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ABSTRACT  

Parallel processing has been a popular approach to improving system per-

formance through several generations of computer systems design. Although it 

is not usually characterized as a "parallel" processing system, a distributed 

processing system has the inherent capability for highly parallel operation. 

In order to capitalize on the potential performance improvements achievable by 

a distributed system, major parallel control problems must be solved. Central 

to the issue of parallel control is the design and implementation of 

distributed and decentralized control. The study of distributed and 

decentralized control was initiated with a survey of applicable control 

models. The results of this survey are presented along with an extensive 

discussion of the control problems applicable to distributed systems ---

specifically "fully" distributed systems. 
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PREFACE  

Lsswitudafrotjall!ringlaia Investigator  

Although this is the final report on only one of the approximately 30 research 

projects currently being performed in the Georgia Tech research program on 

Fully Distributed Processing Systems, it serves a much broader function than 

just reporting on the work done in this single project. Since this is the 

first major technical report published under the program, it has been neces-

sary to document here much of the background applying to the program in 

general. Specifically, this report presents an extensive discussion of the 

general philosophies of fully distributed control and fully distributed 

processing as well as the notation that has been developed to describe the 

control actions supporting such processing activities. 
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SECTION 1 

BACKGROUND 

1.1 GOALS  a COMPUTER SYSTEM DEVELOPMENT  
Although the state of the art in digital computers has certainly been 

advancing faster than any other technological area in history, it is somewhat 

remarkable that the goals motivating most computer system development projects 

have remained basically unchanged since the earliest days. Perhaps the most 

important of these long sought-after improvements are the following: 

1. 	Increased system productivity 
- Greater capacity 
- Shorter response time 
- Increased throughput 

2. Improved reliability and availability 
3. Ease of system expansion and enhancement 
4. Graceful growth and degradation 
5. Improved ability to share system resources 

The "final or ultimate values" for these various goals cannot be expressed in 

absolute numbers, so it is not surprising that they continue to apply even 

though phenomenal advances have been made in many of them such as speed, 

capacity, and reliability. What is perhaps more noteworthy and important to 

the discussion being presented here is how little progress has been made in 

areas such as easy modular growth, availability, adaptability, etc. 

It seems that each new major systems concept or development (e.g., mul-

tiprogramming, multiprocessing, networking, etc.) has been presented as "the 

answer" to achieving all  of the goals listed above plus many others. 

"Distributed processing" is no exception to this rule. In fact, many salesmen 

have dusted off their old  lists of benefits and are marketing today's. 

distributed systems as the means to achieve all of them. Table 1 lists some 

of the benefits currently being claimed for distributed processing systems in 

current  sales literature. Although some forms of distributed processing 

appear to offer great promise as possible means  12 make significant advances  

in many of the areas listed, the state-of-the-art, particularly in system 

control software, is far from being able to deliver even a significant propor-

tion of these benefits today. 
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Table 1. "Benefits" Provided by Distributed Processing Systems 

A Representative List Assembled from Claims Made in 
Actual Sales Literature 

High Availability and Reliability 

Reduced Network Costs 

High System Performance 

Fast Response Time 

High Throughput 

Graceful Degradation, Fail-soft 

Ease of Modular and Incremental Growth 

Configuration Flexibility 

Automatic Load and Resource Sharing 

Easily Adaptable to Changes in Workload 

Incremental Replacement and/or Upgrade 

Easy Expansion in Capacity and/or Function 

Good Response to Temporary Overloads 
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1.2 APPROACHES  IQ. IMPROVING SYSTEM PERFORMANCE  

Efforts to improve the performance of digital computer systems can 

address or be focused on a number of major levels or design issues within the 

overall computer structure. These levels are: 

1. Materials - the basic materials used in the construction of 
operating devices such as transistors, integrated circuits, or 
other switching devices. 

2. Devices - operating devices such as transistors, integrated 
circuits, junctions, etc. 

3. Switching circuits - design of circuits that provide fast and 
reliable logic operations. 

4. Register-transfer - assemblies such as registers, buses, shift 
registers, adders, etc. 

5. System architecture - algorithms for executing the basic func-
tions such as arithmetic and logic operations, interrupt 
mechanisms, control of processor and memory states, etc. 

6. System organization - the interconnection of major functional 
units such as control, memory, I/O, arithmetic/logic units, 
etc., and the rules governing the flow of data and control 
signals between these units. 	This level also considers the 
implementation of multiple, parallel paths for simultaneous 
operations and transfers. 

7. Network organization - the number, characteristics, and 
topology of the interconnection of "complete" systems and the 
rules governing the control and utilization of the resources 
those systems provide. 

8. System software - control and support software for the effec-
tive management and utilization of the hardware capabilities 
provided. 

From the very beginning of the computer era there has been activity at all of 

these levels and such work continues today. (To place it into proper perspec-

tive, it should be noted that the research work carried on under this project 

is focused primarily at the three highest levels, system organization, network 

organization, and system software, with some work at level 5, system architec-

ture.) 

1.3 PARALLEL PROCESSING .5YSTEMS  

An important theme of computer system development work at levels 5-8, 

"system architecture," "system organization," "network organization," and 

"system software," has been Parallel Processing.  Parallel processing has been 

implemented utilizing approaches focused primarily on the system hardware or 

the software as well as integrated systems design. 
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Since the early days of computing, a direction of research that has 

offered high promise and attracted much attention is "parallel computing." 

Work in this area dates from the late 1950's which saw the development of the 

PILOT system [Lein58] at the National Bureau of Standards. The PILOT system 

consisted of "three independently operating computers that could work in 

cooperation."[Ens174] (From the information available, it appears that PILOT 

would be classified as a "loosely-coupled system" today.) It is interesting 

to note that the evolution of parallel "hardware" systems lead primarily to 

the development of tightly-coupled  systems such as the Burroughs B-825 and 

B-5000, the earliest examples of the classical multiprocessor. Other develop-

ment paths saw the introduction of specialized hardware systems such as 

SOLOMON and the ILLIAC IV, examples of other forms of tightly-coupled proces-

sors. 

1.3.1 System Coupling  

System coupling refers to the means by which two or more computer 

systems exchange information. It refers to both the physical transfer of such 

data as well as the manner in which the recipient of the data responds to its 

contents. These two aspects of system interconnection are called "physical 

coupling" and "logical coupling," and they are present in all multiple com-

ponent systems whether the components of interest are complete computers or 

some smaller assembly. 

The terms, "tight" and "loose" have been utilized to describe the mode 

of operation of each type of coupling. (Some authors have utilized a third 

category "medium coupling" and related it to a range of data transfer speeds; 

however, history has clearly shown that basing any characterizations of 

digital computers on speed, size, or even cost is an incorrect approach.) The 

interconnection and interaction of two computer systems can then be described 

by specifying the nature of its physical coupling and the nature of its 

logical coupling. It is important to point out that all four combinations of 

these characteristics are possible and that they all have been observed in 

implemented systems. 

1.3.1.1 Tiglat30,-Coupled Computer Systems  

During the 1960's and 1970's, activities in the development of parallel 

computing, specifically multiple computer systems, were focused primarily on 

the development of tightly-coupled systems. These tightly-coupled systems 
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took the form of classical multiprocessors (i.e., shared main memory) as well 

as specialized computation systems such as vector and array processors. This 

tight physical coupling resulted in a sharing of the directly executable 

address space common to both processors. There was no means by which the 

recipient of the data or information being transferred could refuse to 

physically accept it --- it was already there in his, address space.  

These early systems also usually implemented tight logical coupling. In 

this form of system interaction, the recipient of a message is required to 

perform whatever service is specified therein. With tight logical coupling, 

there is no independence of decision allowed regarding the performance of the 

service or activity "requested." The relationship between the sender and 

recipient is basically that of master-slave. 

Although the concept of tightly-coupled multiprocessor systems appears 

to be a viable approach for achieving almost unlimited improvements in per-

formance (i.e., increases in system throughput) with the addition of more 

processors, such has not been the results obtained with implemented systems. 

It is the very nature of tight-coupling that results in limitations on the 

improvements achievable. Some of the ways that these limitations have 

manifested themselves are listed below. 

1. The direct sharing of resources (memory and input/output 
primarily) often results in access conflicts and delays in 
obtaining use of the shared resource. 

2. User programming languages that support the effective utiliza-
tion of tightly-coupled systems have not been adequately 
developed. 	The programmer must still be directly involved in 
job and task partitioning and the assignment of resources. 

3. The development of "optimal" schedules for the utilization of 
the processors is very difficult except in trivial or static 
situations. Also, the inability to maintain perfect synch-
ronization between all processors often invalidates an 
"optimal" schedule soon after it has been prepared. 

1. 	Any inefficiencies present in the operating system appear to be 
greatly exaggerated in a tightly-coupled system. 

There was also significant activity during these earlier periods in the 

development of multiple computer systems characterized as "attached support 

processors (ASP)." These systems were physically loosely-coupled; but, 

logically, they were tightly-coupled. The earliest examples of this type of 

system organization were the use of attached processors dedicated to 
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input/output operations in large-scale batch processing systems. In the lat-

ter part of the 1970's, specialized vector and array processors as well as 

other special-purpose units such as fast Fourier transform units were being 

connected to general computational systems and utilized as attached support 

processors. In any event, the specialized nature of the services provided by 

the attached processor excludes them from consideration as possible approaches 

to providing general-purpose computational support such as that available from 

tightly-coupled general-purpose processors functioning as multiprocessors. 

Tightly-coupled systems certainly do have a role to play in the total 

spectrum of computer systems organization; however, their limitations should 

certainly be considered. It was the recognition of these limitations and the 

small amount of progress made in overcoming them despite the expenditure of 

very large research efforts that contributed to the decision to focus our 

current research program on loosely-coupled systems. 

1.3.1.2 Loosely-Coupled Systems  

Loosely-coupled systems are multiple computer systems in which the 

individual processors both communicate physically and interact logically with 

one another at the "input/output level." There is no direct  sharing of 

primary memory, although, there may be sharing of an on-line storage device 

such as a disk in the interconnecting input/output communication path. The 

important characteristic of this type of system organization and  operation is 

that all data transfer operations between the two component systems are per-

formed as input/output operations. The unit of data transferred is whatever 

is permissible on the particular input/output path being utilized; and, in 

order to complete a transfer, the active  cooperation of both  processors is 

required (i.e., one might execute a READ operation in order to accommodate or 

accept another's WRITE). 

Probably the most important characteristic of loose logical coupling is 

that one processor does not have the capability or authority to "force" 

another processor to do something. One processor can "deliver" data to 

another; however, even if that data is a request (or a "demand") for a service 

to be performed, the receiving processor, theoretically, has the full and 

autonomous rights to refuse to execute that request. The reaction of proces-

sors to such requests for service is established by the operating system rules 

of the receiving processor, not by the transmitter. This allows the recipient 
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of a request to take into consideration "local" conditions in making the 

decision as to what actions to take. It is important to note that it is pos-

sible for a system to be physically loosely-coupled but logically tightly-

coupled due to the rules embodied in the component operating systems, e.g., a 

permanent master/slave relationship is defined. The other reverse condition, 

tight physical and loose logical coupling, is also possible. 

1.3.2 Computer Networks  

A computer network can be characterized as a physically loosely-coupled, 

multiple-computer system in which the interconnection paths have been extended 

by the inclusion of data communications links. Fundamentally there are no 

differences between the basic characteristics of computer network systems and 

other loosely-coupled systems other than the data transfer rates normally 

provided. The transfer of data between two nodes in the network still 

requires the active cooperation of both  parties involved, but there is no 

inherently required cooperation between the operation of the processors other 

than that which they wish to provide. 

1.3.3 Distributed $vstems  

Although there is a large amount of confusion, and often controversy, 

over exactly what is a "distributed system," it is generally accepted that a 

distributed system is a multiple computer network designed with some unity  s2f. 

purpose  in mind. The processors, databases, terminals, operating systems, and 

other hardware and software components included in the system have been inter-

connected for the accomplishment of an identifiable, common goal. That goal 

may be the supplying of general-purpose computing support, a collection of 

integrated applications such as corporate management, or embedded computer 

support such as a real-time process control system. 

This research program is concerned with a very specific subclass of all 

of the systems currently being designated "distributed." The environment of 

interest here has been given the title "Fully Distributed Processing System" 

or FDPS. Section 2 discusses the general characteristics of FDPS's. 
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SECTION 2 

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 

2.1 MOTIVATION  a THE FDPS CONCEPT  
A large number of claims have been made as to the benefits that will be 

achieved with distributed processing systems. As pointed out above, this list 

is very similar to the lists of "benefits to be achieved" with several earlier 

computer technologies. However, each of those earlier solutions failed to 

deliver its promises for various reasons. It was an examination of the "weak-

nesses" in the earlier concepts and the development of a set of principles to 

overcome these obstacles that led to the concept of "Fully Distributed Proces-

sing Systems" or as it is commonly referred to "FDPS." 

The principle of parallel (i.e., simultaneous and/or concurrent) opera-

tion of a multiplicity of resources continues to be perhaps the most important 

goal. The unique feature of FDPS's is the means or environment in which this 

is attempted. A distributed system should exhibit a continual increase in 

performance as additional processing components are added. The users should 

observe shorter response times as well as an increase in total system through-

put. In addition, the utilization of system resources should be higher as a 

result of the system's ability to perform automatic load balancing servicing a 

large quantity and variety of user work requests. A distributed system should 

also permit the sharing of data between cooperating users and the making 

available of specialized resources found only on certain processors. In 

general, a distributed system should provide more facilities and a wider 

variety of services than those that can be offered by any system composed of a 

single processor [Hopp79]. Another important and highly desirable feature of 

such a system is extensibility. Extensibility might be realized in several 

different ways. The system might support modular and incremental growth 

permitting flexibility in its configuration, or it might support expansion in 

capacity, adding new functions, or both. Finally, it might provide for 

incremental replacement and/or upgrading of system components, either hardware 

or software. The executive control of the system is obviously the key to 

attaining these goals, and it is in the area of executive control that some of 

the most significant deficiencies of earlier systems have been found. 
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The major weaknesses in the executive control of earlier forms of paral-

lel systems appear to result from an excessive degree of centralization of 

control functions reflected in centralized decision making or centralized 

maintenance of system status information or both of these. The net effect of 

these aspects of control was to produce a rather tightly-coupled environment 

in which resources often were idle waiting for work assignments and the 

failure of one major component often resulted in catastrophic and total system 

failure. The solution to this problem is to force a condition of very loose 

coupling on both the logical/control decision making process as well as the 

physical linkages of components. This property of "universal" loose coupling 

results in an environment in which the various components are required to 

operate in an autonomous manner. 

If a single design principle must be identified as the most important or 

central theme of FDPS design, it is component autonomy or "cooperative 

autonomy" as described below. All of the other features of the definition of 

Fully Distributed Processing Systems given below have resulted from determin-

ing what is required to support and utilize the autonomous operation of the 

very loosely-coupled physical and logical resources. 

2.2 I DEFINITION  ZAN. FDPS  

Fully Distributed Processing Systems (FDPS) were first defined by Enslow 

in 1976 [Ens178] although the designation "fully" was not added until 1978 

when it became necessary to clearly distinguish this class of distributed 

processing from the many others being presented. An FDPS is distinguished by 

the following characteristics: 

1. Multiplipitv  of resources:  an FDPS is composed of a mul-
tiplicity of general-purpose resources (e.g., hardware and 
software processors that can be freely assigned on a short-term 
basis to various system tasks as required; shared data bases, 
etc.). 

2. Component interconnection:  the active components in the FDPS 
are physically interconnected by a communications network(s) 
that utilizes two-party, cooperative protocols to control the 
physical transfer of data (i.e., loose physical coupling). 

3. Unity ,  slt control:  the executive control of an FDPS must define 
and support a unified set of policies (i.e., rules) governing 
the operation and utilization or control of all physical and 
logical resources. 
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4. System transparency:  users must be able to request services by 
generic names not being aware of their physical location or 
even the fact that there may be multiple copies of the resour-
ces present. (System transparency is designed to aid rather 
than inhibit and, therefore, can be overridden. A user who is 
concerned about the performance of a particular application can 
provide system specific information in order to aid in the 
formulation of management control decisions.) 

5. Component autonomy:  both the logical and physical components 
of an FDPS should interact in a manner described as 
"cooperative autonomy" [Clar80, Ens178]. This means that the 
components operate in an autonomous fashion requiring coopera-
tion among processes for the exchange of information as well as 
for the provision of services. In a cooperatively autonomous 
control environment, the components are afforded the ability to 
refuse requests for service, whether they be execution of a 
process or the use of a file. This could result in anarchy 
except for the fact that all components adhere to a common set 
of system utilization and management policies expressed by the 
philosophy of the executive control. 

2.2.1 Discussion  91 the Definitional Criteria  

In order for a system to qualify as being fully  distributed it must pos-

sess all five of the criteria presented in this definition. 

2.2.1.1 Multiple Resources and Their Utilization 

The requirement for resource multiplicity concerns the assignable 

resources that a system provides. Therefore, the type of resources requiring 

replication depends on the purpose of a system. For example, a distributed 

system designed to perform real-time computing for air traffic control 

requires a multiplicity of special-purpose air traffic control processors and 

display terminals. It is not required that replicated resources be exactly 

homogenous, however, they must be capable of providing the same services. 

In addition to this multiplicity, it is also required that the system 

resources be dynamically reconfigurable to respond to a component failure(s). 

This reconfiguration must occur within a "short" period of time so as to 

maintain the functional capabilities of the overall system without affecting 

the operation of components not directly involved. Under normal operation the 

system must be able to dynamically assign its tasks to components distributed 

throughout the system. 

The extent to which resources are replicated can vary from those systems 

where none are replicated (not,  a fully distributed system) to systems where 

all assignable resources are replicated. In addition, the number of copies of 
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a particular resource can vary depending on the system and type of resource. 

In general, the greater the degree of replication, particularly of resources 

in high demand, the greater the potential for attaining benefits such as 

increased performance (response time and throughput), availability, 

reliability, and flexibility [Ens178]• 

2.2.1.2 Component Interconnection and Communication 

The extent of physical distribution of resources in distributed systems 

can vary from the length of connection between components on a single 

integrated chip to the distance between two computers connected through an 

international network. 	In addition, interconnection organizations can vary 

from a single bus to a complex mesh network. 	Since a component in a 

distributed system communicates with other components through its own logical 

process, all physical and logical resources can be thought of as processes, 

and interactions between resources can be referred to as interprocess com-

munication [Davi79]. For example, an application program interacting with 

processors and data files is accomplished through communication between 

logical processes. 

Both the physical and logical coupling of the system components are 

characterized as "extremely loose." "Gated" or "master-slave" control of 

physical transfer is not allowed. Communication, i.e., the physical transfer 

of messages, is accomplished by the active cooperation of both the sender and 

addressees. The primary requirement of the intercommunication subsystem is 

that it support a two-party cooperative protocol. This is essential to enable 

the system's resources to exist in cooperative autonomy at the physical level. 

The advantages of using a message-based (loosely-coupled) communication 

system with a two-party cooperative protocol include reliability, 

availability, and extensibility. The disadvantage is the additional overhead 

of message processing incurred to support this method of communication. There 

are a variety of interconnection organizations and communication techniques 

that can be used to support a message-based system with a two-party 

cooperative protocol. 

2.2.1.3 Unity of Control 

In a fully distributed data processing system, individual processors 

will each have their own local operating systems, which may or may not be 

unique, that control local resources. As a result, control is distributed 
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throughout the system to components that operate autonomously of one another. 

However, to gain the benefits of distributed processing it is required that 

the autonomous components of the system cooperate with each other to achieve 

the overall objectives of the system. To insure this, the concept of a high-

level operating system was created to integrate and unify, at least concep-

tually, the decentralized control of the system. 

A high-level operating system is essential to successfully implementing 

a distributed processing system. This operating system is not a centralized 

block of code with strong hierarchical control over the system, but rather it 

is a well-defined set of policies governing the integrated operation of the 

system as a whole. To insure reliable and flexible operation of the system, 

these policies should be implemented with minimal binding to any of the 

system's components [Ens178]. 

What policies are required and how they should be implemented depends 

greatly on the system. For example, if it is a general-purpose system sup-

porting interactive users, then a command interpreter and a user control 

language will be required to make the system's components compatible and 

transparent to the user. 

2.2.1.4 Transparency of System Control 

The high-level operating system also provides the user with his inter-

face to the distributed system. As a result, the user is accessing the system 

as a whole rather than just a host computer in the network. 

In order to increase the effectiveness of the distributed system, the 

actual system is made transparent, and the user is presented with a virtual 

machine and a simplified command language to access it. The user uses this 

language to request services by name and does not have to specify the specific 

server to be used. Clearly, the same request might be assigned a different 

server depending on the state of the total system when the request is made. 

However, to make the system truly effective for all users, knowledgeable 

individuals must be able to interact with the system more intimately, request-

ing specific servers or developing service routines to increase the efficiency 

or effectiveness of the system [Ens178]. 

2.2.1.5 Cooperative Autonomy 

Cooperative autonomy has already been described at the physical inter-

connection level. It is also required that all resources be autonomous at the 
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logical control level. That is, a resource must have full control of itself 

in determining which requests it will service and what future operations it 

will perform. However, a resource must also cooperate with other resources by 

operating according to the policies of the high-level operating system. 

Cooperative autonomy is an essential prerequisite for systems to have fault 

tolerance and high degrees of extensibility [Ens178]. It is perhaps the most 

important as well as the most distinguishing characteristic of a fully 

distributed processing system. 

2.2.2 Effects  an,Untgg Organization  
Although the detailed design of the hardware and software required to 

implement an FDPS is still in progress, it has been possible for some time to 

identify certain characteristics that these components must have. One area in 

which certain criteria already appear reasonably well defined is the nature of 

the organization of the following system components: 

- Hardware 
- System control software 
- Data bases 

It should be noted that a number of definitions and descriptions of 

distributed systems 111 general  are based on the principle that one more  of 

these components is Physically distributed.  (Some such discussions add to 

this list a fourth component --- "processing or function;" however, consider-

ing the distribution of processing independent from the distribution hardware 

is quite improper. Why distribute the hardware if it will not have some func-

tion to perform; similarly, how can the processing be distributed without a 

corresponding distribution of the hardware? That would be processing on a 

truly "virtual machine.") 

An important characteristic of an FDPS is that, in order to meet the 

definitional criteria given above while also attempting to provide as many as 

possible of the benefits listed in Table 1, all  of the three components listed 

above must  le_ physically distributed  and the degree of distribution must  in 

each case exceed  reasonably well-defined threshold.  A diagram illustrating 

this requirement is shown in Figure 1. The various organizations of each com-

ponent identified and positioned along each axis is not meant to be an 

exhaustive list. These points are listed to better identify the relative 

location of the three thresholds defining the volume of space occupied by 

FDPS's. (It might also be noted that it seems quite proper to characterize 
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any system that is not in the "origin cube" as being "distributed" to some 

degree.) 
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2.3 IMPLICATIONS  .QE. THE FDPS DEFINITION  DI CONTROL  

2.3.1 General Nature  gr FDPS Executive Control  
Several of the characteristics of an FDPS are found to directly impact 

the design and implementation of the executive control for such a system. 

These include system transparency to the user, extremely loose physical and 

logical coupling, and cooperative autonomy as the basic mode of component 

interaction. System transparency means that the FDPS appears to a user as a 

large uniprocessor which has available a variety of services. It must be pos-

sible for the user to obtain these services by naming them without specifying 

any information concerning the details of their physical location. The result 

is that system control is left with the task of locating all appropriate 

instances (copies) of a particular resource and choosing the instance to be 

utilized. 

"Cooperative autonomy" is another characteristic of an FDPS heavily 

impacting its executive control. The "lower-level" control functions of both 

the logical and physical resource components of an FDPS are designed to 

operate in a "cooperatively autonomous" fashion. Thus, an executive control 

must be designed such that any resource is able to refuse a request even 

though it may have physically accepted the message containing that request. 

Degeneration into total anarchy is prevented by the establishment of a common 

set of criteria to be followed by all resources in determining whether a 

request is accepted and serviced as originally presented, accepted only after 

bidding/negotiation, or rejected. 

Another important FDPS characteristic that definitly affects the design 

of its executive control is the extremely loose coupling of both physical and 

logical resources. 	The components of an FDPS are connected by communication 

paths of relatively low bandwidth. 	The direct sharing of primary memory 

between processors is not acceptable. Even though the logical coupling could 

still be loose with this physical interconnection mechanism, the presence of a 

single critical hardware element, the shared memory would create fault-

tolerance limitations. All communication takes place over "standard" 

input/output paths. The actual data rates that can be supported are primarily 

a function of the distance between processors and the design of their 

input/output paths. In any event, the transfer rates possible will probably 

be much less than memory transfer rates. This implies that the sharing of 

Georgia Institute of Technology 	 FDPS Control Models 



Section 2 
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 17 

information among components on different processors is greatly curtailed, and 

system control is forced to work with information that is usually out-of-date 

and, as a result, inaccurate. 

The control of an FDPS requires the action and cooperation of components 

at all layers of the system. This means that there are elements of FDPS 

control present in the lowest levels of the hardware as well as software com-

ponents. This paper is primarily interested in the software components of the 

FDPS control which are typically referred to as "the executive control." 

The executive control is responsible for managing the physical and 

logical resources of a system. 	It accepts user requests and obtains and 

schedules the resources necessary to satisfy a user's needs. 	As mentioned 

earlier, these tasks are accomplished so as to unify the distributed com-

ponents of the system into a whole and provide system transparency to the 

user. 

2.3.2 Why Not .  Centralized Control?  

Why then is a centralized method of control not appropriate? In systems 

utilizing a centralized executive control, all of the control processes share 

a single coherent and deterministic view of the entire system state. An FDPS, 

though, contains only loosely-coupled components, and the communication among 

these components is restricted and subject to variable time delays. This 

means that one cannot guarantee that all processes will have the same view of 

the system state [Jens78]. In fact, it is an important characteristic of an 

FDPS that they will not have a consistent view. 

A centralized executive control weakens the fault-tolerance of the 

overall system due to the existence of a single critical element, the 

executive control itself. This obstacle, though, is not insurmountable for 

strategies do exist for providing fault-tolerance in centralized applications. 

Garcia-Molina [Garc79], for example, has described a scheme for providing 

fault-tolerance in a distributed data base management system with a 

centralized control. Approaches of this type typically assume that failures 

are extremely rare events and that the system can tolerate the dedication of a 

relatively long interval of time to reconfiguration. These restrictions are 

usually unacceptable in an FDPS environment where it is important to provide 

fault-tolerance with a minimum of disruption to the services being supported. 
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Also, the extremely important issue of overall system performance must 

be considered. A distributed processing system is expected to utilize a large 

quantity and a wide variety of resources. If a completely centralized 

executive control is implemented, there is a high probability that a 

bottleneck will be created in the node executing the control functions. A 

distributed and decentralized approach to control attempts to remove this bot-

tleneck by dispersing the control decisions among multiple components on 

different nodes. 

2.3.3 Distributed  yla. Decentralized 

This paper advocates utilizing an approach for the control of an FDPS 

that is both distributed and decentralized. There is a clear distinction 

between the terms "distributed" and "decentralized" as they are used in the 

context of this project. "Distributed control"  is characterized by having its 

executing  components Physically located  sa different nodes.  This means there 
are multiple loci  L  control activity.  In "decentralized control,"  on the 

other hand, control decisions are made independently  12 separate components  

different locations.  In other words, there are multiple loci  91 control  

decision. making.  Thus, distributed and decentralized control has active com-

ponents located on different nodes and those components are capable of making 

independent control decisions. 

2.4 AR FDPS APPLICATION  --- DATA  FLOW  PROCESSING  

The operating characteristics specified for an FDPS appear to be 

especially suited to applications composed of cooperating processes that may 

be executed simultaneously. One class of such applications have been referred 

to as data flow networks [Denn78, Nels78]. They utilize the independence of 

the processors combined with the implicit potential for parallel operation of 

data flow networks to improve performance. In addition to potentially improv-

ing performance, the data flow approach often provides a more natural method 

for expressing a solution to a particular problem. Other systems, including 

ADAPT [Peeb80], Medusa [Oust80], and TRIX [Ward80], have been designed to ser-

vice similar types of applications. An application of this type can be 

expressed either as a command level program [Akin78] or a program in a high 

level language [Feld79, Macc80]. The execution of individual processes may 

result from the invocation of files containing either executable code or com-

mands. In such a system, calls to other processes (executable files or com- 
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mand files) can originate from any process, and the nesting of such calls is 

unlimited. 

2.5 PROJECT SCOPE  Mk ORGANIZATION  DE THIS REPORT  

Following these two sections of introductory comments, this report 

discusses the results of an initial study of distributed and decentralized 

control including, where appropriate, material concerning the results of other 

projects in the Georgia Tech Research Program on Fully Distributed Processing 

Systems (FDPS). This initial study of FDPS control has been focused primarily 

on the qualitative aspects of various forms and implementations of control. 

The project description is as follows: 

"Define and refine existing models of distributed and decentralized 
control and develop new models as appropriate to provide a 
capability of fault tolerance, automatic reconfiguration, and 
dynamic control." 

It is important to note that very few "existing models of distributed 

control" have been identified and those that have been located are so incom-

pletely defined that this project has proceeded primarily by defining can-

didate models while attempting to develop a suitable taxonomy of other pos-

sible models. Since this project was undertaken fully cognizant that a 

quantitative study of the models would follow immediately, it is felt that the 

development of such a taxonomy will help to insure that no significant 

variations are overlooked. 

2.5.1 Discussion 	FDPS Models  

Along with the development of the various models for distributed and 

decentralized control, the FDPS team is also developing total system models. 

These system models provide an essential part of the description of the total 

environment within which the executive control must operate. Although it is 

clear at this time that these system models are still evolving, descriptions 

of their present versions are presented in Section 3. 

2.5.2 Issues  1,11 Decentralized Control  

Although most readers probably have some understanding of the functions 

of the executive control in a centralized system, the overall effects of the 

distributed environment and the set of totally new requirements placed on a 

decentralized executive control are perhaps not so obvious. The purpose of 

Section 4 is to discuss the effects of the operating environment and to 
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explicitly identify as many as possible of the new control requirements and 

limitations as well as variations from centralized control models. 

2.5.3 Work Reauests  

There is a strong relationship between the forms of work requests that 

the distributed system is expected to process and the capabilities required in 

the control model. Section 5 focuses on the variations possible in the work 

requests leaving the discussion of the resulting effects on the operation of 

the executive control until Section 7. 

2.5.4 Characteristics  adIALDecentralized Control Model  

Section 6 of this report presents and discusses those attributes that 

distinguish various models in the present  catalog of decentralized control 

models. (Note that this is not presented as a complete "taxonomy.") The 

attributes are characterized in terms of the information that needs to be 

maintained and the decisions that must be made by an executive control. Also 

discussed in this section are some of the operational aspects of the models 

identified thus far. 

2.5.5 Control Model Functions  

It is during a detailed discussion of the functions performed by an 

executive control that many of the aspects of decentralized control are best 

highlighted. In Section 7 discussion of the individual operations are 

presented and then representative examples of functions such as task graph 

building are discussed. (A task graph is used to maintain information about 

the processes being utilized to satisfy a work request. See Paragraph 7.1 for 

a more complete definition of task graphs.) Experience has shown that many 

individuals do not fully grasp the significance of distributed and 

decentralized control until they study examples such as those presented in 

Section 7. 

2.5.6 Example Control Models  

A few specific control models that have been developed thus far are 

presented in Section 8. These include control models advanced by other 

research teams as well as several developed in the FDPS research program. 

2.5.7 Control Model Evaluation  

Immediately following this survey of control models the various models 

will be evaluated. Section 9 presents a preliminary discussion of some of the 

evaluation criteria to be applied. 
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SECTION 3 

FDPS SYSTEM MODELS 

3.1 INTRODUCTION  

Models serve extremely important, if not essential, roles in the 

development of complex systems. This is especially true for systems in which 

the effects of complexity are further complicated by inconsistencies, 

ambiguities, and incompleteness in the use of the terms that are employed to 

describe the structure as well as the operation of the systems involved and 

the components thereof. Suitable models are valuable, if not essential, tools 

to support and clarify such discussions. When examining or using any model, 

it is equally important to recognize that it may have been prepared or 

developed for a specific purpose (e.g., logical or physical description, 

simulator design, implementation guide, etc.) and may not be totally suitable 

for other uses. 

3.1.1 Whir  a "New" Model and "New" Terminology? 

Since the concepts of "full distribution" were first conceived over four 

years ago, members of the FDPS project have been plagued by severe problems in 

explaining the significance of various aspects of the definition of an FDPS. 

Most of these problems have been caused by the difficulties in clearly com-

municating the extremely important differences between "fully" distributed 

systems and those that are merely "distributed." These problems in understan-

ding appear often to result from the "listener" incorrectly equating certain 

aspects of FDPS operation with those of a similarly appearing distributed 

system. Such misunderstandings are not totally unreasonable, for some of the 

most significant differences are quite subtle. One highly desirable effect 

anticipated from "new" system models and "new" terminology is to prevent, or 

at least make less likely, these undesirable associations with existing system 

concepts. 

3.1.2 Approaches  LQ. Modelling  

There are a number of approaches that may be followed in the development 

of a system model. The selection of the approach to be taken is based on the 

intended use of the model and the nature of the system being modelled. 
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3.1.2.1 Scenario or Flow Chart Models 

Certainly one of the most commonly encountered models is the simple flow 

chart. A flow chart depicts the thread or threads of processing that the 

system will perform in response to a given set of inputs. A flow chart is 

probably the best method to illustrate or model the sequence of processing 

activities involved in a transaction processing or similar type system. 

3.1.2.2 Structure Models 

Logical and physical structure models are focused more on the organiza-

tion and modularization of the processing software and hardware than on the 

actual processing those modules perform. Perhaps the most important use of 

structure models is in the partitioning of functionality and code for 

implementation. 

3.1.2.3 Interaction Models 

Interaction models which focus on the relationships between software and 

hardware processing entities are becoming quite popular in the area of com-

puter networks; however, they are certainly not limited to just those 

applications. The basic principle employed in the development of these models 

is layering with interactions between pairs of peer layers and sets of 

adjacent layers being specified. The operation and functionality provided by 

each layer is defined in terms of its protocols and interfaces. 

The rules and procedures defining the interactions between peer layers 

are known as "protocols," whereas "interfaces" define the boundaries and 

procedures for interaction between adjacent layers. (See Figure 2) (This 

usage of the term "interface" is consistent with its definition as the boun-

dary between dissimilar entities.) To complete the system description at this 

level of abstraction, the interfaces are defined in terms of the services 

provided by a lower layer and the services provided to a higher layer. 

It should be noted that in the area of computer networking, the combina-

tion of a complete set of protocols and a complete set of interfaces is 

referred to as a "network architecture." 

Preparing a layered model with defined interfaces and protocols is no 

guarantee that a "clean" layering structure will result. A classic example of 

this is the ARPANET layers of protocol shown in Figure 3. Although they all 

make use of the Host-to-IMP protocol, there are many instances in ARPANET in 

which layers are bypassed completely. 
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3.1.2.4 Performance and Mathematical Models 

Obviously, the objective or purpose of this class of models is to 

provide tools to examine, and usually quantify, the performance of a system. 

3.1.2.5 Summary of Model Types 

The various types of models discussed above Jo not represent different  

ways Lo. accomplish the same task. Although there is some common information 

found in or derivable from two or more of the various type of models, each is 

actually focused on quite different aspects of the system description. 

- Physical structure model: Depicts the manner in which the various 
hardware and software components are partitioned  awl Packaged.  

- Logical structure model: Focuses on the functionality  provided by 
the hardware and software components and how they may be logically 
organized into modules. 

- Scenario or flow chart model: Depicts the sequence  At Processing 
actions  taken on the data. 

- Interaction model: Focuses on the 'nteractions between Processing  
entities  --- services provided to or received from adjacent layer 
entities and the protocols governing the communication and 
negotiations that can occur between corresponding peer layers. 

- Analytic model: Focuses on the performance  of complete systems  .. 
subsystems.  Often the external performance characteristics of the 
system being modelled are available. 

- Simulation model: Depicts a system or subsystem by modelling  as 
close  „la possible the operations that 	performs.  Provides more 
internal detail than an analytic model. 

3.2 OTHER MODELS  

Although the work on FDPS models has certainly been strongly influenced 

by the numerous existing "models" of multiprocessors, multiple computer 

systems, and computer networks, there has been very little influence from 

other "distributed system" models since few of these have been developed to 

the point that they can be closely analyzed. One model that has had a great 

deal of influence on the development of the FDPS models, at least in guiding 

the manner in which those models are presented, is the "Reference Model for 

Open System Interconnection" developed by Sub-Committee 16 of the Inter-

national Standards Organization Technical Committee 97. 

3.2.1 The ISO Reference Model for OSI  

The ISO Reference Model, a layered-interaction model, is being prepared 

by Sub-Committee 16 to establish a framework for the development of standard 
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protocols and interfaces as appropriate for the interconnection of 

heterogeneous nodes in an "open" computer network and the intercommunication 

between the processes in these nodes. (This model is almost totally focused 

on the IPC process, i.e., interprocess communication.) The ISO model is a 

7-layer structure as shown in Figure 4. 

Although the ISO Reference model has been influential in providing ideas 

and concepts applicable to a layered model of an FDPS, there are two major 

factors limiting its direct applicability: 

1. The ISO model is almost totally concerned with communication 
between the nodes of a network. Some references are made to 
higher level protocols in the applications layer, but these are 
not a part of the ISO model. 

2. Although it is not explicitly stated, there appears to be a 
general assumption in the ISO model of a degree of coupling 
that is tighter than that anticipated for an FDPS. (This com-
ment also applies to nearly all of the current network 
architectures --- even those that include application layer 
protocols.) 

3.2.2 Protocol Hierarchies  

As stated above, the ISO Reference Model addresses only a subset of the 

protocols and interfaces that will be found in a complete distributed system. 

A more complete picture is shown in Figure 5. 

3.3 THE FDPS MODELS  

3.3.1 The FDPS Logical Model  

The current version of the FDPS logical model is organized into five 

layers above the "physical interconnection" layer. (Figure 6) The important 

or significant characteristics of this logical model are: 

1. It is also a rudimentary layered-interaction model; however, to 
be useful, the interaction model must eventually delineate more 
layers. 

2. The operating system has been divided into two parts based on a 
division of functionality and responsibilities: 

a. The Local Operating System (LOS) is responsible 
for the detailed control and management of the 
users and resources at a single node. 

b. The 	Network Operating System (NOS) 	is 
responsible for interactions between this node 
and all others. 
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3. 	The correlation of FDPS layers and ISO layers is the following: 

FDPS Layers 	 ISO Layers  

Users and Resources 
Local Operating System 
	

Application 
Network Operating System 

Message Handler 
	

Presentation 
Session 

Transport 
Message Transporter 
	

Network 
Data Link 
Physical 

3.3.2 An FDPS Physical Model  

One of the possible physical models for an FDPS operating system is 

shown in Figure 7. This is a good example of how logical models and physical 

models may differ in their modularization. In Figure 7, the division between 

the LOS and NOS layers of the logical model runs horizontal through the 

MANAGERS in the physical model. 

3.3.3 The FDPS Interaction Model  

All of the individual layers of the FDPS interaction model have not yet 

been identified; however, a more detailed list of the protocols that may be 

loosely related to Figure 5 is given in Figure 8. This list of protocols is 

especially significant to the FDPS research project since it identifies those 

specific areas in which work must be done. 
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< 	Application Protocols 	>1 Application 
I 	  
I 

<----Presentation Protocols 	>1 Presentation 

I 
<---Session Control Protocols 	>1 	Session 

1 
I 

1<--Transport Control Protocols-->1 Transport 
i 	 1 

	

1 	  
1 
1 
	 1 

	

I<---Network Control Protocols--->I 	Network 
I 	 1 	  
1 	 1 1 	 1 
l< 	Data Link Protocols 	>1 Data Link 
1 	 I 	  
1 	 I 
1< 	Physical Protocol 	>1 	Physical 
1 	 I 	  

Application 

Presentation 

Session 

Transport 

Network 

Data Link 

Physical 

Interconnection Media 

Figure 4. The ISO Reference Model for OSI 
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1 	  
1 
1 
1 
1 I Resources 
1 1 	& Users 

Local 
Operating 
System 

NOS System Calls by the LOS 

Resource 
Sharing 

and 
Host-to-Host 

Protocols 

Communication 
	 Protocols 	 

<--- Transport --> 
Protocols 

Resources 
& Users 

Local 
Operating 
System 

Network 
Operating 
System 

Presentation 

Session 

Transport 

Network 

Network 
Operating 
System 

Presentation 

Session 

Transport 

Network 

<- 

1 < 

 

Communications 
	 Sub-net 	 

Protocols 

 

Figure 5. A "Complete" Protocol Hierarchy 

>1 
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USERS AND RESOURCES 

LOCAL OPERATING SYSTEM 

NETWORK OPERATING SYSTEM 	/ 

MESSAGE HANDLER 

\ MESSAGE TRANSPORTER / 
\ 	 / 
I 	 I 

PHYSICAL 
1 INTERCONNECTION 

/ 	 \ 
/ MESSAGE TRANSPORTER \ 

MESSAGE HANDLER 

NETWORK OPERATING SYSTEM 	\ 
/ 	 \ 

LOCAL OPERATING SYSTEM 
/ 	 \ 

USERS AND RESOURCES 

Figure 6. A Logical Model of an FDPS 
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*** NODE m *** 

 

    

	

Data i 	I 	 f f 	COMMAND 

	

Bases = 	f Processes I I INTERPRETER 1 1 Resources 
(m) 	I 	1 	(m) 	I 	I 	(m) 	I 	I 	(m) 

1 1 	i 	 1 	 1 
	 1    1 	1 1 

DATA 	1 	 1 	1 
BASE 	f PROCESS 	1 PROCESS 1 	f RESOURCE 

MANAGER 	I CONTROLLER 	1 MANAGER f 	I MANAGER 
(m) f 	(m) 	I 	1 	(m) 	1 	I 	(m) 

1 1 	 1 	 1 
1 1 1 1 1 

MESSAGE HANDLER & TRANSPORTER 

1 1 
1 

1 
1 

DATA I f f 1 1 
BASE 1 1 PROCESS 	I 1 	PROCESS 1 RESOURCE 

MANAGER I f CONTROLLER I 1 	MANAGER 1 MANAGER 
(n) I I (n) 	f I 	(n) 1 (n) 

I 1 1 
1 ___ I [ 1 

Data COMMAND 
Bases I I Processes f I INTERPRETER Resources 
(n) 	I I (n) 	I I 	(n) (n) 

-----L---- 1 1 	1 
*** NODE n *** 	1 Users 1 

1 	(n) 	1 
1 	1 

Figure 7. Physical Model of FDPS Control 
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Computer Network Protocols 

1 

Communications 
Protocols 

-(Processing 
Communication) 
I-Message Formatting 
I-Addressing 

-(Message Handling) 
I-Destination 
I resolution 
1-Connection 
I establishment 
I-Message transfer 

-(End-to-end) 
I-Presentation* 
I-Session• 

-(Transport Subsystem) 
I-Transport* 
1-Network control* 
I-Data link* 
1-Physical* 

-(Communications Subnet) 
I-Network control 

I I I-Routing 
I I-Broadcast 

I I-Data link 
1 I-Physical  

Resource 
Sharing 
Protocols** 

I-(Data Base Control) 
I I-File naming 

I-File access 
I-File transfer 
I-Update concurrency 

control 

-(Access) 
I-Virtual terminal 
I-Access control 
I-User interface 

I-Human 
I-Internal 

I-(Work Request Processing) 
-Resource management 

-Identification of 
resource requirements 

-Resource location 
-Resource selection 
-Resource allocation 
-Resource deallocation 

-Task management 
I-Execution control 
I-Synchronization 
I-Failure recovery 

* Classifications (layers) defined by the ISO and CCITT 
Network Architecture Models 

** A preliminary list for FDPS's 

Figure 8. Classifications of Computer Network Protocols 
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SECTION 4 

ISSUES IN DISTRIBUTED CONTROL 

Before examining specific aspects of executive control in an FDPS, a 

look at some of the various issues of distributed control is appropriate. 

There are three primary issues that require examination: 1) the effect of the 

dynamics of FDPS operation on an executive control, 2) the nature of the 

information an executive control must maintain, and 3) the principles to be 

utilized in the design of an executive control. 

4.1 DYNAMICS  

Dynamics is an inherent characteristic of the operation of an FDPS. 

Dynamics are found in the work load presented to the system, the availability 

of resources, and the individual work requests submitted. The dynamic nature 

of each of these provides the FDPS executive control with many unique 

problems. 

4.1.1 Workload Presented  IQ the System  

In an FDPS, work requests can be generated either by users or active 

processes and can originate at any node. Such work requests potentially can 

require the use of resources on any processor. Thus, the collection of 

executive control procedures must be able to respond to requests arriving at a 

variety of locations from a variety of sources. Each request may require 

system resources located on one or more nodes, not necessarily including the 

originating node. One of the goals of an FDPS executive control is to respond 

to these requests in a manner such that the load on the entire system is 

balanced. 

4.1.2 Availability  .glt Resources  

Another dynamic aspect of the FDPS environment concerns the availability 

of resources within the system. As mentioned above, a request for a service 

to be provided by a system resource may originate at any location in the 

system. In addition, there may be multiple copies of a resource or possibly 

multiple resources that provide the same functionality (e.g., there may be 

functionally equivalent FORTRAN compilers available on several different 

nodes). Since resources are not immune to failures, the possibility of losing 

existing resources or gaining both new and old resources exists. Therefore, 

an FDPS executive control must be able to manage system resources in a dynamic 
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environment in which the availability of a resource is unpredictable. 

4.1.3 Individual Work Requests  

Finally, the dynamic nature of the individual work requests must be 

considered. As mentioned above, these work requests define, either directly 

or indirectly, a set of cooperating processes which are to be invoked. An 

indirect definition of the work to be done occurs when the work request is 

itself the name of a command file or contains the name of a command file in 

addition to names of executable files or directly executable statements. A 

command file contains a collection of work requests formulated in command 

language statements (see Figure 10 for a description of the syntax for a 

suitable command language) that are interpreted and executed when the command 

file is invoked. The concept of a command file is similar to that of a 

procedure file which is available on several current systems. 

Management of the processes for a work request thus includes the pos-

sibility that one or more of the processes are command files requiring command 

interpretation. The presence of command files will also result in the 

inclusion of additional information in the task graph or possibly additional 

task graphs. (See paragraph 7.5 for a discussion of the impact of command 

files on the task graph.) 

An important objective of work request management is to control the set 

of processes and do so in such a manner that the inherent parallelism present 

in the operations to be performed is exploited to the maximum. In addition, 

situations in which one or more of the processes fail must also be handled. 

4.2 INFORMATION  

All types of executive control systems require information in order to 

function and perform their mission. The characteristics of the information 

available to the executive control is one aspect of fully distributed systems 

that result in the somewhat unique control problems that follow: 

1. Because of the nature of the interconnection links and the 
delays inherent in any communication process, system informa-
tion on hand is always out  of date.  

2. Because of the autonomous nature of operation of all com-
ponents, each processor can make "its own decision" as how to 
reply to an inquiry; therefore, there is always the possibility  
that information received is incomplete  and/or inaccurate. 

3. Because of the inherent time delays experienced in exchanging 
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information among processes on different nodes, some informa-
tion held by two processes may conflict  during a particular 
time interval. 

4.3 DESIGN PRINCIPLES  

Designing the system control functions required for the extremely 

loosely-coupled environment of an FDPS and implementing those functions to 

operate in that environment will certainly require the application of some new 

design principles in addition to those commonly utilized in operating systems 

for centralized systems. These design principles must address at least the 

two distinguishing characteristics of FDPS's: 

- System information available, and 
- Nature of resource control 

4.3.1 System Information  

The various functions of an FDPS executive control must be designed 

recognizing that system information is: 

- "Expensive" to obtain 
- Never fully up-to-date 
- Usually incomplete 
- Often inaccurate 

All of these characteristics of system information result from the fact 

that the components providing the information are interconnected by relatively 

narrow bandwidth communication paths (see paragraph 2.3.1) and that those com-

ponents are operating somewhat autonomously with the possibility that their 

state may change immediately after a status report has been tansmitted. 

Further, itis important to note that the mere existence (or disappearance) of 

a resource is not of interest to a specific component of the FDPS executive 

control until that component needs that information. 

The 

identified 

1. 

	

design 	principles 	applying 	to 	system information that 

thus far include the following: 

	

Economy 	communication: 	ask 	for 	only 	the 	information .Q_f_ 

have been 

required. 

2. Resiliency: be prepared to recover and continue in the absence 
of replies. 

3. Flexibility: be 	prepared 	to 	recover 	and 	continue if the 
information 
utilized. 

provided 	proves 	to 	be 	inaccurate 	when it 	is 
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4.3.2 Resource Control  

Since all of the resources are operating under local control under the 

policies of cooperative autonomy, all requests for service, or the utilization 

of any resource such as a file, must be effected through negotiations that 

culminate in positive acknowledgements by the server. In all instances, the 

control function requesting a service or a resource must be prepared for 

refusal. 

Georgia Institute of Technology 	 FDPS Control Models 



Section 5 
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Page 37 

SECTION 5 

CHARACTERIZATION OF FDPS WORK REQUESTS 

5.1 THE WORK REQUEST  

One of the goals of an FDPS is the ability to provide a hospitable 

environment for solving problems that allows the user to utilize the natural 

distribution of data to obtain a solution which may take the form of an 

algorithm consisting of concurrent processes. The expression of the solution 

is in terms of a work request that describes a series of cooperating proces-

ses, the connectivity of these processes (how the processes communicate), and 

the data files utilized by these processes. This description involves only 

logical entities and does not contain any node specific information. A 

description of one command language capable of expressing requests for work in 

this fashion can be found in [Akin78] (see Figure 10). 

5.2 IMPACT  QE. THE WORK REQUEST  ,QX THE CONTROL  

The nature of allowable work requests (not just the syntax but what can 

actually be accomplished via the work request) determines to a large extent 

the functionality of an executive control. Therefore, it is important to 

examine the characteristics of work requests and further to see how variations 

in these characteristics impact the strategies utilized by an FDPS executive 

control. 

Five basic characteristics of work requests have been identified: 

1. the external visibility of references to resources required by 
the task, 

2. the presence of any interprocess 	communication 	(IPC) 
specifications, 

3. the number of concurrent processes, 

4. the nature of the connectivity of processes, and 

5. the presence of command files. 

5.2.1 Visibility  91 References ,,  Resources  

References to the resources required to satisfy a work request may 

either be visible prior to the execution of a process associated with the work 

request or embedded in such a manner that some part of the work request must 

be executed to reveal the reference to a particular resource. A resource is 

made "visible" either by the explicit statement of the reference in the work 
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request or through a declaration associated with one of the resources 

referenced in the work request. An example of the latter means of visibility 

is a file system in which external references made from a particular file are 

identified and stored in the "header" portion of the file. In this case, the 

identity of a reference can be obtained by simply accessing the header. 

The greatest impact of the visibility characteristic of resource 

requirements occurs in the construction of task graphs and the distribution of 

work. The time at which resource requirements are detected and resolved 

determines when and how parts of the task graph can be constructed. 

Similarly, some work cannot be distributed until certain details are resolved. 

For example, consider a case where resource references cannot be resolved 

until execution time. Assume there exists two processes X and Y where process 

X has a hidden reference to process Y. An executive control cannot consider Y 

in the work distribution decision that is made in order to begin execution of 

X. The significance of this is that certain work distribution decisions may 

not be "globally optimal" because total information was not available at the 

time the decision was made. 

5.2.2 The Number  of Concurrent Processes  

A work request can either specify the need to execute only a single 

process or the execution of multiple processes which may possibly be executed 

concurrently. Obviously with multiple processes, more resource availability 

information must be maintained; and there is a corresponding increase in the 

data to the work distribution and work allocation phases of control. In 

addition, the complexity of the work distribution decision algorithm increases 

with more resources needing to be allocated and multiple processes needing 

scheduling. The complexity of controlling the execution of the work request 

is also increased with the presence of multiple processes since the control 

must monitor multiple processes for each work request. 

5.2.3 The Presence  of InterProcess Communication  

The problems described in the previous paragraph are amplified by the 

presence of communication connections between processes. When interprocess 

communication is described in a work request, the work distribution decision 

must consider the requirement for communication links. In addition, a com-

promise must be made in order to satisfy the conflicting goals of maximizing 

the inherent parallelism of the processes of the work request and minimizing 
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the cost of communication among these processes. 	The control activity 

required during execution is also impacted by the presence of interprocess 

communication. It must provide the means for passing messages, buffering mes-

sages, and providing synchronization to insure that a reader does not under-

flow and a writer does not overflow the message buffers. 

5.2.4 The Nature  91: Process Connectivity  

There are a variety of techniques available for expressing interprocess 

communication including pipes (see [Ritc78]) and ports (see [Balz71, Have78, 

Suns77, Zuck77]). 	There are a number of approaches to realizing these 

different forms of interprocess communication. 	The main impact on an 

executive control, though, is in those components controlling process 

execution. 

5.2.5 The Presence  DI Command Files  

A command file is composed of work requests. 	Execution of a work 

request that references a command file results in a new issue dealing with the 

construction of task graphs. This issue is concerned with whether a new task 

graph should be constructed to describe the new work request or should these 

new processes be included in the old task graph. The differences between 

these two approaches becomes important during work distribution. It is 

assumed that the work distribution decision will be made only with the 

information available in the task graph. Thus, with the first approach, only 

those tasks in the new work request are considered while the second approach 

provides the ability to take into consideration the assignment of tasks from 

previous work requests. 

5.3 A CLASSIFICATION  a WORK REQUESTS  
This examination of the characteristics of FDPS work requests has lead 

to the identification of five basic attributes which have significant impact 

on an executive control. In Figure 9, all possible types of work requests are 

enumerated resulting in 32 different forms of work requests. It should be 

noted, though, that 16 of these (those with an asterisk beside the task num-

ber) contain conflicting characteristics and thus are impossible. 
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1 
Resource ReferencesI 

I 	All 	I 	Some 	1 	IPC 
No. 	1 Visible I Embedded I YES NO 

1 Resources 
!Distribut- 

ed on 
Different 

Nodes 
YES NO 

Multiple 
Copies 

Resources 
YES I  NO 

Some 
Resources 
on Node 

Other Than 
Home Node 
YES I NO 

1 
2 
3 * 

 4* 
5* 
6 
7* 
8 

x 

x x 

x 

I X 
X 

X 
X 

Ix 
IX 

X 

X 

X 

X 

X 

x 

9 x X 
10 1 	x 
11* x x X 
12* 
13* IX 
14 IX 
15* x 
16 
17 x IX 
18 	 x Ix 
19* X 
20* X 
21* 
22 X 
23* x X 
24 x 
25 Ix 	IX 
26 Ix 
27* x 
28* 
29 * 	x x x 
30 x x 
31* Ix 
32 

Figure 9. Classification of Work Requests 
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SECTION 6 

CHARACTERISTICS OF FDPS CONTROL MODELS 

6.1 APPROACHES  IQ. IMPLEMENTING FDPS EXECUTIVE CONTROL  

There are two basically different approaches available for implementing 

an operating system for a distributed processing system, the base-level 

approach and the meta-system approach [Thom78]. The base-level approach does 

not utilize any existing software and, therefore, requires the development of 

all new software. This includes software for all local control functions such 

as memory management and process management. In contrast, the meta-system 

approach utilizes the "existing" operating systems (called local operating 

systems (LOS)) from each of the nodes of the system. Each LOS is "interfaced" 

to the distributed system by a network operating system (NOS) which is 

designed to provide high level services available on a system-wide basis. The 

meta-system approach is usually preferred due to the availability of existing 

software to accomplish local management functions, thus, reducing development 

costs [Thom78]. 

Figure 6 depicts a logical model applicable to an FDPS executive control 

utilizing either approach. The LOS handles the low-level (processor-specific) 

operations required to directly interface with users and resources. In the 

meta-system approach, the LOS represents primarily the operating systems 

presently available for nodes configured in stand-alone environments. The LOS 

resulting from a base-level approach has similar functionality; however, it 

represents a new design, and certain features may be modified in order to 

allow the NOS to provide certain functions normally provided by the LOS. Any 

"network" operations are performed by the NOS. System unification is realized 

through the interaction of NOS components, possibly residing on different 

processors, acting in cooperation with appropriate LOS components. Communica-

tion among the components is provided by the message handler which utilizes 

the message transport services. 

6.2 INFORMATION REQUIREMENTS  

Two types of information are required by an executive control, informa-

tion concerning the structure of the set of tasks required to satisfy the work 

request and information about system resources. This data is maintained in a 

variety of data structures by a number of different components. 
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6.2.1 Information Requirements for Work Requests  

Each work request identifies a set of cooperating tasks, nodes in a 

logical network that cooperate in execution to satisfy a request and the con-

nectivity of those nodes. Figure 10 illustrates the notation used in this 

project to express work requests. An example of a work request using this 

notation is presented in Figure 11. Work requests as linear textual forms can 

be easily accepted and manipulated by the computer system; however, task 

graphs, which are an internal control structure used to describe work 

requests, must be represented in a manner such that the linkage information is 

readily available. This can take the form of the explicit linking of node 

control blocks (Figure 12) or an interconnection matrix (Figure 13). 

Information concerning a particular task, i.e., logical node, is 

maintained in a node control block (Figure 12). Associated with each logical 

node is an execution file, a series of input files, and a series of output 

files. The node control block contains information on each of these entities 

that includes the name of the resource, the locations of possible candidates 

that might provide the desired resource, and the location of the candidate 

resource chosen to be utilized in the satisfaction of the work request. In 

addition to this information, the node control block maintains a description 

of all interprocess communication (IPC) in which the node is a party. This 

consists of a list of input ports and output ports. (Interprocess communica-

tion is a term describing the exchange of messages between cooperating proces-

ses of a work request.) Typically, a message is "sent" when it is written to 

the output port of a process. The message is then available for consumption 

by any process possessing an input port that is connected to the previously 

mentioned output port. The message is actually consumed or accepted when the 

process owning the connected input port executes a READ on that port. 

A global view of interprocess communication is provided by the node 

interconnection matrix (Figure 13). This structure indicates the presence or 

absence of an IPC link between an output port of one node and an input port of 

another node. Thus, links are assumed to carry data in only a single direc-

tion. 

An example of a task graph resulting from the work request in Figure 11 

utilizing the direct linking of node control blocks is presented in Figure 14. 

Figure 15 illustrates the utilization of an interconnection matrix. 
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<work request> ::= [ <logical net> { ; <logical net> } ] 

<logical net> ::= <logical node> { <node separator> 
{ <node separator> } <logical node> } 

<node separator> ::= , 1 <pipe connection> 

<pipe connection> ::= [ <port> ] '1 1  [ <logical node number> ] 
[ .<port> ] 

<port> ::= <integer> 

<logical node number> ::= <integer> I $ I <label> 

<logical node> ::= [ :<label> 	[ <simple node> 1 
<compound node> 	1 
( <simple node> I <compound node> ) 

<simple node> ::= { <i/o redirector> } <command name> 
<i/o redirector> 1 <argument> } 

<compound node> ::= { <i/o redirector> } /{t <logical net> 
{ <net separator> <logical net> } t}' 
{ <i/o redirecotr> } 

<i/o redirector> ::= <file name> '>' [ <port> 	1 
[ <port> ] '>' <file name> I 
[ <port> ] '>>' <file name> 1 

,>>, [ <port> ] 

<net separator> ::= ; 

<command name> ::= <file name> 

<label> ::= <identifier> 

Figure 10. Work Request Syntax 
(Taken from [AKIN78]) 
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Work Request: 

pgm1 1 pgm2 11a 211) :a p gm3 1 pgmli 1c.1 :b pgm5 1 pgm6 1.2 :c pgm7 
(0) 	(1) (2) (3) 

	
(4) 	(5) 	(6) 
	

(7) 	(8) 	(9) 

(0) Output port 1 of pgm1 is connected to input port 1 of pgm2. 
(1) Ouptut port 1 of pgm2 is connected to input port 1 of the 

logical node labeled "a," pgm3. 
(2) Output port 2 of pgm2 is connected to input port 1 of the 

logical node labeled "b," pgm5. 
(3) Label for the logical node containing pgm3 as its execution 

module. 
(4) Output port 1 of pgm3 is connected to input port 1 of pgmli. 
(5) Output port 1 of pgmit is connected to input port 1 of the 

logical node labeled "c," pgm7. 
(6) Label for the logical node containing pgm5 as its execution 

module. 
(7) Output port 1 of pgm5 is connected to input port 1 of pgm6. 
(8) Output port 1 of pgm6 is connected to input port 2 of pgm7. 
(9) Label for the logical node containing pgm7 as its execution 

module. 

Data Flow Graph of the Work Request: 

pgml 
1 
1 

V 
pgm2 

11 
11 

I 	1 1 1 1 	1 
V 	V 

pgm3 	pgm5 
1 	1 
1 

V 	V 
pgmli 	pgm6 

1 I 1 
L___ ____1 

11 
11 

VV 
pgm7 

Figure 11. Example of a Work Request 
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EXECUTION FILE 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

INPUT FILE 1 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

INPUT FILE i 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

OUTPUT FILE 1 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

OUTPUT FILE j 

Name: 
Locations of candidates available: 
Location of candidate chosen: 

IPC 

Input Ports: 
Output Ports: 

Figure 12. Node Control Block 
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Node Port 

Figure 13. Node Interconnection Matrix 

Node 

Port 
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Name: pgm1 
I Candidates: 
I Chosen Candidate: 
I Output Port 1: 	 
	  1 

Name: pgm2 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Output Port 1: 	 
Output Port 2: 
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Name: pgm3 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Output Port 1: ------ 

Name: pgm5 
Candidates: 
Chosen Candidate: 
Input Port 1: 	I<- 
Output Port 1: 

Name: pgm4 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Output Port 1: 

Name: pgm7 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Input Port 2: 

Name: pgm6 
Candidates: 
Chosen Candidate: 
Input Port 1: 
Output Port 1: 	 

Figure 14. Example of a Task Graph Using Links within the 
Node Control Blocks 

(Based on the Work Request Shown in Figure 11) 
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RECEIVER 

1 1 

1 

2 	3 	4 	5 	6 	7 	 Node 

1 	1 	1 	1 	1 	1 	2 	Port 

***************************** 
* 	* 	* 	* 	* 	* 
* 1 * 	* 	* 	* 	* 
* 	* 	* 	* 	* 	* 
***************************** 
* 	* 	* 	* 	* 	* 	1 	* 
a 	* 1 	* 	a 	a 	a 	I 

2 * 	* 	* 	* 	* 	* 	* 
* 	* 	* 	* 	* 	* 	1 	* 

2 a 	* 	* 	* 1 	* 	* 	1 	* 
S * 	* 	* 	* 	* 	* 	* 
E ***************************** 
N * 	* 	* 	* 
D 3 1* * 	* 1 	* 	* 	* 	1 
E * 	* 	* 	* 	* 
R ***************************** 

* 	* 	* 	* 	* 	* 	* 
4 1 * 	* 	* 	* 	* 	* 1 	I 	* 

* 	* 	* 	* 	* 	* 
***************************** 
* 	* 	* 	* 	* 	* 	* 

5 1 * 	* 	* 	* 	* 1 * 	* 
* 	* 	* 	* 	* 	* 	* 
***************************** 
* 	* 	* 	* 	* 	* 	* 

6 1 * 	* 	* 	* 	* 	* 	i 	1 	* 
* 	* 	* 	* 	* 	* 	* 
***************************** 

Node Port 

Figure 15. Example of a Node Interconnection Matrix 

(Based on Work Request Shown in Figure 11) 

Georgia Institute of Technology 	 FDPS Control Models 



Section 6 
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 49 

6.2.2 Information Re❑uirements  :sr. System Resources  
Regardless of how the executive control is realized (i.e., how the com-

ponents of the executive control are distributed and how the control decisions 

are decentralized), information concerning all system resources (processors, 

communication lines, files, and peripheral devices) must be maintained. This 

information includes at a minimum an indication of the availability of resour-

ces (available, reserved, or assigned). Preemptable resources (e.g., proces-

sors and communication lines) capable of accommodating more than one user at a 

time may also have associated with them utilization information designed to 

guide an executive control in its effort to perform load balancing. 

As discussed below, there are a number of techniques that may be 

employed to gather and/or maintain the system resource information. 

6.3 BASIC OPERATIONS  OF FDPS CONTROL  

The primary task of an executive control is to process work requests 

that can best be described as logical networks. A node of a logical network 

specifies an execution file that may either contain object code or commands 

(work requests), input files, and output files. These files may reside on one 

or more physical nodes of the system and there may be multiple copies of the 

same file available. Thus, to process a work request, an FDPS executive 

control must perform three basic operations: 1) gather information, 2) 

distribute the work and allocate resources, and 3) initiate and monitor task 

execution. These operations need not be executed in a purely serial fashion 

but may take a more complex form with executive control operations executed 

simultaneously or concurrently with task execution as the need arises. 

Examination of the basic operations in further detail (Figure 16) 

reveals some of the variations possible in the handling of work requests. Two 

steps exist in information gathering --- 1) collecting information about task 

requirements for the work request and 2) identifying the resources available 

for satisfying the request requirements. Information gathering is followed by 

the task of distributing the work and allocating resources. If this operation 

is not successful, three alternatives are available. First, more information 

on resource availability can be gathered in an attempt to formulate a new work 

distribution. 	There may have been a change in the status of some resources 

since the original request for availability information. 	Second, more 

information can be gathered as above, but this time the requester will 
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WORK REQUEST 
1 
	 >1 

1 
I 	1 	 
I 	I 	 I 

1 Gather Information I 
1 (Task Requirements) 1 

I 	1 	  1 
1 
	 >1< 	  

	

1 	 4 
1 

1 	1 
Gather Information 	1 	1 

(Resource Availability) 1 	1 
1 YES 

	

1 	 1 

	

1 	 
1 	 1 	1 	 1 

(A) 1 Distribute Work 	I (B) 1 Bid to a 1 NO Report 
1<----1 	and 	1 	>1 Higher I--->FAILURE 

I Allocate Resources I 	1 Level? I 	to User 

1 	 Notes: 
1(C) 
1 	 A: The proposed allocation 

is not accepted by the 
(D) 
	

I 	 I 	resources. 
1 < 	1 Execute Task 1 
	 1 	B: No solution with 

1 	 resources available at 
1 (E) 	 "this" price level. 
1 

C: Allocation accepted by 
1 
	

resources. 
1 Cleanup I 
1 	1 	D: Appearance of a new 

1 	 task or request for 
1 	 additional resources. 
t 

COMPLETED WORK REQUEST E: Normal or abnormal 
termination. 

Figure 16. Work Request Processing (Detailed Steps) 
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indicate a willingness to "pay more" for the resources. This is referred to 

as bidding to a higher level. Finally, the user can simply be informed that 

it is impossible to satisfy his work request. 

6.3.1 Information Gathering 

Upon receiving a work request, the first task of the control is to 

discover what resources are needed to satisfy the work request (Figure 17) and 

which resources are available to fill these needs (Figure 18). Each work 

request includes a description of a series of tasks and the connectivity of 

those tasks. 	Associated with each task is a series of files. One is 

distinguished as the execution file and the rest are input/output files. 	The 

executive control must first determine which files are needed. It then must 

examine each of the execution files to determine the nature of its contents 

(executable code or commands). Each task will need a processor resource(s), 

and those tasks containing command files will also require a command 

interpreter. 

An FDPS executive control must also determine which of the system 

resources are available. For nonpreemptable resources, the status of a 

resource can be either "available," "reserved," or "assigned." A reservation 

indicates that a resource may be used in the future and that it should not be 

given to another user. Typically, there is a time-out associated with a 

reservation that results in the automatic release of the reservation if an 

assignment is not made within a specified time interval. The idea here is to 

free resources that otherwise would have been left unavailable by a lost 

process. The process may be lost because it failed, its processor failed, or 

the communication link to the node housing the particular resource may have 

failed. An assignment, on the other hand, indicates that a resource is 

dedicated to a user until the user explicitly releases that assignment. 

Preemptable resources may be accessed by more than one concurrent user and 

thus can be treated in a different manner. For these resources, the status 

may be indicated by more continuous values (e.g., the utilization of the 

resource) rather than the discrete values described above. 

6.3.2 Work Distribution and Resource Allocation  

The FDPS executive control must determine the work distribution and the 

allocation of system resources (Figure 19 & 20). This process involves choos-

ing from the available resources those that are to be utilized. This decision 
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SUBMISSION OF 
WORK REQUEST 

Examine Work Request and Begin 
Construction of Task Graph 

(At this point the task graph 
describes the "visible" nodes and 
their logical relationships 
as expressed in the work request) 

	 V 	  

I When is the Work Request Expanded? I 

Piecemeal 	 I Completely Before 
I Execution Begins 

1< 	  

I Locate Each Visible Resource I 

I 

I Update the Task Graph I 
I 	 I 

I Were Additional Resource I 
I Requirements Discovered? I 

I 	 I 	 1 
1< 	  I NO 	YES I 	 
V 
To 

Information Gathering 
(Resources Available) 

Figure 17. Information Gathering (Resources Required) 
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LEGEND AND NOTES  

1: Resources Reserved During Information Gathering 
2: No Resources Reserved 
3: Some Resources May Be Reserved 
A: General, for all resources 
B: To meet specific task/job requirements 
C: Replies cover information on resources available only 
D: Replies cover information on the total status 
E: Broadcast only significant changes 
F: Periodic broadcasts at regular intervals 

Figure 18. Information Gathering (Resources Available) 

Georgia Institute of Technology 	 FDPS Control Models 



Resources 
to be 

Reserved 

Resources 
Required "Bidding" 

to a 
Higher 
Level 

No Solution I 	Run The 
I< 	 I Distribution/ 

Allocation 
Algorithm 

1 1 	  

Success 

	

NO I 	YES I 

	V 	 INO 
I 	YESI 

To 
Report 	I 	Work 
FAILURE 	I Assignment 
to User 

Transmit 
Reservation 
Requests/ 

Confirmation/ 
Release 

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 Page 54 

From Information Gathering 
(Resources Available) 

	V 	 
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I Resource Check I 

	I YES 	NO I 

	V 	 
I YES 

1 	Preliminary Check 	I or ? 	I I Make Preliminary 
I Res.Avail > Res.Reqd I 	>I Resource Allocation 

I 	I 	  
Definitely! 	 1 	I NO 	YES I 
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I 	 I 	 I Reservations 
To 	1 I 	Update 	I 	NO 	Accepted 
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Available) 

Figure 19. Resource Allocation and Work Distribution 
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From 
Work 
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Figure 20. Work AssignMent 
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is designed to achieve several goals such as load balancing, maximum through-

put, and minimum response time. It can be viewed as an optimization problem 

similar in many respects to that discussed by Morgan [Morg77). 

Once an allocation has been determined, the chosen resources are 

allocated and the processes comprising the task set are scheduled and 

initiated. If a process cannot be immediately scheduled, it may be queued and 

scheduled at a later time. When it is scheduled, a process control block and 

any other execution-time data structures must be created. 

6.3.3 Information Recording  

Information is recorded as a result of management actions as well as 

providing a means to maintain a historical record or audit trail of system 

activity. The information recording resulting from management actions 

maintains the system state and provides information for decision making. The 

historical information is useful in monitoring system security. It provides a 

means to examine past activity on a system in order to determine if a breach 

of security occurred or how a particular problem or breach of security may 

have occurred. 

Management information is maintained in various structures, including 

the task graph. The task graph is used to maintain information about the 

structure of an individual work request, and, thus, its contents change as 

progress on the work request proceeds. A task graph is created when a work 

request is first discovered, and information is then constantly entered into 

the structure as work progresses through information gathering to work 

distribution and resource allocation and on to task execution. The task graph 

remains active until completion of the work request. 

Much of the information contained in the task graph is applicable to 

historical records. In fact, the task graph can be used to house historical 

information as it is gathered during work request processing. Upon completion 

of the work request, the historical information is extracted and entered into 

the permanent historical file. Alternatively, the historical file can be 

created directly skipping the intermediate task graph structure. 

6.3.4 Task Execution  

Finally, an executive control must monitor the execution of active 

processes. 	This includes providing interprocess communication, handling 

requests from active processes, and supervising process termination. 	The 
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activities associated with interprocess communication include establishing 

communication paths, buffering messages, and synchronizing communicating 

processes. The latter activity is necessary to protect the system from 

processes that flood the system with messages before another process has time 

to absorb the messages. Active processes may also make requests to the 

executive control. These may take the form of additional work requests or 

requests for additional resources. Work requests may originate from either 

command files or files containing executable code. 

An executive control must also detect the termination of processes. 

This includes both normal and abnormal termination. After detecting process 

termination, it must inform processes needing this information that termina-

tion has occurred, open files must be closed, and other loose ends must be 

cleaned up. Finally, when the last process of a work request has terminated, 

it must inform the originator of the request of the completion of the request. 

6.3.5 Fault Recovery  

If portions (tasks) of the work request are being performed on different 

processors, there is inherently a certain degree of fault recovery possible. 

The problem is in exploiting that capability. The ability to utilize "good" 

work remaining after the failure of one or more of the processors executing a 

work request depends on the recovery agent having knowledge of the location of 

that work and the ability of the recovery agent to reestablish the appropriate 

linkages to the new locations for the portions of the work that were being 

executed on the failed processor(s). 
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SECTION 7 

VARIATIONS IN FDPS CONTROL MODELS 

There is an extremely large number of features by which variations in 

distributed control models can be characterized. Of these, only a few basic 

attributes appear to deserve attention. These include the nature of how and 

when a task graph is constructed, the maintenance of resource availability 

information, the allocation of resources, process initiation, and process 

monitoring. In this section, these issues are examined; but again, since the 

number of variations possible in each issue are rather large, only those 

choices considered significant are discussed. Table 2 contains a summary of 

the problems that have been identified and possible solutions (significant and 

reasonable solutions) to these problems. 

7.1 TASK GRAPH CONSTRUCTION  

The task graph is a data structure used to maintain information about 

the applicable task set. The nodes of a task graph represent the tasks of the 

task set, and the arcs represent the connectivity or flow of information 

between tasks. There are basically four issues in task graph construction: 

1) who builds a task graph, 2) what is the basic structure of a task graph, 3) 

where are the copies of a task graph stored, and 4) when is a task graph 

built. 

The identity of the component or components constructing the task graph 

is an issue that presents three basic choices. First, a central node can be 

responsible for the construction of task graphs for all work requests. 

Another choice utilizes the control component on the node receiving the work 

request to construct the task graph. Finally, the job of building the task 

graph can be distributed among several components. In particular, the nodes 

involved in executing individual tasks of the work request can be responsible 

for constructing those parts of the task graph that they are processing. 

The general nature of the task graph itself provides two alternatives 

for the design of an executive control. What is of concern here is not the 

content of a task graph but rather its basic structure. One alternative is to 

maintain a task graph in a single structure regardless of how execution is 

distributed. 	The other choice is to maintain the task graph as a collection 

of subgraphs with each subgraph representing a part of the work request. 	For 
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Table 2. Variations in Control Models 

ILL SiRAPH CnNATRUCT2011:  

Who builds the task graph? 
1. A central node specializing in task graph building. 
2. The node intially receiving and analyzing the work request. 
3. All nodes involved in executing the work request. 

What is the nature of the task graph? 
1. A single complete structure. 
2. Multiple structures each consisting of a subgraph. 
3. Multiple structures each consisting of a aubgraph with one copy 

of the complete task graph. 

Where is the task graph stored? 
1. A central node. 
2. The node intially receiving and analyzing the work request. 
3. A node determined to be in an optimal location. 
4. All nodes involved in executing the work request. 

When is the task graph built? 
1. Completely prior to execution. 
2. Piecemeal during execution. 

Br..souRcE  Ivan eirtrrir  ursigungg: 

Who maintains this information? 
1. A single central node. 
2. Each node maintains information about its own resources. 
3. All nodes maintain common information. 
4. A designated node for each type of resource. 

Where is the information maintained? 
1. At a central node. 
2. Separate pieces of information concerning a particular resource 

type may be kept on different nodes. 
3. In multiple redundant copies. 
4. Information concerning a particular resource type is kept on a 

specially designated node. 

juocaTiumgEsouRcra.  

How is concurrency control provided? 
1. None is provided. 
2. Reservations are used prior to a work distribution decision and 

then allocated by a lock. 
3. Allocated by a lock after the work distribution decision. 
4. Resources are locked before the work distribution decision is made. 

PROCESS JNTTTATIOI: 

How is responsibility distributed? 
1. A central component retains all responsibility. 
2. A single component is in charge of a single work request. 
3. There is a hierarchy of responsibility. 
4. Responsibility is distributed among specialist components. 

How is refusal of a request to execute a process by a node handled? 
1. After repeated attempts, the request is abandoned. 
2. After repeated attempts, a new work distribution is obtained. 

nagglimaTToRTag. 

What type of interprocess communication is provided? 
1. Synchronized communication. 
2. Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
1. The new task graph is made part of the old one. 
2. The new task graph is kept separate. 

porwsl,  VRRKTNAMI: 

Options selected here are determined by those selected for 
PROCESS INITIATION. 
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example, a subgraph can represent that portion of the work request that is to 

be executed on the particular node at which that subgraph is stored. 

Another issue of task graph construction concerns where the various 

copies of the task graph are stored. If the control maintains a task graph as 

a unified structure representing the complete set of tasks for a work request, 

this structure may either be stored on a single node, or redundant copies can 

be stored on multiple nodes. The single node can either be a central node 

that is used to store all task graphs, the node at which the original work 

request arrived (the source node), or a node chosen for its ability to provide 

this work request with optimal service. If the task graph is divided into 

several subgraphs, these can be maintained on multiple nodes. 

Finally, there is the issue concerning the timing of task graph 

construction in the sequence of steps that define work request processing. 

Two choices are available: 1) the task graph can be constructed completely, 

at least to the maximum extent possible, before execution is begun, or 2) the 

task graph can be constructed incrementally as execution progresses. 

7.2 RESOURCE AVAILABILITY INFORMATION  

Another possible source of variability for control models is the 

maintenance of resource availability information. What is of importance here 

is "Who maintains this information" and "Where is this information 

maintained." A particular model need not uniformly apply the same technique 

for maintaining resource availability information to all resources. Rather, 

the technique best suited to a particular resource class may be utilized. 

The responsibility for maintaining resource availability information can 

be delegated in a variety of ways. The centralized approach involves assign-

ing a single component this responsibility. In this situation, requests and 

releases for resources flow through the specialized component which maintains 

the complete resource availability information in one location. 

A variation of this technique maintains complete copies of the resource 

availability information at several locations [Caba79a,b]. Components at each 

of these locations are responsible for updating their copy of the resource 

availability information in order to keep it consistent with the other copies. 

This requires a protocol to insure that consistency is maintained. For exam-

ple, two components should not release a file for writing to different users 
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at the same time. To provide this control, messages containing updates for 

the information tables must be exchanged among the components. In addition, a 

strategy for synchronizing the release of resources is required. An example 

of such a strategy is found in [Caba79a,b] where a baton is passed around the 

network. The holder of the baton is permitted to release resources. 

Another approach exhibiting more decentralization requires dividing the 

collection of resources into subsets or classes and assigning separate com-

ponents to each subset. Each component is responsible for maintaining 

resource availability information on a particular subset. In this case, 

requests for resources can only be serviced by the control component 

responsible for that resource. Resources may be named in a manner such that 

the desired manager is readily identifiable. Alternatively, a search may be 

required in order to locate the appropriate manager. This search may involve 

passing the request from component to component until one is found that is 

capable of performing the desired operation. 

Preemptable resources which can be shared by multiple concurrent users 

(e.g., processors and communication lines) do not necessarily require the 

maintenance of precise availability information. For these resources, it is 

reasonable to maintain only approximate availability information because such 

resources are rarely exhausted. The primary concern in this instance is 

degraded performance. Therefore, a good estimate of resource utilization is 

needed. 

7.3 ALLOCATING RESOURCES  

One of the major problems experienced in the allocation of resources is 

concurrency control. In a hospitable environment, it is possible to ignore 

concurrency control. The users are given the responsibility of insuring that 

access to a shared resource such as a file is handled in a consistent manner. 

In other environments, for example that presented by an FDPS, this is an 

important issue. In an FDPS, the problem is even more difficult than in a 

centralized system due to the loose coupling inherent in the system. 

There are basically two approaches to solving the problem of concurrent 

requests for shared resources. The first utilizes the concept of a reser-

vation. Prior to the allocation of resources (possibly when resource 

availability information is acquired), a resource may be reserved. The reser- 
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vation is effective for only a limited period (a period long enough to make a 

work distribution decision and allocate the resources determined by the 

decision) and prevents other users from acquiring the resource. The other 

solution to this problem is to make the work distribution decision without the 

aid of reservations. If resources cannot be allocated, the executive control 

will either wait until they can be allocated or attempt a new work 

distribution. 

7.4 PROCESS INITIATION  

Several issues arise concerning process initiation. Chief among these 

is the distribution of responsibility. There are a large number of 

organizations possible, but only a few are reasonable. The basic 

organizations utilize either a single manager, a hierarchy of managers, or a 

collection of autonomous managers. Two approaches result from the single 

manager concept. In the first organization, a central component is in charge 

of all work requests and the processes resulting from these work requests. 

All decisions concerning the fate of processes and work requests are made by 

this component. A variation on this organization assigns responsibility at 

the level of work requests. In other words, separate components are assigned 

to each work request. Each component makes all decisions concerning the fate 

of a particular work request and its processes. 

Management can also be organized in a hierarchical manner. There are a 

variety of ways hierarchical management can be realized, but we will 

concentrate on only two, the two-level hierarchy and the n-level hierarchy. 

The two-level hierarchy has at the top level a component that is responsible 

for an entire work request. At the lower level are a series of components 

each responsible for an individual task of the work request. The lower level 

components take direction from the high level component and provide results to 

this component. The n-level hierarchy utilizes in its top and bottom levels 

the components described for the two-level hierarchy. The middle levels are 

occupied by components that are each responsible for a subgraph of the entire 

task graph. Therefore, a middle component takes direction from and reports to 

a higher level component which is in charge of a part of the task graph that 

includes the subgraph for which the middle component is responsible. The mid-

dle component also directs lower level components each of which are 

responsible for a particular task. 
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Another organizational approach utilizes a series of autonomous 

management components. Each component is in charge of some subset of the 

tasks of a work request. Cooperation of the components is required in order 

to realize the orderly completion of a work request. 

Regardless of the organization, at some point, a request for the assump-

tion of responsibility by a component will be made. Such a request may be 

reasonably denied for two reasons: 1) the component does not possess enough 

resources to satisfy the request (e.g., there may not be enough space to place 

a new process on an input queue), or 2) the component may not be functioning. 

The question that arises concerns how this denial is handled. One solution is 

to keep trying the request either until it is accepted or until a certain num-

ber of attempts have failed. In this case if the request is never accepted, 

the work request is abandoned, and the user is notified of the failure. 

Instead of abandoning the work request, it is possible that a new work 

distribution decision can be formulated utilizing the additional knowledge 

concerning the failure of a certain component to accept a previous request. 

7.5 PROCESS MONITORING  

The task of monitoring process execution presents the FDPS executive 

control with two major problems, providing interprocess communication and 

responding to additional work requests and requests for additional resources. 

With regard to the problem of interprocess communication, there is some ques-

tion as to the nature of the communication primitives an FDPS executive 

control should provide. This question arises due to the variety of communica-

tion techniques being offered by current languages. There are two basic 

approaches found in current languages, synchronized communication and unsynch-

ronized communication (buffered messages). Synchronized communication 

requires that the execution of both the sender and the receiver be interrupted 

until a message has been successfully transferred. Examples of languages 

utilizing this form of communication are Hoare's Communicating Sequential 

Processes [Hoar78] and Brinch Hansen's Distributed Processes [Brin78]. In 

contrast, buffered messages allow the asynchronous operation of both senders 

and receivers. Examples of languages using this form of communication are 

PLITS [Feld79] and STARMOD [Cook80]. 

The executive control is required to provide communication primitives 

that are suitable to one of the communication techniques discussed above. 	If 
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the basic communication system utilizes synchronized communication, both tech-

niques can be easily handled. The problem with this approach is that there is 

extra overhead incurred when providing the message buffering technique. On 

the other hand if the basic communication system utilizes unsynchronized com-

munication, there will be great difficulty in realizing a synchronized form of 

communication. 

The task of monitoring processes also involves responding to requests 

generated by the executing tasks. These may be either requests for additional 

resources (e.g., an additional file) or new work requests. If the request is 

a work request, there is a question as to how a new set of tasks is to be 

associated with the existing set of tasks. The new set could either be 

included in the existing task graph, or a new task graph could be constructed 

for these new tasks. The former technique allows the component making the 

work distribution decision for the new work request to consider the utiliza-

tion of other resources by the control. The latter technique does not allow 

such a situation to occur. 

7.6 PROCESS TERMINATION  

When a process terminates there is always some cleanup work that must be 

accomplished (e.g., closing files, returning memory space, and deleting 

records concerning that process from the executive control's work space). In 

addition, depending on the reason for termination (normal or abnormal), other 

control components may need to be informed of the termination. In the case of 

a failure, the task graph will contain the information needed to perform 

cleanup operations (e.g., the identities of the processes needing information 

concerning the failure). Both the nature of the cleanup and the identity of 

the control components that must be informed of the termination are determined 

from the design decisions resulting from the issues discussed in Section 7.5. 

7.7 EXAMPLES  

To gain a better appreciation of some of the basic issues of control in 

an FDPS, it is useful to examine several examples of work request processing 

on an FDPS. In each example, emphasis is placed on the operations involved in 

the construction of task graphs. The work distribution decision that is 

utilized is a simple one that assigns the execution of processes to the same 

nodes that house the files containing their code. The concern of the first 
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eight examples is the impact of variations in work requests on task graph 

construction. In these examples, the various parts of the overall task graph 

describing the complete work request are stored on the nodes utilized by each 

part. The last three examples, though, examine three different techniques for 

storing the task graphs. In the examples (Figures 21 to 31) the following 

symbols are utilized: 

[ 	 visible external reference(s) 
) 	 embedded external reference(s) 

(n)A 	 responsibility for A delegated from node n 
A(n) 	 responsibility for A delegated to node n 
a-->b 	IPC from process a to process b 
A,B,... 	uppercase letters indicate command files 
a,b,... 	lowercase letters indicate executable files 
u,v,w,x,y,z 	indicate data files 

The first example (Figure 21) consists of a simple request in which all 

external references made are visible and all files required are present on the 

node where the original request arrived (referred to as the source node). 

Since the references are visible, the entire task graph can be completed in 

one step. The second example (Figure 22) is similar to the first except that 

there are more references that are chained. Again, since all references are 

visible, the entire task graph can be completed in one step. This work 

request can be processed in an alternate manner as shown by the third example 

(Figure 23) where references are located and linked in a piecemeal fashion. 

Finally, example 4 (Figure 24) adds a slight variation by introducing an 

explicit interprocess communication (IPC) definition. In this case, the task 

graph can still be constructed in one step because all references are visible. 

The next series of examples consider the impact of locating resources on 

nodes other than the source node. In example 5 (Figure 25), all the 

referenced resources reside on a single node other than the source node with 

the exception of one resource that has redundant copies on two different 

nodes. 	Since the resources are not on the source node, negotiation is 

required to transfer responsibility for a piece of the task graph. 	In 

addition, since there is a resource with two redundant copies, a decision as 

to which to utilize must be made and a negotiation must occur to transfer 

responsibility. Example 6 (Figure 26) is similar to example 5 and 

demonstrates the impact of IPC across nodes. 

The effect of embedded references is demonstrated in examples 7 and 8. 

In example 7 (Figure 27), all resources turn out to reside on the source node. 
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references. 	 expanded. 

STEP 2 

1 	 1 	1  
I Task Graph Maintained I 	I Task Graph Maintained ; 

At This Node i 	1 	At This Node I 
. 	 . 	 I . 	

', 	 . , 	. 	 1 . 	. 
, 	b 	 I 	. 

/ 
. 	 . 

/ 	 1 	 I 

1 	
x 	 1 	 I 

I  I 
I 	 I . 

I- 	  I 	I 	 ---- - 	--I 
Local Resources 	 Local Resources 	I 

i A[b] 	b{x,y} 	I 	I 	 I 
! 	x 	y 	 I 	I 	 I 
	  I 	1 	 1 

Node 1 	 Node 2 
(Source of request)  

STEP 3 

1 	 I 	1  

1 Task Graph Maintained I 	I Task Graph Maintained 
I 	At This Node 	 At This Node 
I . 	 I 	I 

! I 	 A 	 1 	, 
1 	 1 	. ' 	 ■ 

1 	b 	 I 	I 	 . . 
1 	/\ 	 I 	I 	 . . 

I 	I 
. 
. . I 	

x 	y 	 1 	I 	 . 

I 	 I 	. . 	 , . 

I--- — 	- — 	-- I :- 	  ■ I 	Local Resources 	I 	: 	Local Resources 
I A[b] 	b{x,y} 	I 	I 
I 	z 	y 	 I 	I 
I 	  I 	I 	  

Node 1 
	

Node 2 
(Source of request) 

       

  

Task Graph Maintained 
At This Node 

  

Task Graph Maintained I 
At This Node 

Local Resources 
1 

    

  

Local Resources 

  

       

Node 3 	 Node 4 

Comments: 	 Comments: 
After some execution, a referent* to z is 	 After farther execution, a reference to y is 
discovered and z is added to the task graph. 	 discovered and entered into the teak graph. 

The teak graph is now complete. 

Figure 27. Example 7 
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Multiple steps, though, are required to construct the task graph because not 

all of the resources are visible and thus cannot be identified until after 

execution has progressed to the point where the reference is encountered. 

Example 8 (Figure 28) is slightly more complex with resources spread over mul-

tiple nodes. Again multiple steps are required since parts of the task graph 

cannot be constructed until their references are observed. In addition since 

resources are distributed on different nodes, negotiation must occur. 

The last three examples demonstrate three different techniques for stor-

ing task graphs. In each example, the same work request is utilized. This 

request has all visible references to resources distributed over multiple 

nodes. In the first eight examples and example 9 (Figure 29), the parts of 

the overall task graph are stored on the nodes executing their processes. In 

addition, each subgraph contains a small portion of information linking it to 

the rest of the overall task graph. Example 10 (Figure 30) maintains these 

subgraphs and in addition retains a complete task graph at the source node. 

Finally, example 11 (Figure 31) maintains complete task graphs at all nodes 

where processing occurs. The motivation for the last two techniques in which 

a large amount of redundant information is maintained is to enhance the 

ability to recover from failures. 

Now that we have taken a look at the construction of task graphs in a 

broad sense, let us examine the details of the task of processing a work 

request. This is illustrated in two figures. Figure 32 outlines the basic 

steps involved in work request processing. Finally, Figure 33 depicts the 

steps involved in processing a specific work request. In this case, the work 

request is the same as that from example 6 (c.f., Figure 26). 

• 
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. 
I Task Graph Maintained ; 
I 	At This Node 	. 

. I 	 . 

I 	
I 

 
. . 	 I 
. . 	 I 
I 	 I 
I 	 I 
. 	 I 
I  	I 
. 	Local Resources 	I 
I 	 I 

1 	
, 

. 	 I 

I Task Graph Maintained : 
At This Node 	I 

I 	 1 
1 	 I 
I 	 I 
I 	 I  

I 	 I 
I 	 I 
I 	 I 
I 	 I 
I 1 
i 	Local Resources 	I 
I 	0 	(1. ' 0] 	 . 

1 

, 	 1 

I Task Graph Maintained 	I 
' 	At This Node 
I I 
I 	 I I 
I 	 I i 

I 	 1 I 	 I 
I 

I I 	 I 

. 	
t 

1 ■■■ ...... ■■■■■■■■ ...... 1 

: 	Local Resources 
1 

: 

I 
Node 3 	 Node 4 

I 
: Task Graph Maintained I 
. 	At This Node 

! 

 1 
. 	 . 

, . 
, . 
. 
I 

	  I 
Local Resources 	. 

0 [v,w] 	 I 
I 	

! . 	  
Node 3 	 Node 4 
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Request s RUN A 	STEP 1 
	

STEP 2 

Task Graph Maintained 
At This Node 

A 

b 
/\ 

z 

Task Graph Maintained 
At This Node 

Task Graph Maintained I 
At This Node 

A 
/ \ 

b 	0(?) 
/ 

z 

Teak Graph Maintained I 
At This Node 

------- 	--- I 
Local Resources 	I Local Resources Local Resources 	 Local Resources I 

A[b]{c} 	b[za] I o[v,w] 	 A(b)(c) 	b[za] i 	OIV,WI 
I 	y 1 • w 

Node 1 I  Node 2 	 Node 1 Node 2 
(Source of request) (Source of request) 

Comments: 
This request has embedded references, references 
to distributed resouroes, and a reference to a 
resource that is available at two locations. 
First the visible portion of the task graph 
is expanded. 

Comments: 
After execution has begun, the reference to 
c is encountered. 

STEP 3 	 STEP 

I 
1 Task Graph Maintained I 

At This Node 	. 
I 

■ 	 A 	 .  

/\ 	 I 
. . 	b 	0(2,3?) 	I 

	

 
/\ 	 I 

! 	
x 	y 	 I 

. 
I 

1 	 -1 Local Resources 	. 

1 	A[1:](0 	b[x,Y] 	I 
I 	: 	y 	 I 
I 	 I 

Task Graph Maintained 
At This Node 

(1 ?) c 

	

-- 	. 	---------- --- 
Local Resources 

c[v,w) 
• w 

I Task Graph Maintained I 
At This Node 

A 
/\ 

	

b 	c(2) 
/ \ 

	

I 	y 

	 ---1 
Local Resources 	I 	I 

	

A[b](o} 	',[wa] 	I 
x 	y 	 , 

	

I 	I 

Task Graph Maintained 
At This Node 

(1)c 
/ 

v 	w 

Local Resources 
I 	c[v,w]  

v 	w  

Node 1 	 Node 2 
	

Node 1 	 Node 2 
(Source of request) 

	
(Source of request) 

Task Graph Maintained 
At This Node 

(1 ? )o 

Task Graph Maintained 
At This Node 

Task Graph Maintained 
At This Node 

Task Graph Maintained I 
At This Node 

Local Resources 
o [•,w) 

Local Resources Local Resources 
a (v,w] 

Local Resources I 

Node 3 Node 4 Node 3 Node 4 

Comments: 
	

Comments: 
It is determined that o esista om two nodes. 	 Responsibility for o is delegated to node 2, 

and the task graph is completed. 

Figure 28. Example 8 

, 
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1- 	....... ---------1 
1 	Local Resources 	I 
I c [?) 
I 	y 	 1 
1 	  

Node 3 

1- - 	---------- 
i 	Local Resources 	1 
1 x 

Node 4 

Comments: 
File b is located on node 2 and a tentative 
delegation of responsibility is made to node 2. 
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Request m RUN A 
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STEP 0 	 STEP 1 

, . 
! Task Graph Maintained ! 

At This Node 

' 
. , 
. . 

. , 

Local Resources 
A [b] 

l■ 

	

. . 

I 
I Task Graph Maintained 1 

At This Node 	1 
I 
. . 
' 
■ . 
1 
1 

1 	 1 
1 	 I 

Local Resources 	I 
b 	[ci,x] 	 1 

1 
1 

	

1 	1 

	

Task Graph Maintained I 	I Task Graph Maintained 
At This Node 	I 	1 	At This Node 

	

1 	1 
A 	 1 	I 	 (1?)b 
1 	 i 
b(2?) 	1 	1 

	

1 	1 
1 

	

1 	1 

Local Resources 	I 	Local Resources 
A [b] 	 I 	I 	b (000 

	

I 	I 
1 

Node 1 
(Source of request) 

Node 2 

, , 
1 
1 
1 

I 

1 

. 

1 

1 

1 

Node 1 	 Node 2 
(Source of request) 

! Task Graph Maintained 
At This Node 

. 

! 

. 

. 
I 

I 
' . 

I 

, 

II 

1I 

, , 
1 Task Graph Maintained 
, 	At This Node 
. 
. 
I 

I I 

I Task Graph Maintained 
I 	At Thia Node 

I Task Graph Maintained 
I 	At This Node 

1 

1 
1 

Local Resources 	: 	Local Resources 	1 
o [y] 	 I 	x 	 I 

I 	r  
. 	 . 
. 	  , 

Node 3 	 Node 4 

Comments: 
This request has all visible reference., but 
the references are distributed on all nodes. 

STEP 2 • 
• 
0 • 
• 

■ 
• 

• 
0 
• 
• 
0 
• 
• 

• 
0 
• 
• • 
• 
• 

• 
• 
• 
• 
• • 
• 
• 
• 
• 
• 
• 
• 

STEP 3 

; 

	

Task Graph Maintained
! 	

1 Task Graph Maintained 
At This Node 	' 	At This Node 

I 
. A I . 

	

I 	I I 	 , 

	

. . 	1 . 	

( 1)/b,,, 

b(2) 	 o(3?) x(4?) 

	

. . 	I 
I 

	

I 	I 

	

I 	I 

	

I 	1 
	  1 	:- 

Local Resources 	I 	I 	Local Resources 
A [b] 	 1 	1 	b [c,x] 

	

1 	1 

	

I 	I 

Task Graph Maintained 
At This Node 

A 

b(2) 

Local Resources 
A [b] 

1 	 I 
1 Task Graph Maintained I 
1 	At This Node 	1 
1 	 . 
' 	 (1)b 	. 
. 	 / 	\ 	. . 	 . 

. 1 	o(3) 44) 	. 

. 1 	 . 

1 I 	
1 

1 	 1 
1---- 	 : 
I 

i 	

Local Resources 	, 
. b [c,x] 
1 

1 	 1 
Node 1 	 Node 2 

(Source of request) 
Node 1 

(Source of request) 
Node 2 

Task Graph Maintained 
; 	At This Node 
1 

(2?)c 
1 

Local Resources 
0[7] 

1 

I Task Graph Maintained 
1 
1 	

At This Node 

(2?). 

1 
1 

Task Graph Maintained 
At Thies Node 

(2)o 

7 

--- 

Task Graph Maintained 
At This Node 

(2)x 

Local Resources I 	; 	Looal Resources 
I 	1 

1 

Local Resources 
0 [s] 
7 

Node 3 	 Node 4 

Comments: 
Beeponsibility for b is accepted by node 2. 
Tiles c and x are located and responsibility is 
tentatively delegated to the nodes as indicated. 

Node 3 

Comments: 
Modes 3 and 4 *owlet responsibility 
respectively and the graph 

Node 4 

far o and 
is completed. 

Figure 29. Example 9 
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• 
• 
• 
• 

STEP 2 

I 	 I 
1 Teak Graph Maintained I 

I 
I Teak Graph Maintained 

• I At This Node I I 	At This Node 
• : I I 
• I A I (1)b 
• I I 1 I / \ 
• I b(2) I I c(3?) 	z(4?) 
• I I I 
• I . I I 
• I 1 1 
• 1 
• 1- -------- 	-- -- 1 --- 
•6 I Local Resources I I Local Resources 
• I A (b] I I b to,x) 
• I I 
• I 
• Node 1 Node 2 
• (Source of request) 
a 
il 

Request NUN A 	STEP 1 

1 
! Task Graph Maintained I 

At This Node 

b(2?) 

1 	  
Local Resources 

A (b) 

Node 1 	 Node 2 
(Source of request) 

Task Graph Maintained 
At This Node 

(12)b 

Local Resources 	I 
b [0,4 

Task Graph Maintained 
At This Node 

(2)a 

Local Resources 

Task Graph Maintained 
At This Node 

(2)c 

7 

Local Resources 
0 (y) 
7 

Task Graph Maintained : 
At This Node 

(2)x 

Local Resources 	I 
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, 	 . , 	 . 

	

Task Graph Maintained ! 	! Task Graph Maintained ! 
At This Node 	 At This Node 

	

! 	
. 

! . 	 . 
, 	 . . 	 . 

1 , 	 . 

1  , . 

	

I 	I 	 I 

! 

	  1 	1 	  
I 	Local Resources 	I 	Local Resources 

o [y] 	 . 

	

. 	I 	x r  

	

. 	. 

	

, 	, 	 1 	  1 	 1 	  

Node 3 	 Node 4 

Comments: 
In this example a complete copy of the task graph 
Is to be maintained at the node receiving the request. 
File b is located on node 2 and a tentative 
delegation of responsibility is made to node 2.  

• 1 	 I  

• 
•

I Tank Graph Maintained I 	1 Task Graph Maintained 
At This Node 	. 	I 	At This Node 

• I 	 , 

	

. 	I  
• I 	(2?)c 	I 	, 	(27)x 
• I 	I 
• 

! 	
, 	I  

• 

	

I 	 I 	 1 

• 
• 1 

I 	I  

	

, 	I  
• 1 	 1 	. 

	

, 	1 

•• 	
I- 	  

	

I 	I- 	  
Local Resources 	I 	: 	Local Resources 

• c 17) 	 1 	I x 	 . . il 
! 	7 	 I 	. 	 , . 

• I 	I 	  
• Node 3 	 Node 4 
• 
• Comments: 
• Responsibility for b is accepted by node 2. 
• Files o and a are located and responsibility is 
• tentatively delegated to the nodes as indicated. •

 • • 

STEP 3 

1 
I 
I 
I 
. 
I 
1 
1 
1 
I 
I 
I 
I 
1 

1 

STEP 4 

1 
1 
I 

. ' 
. , 
. . 
' . 
I , 
I 
, 
I 
I 
I 
I 

1 
1 Task Graph Maintained 
I 	At This Node 
, 
[ 	(1)b 
, 	 /\ 
. . 	0(3) 	x(4) 
I 
I 
I 
I 
I 	  
I 	Local Resources 
I 	b [c,x] 
I 
I 

Task Graph Maintained I 
At This Node 	1 

1 
A 	 I 
I 	 . 

1 b(2) 	, 
/\ 	, . 

0(3) x(4) 	I 

	

I 	 I 
7(3) 	 I 

Local Resources 	I 

	

1 [b] 	 I 
1 , 
I 

, .  
I Task Graph Maintained I 
, 	At This Node 	. 
I 	 , , 
I 	(1)b 	. . 
I 	 / 	N. 	, , 
I 	 c(3) 	x(4) 
1  
I 	 , . 
I 	 . , I 	. . __ 	 

Local Resources 	, 
I 	b [0,4 	 I 
, . 	 I 
I 	 . 

Node 2 Node 1 
(Source of request) 

Node 2 

; Task Graph Maintained 
At This Node 

A 
f 
b(2) 

/ \ 
c(3) m(4) 

1 	  
Local Resources 

I A [b] 

, 0 
Node 1 

(Source of request) 

I Task Graph Maintained 
At This Node 

(2)c 

Local Resources 
1 o IY) 
I y 

Node 3 	 Node 4 

Comments: 
Nodes 3 and 4 accept responsibility for a and x 
respectively. This is also Doted in the oopy of 
the task graph at the source node. 

Node 3 	 Node 4 

Comments: 
The rest of the task graph is completed. 

Figure 30. Example 10 
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Request RUN A 	STEP 1 

Task Graph Maintained 	1 Task Graph Maintained 
At This Node 	 At This Node 

A 	 I 	 A(1) 
1 	 1 
b(2?) 
	

(1/)b 

Local Resources 	

1 	

Local Resources 	1 
A [b] 
	

b (c,x] 

1 
Node 1 	 Node 2 

(Source of request)  

STEP 2 

Task Graph Maintained 	I Task Graph Maintained 
At This Node At This Node 

A 	 I 	 A(1) 
1 	 1 
b(2) (1)b 

/ 1 
0(3?) x(4?) 

Local Resources 	 1 Local Resources 
A [b] 	 1 b (o,x] 

Node 1 	 Node 2 
(Source of request) 

Task Graph Maintained 
1 

f Task Graph Maintained 	 I Task Graph Maintained I Task Graph Maintained 
At This Node f 	At This Node 	 At This Node I At This Node 

1 
A(1) I 	 A(1) I 	A(1) i A(1) 

1 I 1 
b(2) I b(2) 

\ 
1 	(2?)c I (2?)x 
1 
1 

Local Resources 
	

Local Resources 
	

1 	Local Resources 	 Local Resources 
o [Y] 
	

x 
	

I 0 [Y] 
7 
	

1 7 

Node 3 	 Node 4 
	

Node 3 	 Node 4 

Comments: 
In this example, a romnlete copy of the task graph 
is to be maintained at 'Very  ggag involved. 
File b is located on node 2 and a tentative 
delegation of responsibility is made to node 2. 

Comments: 
Node 2 accepts responsibility for b. Files c 
and x are located and responsibility is 
tentatively delegated as shown. 

STEP 2 

Task Graph Maintained 	1 Task Graph Maintained  

STEP 2 

Task Graph Maintained 	Task Graph Maintained 
At This Node 

A 
1 
b(2) 

/ \ 
c(3) 	x(4) 

i 	At This Node 

A(1) 

(1)b 
\ 

I 	0(3) 	x(4) 

At This Node 

A 

b(2) 
/ \ 

0(3) 	x(4) 

7(3) 

At This Node 

A(1) 

(1)b 
/ \ 

c(3) 	x(4) 

7(3) 

Local Resources Local Resources 	1 	 Local Resources Local Resources 
A [b] I 	b 	[c,x] 	 A 	[I)] b [0,4 

Node 1 Node 2 	 Node 1 	 Node 2 
(Source of request) (Source of request) 

Task Graph Maintained 
At This Node 

A(1) 
1 
b(2) 

Task Graph Maintained 
At This Node 

A ( 1) 

b(2) 

Task Graph Maintained 
At This Node 

A(1) 

b(2) 

Task Graph Maintained 
At This Node 

A(1) 

b(2) 
/ \ / / \ / \ 

I 	(2)o x(4) o(3) (2)x (2)o x(4) 0(3) 	(2)x 

1 7 7(3) 
I- 

Local Resources Local Resources Local Resources I 	Local Resources 
I 	0 [Y] x 0 [7] 

Y 

Node 3 Node 4 Node 3 Node 4 

Comments: 
	 Comments: 

Modes 3 and 4 accept responsibility for c and x 
	

The rest of the task graph is eompleted. 
respeetively. 

Figure 31. Example 11 
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assignments. 
>I 	. 

• I< 
• 1<-------I 

1<-------1 	• 
1 	. 

All assignments acoepted 
. 	. 

execution . 
>I 	• 

Make work 
• I<------ 

. f< 	I 	. • 
• I 	NOS waiting 
• I 	>I for replies 

>I 
NOS waiting 
for replies 

• 

nitiate 

>1 
>I 

I 	• 

Selec

▪  

ted 
distant 

nodes 
. I 
.I 
• I 
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Saila lima Sigma= 

I< 	Local Node 

 

>I< 	Distant Nodes ------>1 

 

. Users & . LOS . NOS 	Hag . NOS . LOS . Users & . 

.Resources. 	

▪ 	

.Resources. 

.

▪ 

 I User generates. 
. I a Work Bequest. 	 • 
• I 	>1 	. 

. I Work Request p

▪  

rocessed by LOS 

▪  

Command. 
. I Interpreter and passed to NOS 

• . I------> 
▪ NOS initiates information gathering 	. 
• a) Obtain information on 

.

• 

First, check . 	resources required (cover all 
. local resources 	visible nodes of task graph) 

— 
• 1<.-----1 	• 

I . 	• • 
• 1 	 • 

▪ . I then, check externally as required. 
• 

• • 	. I------>I 

	

 
• 	

• 	

I 	>1 
• NOS waiting for . 

responses from 	. 
• distant nodes 

• 
• 

lAl • 
distant 

nodes 
involved 

• 

l< 

• 
I 	. 

Determine work distribution . 
and allocation. 

Check local and 
I< 

l< 	1 	. • 
I 	

• 	

NOS waiting 
>1 for replies 

. 	I 	>1 
NOS waiting 

• for replies 
• 

	

I 	>1 
• 

I< 
• I< 

I< 
I 	• 

• 

	

b) Obtain i

▪  

nformation

▪ 

 on 	• 
resources available 

• 
distant nodes simultaneously.. 

—>I . 
• I ------>I 
▪ • 	I 	>1 

• • 
I 	>I • • 

Selected 
. 	• distant 

1 • NOS awaits • nodes 
<-----.> • I 	• 

LOS . 	 monitorsI<------> 
termination • 

of all • 
looal1<------> tasks • 

exeoution1<------> • • 
I 	. 
1< 

• 
• 

. 	1< • 
1<-----.1 	 • 
I 

Signal user that 
▪ Work Request 
• been completed 

. 1<- 
 I 

• • 

• 
this . 
has . 

• 

Figure 32. Basic Steps in Work Request Processing 
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. 	.• 	• 	• 	 . 	1 	. 
.• 	. 	< 	 1 	. 

. 	. • 	. 1<--- Builds local 	• 

. 	. < 	 I• 	task graph 	• 

. 	. lode 2 aftepts 	 . 	. 
. 	delegation . 	o(1)-->I1Id 

• . 	for task d . 	 . / \. 	 . 
. 	. 	 . 	Y(?) 	a(?) 	- 

. 	• 	• 	. 	. 	. 
. 	. 	 . 	. Search for y i z 	. 

• Update 	. locally .. 
• task graph . 	 > I 

. 	. 	i . 	 1—>1 

	

/I\ . 	 IY 	. 
. 	. 	e-->d(2) 	. y & x found 	 Ix 	. 

• I 	• 	. loftily I< —I 	. 
. 	x 	• 	. < 	I 

. 	. 	• 	• 	 . 

	

Exeoute a Execute d . Update local . 	 . 
. 14----- 	 >I . task graph 	. 

<-----1 	. 	. 1—>. 	. 
.  

	

. 	. 	o(1)-->(1)d  
. 	 . 	 . /\ 
. 	 . 	. 	 . 7 	X . 	. 

Node 

. 	 • 
• 
• 
• 
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=WA= Sava as Dana ft alas= 20 

l< 	Local lode 	 >1<------ Distant Nodes 	 >1 	l< 	Local Node 	 >I<— Distant Node, — >1 

. Deers A . LOS 	MOS . Nag . NOS • LOS • Users A . 	. Caere i . LOS . NOS . Meg . NOS . LOS . User* & . 
Alesouraea. 	 .Resourcea. 	•Reocuroes. 	 Alesourcea. 

. 	 . 
(aeatinu•d from diagram on the loft) • 

. 	. 	• 	• 	. 

. 	. 	• 	• 	. 	. 

. 	. I Establish IRO from o to d and • 
• . I Trenasit delegation request • 
. 	. I for task d to node 2 . 
• I 	>1 	. 	. 

• I 	I 	. 
. 	. 

 
• • •I 	>1 

• MOS awaits 	. 	. lode 2 . 	I 	>1 
. moolotanoe of . 	. deoidea to 	. 	Id 
• delegation 	. 	. aoaept d. 	1<------I 

	

. 	 . 	. 	. 
....- 	. 	 . 

. 1[o—>d). 1 	. 	Initial. 	 . 	I . d[7,z) . 

. o(x) 	. 1< 	locations of 	 >I . 7 

. X 	,__I 	. 	file resouroes 	. 	1.-,* 	. 

. 	. 	. 	• 	• 	• 	 • 
• • 	. 	 . 

. *ROA A* . 	. 	 • 	• 	 . 	 . 

. 	User generates  

. I a Work Request 	• 

▪ 	

. 

. I 	>I LOS Command Interpreter 
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Figure 33. An Example of Work Request Processing 
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SECTION 8 

MODELS OF CONTROL 

In this section, we demonstrate how both existing and proposed models of 

control fit into the classification scheme described in Section 7. With the 

exception of the first model, these controls are designed to service work 

requests that specify multiple concurrent communicating processes. The first 

model considers work requests that involve only a single process. 

8.1 ARAMIS 

A decentralized operating system model for the ARAMIS Distributed Com-

puter System is described in [Caba79a,b]. A brief outline of how this model 

fits into the classification scheme of Section 7 is provided by Table 3. 

8.1.1 Architecture  

The ARAMIS Distributed Computer System consists of two types of 

machines, hosts and managers. Users are connected to hosts which in turn are 

connected to managers. The managers are connected to each other in a virtual 

ring. Execution of work requests is provided by the hosts while control 

decisions are made by the managers. 

8.1.2 Work Requests  

This system is designed to handle a work request that is less 

sophisticated than those handled by the other systms described in this sec-

tion. The work request must specify only a single process or task and the 

list of resources (sharable and nonsharable) required by that task. 

8.1.3 The Control Model  

Control of the system is accomplished through the managers. Each 

manager maintains a data structure called the resource state table (RST) which 

contains state information for every resource available on the system. To 

insure that these redundant copies remain consistent, two vectors are 

utilized. The control vector (CV) cycles around the virtual ring. Only the 

manager possessing the CV is permitted to allocate and deallocate resources. 

Upon completing this work, a manager can pass the CV along. In addition, 

modifications made to the RST (information describing the allocation and deal-

location of files) are passed along to the other managers on the virtual ring 

in the form of an update vector (UPV). 
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Table 3. The Decentralized Control Model of the ARAMIS 
Distributed Computer System 

TASK GRAPH CONSTRUCTION:  

Who builds the task graph? 
A manager on each node builds the task graph for the work requests 
arriving at that node. 

What is the nature of the task graph? 
A single structure. 

Where is the task graph stored? 
On the node initially receiving and analyzing the work request 
and the node where execution of the task occurs. 

When is the task graph built? 
Completely prior to execution. 

RESOURCE  AVAILABILITY INFORMATION:  

Who maintains this information? 
All nodes maintain common information. 

Where is the information maintained? 
In multiple redundant copies. 

ALLOCATION  a RESOURCES:  

How is concurrency control provided? 
Resources are locked before the work distribution decision is made. 

PROCESS  INITIATION:  

How is responsibility distributed? 
Each node has a manager. The node initially receiving and analyzing 
the work request retains enough information to restart the task if 
the execution node dies. 

How is refusal of a request to execute a process by a 
node handled? 

This possibility is not discussed. 

PROCESS  MONITORING:  

What type of interprocess communication is provided? 
IPC is not supported. 

How are task graphs resulting from additional work requests handled? 
Additional requests cannot occur. 
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When a work request arrives at a host, it is passed along to the local manager 

to which the host is connected. This manager is in charge of resource alloca-

tion and task routing. It first identifies the resources that are needed and 

allocates sharable resources. After the CV has arrived and various algorithms 

insuring mutual exclusion and the prevention of deadlocks have been executed, 

the nonsharable resources are allocated. Next the optimal site for execution 

of the task is determined taking into account the burden various choices place 

on the communication system. Finally, the information concerning the alloca-

tion of resources is transmitted in the form of a UPV, and the information 

describing the task routing is sent to the hosts needing the information. 

8.1.4 Conclusion  

This model represents a simplified approach to the control problem. All 

nodes are provided with a complete global view of the system via their copy of 

the RST. Modifications to the state are carefully controlled by permitting 

only one manager at a time to change this information. The capability to per-

form modifications on the RST is passed around the virtual ring in the form of 

the CV. 

8.2 .MEDUSA  

Medusa [Oust80a,b] is a distributed operating system for the Carnegie-

Mellon Cm* multimicroprocessor. This system differs from an FDPS in that it 

allows multiple nodes to share primary memory. Table 4 describes how this 

control model fits into the classification scheme of Section 7. 

8.2.1 Architecture  

Cm* consists of a number of relatively independent processors or com-

puter modules (Cm) and a number of communication controllers (Kmap). The Cm's 

are arranged in clusters with a Kmap presiding over each cluster. A switch, 

Slocal, connects a Cm with the interprocessor communication structure. Each 

Slocal contains tables that allow it to decide on each memory reference 

whether to access local memory or pass the reference along to the Kmap to 

locate the desired information in either the local cluster or a distant 

cluster. Thus, any processor can access the memory of any other processor. 

It must be kept in mind, though, that a substantial time delay results from 

accessing the memory of distant processors. 
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Table 4. The Medusa Control Model 

1151c. GRAPH CONSTRUCTION: 

Who builds the task graph? 
The node containing an activation of the task force manager. 

What is the nature of the task graph? 
Multiple structures (the task force control block is stored in the 
SDL and the activity control block is stored in the PDLs). 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Completely prior to execution. 

RESOURCE AVAILABILITY INFORMATION: 

Who maintains this information? 
A number of utilities each realized as a task force. 

Where is the information maintained? 
In a shared data structure. 

ALLOCATION  a RESOURCES: 

How is concurrency control provided? 
By means of locks. 

PROCESS )NITIATION: 

How is responsibility distributed? 
The task force manager keeps overall control, but other special 
managers are available to provide specific services. 

How is refusal of a request to execute a process by a node handled? 
This is not discussed in the literature. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
It is not clear if additional work can be requested. 
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8.2.2 Work Reauests  

Work requests are used to describe task forces. A task force consists 

of a number of relatively independent communicating processes capable of 

concurrent execution that are working toward the solution of some task. 

Interprocess communication is accomplished via pipes which differ slightly 

from those found in UNIX [Ritc78]. There are two unique features found in 

these pipes: 1) they insure that only whole messages are read, and 2) they 

identify the sender of the message to the receiver. 

In addition to processes and pipes, a task force contains a shared 

descriptor list (SDL) and a number of private descriptor lists (PDL). These 

structures contain descriptors which are basically capabilities for certain 

system objects. There is only one SDL per task force. This provides access 

to objects that are shared among all processes of a task force. For each 

process, there is a PDL which provides access to private objects. Thus, the 

significant feature of the task force concept is the capability to directly 

share objects by means of the SDL. 

8.2.3 The Control Model  

The distributed control is composed of a series of five utilities each 

of which is implemented as a task force. The five utilities are as follows: 

1. Memory Manager:  allocates primary memory and aids the Kmap in 
descriptor list manipulation. 

2. File 	acts as a controller for all I/O devices of the 
system and implements a hierarchical file system. 

3. Task Force Manager:  creates, schedules, and deletes task for-
ces and the processes that comprise task forces. 

4. Exception Reporter:  communicates information about unusual 
occurrences to those processes that need to know this 
information. 

5. Debugger/Tracer: 	holds symbol table and 	performance 
measurement information for all utilities and provides 
facilities for on-line debugging of the system and gathering of 
performance data. 

Communication between user processes and utilities is accomplished by 

means of pipes. There is one pipe for each utility. Access to these pipes is 

provided by the utility descriptor list (UDL) which is present on all nodes. 

A process utilizes this structure to locate the proper pipe into which a mes-

sage for a particular utility is to be placed. 
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8.2.4 Conclusion  

Medusa introduces two features that are pertinent to this discussion. 

These are the concept of a task force and the concept of sharing primary 

memory. A task force provides concurrent communicating processes to solve a 

common task. In addition to communicating by means of messages, processes are 

permitted to share data. The idea of shared memory is also seen in the hard-

ware by the ability to directly reference memory on distant processors. 

8.3 CNET 

CNET [Smit79, Smit80] is a distributed problem solver consisting of a 

collection of loosely coupled knowledge sources located on a number of 

distinct processors. Table 5 depicts how this model fits into the classifica-

tion scheme of Section 7. 

8.3.1 Architecture  

The system is intended for use on a network of loosely coupled asynch-

ronous processors. Communication between nodes is realized through broadcast 

messages. 

8.3.2 Work Requests  

Applications for CNET can potentially take the form of cooperating 

processes. An individual work request specifies the work that must be accom-

plished. Depending upon decisions of the control, a task may be divided into 

subtasks, and the subtasks may be further divided. 

8.3.3 The Control Model  

CNET utilizes a hierarchical form of control for each task. At the top 

level is the manager for the task that is described in the original work 

request. This manager attempts to find a suitable contractor to execute the 

task. This is accomplished by means of a negotiation that begins with a mes-

sage from the manager. This message can take the form of a general broadcast, 

a limited broadcast, or a point-to-point announcement. The contents of the 

message include an eligibility specification (a list of criteria required of a 

node to execute the task), a task abstraction (a brief description of the 

task), a bid specification (describes the expected form of a bid from a pos-

sible contractor), and an expiration time (describes the time period that the 

announcement is valid). A general broadcast is utilized when the manager has 

no knowledge concerning the nodes capable of executing the task. A limited 
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Table 5. The CNET Control Model 

TASK GRAPH CONSTRUCTION: 

Who builds the task graph? 
Multiple nodes. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Piecemeal. 

RESOURCE AVAILABILITY INFORMATION: 

Who maintains this information? 
Each node maintains information about its own resources. 

Where is the information maintained? 
Separate pieces of information concerning a particular resource type 
may be kept on different nodes. 

ALLOCATION  DE RESOURCES: 

How is concurrency control provided? 
Resources are locked before the work distribution decision is made. 

PROCESS INITIATION: 

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
Once a contract is made it is binding. 

PROCESS MONITORING: 

What type of interprocess communication is provided? 
Not specified. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 
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broadcast can be utilized when the manager knows a specific group of nodes is 

capable of executing the task. Finally, a point-to-point announcement is made 

when the manager knows about the availability of a single suitable node. This 

knowledge is obtained from idle nodes that broadcast messages indicating their 

availability. 

The manager sends these messages and waits for the arrival of bids from 

possible contractors. When the bids arrive, they are examined in order to 

determine a choice for the task assignment. All bids are binding so the 

manager can make a choice with confidence that a chosen node will accept the 

task. Once a node is chosen, the contract is awarded and the chosen node 

becomes known as a contractor. The contractor may further divide the task and 

utilize other contractors for the various pieces. Thus, a node can act both 

as a manager and a contractor. 

A contractor provides the manager with reports that contain information 

concerning partial execution (interim report) or completion (final report). A 

report contains a result description that specifies execution results. A 

manager has complete authority over a contractor and thus may terminate 

contracts at any time with a termination message. This terminates execution 

of a contract and all outstanding subcontracts. 

8.3.4 Conclusion  

CNET utilizes a hierarchical control scheme with a manager supervising 

the work of possibly multiple contractors working to solve a given task. A 

manager locates contractors by broadcasting an announcement for bids. It then 

waits for the bids from the contractors to arrive. After this negotiation 

phase, a bid is accepted, a contract is awarded, and execution of the task is 

begun. The manager can terminate execution of a task at any time and is the 

recipient of interim and final reports from the contractors. 

8.4 THE XFDPS SERIES  DE )10DELS  

In Section 7, a list of design alternatives for an FDPS executive 

control is presented (See Table 2). The rest of this section is devoted to 

the presentation of a series of control models designed by this research team 

by choosing among these alternatives. Each of the models is referred to as 

XFDPS.i where i is an identifying numeral. It is neither possible nor prac-

tical to present all possible models for an FDPS executive control. 
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Therefore, only a few models are investigated. 	The models were chosen by 

selecting a collection of design alternatives which were both logical and 

provided significant distinction among the various models. 

The models are described in such a manner as to give the reader a feel-

ing for the overall control strategy. A more complete comparison of the 

models can be obtained through tables 6 through 8 which contain a list of 

design alternatives for each model. 

8.4.1 Architecture  

An FDPS is composed of a multiplicity of independent processors 

physically connected by a network providing communication by means of a two-

party protocol. There is no sharing of primary memory, and, thus, the proces-

sors are considered to be loosely coupled. The processors operate in an 

autonomous but cooperative manner. Therefore, it is the responsibility of the 

control to insure that there is a unification of operation in the system. 

8.4.2 Work Requests  

Work requests describe concurrent communicating processes and are 

assumed to provide the functionality available with the command language 

described in Figure 10. 

8.4.3 XFDPS.1 

The XFDPS.1 model [Sapo80] (see Table 6 for a characterization of this 

model and Figure 34 for a view of the model's components) is a distributed and 

decentralized control model that is designed to shield the user from the 

system. In other words, it provides the system transparency that is fun-

damental to the FDPS definition. It is designed to encapsulate each proces-

sor's local operating system as advocated by Kimbleton [Kimb76]. This is the 

meta-system approach to implementing distributed operating systems discussed 

above and has been practiced in several systems including ADAPT [Peeb80]. The 

XFDPS.1 model is composed of a set of cooperating processes called managers 

and is similar in this respect to Medusa [Oust80] and ADAPT [Peeb80]. Each 

manager is designed to control a subset of the system's resources (logical and 

physical). 

Each manager requires reliable message communication with the other 

managers in order to perform its responsibilities. The XFDPS.1 model does not 

assume the presence of any particular interconnection of processors or for 

that matter any particular technique of message communication. This means 
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Table 6. The XFDPS.1 Control Model 

TASK GRAPH CONSTRUCTION: 

Who builds the task graph? 
The source node. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph with one copy of 
the complete task graph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Completely prior to execution. 

RESOURCE  AVAILABILITY INFORMATION: 

Who maintains this information? 
Each node maintains information about its own resources. 

Where is the information maintained? 
At the node which contains the resource. 

ALLOCATION  DE RESOURCES: 

How is concurrency control provided? 
Reservations are used prior to a work distribution decision and then 
allocated by a lock. 

PROCESS INITIATION: 

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
After repeated attempts, the request is abandoned. 

PROCESS MONITORING:  

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 
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Figure 34. The XFDPS.1 Control Model 
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that the model is applicable to systems that are interconnected in a variety 

of ways including loops, stars, regular networks, irregular networks, or fully 

interconnected networks [Ande75] and utilizing various message communication 

techniques including the ISO model [Bach78, Desj78] and Ethernet [Metc76]. 

The XFDPS.1 model is composed of several types of processes called 

managers which are responsible for various aspects of the control problem. 

These managers include the Task Set Manager, the File System Manager, the 

Processor Utilization Manager, and the Process Manager. 

8.4.3.1 Task Set Manager 

The Task Set Manager is responsible for handling work requests arriving 

from either users or active processes. A Task Set Manager is assigned to 

every work request. It must first identify the tasks comprising the Task Set 

which are needed to satisfy the work request and then communicate with the 

File System Manager to obtain information concerning the availability of 

files. The Processor Utilization Manager is also consulted in order to 

determine the relative utilization of the processors. Using the information 

acquired in this manner, a work allocation decision is made that results in 

the assignment of tasks to processors. This decision involves an optimization 

problem similar in many respects to that discussed by Morgan [Morg77]. 

The second phase of the Task Set Manager's responsibility concerns 

carrying out the decision arrived at in the first phase. This again involves 

communication with the File System Manager to allocate needed files and to 

deallocate these files when they are no longer needed. In addition, com-

munication is required with the Process Manager which activates the processes 

and observes when these processes have terminated. The last act of the Task 

Set Manager is to inform the original requester as to the completion status of 

the request. In doing so it will either indicate that it was successful in 

completing the request or provide a description concerning why the request 

could not be completed. 

8.4.3.2 File System Manager 

The File System Manager is responsible for maintaining the file system 

for the entire FDPS. Instances of the File System Manager are found on all 

processors. Management of the file system is achieved through communication 

among these instances of the File System Manager. 
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The implication of this design is that several requests to the file 

system can be acted upon simultaneously provided these requests arrive at 

different processors. These requests may either elicit availability informa-

tion or ask that the file status information be updated (i.e., making a reser-

vation, placing a lock, or releasing a lock on a file). This simultaneity is 

in marked contrast to the resource allocation found in the ARAMIS Distributed 

Computer System [Caba79a,b] in which all nodes possess a Resource State Table 

containing the state of all resources in the system. This system only permits 

resource allocation by at most one node at any one time. 

In the XFDPS.1 model, the file system is divided into several disjoint 

sets. The design of the control does not restrict how this division is 

realized. For example, these sets can be defined by processor boundaries. 

For each set, there is a separate manager called a File Set Manager. In order 

to perform its management duties, the File System Manager must communicate 

with each File Set Manager. 

The File System Manager handles three types of requests, all originating 

from the Task Set Manager. The first type of request is for availability 

information concerning a collection of files. The File System Manager con-

verts this request into a series of requests concerning individual files and 

presents these requests to the File Set Managers. The File System Manager 

waits for responses from all File Set Managers before returning its response. 

A File Set Manager will return an indication of the filets availability. If a 

file is available, the File Set Manager will reserve the file for the Task Set 

from which the request originated. This reservation remains effective for a 

limited period of time, and it is the responsibility of the Task Set Manager 

to confirm the reservation before its effectiveness has expired. 

The second request that can be made to the File System Manager concerns 

the allocation of a series of files. Again this request is converted into a 

number of requests concerning the reservations of individual files and is sent 

to specific File Set Managers which in turn perform the necessary locking of 

the files. 

Finally, the File System Manager can receive requests for the dealloca-

tion of files. These requests are handled in a manner similar to allocation 

requests and result in the release of locks or reservations on specific files. 
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8.4.3.3 Processor Utilization Manager 

Another type of process found in the control is the Process Utilization 

Manager. Instances of this manager are replicated on all processors. The 

main function of the Process Utilization Manager is the maintenance of a data 

base of processor utilization information for the processors comprising the 

FDPS. The information in this data base is not intended to be complete and 

accurate but rather is designed to provide the work assignment algorithm in 

the Task Manager with an estimate of the utilization of the processors in the 

system. 

The Processor Utilization Manager obtains the information needed to 

update its data base from periodic messages directed to it from Processor 

Utilization Monitors located on each processor. These processes monitor the 

utilization of the processor in which they are located and issue periodic mes-

sages reporting their findings. If a Processor Utilization Manager does not 

receive a report from a Processor Utilization Monitor within a certain period 

of time, a message from the Manager is sent to the Monitor asking for an 

immediate response concerning the processor's state. If a response to this 

request is not received within a certain time period, it is assumed the 

processor is lost, and the Processor Utilization Manager updates its data base 

to reflect this. This will prevent the Task Set Manager from attempting to 

assign processes to a processor that has apparently been lost. 

8.4.3.4 Process Manager 

The last process type found in the control is the Process Manager. A 

Process Manager is activated for each Task Set Manager. This process accepts 

requests from the Task Set Manager for the activation of processes for the 

Task Set. The Process Manager identifies which processors are to receive 

processes. It then issues requests to Processing Managers on each processor. 

Each Processing Manager is responsible for controlling the processes assigned 

to its processor. 

In addition to assigning processes and waiting for the notification of 

their termination, the Process Manager is responsible for providing 

interprocess communication between executing processes. In this model, 

interprocess communication is provided by means of ports [Balz71, Have78, 

Suns77, Zuck77]. A port provides a common location where communicating 

processes can either send or fetch messages without knowing about the other's 
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location. Buffer space is also required in order to allow the communicating 

processes to operate as independently as possible. This type of interprocess 

communication is similar to the stream communication utilized in TRIX 

[Ward80]. The Process Manager must therefore decide where a buffer for the 

port resides and then provide the necessary linkages within the communicating 

processes in order for them to address the port. 

8.4.3.5 Conclusion 

The fundamental philosophy of the XFDPS.1 model is that the control over 

logical and physical resources must be distributed among various processes or 

managers. The reason for taking this approach is to provide better utiliza-

tion of system resources by making use of the inherent parallelism found in 

distributed processing systems. 

8.4.4 XFDPS.2.  

XFDPS.2 is a variation of model XFDPS.1. The main difference between 

the two models exists in the technique used to construct the task graph. A 

complete outline of the characteristics of XFDPS.2 is found in Table 7. 

The construction of task graphs in XFDPS.2 is performed by multiple 

nodes resulting in a task graph that consists of multiple structures each of 

which is a subgraph of the complete task graph. The overall strategy works as 

follows. After a work request arrives at a particular node, work on construc-

ting a task graph is begun. When a node is chosen to perform part of a task 

graph, responsibility for that portion of the task graph is given to a control 

component on that node. This component will maintain that portion of the task 

graph and in so doing may also choose other nodes to perform part of the work 

that the subgraph represents. 

Thus, there are two main differences between XFDPS.2 and XFDPS.1: 1) 

the task graph is not maintained in one location but rather on multiple nodes, 

and 2) this construction is performed in a piecemeal fashion in XFDPS.2. This 

means that the components of XFDPS.2 possess greater independence than those 

of XFDPS.1. 

8.4.5 XFDPS.1  

XFDPS.3 (see Table 8) is a variation on the XFDPS.2 model. In this 

case, the difference exists in the maintenance of resource availability 

information. In both XFDPS.1 and XFDPS.2, each physical node maintains 

information about its own resources. XFDPS.3, though, utilizes the approach 
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Table 7. The XFDPS.2 Control Model 

TASK GRAPH CONSTRUCTION:  

Who builds the task graph? 
Multiple nodes. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Piecemeal. 

RESOURCE AVAJLABILITY INFORMATION:  

Who maintains this information? 
Each node maintains information about its own resources. 

Where is the information maintained? 
Separate pieces of information concerning a particular resource type 
may be kept on differentt nodes. 

ALLOCATION  .QE RESOURCES:  

How is concurrency control provided? 
Reservations are used prior to a work distribution decision and then 
allocated by a lock. 

PROCESS INITIATION:  

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
After repeated attempts, the request is abandoned. 

PROCESS MONITORING:  

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 
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Table 8. The XFDPS.3 Control Model 

TASK GRAPH CONSTRUCTION:  

Who builds the task graph? 
Multiple nodes. 

What is the nature of the task graph? 
Multiple structures each consisting of a subgraph. 

Where is the task graph stored? 
Multiple nodes. 

When is the task graph built? 
Piecemeal. 

RESOURCE AVAILABILITY INFORMATION:  

Who maintains this information? 
Components for each type of resource. 

Where is the information maintained? 
Information concerning a particular resource type is kept on a 
single node. 

ALLOCATION  IE RESOURCES:  

How is concurrency control provided? 
Reservations are used prior to a work distribution decision and then 
allocated by a lock. 

PROCESS INITIATION:  

How is responsibility distributed? 
There is a hierarchy of responsibility. 

How is refusal of a request to execute a process by a node handled? 
After repeated attempts, the request is abandoned. 

PROCESS MONITORING:  

What type of interprocess communication is provided? 
Unsynchronized communication. 

How are task graphs resulting from additional work requests handled? 
The new task graph is kept separate. 

Georgia Institute of Technology 	 FDPS Control Models 



Page 96 
	

MODELS OF CONTROL 	 Section 8 

taken in Medusa which assigns a control component to each type of resource and 

maintains information concerning a particular type of resource in a single 

location. 

Thus, when resource availability information is required, a resource 

needs allocation, or a resource needs deallocation, it is only necessary to 

determine the type of the resource in order to determine the proper control 

component to perform the desired operation. This is in contrast to XFDPS.1 

and XFDPS.2 both of which require a search for the correct component. 
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SECTION 9 

THE EVALUATION OF THE MODELS 

9.1 EVALUATION PLAN  

As stated earlier in this report, it was planned from the initiation of 

this survey of control models that it would be followed immediately by an 

evaluation study of the various models identified or developed. It was also 

anticipated that this evaluation would cover both the quantitative and 

qualitative aspects of the various models. 

To support the quantitative evaluation of the various forms of system 

control, a distributed control model simulator is being developed. 

9.2 EVALUATION CRITERIA  

A number of evaluation criteria have already been identified. The 

tentative list is summarized in Table 9. 
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Table 9. Possible Evaluation Criteria for 
Distributed Control Models 

RESOURCE UTILIZATION  
Memory Space Utilization 

By the Control Algorithm 
Complexity 
Redundancy 

By the Control Information 
Time 

Local Processing Time 
Communications Delays 
Delays in Work Initiation 

Communication 
Complexity 
Quantity 

PERFORMANCE  
Throughput 
Response Time 
Bottlenecks 

SYSTEM FLEXIBILITY  
Reconfiguration Potential 
Modularity 

Logical Complexity 
Maintainability 
Problem Partitioning and Algorithm Design 

FAULT-TOL RANC  
Detection 
Recovery 
Extent to Which Processed Work Can Be Recovered 

PROTECTION  
Privacy 
Security 
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