OF COUSIN IS SYMMETRIC? 
(Y,N): yes. 

Adding new assertion. 	THE RELATION OF COUSIN IS SYMMETRIC. 
Inference: Adding new assertion: 	THE INVERSE OF COUSIN IS COUSIN. 
Inference: Adding new assertion: 	THE COUSIN OF FELIX CS F1DO. 

4 - Cat Cha.,:ing is a dog's hobby. 

Transforming (CAI - CHASING IS A DOG $S HOBBY PERIOD) 

10 



Into ::> 	(CAT-CHASING IS A HOBBY OF DOG PERIOD) 

Adding new assertion: 	THE HOBBY OF DOG IS CA1 - CHASING. 

LCOMMENT: Since the program never heard of "dog" or "lido" 

it does not know whether to expres them with or without a determiner. 
"Fido" is a proper name, therefore it needs no determiner, but "dog" 
in all th‘fixamples above lonks strange without one. New, we fix that 
problem by providing the program .with the necessary information (in 
English, of course).] 

+The concept of dog is generic. 

Transforming (THE CONCEPT OF DOG IS GENERIC PERIOD) 
Into ::> 	(GENERIC IS THE NODE-TYPE OF DOG) 

[COMMENT: In our domain "concept" and "'node-type" are synonyms. In 
future output. "dog" will be printed with a determiner ,4- ben appropriate.] 

Adding new assertion: 	THE NODE-TYPE OF DOG IS GENERIC. 

+Could you tell me what a dog's hobby is? 

Transforming (COULD YOU TELL ME WHAT A DOG SS HOBBY IS QMARK) 
Into ::> 	(COULD YOU TELL ME WHAT IS A DOG $S HOBBY QMARK) 

Transforming (COULD YOU TELL ME WHAT IS A DOG $S HOBBY QMARK) 
Into ::> 	(COULD YOU TELL ME WHAT IS THE HOBBY OF A DOG QMARK) 

THE HOBBY OF A DOG IS CAT-CHASING. 

+give me everything you know about lido. 

FIDO IS A DOG. 
THE HOBBY OF FIDO IS CAT-CHASING. 
THE COUSIN OF FIDO IS FELIX. 
THE DISPOSITION Of FIDO IS NICE. 

+Napping is the hobby of Fido. 

That contradicts what I could infer ts 
THE HOBBY OF FIDO WAS CAT-CHASING. 

Should I add the assertion anyway? (Y,10: no. 
OK, discarding new assertion. 

+Exit this program. 

Leaving natural language interface.. 	Back to LISP. 
(CPU - SECONDS: 12.056 GC-TIME: 6.780) 

As we see in the above example, robust communication with the user requires not only a flexible 



domain-oriented parser, but also an interactive query capability and a natural language generator. 

However, the latter two processes are conceptually simpler, and not the topic of this paper. 

3. Future Directions 
DYPAR illustrates the harmonious integration of three parsing strategies. However, it is'only the first 

step in exploiting the multi -strategy approach to develop real -world, robust, natural language 

interfaces. In terms of sophistication, DYPAR straddles the boundary between an advanced toy and a 

rudimentary real-applications system. One direction of continued development is to enhance the 

pattern matcher, build additional general transformations, and create a sub-interface to facilitate 

extensions to the grammar by a domain expert (not necessarily a natural-language expert). A first step 

in the direction of automating and simplifying user extensibility has been taken in the development of 

the KLAUS system [6]. At CMU, we are focusing on a complementary, and perhaps more fundamental 

research direction. 

If the gestalt performance of integrating three parsing strategies has proven more effective than the 

application of any single strategy, why not extrapolate this result to include additional parsing 

strategies? Indeed, we have designed a flexible control structure for integrating case-instantiation as 

the central parsing strategy -- calling upon other strategies discussed in this paper, in addition to 

more domain-specific strategies, when appropriate [3]. Case-frame instantiation is the most general 

parsing strategy capable of exploiting domain semantics. Hence, it should provide a quantum jump in 

the general applicability of our task-oriented parser. Moreover, techniques such as expectation-driven 

disambiguation [7, 1] developed by the non-applied school of natural language processing, can now 

be brought to bear in real-world applications. The reason why case-frame parsers have not been 

developed in task-oriented domains is that while they capture general principles admirably, they fail to 

recognize specific idioms, compound nouns and the like. However, the addition of partial pattern 

matching (idealiy suited to detect idiomatic expressions) integrated with case-frame instantiation and 

other parsing methods should provide a high degree of generality without sacrificing robustness. 

Graceful interaction with the user is a worthy goal for any natural language front end whose users 

may be computer-naive. People invariably produce ungrammatical utterances, leave out words, add 

interjections, and use terms outside the vocabulary of any system [4]. It is essential that a real-world 

system "fail soft" in such circumstances, and interact with the user to enable graceful recovery. We 

saw some simple examples of this in DYPAR. However, the expectation-setting provided by a case 

system incorporating domain knowledge can be a more powerful tool to minimize failure. 

Consider, for instance, a file-management system where a user may type "Transfer the flies in my 

directory to the accounts directory." It is fairly clear to us humans that the user meant to type "files", 

even if we know perfectly well that "flies" is a legitimate word in our vocabulary. A case-frame system 

12 



knows that the objective case in the transfer imperative (as applied to the file-management domain) 

requires a logical data entity, which "flies" is not. Realizing this violated semantic requirement, it can 

proceed to see whether by spelling correction, morphological decomposition, or detecting potential 

omissions it can map "flies" into a known filler of that case. Here, spelling correction works, and the 

system can proceed to inform the user of its correction (allowing the user to override if need be). 

I conclude by reiterating my central theme: Integration of multiple parsing strategies is perhaps the 

single most powerful principle in the development of robust, task-oriented natural language 

interfaces. 

4. References 

1. Birnbaum, L. and Selfridge, M., "Conceptual Analysis in Natural Language," in Inside 
Computer Understanding, R. Schank and C. Riesbeck, eds., New Jersey: Erlbaum Assoc., 
1980, pp. 318-353. 

2. Brachman, R. J., "On the Epistemological Status of Semantic Networks," in Associative 
Networks, N. V. Findler, ed., New York: Academic Press, 1979. 

3. Carbonell, J. G. and Hayes, P. J., "Dynamic Strategy Selection in Flexible Parsing," 
Proceedings of the 19th Meeting of the Association for Computational Linguistics, (Submitted 
1981) . 

4. Hayes, P. J. and Mouradian, G. V., "Flexible Parsing," Proceedings of the 18th Meeting of the 
Association for Computational Linguistics, 1980 , pp. 97 - 103. 

5. Hendrix, G. G., Sacerdoti, E. D. and Slocum, J., "Developing a Natural Language Interface to 
Complex Data," Tech. report Artificial Intelligence Center., SRI International, 1976. 

6. Hendrix, G. G. and Haas, N., "Acquiring Knowledge for Information Management," in Machine 
Learning, Michalski, R., Carbonell, J. G. and Mitchell, T., eds., Palo Alto, CA: Tioga Pub. Co., 
1981. 

7. Riesbeck, C. and Schank, R. C., "Comprehension by Computer: Expectation-Based Analysis 
of Sentences in Context," Tech. report 78, Computer Science Department, Yale University, 
1976. 

8. Woods, W., Kaplan, R. and Nash-Webber, B., "The Lunar Sciences Natural Language 
Information System: Final Report," Tech. report 2378, Bolt Beranek and Newman Report, 
1972. 

13 



CREATING AN ALGORITHM FOR 
GENERATING ABBREVIATIONS TO BE USED 

IN USER-COMPUTER TRANSACTIONS 

Sam Ehrenreich 
US Army Research Institute for the 

Behavioral and Social Sciences 

The US Army is in the process of developing automated tactical systems. 

These systems will incorporate a dialogue mode (e.g., form-filling, menu, query 

language) for communicating between the user and the computer. For the con-

venience of both, much of this communication will involve abbreviations. The 

Army Research Institute (ARI) is engaged in preparing an algorithm for use by 

system designers in creating easy to use abbreviations for these systems. The 

algorithm will not only be concerned with generating abbreviations for command 

terms. Rather, the primary domain of the algorithm will be the lexical terms 

used in exchanging information between the user and the computer. 

This summary describes the empirical issues that were investigated in ARI's 

abbreviation project. The data that was collected, along with an algorithm for 

generating abbreviations, will be presented at the workshop. 

All of the experiments for this project have already been completed. 

However, a few still remain to be analyzed. The participants used in these 

experiments were enlisted Army personnel. The stimuli used were words which are 

likely candidates for abbreviation on an automated tactical system. However, it 

is believed that the nature of both the participants and the stimuli are such 

that the resulting algorithm will be applicable for use with most classes of 

operators and with most sets of words. 

The general abbreviation techniques which were considered as candidates for 

forming the basis of the algorithm are: (1) truncation, i.e., delete all but the 

first few letters of a word; (2) contraction, i.e., remove all of the word's 

vowels except for vowels occurring as the first letter; and (3) abbreviation 

14 



by the consensus of a committee. In order to create the desired algorithm, the 

empirical questions which were investigated are: 

1. What are people's personal preferences with regard to the abbreviations 

formed by the different abbreviation techniques? 

2. How do the different abbreviation techniques compare when participants are 

presented with a word and asked to recall its abbreviation (i.e., encoding)? 

How do the methods compare when the task is decoding? 

3. When participants are asked to produce abbreviations of their own choosing, 

what abbreviation method do they tend to naturally use? 

4. When participants' experiences with a word and its abbreviation increases, 

do the absolute and relative effectiveness of the different abbreviation tech-

niques change? 

5. When participants are instructed in the rule system underlying the different 

abbreviation techniques, do the absolute and relative effectiveness of the 

abbreviations change? 

6. Should abbreviations be of a fixed or variable length? 

7. How can different words that result in identical abbreviations be handled 

(e.g., when using the truncation method, both TRANSLATOR and TRANSPORT are 

abbreviated as TRAN)? 

8. Can endings (e.g., -ed, -ing) be effectively incorporated into abbreviations? 

The answers to these questions will represent the empirical basis on which 

an abbreviation algorithm is formed. The desired algorithm is one which is 

completely deterministic in the abbreviations it forms. Using the algorithm, 

the system designer should have minimum input in determining the abbreviation to 

be created. Although the algorithm that will be created will not be based on a 

complete investigation of all possible variables, it is expected that it will 

result in abbreviations which are significantly easier to use than the arbitrary 

and inconsistent abbreviations presently used on Army systems. 

15 



Tools for the Designers of User InterFaces* 

James D. Foley 

March, 1981 

Institute for Information Science and Technology 

Department of Electrical Engineering and Computer Science 

School of Engineering and Applied Science 

The George Washington University 

Washington, D.C. 20052 

REPORT GWU-IIS1-81-07 

This paper was presented at the Workshop/Symposium on Human 
Computer Interaction, sponsored by the U.S. Army Research 
Institute and Georgia Institute of Technology. 

*This work is being carried out by the author and M.B. 
Feldman, co-principal investigator, H. Holmes, Visiting 
Scientist from Lawrence Berkeley Laboratory, J. Thomas, 
Visiting Scientist from Battelle Northwest Laboratories, 
Research Assistants T. Bleser and G. Rogers, Graduate 
Research Assistant A. Kamran, and P. Chan. The work is 
partially sponsored by the U.S. Department of Energy (Grant 
DE-A805-79ER1052) and the U.S. Army Research Institute 
(Grant MDA 903-79-G-01). V.L. Wallace of the University of 
Kansas is co-principal investigator with the author for the 
work entitled "Evaluation of Interaction Techniques." 

16 



fools For the Designers of User Interfaces 

Our research objective is to develop methodologies and 

tools which can aid in the def..ign of user—computer 

interfaces. We want to impose structure on the typically 

very complex task of designing a user—computer interface, so 

the design can be divided into manageable pieces, each of 

which can be dealt with in a systematic, rigorous and at 

least partially quantitative way. We believe this will help 

make User Interface Design more of a science and less of an 

art, and lead to improved design. 

The actual process of designing a user interface can be 

accomplished as four major steps, which we call the 

conceptual, semantic, syntactic, and lexical design steps. 

Each step can be dealt with in sequence, one after the 

other, with an occasional reexamination of a previous step. 

We call these four steps a design framework. 

The Design framework 

The conceptual design is the definition of the key 

application concepts which the user of the interface must 

understand in order to use the system,. For a simple text 

editor, the key concepts are files, lines of a file, and 

operations (add, delete, move) on lines. The conceptual 

model, as in this case, typically defines objects, relations 

between objects (a line is in a file), and operations on the 

17 



objects, and sets the stage for the semantic design of the 

user—computer inter Face. 

The semantic design deals wih the functionality ofi the 

system to be accessed via the intermediary of the user 

interface. The user performs certain actions, 

calculations/processing ensues, and information is presented 

to the user. At the semantic design level we are concerned 

only with the meanings of the inputs, the processing, and 

the Outputs: we are not concerned with the form or the 

sequence of the inputs and outputs. 

The syntactic design deals with the sequence of the 

inputs and outputs. f-or the input, sequence is akin to 

grammar--the rules by which sequences of words in a language 

are formed into legitimate sentences. The types of words in 

an input sentence are typically commands, quantities, names, 

coordinates, or arbitrary text. As in English, the words 

are the units oF meaning in the input and cannot be further 

decomposed without losing their meaning. to include the 

spatial domain as well. Therefore the output syntax 

includes the 2D or 3D organization of a display as well as 

any temporal variation in the form. The "words" in the 

output sequence, by analogy to the input sequence, represent 

the units of meaning being conveyed from the computer to the 

user. The units of meaning are often conveyed graphically as 

symbols and drawings made up oF lines, curves, and points 

rather than as words made up of letters. 

18 



The lexical design determines how words in the input 

and output are actually formed from the available hardware 

capabilities. For input, this involves designing the 

interaction techniques for the application. An interaction 

technique is a way of using a physical input device (tablet, 

keyboard, mouse. etc. ) to input a certain type of word 

(command, value, coordinates, etc. ). For example, same of 

the interaction techniques for command specification are 

selection from a menu with a liht pen or with a cursor 

controlled by a mouse, typing of the command name on a 

keyboard, and speaking the name of the command into a speech 

recognizes. 

For output, lexical design means forming the symbols 

and shapes which are to be presented to the user, using the 

available hardware lexemes. For text output, this reduces 

to selecting text attributes such as font, size, color, 

background color: the spelling (i.e., combination of 

hardware lexemes, the character set) of words is already 

defined in the dictionary. In other cases, such as 

situation displays, the symbols used must be designed and 

composed from lexemes such as lines and other grahics 

primitives, and the symbols must be assigned attributes such 

as color, intensity, linestyle, and size. 

The nub of this four—level framework for design are 

found in formal language theory; the framework has been 

successively refined and reported in a series of papers 

19 



CFOLE74, FOLE78, FOLE8O, FOLE81b3. 	We have worked/are 

working with this Framework in several ways: the 

organizatin of design principles, the evaluation of existing 

user—computer interfaces, the evaluation of interaction 

techniques (which are the lexical—level design of the 

input), 	the formal specification of the syntactic and 

lexical design of input and output, 	the calculation of 

metrics of "goodness" based on the formal specification, and 

the design of an "abstract interaction handler" to remove 

much of the syntactic and lexical design from the 

application program. 

Organizing Design Principles 

The past ten years have seen several user interface 

designers setting forth their design principles EBENN76, 

BRITT77, ENGEM, HANS7I, WALL76] in the form of general 

objectives and specific do's and dorit's. These papers plus 

personal experience form the knowledge base available to 

most designers. Often the criteria are soundly—based: a 

useful start in developing tools for designers is to 

organize the principles, 	showing how they apply at the 

conceptual, 	semantic, syntactic, and lexical design levels. 

This process has been partially completed, as reported in 

FOLE81b, 	for 	principles dealing with feedback, error 

correction, 	response 	time, 	consistency, 	and 	display 

structure. 

Evaluating User—Computer Interfaces 

20 



Given an organized set of design criteria, it is 

possible to perform a systematic evaluation of existing 

user—computer interfaces by a combination of watching others 

use the interface and learning to use the interface 

oneself. In this process it is critical to note 

idiosyncratic Features of an inter face when they are first 

encountered, lest one adjust to the features. Two such 

evaluations have thus far been conducted: the first 

CHERB803 of DIDS, the Decision InFormatin Display System 

used by the federal government for policy studiesi the 

second CBLES8I1 of SEED/S, the Socio—Economic Environmental 

Demographic Information System developed at Lawrence 

Berkeley Labs. A third evaluation will be of a new 

user—interface design, prior to its implementation, for 

Battelle Northwest Labs' ALDS (Analysis of Large Data Sets) 

system. 

Evaluation of Interaction Techniques 

Recall that an interaction technique is a way of using 

a physical input device to input a word, and hence is the 

lexical level input design. In FDLE81a we have described 

and organized the interaction techniques by their purpose, 

which can be to make a selection, designate a position, 

orientation ,  or sequence of positions and orientations, 

input a value, or input a character string. A number of 

germane human factors design issues have been identified for 

the techniques by drawing on the literature and the 

21 



guidelines mentioned above. Nine experiments dealing with 

interaction techniques are also critically reviewed. A 

method of interaction technique diagrams is created, to aid 

in understanding, analyzing, and documenting the techniques 

and experiments. A diagram shows the cognitive, motor, and 

perceptual steps which the user of a technique performs. 

The report is meant as a guide to aid designers in selecting 

appropriate interaction techniques and devices. 



Formal Specification and Metrics 

The syntactic and lexical designs of a user interface 

should be describable by formal language tools, in the 

spirit (but not necessarily in the image) of BNF, regular 

expressions, and flow expressions. We are developing formal 

tools for describing both the input and output of a user 

interface, as well as the relationship between input and 

output. the input definition deals with concepts such as 

token types (which are the purposes of interaction 

techniques, as described above), sequences of tokens, and 

the binding of tokens to sequences, of actions wth physical 

devices. The output definition deals with concepts such as 

'screen areas and their contents, and attributes (such as 

color, font, and linestyle) of tokens within various areas. 

Metrics treat issues such as complexity and consistency of 

syntactic rules, consistency in the use of codings, 

continuity of visual attention on the display, continuity of 

tactile motion with the interaction devices, and time 

required to input commands. The metrics draw upon the 

guidelines mentioned above. 

The designer of a user interface will use the tools to 

describe the interface. This in itself helps create a more 

disciplined design environment. In addition, the formal 

definition, will be processed, metrics 	evaluated, 	and 

potential design problems flagged for further attention by 

the designer. In the long run, the user interface definition 



will be input to an interaction handler which will actually 

implement the user interface. 



Abstract Interaction Handler 

Writing an interactive application program involves 

coding the semantic, syntactic, and lexical designs, 

typically using FOR1RAN, PASCAL, or a similar language. 

There are two problems with this. First, the procedural 

languages are not well—suited to programming the syntactic 

and lexical designs. Secondly, it is easy to intertwine the 

code which implements each of the three levels, making later 

changes to any of the levels difficult. The abstract 

interaction handler is being designed to implement the 

syntactic and lexical aspects of input, and those parts of 

the syntactic and lexical output design having to do with 

interaction, such as menus, prompts, and error messages. 

This approach allows much of the user interface to be 

changed by modifying the interface definition made available 

to the interaction handler rather than by reprogramming. It 

will be possible to use two completely different user 

interfaces, such as menu driven and command—language driven, 

with the same application program, and to "fine—tune" the 

details of a given user interface. Within the interaction 

handler, syntactic and lexical level designs will be 

separated ,  so that one can be easily changed without 

affecting the other. A preliminary design of an interaction 

handler can be found in FELD81. 



References 

BENN76 Bennett. J., "User-oriented Grophics Systems for Decision 
Support 	in 	Unstructored 	Tasks," 	Proceedings 	of 
ACM/SIGGRA7H Work .hop 	ON 	Osor-Oriented 	Design 	of 
Interactive Graphics Systom3: 	Pittsburgh, PA., October 
1976, pp. 3-11. 

ELES81 Blesser, T., P. Chin Mai Ohu, "A Critique of the £EEDI3 
User 	Interface," 	The George Washington University, 
Institute for InFoomation Scieho 	and Tochoology Tecr. 
Report GWU-IIST-31-04, March 19f. 

BRIT77 Britton E. 	"A Methodology Foi 	Cronomic Dezion 
Interactive 	Computer 	Graphic•; 	 And 
Application 	to Crystallographo," 	Univrsito 	of North 
Carolioa 	at 	Chapel. 	Hill: 	1.P4:. 	,eroot 	No 	1R- i7-011, 
Novembor 1'971 

ENGE75 Engel, 	F., 	and 	Granda,'oJelire..7- for Man/Dioalio 
Interfacos, 	IBM 	r'oogheepsie 	borotor!.,, 	TR 	00. 277:), 
1")=romber 1?75. 

FELDB1 Feldmao, 	 "!'roHoiraro 	 of an AO•trott 
interaction Handler," lhe :uric Washin!jton University, 
Institute for Information Sctonce and Technology Tech. 
Report GWU-IIST-81-06, Washington, C'. C. , 1981. 

FOLE74 Foley. J. and V. Wallace, "The Art of Natural Graphic 
Man-Machine Conversation," Prock.edings IEEE 62(4), April 
1974, pp. 462-470. 

FOLE78 Foley, 	J. , 	"lhc 	Human 	Factors-Computer 	Graphics 
Interface," Proceedings of Sympo•ium on Human Factors and 
Computer Sciences, Computer Systems Technical Interest 
Group, Human Factors Society, June 1978, pp. 103-114. 

FOLE80 Foley, J. , "The Structure of Command Languages," in R. A. 
Guedo, et al. , eds., Methodology of Interactioo, 
North-Holland, Amsterdam, 1980, pp. 227-234. 

FOLE8i3 Foley, J. , V. Wallace, and P. Chan, "The Human Factors of 
Interaction 	lechniques," 	the 	George 	Washington 
University, 	Institute 	For 	lo7ormatioo Science and 
Technology Tochnicol Report GWU-ilST-81-02, 	Washington, 
D.C., March 1991. 

FOIE8lb Foley, 	J., 	"A Methadolo9y 	ro TO-eoign and Evaluation 
of 	Uscr 	Coriiputer 	111',7erfaoe , ,' 	The 	George 	Washington 
University, 	institute 	for 	infoomotion Science and 
Technology Technical report GWU-IIST-01-05, 	Washington, 
D.C., March 1'701. 



HANS71 Hansen, 	W., "User Engineering Principles for Interactive 
Systems," 	Proceedings 	1971 	Fall 	Joint 	Computer 
Conference, pp. 52-532. 

HERB80 Herbert, 	1., 	"Evaluation of the User–Computer Interface 
Design of the Domestic Information Display System," The 
George Wahington University, 	DeparLment of Electrical 
Engineering and Computer 	Science 	-rchnical 	R2part 
GWU–EEC' -80-07, WaOringon, D.C., Lq90. 

WALL76 Wallace, 	Y., 	Suolmary 	of 	"Cov?r., 1:tinal Ergonomictl' 
Session, ACM/SIGGRAFH Workshop on U.:!—Oriened Desi;r1 of 
Interactive Graphics ST ,Iltems, Pittbul.g4, PA. Cleto:ier 
1976, pp. 121-122. 



Psychological structure in information organization and retrieval: 
Arguments for more considered approaches. 

and work in progress. 

George W. Furnas 
Computer-user Psychology Research Group 

Bell Laboratories, Murray Hill, NJ 

Any given artificial storage and retrieval system forces structure 
on the information stored within it. Psychologically, however 
many kinds of structures exist for the representation of 
information, and each has domains where it is well suited and 
domains where it is at best misfit. The motivating assumption here 
is that. if one wishes to make information systems humanly 
accessible, more serious consideration is needed of the variety of 
representations characterizing human knowledge, coupled with the 
necessary invention of new compatible retrieval interfaces. 

A textile dyer would no doubt be exasperated by a menu-driven. or 
even key word, specification of colors. Our knowledge of color 
space argues that adjusting three knobs. or perhaps moving a light 
pen on a graphics screen would probably be much better. In 
contrast, asking zoo visitors to access information about 
individual animals by this same three-knob technology would be 
ridiculous. Menus or keywords would be very appropriate. The 
domain of animals has a very different structure than does that of 
color. and to use the same retrieval system for the two is a 
mistake. 

Not much experimental evidence exists regarding implications for 
computer access, but from the standpoint of reflecting 
psycholoEical similarity, recent work by Pruzansky. Tversky and 
Carroll (1980) emphasizes the diversity of appropriate 
representations. Using currently available scaling procedures in 
a large survey of categories, they typically found the domains to 
differ strongly in the relative suitability of tree and 
multidimensional structures for capturing people's similarity 
judgements. 

There are of course even more representational structures than the 
two investigated by Pruzansky et al. From the context of 
similarity scaling alone, one might mention, in addition to 
multidimensional spaces and hierarchical clusterings, additive 
trees. more general graphs. factor-analytic structures. additive 
clusterings. etc. These structures differ in many ways, including 
continuity. contingency constraints on structural components. 
complexity. and symmetry. All of these properties presumably 
affect representational adequacy. 

28 



Scaling techniques. among others, can help to identify 
psychological adequacy of representations. but in constructing 
retrieval systems, a further issue arises: How can any of the 
variety of possibly appropriate representational etructurer be 
accessed? Hierarchical tree structures lend themselves to 
classical menu—tree schemes, and multidimensional configurations 
with suitable properties (e.g. low number of dimensions. 
separability?) may perhaps be accessed by various analog input 
devices. But what of other types of structures, especially as we 
seek richer structural representations? 

Thus cognitive considerations motivate the search for nonstandard 
database interface solutions... new structures. and new access 
processes. The work presented here represents a simple ongoing 
effort in that direction. It basically involves a generalization 
of tree structures, and of the corresponding familiar menu access 
mechanisms. 

Standard menu systems present a screenful of choices subdividing 
the domain of a database. The user makes a selection from 
these. resulting in a new set of more detailed selections. further 
subdividing the selected set. k sequence of choices from a 
succession of menus eventually brings the user to some final 
target item. Typically, the menus are organized into trees. That 
is. there is usually only one s equence of choices that will arrive 
at any given target. While some systems have exceptions to the 
unique path rule. these tend to be infrequent, and certainly not 
essential to the character of the system. 

Note that in menu trees, there are many choices, a whole menu 
full. presented at each step when moving down :through the 
structure. There are occasions. however, when one must move back 
upward in generality. as in recovering from a mistake or changing 
targets in mid—searcn. Then, unlike when moving downward. there 
is no choice given: Trees have many "down' choices at any point. 
but only one up". The concept being explored here revolves 
around allowing menus for upward choices, as well as the usual 
downward ones. 

The psychological motivation goes as follows: Consider a given 
node, or point of menu presentation in the structure. to represent 
a conceptually defined class of possible targets. A given 
conceptual class can certainly contain many different subordinate 
classes. enumerated in the downward menu. but often in rich 
domains the class can also be contained in many superordinate 
classes. A traditional tree representation is forced to organize 
on the basis of only one superordinate at each level. In so far 
as these different superordinates may each be useful in different 
circumstances, this psychological organization should be reflected 
in the access structure. by giving users choice when moving to 
superordinate levels. 

29 



Imagine. for example, one had a computerized system for retrieving 
cooking recipes that was being used to plan a meal. Imagine 
further that the user had proceeded down to a screenful of chcices 
about types of salad (CAE6A1. SPINACH & MUSHNUUM, etc.). but had 
just decided after all. against any salad for the meal, and was 
ready to retreat back up the structure to other categories of 
choices. Conceivably, the user would have been interested in an 
alternative in the form of some other cold food. say cold cuts 
instead of salad, so that a superordinate of CULL) FOOD would be 
appropriate in the structure. Alternatively, it might have been 
that the user wanted some other vegetable dish. so that a 
VEGETABLE node would have been the most useful superordinate. Or 
perhaps the user wanted a different early course for the meal, say 
soup instead of salad. Thus. any of several superordinates (COLD 
FOODS, VEGETABLE DISHES. EARLY COURSE DISHES) might have been what 
the user wanted. Why not give the user exactly such a choice, in 
an Up menu from the salad node, in addition to the typical Down 
menu? If the user's head prominently figures a certain form of 
representation, externalize it in the organization of the data. 
and take advantage of it in the access mechanism. 

We are in the midst of exploring the concept of up/down menu (MUD) 
systems on a small artificial data base of a few hundred target 
items. There are a number of implementation choices that require 
research. most notably regarding how to construct the MUD 
structures: In using normative categorization data, various 
verification and "garbage collection" ideas must be invoked to 
ensure that links exist everywhere they are appropriate, and 
nowhere else. We currently ask subjects to construct "isa" 
networks by repeatedly nominating successive superordinates from 
each node. and then use frequency thresholds on nodes and links 
produced across subjects. 

When other subjects are then allowed to use the MUDs, several more 
profound issues arise. A necessary result of having multiple Up 
choices is that Down choices are not always partitions of the 
conceptual class encompassed by a node. The consequence that that 
some choices overlap is of mixed advantage. Under some 
circumstances it allows subjects the benefit of approaching a 
target with different interests in mind or with a different 
psychological "set." but it can also mean that subjects must not 
only decide whether a given choice will lead to their target. but 
weigh the relative merits when several reasonable choices exist. 
Another issue is that MUD structures lack the systematic traversal 
algorithms that trees have. Thus it is more difficult to be 
exhaustive, i.e. to make sure all nodes have been seen at least 
once, and efficient. i.e. to avoid unnecessary repetitive 
viewing of nodes. Circumstances exist where these considerations 
might be important. A third issue is that the class of targets 
actually subsumed by any downward choice is constant. while the 
users interpretation of the choice can be effected by the history 
of superordinates just passed through. In a tree, there is only 
one possible ancestral history. so no ambiguity arises, but not so 
in a MUD structure, so users can interpret a choice variably, due 
to the different emphases of different superordinates. 

30 



Some issues also arise in working with MUDs that are perhaps even 
more relevant to tree structures. Transitivity of class inclusion 
is critical to any system based on conceptual hierarchy. Bich 
level choices require inferring the targets subsumed under 
intermediate level nodes. Intransitivity can foil this: Suppose 
one, is looking. in a lay person's botanical guide. for Scrul Oaks 
which are classified under OAKS. and that OAKS are in turn 
classified as TREES. The problem is that Scrub Oaks are not 
popularly considered trees (rather, say. shrubs). This lack of 
transitivity, due perhaps to fuzzy classification systems, would 
lead one away from a correct choice of TREES in the pursuit of 
Scrub Oaks. MUD structures have an advantage over menu trees since 
they can allow other routes to Scrub Oaks that are perhaps free 
from intransitivities. 

While this work represents only one modest example of exploration 
of more diverse psychologically motivated structures, we believe 
that efforts like it can lead to systems of greater help to human 
users. 

31 



The Nature of User-Generated 

Commands for Interacting with a Computer 

Mark D. Jackson 

Judith E. Tschirgi 

We describe the results of an experiment investigating 

user conceptions of a natural language for interacting with 

a computer information system. Novice and experienced 

computer users performed text editing and information 

retrieval tasks using a simulated interactive system. For 

each task, a script or sequence of actions was presented 

to the user. At each step, users read a description of an 

action, such as correcting errors in text or selecting a 

page of information to view, and typed a command that they 

thought was a natural request for the action. If their 

command was inappropriate, they were asked to reword their 

attempt; otherwise there were no constraints on their input. 

A diverse set of command terms was generated by both 

groups of users, with few actions eliciting common terms 

from within or across groups. Novices used more English-

like command formats whereas the experts followed computer 

dialogue conventions learned from experience. When correcting 

commands, novices were more likely to use strategies applicable 

to normal conversation. In general, the responses generated 

32 



by our users under instructions to proAuce "natural" commands 

depended critically on the u ser's experience. 

We have shown that computer experieilcc affccs users' 

spontaneous approaches to interactinp, with. 	ccnpucer. 

Our results suggest trIst no silvle cumand S- Dt..aX or set 

of lexical items will be consistent widluv ,:pccLatior,s 

of all users withou: addition aJ training. Thus, future 

research. must determine the characteristics of easily 

learned person-computer dialogues that are "naLural" across 

all levels of experience. 

3:3 



A Conceptual Approach to Natural Language Fact Retrieval 

Janet L. Kolodner 
School of Information and Computer Science 

Georgia Institute of Technology 
Atlanta, GA 30332 

1. The problems 

person: What's been going on in the world recently? 
computer: The last hostage was finally released from Iran. 
person: I thought the hostages were released all at once. 
computer: She wasn't really one of the hostages, but was 

arrested later when she traveled to Iran as a 
journalist to cover the Iranian revolution. 
She's been referred to as the 53rd hostage. 

person: Why was she arrested? 
computer: Trumped—up espionage charges. 

Suppose we wanted to build an intelligent fact retrieval system 

such as the one above. What would that require? It would have to be 

able to deal intelligently with a human user, giving answers containing 

not only the appropriate information, but also the right amount of 

information. It would have to be able to analyze the intent of a human 

question or response, figuring out what the questioner really wanted to 

know. The system would also have to be able to search its memory in a 

smart way, so that as the memory grew, it would still respond in a 

reasonable amount of time. 

There are three major problem areas to be addressed in designing 

such a system: 

1. Interfacing with the user: analyzing his natural language 
questions, and deriving search keys from them 

2. Memory search 

3. Memory organization and maintenance 

34 



These problems cannot be solved independently of each other. 	The 

organization of memory constrains the types of retrieval and updating 

processes the memory can have. On the other hand, memory organization, 

and therefore procedures for adding information to memory, must be 

designed based on retrieval requirements. Similarly, memory's organiza-

tion and content, and the relationship between items and categories in 

memory should be taken into account in interpreting the intent of user 

questions. 

The CYRUS system has dealt with aspects of all three of these 

problems. CYRUS has a long term memory which was designed to store 

information about important pOlitical dignitaries. It has been used to 

store and retrieve information about former Secretaries of State Cyrus 

Vance and Edmund Muskie. CYRUS automatically adds new information to 

its memory, maintaining good memory organization in the process. It can 

be queried in English, and uses retrieval strategies and knowledge about 

the organization of its memory to search for answers. A successor to 

CYRUS, TED, will keep track of events in the life of Ted Turner, a 

celebrity, sports figure, businessman, and broadcasting figure. 

The remainder of this paper will outline some of the problems 

involved in designing a fact retrieval system which will communicate 

effectively with people. Interactions between the interface, memory 

search, and memory organization will be described. It will also outline 

the solutions to these problems, as implemented in CYRUS and described 

in Kolodner (1980). 

In considering these problems, we will assume a memory organized by 

conceptual categories, with events indexed and sub-indexed in those 

categories by their salient features. Thus, memory processes will 

35 



manipulate conceptual information, or the meaning of the data in the 

memory, and will not be concerned with the words used to express those 

concepts. 

2. Retrieval requirements 

2.1 Choosing a category for search 

Searching a memory organized in categories requires specification 

of a category or categories to be searched. Consider, for example, the 

following question: 

(01): Mr. Vance, when was the last time you saw an oil field 
in the Middle East? 

If "seeing oil fields" were one of memory's categories, then this 

question would be fairly easy to answer. "Seeing oil fields" would be 

selected for search. If it indexed an episode in the Middle East, that 

episode could be retrieved from it. Similarly, if "seeing objects" were 

a memory category, it could be selected for retrieval and events in the 

Middle East and events at oil fields could be retrieved. 

If neither of these categories existed, however, a category for 

search would have to be chosen. We can imagine the following reasoning 

process being used to do that: 

Al: An oil field is a large sight, perhaps I saw an oil field 
during a sightseeing episode in the Middle East. 

Using information about episodic contexts associated with "large 

sights", a "sightseeing" category can be chosen for retrieval. Its 

contents can be searched for an episode at oil fields in the Middle 

36 



East. If the sightseeing category organized its episodes according to 

the type of sight and its part of the world, and if there had been an 

episode in the Middle East at an oil field, then "a sightseeing episode 

at an oil field in the Middle East" could be retrieved. 

The problem of choosing a category for search is both an interface 

problem and a search problem. Search requires specification of a 

category to be searched. For a very complex data base, however, we can-

not expect a user to know all of memory's categories. Nor can we expect 

that every natural language question asked of a data base will specify a 

category for search. 

In CYRUS, this problem is solved by associating with each concept 

in memory the categories it is related to. Thus, the concept "large 

sights" has "sightseeing" associated with it, while "international 

contract" has the category "political meetings" associated with it. In 

the first step of the retrieval process, the conceptual representation 

of the question (produced by a conceptual analyzer) is checked to see if 

it already specifies a category for search. If not, contexts are chosen 

from among the categories associated with each of the question com-

ponents. 

2.2 Non-enumeration 

One of the most important problems to address in designing an 

interactive retrieval system is the following: 

Retrieval should not have to slow down as memory grows. 

This requirement constrains both the retrieval processes and the memory 

organization. In terms of the retrieval processes, it requires the fol-

lowing: 

37 



Retrieval from a category must be able to happen without 
enumeration of the category. 

In fact, this interface problem depends on both memory organization and 

retrieval processes for a solution. If categories cannot be enumerated, 

then there must be some other way of searching a category. This can be 

done by indexing items intelligently in categories, and then by specify-

ing and following appropriate indices during retrieval. 

This method of retrieval brings up special problems. Retrieval is 

easy if a question specifies features which are indexed. This is not 

always the case, however. Two solutions to this problem have been 

implemented in CYRUS -- automatic generation of plausible indices, and 

search for alternate contexts. 

2.2.1 Index fitting and generation of plausible features 

Just as we cannot expect a user to know all of memory's categories 

or to specify a category in his question, we cannot expect him to know 

memory's indexing scheme. Thus, features specified in a question might 

not correspond to features indexed in memory. In that case, given 

features must be transformed into indexed features. 

Inferring indexed features is a way of directing search within a 

memory category without enumerating the category. Generated features 

can be followed to find the target item in the category. In addition, 

there must be a way of recognizing that two different descriptions refer 

to the same item. One way to do that is by transforming one description 

into the second one. 

Continuing with the example above, suppose sightseeing episodes 

were not organized in a category according to the type of sight or by 

38 



their place in the world. In that case, the following elaboration of 

the initial retrieval specification might be appropriate to answer the 

question: 

A2: Which countries in the Middle East have oil fields? Iran 
and Iraq have oil fields, and Saudi Arabia does. ... 

If sightseeing episodes are organized according to the country they 

took place in, then elaborating on "the Middle East" and specifying 

particular countries in the Middle East would enable retrieval of 

episodes that took place in each of those places. Instead of searching 

for "sightseeing at an oil field in the Middle East", search for each of 

the more specific episodes "sightseeing at an oil field in Iran", "sigh-

tseeing at an oil field in Iraq", etc. could be attempted. 

The process of transforming given features into indexed ones is 

called index fitting. Index fitting is done in CYRUS by component-

instantiation rules. These rules use information about components in 

context to infer additional features of a specified item. The 

nationality of participants in a political meeting, for example, is 

known to correspond to the sides of the contract being discussed at the 

meeting. Given the participants in a meeting, that information can be 

used to infer aspects of the meeting topic. Component instantiation 

rules generate plausible features for a targetted item. These features 

correspond to indices which should be traversed to retrieve that item 

from memory. 

2.2.2 Alternate context search 

Elaboration of plausible features is only one way of directing 

search, and it is not always successful. Suppose, for example, that 

39 



there was not enough information to narrow a search key to an easily 

enumerable (i.e., small) part of the data base. In a memory where 

records refer to other contextually related records, it might instead be 

appropriate to search memory for an alternate, more retrievable context. 

In other words, retrieval can proceed by searching for a related context 

which (1) might be more retrievable than the target item, and (2) might 

refer to the item targetted for retrieval. 

Since CYRUS' memory is organized in event categories, alternate 

context search in CYRUS corresponds to search for an episode related to 

the targetted event. Since sightseeing in the Middle East would have 

had to happen during a trip to the Middle East, retrieving a trip to the 

Middle East could aid retrieval of an appropriate sightseeing 

experience. 	Thus, the following reasoning would also be appropriate to 

answer the question above. 

A3: In order to go sightseeing in the Middle East, I would 
have had to have been on a trip there. On a vacation 
trip, I wouldn't go to see oil fields, so I must have been 
taken to oil fields during a diplomatic trip to the Middle 
East. Which countries might have taken me to see their 
oil fields? Saudi Arabia has the largest fields, perhaps 
they took me to see them. Yes, they did when I was there 
last year. 

Why does it seem reasonable to search for "trips" when a "sigh-

tseeing" episode should be retrieved? How can search for alternate 

events be constrained? Only alternate contexts that might be related to 

an event targeted for retrieval should be searched for. 

In general, for search to be constrained to relevant contexts, 

memory categories must hold generalized information concerning the 

relationships of their items to items in other memory categories. In 

CYRUS, alternate context search is facilitated by three things: 

40 



1. knowledge of the usual relationships between 	event 
categories 

2. a set of context construction rules for constructing a new 
context based on that knowledge 

3. a set of search strategies for directing search for the 
target event within the context of the alternate event 

Thus, CYRUS knows about the usual relationship between sightseeing and 

trips, how to construct a trip context based on a sightseeing context, 

and how to search the sequence of events of the trip to find a sigh-

tseeing experience once an appropriate trip is found. 

2.3 Maintaining a conversational context 

Maintenace of a conversational context is necessary for resolution 

of ambiguous references, anaphora, and pronominal reference. Suppose, 

the question above were followed in conversation by the following one: 

(Q2): Did you talk to the workers there? 

In order to understand what "there" means, the answer to the previous 

question must be consulted. In order to understand which workers are 

being talked about, the context of "visiting oilfields", plus knowledge 

about oilfields themselves must be used. 

Maintenance of a conversational context can also constrain memory 

search. Often, it is necessary to search only the context of the answer 

to the previous question to find an answer to the current one. In the 

example above, for example, only the events involved in Vance's visit to 

the oilfield in Saudi Arabia need be searched for an answer. If the 

previous context is maintained, it can constrain search to that episode 

only, so that all of memory does not have to be searched. 

41 



2.4 Summary of retrieval 

The retrieval process described can be seen as a process of 

reconstructing what might be true, and checking memory to make sure it 

indeed was. To retrieve an episode of "seeing oilfields", a hypothesis 

was made about the type of event it might have been (sightseeing), where 

it might have happened (Iran, Iraq, Saudi Arabia, etc.), and what else 

might have been going on at the time (a trip). 

Judging from this example, the process of retrieval requires at 

least the following processes: 

1. selection of a category for search 

2. search within the category for the targeted event 

3. elaboration on the specification of the event to be 
retrieved 

4. search for episodes related to the target event 

3. Requirements on the memory organization 

The ability of memory to support retrieval without enumeration is 

also dependent on the memory organization. The traditional solution 

within computer science to the non-enumeration problem is to index items 

within categories. An event should be indexed in a category by those of 

its features that are salient to the category. In that way, specifica-

tion of an indexed feature will enable retrieval of items with that 

feature without enumerating the whole category. 

If memory categories are heavily indexed by salient features, 

retrieval processes will have a large selection of features to specify, 

any of which might specify a target event. The retrieval process will 

42 



be made easier since the easiest elaborations can be attempted first. 

The richer the indexing, however, the more space is needed for 

storage. Indexing must be controlled so that memory does not grow 

exponentially. In CYRUS, similarities between events are used to 

control indexing. Memory keeps track of the similarities between events 

within a category, and limits indexing to the differences between 

events. Thus, if almost all the events in a "diplomatic meetings" 

category are with foreign diplomats, indexing them according to the 

occupations of their participants would be redundant and therefore 

unnecessary. It would not divide the category into significantly smal-

ler parts. If, however, one of those meetings were with someone other 

than a foreign diplomat, indexing the meeting by that feature would 

differentiate it from other events in the category. In fact, the 

similarities which constrain indexing correspond to the generalized 

information necessary for retrieval. 

Finally, a memory for events should maintain itself. This means 

that the process of selecting indices should be automated. It also 

means that events must be sub-indexed within the sub-categories that are 

formed when multiple events are indexed in the same way. Otherwise, the 

sub-categories would have to be enumerated. 	This places another 

requirement on the updating processes. 	In order to constrain later 

indexing, and in order to guide the retrieval strategies, the automatic 

updating process must also keep track of the similarities between events 

in each newly-created sub-category. If we don't want retrieval to slow 

down as new events are added to memory, then memory must be able to 

maintain its organization, creating new conceptual categories when 

necessary and building up required generalized information. CYRUS does 

43 



this through a series of organizational strategies. 

Another aspect of maintaining memory's organization 	involves 

monitoring memory search. More frequently requested information should 

be more accessible than less frequently requested information, and more 

recently accessed information should be more accessible than less 

recently accessed information. This involves both reorganization of 

memory taking frequency of access into account and restructuring the 

organizational strategies themselves, so that more frequently asked for 

types of information will automatically be organized for accessibility 

as they are added to the data base. This, and other memory maintenance 

problems which have not been described here, are being addressed in 

current and future research. 

44 



Psychological Investigations of 
Natural Command and Query Terminology 

Thomas K. Landauer 
Susan T. Dumais 

Computer-user Psychology Research Group 
Bell Laboratories, Murray Hill, NJ 

It is frequently asserted that unsophisticated users would 
find computer systems more congenial if communications with 
them were to employ more "natural" words. In a series of 
empirical studies, we have 11) developed a method for iden-
tifying natural command words for a particular task, (2) 
tested the value of the resulting natural command lexicon 
in the initial stages of transfer from manual to automated 
task performance, and (3) induced people to form "natural" 
data queries and analyzed the language they used. 

Identification of "natural" command  terms. Twenty-two stu-
dents in secretarial schools and twenty-six high school 
students with typing skills were given manuscripts with 
author's marks. The author's marks indicated a variety of 
desired corrections corresponding systematically to the 
kinds of changes that are accomplished in manual or compu-
ter text-editing operations. The students were asked to 
write instructions to another typist, who did not have the 
author's marks, specifying what was to be done to the 
manuscript. This method produced verbal descriptions of 
actual editing operations (e.g. "take out the word the") 
as contrasted to description of the author's marks (e.g. 
"crossout") or goal (e.g. "fix the spelling"). Among 
noteworthy resulting observations were the following: 
(1) There was little agreement on word use; e.g. the three 
most frequent operational verbs used accounted for no more 
than 33% of descriptions of any one correction, (2) The words 
used were not like those commonly employed by computerized 
editing systems, e.g. the verb "delete" was never used, and 
(3) Unlike many computerized text-editing systems, students 
and secretaries tended to use different words to describe 
operations on characters and blanks, but the same words to 
describe similar operations on whole lines and line-internal 
strings (e.g. "change 'string a or line a' tostring b or 
line b'"). 

Testing the value of natural command terms for initial learning. 
We devised a set of miniature text-editing systems, each con-
sisting of only append, delete, and substitute operations, plus 
start and stop commands. For one version, the verbs used in 

45 



the operation commands were "append", "delete" and "substitute", 
terms often used in computer text-editors. For another, they 
were the verbs most frequently used by secretaries and typists 
to describe the required action, "add", "omit", and "change", 
respectively. A third variant used randomly chosen English 
verbs, "cipher", "allege", and "deliberate" as a baseline 
control for lexical naturalness. In addition, the text- 
editors varied (a) with respect to whether the command verb 
was to be spelled out or abbreviated to its first letter, 
and (b) with respect to whether the same command word applied 
to both line-internal strings and whole lines (e.g. "omit /a/" 
for within - and "omit" for whole-line) or used different 
command words (e.g. "change /a//" for within-line and "omit" 
for whole-line). Forty-eight secretarial and typing students 
each spent about two hours studying an introductory self-
instructing manual and simultaneously doing a series of on-line 
learning and test exercises. The manuals varied only in neces-
sary ways (essentially only in command names) and as little 
extra help as possible was provided. 

The main results of interest were as follows: (1) The time 
to perform test exercises was not significantly influenced by 
command name variations; subjects performed as well when they 
were learning to "allege", "cipher", and "deliberate" as when 
they were learning to "add", "omit" and "change". However, a 
post-session questionnaire revealed some subjective preference 
for the more familiar terms. It is also important to note 
that the subjects were learning a very simple system with very 
few terms, and that they were not required to remember the 
terms over substantial periods. It is possible that "natural" 
terms would be advantageous in larger lexicons or when long-
range recall was necessary. However, natural words do not 
appear to provide substantial benefit during the highly cri-
tical first few hours of introduction to the new and exotic 
computer aided text-editing environment, as one might have ex-
pected and/or hoped. (2) Abbreviated command names were 
slightly more time-consuming to use at first, but became sig-
nificantly less so after some practice. (3) In this case, at 
least, the use of different command names for whole-line and 
within-line operations resulted in better performance than 
using the same name for both. This is contrary to subjects' 
usage in spontaneous descriptions. We hypothesize that the 
requirement to use different syntactic constructions in our 
editors was responsible; that differing command words make it 
easier to learn and use differing constructions even if the 
operations are naturally thought of as similar. 

Characteristics of natural data specifications. Three hundred 
and thirty-seven college students tried to specify verbal 
objects. They were given a list of items like "newsweek", 
"Empire State Building", etc. and asked to try to specify each 
so that another student or (in other cases) a computer would 

46 



respond with the provided word. There were no restrictions 
as to the form or content of the descriptions (except, of 
course, that they could not contain the target item). 

Among interesting characteristics of the response were these: -
(1) Students rarely used boolean expressions more complicated 
than simple conjunction. (2) Specification by exclusion 
(e.g. "a popular weekly newsmagazine other than Time")  was 
very infrequent despite the intentional inclusion of items 
that easily admitted of such specification. (3) The most 
common specification techniques were simple lists of positive 
attributes or a single immediate superordinate, followed by a 
list of attributes (e.g. "a tall building in New York located 
on 34th Street and 5th Avenue"). (4) Specifications were 
often very  vague and depended heavily on presuppositions about 
preferred responses of the target person or system (e.g. "a 
tall building in New York", a specification that_apparently 
assumes that one member of a large class will be known to be 
most representative or most dominant and will be given in the 
absence of further specification). 

We have no evidence as yet as to whether systems allowing 
"natural" query specifications would be easier to use. 
However, it does seem apparent that the use of more precise 
expressions cannot be expected without special, perhaps dif-
ficult, training. 

47 



ORGANIZING MEMORY FOR USE 	UNDERSTANDING 

by 

Michael Lebowitz - CnIunI)H University 

1 Introduction 

Episodic memory plays an important role in the understanding of natural 

language. It can uc used to provide context for top-down processing, to 

determine the negnents of a text that should be focused upon, 

situation-dependent detaults, and so forth. While this should come as no 

great surprise, it is the case that most of the work relating memory (in the 

form of databases) and language understanding' has emphasized the utility of 

natural language fron-ends for database query ( rilarris 78, Kaplan 77, Woods 

and Kaplan 72], for example), rather than the ways that memory can be used in 

language processing. Furthermore, what work there has been on using memory 

for language processing has been in the form of question answering, ignoring 

entirely the crucial issue of using existing knowledge in memory to help 

acquire more information. The use of memory in the process of reading text 

for the purpose of updating memory - and the effect this has on somory 

organization - is extremely important, and is the issue I will address here. 

In the course of this brief presentation I will be using examples from a 

computer model that is concerned with the relation between language and 

memory. IPP (the Integrated Partial Parser), written at Yale, is able to read 

news stories about terrorism and record them in a coherent memory. It makes 

generalizations that help organize the memories of the events described and 

are used to assist in later processing. IPP fully described in [Lebowitz 

801. \ second program, RFSEARCHER, ins in the - rly stages of 'Aevelopment. It 

(4 



Will be based upon THP, but will include a memory of 	s(7ientific dortklin, 

built up by reading technical abqtr:i7ts. 	a-, toe complexity o f the 

material that RESEARCHER will be rearlin, 	h'.: 	, 	a 	r.imory iu 

understanding process will be extreme l y important. 

The point that I want to stress hel:e is thet 	ne ed for applying 

information from memory during understanding (knowld4e acquisition) must 

considered while attempting to determine an appropriate memory organization. 

In the space available here I will give several examples illustrating the need 

for the application of episodic memory to understanding, and then outline an 

appropriate memory organization that keeps this use in mind. 

2 Why we need to use memory in understanding 

The following story is rather typical of those read by IPP. 

Figure. 1: Attack on kibbutz 

S1 - UPI, 7 April 90, Israel 

Israeli troops today stormed  a children's dormitory in a kibbutz on 
the Lebanese border to free hostages seized nine hours earlier by 
gun-blazing Palestinian guerrillas and killed all five raiders.. 

There are two problems in understanding story S that memory can  

overcome. The first involves the meaning of the word "stormed', which in this 

domain can refer to either terrorists attacking a building or government 

officials counterattacking a group of terrorists. A similar problem arises 

with "seized", which could plausibly refer to either a kidnapping or a 

building takeover. 	The later ambiguity is in fact never resolved in this 

text. 	Each of these problems is easily overcome by accessing the proper 

information from memory, generalizations such as those in the next figure, 

made after reading earlier stories. 

49 



Figure 2: Generalizaticos about extortextortion in Israel 

Israeli trool - 	:1-ry out counterattacks against terrorists. 

Palestinians in Israel engege in extortion by taking paces over 

Both ambiguous worus in Si can Le resoMd ny iissaming that when rAevanL 

generalizations ex i 	ords should he disamLiguat.:- ..n so that the new story 

fits the existing generalizationL:. 	The Lirst generalization allows the 

disambiguation c "strl(d" as it. is read, usihg al'e. Similarly, we 

assume "seized" indiccat:es a tak?ovor, since that nerresponds to the second 

generalization. had the generalization stated that extortions in Israel. were 

usually kidnappings, then "seized" would have been assumed to refer to such an 

event. 

Notice that we cannot expect a person (or computer program) to be 

pre-supplied with all the generalizations necessary to resolve problems of 

this sort. Instead, these observations must be developed by reading (or 

otherwise learning about.) specific events and generalizing from them. 

The following story also requires information from memory. 

Figure 3: Basques implicit in attack 

S2 - New York Time s , '2.4 August 79, Spain 

Bombs exploded in d French banL and a French imigratin office in 
northern ipain ear ,: today, causing damage hut no injuries, according 
to police. 

This story does not specify the inentity of the terrorists who set off 

the explosion described. Howeyer, most people with some knowledge of Spain 

are aware that this was probably a Basque attack. Such a conclusion comes 

from a previously made generalization about terrorists in Spain. 

50 



The next figure shows how 'RI' hndles tory S2 . vtien it has existing in 

memory a generalization that Basques are the nttac<rs in bombings in Spain. 

Figure 4: IPP inferring def.ault zo.HI 1rfeats 

Generalization (BASQUE-GEN) already in memory: 
S-DESTRUCTIVE-A7PACK 
ACTOR 	(1) DEMAND-TYPE SEPARAT('M 

NATIONALITY BASQUE 
METHODS 	(I) AU 	 SE X13 11.1f)E-BOr 
LOCATION (1) AREA 	WESTERN-E'JROP 

NATION 	SPAY 
RESULTS 	(1) AU 	 CAUSF . -PAMACF 

*(PARSE S2) 

Story: S2 (8 24 79) SPAIN 

(BOMBS EXPLODED IN A FRENCH BANK AND A FRENCH 
IMMIGRATION OFFICE IN NORTHERN SPAIN EARLY TODAY 
CAUSING DAMAGE BUT NO INJURIES ACCORDING TO POLICE) 

>>> Beginning final memory incorporation ... 

Feature analysis: EV16 ( S-DESTRUCTIVE-MACK.) 
RESULTS 	AU 	 CAUSE-DAMAGE 
METHODS 	AU 	 8EXPLODE-BOMB 
LOCATION 	AREA 	WESTERN-EUROPE 

NATION 	SPAIN 

Indexing EV16 as variant of BASQUE-,GEN 

Inferring feature ACTOR DEMAND-TYPE SEPARAT17 

of EV16 

Inferring feature 7=OF,  NATION BASQUE 
of EV16 

>>> Memory incorporat ion complete 

in this example, IPP recocjni,s that 52 1'7 an instance of 

generalization that it has made previously (E)ZQUE-CEN) 	use 	that 

generalization to supply default characterist1 ,7s of the terrorists. 	In 

51 



particular, IPP assumes, cerrepondinq 	the len , r.:r; i ::'at icn, that the 

terrorists are Basque separatists. 	rho det_Pi -m ■ nicn of deg: iul .s of ':.hi -7 	rf- 

is a major use of generalizations. 	1 Pt 	 f-.his event as an 	'. t 

of the most relevar genoralizetior, 	 tr,  

further generalizations. 	I will sny YfC)r:. (.. abcnn Ini 	poLnt--. below. 

3 Organizing memory for understanding 

Examples such 
	

S1 and 
	

constraints up 2n 	, 

organization for memory. In particular: 

1. It must be possible to access generalizations based on partial 
information so that relevant information can be applied during 
understanding, and not just after it has been completed. 

2. Many different features of a generalization must provide access to 
that generalization, so that instances with different relevant 
features mentioned explicitly can all be identified. 

3. Generalizations must. lead to memories of actual events so that 
further generalization can occur. 

These constraints suggest a possible memory scheme. 	This schema, as 

implemented in IPP, has several tree-like structures, each consisting of m)re 

and more specific versions of general izati..ne 	The generalizations ir 

tree are used to oflianie actual mr,7pories of 	 The tar e'2s 	asr;cid 

with high-level 	 sLructu 	 evrr u 

domain at an intention.7, i level. 	terrorism e se ilclu 

attacks on individua. 

A typical tree o 	r_Ineralj.zati , ns in T.PP' c memc.ry :r 1q1 

like the next figure, 

A tree of generalizations such 	 one Ln Figure 5 multiOe indxing 

Normaliy each between each generalizetion and 	n r ie np :iric versions. 

52 



Figure 5: An IPP Generalization Tree 

S-EXTORT 

G1 - kidnappings of 	G2 - hijackings of 
businessmen 	 German planes 

V 
G3 - kidnappings of businessmen 

in Italy by the Red Brigade 

V 
the kidnapping of a shoe manufacturer 

in Milan in August 

novel feature of a generalization is used as an index for that node in memory. 

(Some exceptions for common features are mentioned in [Lebowitz 80].) So in 

Figure 5, generalization G1 could potentially be accessed once a story has 

been identified as an extortion that is a kidnapping or an extortion with the 

hostage being a businessman. This kind of identification is exactly what we 

need to do during the processing of a story so that the remaining information 

in a relevant generalizations can be used to help processing in the ways 

indicated above. 

The processing scheme that uses such a memory involves identifying the 

most specific generalizations relevant to a story as it is read, using any 

features accumulated from the story along with the corresponding 

generalization index tree. Then the remainder of the story can be interpreted 

in terms of these generalizations. Further, by having actual events stored 

under the generalizations, by the time we have finished reading a story we 

have available similar events that might be suitable for additional 

generalization. 

53 



Similar schemes For organizing memory have .11:.io shown to be useful in 

explaining reminding phenomena 	(clank 801 aed humar, memory retrieval 

[Kolodner 80]. 

4 Conclusion 

Clearly the neiioty scheme devised for IPP somewhat too simple. For more 

complex types of datd ( such as in the cientific domain that will be dealt 

with by RESEARCHERe, memory will clearly hive to be more 'ongly 

interconnected, resulting in a structure that is more a network that a tree. 

However, the organization used for IPP indicates how the organization of 

memory must be appropriate for the process of knowledge acquisition, and not 

just: the retrieval of information. 

5 References 
[Harris 78] 	Harris, L. R. 

Natural language processing applied to data base query. 
In Proceedings of the 1978 ACM Annual Conference.  Association 

for Computer Machinery, Washington, D. C., 1978. 
[Kaplan 771 	Kaplan, S. J. 

Cooperative responses  from a natural language  data base query 
system.  

Technical Report, Moore School of Engineering, University of 
Pennsylvania, 1977. 

[Kolodner 80] Kolodner, J. L. 
Retrieval and organizational strategies in cohceptual memory: A 

computer model.  
Technicel Report 187, Yal=_,  University Depr:tment of Compute r 

Scielce, 1980. 
[Lebowitz 80] Lebowitz, M. 

Generalization and memo.Ly in an integrated understandinr.j 
sy:stem. 

Technical Report 186, Yale University Department of Comperer 
Science, 1980. 

PhD Thesis. 
[Schank 80] 	Schank, R. C. 

Language and Memory. 
Cognitive Science 4(3):243 - 234, 1980. 

• .  

[Woods. and Kaplan 721 
Woods, W. A. and Kaplan, R. M. 
The lunar sciences natural language information system:  Final 

re,Tort. 
Technical Report BEN Report 2265, Bolt Beranek and Newman, 

Inc., Cambridge, MA, 1972. 

5/4 



Artificial Intelligence and Human Factors Engineering: 
A Necessary Synergism in the Interface of the Future 

WORD:] 	DRAT 

Paul Roller Michaelis and Mark L, Miller 

Computer Science Laboratory 
Central Research Laboratories 
Texas Instruments Incorporated 

M.S. 371. P,O. Box 225621 
Dallas. Texas 75265 

ABSTRACT 

In 	the 	coming 	decade, 	a 	new 	generation 	of 
computer-based systems offers the potential to do for the 
human mind what the industrial revolution did for human 
muscle. 	To 	realize 	this 	potential, 	we must study 
sophisticated kinds of software. in which the computer 
performs tasks previously thought to require human 
intelligence. We must also study how to organize such 
hardware/software systems to interact most effectively with 
their human masters. 

TI's Computer Science Laboratory is attempting to 
construct and evaluate experimental prototypes of such 
systems. Their design has required unique combinations of 
talent from diverse disciplines. We are combining expertise 
from two fields in particular: artiicial intelligence and 

human 	factors engineering. 	This 	talk 	will 	illustrate 
synergistic effects of cooperation between these two fields. 
Examples will to drawn from current research projects in 

natural language processing and advanced computer based 
instruction. 

55 



W oE S & 	L 

56 



TASLE OF CO, NTENTS 

• 1.0 INTRODUCTION 

2.0 INTERACTIVE NATURAL LANA. 

2.1 Descrii:tion of thi Frob:em 

2.2 What Human Fictc'r 	ucttributi 

2.3 What Artificial Intel)!gerce Ccntributei 

3.0 INTELLIGEN7 TUTORING 

DeScrirton of the P; -,Ulem 

3.2 What Humar. Factors Contributes 

3.3 What Artificial Intelligence ContributeS 

4.0 CONCLUSION 

5.0 REFERENCES 



1.0 INTRODUCTION 

People will have trouble performing a physical task if 

the demands of the task exceed their physical capacities. 

To many of us nowadays, that seems like simple common sense. 

However, it was not until the late 1890's that Frederick W. 

Taylor made his pioneering studies of how how to design jobs 

and tools so that they more closely match the physical 

capacities of people. (As an aside, what Taylor studied was 

shovels and how best to use them.) 

The field of human factors engineering had its birth 

during World War II. The founders o' the field recognized 

that errors can occur in man-machi‘ie systems when the man's 

job in these systems overloads his mental  capacities. 

Before going any further, let's first examine what is meant 

by "man-machine system." In a man-machine system, one or 

more of the components is a person, and the person must 

interact with the machine components. The designs, goals 

and complexity of these systems vary considerably. Figure 1 

shows a schematic of a simple man-machine system. 

Show Foil Number -1- Here. 
(Man-machine system cartoon from Chapanis, 1965) 

During World War II it was found that many errors in 

human-machine systems ,  such as airplane accidents due to 

"pilot error," could in fact be traced to the design of the 

controls and displays. These are the components of the 

58 



CONTROLLING MAN 

MACHINE 

OPERATION 

INFORMATION 
PROCESSING 

11.11"1160 OUTPUT 

THE WORK ENVIRONMENT 

59 



system through which the human and machine components 

exchange information. Researchers such as Alphonse Chapanis 

and Paul Fitts discovered that certain control and display 

designs virtually invited even experienced people to misuse 

Or misinterpret them. The solution lay in redesigning the 

controls and displays so that they operate in manner more 

compatible with the mental capacities of people. 

The 	TI 	Computer 	Science 	Laboratory 	develops 

human-machine systems in which the machine is a digital 

computer whose software is intended to be (more or less) 

"intelligent." Efforts to create such artificially 

intelligent systems have been underway for only a few 

decades; the founders of the field (e.g., McCarthy (1965]. 

Minsky (1965], and Newell 8 Simon L1972]) are still active 

contributors. In even this short time, much has been 

accomplished. There are systems that can play master-level 

chess, Solve complex integrals, understand and obey commands 

stated in simple English, speak in a human-like voice, 

recognize objects in scenes, solve analogy problems, and so 

on. Central themes, such as the notion of a problem space, 

means-ends analysis, and heuristic programming have emerged 

to organize thinking in the field. AI software techniques 

such as semantic network know:edge representations, 

augmented transition networks and chart 	parsers, 	and 

production 	rule 	deduction 	systems 	have gained wide 

acceptance even as better approaches appear. 

60 



The long term goal of this work is to 	develop 

"intelligent interactive systems" which do for people's 

minds what the industrial revolution did for their muscles. 

Accomplishing this goal requires combining the skills of 

human factors engineers and AI specialists. The purpose of 

this talk is to describe the benefits of a synergistic 

relationship between these two fields. Two research 

projects currently underway at TI serve to illustrate these 

benefits. 

2.0 INTERACTIVE NATURAL LANGUAGE SYSTEMS 

2.1 Description Of The Problem 

Chapanis (1975) has demonstrated that 	interactive 

natural language dialog is remarkably unruly, with many 

misspellings and grammatical errors. Although progress has 

been made in getting computers to process pristine English 

text, it will be many years before computers will be able to 

process unlimited interactive natural language dialog. 

As our group works toward a system that interacts in 

true natural language, another project is under way that is 

oriented toward intermediate results. The goal of this 

project is to define a human engineered subset of natural 

language. This subset would retain all of the user—oriented 

benefits of unrestricted natural language dialog. However, 

its use would greatly reduce the processing burden that true 

61 



natural 	language 	interaction places on t..e,  computer. 	This 

is clearly a goal that can best be accomplished 	by 

cooperation 	between 	artificial 	intelligence 	and human 

factors specialists. 

2.2 What Human Factors Contributes 

Ford, Weeks and Chapanis (1980) 	and Michaelis (1980) 

reported a series of experiments that were conducted in the 

human factors laboratory at Johns Hopkins. In these 

experiments, two-person teams exchanged information over a 

telecommunications medium in order to solve problems. Half 

of the teams were rewarded solely for correctly solving 

their problems. 	The other half had their correct solution 

reward diminished for each wore token they used. 	Thus, 

these latter teams 	were 	encouraged 	to 	keep 	their 

communication 	as brief 	and concise as possible. 	The 

problem-solving task assigned to the subjects in 	the 

Michaelis experiment 	is typical of the type used in these 

stuCies: One team member was given a completely . assembled 

prism-shaped wooden model and was required to assist the 

other member, who had to build an identical model froM the 

separate parts. In these experiments. the team members were 

in different rooms. In the Ford et al. study, half the 

teams 	communicated 	by voice and the other half via 

teletypewriters; 	in the Michaelis study, all communication 

was over teletypewriters. 



In both studies, 	there were dramatic and 	highly 

significant differences between the two experimental groups. 

However, it is important to note that problem-solving 

accuracy was not affected by self-imposed brevity. 

Show Foil Number -2- Here. 
(Summary of the data presented in the next paragraph.) 

••• 

Among the significant differences noted in both studies 

are that the self-limited teams generated, on the average, 

about one fifth as many word tokens, one third as many word 

types, and one third as many messages. In a linguistic 

analysis of the protocols from their study, Ford et al. 

found that the self-limited subjects used proportionally 

more nouns (41.9 vs. 26.1%. p < .001), fewer pronouns (5.5 

vs. 	11.9%, 	p < .001), 	fewer 	verhs 	(10.3 v;. 	16.9%, 

p < .001), more adjectives (18.3 vs. 	10.4%, 	p < .001) 	and 

fewer prepositions (8.9 vs. 	11.3%, p < .035). 

Show Foil Number -3- Here. 
(Summary of data presented in next paragraph.) 

Probably the most interesting finding of these studies 

is that, on the average, the self-limited teams solved their 

problems faster than their unlimited counterparts, 14.9 

versus 19.3 minutes in the Ford eat Al. study and 20.5 

versus 27.6 minutes in the Michaelis study. This difference 

was not statistically significant in the Ford et I. study. 

However, in the Michaelis study, which tested more teams (48 

63 



When compared with the unlimited teams, the self-limited 
teams generated: 

o One fifth as many word tokens. 
o One third as many word types. 
o One third as many messages. 

Mean Percentenages of Parts of Speech Used by Teams in the 
Two Word Usage Conditions. (from Ford, et al., 1980) 

Parts of speech 	Self-limited 	Unlimited 

Nouns 	 41.9 	26.1 	.001 
Pronouns 	 5.5 	11.9 	.001 
Verbs 	 10.3 	16.9 	.001 
Adjectives 	18.3 	10.4 	.001 
Prepositions 	8.9 	11.3 	.035 

64 



Average Number of Minutes for Teams to Solve Their Problems 
in Both Experiments and Word Usage Conditions. 

Experiment 	Self-limited 	Unlimited 	p 

Ford et al. 	14.9 	 19.3 	N.S. 

Michaelis 	20.5 	 27.6 	( 0.005 



vs. 	32Y, 	the p value was less than 0.005. 	This is strong 

evidence that requiring people to be concise does not hurt 

their ability to communicate; 	it may even help. 

2.3 What Artificial Intelligence Contributes 

At this point, 	natural 	language 	specialists 	in the 

Texas Instruments AI group became involved. They contrasted 

the limited 	and unlimited protocols 	from the 	Michaelis 

study. Their goal was t' determine how the dialog 

limitation might affect the processing burden of natural 

language computer systems. Tney were specifically concerned 

with contrasting the effects on systems that do a syntactic 

analysis first and then pass the results to a semantic 

component, versus those which integrate the semantic and 

syntactic components during analysis. 

Pronominal 	reference 	and 	the 	attachment 	of 

prepositional phrases, two stumbling blocks for many present 

syntactically based systems, occur somewhat less frequently 

in the limited condition. However, in the limited protocols 

over one third of the utterances were ungrammatical, while 

in the unlimited case this was closer to one tenth. They 

therefore believe that syntax-first approaches will have 

significantly more problems parsing the limited condition 

utterances than systems which nave less reliance on syntax. 



The word types used in the 	limited condition are 

virtually a subset of those used by the unlimited users; 

apparently, many of the words used by the unlimited subjects 

were not necessary for the solution of the problem. This 

finding has also been reported in a study of interactive 

limited—vocabulary dialog (Michaelis. Chapanis, Weeks, & 

Kelly, 1977). and suggests that the conceptual coverage of 

the limited protocols is less than that of the unlimited. 

Therefore, a semantics based system, such as 
	

semantic 

grammar (c.f. 	Burton, 	1976) or conceptual analyzer (c.f. 

Schank, 1975), could possibly gain efficiency from the 

language limitations. 

The protocols were also analyzed to examine whether the 

problem solving strategies used were different between the 

unlimited and limited conditions. The protocols were 

classified according to the problem solving strategies used 

and the ordering of their subgoals. No statistically 

significant differences were found between the unlimited and 

limited conditions in the number of teams using the 

different strategies. 

In 38 of the 48 protocols (nineteen in each condition) 

the subjects used subgoals characteristic of classic 

means—ends analyses (Newell & Simon, 1972). These teams 

established two major subgoals of the task, building the 

triangular sides and building the rectangular base. The 

order in which these were performed did not significantly 

67 



differ between the limited and unlimited conditions. 

The ten remaining teams did not have obvious subgoals; 

six used an approach in which they described the appearance 

of the model, and the remaining four u sed a strategy of 

making small pieces and then connecting these together. 

Again, no significant differences were found between the two 

conditions in the number of teams using each strategy. 

Show Foil Number —4— Here. 
(Conclusions from NLP research) 

	

To summarize the findings thus far 	in this research 

effort, human factors specialists found no evidence that the 

dialog restriction discussed in this paper will 	hurt the 

user's efficiency. Indeed, the Michaelis study suggests 

that the efficiency of the users may actually be improved by 

well chosen limitations on the interactions. Further, the 

language restriction could not be shown to significantly 

change the problem solving strateoies used by the subjects. 

The protocol analyses performed by artificial intelligence 

specialists suggest that semantic.slly based interactive 

natural language processing systems might also benefit from 

this restriction. 

68 



Conclusions 

From a human factors perspective: 

o No evidence that the dialog restriction hurts people's 
ability to communicate, 

o No evidence that the dialog restriction changes people's 
problem solving strategies. 

From an AI perspective: 

o Some evidence that a semantically based interactive 
natural language processing system sight benefit from 
this dialog restriction. 

69 



3.0 INTELLIGENT TUTORING SYSTEMS 

A second illustration of the AI/NF synergism involves 

the development of "intelligent tutoring systems" intended 

to teach elementary computer programing. Such systems 

represent enhancements over conventional "drill and 

practice" or "frame—based" multiple—choice branching systems 

because they incorporate considerable knowledge about the 

task, the student, and about tutoring per se. The long—term 

goal is to provide a computer—based educational experience 

comparable to a one—on—one interaction with an expert human 

tutor. 

3.1 Description Of The Problem 

Three systems intended to teach elementary computer 

programming are examined. The first system, BIP (for "BASIC 

Instructional Program") [Barr, Beard and Atkinson 1976] 

serves as a problem solving laboratory wherein students 

solve programming exercises in the BASIC language. The 

second system, SPADE-0 (for "Structured Planning and 

Debugging Environment") [Miller 1979], was developed as an 

AI exercise. Its purpose was to articulate the underlying 

programming knowledge involved in writing graphics programs 

in the LOGO [Papert 1980] language. A third system, 

currently under development, blends both AI and human 

factors considerations. 

70 



Ian-ELL 1 6cnr7 
T-1.4 	N G- 

S E LIE Arr: AL P 00.s 

; 

a 

P fizy 

71 



BIP 	is 	an 	effective 	working 	computer—based 

instructional 	system which has been in ose ty the Navy for 

some time, both as a research vehic:e 	and 	as 	a practical 

tool for teaching BASIC programming. 	It serves as a useful 

representative of previous work on programming tutors. 	(HIP 

has been in use in our laboratory for over a year.) BIP is 

able to individualize the sequence of tasks encountered by a 

given student, on the basis of a e.eills model inferred from 

performance on prior tasks. Hence, ndt every student 

encounters every task; 	and sr)e encounter tasks 	in a 

different order than others. 	We vesent e csl:gntly edite-,:!) 

excerpt 	from a session with this ;ysem to ii!ustrate its 

capabilities and limitations. 

COMPUTER: On the first Oay 	Xr1c7;, 	 Icy° 
sent him a pzrtrje 	.ear tree. 	On 	the 
second day, they sent 	tew tk.:rtle doees 	plus 
another partridge (3 gifts, 2nd ❑ ay). This 
continued through the twel4th day, when the 
true love sent 12 lcras, it ladies, ... all 
the way to yet another partridge. Write a 
program that computes and prints the number 
of gifts sent on that twelfth day. (This is 
not the same as the TOTAL number of gifts 
sent for all 12 days!) 

STUDENT: HINT? 

COMPUTER: This program requires a loop. 	Each execution 
of the loop 	involves accumulating the value 
of the index into a total. 

STUDENT: HINT? 

COMPUTER: Finding a total almost always means you need 
two things: 
(1) Setting a variable to 0 before the loop. 
(2) Accumulating values 	into that 	variable 

within the loop. 

.72 



HIP has impressive features for creating flow diagrams 

and does an excellent job of sequencing tasks. However, its 

understanding of the domain is limited to a flat collection 

of language constructs. Based on informal analyses, HIP 

often rejects answers that students believe to be correct; 

it tries too hard to elicit a single solution, which is not 

always appropriate in complex domains such as programming. 

HIP was hampered by its 	lack of understanding of 

planning and debugging, two central AI concerns. 	While BIP 

could individualize the sequence of 	tasks, 	it could not 

individualize 	the 	hints 	given 	within 	a task. 	Thus, all 

students who encountered the 'Plf45 task and requested t%:o 

hints would see the same two hints shown above. 	To improy 

upon BIP's pre-stored hints, our problem was twnfcld: 	to 

represent 	the underlying knowledge 	and to apply that 

knowledge in a fashion helpful to the human user. 

3.2 What Human Factors Contributes 

The goal of the AI 	specialists 	is 	to 	design 

"artificially intelligent" computer environments that tutor 

students in much the same way that a human teacher might 

tutor his students. The AI technology has progressed to the 

point that some very basic questions must be answered before 

progress can continue: What makes an intelligent human 

tutor successful? What are his techniques for diagnosing 

ti student 	problems 	and 	misconceptions? 	What are f s  

73 



techniques for aavising students' In short, how does he use 

his intelligence to provide tutoring superior to that 

provided by pre-stored hint systems like BIF? All of these 

questions relate to the human-computer interlace, so the AI 

specialists at TI took the questions to the human factors 

group. 

Job and task analyses are two of the basic tools of 

human factors engineering. The human factors group 

addressed the AI specialists' questions by setting up a 

system in which a computerized intelligent tutor is 

simulated by having an intelligent human playing the role of 

the computer tutor. Very simply, the human tutor observes a 

student's efforts by watching a monitor that 	is slaved to 

the student's work terminal. 	The tutor make7, judgments 

about the student's problems and misconceptions, 	and 	..tgpes 

appropriate help messages the 	, pper an tht,  stulent's nelp 

terminal. 	It 	is 	important 	to 	recognize 	that. 	in 	this 

paradigm, the human tutor bases decisions on exactly the 

same information that would be available to the computer 

tutor, and similarly provides help the same way that the 

computer tutor should. 

In these studies, 	the human tutor 	is 	carefully 

evaluated. Human factors specialists meticulously record 

all his activities, along with verbal protocols in which he 

explains the rationale behind his decisions. These studies 

are not yet complete, but a clearer model of the intelligent 

'74 



human tutor 	is already eiterging. 	One 	.mportant trend 

observed thus far is that the level of sophistication 

required for a successful N. tutor might rot need to be 

as great as was originally expected. 

Show Foil Number -X- Here. 
(The following paragraphs, including the BASIC code.) 

Here is an example of a problem a student had that oaS 

easily diagnosed by the human tutor. The student was 

learning how to program in BASIC, using the BIP problem set. 

In this particular problem, the student was asked to take 

two numbers, M and N, and compute their sum, difference, 

product, and quotient. This is what the student typed: 

10 PRINT "WHAT IS THE FIRST NUMBER" 
20 INPUT M 
30 PRINT "WHAT IS THE SECOND NUMBER" 
40 INPUT N 
50 LET A 	M 4  N 
60 LET A = M - N 
70 LETC:M* N 
81 LET D = M 

At this point, the student pauseL: fc, ! 	aver 	a minute 

then 	asked 	for help. 	Quite clearly, the ,  student's prsohlem 

was that he did not know the symbol for division. This sort 

of problem is representative uF the type soled by the human 

tutor that would not have been solved by a pre-stored hint 

tutor like BIP. Note that even a very simple means-ends 

analysis model 	involving sequential 	accomplishment 	of 

subgoals is adequate to provide a correct hint here. 

7±; 



The student was asked to write a BASIC program that would 
take two numbers, M and 	N, and compute their 	sum, 
difference, product, and quotient. Here is what he did: 

10 PRINT "WHAT IS THE FIRST NUMBER" 
20 INPUT M 
30 PRINT "WHAT IS THE SECOND NUMBER" 
40 INPUT N 
50 LET A : M + N 
60 LET B : M — N 
70 LET C : M * N 
80 LET D : M 

When he got to this point, the student paused for over a 
minute, and then asked for help. What information does he 
need in order to continue? 



3.3 What Artificial Intelligence Contributes 

The crucial contributions of AI to CAI derive from 

representing the underlying knowledge. In tne case of 

programming, representing the aomain knowledge requires 

asking such questions as, "What is it that the expert 

programmer knows that the novice does not?" Miller's SPADE-0 

project was more an attempt to investigate and formalize 

this type of knowledge than to build a useful programming 

tutor. It represented knowledge about programming plans 

(i.e., procedural templates independent 	of 	the particular 

programming language) anti debugging techniques. 

SPADE-0 built upon AI work in automatic planning and 

debugging 	developed in HACKER [Sussman . 1973], MYCROFT 

[Goldstein 1974], and NOAH CSacerdoti 19753. 	SPADE-0 could 

prompt the student through hierarchical planning processes. 

encouraging the student to postpone premature commitment to 

the detailed form of the code. This AI planning technique 

grew out of such systems as ABSTRIPS [ref].) SPADE-0 

provided a vocabulary of concepts for describing plans, 

bugs, and debugging techniques, and handled the routine 

bookkeeping tasks involved in simple program development. 

Figure XX illustrates a sample 	interaction 	with 

SPADE-0. The key feature is the system's deeper analysis of 

the underlying knowledge. This is manifested by commands 

for editing the plan -- rather than merely the code -- of 

the student's program. However, the design of SPADE-0 



eicruRE.: 
PLAN (Lo 4)) 

Pt-AN (IA)ELL) 
REPEAT  Li TIMES 

. 1..4LoEu--stOC. 71 

L•Jhat noLo ? 

> Rung Lok) 
notA3? 

> Oebati uLIELL. 

(.06 uses ci "MpeT11100  

Vile *op level conietrIs Z desir 
clecks%on5 1V)e,ce, 	warruncts 
+he cock -For AudELL 	

- 

e 

• 

fiuti ►nci LOGO .... Donel 

78 



ignored human factors considerations, 	imposing its own 

technical vocabulary on the student, and adopting a style of 

interaction that took away much of the initiative. 

Our current work is an attempt to extend the underlying 

AI knowledge represented by SPADE-0 and merge it with the 

improved human factors guidelines resulting from careful 

• analyses of what good human tutors do. 	Like HIP, it will 

dynamically select tasks from a curriculum database; 	but 

like SPADE-0, it will build a model of the student's problem 

solving skills (rather than simply recording which 

programming language constructs have been mastered). The 

key AI aspect is fine—grained diagnosis of student errors to 

provide custom—generated (rather than pre—stored) advice. 

We are basing the design of our new tutoring module on 

human factors studies in which a human simulates this 

module. As the system implementation progresses, additional 

tasks will be taken over by the computer, and the need for 

the human tutor to intervene will be 	correspondingly 

diminished. 	The proportion of tasks successfully performed 

by the computer tutor is a measure of our progress. 

Earlier "intelligent tutoring systems" such as BIP and 

SPADE-0 used their intelligence to build models of the 

student. However, the interface between the intelligent 

tutor and the student remained crude. By working with human 

factors engineers, the AI specialists now better understand 

how human tutors interact with students. The emphasis of 

79 



DEC SYSTEM 20 

Help or Hint Knowledge Ease of 
Plans & Bugs Keypress 

Session 
History 

- `-'1,Rs '"! 7-1 
Anal zed Keyboard Tutor Output 

to Speech Box 
Editor 
output 



COMPARISON OF HINTS FROM 'DUMB' TUTOR AND 'SMART' TUTOR 

• DUMB TUTOR: 'REMEMBER TO SET UP THE CORRECT HEADING AND LOCATION OF YOUR 
TURTLE BEFORE STARTING NEM SUBTASKS.' 

• SMART TUTOR: 'YOU HAVE SUCCESSFULLY COMPLETED THE SUBTASKS OF DRAWING A 
TRIANGLE AND SQUARE. HOWEVER, YOUR TRIANGLE IS INSIDE THE SQUARE NOT 
ABOVE IT. CORRECTING THE INTERFACE BETWEEN THE SQUARE SUBTASK AND %. 
TRIANGLE SUBTASK WILL FIX THIS.' 



the AI work has now shifted to modelling this tutor/student 

interface. 

4.0 CONCLUSION 

In closing, it is worthwhile to review a central human 

factors problem: 	the division of labor between human and 

machine in human-machine systems. 	In any well-designed 

system, tasks are allocated to those components best suited 

to perform them. Textbooks on human factors engineering 

typically state that machines tend to be superior to humans 

in such tasks as calculation 	and coordination of many 

simultaneous activities. 	Conversely, they state that humans 

tend to excel 	in such tasks as problem solving where 

originality 	is required, pattern recognition, and decision 

making based on incomplete or conflicting data 	or when 

unlikely or unexpected events occur. 	Thus, these guidelines 

would allocate responsibility for calculation to the 

machine, but leave the human responsible for recognizing 

patterns in the results of those calculations. 

As 	artificial 	intelligence continues to 	progress, 

machines will begin to achieve superiority over humans in 

many aspects of tasks traditionally assigned to humans. 

This might lead to speculation that research on 

human -machine interfaces may be unnecessary, since the need 

for the human component will disappear. For certain kinds' 

Of menial tasks presently performed by humans, this line of 

82 



HUMANS ARE BETTER AT: 
	

MACHINES ARE BETTER AT 

PATTERN RECOGNITION 

APPLYING ORIGINALITY IN SOLVING 
PROBLEMS 

MAKING DECISIONS BASED ON 
INCOMPLETE OR CONFLICTING DATA 

MAKING DECISIONS WHEN UNLIKELY 
OR UNEXPECTED EVENTS OCCUR 

ACCURATELY AND RAPIDLY PERFORMING 
: COMPLEX CALCULATIONS 

COORDINATING AND PERFORMING MANY 
SIMULTANEOUS ACTIVITIES 

: PERFORMING ROUTINE OR REPETITIVE 
TASKS 

MONITORING 



reasoning is probably sound. However, it is our expectation 

that as work in artificial intelligence and human factors 

engineering continues to advance, the nature and power of 

the human-computer interface will become more critical and 

sophisticated. The art and science of interface design will 

never become obsolete. Obsolescence is faced only by our 

traditional task-allocation guidelines. 

This paper has described two examples of research 

projects in which AI and human factors specialists have 

collaborated. From these projects and others like them, we 

have learned to stop thinking in terms of separate 

disciplines 	that 	merely 	benefit 	from 	cooperation. 

Particularly in the design of "intelligent interactive 

systems, -  the borderline between these two fields has 

blurred in our eyes. Human factors specialists are learm'ng 

to exploit the tremendous benefits for the human component 

made possible by more intelligent software components; AI 

specialists are learning to write software that is sensitive 

to the needs, capacities, and limitations of the human 

component. Due to this kind of synergism, the well-designed 

human-computer interface can become a link between the 

creative thoughts of men and machines, contributing to a 

technological revolution that offers to do for the human 

mind what the industrial revolution did for human muscle. 

84 



5.0 REFERENCES 

Barr, Avron, Marian Beard and Richard Atkinson. 	The 

Computer as a Tutorial Laboratory: the Stanford BIP 
Project. International Journal  of Man-Machine Studies ,  
8, 1976. pp. 567-596. 

Burton, R.R. Semantic Grammar: 	An Engineering Technique  
for 	Constructing 	Natural 	Language 	Understanding  
Sustems,  BEN Report No. 3453, 1976. 

Chapanis, A. Man-Machine Engineering. 	Belmont. California: 

Brooks/Cole, 1965. 

Chapanis, A. Interactive human communication. 	Scizntific  
American.  1975, 232(3), 36-42. 

Ford, W. R., Weeks, G.D., S Chapanis, 	A. 	The effect of 
self-imposed 	brevity 	on the structure of dyadic 

communication. The Journal  of Psucholoqu,  1980, 104, 
87-103. 

Goldstein, Ira. 	Understanding Simple  P cture Programs.  
Massachusetts 	Institute 	of 	Techn(logy Artificial 
Intelligence Laboratory, Technical Report ?'77, 1974. 

McCarthy, John, et al.. LISP 1.5 Programmer's Manual. 	MIT 

Press, 1965-6. 

Michaelis, P.R. Cooperative problem solving by like- and 
mixed-sex 	teams 	in 	a 	teletypewriter mode with 

unlimited, self-limited, 	introduced 	and 	anonymous 

conditions. 	JSAS Catalog  of Selected Documents  in 
Psucholoou,  1980, 10, 35-36 (Ms. No. 2066). 

Michaelis, P.R., Chapanis, A., Weeks, G.D., 	and Kelly, 	M. 

J. 	Word usage in interactive dialog with restricted 

and unrestricted vocabularies. 	IEEE Transactions  on 
Professional Communication,  1977, PC-20, 214-221. 

Miller. Mark. 	"A Structured 	Planning 	and 	Debugging 

Environment for Elementary Programming." International  
Journal  of Man-Machine Studies.  January 1979. 

85 



Minsky. Marvin. 	"Matter, Mind, and Models." Proceedinas of 
International Federation of Information Processing, 
1966. 

Newell. A., $ Simon, H.A. Human Problem Solving]. 	Prentiss 
Hall, 1972. 

Papert, Seymour. Mindstorms. Basic Books, 1980. 

Sacerdoti, Earl. 	A Structure for Plans and Behavior.  
Publisher???, 1975. 

Schank, R.C. Conceptual Information Processing. New York: 
Elsevier, 1975. 

Sussman, Gerald, A Computational Model of Skill Acquisition.  
Massachusetts 	Institute 	of 	Technology Artificial 
Intelligence Laboratory, Technical Report 297, 	August 
1973. 

86 



OVERVIEW OF SELECTED DISPLAY FORMATTING 
AND CLUTTER REDUCTION TECHNIQUES 1 ' 2  

Franklin L. Moses 
Human Factors Technical Area 

US Army Research Institute for the Behavioral and Social Sciences 
Alexandria, VA 

System and software designers for graphic applications have a real 
dilemma. Designers often are given the type of symbols to be displayed, 
the amount of information to be portrayed, and the hardware to be used. If 
they cannot change the symbols, reduce the data, or replace the hardware, 
what can be done to make a display speak to the user with the clarity 
desired? One solution is to format the information so that the display is 
compatible with the user's perceptual abilities and task requirements. 
The essence of such formats is to highlight information relevant to a task 
and thereby make it stand out from the irrelevant information. 

The goal of creating "good" displays is to present information so that 
user needs can be satisfied quickly and efficiently. However, one problem 
created by adding more information to a display screen, even if it is rele-
vant to the user, is generally called clutter. For the sake of discussion, 
clutter exists when the extraction of information from a display is hindered 
by the density or similarity of symbols. A number of alternative formatting 
techniques can be suggested to reduce clutter. Of course, some methods 
will work better than others, depending on the situation. 

Although the examples of formatting in this paper all relate to Army 
applications, the principles should easily generalize. Army representations 
of the battlefield illustrate a classic problem for displays: or users 
try to display more information, they end up extracting less due to clutter. 
Formatting guidelines are needed to help reduce the clutter problem. 

Formatting Situation Displays 

Figure 1 is a typical, albeit ficticious, Army battlefield map. Anyone 
who has seen a real one will recognize this one as a severely stripped down 
version. It shows only the most essential information: terrain (mountains, 
rivers, roads and forests); the unit type (artillery, infantry, armor); and 
the unit sizes (division, brigade, and battalion). Yet, it already is clut-
tered. Consider the time and effort that a person would need to compare the 
number of armor, artillery, and infantry units, even on such a simplified 
display. Alternative formats using the same symbols and the same information 
can help to make such tasks easier for the user. Several suggestions, based 
on Army Research Institute (ARI) work, should allow more information to be 
meaningfully displayed without adding hardware costs or decreasing user 
performance. 

lAn earlier paper by Leon H. Gellman (currently at Sarah Lawrence College, N.Y.) 
was presented at the US Army Second Computer Graphics Workshop, Virginia Beach, 
VA, September 1979, and used as a basis for the current report. 

2The views expressed by the author do not necessarily reflect the views of the 
US Army or of the US Department of Defense. 

87 



XX 

I 

xx 

! i 	x 
F--- o 

_ _ .... _ _ 

	

N \ 	
r 	, 1 to 

.......___...„,: .. 
, 	 ,...,  ,‘ 

	

__.......„,- 	, ---._.D. 	,,. •r.„....,._.......,,,____,, 	_____: 	, 	. 	, ,-,..,,,,.._____, 	_ 	,,..., ... 	.•......... •  ,.......  

	

.‹.,,,....„... 	r 	. ,....:•..,...!-,,,•-,,,,,  —...„,,.,.....„:,, 	. 	.4;.., 
.,-i -,,,....,...-Le., _,„,,,--_,..,,,,,,-.„-:.;.:-..,,,.,.::,,--,,,,, r.,... 	...-. rci 

 
, —A-- 	 : - . N e .f y',..- c,c ;• 

X Y. 

/ 	• 
/ • 	// 

L\2:j" , I 	 

Q 

xx 

x x 
x 

X 

v 

(-;-1 

xx 

• 17: 

 

 

• . 

FIG. 1 

88 



Redundant Codes  

The first formatting technique to be discussed is based on the re-
search of Vicino, Andrews and Ringel (1965). They doubly or redundantly 
coded information on a battlefield display, thereby allowing users two 
chances to find the information. Redundant coding takes information which 
is already on the display and repeats it in a salient code that helps the 
user to organize the display. For example, Figure 2 presents the map with 
redundantly coded unit symbols. The code is the heavy broken line for 
artillery, the heavy rectangle for armor and the heavy X for infantry. 
There is no more or less information here; rather, there are two ways of 
identifying the units. The double code has been used to maximize the saliency 
of unit types making similar units seem to stand out together. When 
Vicino et al. used this technique, they increased the speed of information 
extraction by 97% when compared with a single code. Redundant codes will 
not necessarily increase processing speed this much in all situations. 
However, processing should be easier and the cost of such formatting is 
minimal. Redundant coding can be done with any number of stimulus dimensions 
such as blinking, size, intensity and color. 

Sequential Formats  

Sequential Presentation by Topographic Segments. So far, the discus-
sion has centered on using codes to organize display content. If a display 
has to show a lot of detail, then a second type of format, called sequential 
presentation, organizes the information by breaking it up into component 
parts. This is accomplished by showing information in segments over time. 
Sequential presentation reduces clutter by showing less information per 
screen and, for similar reasons, it increases the amount of detail that users 
can see. The technique is particularly useful for showing standard topo-
graphic information that easily exceeds state-of-the-art display resolution 
capabilities. 

Sequential formats require users to depend on their ability to inte-
grate information over time. Thus, an important formatting question con-
cerns whether to display segments of an entire map by scanning them or by 
sequentially presenting static (i.e., discrete) views. Based on an ARI 
experiment by Moses and Maisano (1979), static views with overlaps of 
around 25% are more efficient for users than continuous scanning methods 
of sequential map presentations. When resolution and clutter are serious 
problems, sequential presentation should be considered as a solution. 

Sequential Presentation by Data Dimension. The final formatting 
technique to be discussed is also a sequential presentation method, but 
this one displays information by data dimensions. The idea is once again 
to segment information. This is accomplished by presenting a limited num-
ber of data dimensions simultaneously while removing other information from 
the screen. Of course, questions such as how many separate data dithensions 
can be shown per screen and what is the effect of user control over selection 
of dimensions need to be considered. These and other inquiries about sequen-
tial presentation are topics for possible future investigation at ARI. 

89 



FIG. 2 

90 



Summary 

This paper discusses the problem of putting too much information on 
a display and outlines four formatting techniques which may alleviate 
some effects of clutter. The suggested formatting techniques are only a 
few of many methods available to the graphic system designer. The question 
that remains is: Which format should be used? The answer can only be found 
by determining the format that optimizes task performance for display users. 
Clearly, none of the recommendations made here will provide an unconditional 
solution to graphic problems. However, it is incumbent upon the designer 
and programmer to use every trick at their disposal to provide graphics 
which have the impact and clarity commonly believed possible. The Workshop 
presentation will consider this goal in more detail along with some guide-
lines for attaining it. 

References 

Moses, F.L. and Maisano, R.E. User Performance Under Several Automated 
Approaches to Changing Displayed Maps. ARI Technical Paper 366, 
June 1979. 

Vicino, F.I., Andrews, R.S. and Ringel, S. Conspicuity Coding of Updated 
Symbolic Information. APRO (now ARI) Technical Research Note 152, 
May 1965. 

91 



FORMAL GRAMMAR REPRESENTATION OF MAN-MACHINE INTERACTION 

Phyllis Reisner 
IBM Research 

5600 Cottle Rd. 
San Jose, CA 95193 

End users communicate with a computer system by using a language. The 

language might be, for example, a query language, a natural language, or 

an 'action language II - a sequence of button presses, typing actions, 

cursor or lightpen actions, etc. These user input languages can be 

represesented in the same way as any other language - by a formal grammar 

which shows the permitted strings and also shows the structure of the 

language. 

The work to be described in this talk attempts to use a formal description 

of the user input language as a design tool to improve the ease-of-use of 

a man-machine interface. The talk will first describe earlier work, which 

uses a BNF-like grammar in the context of a color-graphics system for 

making slides. It will then discuss current work using a formal grammar 

to describe text editing. The current work is first attempting to make 

some of the concepts introduced informally in the earlier work 

sufficiently precise that people with a variety of backgrounds can use 

them. 

The field of human factors, which attempts to measure and improve the 

ease-of-use of products, is largely experimental. It uses techniques of 

behavioral science as its primary methodology. The intent of the work 

with the color-graphics system was to demonstrate that a formalism could 

92 



be applied in this area which is usually considered soft, or even ad hoc. 

The intent was also to explore the possibility of using the formalism to 

compare alternative designs for ease-of-use and to located design flaws 

that might cause user problems. We wanted to see whether a tool could be 

developed that had some predictive potential. One problem with the usual 

behavioral approach to interface design is that it must frequently await 

the existence of a prototype or working model. We wanted to augment this 

approach with a more analytic one. 

The color-graphics system, ROBART, existed in two versions, ROBART 1, 

which was designed without explicit attention being paid to ease-of-use, 

and ROBART 2, a redesigned version with the end-user a major focus of 

attention. It was an experimental, interactive system for creating slides 

for technical presentations. It was intended to be used by people without 

computer training doing non-routine tasks. The function available in both 

versions was essentially the same, but the design of the human interface 

differed. 

To explore the issues discussed, the " action language" of the first 

version was described, using a BNF-like notation. (In this action 

language, the user selected colors by dipping a cursor into a paintbox of 

colors on a CRT screen by using a joystick, selected shapes such as lines, 

circles, rectangles, etc. by verious combinations of switch selections 

and button presses on an external switchbox, indicated the location and 

orientation of the shapes by combinations of cursor positioning and button 

presses. It was also possible to type textual material on the screen, in 

color). Portions of the action language for ROBART 2 were also described, 

93 



also using the BNF-like notation. 

The next step was to make predictions, from these formal descriptions, 

about very specific differences in the ease-of-use of the two versions, 

and then to test the predictions to see if they were in fact 

substantiated. The goal was to see if formal grammar could be used as a 

predictive tool and if the predicted differences were indeed measurable. 

This did indeed turn out to be the case. Among others, we predicted that 

the action of selecting shapes would be more difficult in ROBART 1 than in 

ROBART 2, for each of the shapes available. We also predicted that users 

would make a particular error in "initiating" shapes (the first action to 

indicate location and orientation) in ROBART 1 and would not make an error 

in the same step for ROBART 2. Since the same error was not expected to 

occur in ROBART 2, we felt that the problem would indeed be attributable 

to the interface design and was not inherent in the function itself. 

In an exploratory experiment with temporary office workers, the 

predictions were in fact substantiated. 

Current work, in the context of text editing, is first attempting to 

clarify some of the concepts and techniques used in the above work. The 

concepts were intuitive, but not precise enough to develop into a design 

tool to be used by a variety of people with different backgrounds. For 

example, we introduced the notion of a "cognitive" terminal symbol, since 

we thought that what the naive user has to learn and remember will be of 

major importance in the ease-of-use of a system he uses intermittently. 

94 



This notion clearly needs to be made more precise. We also used a 

quasi-automatable technique for locating structural inconsistencies in 

the language. We expected these structural inconstencies to cause users to 

make mistakes. Neither the notion of "structural inconsistency" nor the 

technique have been made explicit. These and other related issues will be 

discussed. 

95 



A RULE BASED HELP SYSTEM FOR SCRIBE 

ELAINE RICH 

AARON TEMIN 

26 February 19b1 

96 



People need access to help it tney are going to use complex 

computer systems effectively. Tnere will not always oe other 

people or even manuals arouno to help them, So we.need tne 

computer itself to be able to provide the nelp its users need, 

This is not a new argument, See, for example , (Pirtle 68], 

The extent to which anyone can help someone else is limited by 

the depth of the helper's own knowledge, So if computers are 

going to help people, they must nave a great deal of knowledge 

about wnat tney do, 

but tne usefulness of help Information to a person seeking help 

is a direct function of the extent to which the information 

answers the specific question the user had, So simply dumping an 

entire manual or ever large chunks of it on a user every time he 

asks a question is useless, 

People who need help are missing some information about how tne 

system works, So they cannot be counted on to describe their 

problem in terms of specific system commands so that the relevant 

parts of toe manual can be found and fed back to tnem, ('Ibis 

precludes simple keyword based help systems such as (Shapiro /SI 

or [Kehler 80)0 

These obvious tects force us to the conclusion that to provide 

a good interactive help facility will require a large data base 

of knowledge about the operation of the system in question, Tnis 

data base must he structured in sucn a way that it can be 

accessed from descriptions at a variety of levels about what the 

program did and what the user wanted. To investigate the issues 

97 



raised by such constraints, we are building a help system for the 

docuient formattihe program Scribe (Reid eel, 

The knowledge base used ny tne system is a set of rules that 

describe Scribe's oenavior at a variety of levels, Too level 

rules describe the behavior of tne system in terms of fairly high 

level functions, ether rules then describe those functions in 

terms of lower level functions, and so tortn, we plan initially 

not to try to provide roles that describe Scribe down to the 

lowest level, at wnich individual characters are placed on tne 

page, This will of course limit the ability of the system to 

answer ouestions about thdt aspect of the system's performance. 

auk tnis Is analogous to tne situation that occurs with human 

consultants, There comes a point where, unless they are familiar 

with tne details of toe code of the system, they simply cannot 

answer a question. This rule based, successive decomposition 

approach, however, orevents us from being locked 	into 	a 

Particular level of oescription. New rules that provide 

additional levels of lescriotion can oe added at any time, 

Each rule in the system contains a left side that describes 

when it can he invoeed, and a right side that describes the 

sequence of actions that will result' The left side consists of 

two parts, a command or a piece of the inout file, which tries to 

trigler the rule, and a list of auxiliary conditions that must be 

met in order for the rule to he aole to be invoked, For example, 

the following rules describe how Scribe orocesses the eref(arg) 

momano, which substitutes for the String "eref(arg)", the 

reference indicated by tne string erg, (Commands to Scribe are 



signalled by the character "@",)t 

1 	Rret(arg) and looKupsymboltaple(arg) NKu U -> 
send(maintext, looKupsymPoltable(arg)) 

2 	lOref(arg) and looKupauxtile(arg) N,EO 0 
send(maintextflooKupauxfile(arg)) 

3 	Oref(arg)-> 
send(maintext,(0c(arg)) 
send(errorfile,"undefined reference",arg) 

The order of tne rules in the data base reflects the order in 

whicn Scribe checks for things. In this example, Rule i says 

that if tnere is d ref command with a particular argument and if 

there is an entry in the internal symbol table indicating a 

previous definition of that argument, then print in the output 

the apPropriate value as indicated by the definition, Otherwise, 

if there is a definition of the argument in the AUX file (a file 

containing the symbol table that was built tne last time Scribe 

processed this tile) then use that definition. If there was no 

definition in either place, then simply insert into the text the 

string that was the argument to ref, but capitalize it. Also 

make a note of this error in the error log file. 

The actions indicated by these rules are fairly hign•levele 

They indicate that text should be placed in output files, 	They 

do not indicate how, 	They do not specify such things as the 

margins or the type font to be used, Those things are specified 

in the rules that describe the operation of the send function, 

Some of the actions, such as send, can only oe generated by the 

operation of otner rules. Others, such as ilc(text), could also 

have occurred in the input file. the fact that tne Scribe system 

99 



is very well structured makes it easy to describe tne operation 

of one function in terms of a well detined set of other 

functions, This one-steo-at•a ■ time description is very important 

for the generation of responses to user's questions, No one 

wants a hit level answer to every question they ask. People 

usually want a gescriPtion in terms one or perhaps two levels 

nigher or lower than tne level at which they asked the question. 

The set of rules provides a static description of the way 

operations in Scribe are performed in terms of other, lower level 

operations. As scribe executes, it builds a separate 

hierarchical structure that reflects the block structure of toe 

specific document tnat is oeinq Processed, For example, a 

document coulo contain tne sequence: 

@begin(nuotation) 

Obeqin(itemize) 

olehd(itemize) 

@end(quotation) 

The quotation environment specifies that the margin should he 

moved in and that the text should be printed sinole spaced. The 

itemize environment specifies tnat the margins snould be moved in 

and that paragrapns snould be numbered. Tnese specifications 

nest, so tnat the margins inside tne itemize will be narrower 

than for the rest of the quotation, which will be narrower than 

the surrounding text, 

o answer a user's questions, the help system will match pieces 

of tne user's question against pieces of rules, and use unmatched 

100 



pieces of toe rules or patterns of chaining through the rules as 

answers to the ouestions, eany questions can oe answered oy 

referring only to the static description of Scrioe's operation, 

However, when ra uuestion refers to something specific tnat 

napoened at a particular point in tne user's file, it may be 

necessary for the help system to build a piece of the dynamic 

tree, mirroring that o'iilt dv Scrioe during execution, so that it 

will no enough context to be aole to identity the rules that 

were ap;)lied. 

One of tne most COwnlon types of questions a help system must 

answer is "hy lid X occure, This usually means tnat the user 

expectel that something else would occur. To answer such 

.questions, the help system finds tne rules wnose right hand sides 

specify the effect the user has descrioed, bet's assume, for 

simplicity, that there is exactly one such rule, Now a 

superficial answer to the question is simply to state the left 

side of tnat rule. 	3ut much o f what is there is usually 

redundant. 	For example, the user knows wnat command he 

specified. ,chat the help system will do is to compare the rule 

it tound to others wnose lett sides are different. The 

ditferences in the left sides are the soecific reasons why the 

observed effect occurred, rather than some other, So, for 

example, if the user asKs why his ref command resulted in the 

label and not tne thing to wnich it referred being Printed, the 

system observes that tnts happenea because the label was not 

Previously deUneo. It concluded this by comparing Rule 3, the 

one tnat describes what Scrioe cli, to Rules 1 and 2, whicn 



describe whit 	tt 	would live done if tnin:'s hart been slightly 

different. 

Soptimes there )P\i ae a areat many rules wnose lent sides 

aimr)st fatch the selected rule. It may teen he necessary for the 

heloer to ask tnr user what he expected to have nappen. Then 

only toe rules wod5e riont sides watch that expected action need 

to b considered, ideally the systed. would maintain a hood model 

of tne user so tnat such muestions would rarely need to he asked. 

Soetimes general Knowleope aoout the way people use the system 

sill helP here, kor exar.ple, veople usually expect some fairly 

direct connection pet*een tne comands tney issue and the results 

they see. Yoey rarely expect a coml)and to he a no-op. Out there 

will always be times *nen an inoivtadal has an idiosyncratic 

misunderstanding of the system and nothing short of a direct 

question *111 Point tnis out. For tnis reason, tne Process of 

answering A question *lust ie thought of as a dialogue rather tnan 

as a one-shot ouestion and answer, 

Ahotner common type of question is what 4enesereth IGeneseretn 

1H] calls the "owdo" question. For examPle, "; -low do I get my 

footnotes to come out at the end of my document rather than at 

the end of each, oaqe?", dowdo ouestions are answered oy matching 

the user's descrintion of what ne wants to do against the right 

siUes of tne rules to find tnose that can produce the desired 

effect. If tnere are more tnan one, teen the choice among them 

will oe 70ade my considerind such thinos as the complexity of tne 

constructs involved and the user's level of exrertise *ltn the 

system. Tne left side of the chosen rule describes what is 

102 



necessary to accomnlish the desired effect, Hut it may contain 

conditions that tne user cannot svecify directly. So the help 

system mast chain backwards through the rules to t.ind the 

commands that will cause those conditions to be true. 

Yet another common type of tnouiry is the "what is the 

difference betv'een" question. For example, a Scribe user might 

ask, "wnat is the difference between the itemize and enumerate 

commands?". These questions can oe answered easily by this kind 

of rule based system without navinq been anticipated in advance. 

It need merely find the rules that describe tne operation of earn 

command by matCninp againSt left sides, in the simple case, 

there will be one rule for each and the answer to the question is 

simply a list of the differences uetween tne corresnonoing right 

nand sides. In more complex cases, it will De necessary to 

compare left nand sides also to determine the effect of various 

other factors on tne operations of the two commands, 

one of the most common situations in which users asK questions 

is wnen they rave rotten some Kind Of error message from the 

system. Ialkinq ahodt such errors is easy for a rule based 

system. 'Ole rules describe all the things the system can do and 

the situations in wnicn It will do them, Errors no not need to 

be represented explicitly. They are implied by the absence of 

rules. If the user wrote a comwand X and there are no rules for 

command X whose otner DreconditionS were satisfied at the tine 

the command occurred tnen an error will arise. me system can 

explain the error oy corvarina tne existing state to the reauired 

preconditions and reporting the differences. This is extremely 

103 



ti usefJ1, since for a complex syste the number of Possible error 

configurations can ne very large and it would oe very difficult 

to Lave to oescrine esco of them explicitly. 

A 000d ne10 system must tailor its responses to the needs of 

inotolauai users, 	In this it is no different from other 

interactive systems 	leicn 791, one way to represent a model of 

a Scribe user skr.ad be as a set of rules, presumsoly a sunset, 

oossioly wit' errors, of the rules that tne system knows, 	sitn 

such a model, some question Aoulo ne very easy to answer, 	For 

exar, h1e, 	wry questions coulo re answere• ray comoaring the user's 

rules inainst the system's correct rules to find the difference 

and report it. Tills technique was sugoested by Burton and brown 

(hurton lol as a Aay an intelligent CAL system coulo discover 

inIqS in a student's knowledge. 	out it is unreasonaol.e for a help 

systor• 	to maintain sucn d massive amount of information about 

each user. 	Instead, we propose to recori a very small number of 

facts aooat each,  user, such as a measure of nls expertise with 

VIP system, k,ach of tne ()elects used in the system will have-

asseciatel with it some properties, some of which can oe matcneJ 

against user characteristics to determine tole appropriate rules 

to use in gereratino a response to tne nuestion, So, for 

examole, commands will oe markea as simple, intermediate, or 

advalced, utnor factors tnat should be included in the model of 

each user are ris inclination toward neinq a hacker ti.e. goes he 

want to learn fancy new conmanus or does ne want to Know a way to 

get my With the chands ne Knows?) and nis familiarity witn 

colleuter science conceots (such as olocK structure, one pass 

104 



system, symool raoles). 

Une of the maior advantages of this rule hased representation 

of tie Kno4ledoe reiutred oy an intelligent helper is that it 

mirrors the structure of the system for which the help is being 

Provided. ( 1)r least it foes it the system is well 

struorureii) 	This suggests that the top down process of writing 

the rules could 'oe used to produce a well structured program 	no 

its help syste simultaneously. le would liKe eventually to try 

to build an entire system tnis way. 

105 



REFERENCES 

[Burton 7t,1 6urton, Richard & %Ann Seely brown. 
' Totorir.g and Student modelling Paradigm for 

Gaming Fnvironments 
In iLQC. at taw Suaaosiam oa Camoutaz Sclaage and 

idliACAL402. 1976. 

((;eneseretn 
i.enesereth, micnael. 
Autawatea Caasaltaticia Loa CGaalaY Caaaatet 

awatems. 
rnI) tiesis, Harvard, 1978. 

(Kehler 601 	Kehler, T. P. k m, Barnes. 
Alternatives for On-line Heir,  Systems, 
In 2r0C. dtla ACZ 5=1CC user SCLUICES Coatazaaca. 

1960, 

(Pirtle t81 	Pirtle, melvin, 

in Caaitersalioaal Caaautaxl, 	John 04iley ti, Sons, 
OrK, 1968. 

(keiri 801 	4\eid, ;';rian, 
SaLiba: A Jacuaaat Saacitiaaticaa Laaaaaaa aa4 its 

Camallac. 
Pn.) tnesls, Carnegie-mellon, 1980, 

(Rica 191 
iser moaeling via Stereotypes, 
Caaaltiaa Salaaca :329 - 354, 1979. 

(ShaPiro 75) 
	

Soaplro,Stuart & Stanley Kwasny, 
Interactive Consulting via Natoral Language, 
CW1311.111iCALiO44 04, t08 AGVI :459..463, August, 1975. 

106 



Models for the Design 
of Static, Software Systems 

M.L. Schneider 
Sperry Univac 

Blue Bell, Pa 19424 

1. INTRODUCTION 

One of the "axioms" for ease-of-use is: "Help systems are necessary" 
(Clark 1980). While an increasing number of of software systems 
provide some form of user assistance (Relies 1979), the information is 
usually provided without regard to its useage. In general, assistance 
is nothing more than an "electric reference manual." 

When factoring exists, it usually consists of a layered approach; the 
user can request additional details about a specific topic. This 
addresses the problem of verbosity, but only indirectly considers the 
expertise level of the requester. 

This paper proposes cognitive factors that may impact information 
factoring: different levels of user sophistication (the User Taxonomy) 
and different segments of task performance (the Transaction Taxonomy). 
The interaction between these two taxonomies can provide guidelines 
for improved static information factoring in assistance systems. 

2. USER SOPHISTICATION TAXONOMY 

The developmental levels of computer language acquisition defined in 
this taxonomy are 

1. Parrot 

2. Novice 

3. Intermediate 

4. Advanced 

5. Expert 

Each level is characterized by skills in language production: item, 
field, or statement chunking; breadth of language scope; and degree of 
generalization or abstraction of concepts. The change in system 
knowledge is manifested through an increased competence in the 
commands that are regularly used and an awareness of additional 
functions available within the system or language. 

107 



The basis for this taxonomy arises from qualitative observations of 
computer usage in a wide variety of software systems and the 
relationship between the observed computer productions to those 
observed in the natural language development. This taxonomy describes 
an individual's expertise or sophistication in a single software 
system or language (or subset thereof) and may not be transferable. 
The level at which an individual stops progressing appears to depend 
upon a number of factors related to the learning of complex tasks and 
the demands placed upon the person by the task requirements. 

2.1. THE PARROT 

An individual at the lowest level in the taxonomy, the Parrot, has 
minimal knowledge of the computer system. The Parrot approaches the 
computer system and types commands. This individual does not think, 
question, understand, or synthesize the commands. These commands, or 
sequence of commands in some cases, may be moderately complex. 
Satisfaction is derived simply by having the computer perform the 
task. 

When the question "What am I doing?" is asked, the Parrot is ready to 
progress to the next stage of sophistication: the Novice. 

2.2. THE NOVICE 

With experience, a user begins to understand several isolated concepts 
and is able to choose a specific lexical entry (command) for a 
function. The user is required to know specific but not complex 
information. Semantically, the items are considered in the concrete, 
not in the abstract. The Novice may ask, "What does this command item 
do?" not "What can it do?" By now, the user has a minimal command of 
the grammar, but is only able to operate on an item-by-item basis. 
For example, the Novice may recognize a verb and one or more objects 
in a command, even if the grammar allows modifiers in the verb phrase 
or in the object phrase. 

Unlike the Parrot, the Novice analyzes each item, thus extracting 
lexical information. The language components now have meaning and can 
be used in a flexible manner. 

2.3. THE INTERMEDIATE 

The Intermediate is a level between the Novice and the Advanced user. 
Whereas the Novice concentrates on items in isolation, the 	• 
Intermediate operates with items in fields and with fields in 
statements. A statement now becomes the primitive conceptual unit. 
The use of a larger chunk encourages syntactic and semantic 
conciseness in the grammar, allowing the user to minimize keystrokes. 

1 08 



At times, the Intermediate user may link statements into command 
"chains" such as compile...collect...execute. Even so, each command 
is still considered in isolation. The user generally waits until a 
function has been completed before proceeding to the next request, 
wishing to see the result of a command before continuing with the 
task. 

The Intermediate begins to concentrate on the task rather than its 
components. Use of the full language may be restricted by a lack of 
knowledge. Thus, the Intermediate continues to expend significant 
effort on language details. At this point in the user's development, 
the more subtle grammatical rules become evident. A Novice would use 
a default, unaware of the fact that an item can be specified. An 
Intermediate would consciously use a default in order to reduce 
keystrokes or save time. Initially the Intermediate uses knowledge in 
a specific problem domain. Later, this information is generalized, 
allowing new problems to be solved. 

Toward the end of the Intermediate level, considerable skill in the 
understanding and manipulation of a segment of the command set has 
been achieved. With the increased use of larger syntactic chunks each 
requires less attention. This is the process of automatization. 
Thus, increased attention can be given to the entire task, rather than 
to the mechanisms required for its performance. 

With further experience and increased' task requirements, the 
Intermediate can evolve into an Advanced user, subordinating the 
computer language to the task. 

2.4. THE ADVANCED USER 

Whereas the Intermediate attempts to solve problems via a series of 
isolated commands, the Advanced user realizes that an interconnected 
collection of statements can be more productive for certain tasks. At 
this level a program or procedure, rather than a single statement, 
results. Because commands are now interrelated, the scope of the 
syntax and semantics expands. The syntactic elements are abstract 
rather than concrete. Data structures provide the vehicle for 
producing abstract objects. For example, a variable would be used to 
represent a filename or a string. The Advanced user continues to 
retain the command, together with other defined procedures, as 
language primitives. 

Control structures are useful if the direction of flow between 
statements is to be modified. Using these structures requires a 
modification of the user's thought process. A Novice or Intermediate 
user may not foresee the success or failure status of a command as an 
object on which operations are defined. An Advanced user thinks about 
the possible outcomes of commands and has the ability to take 
appropriate action. While Novice and Intermediate users operate with 
concrete syntactic constructions, existing with in a specific, 
restricted semantic scope, the Advanced user expands his language 
knowledge to cope with complex structures and abstractions. 

109 



Practically speaking, the Advanced user has the ability (though not 
necessarily the need) to accomplish any function within the system. 
The Advanced user is completely facile with the language and can deal 
with the language at the global "metalinguistic" level. 

2.5. THE EXPERT 

The Advanced user has the ability to use the language with relative 
ease. Since any computer language is restricted in scope, it can 
limit a user (fc example, the inability to have abstract data types 
in FORTRAN 77). The Advanced user, knowing the scope of the language, 
is constrained when faced with a new problem whose solution cannot be 
derived from existing functions or objects within the system. The 
Expert transforms this finite system into a generative one. When 
faced with the above situation, he creates, not derives, a new 
syntactic element within the system. Thus the Expert expands the 
existing system, creating new objects and functions. 

3. TRANSACTION TAXONOMY 

While the sophistication level of the 'iser is important, it is 
necessary to know how a transaction is processed in order to acquire 
additional assistance information. A transaction is defined as the 
task contemplated by the user (For example: writing a program, 
"checking-in" an airline passenger, or performim a data base query). 

The five stage transaction taxonomy shown below builds upon a simple 
taxonomy (command and data input, processing, and system output) by 
expanding the first operation, input, into its semantic and syntactic 
components as suggested by Shneiderman (Shneiderman 1979). 

STAGE 	 ACTION 

	

I 	 Task Analysis 

	

II 	 Semantic Analysis 

	

III 	 Syntactic Analysis 

	

IV 	 System Performance 

	

V 	 Response Analysis 

3.1. STAGE I -- TASK ANALYSIS 

In the first stage the user decomposes a single conceptual task into 
its component subtasks and determines the specific commands required 
for task completion. The user asks the question, "What steps and 
commands are necessary to perform the overall task?" For example, 
running a program (the single conceptual task) may require the 
following subtasks: editing, compilation, collection, and execution. 
It is possible that more than one step can be included within a single 
command (for example a compile-load-go) or more than one subtask is 
required within each subtask (for example operations with the editor). 

110 



The cognitive processes at this stage may include all or some of the 
following steps: 

1. Identification of the full task. 

2. Decomposition of the task into its subtasks or steps. 

3. Definition of the conceptual operation for each step. 

4. Choice of the appropriate command for the implementation of 
each step. 

It should not be assumed that all commands will be chosen at the 
outset. It is highly probable that an individual will determine the 
conceptual operation for the first subproblem, choose an appropriate 
command, perform it, assess the result, then progress to the next 
conceptual operation, the choice of which may be influenced by the 
result of a previous task. 

Once the conceptual operation has been defined, a user may wish to 
examine the set of commands for its implementation. It is possible to 
relate commands and conceptual operations in two ways: define a 
conceptual operation for commands that are conceptually related, or 
its antithesis, to .extract from a conceptual operation its constituent 
commands. By iterating between these perspectives, it should be 
possible for the user):o determine a command that allows the 
conceptual operation fp be performed. 

A command subset of a hypothetical editor illustrates this iterative 
approach. Consider the command "LOCATE" (this searches the text 
printing the lines whenever a string occurs). The specific to general 
relationship would be: 

"LOCATE" 

 

>search 
print  

 

The general concept print may refer to a number of commands that, if 
successfully executed, print a line: 

print  

 

>"PRINT" 
"LOCATE" 
"FIND" 
"GOTO" 
"NEXT" 

 

If all commands of the concept search print a line, then the structure 
could be represented as: 

print  

 

>"PRINT" 
"GOTO" 
"NEXT" 
search 

  

  

->"LOCATE" 
"FIND" 

   

      

111 



A similar grouping can occur for "GOTO" and "NEXT". 

When explanations are provided (basic semantic information) within the 
above framework, the user can obtain the information in a unified 
manner. 

3.2. STAGE II -- SEMANTIC ANALYSIS 

In the second stage, the scope of the command is considered by the 
user. Upon entry to the semantic analysis, the command is conceptual 
in the broadest sense. Now it must be refined into its detailed 
semantic components. 

The question: "What do I want to do?" is asked by the user. The user 
must be cognizant of two semantic concepts: definition of the data and 
the control of the process. A sorting program illustrates the type of 
information considered by the user. A user must be aware of the data 
restrictions (eg. numerics only, alphanumerics, maximum number of 
items, maximum number of fields, etc.) and the method(s) of data 
storage or entry. In addition, information is required to control the 
processing (ascending, descending, key(s), collating sequence, etc.). 
At the semantic stage, it is unnecessary to know how to encode this 
information. 

3.3. STAGE III -- SYNTACTIC ANALYSIS 

When a user reaches the third stage, encoding the information, the 
correct function has been chosen and the semantics for task completion 
are understood. Now the question is, "How do I do it?" The 
translation of the conceptual operation into the input format is 
purely mechanical. The user requires syntactic information and 
techniques that facilitate this transformation. The form of the 
human-computer interface (command language, dialogues, menus, function 
keys, etc.) has a primary impact at this stage. 

3.4. STAGE IV -- SYSTEM PERFORMANCE 

System response, the fourth stage, can be treated as a "black box". 
The underlying architecture that supports the interface is outside the 
scope of this paper. 

3.5. STAGE V -- RESPONSE ANALYSIS 

The analysis and interpretation of the response produced by the 
software is the final stage of a transaction. The user now asks, 
"What have I done?" The primary goal of a response is to provide the 
user with relevant information. Unnecessary details that obscure this 
information should be avoided. Two independent topics should be 
considered: verbosity and information content (Schneider 1980). 



For example, if the task is to assign the file, MYFILE, there are a 
number of possible responses if it is successful (ordered by 
increasing verbosity and content): 

1. > 	(a prompt for the next command} 

2. READY 1, OK, COMPLETE,...} 

3. File MYFILE has been assigned. 

4. MYFILE assigned with the PUBLIC, and CATALOG options. 

5. File MYFILE has been assigned. It can be used by anyone 
(PUBLIC) and will exist for one day (CATALOGUED) unless 
otherwise requested. To keep the file longer than one day 
contact the file administrator. 

The last response is an example of layering. Three items of 
information have been displayed: 

1. The name of the assigned file 

2. The file attributes 

3. The administrative procedure required to keep the file. 

In a similar manner, it is possible to design a layered HELP function 
(a user initiated request for assistance). 

A eolim—n may not alwys trmir11-.2 suoees-;cully. 
meaningful error messages are important. Good error reporting shoulc-
provide sufficient information for the user to: 

1. Understand the nature of the error; 

2. Understand the source of the error; 

3. Understand the methods for recovery or correction. 

Again the questions of verbosity and information content are 
important. Verbosity may 	correlated with the number of times an 
individual has seen the message, while information content should he 
related to the levels in the user taxonomy and task requirements . 

4. INTERACTIONS BETWEEN TAXONOMIES 

The user and transaction taxonomies should not be considered in 
isolation. Based upon the sophistication level of the user, the 5eope 
of assistance may vary. Different segments of the transaction 
taxonomy need to be emphasized or deemphasized. The method of 
assistance presentation provided to individuals at different 
sophistication levels for the same transaction may differ. For 
example: 



C: FILE MYFILE HAS BEEN ASSIGNED 
u: attributes 
C: PUBLIC CATALOGED 
u: physical 
C: SIZE - 12 TRACKS. LOCATED ON D2734. UNFORMATTED 

In order to better understand the type of assistance applicable at 
each level of use, it is necessary to examine the requirements of 
users at each sophistication level. 

4.1. 	PARROT 

A Parrot operates in a simple "transcription mode." There ie no 
consideration of input variability. The best form of input assistance 
is an example or a single choice from a single level menu system. The 
latter is analogous to function keys. 	By careful design, either of 
these approaches can be extended to assistance forms suitable for a 
Novice. 

Only two basic responses can exist for the Parrot: the function 
completed successfully, or it was unsuccessful. 	If an unsuccessful 
response is provided, it can only state that the command was 
iacorrectly entered and should be entered again (a Parrot does not 
comprehend the command's contents). If the system is unable to 
perform the task at this time, it can be suggested that the user try 
letter. 	Sinee tisk ehmpletien is the rewird for suc-essEn1 eommend 
entry, this Informatien should always be provic 	to the user. 

Thus at the Parrot level there is only one type of input assistance: 
an example. 

4.2. NOVICE 

The Novice may not distinguish between the first three stages of a 
transaction (Task, Semantic, and Syntactic Analysis). Thus, these 
stages should not be differentiated if the user's perspective is to be 
reflected in the interface. The system should lead the user from the 
determination of the subtask(s), through the isolation of the correct 
command and the determination of its semantic components, to the 
encoding of the information. 

Once the user is reedy to provide data for the command, a number of 
techniques can be applied. As stated earlier, continuity between the 
first three stages is important; the user should he unaware of any 
distinct phase of the transaction. Since the traditional command 
format may be inapplicable to the Novice, menus could be used for 
stages I and II followed by a mixture of menus, dialogs, and 
"fill-in-the-blanks" for stage III. 

114 



This expands the_syntactic assistance to two levels: 

Assistance 	 Sophistication 
Type 	 Level 

Example 
	 Parrot 

Simplest Form 
	 Novice 

Irrespective of the technique, the computer should take the 
initiative; the Novice may not know what information is required, or 
even if it is available. Thus, it is incumbent upon the assistance 
system to announce its existence. Information for clarification, 
however, should be provided only upon demand. To do so automatically, 
may unnecessarily confuse or annoy the user. 

Responses, aside from providing information to the user, should 
indicate the successful completion of the command in a non-null form 
(something more than a prompt). A Novice, lacking confidence in the 
ability to control the system, may require this positive 
reinforcement. 

2.1. INTERMEDIATE 

Because the Intermediate is familiar with the system, the user, not 
the computer, should take the initiative. An individual at this 

sophistication level has the ability to decompose a task into its 
subtasks and determine an appropriate command (Stage I). Sice the 
components of the system are known to exist, even if not understoed, 
information should be factored into the following topics: command 
semantics, command syntax, and field or keyword semantics and synt! . x. 
Since individuals generally employ a subset of commands (Huckle 1930), 
assistance is still required for those used less commonly. 

Assistance in the semantic and syntax analyses (Stages II and III) 
require additional information. As a user gains experience with a 
command, defaults are better understood, overridden, or modified. 
Thus, the scope of the command perceived by the user is extended. The 
semantic and syntactic expansion of commands requires that two new 
levels of assistance must be added: 

1. The most common form of the command. This will occur when 
some commonly defaulted items are overridden. 

2. The command is used in its full form. This occurs when no 
item is defaulted. 

- Thus, the number of levels are increased to four: 

Assistance 
	 Sophistication 

Type 
	 Level 

Example 
	

Parrot 
Simplest Form 
	 Novice 

Common Form 
	

Intermediate 
Full Concrete Form 
	

Intermediate 

115 



When the. semantics_and syntax of a command are not complicated, two or 
even one of the above forms may fulfill the information requirements. 

Because the Intermediate operates in a terse mode, abbreviated forms 
of the command should be provided. This includes, not only contracted 
forms of the strings within the command (name, keywords, flags, etc.), 
but the items that can be defaulted and the values supplied. 

The layered approach for responses should be available. As in case of 
information required for the input of a command, the user should be 
able to request specific information. The advantages (terseness and 
specificity) of requesting specific information is offset by the need 
for a query language. 

2.2. ADVANCED 

The needs of the Advanced user differ from the Intermediate in three 
ways. 

1. The transaction stages considered prior to entering a 
command require a different emphasis because data and 
control structures are now a part of the user's command 
repertoire. 

2. There is a need for assistance in the monitoring of an 
executing command since they are exeJuted in a "batch 
environment". 

3. A different type of response structure is needed since it 
must be interpreted dir_?ctly by h command within the 
software without human intervention. 

Within the first two stages, an increase in the type of information 
exists, reflecting the added control and data structures employed by 
the 7'dvanced user. These new structures may be implemented within an 
existing command or via new commands. Assistance and instruction in 
the methods of building macros, procedures and programs are useful for 
the Advanced user. These new functional elements are reflected not 
only in Stages II and III, but their concepts must be included in 
Stage I. 

Control and data structures are now used in the development of 
procedures. This places additional demands upon the response segment. 
Whereas in the lower sophistication level interfaces, the responses 
must be understood by a human, in a procedures, responses must be 
understood by the software. 

The abstract nature of the command requires additional syntactic 
information. When a command has constructs that relate only to these 
structures, they must exist only in the information supplied to the 
Advanced user. Thus, in addition to the three assistance levels 
app]icable to the Novice and Intermediate users, a fourth level, 

116 



containing the expanded language view must be included. The five 
levels of assistance are shown below: 

Assistance 
Type 

Example 
Simplest Form 
Common Form 
Full Concrete Form 
Full Abstract Form 

3. CONCLUSION 

Sophistication 
Level 

Parrot 
Novice 
Intermediate 
Intermediate 
Advanced 

On a theoretical basis, it is possible to factor software user 
assistance information into three independent categories: 

1. verbosity 

2. user sophistication 

3. task segmentation 

Although it is possible to prepare guidelines for the further 
classification of information within each category, only experimental 
investigations will validate these suppositions. At the present time, 
studies of specific topics are in progress. 

4. REFERENCES 

Clark, I.A., 1980, How to "Help" Help, IBM Report HF022, IBM United 
Kingdom Laboratories Ltd. (Hursley Park). 

Huckle, B.A., 1980, Designing a Command Language for Inexperienced 
Users, Command Language Directions (D. Beech ed.), 199-212 (Amsterdam: 
North-Holland Publishing Company). 

Relies, N., 1979, The Design and Implementation of User-Oriented 
Systems. Madison WI, Univ. of Wisconsin. Ph.D. Thesis. 

Schneider, M.L., Wexelblat, R.L., and Jende, M.S., 1980, Designing 
Control Languages From the User's Perspective, Command Language 
Directions (D. Beech ed.), 181-198 (Amsterdam: North-Holland 
Publishing Company). 

Shneiderman, B., and Mayer, R., 1979, Syntatic/Semantic Interactions 
in Programmer Behaviour: A Model and Experimental Results, Journal of 
Computer and Information Sciences 7, 219-239. 



SYSTEM MESSAGE GUIDELINES: 

POSITIVE TONE, CONSTRUCTIVE, SPECIFIC, AND USER CENTERED 

Ben Shneiderman 
University of Maryland 

Department of Computer Science 
College Park, MD 20742 

January 27, 1981 

*** Draft paper prepared for Workshop on Human Factors in 
Interactive Systems, Georgia Institute of Technology, March 
26-27, 1981, Atlanta, Georgia. 

Prompts, explanations, error diagnostics, and warnings play a 
critical role in influencing user acceptance of software systems. 
Programming and command languages and application systems are 
appreciated not only for the functionality they offer but for the 
phrasing of system messages in a specific implementation. This 
is true for batch systems, but it is more important for 
interactive systems in which the impact of a message is immediate 
and more dramatic. 

The wording of prompts, advisory messages, and system responses 
to commands may influence user perceptions, but the phrasing of 
diagnostic messages or warnings about improper conditions is 
critical. Since errors occur because of lack of knowledge, 
incorrect understanding or inadvertent slips, the user is likely 
to be confused, feel inadedquate, and be anxious. Messages with 
an imperious tone, which condemn, the user for an error, can 
heighten user anxiety, making it more difficult to correct the 
error and increasing the chances for further errors. Messages 
which are too generic, such as the ubiquitous "SYNTAX ERROR", 
obscure "FAC RJCT 004004400400", or mystical "OC7" offer little 
assistance to the novice user. 

These concerns are especially important with respect to the 
novice user whose lack of knowledge and confidence amplify the 
stress related feedback which can lead to a sequence of failures. 
The discouraging effects of a bad experience in using a computer 
are not easily overcome by a few good experiences. In fact, I 
suspect that systems are remembered more for what happens when 
things go wrong than when things go right. Although these 
effects are most prominent with novice computer users, 
experienced users also suffer. Experts in one system or part of 
a system are still novices for many situations. 

118 



Awareness of the d ifficulties that novices encounter has prompted 
the development of student-oriented compilers for some languages, 
which emphasize good diagnostic messages and even limited error 
correction. The early DITRAN effort (Moulton and Muller, 1967) 
and CORC (Freeman, 1964) were followed by the WATFOR/WATFIV 
compilers (Cress, Dirksen and Graham, 1970) and the PL/C compiler 
(Conway and Wilcox, 1973). These efforts demonstrate what can be 
accomplished if the developers are sincere about their concern 
for ease of use. PL/C and WATFIV are widely used in academic 
environments not only because of their diagnostic messages but 
also because of their rapid compilation speeds. These systems 
demonstrate that although there may be a greater development cost 
for good diagnostics, the production costs can be kept low. 
Although I am not aware of any controlled experimental research 
which proves that students using these compilers learn faster, 
make fewer errors or have a more positive attitude toward 
computers, these hypotheses are shared by many people. Rigorous 
human factors studies would be useful in evaluating the 
improvement brought about by these systems and would be helpful 
in convincing skeptics about the importance of designing good 
system messages. 

Producing a set of guidelines for writing system messages is not 
an easy task because of differences of opinion and the 
impossibility of being complete. Inspite of these dangers, I 
feel that producing such guidelines could yield better systems. 
Input parsing strategies, message generation techniques, and 
message phrasing can be changed without affecting system 
functionality. Hopefully, more attention to system messages will 
lead to instrumentation of systems to capture data on error 
frequency distributions. Such data will enable system designers 
and maintainers to revise error handling procedures, improve 
documentation and training manuals, alter instructional 
materials, or even change the programming or command language 
syntax. Focusing increased attention on system messages should 
compel system developers to include the complete set of messages 
in user manuals. This high visibility will produce even more 
concern for the quality of these messages. 

These comments are the result of experience and subjective 
evaluation. Controlled psychologically-oriented experimentation 
would be useful in verifying these conjectures. 

BE SPECIFIC  

Messages which are too general make it difficult for the user to 
know what has gone wrong. The simple minded and condemning 
messages such as "SYNTAX ERROR" or "ILLEGAL ENTRY", or "INVALID 
DATA" are frustrating because they do not provide enough 
information about what has gone wrong. Improved versions might be 
"Unmatched left parenthesis", "Legal commands are: Send, Read, 

119 



File, or Drop", or "Days must be in the range of 1 to 31." 

Even in widely appreciated systems like WATFIV there is room for 
improvement. Messages such as "INVALID TYPE OF ARGUMENT bl 
REFERENCE TO A SUBPROGRAM" or "WRONG NUMBER OF ARGUMENTS IN A 
REFERENCE TO A SUBPROGRAM" might be improved if the name of the 
subprogram were included and the correct type or number of 
arguments were provided. The APL system which has so many nice 
human factors-oriented features comes out poorly when evaluated 
for system messages. The extremely brief "SIZE ERROR", "RANK 
ERROR", or "DOMAIN ERROR" comments are too cryptic for novices 
and fail to provide information about which variables are 
involved. On the plus side, the standardization (most systems 
use the APL360 messages) of messages does make it easier for 
users to move from one system to another. I have long felt that 
language standardization efforts should include standardization 
of at least the fundamental messages. 

Execution time messages in programming languages should provide 
the user with specific information about where the problem arose, 
what variables are involved and what values were improper. When 
division by zero occurs some processors will terminate with a 
crude message such as "DOMAIN ERROR" in APL or "SIZE ERROR" in 
some COBOL compilers. PASCAL specifies "division by zero" but 
may not include the line number or variables that the PLUM 
compiler offers (Zelkowitz, 1976). Maintaining symbol table and 
line number information at execution time so that better messages 
can be generated is usually well worth the modest resource 
expenditure. 

Systems which offer a code number for error messages are also 
annoying because the manual may not be available and consulting 
it is disruptive and time consuming. In most cases, system 
developers can no longer hide behind the claim that printing 
complete messages consumes too many system resources. 

BE CONSTRUCTIVE 

Rather than condemning the users for what they have done wrong, 
where possible tell them what they need to do to set things 
right. Nasty messages such as "DISASTROUS STRING OVERFLOW. JOB 
ABANDONED." (from a well-known compiler-compiler), "UNDEFINED 
LABELS", or "ILLEGAL STA. WRN." (both from a major manufacturer's 
FORTRAN compiler) can be replaced by more constructive phrases 
such as "String space consumed. Revise program to use shorter 
strings or expand string space.", "Define statement labels before 
use", or "RETURN I statement cannot be used in a FUNCTION 
subprogram". 

120 



It may be difficult for the compiler writer to write code which 
accurately determines what the user's intention was, so the 
advice to be constructive is often difficult to apply. I believe 
that error correcting compilers should be extremely conservative 
for the same reason. Automatic error correction has the danger 
that users will fail to learn proper syntax, and become dependent 
on the compiler making corrections for them. 	For interactive 
systems 	the user can be consulted before corrections are 
automatically applied. 

BE USER-CENTERED  

By user-centered I mean that the user controls the system rather 
than the system directs the user what to do. This is partially 
accomplished by avoiding the negative and condemning tone in 
messages and by being courteous to the user. If the system will 
take a long time to respond to a command then the user should be 
informed with a simple estimate of the time. Prompting messages 
should avoid the imperative forms such as "ENTER DATA" and focus 
on user control such as "READY FOR COMMAND" or simply "READY". 

Brevity is a virtue, but the user should be allowed to control 
the kind of information provided. Possibly the standard system 
message should be less than a line, but by keying a "?" the user 
should be able to get a few lines of explanation. Two question 
marks might yield a set of examples and three question marks 
might produce explanations of the examples and a complete 
description. The CONFER teleconferencing system provides 
appealing assistance similar to this. The PLATO computer 
assisted instruction system offers a special HELP button and 
other options to provide explanations when the student needs 
assistance. 

The designers of the Library of Congress' SCORPIO system (Woody 
et al., 1977) for bibliographic retrieval understood the 
importance of making the users feel that they are in control. In 
addition to using the properly subservient "READY FOR NEXT 
COMMAND" the designers avoid the use of the words "error" or 
"invalid" in the text of system messages. Blame is never 
assigned to the user but instead the system displays "SCORPIO 
COULD NOT INTERPRET THE FOURTH PART OF THE COMMAND CONTENTS, 
WHICH IS SUPPOSED TO BE A 4-CHARACTER OPTION CODE." The message 
then goes on to define the proper format and present an example 
of its use. 

USE AN APPROPRIATE PHYSICAL FORMAT 

Although professional programmers have learned to read upper case 
only text, most novices prefer and find it easier to read upper 
and lower case messages. Messages that begin with a lengthy and 

121 



mysterious code number only serve to remind the user that the 
designers were insensitive to the real needs of users. If code 
numbers are needed at all they might be enclosed in parentheses 
at the end of a message. 

There is some disagreement about the placement of messages in 
program listing. One school of thought argues that the messages 
should be placed at the point in the program where the problem 
has arisen. The second opinion is that the messages clutter the 
listing and anyway it is easier for the compiler writer to place 
them all at the end. This is a good subject for experimental 
study, but I would vote for placing messages in the body of the 
listing assuming that a blank line is left above and below the 
message so as to minimize interference with reading the listing. 
Of course, certain messages must come at the end of the listing 
and execution time messages must appear in the output listing. 

Some application systems ring a bell or sound a tone when an 
error has occurred. This can be useful if the error could be 
missed by the operator, but it is extremely embarrassing if other 
people are in the room and potentially annoying even if the 
operator is alone. The use of audio signals should be under the 
control of the operator. 

The early high level languabe, MAD (Michigan Algorithmic Decoder) 
printed out a full page picture of Alfred E. Neuman if there were 
syntactic errors in the program. Novices enjoyed this playful 
approach, but after they had accumulated a drawer full of 
pictures, the portrait became an annoying embarrassment. 
Highlighting errors with rows of asterisks is a common but 
questionable approach. Designers must walk a narrow path between 
calling attention to a problem and avoiding embarrassment to the 
operator. Considering the wide range of experience and 
temperment in users, maybe the best solution is to offer the user 
a choice of alternatives this coordinates with the 
user-centered principle. 

2. EXPERIMENTAL RE'IULTS 

2.1 COBOL  Compiler Messages 

A pilot study was run to explore the impact of improved messages 
on the ability of programmers to locate and repair bugs. The 
experiment, carried out by Patrick Peck and David Fuselier under 
the direction of the author, was administered to 22 second term 
COBOL students at the University of Maryland in Fall 1979. 

Five bugs were included in a 132 line COBOL program yielding the 

122 



following messages from a UNIVAC COBOL compiler: 

1) RESERVED WORD USED AS PARAGRAPH OR SECTION NAME IGNORE 
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR 

2) DANGLING ELSE OR WHEN; TREATED AS AN IMPERATIVE 

3) UNDEFINED DATA ITEM STATEMENT OMITTED 
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR 
PREVIOUS ERRORS CAUSE LOSS OF OBJECT CODE 

■■ • 

4) WORD NOT A VERB; SCAN SKIPS TO NEXT VERB 
ATTEMPT RECOVERY HERE AFTER PREVIOUS ERROR 

5) BLANK MISSING BEFORE OPERATOR OR LEFT PARENTHESIS 
BLANK MISSING AFTER ARITH/COND OPERATOR OR PUNCTUATION 

A second version of the listing was produced with the following 
five improved messages: 

1) PERIOD IN PREVIOUS LINE CONTAINED IN IF STATEMENT, DELETE 

2) EXTRANEOUS ELSE IN PREVIOUS LINE, DELETE 

3) BLANKS IS UNDEFINED DATA ITEM, MUST USE SPACES 

4) USE AFTER PAGE INSTEAD OF AFTER 1 PAGE 

5) SPACE REQUIRED BEFORE OPERATOR 
SPACE REQUIRED AFTER OPERATOR 

Code numbers and severity levels were eliminated in the improved 
messages and a single blank line was left above and below the 
improved messages. Eleven copies of each of the listings were 
produced and randomly distributed to the subjects. Seven minutes 
were allowed to locate and repair the bugs. One point was given 
for locating the error and two points were given for correcting 
the bug, yielding a maximum score of 10 points. 

Subjects with the UNIVAC COBOL compiler listing had an average of 
6.6 points while those with the improved messages had an average 
of 8.5 points. A t-test yielded a significant difference at the 
5% level. 

The results of this pilot study should be considered exploratory. 
Replications should be performed with other messages, 
professional subjects, and different languages. A more realistic 
study could be performed if two versions of the same language 
compiler were available. One group of subjects would be required 
to work with the standard version and the other group of subjects 
would work with the improved message version. Capturing 
performance in actual projects over longer time frames could 



demonstrate the true impact of improved messages. 

2.2 COBOL Compiler Messages: Tone and Specifity 

2.3 Presence or Absence of Text Editor Messages  

2.4 Tone and Content of Text Editor Messages"  

2.5 Job Control Language Messages 

3. CONCLUSIONS 

REFERENCES 



Workshop -- The Human Computer Interface 

— EateDdi d  itkAirac :k  

Empirical Evaluation with Novice Users of Some 
Programming Language Constructs 

Elliot Soloway and Jeff Donar 

Computer and Information Science Department 
University of Massachusetts 
Amherst, Massachusetts 01003 

This work was supported by the Army Research Institute for the 
Behavioral and Social Sciences, under ARI Grant 
No. MDA903-00—C-0508. 

Any opinions, findings, conclusions or recommendations expressed 
in this report are those of the authors, and do not necessarily 
reflect the views of the U.S. Government. 

125 



Workshop -- The Human Computer Interface 

I. Introduction  

Language designers and'language proponents are often given 
to making claims about the "readability," "debug—ability," 
"understandability," "learnability," "naturalness," etc. of a 
(heir!)  particular programming language. For the most part such 
claims are psychological in nature, and thus open to empirical 
inquiry. The problem is that this type of research is difficult 
to carry out and, frankly, only lip service (and "lip resources") 
to its need is given by the computing community. Moreover, with 
the major push behind Ada and methodologies appropriate to large 
scale software development, the needs of novice programmers have 
gotten particularly short shrift. We increasingly see the 
attitude that a "programmer" is a person who works on a 100 
person team on some massive project -- not someone tailoring 
their home "mail network" or interacting with a computerized --
"programmable" -- toy. This view of programming seems a bit 
narrow. 

With that introductory polemic, let us turn to the specifics 
of our presentation. We have been looking at how novice Pascal 

. users cope with problem solving in Pascal. (1) In this extended 
abstract we shall first highlight several Pascal constructs which 
are particularly troublesome. Next, we shall make a more general  
statement, based also on empirical data on the need to keep 
procedurality in programming languages. 

II. Performapce Analgsis:  ;tut i/Procelk 	Process i/Read  
Next—i  

Consider problem 3 in Table 1. 	For this problem, the 
stylistically correct solution in Pascal requires a curious 
coding structure: 

read first—value 
while (test ith value) 

process ith value 
read next—ith value 

The loop must all, be executed if the test variable has the 
specified value, and this value could turn up on the first read; 
thus, a read  outside the loop is necessary in order to "get the 
thing going." However, this results in the loop processing being 
"behind the read; it processes the ith input and then fetches 
the next—i. We call this structure "process i/read next—i." 

(1} One goal of our project, which will not be reported on in 
this summary, is to build a Run—Time Support Enyironment for 
novice Pascal users. This system, components of which are 
currently being built, will attempt to catch run—time bugs (not  
compile time errors, which are adequately handled in other 
systems) in students' programs, and provide remediation with 
respect to the underlying mental misconceptions. 



Problem 1. Write a program which reads 10 integers and then 
prints out the aver e. Nonmember, the average of a 
series of numbers is t e sum of those numbers divided 
by how many numbers there are in the series. 

Problem  2. 	Write a program which repeatedly roods in 
integers until their sum is greater than 100. After 

reaching 100. the program should print out the average 
of the integers entered. 

Problem 1. 	Write a program which repeatedly reads in 
integers until it reads the integer 99999. After 

seeing 99999, it should print out the correct  average. 

That is, is should not count the final 99999. 

Table I . Problems used in our test instrument. 	These problems 
were given to an introductory programming class opn the last day 

Of the course. They are designed to teat student knowledge of 
Key differences between different loop constructs in Pascal. 

program Student6problem3; 

var Count. Sum, Number : integer;  Average : real; 

begin  
Count ;. 0: 
Sue 	0; 
Read (Number); 
while Number <> 99999 do 

begin  
Sum :m Sum • Number; 
Count :m Count • I; 
Read (Number)  
end; 

Average :a Sum / Count; 
Writeln (Average) 
end. 

Figure I 	A stylistically correct solution to problem 3 in table 
1. Note the need for two Read calls and the curious "process the 
last value, read the next value" semantics of the loop body. 
This 	program 	was minimally edited ,for presentation here. 
Staments wrote these programs in e ehassrodim. 	They were never,,,,  
submitted to a translator. 

program Student7_Problem3; 

var N, Sum. X : inte er; 
Average : re ; 
Stop : boolean; 

begin  
Stop :m false; 
N 	0; 
Sum :2 0; 

while not Stop do 
begin_  
Read (X); 
if X a 99999 

then Stop :2 true 
else begin  

Sum :m Sum • X: 
N 	N • 1 
end 

end; 
Average 	Sum / N; 
Writeln (Average) 

ma. 

program  Student16Problem3: 

var-Omunt, Sum, Nam : integer; Average : real; 

.11!.512 
Count :2 -1; 
Sum :m 0; 

Leeat 
Count := Count • 1; 
Read (Num); 
Sum :. Sum . Num 

until Num . 49999; 
Sum :. Sum 	99999: 
Average := Sum / Count 

end. 

Figure l ►  These programs are attempts at problem 3 described in 
table 1. They are typical or the contortions students will ,r 
through to make this problem tall into a "read a value. process 

that value" Frame. These programs have been minimally eciten for 
presentation here. Students wrote these progrw.s in a classroom. 

They were never submitted to a translator. 

Read 1'./Process  

used 

repeat  loop 	while loop  

	

Process //Read Next-i 	Other 

used 

other 	repeat  loop 	while loop 

2 Correct 	 4 2 
1  

Incorrect 	 3 	 5 4 
	

2 	; 

Table 2 
The numbers in this table refer to the actual number of students. 
not percentages. 

127 



Workshop -- The Human Computer Interface 

One of the authors -- the one with less Pascal experience --
intuitively felt this coding strategy to be unnecessarily awkward 
and downright confusing. Perhaps a more "natural" coding 
strategy would be to read the ith value and then process it; we 
call this the "read i/process i" coding strategy. Others have 
noticed this problem before, but treated it largely as a coding 
inconvience. Their response was baroque looping constructs which 
eliminated writing the same code twice. We are not as concerned 
with elegence as with leampabilito.  Do novice programmers use 
the stylistically correct coding strategy (process i/read 
next—i), or do they add extra machinery to a while  or repeat  loop 
(e.g., an embedded LE test tied to a boolean variable) in order 
to force the code into a read i/process i structure? 

Table 2 lists the performance- of those students 	who 
attempted the problem with either a attile or repe-t  loop. Of the 
9 who solved it correctly, only 2 used the stylistically correct 
"process i/read next—i" coding strategy. (See Figure 1 for a 
solution using this coding strategy.) In order to correctly 
solve the problem using either a repeat  or while  loop and the 
read i/process i coding :strategy requires extra machinery; 
Figure 	2 shows student programs which use this strategy. 
Nonetheless, the vast majority of students attempted 	this 
solution; 	given the extra complexity needed for a correct 
solution, it is not surprising that many Failed. 

It is tempting to conclude that with respect to these types 
of problems, Pascal requires that students circumvent their . 

 "natural" problem solving intuitions. BeFore we can actually 
assert this conclusion, more research needs to be done (11. But, 
since we must live with-Pascal for some period of time to come, 
it would only be responsible for teachers to explicitly  teach 
their students about this peculiar coding strategy. 

(11 We have designed and pilot—tested the following experiment: 
we first ask all students to write a plan or design for problem 3 
in Table 1 (the same one examined in this section), in a language 
other than a programming language. We then ask half the students 
to write the program in Pascal. For the other half of the group, 
we provide a one page description of constrained version of the 
Ada loop  ... Int loop  construct in which only one exit from the 
loop body is allowed. While the sample size was small (13 
students in total), the data is suggestive: invariably the plan  
of the students was Worded in terms of a read i/process i. 
However, the Pascal versions were typically coded with a process 
i/read next—i strategy. 	But, those programs written using the 
Ada loop 	gag. leap  were coded using the read i/process i 
strategy. 	Thus, the program coded in Ada more closely matched 
the students' plans than did those program coded 'in Pascal. 	We 
plan to run this experiment on a larger group. 

128 



Workshop -- The . Human Computer Interface 

III. Performance Analusis: 9ettino  a Nitm Value  

In all 3 problems (Table. 1), a correct solution required 
that the program "get a new value with a read."  23% of all the 
student written programs did not perform this function correctly. 
Often students try to get the previous or next value of a 
variable by subtracting or adding one (see Figure 3). {1>  We 
also found programs in which we felt students assumed that each 
ug. of Next value automaticallq  retrieved a new value. 

As "expert programmers" we have a great deal of deep 
knowledge about how to program. In particular, we know that 
variables have not just types, but also roles. Different coding 
stratagies are needed to realize like operations on variables 
whose roles are different. For example, "getting the next value" 
implies adding one for a counter variable, reading  for a 
New value variable, and adding in the New value for a 
Running total variable. (The problems in Table 1 need one 
variable in each of these roles.) Perhaps students committing 
the above errors did not understand or garbled these different 
variable roles. 

Misunderstanding this "deep" knowledge about Pascal --. mind 
bugs -- could result in many different student errors -- surface 
bugs. Perhaps students committing the above errors did not 
understand that read  is actually just a special case of 
assignment.. If so, then a language which treated I/O calls as 
special values which can be assigned "to" or "from" might be more 
Palatable to beginning programmers, e.g., 

New value := Read_from_terminal, or, 
Write_to_terminal := Running sum / Count. 

Another possible mind bug,which could result in some of the 
observed errors would be that students incorrectly 
overgeneralized from the Counter variable. That is, since the 
next value of a variable functioning as a counter can be 
retrieved by simply adding a 1 to the variable, why not get the 
next value of Mgy , variable by simply adding a 1 to it! While 
reasonable, this is incorrect. 

IV. performance Analusis:  TAL "Djmji"  ia Ike. while loop ,  test  

Based on our examination of student programs, and on 
analysis of audio—taped, individual interviews, we felt that 
there was a great deal of confusion surrounding the time ,  at which 
the terminating test in the whjle  loop gets evaluated: is it 

{l} "Backing up" may be needed when a student does problem 3 in 
table 1 with a read i/process i strategy. 

129 



program  Student302rObleM2: 

var N, Sum. Sc ore : integer;  Mean : real; 

begin  
N :a 0; 
Sum :a 0; 
Score :a 0; 
while (Sum (a 100) do 

begin  
Score :. Score • 1; 
Sum 	Sum • Score; 

:a N • 1 
end: 

:tan :. Sum / 3; 
'writeln ('the mean • 	Mean:10:10) 
enc. 

program  Student192roblem1; 

var Num. Prev_nin. Count : integer; 

begin  
Count :a 0; 
Read (Num); 
Sum :a 0; 
repeat 

Prev_num :a Num - 1; 
Sum 	Nue • Prev_nua: 
Sum :. Sum • 1; 
Count :a Count • 1; 

until Count a 10; 
Average :• Sum / Count; 
Writeln ('Average of ten integers is equal to ' :2) 
end. 

Figure 3 These 
in table 1. 

Yew value. 	The 
presentation her 
They were never 

programs are attempts at the problems described 
They illustrate student problems with getting a 

se programs have been minimally edited for 
e. Students wrote these programs in a classroom. 
submitted to a translator. 

1 

Problem  IL. 

Given the following statement: 

"At the last company cocktail party. For every 6 people who drank 
hard liquour. there were 11 people who drank beer." 

Write a computer program in BASIC which will output the number of 
beer drinkers when supplied (via user input at the terminal) with the 
number of hard liquour drinkers. Use H for the number of people who 
drank hard liqueur. and B for the number of people who drank beer. 

Sample Size 

52 
Ptoblem  

% Correct 	X Ingerrect 

69 	 31 

Given the following statement: 

"At the last company cocktail party. For every 6 people who drank 
hard liquour, there were 11 people who drank beer." 

Write an equation which represents the above statement. Use H for the 
number of people who drank hard liquour. and B for the number of 
people who drank beer. 

Sample Size 

51 

% Correct 	% Incorrect 

45 	 :,5 

Probability of these results on the assumption that errors on each 
problem were equally likely is p < .05 

Table  3 

130 



Workshop -- The Human Computer Interface 

evaluated once, at the top of the loop, or is the test 
continually evaluated during the execution of the body of the 
loop? The program given below was also on a written test taken 
by the 31 summer school students. 

program Problem4; 

yar Count : integer; 

begin 
Count := Os 
whilt Count < 7 $ja 

Itzta 
Writein ('*')s 
Count := Count + 1; 
Writein ('/') 
Int 

rat. 

If the students felt that the terminating test was evaluated 
g.ontinually, then the loon  ihault terjpinate before an '/' were 
printed, thus providing one more se" and '/'..(1} In otherwords, 
it is as if the test were a "demon" watching the statements in 
the loop body, and waiting for its condition to become true. Of 
the 31 students, 347. made the above mistake. Given the ubiquity 
of the while construct in programs and in the instruction, and 
given the lateness in the course (the end of the semester), we 
felt that this was a surprisingly high percentage. 

We feel that the basis for this confusion is grounded in the 
mismatch between the semantics of KW, in a programming language 
context, and the semantics -- the meaning -- of 'while' in "every 
day experience."' In the latter case, 'while' has a global sense: 
Orina  the course of some event. In contrast, the programming 
language while requires a local, narrow interpretation: at a 
specific point in time. Clearly, the names of programming 
language constructs mat rely on real world semantics of their 
analogs. However, care ought to be exercised in their selection. 
Again, we are unlikely to change Pascal or the while loop 
construct, but educators must take note of this error, and pay 
attention to it in their instruction. 

v. ILL Need f Frocedurali0  la Lanamalm fat Novices  

MO. 	 

We were not interested in the actual number of '*' and 1 / 1 , 
i. e., we were not studying the "off—by—one" bug in this 
particular problem. 

131 



Workshop -- The Human Computer Interface 

There is a definite trend in programming langauge design and 
programming methodology towards more "formality." For example, 
"logic" and production rules have been seriously suggested as 
progamming languages. Dijsktra suggests that the process of 
writing a program should be akin to that of writing a 
mathematical proof. Backus' new language takes a different, yet 
similar approach: take procedurality out of the programming 
language and make it algebra based to facilitate program proofs. 
While these langauges and approaches misfit be appropriate for 
experts, we are quite skeptical of their appropriateness for 
novices. We are seriously concerned that programming not be 
equated with mathmatics. For'whatever reasons, most people have 
a great deal of trouble learning and using mathematics. We 
believe, and we are not alone, that there are aspects of 
programming which uniquely lend themselves to the demystification 
of mathematics. The formal programming people propose to remove 
exactly those aspects of programming while increasing required 
math ability. In our increasingly sophisticated world, just 
plain folks will need to "program", and our formal programming 
friends have no answers for these non—professional programmers. 
We are not willing to write off just plain folks. 

In the following, we take a less polemical, and more 
evidence based look at one of the "unique aspects of programming" 
alluded to above, namely, procedurality. 

arocedural yg . Von—Procedural: 	it. 	OlJesi2 1  

The first study which * feel supports the need to keep 
procedurality in programm ng languages For novices was done by 
Welty and Stemple (19617. hey compared the ability of novice 
subjects to write databa e queries in languages with different 
amounts of procedurality. n all issues except procedurality, 
the languages were identical. A typical query in SOL, .the less 
procedural language, is: 4 

SELECT NAME 
FROM STUDENTTABLE 
WHERE HOMESTATE = 'OHIO'', 

The equivalent query in TABLET, the more procedural language, is: 

FORM OHIOANS FROM NAME, HbMESTATE OF STUDENTTABLE 
KEEP ROWS WHERE HOMESTATEI = 
PRINT NAME 

In their paper they formalize "amount of procedurality" based on 
the number of variables, thelnumber of operations, and the degree 
to which the bindings and opirrations are ordered by the language 
semantics. The two languages were learned by subjects working 
largely on their own. The same example problems and order of 
presentation was used for each group. The experiment showed that 
subjects who learned the more procedural query language, TABLET, 

132 



wrote 	difficult queries better than those using the less 
procedural language SQL. 

The second study which we feel supports our claim is being 
carried out by Soloway and his colleagues at UMASS. In our work, 
we explored the performance of students on "ratio" type word 
problems. Typically, half the students in a low—level 
programming class were asked to solve a word problem with an 
algebraic equation, while the other half were asked to solve the 
same problem with a program (Table 3). As the results indicate, 
significantly more studenft got the problem correct in the the 
programming context than did those in the algebraic context. A 
number of these experiments have been run in which various 
paramters were varied (e.g., problem wording). In all cases the 
results were similar to those in Table 3. 

We have a number of specific hypotheses which could account 
for this performance difference. The basis for all of them, 
however, is proceduralitu. Some students who used algebra as the 
solution language seemed to view the equation as a "picture 
description:" there are more beer drinkers than hard liquour 
drinkers, thus 1113, which represents the beer drinkers, is 
related to 614, the hard liquour drinkers, via 1111 = 6H. 
Alternatively, some students viewed the algebraic equation as 
"label descriptors," much like "3ft. * lgd." {I} On the other 
hand, programming appears to encourage students to view the 
equation as an active operation, or transformation. That is the 
fact that variables have values, and that variables are acted 
upon by)operations, appear.more understandable to students in the 
programming environment. Thus, the procedural nature of 
Programming seems to be a key factor in uneerstanding and using 
such basic concepts as variable, operation, equal sign. 

G.oncludina  ammal 

Clearly, this note is only a "teaser;" a fuller discussion 
of these issues must await the workshop. We genuinely solicit 
your comments, and look forward to an active interchange at the 
workshop. 

{1} These hypotheses are based on the analysis of many hot.rs of 
video—taped clinical interviews with individual students as they 
solved problems of the above sort. 

13 :3 



Steamer: An Advanced Computer Aided Instruction 

System For Teaching Propulsion Engineering 

Albert L. Stevens 

Michael D. Williams 

James D. Hollan 

In this preentation, we describe the current state 

of Steamer, an intelligent CAI system with a graphics-

based human interface. Steamer includes a math model of 

a steam plant, arl interactive graphics front end and a 

qualitative mode lling component. 	The math model and 

graphics interface allows the student to control and 

observe a simulated steam plant. The qualitative model-

ling component enables Steamer to explain in casual 

terms the operation of components and subsystems. The 

design of the graphics interface is based on object-

oriented programming to allow much more modularity and 

flexibility than is normal with computer graphics. The 

qualitative modelling component is based on incremental 

qualitative simulation to model systems in terms of 

psychologically meaningful events. 

134 



METAMORPHOSIS THROUGH METAPHOR 

J.C. THOMAS 

IBM CHQ Armonk,NY 

The problems that mankind faces in the twentieth century 

sometimes seem insurmountable. Nuclear weapons, the 

population explosion, rising demand and falling levels of 

most natural resources' provide a potentially devastating 

combination. In addition, our new lifestyles have provided 

a number of unwelcome ecological surprises. 

The organism and the environment are necessarily in an 

intimate relationship. Yet, we humans are, seemingly by 

choice, changing our environment much faster than we can 

adapt biologically. It seems suicidal. 

The only major way out of these dilemmas is for effective 

human intelligence to increase dramatically over the next 

century. ''"Thi,4_cpuld theoretically - be accomplished 

biochemically, educUiponally, or through more effective group 

problem solving procedures. 

The fourth possibility, which is addressed in this 

paper, is that of the computer augmenting effective human 

intelligence. By augmenting effective human intelligence I 

mean that by using a computer, people will operate so as to 

bring greater short and long term happiness to themselves, to 

mankind, and to life than they will without the computer. 

135 



The major obstacle to this goal is not the lack of 

progress in computer technology: we are able to build 

smaller,faster, cheaper components. (That progress, of 

course, is what enables us to address the next problem). 

What we have been slow to achieve is,a computer that is 

anything near optimally designed to helpa human being do a 

more effective, higher quality job. In order to accomplish 

this latter goal, we need solve notion of what humans can do, 

what they need to be able to do better in order to solve 

their problems and what the capabilities of the computer are. 

In this paper, I will focus on part of this problem. First, 

I will present a model of how the person approaches and 

learns to use a new tool. Second, I will point out where in 

this process there is likely to be a critical breakdown 

which prevents the person from using the tool in an effective 

fashion (e.g., to solve previouslY insoluble problems). 

Third,I will present a theory of what the tool should look 

like and provide some suggestively supporting evidence based 

on experimental work of my own and of other investigators. 

Fourth, in the area of office systems, I will present some 

examples of how my recommendations might be implemented. 

136 



The model of mind is multi-viewed; at the current state 

of integration of behavioral science no single view (e.g., 

behavioristic or cognitive) provides as sufficient a scope as 

does a multi-viewed approach. 

The pres4'nted model is novel in the context of 

human-computer interaction in the notion of resource 

allocations with differentiably usable resources, in an 

emphasis upon motivational issues, and in the analysis of 

primary, secondary and tertiary memory limitations. 

The model model implies that under certain conditions a kind 

of "gambler's ruin" phenomenon will occur in which the 

aspiring learner of a potentially useful system will stop 

short. An even more common case of essentially the same 

phenomenon will occur among those l, earners who learn enough 

about the system to do whatpley did before only marginally 

better. Rarely, atibeet'will learn an interface so that they 

are truly facile with the facilities. 

Still rarer are cases in which the computer-tool allows 

a qualitative change in the user's work. Yet for augmenting 

effective human intelligence, it is this last category that 

we would like to contain the majority of users. For such a 

qualitative change to occur, the interface must be designed 

to allow a more optimal allocation of the user's 

psychological resources. 

137 



One way of accomplishing this latter goal is through the 

use of an appropriate metaphorical interface presented to the 

user along with a well though-out mapping inside the computer 

system that translates the actions the user takes in the 

metaphorical space into the appropriate state changes in the 

machine, and translates the machine state changes into the 

appropriate presentations in the user's metaphor. 

A large body of empirical evidence strongly suggests 

that "meaningful" material can greatly affect the user's 

performance quantitatively and in some cases qualitatively. 

"Meaningfulness" can exist at many levels. Editing commands 

that are more English-like ate better than their 

abbreviational counterparts (Ledgard, et als (1980). 

Non-programmers can learn an English-like query language 

better than its symbolic counterpart (Reisner, 1975). Older 

subjects particularly, but younger ones as well, are' aided in 

learning by the addition of "extra" mnemonic material 

& Rubin, 1972). 

(Thomas 

The implications of these findings for a particular 

domain - office systems is drawn in some detail. A number of 

objects, organizing schemes, features, and actions that 

138 



people are familiar with are reviewed along with the way in 

which these can be combines to let the user know what is 

going on. The model explains how using such metaphors can 

increase comprehension, motivation, and performance of given 

tasks and how such metaphors can be used to improve the 

effective intelligence that goes into the user's solutions. 

In addition to using metaphors, a better allocation of 

the user's psychological resources can be achieved by making 

more complete use of various input,and output 

characteristics of human beings. People can discriminate 

better when information is presented on a large number of 

channels (rather than a single channel). People can also 

output at greater data rates over seve4al channels. In 

traditional, pencil and paper editing, non-verbal, spatial 

symbols are used as the metalanguagptfor the verbal 

materia1.41 directing,,on the other hand, much of the 

metalanguage is vet- We - need to become more sensitive to 

this kind of "division of labor" in our computer interfaces. 

139 



A SYSTEM FOR COMPUTER AIDED 
MEMORIZATION 

Michael D. Williams 

Xerox Palo Alto Research Center 

Palo Alto, California 

James D. Haan 

Navy Personnel Researchtind Development Center ,  

San Diego, California 

and 

University off_alifornia, San Diego 

La Jolla, California 

_..4 
We are constructing an intelligent computer based instructional system to facillitate students in ‘ 

the memorization of a large collection of filets. The system consists of a series of games played on a. 

microprocessor, a relational data base to drive the games, a student model, and a computer coach. 

To the student the system appears as a series of games played with a table top computer against a 

computerized opponent. Example games are twenty questions, flash cards, a property specification 

game where students successively enhance the definition of an object until one or no objects match 

the cumulative description, a picture recognition game, Ind a concentratioiMetabTe fill-in game. 

The data base can be modified to allow a variety of topic matters. agaent data bases include US 

and Russian ships, their radars and weapons, South American geography, the anatomy of the 

human hand, and a fantasy data base on star trek trivia. The student model consists of a simple 

marking of the relations in the data base. The computer coach consists of a series of opponents of 

variable "intelligence" and a scheme for focusing game activity on portions of the data base where 

the student is weak and the information important. 

Our principle student population arc Naval Officers learning the properties of Russian ships, 

radars, and weapons. The data base they are attempting to master consists of thousands of facts. 

Approximately 3 and 1/2 weeks of a 6 week course on tactical decision making arc taken up with 

lectures, practice, and tests to support this memorization. 

Our primary scientific goal in this work is to explore the process of remembering. We are 
using this computerized memorization system as a tool to gather data as well as a forcing function 

to drive the development of of our theory. An issue that anyone building a computerized 

140 



instructional system must confront is what information to present a student and when to present the 

information. The goal for our theory of remembering is to determine the implications of learning 

any particular piece of information with regard to the durability of what the student knows, 

flexibility of retrcival, errors in recall, incidential information recovered, and speed of retrieval. 

We come to the problem with the view that remembering is a complex process of 

reconstruction from an array of fragments. An esswitial obseivation is that people memorize more 
than just the facts in the data base. A large amount of their learning seems to focus around 

abstractions drawn, in part. from ,  the -regularities within the data base. Thus, a student might notice 
ri 

that all ships which wry a scoop-pair radar also carry shaddock missiles (this is because the scoop-

pair radar is the guidence radar used to control that particular missile, it has no function without 

the missile). In effect, students seem to be building a "theory" of the data base from which they 

can reconstruct the portion they need to answer any given query. Given that this is the case, what 

we are looking for are the particular mnemonic effects of these "abstractions", and principled 

reasons for these effects within a reconstructive theory or remembering. 

Our primary engineering goal in this work is to build a system which provides substantial 

facilitation to students who must memorize some collection of facts. In this role we are investing 

substantial efforts in what we call the pragmatics of the system design. Thus we are using computer 

games to enhance motivation, have spent large amounts tit time designing and tuning the interface 

betweeen student and machine, and are using a technique of in situ development to tune the system 

toward realistic user needs. 

141 



Names and Addresses of Participants 

Albert N. Badre 

Richard Burton 

Jaime G. Carbonell 

Susan T. Dumais 

Sam L. Ehrenreich 

Jim Foley 

George W. Furnas 

Stanley M. Halpin 

School of.Information and Computer Science 
Georgia Institute of Technology 
Atlanta, Georgia 30332 
(404)-894-2598 

"4041A*4 
Xerox PARC 
3333 Coyote Hill Road 
Palo Alto, California 94304 
(415)-494-4000 

Carnegie Mellon University 
Department of Computer Science 
Schenley Park 
Pittsburg, Pennsylvania 15213 
(412)-78-3064 

Bell Laboratories 
600 Mountain Avenue 
Murray I11, New Jersey 07974 
(201)-02-2054 

U.S. Army Research Institute 
Attention: Peri-OS (S.L. Ehrenreich) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 

Department of Electrical Engineerine 
and Computer Science 	r 

George Washington University 
Washington, D.C. 20052 
(202)-676-4952 

Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 
(201)-582-6128 

U.S. Army Research Institute 
Attention: Peri-OS (Stanley M. Halpin) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 

142 



Mark D. Jackson 

Janet Kolodner 

Thomas K. Landauer 

Michael Lebowitz 

Paul R. Michaelis 

Bell Laboratories 
Room 6A304B 
Warrenville and Naperville Roads 
Naperville, Illinois 60566 

School of Information and Computer Science 
Georgia Institute of Technology 
Atlanta, •Georgia 30332 
(404)-894-3285 

Bell Laboratories 
600 Mountain Avenue 
Murray Hill, New Jersey 07974 
(201)-582-4324 

Department of Computer Science 
406 Mudd Building 
Collumbia University 
New York, New York 10027 
(212)-280-2564 

Texas Instruments 
Computer Science Lab 
Post Office Box 2249,86 
Mail Station 371 
Dallas, Texas 75265 
(214)-995-7081 

Mark Miller 	 Texas Instruments 
Computer Science Lab 
Post Office Box 225936 
Mail Station 371 
,Dallas, Texas 75265 
1(214)-995-7081 

Franklin L. Moses 	U.S. Army Research Institute 
Attention: Peri-OS (F.L. Moses) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 

Jean Nichols 	 U.S. Army Research Institute 
Attention: Peri-OS (J. Nichols) 
5001 Eisenhower Avenue 
Alexandria, Virginia 22333 
(202)-274-8905 

Phyllis Reisner 	 IBM 
Department K54 ✓282 
5600 Cottle Road 
San Jose, California 95193 

143 



Elaine Rich 	 Department of Computer Science 
University of Texas 
Austin, Texas 78712 
(512)-471-7316 

Michael L. Schneider 	Sperry Univac 
Post Office Box 500 
Blue Bell, Pennsylvania 19424 
(215)-542-4011 

Ben Shneiderman 	 Department of Computer Science 
University of Maryland 
College Park, Maryland 20742 
(301)-454-4245 

Elliot Soloway 	 Department of Computer Science 
University of Massachusettes - Amherst 
Amherst, Massachusettes 01002 
(413)7545-1324 

Albert L. Stevens 	Bolt Beranek and Newman, Inc. 
50 Moulton Street 
Cambridge, Massachusettes 02238 
(617)-W-1850 

John C. Thomas 	 IBM 
Old Orchard Road 
Armonk, New York 10504 
(914)-765-1900 

Judith Tschirgi 	 Bell,Laboratories 
Room 6A304B 
Warrenville and Naperville Roads 
Naperville, Illinois 60566 
(312)-462-5976 

Michael D. Williams 	Xerox PARC 
3333 Coyote Hill Road 
Palo Alto, California 94304 
(415)-494-4000 


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318

