
DISTRIBUTED AND DECENTRALIZED CONTROL

IN

FULLY DISTRIBUTED PROCESSING SYSTEMS

A Survey of Applicable Models

FINAL TECHNICAL REPORT

GIT-ICS-81/02

15 January 1980 - 30 September 1980

Philip H. Enslow, Jr.
Timothy G. Saponas

February, 1981

Rome Air Development Center (ISCP)
Department of the Air Force

Griffiss Air Force Base, New York 13441

Contract Number F30602-78-C-0120
GIT Project Number G36-649

The Georgia Tech Research Program in
Fully Distributed Processing Systems

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF THE
AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE AIR FORCE
POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER DOCUMENTATION.

Georgia Institute of Technology 	 FDPS Control Models

unclassified

Page

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER

GIT-ICS-81/02

2. GOVT ACCESSION NO. 3. 	RECIPIENT'S CATALOG NUMBER

4. 	TITLE (and Subtitle)

DISTRIBUTED AND DECENTRALIZED CONTROL IN FULLY
DISTRIBUTED PROCESSING SYSTEMS --- A Survey of
Applicable Models

5. TYPE OF REPORT & PERIOD COVERED

Final Technical Report
15 Jan 80 - 30 Sept 80

6. PERFORMING ORG. REPORT NUMBER

GIT-ICS-81/02
7. AUTHOR(s)

Philip H. Enslow Jr.
Timothy G. Saponas

8. CONTRACT OR GRANT NUMBER(s)

F30602-78-C-0120

9. PERFORMING ORGANIZATION NAME AND ADDRESS

School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (ISCP)
Department of the Air Force
Griffiss Air Force Base, New York 13441

12. REPORT DATE

February, 1981
13. NUMBER OF PAGES

101 + ix
14, 	MONITORING AGENCY NAME & ADDRESS(ff different from Controlling Office)

same as item 11
15. 	SECURITY CLASS. (of this report)

Unclassified

ISa. 	DECLASSIFICATION/DOWNGRADING

SC
HEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution limited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

same

19. 	SUPPLEMENTARY NOTES

RADC Project Engineer: 	Thomas F. Lawrence (ISCP)

The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Air Force
position, policy, or decision, unless so designated by other documentation.

19. 	KEY WORDS (Continue on reverse side if necessary and identify by block number)

Control
Network Operating System Decentralized Control

Distributed Processing
Fully Distributed Processing Systems
Network

20 	ABSTRACT (Continue on reverse side if necessary and identify by block number)

Parallel processing has been a popular approach to improving system performance
through several generations of computer systems design. Although it is not
usually characterized as a "parallel" processing system, a distributed process-
ing system has the inherent capability for highly parallel operation. 	In order
to capitalize on the potential performance improvements achievable by a distri-
buted system, major parallel control problems must be solved. Central to the
issue of parallel control is the design and implementation of distributed and
decentralized control. The study of distributed and decentralized control was

1
DD 1 ORM 1473 J AN 73 	

EDITION OF 1 NOV 55 IS OBSOLETE unclassified

Page ii
unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

initiated with a survey of applicable control models. The results of this
survey are presented along with an extensive discussion of the control
problems applicable to distributed systems --- specifically "fully" distributed
systems.

unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Page iii

ABSTRACT

Parallel processing has been a popular approach to improving system per-

formance through several generations of computer systems design. Although it

is not usually characterized as a "parallel" processing system, a distributed

processing system has the inherent capability for highly parallel operation.

In order to capitalize on the potential performance improvements achievable by

a distributed system, major parallel control problems must be solved. Central

to the issue of parallel control is the design and implementation of

distributed and decentralized control. The study of distributed and

decentralized control was initiated with a survey of applicable control

models. The results of this survey are presented along with an extensive

discussion of the control problems applicable to distributed systems ---

specifically "fully" distributed systems.

Georgia Institute of Technology 	 FDPS Control MociAls

Page iv

PREFACE

Lsswitudafrotjall!ringlaia Investigator

Although this is the final report on only one of the approximately 30 research

projects currently being performed in the Georgia Tech research program on

Fully Distributed Processing Systems, it serves a much broader function than

just reporting on the work done in this single project. Since this is the

first major technical report published under the program, it has been neces-

sary to document here much of the background applying to the program in

general. Specifically, this report presents an extensive discussion of the

general philosophies of fully distributed control and fully distributed

processing as well as the notation that has been developed to describe the

control actions supporting such processing activities.

Georgia Institute of Technology 	 FDPS Control Models

Page v

TABLE .QE CONTENTS

Section 1. BACKGROUND 	 1

.1 GOALS OF COMPUTER SYSTEM DEVELOPMENT 	 1

.2 APPROACHES TO IMPROVING SYSTEM PERFORMANCE 	 3

.3 PARALLEL PROCESSING SYSTEMS 	 3
.1 System Coupling 	 4

.1 Tightly-Coupled Computer Systems 	 4

.2 Loosely-Coupled Systems 	 6
.2 Computer Networks 	 7
.3 Distributed Systems 	 7

Section 2. INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	 9

.1 MOTIVATION OF THE FDPS CONCEPT 	 9

.2 THE DEFINITION OF AN FDPS 	 10
.1 Discussion of the Definitional Criteria 	 11
.1 Multiple Resources and Their Utilization 	 11
.2 Component Interconnection and Communication 	 12
.3 Unity of Control 	 12
.4 Transparency of System Control 	 13
.5 Cooperative Autonomy 	 13

.2 Effects on System Organization 	 14
.3 IMPLICATIONS OF THE FDPS DEFINITION ON CONTROL 	 16
.1 General Nature of FDPS Executive Control 	 16
.2 Why Not Centralized Control'? 	 17
.3 Distributed vs. Decentralized 	 18

.4 AN FDPS APPLICATION --- DATA FLOW PROCESSING 	 18

.5 PROJECT SCOPE AND ORGANIZATION OF THIS REPORT 	 19
.1 Discussion of FDPS Models 	 19
.2 Issues in Decentralized Control 	 19
.3 Work Requests 	 20
.4 Characteristics of a Decentralized Control Model 	 20
.5 Control Model Functions 	 20
.6 Example Control Models 	 20
.7 Control Model Evaluation 	 20

Section 3. FDPS SYSTEM MODELS 	 21

.1 INTRODUCTION 	 21
.1 Why a New Model and New Terminology'? 	 21
.2 Approaches to Modelling 	 21

.1 Scenario or Flow Chart Models 	 22

.2 Structure Models 	 22

.3 Interaction Models 	 22

.4 Performance and Mathematical Models 	 25

.5 Summary of Model Types 	 25
.2 OTHER MODELS 	 25
.1 The ISO Reference Model for OSI 	 25
.2 Protocol Hierarchies 	 26

.3 THE FDPS MODELS 	 26
.1 The FDPS Logical Model 	 26

Georgia Institute of Technology 	 FDPS Control Models

Page vi

.2 An FDPS Physical Model 	 27

.3 The FDPS Interaction Model 	 27

Section 4. ISSUES IN DISTRIBUTED CONTROL 	 33

.1 DYNAMICS 	 33
.1 Workload Presented to the System 	 33
.2 Availability of Resources 	 33
.3 Individual Work Requests 	 34

.2 INFORMATION 	 34

.3 DESIGN PRINCIPLES 	 35
.1 System Information 	 35
.2 Resource Control 	 36

Section 5. CHARACTERIZATION OF FDPS WORK REQUESTS 	 37

.1 THE WORK REQUEST 	 37

.2 IMPACT OF THE WORK REQUEST ON THE CONTROL 	 37
.1 Visibility of References to Resources 	 37
.2 The Number of Concurrent Processes 	 38
.3 The Presence of Interprocess Communication 	 38
.4 The Nature of Process Connectivity 	 39
.5 The Presence of Command Files 	 39

.3 A CLASSIFICATION OF WORK REQUESTS 	 39

Section 6. CHARACTERISTICS OF FDPS CONTROL MODELS 	 41

.1 APPROACHES TO IMPLEMENTING FDPS EXECUTIVE CONTROL 	 41

.2 INFORMATION REQUIREMENTS 	 41
.1 Information Requirements for Work Requests 	 42
.2 Information Requirements for System Resources 	 49

.3 BASIC OPERATIONS OF FDPS CONTROL 	 49
.1 Information Gathering 	 51
.2 Work Distribution and Resource Allocation 	 51
.3 Information Recording 	 56
.4 Task Execution 	 56
.5 Fault Recovery 	 57

Section 7. VARIATIONS IN FDPS CONTROL MODELS 	 59

.1 TASK GRAPH CONSTRUCTION 	 59

.2 RESOURCE AVAILABILITY INFORMATION 	 61

.3 ALLOCATING RESOURCES 	 62

.4 PROCESS INITIATION 	 63

.5 PROCESS MONITORING 	 64

.6 PROCESS TERMINATION 	 65

.7 EXAMPLES 	 65

Section 8. MODELS OF CONTROL 	 79

.1 ARAMIS 	 79
.1 Architecture 	 79
.2 Work Requests 	 79
.3 The Control Model 	 79
.4 Conclusion 	 81

.2 MEDUSA 	 81

Georgia Institute of Technology 	 FDPS Control Models

Page vii

.1 Architecture 	 81

.2 Work Requests 	 83

.3 The Control Model 	 83

.4 Conclusion 	 84
.3 CNET 	 84

.1 Architecture 	 84

.2 Work Requests 	 84

.3 The Control Model 	 84

.4 Conclusion 	 86
.4 THE XFDPS SERIES OF MODELS 	86
.1 Architecture 	 87
.2 Work Requests 	 87
.3 XFDPS .1 	 87

.1 Task Set Manager 	 90

.2 File System Manager 	 90

.3 Processor Utilization Manager 	 92

.4 Process Manager 	 92

.5 Conclusion 	 93
.4 XFDPS.2 	 93
.5 XFDPS.3 	 93

Section 9. THE EVALUATION OF THE MODELS 	 97

.1 EVALUATION PLAN 	 97

.2 EVALUATION CRITERIA 	 97

References 	 99

Georgia Institute of Technology FDPS Control Models

Page viii

LIST DE FIGURES

Figure 1: Axes of Distribution 	 15
Figure 2: Protocols and Interfaces 	 23
Figure 3: The ARPANET Protocol Layers 	 24
Figure 4: The ISO Reference Model for OSI 	 28
Figure 5: A 'Complete' Protocol Hierarchy 	 29
Figure 6: Logical Model of an FDPS 	 30
Figure 7: Physical Model of FDPS Control 	 31
Figure 8: Classifications of Computer Network Protocols 	 32
Figure 9: Classification of Work Requests 	 40
Figure 10: Work Request Syntax 	 43
Figure 11: Example of a Work Request 	 44
Figure 12: Node Control Block 	 45
Figure 13: Node Interconnection Matrix 	 46
Figure 14: Example of a Task Graph Using Links 	 47
Figure 15: Example of a Node Interconnection Matrix 	 48
Figure 16: Work Request Processing (Detailed Steps) 	 50
Figure 17: Information Gathering (Resources Required) 	 52
Figure 18: Information Gathering (Resources Available) 	 53
Figure 19: Resource Allocation and Work Distribution 	 54
Figure 20: Work Assignment 	 55
Figure 21: Example 1 	 67
Figure 22: Example 2 	 67
Figure 23: Example 3 	 68
Figure 24: Example 4 	 68
Figure 25: Example 5 	 69
Figure 26: Example 6 	 70
Figure 27: Example 7 	 71
Figure 28: Example 8 	 73
Figure 29: Example 9 	 74
Figure 30: Example 10 	 75
Figure 31: Example 11 	 76
Figure 32: Basic Steps in Work Request Processing 	 77
Figure 33: An Example of Work Request Processing 	 78
Figure 34: The XFDPS.1 Control Model 	 89

Georgia Institute of Technology 	 FDPS Control Models

Page ix

LIST a TABLES

Table 1: 'Benefits' Provided by Distributed Processing Systems 	 2
Table 2: Variations in Control Models 	 60
Table 3: The Decentralized Control Model of the ARAMIS Distributed

Computer System 	 80
Table 4: The Medusa Control Model 	 82
Table 5: The CNET Control Model 	 85
Table 6: The XFDPS.1 Control Model 	 88
Table 7: The XFDPS.2 Control Model 	 94
Table 8: The XFDPS.3 Control Model 	 95
Table 9: Possible Evaluation Criteria for Distributed Control Models 	98

Georgia Institute of Technology 	 FDPS Control Models

Section 1 	 BACKGROUND 	 Page 1

SECTION 1

BACKGROUND

1.1 GOALS a COMPUTER SYSTEM DEVELOPMENT
Although the state of the art in digital computers has certainly been

advancing faster than any other technological area in history, it is somewhat

remarkable that the goals motivating most computer system development projects

have remained basically unchanged since the earliest days. Perhaps the most

important of these long sought-after improvements are the following:

1. 	Increased system productivity
- Greater capacity
- Shorter response time
- Increased throughput

2. Improved reliability and availability
3. Ease of system expansion and enhancement
4. Graceful growth and degradation
5. Improved ability to share system resources

The "final or ultimate values" for these various goals cannot be expressed in

absolute numbers, so it is not surprising that they continue to apply even

though phenomenal advances have been made in many of them such as speed,

capacity, and reliability. What is perhaps more noteworthy and important to

the discussion being presented here is how little progress has been made in

areas such as easy modular growth, availability, adaptability, etc.

It seems that each new major systems concept or development (e.g., mul-

tiprogramming, multiprocessing, networking, etc.) has been presented as "the

answer" to achieving all of the goals listed above plus many others.

"Distributed processing" is no exception to this rule. In fact, many salesmen

have dusted off their old lists of benefits and are marketing today's.

distributed systems as the means to achieve all of them. Table 1 lists some

of the benefits currently being claimed for distributed processing systems in

current sales literature. Although some forms of distributed processing

appear to offer great promise as possible means 12 make significant advances

in many of the areas listed, the state-of-the-art, particularly in system

control software, is far from being able to deliver even a significant propor-

tion of these benefits today.

Georgia Institute of Technology 	 FDPS Control Models

Page 2 	 BACKGROUND 	 Section 1

Table 1. "Benefits" Provided by Distributed Processing Systems

A Representative List Assembled from Claims Made in
Actual Sales Literature

High Availability and Reliability

Reduced Network Costs

High System Performance

Fast Response Time

High Throughput

Graceful Degradation, Fail-soft

Ease of Modular and Incremental Growth

Configuration Flexibility

Automatic Load and Resource Sharing

Easily Adaptable to Changes in Workload

Incremental Replacement and/or Upgrade

Easy Expansion in Capacity and/or Function

Good Response to Temporary Overloads

Georgia Institute of Technology 	 FDPS Control Models

Section 1 	 BACKGROUND 	 Page 3

1.2 APPROACHES IQ. IMPROVING SYSTEM PERFORMANCE

Efforts to improve the performance of digital computer systems can

address or be focused on a number of major levels or design issues within the

overall computer structure. These levels are:

1. Materials - the basic materials used in the construction of
operating devices such as transistors, integrated circuits, or
other switching devices.

2. Devices - operating devices such as transistors, integrated
circuits, junctions, etc.

3. Switching circuits - design of circuits that provide fast and
reliable logic operations.

4. Register-transfer - assemblies such as registers, buses, shift
registers, adders, etc.

5. System architecture - algorithms for executing the basic func-
tions such as arithmetic and logic operations, interrupt
mechanisms, control of processor and memory states, etc.

6. System organization - the interconnection of major functional
units such as control, memory, I/O, arithmetic/logic units,
etc., and the rules governing the flow of data and control
signals between these units. 	This level also considers the
implementation of multiple, parallel paths for simultaneous
operations and transfers.

7. Network organization - the number, characteristics, and
topology of the interconnection of "complete" systems and the
rules governing the control and utilization of the resources
those systems provide.

8. System software - control and support software for the effec-
tive management and utilization of the hardware capabilities
provided.

From the very beginning of the computer era there has been activity at all of

these levels and such work continues today. (To place it into proper perspec-

tive, it should be noted that the research work carried on under this project

is focused primarily at the three highest levels, system organization, network

organization, and system software, with some work at level 5, system architec-

ture.)

1.3 PARALLEL PROCESSING .5YSTEMS

An important theme of computer system development work at levels 5-8,

"system architecture," "system organization," "network organization," and

"system software," has been Parallel Processing. Parallel processing has been

implemented utilizing approaches focused primarily on the system hardware or

the software as well as integrated systems design.

Georgia Institute of Technology 	 FDPS Control Models

Page 4 	 BACKGROUND 	 Section 1

Since the early days of computing, a direction of research that has

offered high promise and attracted much attention is "parallel computing."

Work in this area dates from the late 1950's which saw the development of the

PILOT system [Lein58] at the National Bureau of Standards. The PILOT system

consisted of "three independently operating computers that could work in

cooperation."[Ens174] (From the information available, it appears that PILOT

would be classified as a "loosely-coupled system" today.) It is interesting

to note that the evolution of parallel "hardware" systems lead primarily to

the development of tightly-coupled systems such as the Burroughs B-825 and

B-5000, the earliest examples of the classical multiprocessor. Other develop-

ment paths saw the introduction of specialized hardware systems such as

SOLOMON and the ILLIAC IV, examples of other forms of tightly-coupled proces-

sors.

1.3.1 System Coupling

System coupling refers to the means by which two or more computer

systems exchange information. It refers to both the physical transfer of such

data as well as the manner in which the recipient of the data responds to its

contents. These two aspects of system interconnection are called "physical

coupling" and "logical coupling," and they are present in all multiple com-

ponent systems whether the components of interest are complete computers or

some smaller assembly.

The terms, "tight" and "loose" have been utilized to describe the mode

of operation of each type of coupling. (Some authors have utilized a third

category "medium coupling" and related it to a range of data transfer speeds;

however, history has clearly shown that basing any characterizations of

digital computers on speed, size, or even cost is an incorrect approach.) The

interconnection and interaction of two computer systems can then be described

by specifying the nature of its physical coupling and the nature of its

logical coupling. It is important to point out that all four combinations of

these characteristics are possible and that they all have been observed in

implemented systems.

1.3.1.1 Tiglat30,-Coupled Computer Systems

During the 1960's and 1970's, activities in the development of parallel

computing, specifically multiple computer systems, were focused primarily on

the development of tightly-coupled systems. These tightly-coupled systems

Georgia Institute of Technology 	 FDPS Control Models

Section 1 	 BACKGROUND 	 Page 5

took the form of classical multiprocessors (i.e., shared main memory) as well

as specialized computation systems such as vector and array processors. This

tight physical coupling resulted in a sharing of the directly executable

address space common to both processors. There was no means by which the

recipient of the data or information being transferred could refuse to

physically accept it --- it was already there in his, address space.

These early systems also usually implemented tight logical coupling. In

this form of system interaction, the recipient of a message is required to

perform whatever service is specified therein. With tight logical coupling,

there is no independence of decision allowed regarding the performance of the

service or activity "requested." The relationship between the sender and

recipient is basically that of master-slave.

Although the concept of tightly-coupled multiprocessor systems appears

to be a viable approach for achieving almost unlimited improvements in per-

formance (i.e., increases in system throughput) with the addition of more

processors, such has not been the results obtained with implemented systems.

It is the very nature of tight-coupling that results in limitations on the

improvements achievable. Some of the ways that these limitations have

manifested themselves are listed below.

1. The direct sharing of resources (memory and input/output
primarily) often results in access conflicts and delays in
obtaining use of the shared resource.

2. User programming languages that support the effective utiliza-
tion of tightly-coupled systems have not been adequately
developed. 	The programmer must still be directly involved in
job and task partitioning and the assignment of resources.

3. The development of "optimal" schedules for the utilization of
the processors is very difficult except in trivial or static
situations. Also, the inability to maintain perfect synch-
ronization between all processors often invalidates an
"optimal" schedule soon after it has been prepared.

1. 	Any inefficiencies present in the operating system appear to be
greatly exaggerated in a tightly-coupled system.

There was also significant activity during these earlier periods in the

development of multiple computer systems characterized as "attached support

processors (ASP)." These systems were physically loosely-coupled; but,

logically, they were tightly-coupled. The earliest examples of this type of

system organization were the use of attached processors dedicated to

Georgia Institute of Technology 	 FDPS Control Models

Page 6 	 BACKGROUND 	 Section 1

input/output operations in large-scale batch processing systems. In the lat-

ter part of the 1970's, specialized vector and array processors as well as

other special-purpose units such as fast Fourier transform units were being

connected to general computational systems and utilized as attached support

processors. In any event, the specialized nature of the services provided by

the attached processor excludes them from consideration as possible approaches

to providing general-purpose computational support such as that available from

tightly-coupled general-purpose processors functioning as multiprocessors.

Tightly-coupled systems certainly do have a role to play in the total

spectrum of computer systems organization; however, their limitations should

certainly be considered. It was the recognition of these limitations and the

small amount of progress made in overcoming them despite the expenditure of

very large research efforts that contributed to the decision to focus our

current research program on loosely-coupled systems.

1.3.1.2 Loosely-Coupled Systems

Loosely-coupled systems are multiple computer systems in which the

individual processors both communicate physically and interact logically with

one another at the "input/output level." There is no direct sharing of

primary memory, although, there may be sharing of an on-line storage device

such as a disk in the interconnecting input/output communication path. The

important characteristic of this type of system organization and operation is

that all data transfer operations between the two component systems are per-

formed as input/output operations. The unit of data transferred is whatever

is permissible on the particular input/output path being utilized; and, in

order to complete a transfer, the active cooperation of both processors is

required (i.e., one might execute a READ operation in order to accommodate or

accept another's WRITE).

Probably the most important characteristic of loose logical coupling is

that one processor does not have the capability or authority to "force"

another processor to do something. One processor can "deliver" data to

another; however, even if that data is a request (or a "demand") for a service

to be performed, the receiving processor, theoretically, has the full and

autonomous rights to refuse to execute that request. The reaction of proces-

sors to such requests for service is established by the operating system rules

of the receiving processor, not by the transmitter. This allows the recipient

Georgia Institute of Technology 	 FDPS Control Models

Section 1 	 BACKGROUND 	 Page 7

of a request to take into consideration "local" conditions in making the

decision as to what actions to take. It is important to note that it is pos-

sible for a system to be physically loosely-coupled but logically tightly-

coupled due to the rules embodied in the component operating systems, e.g., a

permanent master/slave relationship is defined. The other reverse condition,

tight physical and loose logical coupling, is also possible.

1.3.2 Computer Networks

A computer network can be characterized as a physically loosely-coupled,

multiple-computer system in which the interconnection paths have been extended

by the inclusion of data communications links. Fundamentally there are no

differences between the basic characteristics of computer network systems and

other loosely-coupled systems other than the data transfer rates normally

provided. The transfer of data between two nodes in the network still

requires the active cooperation of both parties involved, but there is no

inherently required cooperation between the operation of the processors other

than that which they wish to provide.

1.3.3 Distributed $vstems

Although there is a large amount of confusion, and often controversy,

over exactly what is a "distributed system," it is generally accepted that a

distributed system is a multiple computer network designed with some unity s2f.

purpose in mind. The processors, databases, terminals, operating systems, and

other hardware and software components included in the system have been inter-

connected for the accomplishment of an identifiable, common goal. That goal

may be the supplying of general-purpose computing support, a collection of

integrated applications such as corporate management, or embedded computer

support such as a real-time process control system.

This research program is concerned with a very specific subclass of all

of the systems currently being designated "distributed." The environment of

interest here has been given the title "Fully Distributed Processing System"

or FDPS. Section 2 discusses the general characteristics of FDPS's.

Georgia Institute of Technology 	 FDPS Control Models

Page 8

Georgia Institute of Technology 	 FDPS Control Models

Section 2
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 9

SECTION 2

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS

2.1 MOTIVATION a THE FDPS CONCEPT
A large number of claims have been made as to the benefits that will be

achieved with distributed processing systems. As pointed out above, this list

is very similar to the lists of "benefits to be achieved" with several earlier

computer technologies. However, each of those earlier solutions failed to

deliver its promises for various reasons. It was an examination of the "weak-

nesses" in the earlier concepts and the development of a set of principles to

overcome these obstacles that led to the concept of "Fully Distributed Proces-

sing Systems" or as it is commonly referred to "FDPS."

The principle of parallel (i.e., simultaneous and/or concurrent) opera-

tion of a multiplicity of resources continues to be perhaps the most important

goal. The unique feature of FDPS's is the means or environment in which this

is attempted. A distributed system should exhibit a continual increase in

performance as additional processing components are added. The users should

observe shorter response times as well as an increase in total system through-

put. In addition, the utilization of system resources should be higher as a

result of the system's ability to perform automatic load balancing servicing a

large quantity and variety of user work requests. A distributed system should

also permit the sharing of data between cooperating users and the making

available of specialized resources found only on certain processors. In

general, a distributed system should provide more facilities and a wider

variety of services than those that can be offered by any system composed of a

single processor [Hopp79]. Another important and highly desirable feature of

such a system is extensibility. Extensibility might be realized in several

different ways. The system might support modular and incremental growth

permitting flexibility in its configuration, or it might support expansion in

capacity, adding new functions, or both. Finally, it might provide for

incremental replacement and/or upgrading of system components, either hardware

or software. The executive control of the system is obviously the key to

attaining these goals, and it is in the area of executive control that some of

the most significant deficiencies of earlier systems have been found.

Georgia Institute of Technology 	 FDPS Control Models

Page 10 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2

The major weaknesses in the executive control of earlier forms of paral-

lel systems appear to result from an excessive degree of centralization of

control functions reflected in centralized decision making or centralized

maintenance of system status information or both of these. The net effect of

these aspects of control was to produce a rather tightly-coupled environment

in which resources often were idle waiting for work assignments and the

failure of one major component often resulted in catastrophic and total system

failure. The solution to this problem is to force a condition of very loose

coupling on both the logical/control decision making process as well as the

physical linkages of components. This property of "universal" loose coupling

results in an environment in which the various components are required to

operate in an autonomous manner.

If a single design principle must be identified as the most important or

central theme of FDPS design, it is component autonomy or "cooperative

autonomy" as described below. All of the other features of the definition of

Fully Distributed Processing Systems given below have resulted from determin-

ing what is required to support and utilize the autonomous operation of the

very loosely-coupled physical and logical resources.

2.2 I DEFINITION ZAN. FDPS

Fully Distributed Processing Systems (FDPS) were first defined by Enslow

in 1976 [Ens178] although the designation "fully" was not added until 1978

when it became necessary to clearly distinguish this class of distributed

processing from the many others being presented. An FDPS is distinguished by

the following characteristics:

1. Multiplipitv of resources: an FDPS is composed of a mul-
tiplicity of general-purpose resources (e.g., hardware and
software processors that can be freely assigned on a short-term
basis to various system tasks as required; shared data bases,
etc.).

2. Component interconnection: the active components in the FDPS
are physically interconnected by a communications network(s)
that utilizes two-party, cooperative protocols to control the
physical transfer of data (i.e., loose physical coupling).

3. Unity , slt control: the executive control of an FDPS must define
and support a unified set of policies (i.e., rules) governing
the operation and utilization or control of all physical and
logical resources.

Georgia Institute of Technology 	 FDPS Control Models

Section 2
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 11

4. System transparency: users must be able to request services by
generic names not being aware of their physical location or
even the fact that there may be multiple copies of the resour-
ces present. (System transparency is designed to aid rather
than inhibit and, therefore, can be overridden. A user who is
concerned about the performance of a particular application can
provide system specific information in order to aid in the
formulation of management control decisions.)

5. Component autonomy: both the logical and physical components
of an FDPS should interact in a manner described as
"cooperative autonomy" [Clar80, Ens178]. This means that the
components operate in an autonomous fashion requiring coopera-
tion among processes for the exchange of information as well as
for the provision of services. In a cooperatively autonomous
control environment, the components are afforded the ability to
refuse requests for service, whether they be execution of a
process or the use of a file. This could result in anarchy
except for the fact that all components adhere to a common set
of system utilization and management policies expressed by the
philosophy of the executive control.

2.2.1 Discussion 91 the Definitional Criteria

In order for a system to qualify as being fully distributed it must pos-

sess all five of the criteria presented in this definition.

2.2.1.1 Multiple Resources and Their Utilization

The requirement for resource multiplicity concerns the assignable

resources that a system provides. Therefore, the type of resources requiring

replication depends on the purpose of a system. For example, a distributed

system designed to perform real-time computing for air traffic control

requires a multiplicity of special-purpose air traffic control processors and

display terminals. It is not required that replicated resources be exactly

homogenous, however, they must be capable of providing the same services.

In addition to this multiplicity, it is also required that the system

resources be dynamically reconfigurable to respond to a component failure(s).

This reconfiguration must occur within a "short" period of time so as to

maintain the functional capabilities of the overall system without affecting

the operation of components not directly involved. Under normal operation the

system must be able to dynamically assign its tasks to components distributed

throughout the system.

The extent to which resources are replicated can vary from those systems

where none are replicated (not, a fully distributed system) to systems where

all assignable resources are replicated. In addition, the number of copies of

Georgia Institute of Technology 	 FDPS Control Models

Page 12 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2

a particular resource can vary depending on the system and type of resource.

In general, the greater the degree of replication, particularly of resources

in high demand, the greater the potential for attaining benefits such as

increased performance (response time and throughput), availability,

reliability, and flexibility [Ens178]•

2.2.1.2 Component Interconnection and Communication

The extent of physical distribution of resources in distributed systems

can vary from the length of connection between components on a single

integrated chip to the distance between two computers connected through an

international network. 	In addition, interconnection organizations can vary

from a single bus to a complex mesh network. 	Since a component in a

distributed system communicates with other components through its own logical

process, all physical and logical resources can be thought of as processes,

and interactions between resources can be referred to as interprocess com-

munication [Davi79]. For example, an application program interacting with

processors and data files is accomplished through communication between

logical processes.

Both the physical and logical coupling of the system components are

characterized as "extremely loose." "Gated" or "master-slave" control of

physical transfer is not allowed. Communication, i.e., the physical transfer

of messages, is accomplished by the active cooperation of both the sender and

addressees. The primary requirement of the intercommunication subsystem is

that it support a two-party cooperative protocol. This is essential to enable

the system's resources to exist in cooperative autonomy at the physical level.

The advantages of using a message-based (loosely-coupled) communication

system with a two-party cooperative protocol include reliability,

availability, and extensibility. The disadvantage is the additional overhead

of message processing incurred to support this method of communication. There

are a variety of interconnection organizations and communication techniques

that can be used to support a message-based system with a two-party

cooperative protocol.

2.2.1.3 Unity of Control

In a fully distributed data processing system, individual processors

will each have their own local operating systems, which may or may not be

unique, that control local resources. As a result, control is distributed

Georgia Institute of Technology 	 FDPS Control Models

Section 2
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 13

throughout the system to components that operate autonomously of one another.

However, to gain the benefits of distributed processing it is required that

the autonomous components of the system cooperate with each other to achieve

the overall objectives of the system. To insure this, the concept of a high-

level operating system was created to integrate and unify, at least concep-

tually, the decentralized control of the system.

A high-level operating system is essential to successfully implementing

a distributed processing system. This operating system is not a centralized

block of code with strong hierarchical control over the system, but rather it

is a well-defined set of policies governing the integrated operation of the

system as a whole. To insure reliable and flexible operation of the system,

these policies should be implemented with minimal binding to any of the

system's components [Ens178].

What policies are required and how they should be implemented depends

greatly on the system. For example, if it is a general-purpose system sup-

porting interactive users, then a command interpreter and a user control

language will be required to make the system's components compatible and

transparent to the user.

2.2.1.4 Transparency of System Control

The high-level operating system also provides the user with his inter-

face to the distributed system. As a result, the user is accessing the system

as a whole rather than just a host computer in the network.

In order to increase the effectiveness of the distributed system, the

actual system is made transparent, and the user is presented with a virtual

machine and a simplified command language to access it. The user uses this

language to request services by name and does not have to specify the specific

server to be used. Clearly, the same request might be assigned a different

server depending on the state of the total system when the request is made.

However, to make the system truly effective for all users, knowledgeable

individuals must be able to interact with the system more intimately, request-

ing specific servers or developing service routines to increase the efficiency

or effectiveness of the system [Ens178].

2.2.1.5 Cooperative Autonomy

Cooperative autonomy has already been described at the physical inter-

connection level. It is also required that all resources be autonomous at the

Georgia Institute of Technology 	 FDPS Control Models

Page 14 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2

logical control level. That is, a resource must have full control of itself

in determining which requests it will service and what future operations it

will perform. However, a resource must also cooperate with other resources by

operating according to the policies of the high-level operating system.

Cooperative autonomy is an essential prerequisite for systems to have fault

tolerance and high degrees of extensibility [Ens178]. It is perhaps the most

important as well as the most distinguishing characteristic of a fully

distributed processing system.

2.2.2 Effects an,Untgg Organization
Although the detailed design of the hardware and software required to

implement an FDPS is still in progress, it has been possible for some time to

identify certain characteristics that these components must have. One area in

which certain criteria already appear reasonably well defined is the nature of

the organization of the following system components:

- Hardware
- System control software
- Data bases

It should be noted that a number of definitions and descriptions of

distributed systems 111 general are based on the principle that one more of

these components is Physically distributed. (Some such discussions add to

this list a fourth component --- "processing or function;" however, consider-

ing the distribution of processing independent from the distribution hardware

is quite improper. Why distribute the hardware if it will not have some func-

tion to perform; similarly, how can the processing be distributed without a

corresponding distribution of the hardware? That would be processing on a

truly "virtual machine.")

An important characteristic of an FDPS is that, in order to meet the

definitional criteria given above while also attempting to provide as many as

possible of the benefits listed in Table 1, all of the three components listed

above must le_ physically distributed and the degree of distribution must in

each case exceed reasonably well-defined threshold. A diagram illustrating

this requirement is shown in Figure 1. The various organizations of each com-

ponent identified and positioned along each axis is not meant to be an

exhaustive list. These points are listed to better identify the relative

location of the three thresholds defining the volume of space occupied by

FDPS's. (It might also be noted that it seems quite proper to characterize

Georgia Institute of Technology 	 FDPS Control Models

Section 2
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 15

any system that is not in the "origin cube" as being "distributed" to some

degree.)

ALLOWABLE
REGION FOR FULLY
DISTRIBUTED DATA
PROCESSING SYSTEMS

a■-....sp-....-..-__...-----:;:--i
■101P"....ii--"""■.--Aarr■----... 4,„ I _■••■■■■■■---1) /0 ■-■■■■ •■.-vz , -1 r •

illIPPiPPPw■OPP--/Aarr-Amill- 4 ink : 	 oa El h' liko$0;
If

COMPUTERS
MULTIPLE

MULTIPLE
PROCESSORS 	

IIII 	11.1100,00° PARTITIONED DATA BASE,

PARTITIONED DATA BASE,

	 ■ 	NO MASTER FILE OR DIRECTORY

/

! 1 "SSEPPEACRIAATLE

IZED- ilLIIIIIIII
	400°

 PARTITIONED DATA BASE,

COMPLETE

MASTER COPY

CENTRAL MASTER DIRECTORY

/ e

	

/ 	,;‘, O
MULTIPLE '‘.2 	;

1 	
EZ EXECUTION UNITS
, A

?.
''l wi

FUNCTIONAL
UNITS

IIII p0
i='

SINGLE COPY,
PRIMARY STORAGE

SINGLE CENTRAL DIRECTORY

■

DISTRIBCRUOTEMPELDPILCCFAI TLEMS,N

c, ,3e
SECONDARY STORAGE 	

'

•

SINGLE CPU 	 SINGLE COPY, 	

'''

A

/

.,'

O 	 `,

EXCLUDED

A
TA o

C

o
U

4

J4 E
185

Zx

t ES
Opt
EUO U

0

iE8

CONTROL DISTRIBUTION 8 DECENTRALI ZATION

DIMENSIONS CHARACTERIZING DISTRIBUTION

Figure 1. Axes of Distribution

Georgia Institute of Technology 	 FDPS Control Models

Page 16 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2

2.3 IMPLICATIONS .QE. THE FDPS DEFINITION DI CONTROL

2.3.1 General Nature gr FDPS Executive Control
Several of the characteristics of an FDPS are found to directly impact

the design and implementation of the executive control for such a system.

These include system transparency to the user, extremely loose physical and

logical coupling, and cooperative autonomy as the basic mode of component

interaction. System transparency means that the FDPS appears to a user as a

large uniprocessor which has available a variety of services. It must be pos-

sible for the user to obtain these services by naming them without specifying

any information concerning the details of their physical location. The result

is that system control is left with the task of locating all appropriate

instances (copies) of a particular resource and choosing the instance to be

utilized.

"Cooperative autonomy" is another characteristic of an FDPS heavily

impacting its executive control. The "lower-level" control functions of both

the logical and physical resource components of an FDPS are designed to

operate in a "cooperatively autonomous" fashion. Thus, an executive control

must be designed such that any resource is able to refuse a request even

though it may have physically accepted the message containing that request.

Degeneration into total anarchy is prevented by the establishment of a common

set of criteria to be followed by all resources in determining whether a

request is accepted and serviced as originally presented, accepted only after

bidding/negotiation, or rejected.

Another important FDPS characteristic that definitly affects the design

of its executive control is the extremely loose coupling of both physical and

logical resources. 	The components of an FDPS are connected by communication

paths of relatively low bandwidth. 	The direct sharing of primary memory

between processors is not acceptable. Even though the logical coupling could

still be loose with this physical interconnection mechanism, the presence of a

single critical hardware element, the shared memory would create fault-

tolerance limitations. All communication takes place over "standard"

input/output paths. The actual data rates that can be supported are primarily

a function of the distance between processors and the design of their

input/output paths. In any event, the transfer rates possible will probably

be much less than memory transfer rates. This implies that the sharing of

Georgia Institute of Technology 	 FDPS Control Models

Section 2
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 17

information among components on different processors is greatly curtailed, and

system control is forced to work with information that is usually out-of-date

and, as a result, inaccurate.

The control of an FDPS requires the action and cooperation of components

at all layers of the system. This means that there are elements of FDPS

control present in the lowest levels of the hardware as well as software com-

ponents. This paper is primarily interested in the software components of the

FDPS control which are typically referred to as "the executive control."

The executive control is responsible for managing the physical and

logical resources of a system. 	It accepts user requests and obtains and

schedules the resources necessary to satisfy a user's needs. 	As mentioned

earlier, these tasks are accomplished so as to unify the distributed com-

ponents of the system into a whole and provide system transparency to the

user.

2.3.2 Why Not . Centralized Control?

Why then is a centralized method of control not appropriate? In systems

utilizing a centralized executive control, all of the control processes share

a single coherent and deterministic view of the entire system state. An FDPS,

though, contains only loosely-coupled components, and the communication among

these components is restricted and subject to variable time delays. This

means that one cannot guarantee that all processes will have the same view of

the system state [Jens78]. In fact, it is an important characteristic of an

FDPS that they will not have a consistent view.

A centralized executive control weakens the fault-tolerance of the

overall system due to the existence of a single critical element, the

executive control itself. This obstacle, though, is not insurmountable for

strategies do exist for providing fault-tolerance in centralized applications.

Garcia-Molina [Garc79], for example, has described a scheme for providing

fault-tolerance in a distributed data base management system with a

centralized control. Approaches of this type typically assume that failures

are extremely rare events and that the system can tolerate the dedication of a

relatively long interval of time to reconfiguration. These restrictions are

usually unacceptable in an FDPS environment where it is important to provide

fault-tolerance with a minimum of disruption to the services being supported.

Georgia Institute of Technology 	 FDPS Control Models

Page 18 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2

Also, the extremely important issue of overall system performance must

be considered. A distributed processing system is expected to utilize a large

quantity and a wide variety of resources. If a completely centralized

executive control is implemented, there is a high probability that a

bottleneck will be created in the node executing the control functions. A

distributed and decentralized approach to control attempts to remove this bot-

tleneck by dispersing the control decisions among multiple components on

different nodes.

2.3.3 Distributed yla. Decentralized

This paper advocates utilizing an approach for the control of an FDPS

that is both distributed and decentralized. There is a clear distinction

between the terms "distributed" and "decentralized" as they are used in the

context of this project. "Distributed control" is characterized by having its

executing components Physically located sa different nodes. This means there
are multiple loci L control activity. In "decentralized control," on the

other hand, control decisions are made independently 12 separate components

different locations. In other words, there are multiple loci 91 control

decision. making. Thus, distributed and decentralized control has active com-

ponents located on different nodes and those components are capable of making

independent control decisions.

2.4 AR FDPS APPLICATION --- DATA FLOW PROCESSING

The operating characteristics specified for an FDPS appear to be

especially suited to applications composed of cooperating processes that may

be executed simultaneously. One class of such applications have been referred

to as data flow networks [Denn78, Nels78]. They utilize the independence of

the processors combined with the implicit potential for parallel operation of

data flow networks to improve performance. In addition to potentially improv-

ing performance, the data flow approach often provides a more natural method

for expressing a solution to a particular problem. Other systems, including

ADAPT [Peeb80], Medusa [Oust80], and TRIX [Ward80], have been designed to ser-

vice similar types of applications. An application of this type can be

expressed either as a command level program [Akin78] or a program in a high

level language [Feld79, Macc80]. The execution of individual processes may

result from the invocation of files containing either executable code or com-

mands. In such a system, calls to other processes (executable files or com-

Georgia Institute of Technology 	 FDPS Control Models

Section 2
	

INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Page 19

mand files) can originate from any process, and the nesting of such calls is

unlimited.

2.5 PROJECT SCOPE Mk ORGANIZATION DE THIS REPORT

Following these two sections of introductory comments, this report

discusses the results of an initial study of distributed and decentralized

control including, where appropriate, material concerning the results of other

projects in the Georgia Tech Research Program on Fully Distributed Processing

Systems (FDPS). This initial study of FDPS control has been focused primarily

on the qualitative aspects of various forms and implementations of control.

The project description is as follows:

"Define and refine existing models of distributed and decentralized
control and develop new models as appropriate to provide a
capability of fault tolerance, automatic reconfiguration, and
dynamic control."

It is important to note that very few "existing models of distributed

control" have been identified and those that have been located are so incom-

pletely defined that this project has proceeded primarily by defining can-

didate models while attempting to develop a suitable taxonomy of other pos-

sible models. Since this project was undertaken fully cognizant that a

quantitative study of the models would follow immediately, it is felt that the

development of such a taxonomy will help to insure that no significant

variations are overlooked.

2.5.1 Discussion 	FDPS Models

Along with the development of the various models for distributed and

decentralized control, the FDPS team is also developing total system models.

These system models provide an essential part of the description of the total

environment within which the executive control must operate. Although it is

clear at this time that these system models are still evolving, descriptions

of their present versions are presented in Section 3.

2.5.2 Issues 1,11 Decentralized Control

Although most readers probably have some understanding of the functions

of the executive control in a centralized system, the overall effects of the

distributed environment and the set of totally new requirements placed on a

decentralized executive control are perhaps not so obvious. The purpose of

Section 4 is to discuss the effects of the operating environment and to

nP0rain 	 Tonhnnlnau 	 vwoe

Page 20 	INTRODUCTION TO FULLY DISTRIBUTED PROCESSING SYSTEMS 	Section 2

explicitly identify as many as possible of the new control requirements and

limitations as well as variations from centralized control models.

2.5.3 Work Reauests

There is a strong relationship between the forms of work requests that

the distributed system is expected to process and the capabilities required in

the control model. Section 5 focuses on the variations possible in the work

requests leaving the discussion of the resulting effects on the operation of

the executive control until Section 7.

2.5.4 Characteristics adIALDecentralized Control Model

Section 6 of this report presents and discusses those attributes that

distinguish various models in the present catalog of decentralized control

models. (Note that this is not presented as a complete "taxonomy.") The

attributes are characterized in terms of the information that needs to be

maintained and the decisions that must be made by an executive control. Also

discussed in this section are some of the operational aspects of the models

identified thus far.

2.5.5 Control Model Functions

It is during a detailed discussion of the functions performed by an

executive control that many of the aspects of decentralized control are best

highlighted. In Section 7 discussion of the individual operations are

presented and then representative examples of functions such as task graph

building are discussed. (A task graph is used to maintain information about

the processes being utilized to satisfy a work request. See Paragraph 7.1 for

a more complete definition of task graphs.) Experience has shown that many

individuals do not fully grasp the significance of distributed and

decentralized control until they study examples such as those presented in

Section 7.

2.5.6 Example Control Models

A few specific control models that have been developed thus far are

presented in Section 8. These include control models advanced by other

research teams as well as several developed in the FDPS research program.

2.5.7 Control Model Evaluation

Immediately following this survey of control models the various models

will be evaluated. Section 9 presents a preliminary discussion of some of the

evaluation criteria to be applied.

Gpnrgia Institute of Technology 	 FDPS Control Models

Section 3
	

FDPS SYSTEM MODELS 	 Page 21

SECTION 3

FDPS SYSTEM MODELS

3.1 INTRODUCTION

Models serve extremely important, if not essential, roles in the

development of complex systems. This is especially true for systems in which

the effects of complexity are further complicated by inconsistencies,

ambiguities, and incompleteness in the use of the terms that are employed to

describe the structure as well as the operation of the systems involved and

the components thereof. Suitable models are valuable, if not essential, tools

to support and clarify such discussions. When examining or using any model,

it is equally important to recognize that it may have been prepared or

developed for a specific purpose (e.g., logical or physical description,

simulator design, implementation guide, etc.) and may not be totally suitable

for other uses.

3.1.1 Whir a "New" Model and "New" Terminology?

Since the concepts of "full distribution" were first conceived over four

years ago, members of the FDPS project have been plagued by severe problems in

explaining the significance of various aspects of the definition of an FDPS.

Most of these problems have been caused by the difficulties in clearly com-

municating the extremely important differences between "fully" distributed

systems and those that are merely "distributed." These problems in understan-

ding appear often to result from the "listener" incorrectly equating certain

aspects of FDPS operation with those of a similarly appearing distributed

system. Such misunderstandings are not totally unreasonable, for some of the

most significant differences are quite subtle. One highly desirable effect

anticipated from "new" system models and "new" terminology is to prevent, or

at least make less likely, these undesirable associations with existing system

concepts.

3.1.2 Approaches LQ. Modelling

There are a number of approaches that may be followed in the development

of a system model. The selection of the approach to be taken is based on the

intended use of the model and the nature of the system being modelled.

Georgia Institute of Technology 	 FDPS Control Models

Page 22
	

FDPS SYSTEM MODELS 	 Section 3

3.1.2.1 Scenario or Flow Chart Models

Certainly one of the most commonly encountered models is the simple flow

chart. A flow chart depicts the thread or threads of processing that the

system will perform in response to a given set of inputs. A flow chart is

probably the best method to illustrate or model the sequence of processing

activities involved in a transaction processing or similar type system.

3.1.2.2 Structure Models

Logical and physical structure models are focused more on the organiza-

tion and modularization of the processing software and hardware than on the

actual processing those modules perform. Perhaps the most important use of

structure models is in the partitioning of functionality and code for

implementation.

3.1.2.3 Interaction Models

Interaction models which focus on the relationships between software and

hardware processing entities are becoming quite popular in the area of com-

puter networks; however, they are certainly not limited to just those

applications. The basic principle employed in the development of these models

is layering with interactions between pairs of peer layers and sets of

adjacent layers being specified. The operation and functionality provided by

each layer is defined in terms of its protocols and interfaces.

The rules and procedures defining the interactions between peer layers

are known as "protocols," whereas "interfaces" define the boundaries and

procedures for interaction between adjacent layers. (See Figure 2) (This

usage of the term "interface" is consistent with its definition as the boun-

dary between dissimilar entities.) To complete the system description at this

level of abstraction, the interfaces are defined in terms of the services

provided by a lower layer and the services provided to a higher layer.

It should be noted that in the area of computer networking, the combina-

tion of a complete set of protocols and a complete set of interfaces is

referred to as a "network architecture."

Preparing a layered model with defined interfaces and protocols is no

guarantee that a "clean" layering structure will result. A classic example of

this is the ARPANET layers of protocol shown in Figure 3. Although they all

make use of the Host-to-IMP protocol, there are many instances in ARPANET in

which layers are bypassed completely.

Georgia Institute of Technology 	 FDPS Control Models

Layer M1<_---PM _--->

Layer 2 	1<---- P
2

__-->

1
Layer 1 	1<---- P 1 ---->

Layer 0

FDPS SYSTEM MODELS 	 Page 23 Section 3

Protocols
1

Layer N

1 1 1

	

<---- PN ---->1 	Layer N 	1

:<--

	

1 	 1
<--- PN-1 ---> 1 Layer N - 1 f

	 1<--

Layer N - 1

	 :<--

Layer M 1 	-- Interfaces

	 ,<--

	 1 <__

Layer 2 	1

	 !<--

Layer 1 	1

<
--

1
1

Figure 2. Protocols and Interfaces

Georgia Institute of Technology 	 FDPS Contrn1 MnriAls

FDPS SYSTEM MODELS 	 Section 3 Page 24

1
1 	Remote

Job
1 	Entry

File 	1
Transfer
Protocol
(FTP)

Telnet

Initial
Connection
Protocol
(ICP)

1
Host-to-Host 	 1

Host-to-IMP (Interface Message Processor)

Figure 3. The ARPANET Protocol Layers

Georgia Institute of Technology 	 FDPS Control Models

Section 3
	

FDPS SYSTEM MODELS 	 Page 25

3.1.2.4 Performance and Mathematical Models

Obviously, the objective or purpose of this class of models is to

provide tools to examine, and usually quantify, the performance of a system.

3.1.2.5 Summary of Model Types

The various types of models discussed above Jo not represent different

ways Lo. accomplish the same task. Although there is some common information

found in or derivable from two or more of the various type of models, each is

actually focused on quite different aspects of the system description.

- Physical structure model: Depicts the manner in which the various
hardware and software components are partitioned awl Packaged.

- Logical structure model: Focuses on the functionality provided by
the hardware and software components and how they may be logically
organized into modules.

- Scenario or flow chart model: Depicts the sequence At Processing
actions taken on the data.

- Interaction model: Focuses on the 'nteractions between Processing
entities --- services provided to or received from adjacent layer
entities and the protocols governing the communication and
negotiations that can occur between corresponding peer layers.

- Analytic model: Focuses on the performance of complete systems ..
subsystems. Often the external performance characteristics of the
system being modelled are available.

- Simulation model: Depicts a system or subsystem by modelling as
close „la possible the operations that 	performs. Provides more
internal detail than an analytic model.

3.2 OTHER MODELS

Although the work on FDPS models has certainly been strongly influenced

by the numerous existing "models" of multiprocessors, multiple computer

systems, and computer networks, there has been very little influence from

other "distributed system" models since few of these have been developed to

the point that they can be closely analyzed. One model that has had a great

deal of influence on the development of the FDPS models, at least in guiding

the manner in which those models are presented, is the "Reference Model for

Open System Interconnection" developed by Sub-Committee 16 of the Inter-

national Standards Organization Technical Committee 97.

3.2.1 The ISO Reference Model for OSI

The ISO Reference Model, a layered-interaction model, is being prepared

by Sub-Committee 16 to establish a framework for the development of standard

Georgia Institute of Technology 	 FDPS Control Models

Page 26
	

FDPS SYSTEM MODELS 	 Section 3

protocols and interfaces as appropriate for the interconnection of

heterogeneous nodes in an "open" computer network and the intercommunication

between the processes in these nodes. (This model is almost totally focused

on the IPC process, i.e., interprocess communication.) The ISO model is a

7-layer structure as shown in Figure 4.

Although the ISO Reference model has been influential in providing ideas

and concepts applicable to a layered model of an FDPS, there are two major

factors limiting its direct applicability:

1. The ISO model is almost totally concerned with communication
between the nodes of a network. Some references are made to
higher level protocols in the applications layer, but these are
not a part of the ISO model.

2. Although it is not explicitly stated, there appears to be a
general assumption in the ISO model of a degree of coupling
that is tighter than that anticipated for an FDPS. (This com-
ment also applies to nearly all of the current network
architectures --- even those that include application layer
protocols.)

3.2.2 Protocol Hierarchies

As stated above, the ISO Reference Model addresses only a subset of the

protocols and interfaces that will be found in a complete distributed system.

A more complete picture is shown in Figure 5.

3.3 THE FDPS MODELS

3.3.1 The FDPS Logical Model

The current version of the FDPS logical model is organized into five

layers above the "physical interconnection" layer. (Figure 6) The important

or significant characteristics of this logical model are:

1. It is also a rudimentary layered-interaction model; however, to
be useful, the interaction model must eventually delineate more
layers.

2. The operating system has been divided into two parts based on a
division of functionality and responsibilities:

a. The Local Operating System (LOS) is responsible
for the detailed control and management of the
users and resources at a single node.

b. The 	Network Operating System (NOS) 	is
responsible for interactions between this node
and all others.

Georgia Institute of Technology 	 FDPS Control Models

Section 3
	

FDPS SYSTEM MODELS 	 Page 27

3. 	The correlation of FDPS layers and ISO layers is the following:

FDPS Layers 	 ISO Layers

Users and Resources
Local Operating System
	

Application
Network Operating System

Message Handler
	

Presentation
Session

Transport
Message Transporter
	

Network
Data Link
Physical

3.3.2 An FDPS Physical Model

One of the possible physical models for an FDPS operating system is

shown in Figure 7. This is a good example of how logical models and physical

models may differ in their modularization. In Figure 7, the division between

the LOS and NOS layers of the logical model runs horizontal through the

MANAGERS in the physical model.

3.3.3 The FDPS Interaction Model

All of the individual layers of the FDPS interaction model have not yet

been identified; however, a more detailed list of the protocols that may be

loosely related to Figure 5 is given in Figure 8. This list of protocols is

especially significant to the FDPS research project since it identifies those

specific areas in which work must be done.

Georgia Institute of Technology 	 FDPS Control Models

FDPS SYSTEM MODELS 	 Section 3 Page 28

< 	Application Protocols 	>1 Application
I 	
I

<----Presentation Protocols 	>1 Presentation

I
<---Session Control Protocols 	>1 	Session

1
I

1<--Transport Control Protocols-->1 Transport
i 	 1

	

1 	
1
1
	 1

	

I<---Network Control Protocols--->I 	Network
I 	 1 	
1 	 1 1 	 1
l< 	Data Link Protocols 	>1 Data Link
1 	 I 	
1 	 I
1< 	Physical Protocol 	>1 	Physical
1 	 I 	

Application

Presentation

Session

Transport

Network

Data Link

Physical

Interconnection Media

Figure 4. The ISO Reference Model for OSI

Georgia Institute of Technology 	 FDPS Control Models

Data Link Data Link

Physical

Physical

Interconnection Media

FDPS SYSTEM MODELS 	 Page 29 Section 3

1 	
1
1
1
1 I Resources
1 1 	& Users

Local
Operating
System

NOS System Calls by the LOS

Resource
Sharing

and
Host-to-Host

Protocols

Communication
	 Protocols 	

<--- Transport -->
Protocols

Resources
& Users

Local
Operating
System

Network
Operating
System

Presentation

Session

Transport

Network

Network
Operating
System

Presentation

Session

Transport

Network

<-

1 <

Communications
	 Sub-net 	

Protocols

Figure 5. A "Complete" Protocol Hierarchy

>1

Georgia Institute of Technology 	 FDPS Control Models

Page 30
	

FDPS SYSTEM MODELS 	 Section 3

USERS AND RESOURCES

LOCAL OPERATING SYSTEM

NETWORK OPERATING SYSTEM 	/

MESSAGE HANDLER

\ MESSAGE TRANSPORTER /
\ 	 /
I 	 I

PHYSICAL
1 INTERCONNECTION

/ 	 \
/ MESSAGE TRANSPORTER \

MESSAGE HANDLER

NETWORK OPERATING SYSTEM 	\
/ 	 \

LOCAL OPERATING SYSTEM
/ 	 \

USERS AND RESOURCES

Figure 6. A Logical Model of an FDPS

Georgia Institute of Technology 	 FDPS Control Models

FDPS SYSTEM MODELS 	 Page 31 Section 3

*** NODE m ***

	

Data i 	I 	 f f 	COMMAND

	

Bases = 	f Processes I I INTERPRETER 1 1 Resources
(m) 	I 	1 	(m) 	I 	I 	(m) 	I 	I 	(m)

1 1 	i 	 1 	 1
	 1 1 	1 1

DATA 	1 	 1 	1
BASE 	f PROCESS 	1 PROCESS 1 	f RESOURCE

MANAGER 	I CONTROLLER 	1 MANAGER f 	I MANAGER
(m) f 	(m) 	I 	1 	(m) 	1 	I 	(m)

1 1 	 1 	 1
1 1 1 1 1

MESSAGE HANDLER & TRANSPORTER

1 1
1

1
1

DATA I f f 1 1
BASE 1 1 PROCESS 	I 1 	PROCESS 1 RESOURCE

MANAGER I f CONTROLLER I 1 	MANAGER 1 MANAGER
(n) I I (n) 	f I 	(n) 1 (n)

I 1 1
1 ___ I [1

Data COMMAND
Bases I I Processes f I INTERPRETER Resources
(n) 	I I (n) 	I I 	(n) (n)

-----L---- 1 1 	1
*** NODE n *** 	1 Users 1

1 	(n) 	1
1 	1

Figure 7. Physical Model of FDPS Control

Georgia Institute of Technology, 	 FDPS Control Models

Page 32
	

FDPS SYSTEM MODELS 	 Section 3

Computer Network Protocols

1

Communications
Protocols

-(Processing
Communication)
I-Message Formatting
I-Addressing

-(Message Handling)
I-Destination
I resolution
1-Connection
I establishment
I-Message transfer

-(End-to-end)
I-Presentation*
I-Session•

-(Transport Subsystem)
I-Transport*
1-Network control*
I-Data link*
1-Physical*

-(Communications Subnet)
I-Network control

I I I-Routing
I I-Broadcast

I I-Data link
1 I-Physical

Resource
Sharing
Protocols**

I-(Data Base Control)
I I-File naming

I-File access
I-File transfer
I-Update concurrency

control

-(Access)
I-Virtual terminal
I-Access control
I-User interface

I-Human
I-Internal

I-(Work Request Processing)
-Resource management

-Identification of
resource requirements

-Resource location
-Resource selection
-Resource allocation
-Resource deallocation

-Task management
I-Execution control
I-Synchronization
I-Failure recovery

* Classifications (layers) defined by the ISO and CCITT
Network Architecture Models

** A preliminary list for FDPS's

Figure 8. Classifications of Computer Network Protocols

Georgia Institute of Technology 	 FDPS Control Models

Section 4
	

ISSUES IN DISTRIBUTED CONTROL 	 Page 33

SECTION 4

ISSUES IN DISTRIBUTED CONTROL

Before examining specific aspects of executive control in an FDPS, a

look at some of the various issues of distributed control is appropriate.

There are three primary issues that require examination: 1) the effect of the

dynamics of FDPS operation on an executive control, 2) the nature of the

information an executive control must maintain, and 3) the principles to be

utilized in the design of an executive control.

4.1 DYNAMICS

Dynamics is an inherent characteristic of the operation of an FDPS.

Dynamics are found in the work load presented to the system, the availability

of resources, and the individual work requests submitted. The dynamic nature

of each of these provides the FDPS executive control with many unique

problems.

4.1.1 Workload Presented IQ the System

In an FDPS, work requests can be generated either by users or active

processes and can originate at any node. Such work requests potentially can

require the use of resources on any processor. Thus, the collection of

executive control procedures must be able to respond to requests arriving at a

variety of locations from a variety of sources. Each request may require

system resources located on one or more nodes, not necessarily including the

originating node. One of the goals of an FDPS executive control is to respond

to these requests in a manner such that the load on the entire system is

balanced.

4.1.2 Availability .glt Resources

Another dynamic aspect of the FDPS environment concerns the availability

of resources within the system. As mentioned above, a request for a service

to be provided by a system resource may originate at any location in the

system. In addition, there may be multiple copies of a resource or possibly

multiple resources that provide the same functionality (e.g., there may be

functionally equivalent FORTRAN compilers available on several different

nodes). Since resources are not immune to failures, the possibility of losing

existing resources or gaining both new and old resources exists. Therefore,

an FDPS executive control must be able to manage system resources in a dynamic

Georgia Institute of Technology 	 FDPS Control Models

Page 34
	

ISSUES IN DISTRIBUTED CONTROL 	 Section 4

environment in which the availability of a resource is unpredictable.

4.1.3 Individual Work Requests

Finally, the dynamic nature of the individual work requests must be

considered. As mentioned above, these work requests define, either directly

or indirectly, a set of cooperating processes which are to be invoked. An

indirect definition of the work to be done occurs when the work request is

itself the name of a command file or contains the name of a command file in

addition to names of executable files or directly executable statements. A

command file contains a collection of work requests formulated in command

language statements (see Figure 10 for a description of the syntax for a

suitable command language) that are interpreted and executed when the command

file is invoked. The concept of a command file is similar to that of a

procedure file which is available on several current systems.

Management of the processes for a work request thus includes the pos-

sibility that one or more of the processes are command files requiring command

interpretation. The presence of command files will also result in the

inclusion of additional information in the task graph or possibly additional

task graphs. (See paragraph 7.5 for a discussion of the impact of command

files on the task graph.)

An important objective of work request management is to control the set

of processes and do so in such a manner that the inherent parallelism present

in the operations to be performed is exploited to the maximum. In addition,

situations in which one or more of the processes fail must also be handled.

4.2 INFORMATION

All types of executive control systems require information in order to

function and perform their mission. The characteristics of the information

available to the executive control is one aspect of fully distributed systems

that result in the somewhat unique control problems that follow:

1. Because of the nature of the interconnection links and the
delays inherent in any communication process, system informa-
tion on hand is always out of date.

2. Because of the autonomous nature of operation of all com-
ponents, each processor can make "its own decision" as how to
reply to an inquiry; therefore, there is always the possibility
that information received is incomplete and/or inaccurate.

3. Because of the inherent time delays experienced in exchanging

Georgia Institute of Technology 	 FDPS Control Models

Section 4
	

ISSUES IN DISTRIBUTED CONTROL 	 Page 35

information among processes on different nodes, some informa-
tion held by two processes may conflict during a particular
time interval.

4.3 DESIGN PRINCIPLES

Designing the system control functions required for the extremely

loosely-coupled environment of an FDPS and implementing those functions to

operate in that environment will certainly require the application of some new

design principles in addition to those commonly utilized in operating systems

for centralized systems. These design principles must address at least the

two distinguishing characteristics of FDPS's:

- System information available, and
- Nature of resource control

4.3.1 System Information

The various functions of an FDPS executive control must be designed

recognizing that system information is:

- "Expensive" to obtain
- Never fully up-to-date
- Usually incomplete
- Often inaccurate

All of these characteristics of system information result from the fact

that the components providing the information are interconnected by relatively

narrow bandwidth communication paths (see paragraph 2.3.1) and that those com-

ponents are operating somewhat autonomously with the possibility that their

state may change immediately after a status report has been tansmitted.

Further, itis important to note that the mere existence (or disappearance) of

a resource is not of interest to a specific component of the FDPS executive

control until that component needs that information.

The

identified

1.

	

design 	principles 	applying 	to 	system information that

thus far include the following:

	

Economy 	communication: 	ask 	for 	only 	the 	information .Q_f_

have been

required.

2. Resiliency: be prepared to recover and continue in the absence
of replies.

3. Flexibility: be 	prepared 	to 	recover 	and 	continue if the
information
utilized.

provided 	proves 	to 	be 	inaccurate 	when it 	is

Georgia Institute of Technology 	 FDPS Control Models

Page 36
	

ISSUES IN DISTRIBUTED CONTROL 	 Section 4

4.3.2 Resource Control

Since all of the resources are operating under local control under the

policies of cooperative autonomy, all requests for service, or the utilization

of any resource such as a file, must be effected through negotiations that

culminate in positive acknowledgements by the server. In all instances, the

control function requesting a service or a resource must be prepared for

refusal.

Georgia Institute of Technology 	 FDPS Control Models

Section 5
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Page 37

SECTION 5

CHARACTERIZATION OF FDPS WORK REQUESTS

5.1 THE WORK REQUEST

One of the goals of an FDPS is the ability to provide a hospitable

environment for solving problems that allows the user to utilize the natural

distribution of data to obtain a solution which may take the form of an

algorithm consisting of concurrent processes. The expression of the solution

is in terms of a work request that describes a series of cooperating proces-

ses, the connectivity of these processes (how the processes communicate), and

the data files utilized by these processes. This description involves only

logical entities and does not contain any node specific information. A

description of one command language capable of expressing requests for work in

this fashion can be found in [Akin78] (see Figure 10).

5.2 IMPACT QE. THE WORK REQUEST ,QX THE CONTROL

The nature of allowable work requests (not just the syntax but what can

actually be accomplished via the work request) determines to a large extent

the functionality of an executive control. Therefore, it is important to

examine the characteristics of work requests and further to see how variations

in these characteristics impact the strategies utilized by an FDPS executive

control.

Five basic characteristics of work requests have been identified:

1. the external visibility of references to resources required by
the task,

2. the presence of any interprocess 	communication 	(IPC)
specifications,

3. the number of concurrent processes,

4. the nature of the connectivity of processes, and

5. the presence of command files.

5.2.1 Visibility 91 References ,, Resources

References to the resources required to satisfy a work request may

either be visible prior to the execution of a process associated with the work

request or embedded in such a manner that some part of the work request must

be executed to reveal the reference to a particular resource. A resource is

made "visible" either by the explicit statement of the reference in the work

Georgia Institute of Technology 	 FDPS Control Models

Page 38
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Section 5

request or through a declaration associated with one of the resources

referenced in the work request. An example of the latter means of visibility

is a file system in which external references made from a particular file are

identified and stored in the "header" portion of the file. In this case, the

identity of a reference can be obtained by simply accessing the header.

The greatest impact of the visibility characteristic of resource

requirements occurs in the construction of task graphs and the distribution of

work. The time at which resource requirements are detected and resolved

determines when and how parts of the task graph can be constructed.

Similarly, some work cannot be distributed until certain details are resolved.

For example, consider a case where resource references cannot be resolved

until execution time. Assume there exists two processes X and Y where process

X has a hidden reference to process Y. An executive control cannot consider Y

in the work distribution decision that is made in order to begin execution of

X. The significance of this is that certain work distribution decisions may

not be "globally optimal" because total information was not available at the

time the decision was made.

5.2.2 The Number of Concurrent Processes

A work request can either specify the need to execute only a single

process or the execution of multiple processes which may possibly be executed

concurrently. Obviously with multiple processes, more resource availability

information must be maintained; and there is a corresponding increase in the

data to the work distribution and work allocation phases of control. In

addition, the complexity of the work distribution decision algorithm increases

with more resources needing to be allocated and multiple processes needing

scheduling. The complexity of controlling the execution of the work request

is also increased with the presence of multiple processes since the control

must monitor multiple processes for each work request.

5.2.3 The Presence of InterProcess Communication

The problems described in the previous paragraph are amplified by the

presence of communication connections between processes. When interprocess

communication is described in a work request, the work distribution decision

must consider the requirement for communication links. In addition, a com-

promise must be made in order to satisfy the conflicting goals of maximizing

the inherent parallelism of the processes of the work request and minimizing

Georgia Institute of Technology 	 FDPS Control Models

Section 5
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Page 39

the cost of communication among these processes. 	The control activity

required during execution is also impacted by the presence of interprocess

communication. It must provide the means for passing messages, buffering mes-

sages, and providing synchronization to insure that a reader does not under-

flow and a writer does not overflow the message buffers.

5.2.4 The Nature 91: Process Connectivity

There are a variety of techniques available for expressing interprocess

communication including pipes (see [Ritc78]) and ports (see [Balz71, Have78,

Suns77, Zuck77]). 	There are a number of approaches to realizing these

different forms of interprocess communication. 	The main impact on an

executive control, though, is in those components controlling process

execution.

5.2.5 The Presence DI Command Files

A command file is composed of work requests. 	Execution of a work

request that references a command file results in a new issue dealing with the

construction of task graphs. This issue is concerned with whether a new task

graph should be constructed to describe the new work request or should these

new processes be included in the old task graph. The differences between

these two approaches becomes important during work distribution. It is

assumed that the work distribution decision will be made only with the

information available in the task graph. Thus, with the first approach, only

those tasks in the new work request are considered while the second approach

provides the ability to take into consideration the assignment of tasks from

previous work requests.

5.3 A CLASSIFICATION a WORK REQUESTS
This examination of the characteristics of FDPS work requests has lead

to the identification of five basic attributes which have significant impact

on an executive control. In Figure 9, all possible types of work requests are

enumerated resulting in 32 different forms of work requests. It should be

noted, though, that 16 of these (those with an asterisk beside the task num-

ber) contain conflicting characteristics and thus are impossible.

Georgia Institute of Technology 	 FDPS Control Models

page 40
	

CHARACTERIZATION OF FDPS WORK REQUESTS 	 Section 5

1
Resource ReferencesI

I 	All 	I 	Some 	1 	IPC
No. 	1 Visible I Embedded I YES NO

1 Resources
!Distribut-

ed on
Different

Nodes
YES NO

Multiple
Copies

Resources
YES I NO

Some
Resources
on Node

Other Than
Home Node
YES I NO

1
2
3 *

 4*
5*
6
7*
8

x

x x

x

I X
X

X
X

Ix
IX

X

X

X

X

X

x

9 x X
10 1 	x
11* x x X
12*
13* IX
14 IX
15* x
16
17 x IX
18 	 x Ix
19* X
20* X
21*
22 X
23* x X
24 x
25 Ix 	IX
26 Ix
27* x
28*
29 * 	x x x
30 x x
31* Ix
32

Figure 9. Classification of Work Requests

Georgia Institute of Technology 	 FDPS Control Models

Section 6
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 41

SECTION 6

CHARACTERISTICS OF FDPS CONTROL MODELS

6.1 APPROACHES IQ. IMPLEMENTING FDPS EXECUTIVE CONTROL

There are two basically different approaches available for implementing

an operating system for a distributed processing system, the base-level

approach and the meta-system approach [Thom78]. The base-level approach does

not utilize any existing software and, therefore, requires the development of

all new software. This includes software for all local control functions such

as memory management and process management. In contrast, the meta-system

approach utilizes the "existing" operating systems (called local operating

systems (LOS)) from each of the nodes of the system. Each LOS is "interfaced"

to the distributed system by a network operating system (NOS) which is

designed to provide high level services available on a system-wide basis. The

meta-system approach is usually preferred due to the availability of existing

software to accomplish local management functions, thus, reducing development

costs [Thom78].

Figure 6 depicts a logical model applicable to an FDPS executive control

utilizing either approach. The LOS handles the low-level (processor-specific)

operations required to directly interface with users and resources. In the

meta-system approach, the LOS represents primarily the operating systems

presently available for nodes configured in stand-alone environments. The LOS

resulting from a base-level approach has similar functionality; however, it

represents a new design, and certain features may be modified in order to

allow the NOS to provide certain functions normally provided by the LOS. Any

"network" operations are performed by the NOS. System unification is realized

through the interaction of NOS components, possibly residing on different

processors, acting in cooperation with appropriate LOS components. Communica-

tion among the components is provided by the message handler which utilizes

the message transport services.

6.2 INFORMATION REQUIREMENTS

Two types of information are required by an executive control, informa-

tion concerning the structure of the set of tasks required to satisfy the work

request and information about system resources. This data is maintained in a

variety of data structures by a number of different components.

Georgia Institute of Technology 	 FDPS Control Models

Page 42
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6

6.2.1 Information Requirements for Work Requests

Each work request identifies a set of cooperating tasks, nodes in a

logical network that cooperate in execution to satisfy a request and the con-

nectivity of those nodes. Figure 10 illustrates the notation used in this

project to express work requests. An example of a work request using this

notation is presented in Figure 11. Work requests as linear textual forms can

be easily accepted and manipulated by the computer system; however, task

graphs, which are an internal control structure used to describe work

requests, must be represented in a manner such that the linkage information is

readily available. This can take the form of the explicit linking of node

control blocks (Figure 12) or an interconnection matrix (Figure 13).

Information concerning a particular task, i.e., logical node, is

maintained in a node control block (Figure 12). Associated with each logical

node is an execution file, a series of input files, and a series of output

files. The node control block contains information on each of these entities

that includes the name of the resource, the locations of possible candidates

that might provide the desired resource, and the location of the candidate

resource chosen to be utilized in the satisfaction of the work request. In

addition to this information, the node control block maintains a description

of all interprocess communication (IPC) in which the node is a party. This

consists of a list of input ports and output ports. (Interprocess communica-

tion is a term describing the exchange of messages between cooperating proces-

ses of a work request.) Typically, a message is "sent" when it is written to

the output port of a process. The message is then available for consumption

by any process possessing an input port that is connected to the previously

mentioned output port. The message is actually consumed or accepted when the

process owning the connected input port executes a READ on that port.

A global view of interprocess communication is provided by the node

interconnection matrix (Figure 13). This structure indicates the presence or

absence of an IPC link between an output port of one node and an input port of

another node. Thus, links are assumed to carry data in only a single direc-

tion.

An example of a task graph resulting from the work request in Figure 11

utilizing the direct linking of node control blocks is presented in Figure 14.

Figure 15 illustrates the utilization of an interconnection matrix.

Georgia Institute of Technology 	 FDPS Control Models

Section 6
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 43

<work request> ::= [<logical net> { ; <logical net> }]

<logical net> ::= <logical node> { <node separator>
{ <node separator> } <logical node> }

<node separator> ::= , 1 <pipe connection>

<pipe connection> ::= [<port>] '1 1 [<logical node number>]
[.<port>]

<port> ::= <integer>

<logical node number> ::= <integer> I $ I <label>

<logical node> ::= [:<label> 	[<simple node> 1
<compound node> 	1
(<simple node> I <compound node>)

<simple node> ::= { <i/o redirector> } <command name>
<i/o redirector> 1 <argument> }

<compound node> ::= { <i/o redirector> } /{t <logical net>
{ <net separator> <logical net> } t}'
{ <i/o redirecotr> }

<i/o redirector> ::= <file name> '>' [<port> 	1
[<port>] '>' <file name> I
[<port>] '>>' <file name> 1

,>>, [<port>]

<net separator> ::= ;

<command name> ::= <file name>

<label> ::= <identifier>

Figure 10. Work Request Syntax
(Taken from [AKIN78])

Georgia Institute of Technology 	 FDPS Control Models

Page 44
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6

Work Request:

pgm1 1 pgm2 11a 211) :a p gm3 1 pgmli 1c.1 :b pgm5 1 pgm6 1.2 :c pgm7
(0) 	(1) (2) (3)

	
(4) 	(5) 	(6)
	

(7) 	(8) 	(9)

(0) Output port 1 of pgm1 is connected to input port 1 of pgm2.
(1) Ouptut port 1 of pgm2 is connected to input port 1 of the

logical node labeled "a," pgm3.
(2) Output port 2 of pgm2 is connected to input port 1 of the

logical node labeled "b," pgm5.
(3) Label for the logical node containing pgm3 as its execution

module.
(4) Output port 1 of pgm3 is connected to input port 1 of pgmli.
(5) Output port 1 of pgmit is connected to input port 1 of the

logical node labeled "c," pgm7.
(6) Label for the logical node containing pgm5 as its execution

module.
(7) Output port 1 of pgm5 is connected to input port 1 of pgm6.
(8) Output port 1 of pgm6 is connected to input port 2 of pgm7.
(9) Label for the logical node containing pgm7 as its execution

module.

Data Flow Graph of the Work Request:

pgml
1
1

V
pgm2

11
11

I 	1 1 1 1 	1
V 	V

pgm3 	pgm5
1 	1
1

V 	V
pgmli 	pgm6

1 I 1
L___ ____1

11
11

VV
pgm7

Figure 11. Example of a Work Request

Georgia Institute of Technology 	 FDPS Control Models

Section 6
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 45

EXECUTION FILE

Name:
Locations of candidates available:
Location of candidate chosen:

INPUT FILE 1

Name:
Locations of candidates available:
Location of candidate chosen:

INPUT FILE i

Name:
Locations of candidates available:
Location of candidate chosen:

OUTPUT FILE 1

Name:
Locations of candidates available:
Location of candidate chosen:

OUTPUT FILE j

Name:
Locations of candidates available:
Location of candidate chosen:

IPC

Input Ports:
Output Ports:

Figure 12. Node Control Block

Georgia Institute of Technology 	 FDPS Control Models

Page 46
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6

RECEIVER

N1 	 Nn

	

R 	R 	 R 	R

	

1 	m 	 1 	p

* I 	1 	* 	* 	1 	1 	*

S1 	* 	1...1 	* 	* 	1...1 	*
* 1 	1 	* 	* 	1 	1 	*

N 	. *
	. 	* ... 	* 	• 	*
* * 	 * . 	. 	 *•
* * 	 * 	 *
* 1 	1 	* 	* 	1 	1 	* 1

S 	* 	1...1 	* 	* 	1...1 	*
*

	

i 	1 	1 	 1 	1 1 	* 	* 	1 	1 	*

* *

S * 	 *
E * 	 . 	 *
N * 	 . 	 *
D * 	 . 	 *
E * 	 *
R 	 * 	 *

* 1 	1 	* 	* 	1 	1 	* 1

	

S1 	

• 	

1

	

1 	* 	1...1 	* * 	* 	 1 	* 1 	1 	
...1 	*

* 1 	1 	1 	
* * * . * 	. 	 .

Nn 	. * 	. 	
* 	... 	* 	. 	*

. * 	. 	* 	* 	. 	*
* * 	* 	*
* 1 	1 	* 	* 	1 	1 	*

	

Sk * 	1...1 	* 	* 	1...1 	*
* 11* *

	

1 	 * 	1 	I*

Node Port

Figure 13. Node Interconnection Matrix

Node

Port

Georgia Institute of Technology 	 FDPS Control Models

Name: pgm1
I Candidates:
I Chosen Candidate:
I Output Port 1: 	
	 1

Name: pgm2
Candidates:
Chosen Candidate:
Input Port 1:
Output Port 1: 	
Output Port 2:

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 47 Section 6

Name: pgm3
Candidates:
Chosen Candidate:
Input Port 1:
Output Port 1: ------

Name: pgm5
Candidates:
Chosen Candidate:
Input Port 1: 	I<-
Output Port 1:

Name: pgm4
Candidates:
Chosen Candidate:
Input Port 1:
Output Port 1:

Name: pgm7
Candidates:
Chosen Candidate:
Input Port 1:
Input Port 2:

Name: pgm6
Candidates:
Chosen Candidate:
Input Port 1:
Output Port 1: 	

Figure 14. Example of a Task Graph Using Links within the
Node Control Blocks

(Based on the Work Request Shown in Figure 11)

Georgia Institute of Technology 	 FDPS Control Models

Page 48
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	Section 6

RECEIVER

1 1

1

2 	3 	4 	5 	6 	7 	 Node

1 	1 	1 	1 	1 	1 	2 	Port

* 	* 	* 	* 	* 	*
* 1 * 	* 	* 	* 	*
* 	* 	* 	* 	* 	*

* 	* 	* 	* 	* 	* 	1 	*
a 	* 1 	* 	a 	a 	a 	I

2 * 	* 	* 	* 	* 	* 	*
* 	* 	* 	* 	* 	* 	1 	*

2 a 	* 	* 	* 1 	* 	* 	1 	*
S * 	* 	* 	* 	* 	* 	*
E *****************************
N * 	* 	* 	*
D 3 1* * 	* 1 	* 	* 	* 	1
E * 	* 	* 	* 	*
R *****************************

* 	* 	* 	* 	* 	* 	*
4 1 * 	* 	* 	* 	* 	* 1 	I 	*

* 	* 	* 	* 	* 	*

* 	* 	* 	* 	* 	* 	*

5 1 * 	* 	* 	* 	* 1 * 	*
* 	* 	* 	* 	* 	* 	*

* 	* 	* 	* 	* 	* 	*

6 1 * 	* 	* 	* 	* 	* 	i 	1 	*
* 	* 	* 	* 	* 	* 	*

Node Port

Figure 15. Example of a Node Interconnection Matrix

(Based on Work Request Shown in Figure 11)

Georgia Institute of Technology 	 FDPS Control Models

Section 6
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 49

6.2.2 Information Re❑uirements :sr. System Resources
Regardless of how the executive control is realized (i.e., how the com-

ponents of the executive control are distributed and how the control decisions

are decentralized), information concerning all system resources (processors,

communication lines, files, and peripheral devices) must be maintained. This

information includes at a minimum an indication of the availability of resour-

ces (available, reserved, or assigned). Preemptable resources (e.g., proces-

sors and communication lines) capable of accommodating more than one user at a

time may also have associated with them utilization information designed to

guide an executive control in its effort to perform load balancing.

As discussed below, there are a number of techniques that may be

employed to gather and/or maintain the system resource information.

6.3 BASIC OPERATIONS OF FDPS CONTROL

The primary task of an executive control is to process work requests

that can best be described as logical networks. A node of a logical network

specifies an execution file that may either contain object code or commands

(work requests), input files, and output files. These files may reside on one

or more physical nodes of the system and there may be multiple copies of the

same file available. Thus, to process a work request, an FDPS executive

control must perform three basic operations: 1) gather information, 2)

distribute the work and allocate resources, and 3) initiate and monitor task

execution. These operations need not be executed in a purely serial fashion

but may take a more complex form with executive control operations executed

simultaneously or concurrently with task execution as the need arises.

Examination of the basic operations in further detail (Figure 16)

reveals some of the variations possible in the handling of work requests. Two

steps exist in information gathering --- 1) collecting information about task

requirements for the work request and 2) identifying the resources available

for satisfying the request requirements. Information gathering is followed by

the task of distributing the work and allocating resources. If this operation

is not successful, three alternatives are available. First, more information

on resource availability can be gathered in an attempt to formulate a new work

distribution. 	There may have been a change in the status of some resources

since the original request for availability information. 	Second, more

information can be gathered as above, but this time the requester will

Georgia Institute of Technology 	 FDPS Control Models

Page 50
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6

WORK REQUEST
1
	 >1

1
I 	1 	
I 	I 	 I

1 Gather Information I
1 (Task Requirements) 1

I 	1 	 1
1
	 >1< 	

	

1 	 4
1

1 	1
Gather Information 	1 	1

(Resource Availability) 1 	1
1 YES

	

1 	 1

	

1 	
1 	 1 	1 	 1

(A) 1 Distribute Work 	I (B) 1 Bid to a 1 NO Report
1<----1 	and 	1 	>1 Higher I--->FAILURE

I Allocate Resources I 	1 Level? I 	to User

1 	 Notes:
1(C)
1 	 A: The proposed allocation

is not accepted by the
(D)
	

I 	 I 	resources.
1 < 	1 Execute Task 1
	 1 	B: No solution with

1 	 resources available at
1 (E) 	 "this" price level.
1

C: Allocation accepted by
1
	

resources.
1 Cleanup I
1 	1 	D: Appearance of a new

1 	 task or request for
1 	 additional resources.
t

COMPLETED WORK REQUEST E: Normal or abnormal
termination.

Figure 16. Work Request Processing (Detailed Steps)

Georgia Institute of Technology 	 FDPS Control Models

Section 6
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 51

indicate a willingness to "pay more" for the resources. This is referred to

as bidding to a higher level. Finally, the user can simply be informed that

it is impossible to satisfy his work request.

6.3.1 Information Gathering

Upon receiving a work request, the first task of the control is to

discover what resources are needed to satisfy the work request (Figure 17) and

which resources are available to fill these needs (Figure 18). Each work

request includes a description of a series of tasks and the connectivity of

those tasks. 	Associated with each task is a series of files. One is

distinguished as the execution file and the rest are input/output files. 	The

executive control must first determine which files are needed. It then must

examine each of the execution files to determine the nature of its contents

(executable code or commands). Each task will need a processor resource(s),

and those tasks containing command files will also require a command

interpreter.

An FDPS executive control must also determine which of the system

resources are available. For nonpreemptable resources, the status of a

resource can be either "available," "reserved," or "assigned." A reservation

indicates that a resource may be used in the future and that it should not be

given to another user. Typically, there is a time-out associated with a

reservation that results in the automatic release of the reservation if an

assignment is not made within a specified time interval. The idea here is to

free resources that otherwise would have been left unavailable by a lost

process. The process may be lost because it failed, its processor failed, or

the communication link to the node housing the particular resource may have

failed. An assignment, on the other hand, indicates that a resource is

dedicated to a user until the user explicitly releases that assignment.

Preemptable resources may be accessed by more than one concurrent user and

thus can be treated in a different manner. For these resources, the status

may be indicated by more continuous values (e.g., the utilization of the

resource) rather than the discrete values described above.

6.3.2 Work Distribution and Resource Allocation

The FDPS executive control must determine the work distribution and the

allocation of system resources (Figure 19 & 20). This process involves choos-

ing from the available resources those that are to be utilized. This decision

(Zporaia TnRtitutP of Technoloav 	 FDPS Control Models

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 Page 52

SUBMISSION OF
WORK REQUEST

Examine Work Request and Begin
Construction of Task Graph

(At this point the task graph
describes the "visible" nodes and
their logical relationships
as expressed in the work request)

	 V 	

I When is the Work Request Expanded? I

Piecemeal 	 I Completely Before
I Execution Begins

1< 	

I Locate Each Visible Resource I

I

I Update the Task Graph I
I 	 I

I Were Additional Resource I
I Requirements Discovered? I

I 	 I 	 1
1< 	 I NO 	YES I 	
V
To

Information Gathering
(Resources Available)

Figure 17. Information Gathering (Resources Required)

Georgia Institute of Technology 	 FDPS Control Models

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 53 Section 6

From
Information Gathering
(Resources Required)

From
. All Information 	 I< 	Resource Allocation
▪ Available On 	 I 	and Work Distribution
. Resources Required . 	
. Has Been Obtained 	 I

	 I Additional Information I
I on Resources Available I
I 	Required?

I YES 	 NO I

1 	 I 	 1 1 	 1
I Resource Availability I 	i Resource Information I
I Information Requested I 	I 	Already on Hand? 	I
I 	 I 	 I I 	 1

IA 	 IB 	 YES 	I 	NO 	I
/ 	 V 	 I 	I

I All Available
I 	Resources
I Automatically

Reserved
I I

I 	I
I 	I

1 1
1
1
1 1
I
r
1
1

I
I
I
I
I
I

I
I
I
I
I
I
I I

I 	I 	Resources 	I 	I 	 1

I 	I 	Requested 	I 	I How Was Resource 	I
I 	I Automatically I 	i Info. Obtained? 	I

1 I 	I 	Reserved 	I 	I 	 1

I 	I 	 I I I I
I 	i

I I 	
1
1

I 	1
I I

V YES 	NO V 	t NO 	YES V
1 	2 	1 	2

I
I

I 	 I It
1 	 1 1
I 	During 	I
I Previous I
I 	Info.
I GatheringI
I Session 	I

I 	I

	

Periodic I 	I 	All Nodes 	i
Queries 	I 	I 	Broadcast 	I

by 	I 	I 	Complete! 	i

	

RESOURCE I 	I Total Status I

	

MANAGERS I 	I 	Info. 	i
I 	I 	 I

I
I 	All Nodes 	I
I 	Broadcast 	I
I 	Resource 	I
I Availability I
i 	Info. 	I

I I 	 I

IC 	DI 	IE 	Fl 	IF 	El 	1
V
	

V 	V 	V 	V 	V 	V 	$
3
	

2 	2 	2 	2 	2 	2 	2

LEGEND AND NOTES

1: Resources Reserved During Information Gathering
2: No Resources Reserved
3: Some Resources May Be Reserved
A: General, for all resources
B: To meet specific task/job requirements
C: Replies cover information on resources available only
D: Replies cover information on the total status
E: Broadcast only significant changes
F: Periodic broadcasts at regular intervals

Figure 18. Information Gathering (Resources Available)

Georgia Institute of Technology 	 FDPS Control Models

Resources
to be

Reserved

Resources
Required "Bidding"

to a
Higher
Level

No Solution I 	Run The
I< 	 I Distribution/

Allocation
Algorithm

1 1 	

Success

	

NO I 	YES I

	V 	 INO
I 	YESI

To
Report 	I 	Work
FAILURE 	I Assignment
to User

Transmit
Reservation
Requests/

Confirmation/
Release

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6 Page 54

From Information Gathering
(Resources Available)

	V 	

I Run Preliminary I
I Resource Check I

	I YES 	NO I

	V 	
I YES

1 	Preliminary Check 	I or ? 	I I Make Preliminary
I Res.Avail > Res.Reqd I 	>I Resource Allocation

I 	I 	
Definitely! 	 1 	I NO 	YES I

NO 	I 	 I< 	

I 	 1 1
I 	 I 	V 	
1 	 IYES
1 	 I___I 	Resource

I 	 I 	 I Reservations
To 	1 I 	Update 	I 	NO 	Accepted
Info.<-4--1 Resource Info. 1< 	
Gathering I 	 I
(Resources
Available)

Figure 19. Resource Allocation and Work Distribution

Georgia Institute of Technology 	 FDPS Control Models

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 55 Section 6

From
Work

Distribution

Transmit I 	NO Release YES I 	Transmit
Work I<---- Resources ---->I 	Work

Assignments I Not I Assignments
Required

I 	 1

I 	Work 	I
I Accepted I

I 	I
I NO 	I YES
I 	I
1

Release
Resources
Not Used

Note
Failure
Of This
Solution

I 	Work
I Accepted

YES I 	NO I

EXECUTE 	I
TASK

To
	> Information

Gathering
(Resources
Available)

Figure 20. Work AssignMent

Georgia Institute of Technology 	 FDPS Control Models

Page 56
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Section 6

is designed to achieve several goals such as load balancing, maximum through-

put, and minimum response time. It can be viewed as an optimization problem

similar in many respects to that discussed by Morgan [Morg77).

Once an allocation has been determined, the chosen resources are

allocated and the processes comprising the task set are scheduled and

initiated. If a process cannot be immediately scheduled, it may be queued and

scheduled at a later time. When it is scheduled, a process control block and

any other execution-time data structures must be created.

6.3.3 Information Recording

Information is recorded as a result of management actions as well as

providing a means to maintain a historical record or audit trail of system

activity. The information recording resulting from management actions

maintains the system state and provides information for decision making. The

historical information is useful in monitoring system security. It provides a

means to examine past activity on a system in order to determine if a breach

of security occurred or how a particular problem or breach of security may

have occurred.

Management information is maintained in various structures, including

the task graph. The task graph is used to maintain information about the

structure of an individual work request, and, thus, its contents change as

progress on the work request proceeds. A task graph is created when a work

request is first discovered, and information is then constantly entered into

the structure as work progresses through information gathering to work

distribution and resource allocation and on to task execution. The task graph

remains active until completion of the work request.

Much of the information contained in the task graph is applicable to

historical records. In fact, the task graph can be used to house historical

information as it is gathered during work request processing. Upon completion

of the work request, the historical information is extracted and entered into

the permanent historical file. Alternatively, the historical file can be

created directly skipping the intermediate task graph structure.

6.3.4 Task Execution

Finally, an executive control must monitor the execution of active

processes. 	This includes providing interprocess communication, handling

requests from active processes, and supervising process termination. 	The

Georgia Institute of Technology 	 FDPS Control Models

Section 6
	

CHARACTERISTICS OF FDPS CONTROL MODELS 	 Page 57

activities associated with interprocess communication include establishing

communication paths, buffering messages, and synchronizing communicating

processes. The latter activity is necessary to protect the system from

processes that flood the system with messages before another process has time

to absorb the messages. Active processes may also make requests to the

executive control. These may take the form of additional work requests or

requests for additional resources. Work requests may originate from either

command files or files containing executable code.

An executive control must also detect the termination of processes.

This includes both normal and abnormal termination. After detecting process

termination, it must inform processes needing this information that termina-

tion has occurred, open files must be closed, and other loose ends must be

cleaned up. Finally, when the last process of a work request has terminated,

it must inform the originator of the request of the completion of the request.

6.3.5 Fault Recovery

If portions (tasks) of the work request are being performed on different

processors, there is inherently a certain degree of fault recovery possible.

The problem is in exploiting that capability. The ability to utilize "good"

work remaining after the failure of one or more of the processors executing a

work request depends on the recovery agent having knowledge of the location of

that work and the ability of the recovery agent to reestablish the appropriate

linkages to the new locations for the portions of the work that were being

executed on the failed processor(s).

Georgia Institute of Technology 	 FDPS Control Models

Page 58

Georgia Institute of Technology 	 FDPS Control Models

Section 7
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 59

SECTION 7

VARIATIONS IN FDPS CONTROL MODELS

There is an extremely large number of features by which variations in

distributed control models can be characterized. Of these, only a few basic

attributes appear to deserve attention. These include the nature of how and

when a task graph is constructed, the maintenance of resource availability

information, the allocation of resources, process initiation, and process

monitoring. In this section, these issues are examined; but again, since the

number of variations possible in each issue are rather large, only those

choices considered significant are discussed. Table 2 contains a summary of

the problems that have been identified and possible solutions (significant and

reasonable solutions) to these problems.

7.1 TASK GRAPH CONSTRUCTION

The task graph is a data structure used to maintain information about

the applicable task set. The nodes of a task graph represent the tasks of the

task set, and the arcs represent the connectivity or flow of information

between tasks. There are basically four issues in task graph construction:

1) who builds a task graph, 2) what is the basic structure of a task graph, 3)

where are the copies of a task graph stored, and 4) when is a task graph

built.

The identity of the component or components constructing the task graph

is an issue that presents three basic choices. First, a central node can be

responsible for the construction of task graphs for all work requests.

Another choice utilizes the control component on the node receiving the work

request to construct the task graph. Finally, the job of building the task

graph can be distributed among several components. In particular, the nodes

involved in executing individual tasks of the work request can be responsible

for constructing those parts of the task graph that they are processing.

The general nature of the task graph itself provides two alternatives

for the design of an executive control. What is of concern here is not the

content of a task graph but rather its basic structure. One alternative is to

maintain a task graph in a single structure regardless of how execution is

distributed. 	The other choice is to maintain the task graph as a collection

of subgraphs with each subgraph representing a part of the work request. 	For

Georgia Institute of Technology 	 FDPS Control Models

Page 60
	 VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

Table 2. Variations in Control Models

ILL SiRAPH CnNATRUCT2011:

Who builds the task graph?
1. A central node specializing in task graph building.
2. The node intially receiving and analyzing the work request.
3. All nodes involved in executing the work request.

What is the nature of the task graph?
1. A single complete structure.
2. Multiple structures each consisting of a subgraph.
3. Multiple structures each consisting of a aubgraph with one copy

of the complete task graph.

Where is the task graph stored?
1. A central node.
2. The node intially receiving and analyzing the work request.
3. A node determined to be in an optimal location.
4. All nodes involved in executing the work request.

When is the task graph built?
1. Completely prior to execution.
2. Piecemeal during execution.

Br..souRcE Ivan eirtrrir ursigungg:

Who maintains this information?
1. A single central node.
2. Each node maintains information about its own resources.
3. All nodes maintain common information.
4. A designated node for each type of resource.

Where is the information maintained?
1. At a central node.
2. Separate pieces of information concerning a particular resource

type may be kept on different nodes.
3. In multiple redundant copies.
4. Information concerning a particular resource type is kept on a

specially designated node.

juocaTiumgEsouRcra.

How is concurrency control provided?
1. None is provided.
2. Reservations are used prior to a work distribution decision and

then allocated by a lock.
3. Allocated by a lock after the work distribution decision.
4. Resources are locked before the work distribution decision is made.

PROCESS JNTTTATIOI:

How is responsibility distributed?
1. A central component retains all responsibility.
2. A single component is in charge of a single work request.
3. There is a hierarchy of responsibility.
4. Responsibility is distributed among specialist components.

How is refusal of a request to execute a process by a node handled?
1. After repeated attempts, the request is abandoned.
2. After repeated attempts, a new work distribution is obtained.

nagglimaTToRTag.

What type of interprocess communication is provided?
1. Synchronized communication.
2. Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
1. The new task graph is made part of the old one.
2. The new task graph is kept separate.

porwsl, VRRKTNAMI:

Options selected here are determined by those selected for
PROCESS INITIATION.

Georgia Institute of Technology
	 FDPS Control Models

Section 7
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 61

example, a subgraph can represent that portion of the work request that is to

be executed on the particular node at which that subgraph is stored.

Another issue of task graph construction concerns where the various

copies of the task graph are stored. If the control maintains a task graph as

a unified structure representing the complete set of tasks for a work request,

this structure may either be stored on a single node, or redundant copies can

be stored on multiple nodes. The single node can either be a central node

that is used to store all task graphs, the node at which the original work

request arrived (the source node), or a node chosen for its ability to provide

this work request with optimal service. If the task graph is divided into

several subgraphs, these can be maintained on multiple nodes.

Finally, there is the issue concerning the timing of task graph

construction in the sequence of steps that define work request processing.

Two choices are available: 1) the task graph can be constructed completely,

at least to the maximum extent possible, before execution is begun, or 2) the

task graph can be constructed incrementally as execution progresses.

7.2 RESOURCE AVAILABILITY INFORMATION

Another possible source of variability for control models is the

maintenance of resource availability information. What is of importance here

is "Who maintains this information" and "Where is this information

maintained." A particular model need not uniformly apply the same technique

for maintaining resource availability information to all resources. Rather,

the technique best suited to a particular resource class may be utilized.

The responsibility for maintaining resource availability information can

be delegated in a variety of ways. The centralized approach involves assign-

ing a single component this responsibility. In this situation, requests and

releases for resources flow through the specialized component which maintains

the complete resource availability information in one location.

A variation of this technique maintains complete copies of the resource

availability information at several locations [Caba79a,b]. Components at each

of these locations are responsible for updating their copy of the resource

availability information in order to keep it consistent with the other copies.

This requires a protocol to insure that consistency is maintained. For exam-

ple, two components should not release a file for writing to different users

Georgia Institute of Technology 	 FDPS Control Models

Page 62
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

at the same time. To provide this control, messages containing updates for

the information tables must be exchanged among the components. In addition, a

strategy for synchronizing the release of resources is required. An example

of such a strategy is found in [Caba79a,b] where a baton is passed around the

network. The holder of the baton is permitted to release resources.

Another approach exhibiting more decentralization requires dividing the

collection of resources into subsets or classes and assigning separate com-

ponents to each subset. Each component is responsible for maintaining

resource availability information on a particular subset. In this case,

requests for resources can only be serviced by the control component

responsible for that resource. Resources may be named in a manner such that

the desired manager is readily identifiable. Alternatively, a search may be

required in order to locate the appropriate manager. This search may involve

passing the request from component to component until one is found that is

capable of performing the desired operation.

Preemptable resources which can be shared by multiple concurrent users

(e.g., processors and communication lines) do not necessarily require the

maintenance of precise availability information. For these resources, it is

reasonable to maintain only approximate availability information because such

resources are rarely exhausted. The primary concern in this instance is

degraded performance. Therefore, a good estimate of resource utilization is

needed.

7.3 ALLOCATING RESOURCES

One of the major problems experienced in the allocation of resources is

concurrency control. In a hospitable environment, it is possible to ignore

concurrency control. The users are given the responsibility of insuring that

access to a shared resource such as a file is handled in a consistent manner.

In other environments, for example that presented by an FDPS, this is an

important issue. In an FDPS, the problem is even more difficult than in a

centralized system due to the loose coupling inherent in the system.

There are basically two approaches to solving the problem of concurrent

requests for shared resources. The first utilizes the concept of a reser-

vation. Prior to the allocation of resources (possibly when resource

availability information is acquired), a resource may be reserved. The reser-

Georgia Institute of Technology 	 FDPS Control Models

Section 7
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 63

vation is effective for only a limited period (a period long enough to make a

work distribution decision and allocate the resources determined by the

decision) and prevents other users from acquiring the resource. The other

solution to this problem is to make the work distribution decision without the

aid of reservations. If resources cannot be allocated, the executive control

will either wait until they can be allocated or attempt a new work

distribution.

7.4 PROCESS INITIATION

Several issues arise concerning process initiation. Chief among these

is the distribution of responsibility. There are a large number of

organizations possible, but only a few are reasonable. The basic

organizations utilize either a single manager, a hierarchy of managers, or a

collection of autonomous managers. Two approaches result from the single

manager concept. In the first organization, a central component is in charge

of all work requests and the processes resulting from these work requests.

All decisions concerning the fate of processes and work requests are made by

this component. A variation on this organization assigns responsibility at

the level of work requests. In other words, separate components are assigned

to each work request. Each component makes all decisions concerning the fate

of a particular work request and its processes.

Management can also be organized in a hierarchical manner. There are a

variety of ways hierarchical management can be realized, but we will

concentrate on only two, the two-level hierarchy and the n-level hierarchy.

The two-level hierarchy has at the top level a component that is responsible

for an entire work request. At the lower level are a series of components

each responsible for an individual task of the work request. The lower level

components take direction from the high level component and provide results to

this component. The n-level hierarchy utilizes in its top and bottom levels

the components described for the two-level hierarchy. The middle levels are

occupied by components that are each responsible for a subgraph of the entire

task graph. Therefore, a middle component takes direction from and reports to

a higher level component which is in charge of a part of the task graph that

includes the subgraph for which the middle component is responsible. The mid-

dle component also directs lower level components each of which are

responsible for a particular task.

Georgia Institute of Technology 	 FDPS Control Models

Page 64
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

Another organizational approach utilizes a series of autonomous

management components. Each component is in charge of some subset of the

tasks of a work request. Cooperation of the components is required in order

to realize the orderly completion of a work request.

Regardless of the organization, at some point, a request for the assump-

tion of responsibility by a component will be made. Such a request may be

reasonably denied for two reasons: 1) the component does not possess enough

resources to satisfy the request (e.g., there may not be enough space to place

a new process on an input queue), or 2) the component may not be functioning.

The question that arises concerns how this denial is handled. One solution is

to keep trying the request either until it is accepted or until a certain num-

ber of attempts have failed. In this case if the request is never accepted,

the work request is abandoned, and the user is notified of the failure.

Instead of abandoning the work request, it is possible that a new work

distribution decision can be formulated utilizing the additional knowledge

concerning the failure of a certain component to accept a previous request.

7.5 PROCESS MONITORING

The task of monitoring process execution presents the FDPS executive

control with two major problems, providing interprocess communication and

responding to additional work requests and requests for additional resources.

With regard to the problem of interprocess communication, there is some ques-

tion as to the nature of the communication primitives an FDPS executive

control should provide. This question arises due to the variety of communica-

tion techniques being offered by current languages. There are two basic

approaches found in current languages, synchronized communication and unsynch-

ronized communication (buffered messages). Synchronized communication

requires that the execution of both the sender and the receiver be interrupted

until a message has been successfully transferred. Examples of languages

utilizing this form of communication are Hoare's Communicating Sequential

Processes [Hoar78] and Brinch Hansen's Distributed Processes [Brin78]. In

contrast, buffered messages allow the asynchronous operation of both senders

and receivers. Examples of languages using this form of communication are

PLITS [Feld79] and STARMOD [Cook80].

The executive control is required to provide communication primitives

that are suitable to one of the communication techniques discussed above. 	If

Georgia Institute of Technology 	 FDPS Control Models

Section 7
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 65

the basic communication system utilizes synchronized communication, both tech-

niques can be easily handled. The problem with this approach is that there is

extra overhead incurred when providing the message buffering technique. On

the other hand if the basic communication system utilizes unsynchronized com-

munication, there will be great difficulty in realizing a synchronized form of

communication.

The task of monitoring processes also involves responding to requests

generated by the executing tasks. These may be either requests for additional

resources (e.g., an additional file) or new work requests. If the request is

a work request, there is a question as to how a new set of tasks is to be

associated with the existing set of tasks. The new set could either be

included in the existing task graph, or a new task graph could be constructed

for these new tasks. The former technique allows the component making the

work distribution decision for the new work request to consider the utiliza-

tion of other resources by the control. The latter technique does not allow

such a situation to occur.

7.6 PROCESS TERMINATION

When a process terminates there is always some cleanup work that must be

accomplished (e.g., closing files, returning memory space, and deleting

records concerning that process from the executive control's work space). In

addition, depending on the reason for termination (normal or abnormal), other

control components may need to be informed of the termination. In the case of

a failure, the task graph will contain the information needed to perform

cleanup operations (e.g., the identities of the processes needing information

concerning the failure). Both the nature of the cleanup and the identity of

the control components that must be informed of the termination are determined

from the design decisions resulting from the issues discussed in Section 7.5.

7.7 EXAMPLES

To gain a better appreciation of some of the basic issues of control in

an FDPS, it is useful to examine several examples of work request processing

on an FDPS. In each example, emphasis is placed on the operations involved in

the construction of task graphs. The work distribution decision that is

utilized is a simple one that assigns the execution of processes to the same

nodes that house the files containing their code. The concern of the first

Georgia Institute of Technology 	 FDPS Control Models

Page 66
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

eight examples is the impact of variations in work requests on task graph

construction. In these examples, the various parts of the overall task graph

describing the complete work request are stored on the nodes utilized by each

part. The last three examples, though, examine three different techniques for

storing the task graphs. In the examples (Figures 21 to 31) the following

symbols are utilized:

[visible external reference(s)
) 	 embedded external reference(s)

(n)A 	 responsibility for A delegated from node n
A(n) 	 responsibility for A delegated to node n
a-->b 	IPC from process a to process b
A,B,... 	uppercase letters indicate command files
a,b,... 	lowercase letters indicate executable files
u,v,w,x,y,z 	indicate data files

The first example (Figure 21) consists of a simple request in which all

external references made are visible and all files required are present on the

node where the original request arrived (referred to as the source node).

Since the references are visible, the entire task graph can be completed in

one step. The second example (Figure 22) is similar to the first except that

there are more references that are chained. Again, since all references are

visible, the entire task graph can be completed in one step. This work

request can be processed in an alternate manner as shown by the third example

(Figure 23) where references are located and linked in a piecemeal fashion.

Finally, example 4 (Figure 24) adds a slight variation by introducing an

explicit interprocess communication (IPC) definition. In this case, the task

graph can still be constructed in one step because all references are visible.

The next series of examples consider the impact of locating resources on

nodes other than the source node. In example 5 (Figure 25), all the

referenced resources reside on a single node other than the source node with

the exception of one resource that has redundant copies on two different

nodes. 	Since the resources are not on the source node, negotiation is

required to transfer responsibility for a piece of the task graph. 	In

addition, since there is a resource with two redundant copies, a decision as

to which to utilize must be made and a negotiation must occur to transfer

responsibility. Example 6 (Figure 26) is similar to example 5 and

demonstrates the impact of IPC across nodes.

The effect of embedded references is demonstrated in examples 7 and 8.

In example 7 (Figure 27), all resources turn out to reside on the source node.

Georgia Institute of Technology 	 FDPS Control Models

Request a RUN a 	STEP

1 	 '

	

. 	1

	

I Task Graph Maintained 1 	I Task Graph Maintained
. 	At This Node 	. 	. 	At This Node
I 	 . 	.

	

. 	.

	

1 	. .

	

I 	, ,

	

1 	. .

	

I 	1 .

	

1 	1 .

	

i I 	I 	
Local Resources 	, Local Resources

I a[x.Y] 	 I

■ 	x 	y 	 . 	I
1 	

Node 1 	 Node 2
(Source of request)

I 	 I 	 1

	

i Task Graph Maintained I 	: Task Graph Maintained
At This Node 	I 	4 	At This Node 	I . 1

	

. 	.
I , 	 . 	. I , 	 . 	. . 	 , 	.

	

. 	.

	

. 	. . 	 .

	

. 	 .
1

	

I 	I

	

I 	I
I

	

I 	I

I
I

	

I 	I
1 	1 	 ■■■■

Local Resources 	I
I 	Local Resources 	I
 , , 	 1

1 , 	 , . 	 . , I 	 1
Node 3 	 Node 4

Comments:
A simple request with all external references
visible.

Taak Graph Maintained
At This Node

Local Resources

Node 1
	

Node 2
(Source of request)

Task Graph Maintained
At This Node

Local Resources 	I

	 1

Tank Graph Maintained 1
At This Node

Task Graph Maintained
At This Node

Local Resources 	I

1

Node 3 	 Node 4

Local Resources

Section 7 	 VARIATIONS IN FDPS CONTROL MODELS 	 Page 67

• • • STEP 1

1
• 1 Task Graph Maintained Task Graph Maintained

It This Node At Thia Node 	1

• I 	•
• / 1
• j 	x

I Task Graph Maintained
	

I Task Graph Maintained
1 	At This Node
	

1 	At This Node

Local Resources

Node 3 	 Node 4

Comments:
All visible referenoes (in this case all resources
required) have been located and linked.

•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

• 1 	
• I 	Local Resources

• 1 •
•
• • •
•

- 	 :

aria]
Local Resources 	 Local Resources

1
I x 	y 	 I

I 	I 	

Node 1 	 Node 2
(Source of request)

Figure 21. Example 1

Request = RUN A STEP 0 STEP

:
I Taak Graph Maintained

At This Node
I
I
4
. . .

. ,

I 	
Local Resources

I 	A [c,d] 	o [a]
Id[y,z] 	xys
.

:
I
i
I
1
I

. . .

14

I
I
..
I .

. 11

1
I Task Graph Maintained
I 	At This Node
1

1
.
, ,
I
I
I .
I 	
i 	Local Resources
I

,

1
I Task Graph Maintained 1
I 	At This Node

	

A 	 I
1 	/\

	

0 	d
I 	/ 	\

1 , 	Local Resources 	I
I 	A ro,d] 	c [x]
rd[7,0 	xysl

Task Graph Maintained
At This Node

Local Resources

Node 1 	 Node 2
(Source of request)

Comments:
A simple request involving • oommusd file that
specifies the invocation of two executable files.

Node 3 	 Node 4

Comments:
The teak graph is expanded as moth as possible (in
this came, completely) before any execution is begun.

Figure 22. Example 2

Georgia Institute of Technology 	 FDPS Control Models

Task Graph Maintained
At This Node

Local Resources

Page 68
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

Request = RUN A 	STEP

1
1
.

:

I
I
1
I
1
I

, .

11

I

I i

1 STEP 2

Task Graph Maintained
At This Node

A

x

Local Resources
A 	[cpd] 	c [x]
d [y,z] 	x 	y 	a

1
Task Graph Maintained 1

At This Node 	1
I
1
.
1
1
,
1
1

	 -----1

I
1 Task Graph Maintained
I 	At This Node
1
, . 	 A
. . 	/ 	\
'
. 	c 	d
, . 	1 	/ 	\ , . 	x y 	A
1 	 I
1
1---
: 	Local Resources
1 	A [c,d] 	o (x)
1 	d (y,x] 	x 	y 	2
.

I 	 1
I Task Graph Maintained I
I 	At This Node
I
. .
1
1
1

, I 	.

I 	I 	Local Resources
1 	I
I 	,

,

Local Resources 	1
1
1

Node 1
(Source of request)

Node 2 Node 1 	 Node 2
(Source of request)

1
Task Graph Maintained 1

At This Node 	1 .

1
.
I
1

1
	 t

Local Resources 	
1

1
I

. .

I
Task Graph Maintained I

At This Node 	I

i
I
I

I

I
4" 	

Local Resources

I
I

, 1 	 ,
1 Task Graph Maintained I 	1 Task Graph Maintained
1 	At This Node 	1 	. 	At This Node
, 	 . 	.
1 	 1 	1
1 	 1 	i
1 	 I
I 	

!I I I
I
I 	 I
1.4 ■ 	 1 	. 	
1 	Local Resources 	1 	Local Resources

I
1

I 	 1
i 	 1 	I

Node 3 	 Node 4
	

Node 3 	 Node 4

Comments:
	 Comments:

External references are not located and linked
	

All external references have been located and linked.
until they are required during execution.

23.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•

•
•
•
•
•
•
a
•
•
•
•
•
•
•
•
•
•
•
•
a

24.

Figure
Request a HUN A 	STEP 0

	

1 	1 	 1

	

1 Task Graph Maintained I 	I Task Graph Maintained 1
. 	At This Node 	1 	1 	At This Node
' 	 I 	1 	 1

	

1 	. 	 1

	

1 	1 	 . , I

	

4 	I I

	

I 	I 	 I

	

I 	I
I 	 I 	I 	 I I

1 A
Local Resources 	1 	1 	Local Resources 	1

	

[B]clx]xyz1 	I
1 B (0-->d] 	d (y,z) 1 	1 	 1
. 	 1 	1 	 1

Node 1 	 Node 2
(Source of request)

Task Graph Maintained
At This Node

Task Graph Maintained
At This Node

Local Resources

-_-_-_-_-_-_-_-_-_-_-__
Local Resources

3
	

Node

Comments:
A somewhat more complex request;

1) All extersel references visible.
2) Chain of refer noes are present.
3) Contains an explicit IPC definition.

Figure

Example 3
STEP 1

	

1 	1

	

Task Graph Maintained 1 	1 Task Graph Maintained
At This Node 	1 	1 	At This Node

A

/1\
o-->d
1 / \
x y 	a 	1 	1
	 1 	1 	

Local Resources 	I 	I 	Local Resources

	

A [B]c[x]sys1 	1
B [o-->d] 	d [y,z] 1 	1

1 	
Node 1 	 Node 2

(Source of request)

1 	 1
I Task Graph Maintained i

1 	
At This Node

1
1

1
1
1
1

Local Resources 	1

1
1 	 1

Mode 3 	 Node 4

Comments:
All external references are located and linked,
and IPC is established.

Example 4

Node

Georgia Institute of Technology 	 FDPS Control Models

Section 7

Request . RUN A STEP 1

VARIATIONS IN FDPS CONTROL MODELS

STEP

Page 69

2

I Task Graph Maintained
, 	At This Node
. ,

A(?)
1

. '

. .

. ,
I 	

Local Resources

' .
I
,
. .
. ,

.
.
.
' .
. '

:
I
I

I
I Task Graph Maintained
I 	At This Node
.
I
i

I

I 	
' 	Local Resources
I 	A (b) 	x 	y
I 	b Ex,y)

Task Graph Maintained
At This Node

1(2?)

Local Resources

Task Graph Maintained
At This Node

(1?)A

Local Resources
1 [b] 	z 	y
b [x,y]

Node 1 	 Node 2
	

Node 1 	 Node 2
(Source of request)

	
(Source of request)

	

Task Graph Maintained I 	I Task Graph Maintained
At This Node 	 i 	At This Node

I

.

. ,

	

, 	 ,

	

, 	.
1- 	1 	 , Local Resources 	1 	. 	Local Resources

A (b] 	 . 	, .

	

, 	I. 	 .
I . 	 ,

Node 3 	 Node 4

Comments:
A simple request with all the files referenced
residing on a single but non-local node with an
additional oopy of one file on another node.
At this point, the location of A is not known.

	

I 	I

	

I Task Graph Maintained I 	I Task Graph Maintained
At This Node 	I 	I 	At This Node

	

I 	I

	

(17)A 	I 	I

	

I 	I

	

I 	I

	

I 	I

	

I 	I

	

I 	I
------ ------------

I 	Local Resources 	I 	I 	Local Resources
: I (b)

	

I 	I

I 	

	

Node 3 	 Node 4

Comments:
File A is located on nodes 2 and 3 and the
responsibility for A is tentatively delegated to
node 2.

•
•

STEP 3 	 • 	 STEP 4
a

I 	 I 	• 	I 	 I .
! Task Graph Maintained : 	I Task Graph Maintained I 	• 	I Task Graph Maintained 1 	1 Task Graph Maintained !

,

	

A(2) 	
. 	 I

•

::ode 	I 	I 	At This Node 2:
I .

	

I 	I 	 (1)A 	 !

I
At This Node 	I 	,

' 	
At This Node 	1 	• 	1 	

At Th 	 1

, 1 	
' . , 	(1)1 	,

1 	• 	
. , 	 1 	1 	1 . 	 , 	 .

1 	 1 	 . 	. • b
! 	I 	 I 	• 	I 	 I 	, . 	/\
j 	I 	 I 	• 	, 	 . 	I 	a 	y .

, 	 I 	• 	' 	 ' 	 , , • . . 	 1 	 I 	 1 	1 . 	 .
	 1

Local Resources 	1 	' 	Local Resources 	I 	•
• I- 1 	I- 	 ■ 	 —

. 	I A [b] 	x y 	I 	• 	I 	 I 	I I (b) 	x y 	I
I . 	Local Resources 	I 	I 	Local Resources

I 	
I 	I 	b [x,y] 	 .

I 	 I 	•
,
. 	 ,

I 	I 	b [x,y] • I
1 	1 	

 I

	

Node 1 	 Node 2 	 • 	 Node 1 	 Node 2
(Source of request) 	 • 	 (Source of request)

a
a

, 	 • 	I 	 I
I Task Graph Maintained 	Task Graph Maintained 	 .11 	I Task Graph Maintained I 	Task Graph Maintained
I 	At This Node 	 At This Node 	 • 	I 	It This Node 	I 	At This Node
I 	 •

•
a
•
•
a
a
a
• - — — —

Local Resources 	 Local Resources 	 • 	 Local Resources
I A [b] 	 • 	 A [I:] 	

Local Resources

I 	 •
I 	 a 	 I

	

Node 3 	 Node 4 	 • 	 Node 3 	 Node 4

•
Comments: 	 • 	Comments:

Responsibility for A is aooepted by node 2. 	 • 	 All external raferenoes have been located and linked.

Figure 25. Example 5

Georgia Institute of Technology 	 FDPS Control Models

Page 70 VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

Request = RUN A 	STEP 1

: Task Graph Maintained 	I Tank Graph Maintained
At This Node 	 At This Node

A
/1\
c—>d(?)

2

Local Resources 	 Local Resources
1 A (c-->d) 	x 	 I d [y,z]

c [x] 	 1 y

	

Node 1 	 Node 2
(Source of request)

Node 1 	 Node 2
(Source of request)

Local Resources
d [7,a]

STEP

Task Graph Maintained
At This Node

0(1)-->(17)d

Task Graph Maintained
At This Node

----------- --- ---
Local Resources

A to-->d] 	x
o [x]

	

1 	1

	

Task Graph Maintained 1 	1 Task Graph Maintained
At This Node At This Node At This Node I

1

I
I

I
1

1

At This Node

I

1
I

Local Resources Local Resources 	 Local Resources 1 I Local Resources

I 1
I I

Node 3 	 Node 4

Comments:
A sore complex request:

1) Contains en explioit reference to IPC.
2) Resource files located on different nodes.

First layer is built.

Node 3 	 Node 4

Comments:
File d is located on node 2 and responsibility
for d is tentatively delegated to that node.

STEP 3 STEP

1 I
Task Graph Maintained I Task Graph Maintained I Task Graph Maintained I 1 Task Graph Maintained

At This Node . 	At This Node I At This Node 1 1 	At This Node
I I I I

A . 	o(1)—>(1)d . A I 41(1) -->(1)d
/I\

/I\ 1 i 	 / \

o-->d(2) , , I o—>d(2) 1 I 	 y 	a
1 1 1 I 1 1
x 1 1 x f 1

I i I I
1 1 1 I
1--- ------ -I ---- 	 I I---- 	

Local Resources
A [o-->d) 	x

I 	Local Resources
I 	d 1,04]

I
I

Local Resources
A (o—>d] 	x

I
1

1 	Local Resources
I 	d IY.a]

0 Ex] I 	y 	a I o (x] I I 	y 	a
1 I I. I

Task Graph Maintained ! Task Graph Maintained

Node 1 	 Node 2
(Source of request)

Node 1 	 Node 2
(Source of request)

Task Graph Maintained
At This Node

1
1

Looal Resources

1
1 	

Task Graph Maintained
At This Node

Task Graph Maintained
At This Node

Task Graph Maintained
It This Node

Local Resources

Local Resources

Local Resources

Node 3 	 Node 4

Comments:
Responsibility for d is smoepted by node 2.

Node 3 	 Node 4

Connents:
The graph below d is ooMpleted.

Figure 26. Example 6

Georgia Institute of Technology 	 FDPS Control Models

Local Resources

1 Task Graph Maintained
At This Node

1
1

Task Graph Maintained
At This Node

1
1--- 	 1

Local Resources 	I

1 	 1
1 	

Node 3 	 Node 4

Section 7

Request = EON A STEP 0

VARIATIONS IN FDPS CONTROL MODELS

STEP 1

Page 71

I 	 I
I Task Graph Maintained I

i
I Task Graph Maintained Task Graph Maintained Task Graph Maintained

. At This Node
;

At This Node At This Node At This Node
' ,
. I A

1
I

1
1 b

I I I
I
.

I
I

I
I

I
.

I
I

I
I

I I

I.. I I 	 ---- 	---
Local Resources

A[b] 	b(x,y)
I
i

,
1

Local Resources 	 Local Resources 	 Local Resources
A(b] 	b(x,y}

1 x 	y . y
1 I

Node 1 Node 2 	 Node 1 Node 2
(Source of request) (Source of request)

; Task Graph Maintained
At This Node

Local Resources

1 Task Graph Maintained
At This Node

1

I- 	
Local Resources

1
I Task Graph Maintained I
I . 	At This Node 	I
1 	 I
I 	 1
1 	 ,
1 	 I

1 I 	
1

I 	 I 0

I 	 1
1 - --- 	------ 	---- 	I
I 	Local Resources 	I
I 	 1
1 	 I
I 	 I

. 	 .

1 Task Graph Maintained I
. 	At This Node 	1
. ,

I
1 	 I

1
I
1 	 , .
1 	 .
1- 	
I 	Local Resources 	1
1

! I
I

Node 3 	 Node 4
	

Node 3 	 Node 4

Comments:
	

Comments:
A simple request demonstrating •invisible" embedded

	
The visible portions of the task graph are

references. 	 expanded.

STEP 2

1 	 1 	1
I Task Graph Maintained I 	I Task Graph Maintained ;

At This Node i 	1 	At This Node I
. 	 . 	 I . 	

', 	 . , 	. 	 1 . 	.
, 	b 	 I 	.

/
. 	 .

/ 	 1 	 I

1 	
x 	 1 	 I

I I
I 	 I .

I- 	 I 	I 	 ---- - 	--I
Local Resources 	 Local Resources 	I

i A[b] 	b{x,y} 	I 	I 	 I
! 	x 	y 	 I 	I 	 I
	 I 	1 	 1

Node 1 	 Node 2
(Source of request)

STEP 3

1 	 I 	1

1 Task Graph Maintained I 	I Task Graph Maintained
I 	At This Node 	 At This Node
I . 	 I 	I

! I 	 A 	 1 	,
1 	 1 	. ' 	 ■

1 	b 	 I 	I 	 . .
1 	/\ 	 I 	I 	 . .

I 	I
.
. . I 	

x 	y 	 1 	I 	 .

I 	 I 	. . 	 , .

I--- — 	- — 	-- I :- 	 ■ I 	Local Resources 	I 	: 	Local Resources
I A[b] 	b{x,y} 	I 	I
I 	z 	y 	 I 	I
I 	 I 	I 	

Node 1
	

Node 2
(Source of request)

Task Graph Maintained
At This Node

Task Graph Maintained I
At This Node

Local Resources
1

Local Resources

Node 3 	 Node 4

Comments: 	 Comments:
After some execution, a referent* to z is 	 After farther execution, a reference to y is
discovered and z is added to the task graph. 	 discovered and entered into the teak graph.

The teak graph is now complete.

Figure 27. Example 7

Georgia Institute of Technology 	 FDPS Control Models

Page 72
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

Multiple steps, though, are required to construct the task graph because not

all of the resources are visible and thus cannot be identified until after

execution has progressed to the point where the reference is encountered.

Example 8 (Figure 28) is slightly more complex with resources spread over mul-

tiple nodes. Again multiple steps are required since parts of the task graph

cannot be constructed until their references are observed. In addition since

resources are distributed on different nodes, negotiation must occur.

The last three examples demonstrate three different techniques for stor-

ing task graphs. In each example, the same work request is utilized. This

request has all visible references to resources distributed over multiple

nodes. In the first eight examples and example 9 (Figure 29), the parts of

the overall task graph are stored on the nodes executing their processes. In

addition, each subgraph contains a small portion of information linking it to

the rest of the overall task graph. Example 10 (Figure 30) maintains these

subgraphs and in addition retains a complete task graph at the source node.

Finally, example 11 (Figure 31) maintains complete task graphs at all nodes

where processing occurs. The motivation for the last two techniques in which

a large amount of redundant information is maintained is to enhance the

ability to recover from failures.

Now that we have taken a look at the construction of task graphs in a

broad sense, let us examine the details of the task of processing a work

request. This is illustrated in two figures. Figure 32 outlines the basic

steps involved in work request processing. Finally, Figure 33 depicts the

steps involved in processing a specific work request. In this case, the work

request is the same as that from example 6 (c.f., Figure 26).

•

Georgia Institute of Technology 	 FDPS Control Models

.
I Task Graph Maintained ;
I 	At This Node 	.

. I 	 .

I 	
I

. . 	 I
. . 	 I
I 	 I
I 	 I
. 	 I
I 	I
. 	Local Resources 	I
I 	 I

1 	
,

. 	 I

I Task Graph Maintained :
At This Node 	I

I 	 1
1 	 I
I 	 I
I 	 I

I 	 I
I 	 I
I 	 I
I 	 I
I 1
i 	Local Resources 	I
I 	0 	(1. ' 0] 	 .

1

, 	 1

I Task Graph Maintained 	I
' 	At This Node
I I
I 	 I I
I 	 I i

I 	 1 I 	 I
I

I I 	 I

. 	
t

1 ■■■ ■■■■■■■■ 1

: 	Local Resources
1

:

I
Node 3 	 Node 4

I
: Task Graph Maintained I
. 	At This Node

!

 1
. 	 .

, .
, .
.
I

	 I
Local Resources 	.

0 [v,w] 	 I
I 	

! . 	
Node 3 	 Node 4

Section 7
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 73

Request s RUN A 	STEP 1
	

STEP 2

Task Graph Maintained
At This Node

A

b
/\

z

Task Graph Maintained
At This Node

Task Graph Maintained I
At This Node

A
/ \

b 	0(?)
/

z

Teak Graph Maintained I
At This Node

------- 	--- I
Local Resources 	I Local Resources Local Resources 	 Local Resources I

A[b]{c} 	b[za] I o[v,w] 	 A(b)(c) 	b[za] i 	OIV,WI
I 	y 1 • w

Node 1 I Node 2 	 Node 1 Node 2
(Source of request) (Source of request)

Comments:
This request has embedded references, references
to distributed resouroes, and a reference to a
resource that is available at two locations.
First the visible portion of the task graph
is expanded.

Comments:
After execution has begun, the reference to
c is encountered.

STEP 3 	 STEP

I
1 Task Graph Maintained I

At This Node 	.
I

■ 	 A 	 .

/\ 	 I
. . 	b 	0(2,3?) 	I

	

/\ 	 I

! 	
x 	y 	 I

.
I

1 	 -1 Local Resources 	.

1 	A[1:](0 	b[x,Y] 	I
I 	: 	y 	 I
I 	 I

Task Graph Maintained
At This Node

(1 ?) c

	

-- 	. 	---------- ---
Local Resources

c[v,w)
• w

I Task Graph Maintained I
At This Node

A
/\

	

b 	c(2)
/ \

	

I 	y

	 ---1
Local Resources 	I 	I

	

A[b](o} 	',[wa] 	I
x 	y 	 ,

	

I 	I

Task Graph Maintained
At This Node

(1)c
/

v 	w

Local Resources
I 	c[v,w]

v 	w

Node 1 	 Node 2
	

Node 1 	 Node 2
(Source of request)

	
(Source of request)

Task Graph Maintained
At This Node

(1 ?)o

Task Graph Maintained
At This Node

Task Graph Maintained
At This Node

Task Graph Maintained I
At This Node

Local Resources
o [•,w)

Local Resources Local Resources
a (v,w]

Local Resources I

Node 3 Node 4 Node 3 Node 4

Comments:
	

Comments:
It is determined that o esista om two nodes. 	 Responsibility for o is delegated to node 2,

and the task graph is completed.

Figure 28. Example 8

,

Georgia Institute of Technology 	 FDPS Control Models

1- ---------1
1 	Local Resources 	I
I c [?)
I 	y 	 1
1 	

Node 3

1- - 	----------
i 	Local Resources 	1
1 x

Node 4

Comments:
File b is located on node 2 and a tentative
delegation of responsibility is made to node 2.

Page 74

Request m RUN A

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

STEP 0 	 STEP 1

, .
! Task Graph Maintained !

At This Node

'
. ,
. .

. ,

Local Resources
A [b]

l■

	

. .

I
I Task Graph Maintained 1

At This Node 	1
I
. .
'
■ .
1
1

1 	 1
1 	 I

Local Resources 	I
b 	[ci,x] 	 1

1
1

	

1 	1

	

Task Graph Maintained I 	I Task Graph Maintained
At This Node 	I 	1 	At This Node

	

1 	1
A 	 1 	I 	 (1?)b
1 	 i
b(2?) 	1 	1

	

1 	1
1

	

1 	1

Local Resources 	I 	Local Resources
A [b] 	 I 	I 	b (000

	

I 	I
1

Node 1
(Source of request)

Node 2

, ,
1
1
1

I

1

.

1

1

1

Node 1 	 Node 2
(Source of request)

! Task Graph Maintained
At This Node

.

!

.

.
I

I
' .

I

,

II

1I

, ,
1 Task Graph Maintained
, 	At This Node
.
.
I

I I

I Task Graph Maintained
I 	At Thia Node

I Task Graph Maintained
I 	At This Node

1

1
1

Local Resources 	: 	Local Resources 	1
o [y] 	 I 	x 	 I

I 	r
. 	 .
. 	 ,

Node 3 	 Node 4

Comments:
This request has all visible reference., but
the references are distributed on all nodes.

STEP 2 •
•
0 •
•

■
•

•
0
•
•
0
•
•

•
0
•
• •
•
•

•
•
•
•
• •
•
•
•
•
•
•
•

STEP 3

;

	

Task Graph Maintained
! 	

1 Task Graph Maintained
At This Node 	' 	At This Node

I
. A I .

	

I 	I I 	 ,

	

. . 	1 . 	

(1)/b,,,

b(2) 	 o(3?) x(4?)

	

. . 	I
I

	

I 	I

	

I 	I

	

I 	1
	 1 	:-

Local Resources 	I 	I 	Local Resources
A [b] 	 1 	1 	b [c,x]

	

1 	1

	

I 	I

Task Graph Maintained
At This Node

A

b(2)

Local Resources
A [b]

1 	 I
1 Task Graph Maintained I
1 	At This Node 	1
1 	 .
' 	 (1)b 	.
. 	 / 	\ 	. . 	 .

. 1 	o(3) 44) 	.

. 1 	 .

1 I 	
1

1 	 1
1---- 	 :
I

i 	

Local Resources 	,
. b [c,x]
1

1 	 1
Node 1 	 Node 2

(Source of request)
Node 1

(Source of request)
Node 2

Task Graph Maintained
; 	At This Node
1

(2?)c
1

Local Resources
0[7]

1

I Task Graph Maintained
1
1 	

At This Node

(2?).

1
1

Task Graph Maintained
At Thies Node

(2)o

7

Task Graph Maintained
At This Node

(2)x

Local Resources I 	; 	Looal Resources
I 	1

1

Local Resources
0 [s]
7

Node 3 	 Node 4

Comments:
Beeponsibility for b is accepted by node 2.
Tiles c and x are located and responsibility is
tentatively delegated to the nodes as indicated.

Node 3

Comments:
Modes 3 and 4 *owlet responsibility
respectively and the graph

Node 4

far o and
is completed.

Figure 29. Example 9

Georgia Institute of Technology 	 FDPS Control Models

•
•
•
•

STEP 2

I 	 I
1 Teak Graph Maintained I

I
I Teak Graph Maintained

• I At This Node I I 	At This Node
• : I I
• I A I (1)b
• I I 1 I / \
• I b(2) I I c(3?) 	z(4?)
• I I I
• I . I I
• I 1 1
• 1
• 1- -------- 	-- -- 1 ---
•6 I Local Resources I I Local Resources
• I A (b] I I b to,x)
• I I
• I
• Node 1 Node 2
• (Source of request)
a
il

Request NUN A 	STEP 1

1
! Task Graph Maintained I

At This Node

b(2?)

1 	
Local Resources

A (b)

Node 1 	 Node 2
(Source of request)

Task Graph Maintained
At This Node

(12)b

Local Resources 	I
b [0,4

Task Graph Maintained
At This Node

(2)a

Local Resources

Task Graph Maintained
At This Node

(2)c

7

Local Resources
0 (y)
7

Task Graph Maintained :
At This Node

(2)x

Local Resources 	I

Section 7
	

VARIATIONS IN FDPS CONTROL MODELS 	 Page 75

, 	 . , 	 .

	

Task Graph Maintained ! 	! Task Graph Maintained !
At This Node 	 At This Node

	

! 	
.

! . 	 .
, 	 . . 	 .

1 , 	 .

1 , .

	

I 	I 	 I

!

	 1 	1 	
I 	Local Resources 	I 	Local Resources

o [y] 	 .

	

. 	I 	x r

	

. 	.

	

, 	, 	 1 	 1 	 1 	

Node 3 	 Node 4

Comments:
In this example a complete copy of the task graph
Is to be maintained at the node receiving the request.
File b is located on node 2 and a tentative
delegation of responsibility is made to node 2.

• 1 	 I

•
•

I Tank Graph Maintained I 	1 Task Graph Maintained
At This Node 	. 	I 	At This Node

• I 	 ,

	

. 	I
• I 	(2?)c 	I 	, 	(27)x
• I 	I
•

! 	
, 	I

•

	

I 	 I 	 1

•
• 1

I 	I

	

, 	I
• 1 	 1 	.

	

, 	1

•• 	
I- 	

	

I 	I- 	
Local Resources 	I 	: 	Local Resources

• c 17) 	 1 	I x 	 . . il
! 	7 	 I 	. 	 , .

• I 	I 	
• Node 3 	 Node 4
•
• Comments:
• Responsibility for b is accepted by node 2.
• Files o and a are located and responsibility is
• tentatively delegated to the nodes as indicated. •

 • •

STEP 3

1
I
I
I
.
I
1
1
1
I
I
I
I
1

1

STEP 4

1
1
I

. '
. ,
. .
' .
I ,
I
,
I
I
I
I

1
1 Task Graph Maintained
I 	At This Node
,
[(1)b
, 	 /\
. . 	0(3) 	x(4)
I
I
I
I
I 	
I 	Local Resources
I 	b [c,x]
I
I

Task Graph Maintained I
At This Node 	1

1
A 	 I
I 	 .

1 b(2) 	,
/\ 	, .

0(3) x(4) 	I

	

I 	 I
7(3) 	 I

Local Resources 	I

	

1 [b] 	 I
1 ,
I

, .
I Task Graph Maintained I
, 	At This Node 	.
I 	 , ,
I 	(1)b 	. .
I 	 / 	N. 	, ,
I 	 c(3) 	x(4)
1
I 	 , .
I 	 . , I 	. . __ 	

Local Resources 	,
I 	b [0,4 	 I
, . 	 I
I 	 .

Node 2 Node 1
(Source of request)

Node 2

; Task Graph Maintained
At This Node

A
f
b(2)

/ \
c(3) m(4)

1 	
Local Resources

I A [b]

, 0
Node 1

(Source of request)

I Task Graph Maintained
At This Node

(2)c

Local Resources
1 o IY)
I y

Node 3 	 Node 4

Comments:
Nodes 3 and 4 accept responsibility for a and x
respectively. This is also Doted in the oopy of
the task graph at the source node.

Node 3 	 Node 4

Comments:
The rest of the task graph is completed.

Figure 30. Example 10

Georgia Institute of Technology 	 FDPS Control Models

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7 Page 76

Request RUN A 	STEP 1

Task Graph Maintained 	1 Task Graph Maintained
At This Node 	 At This Node

A 	 I 	 A(1)
1 	 1
b(2?)
	

(1/)b

Local Resources 	

1 	

Local Resources 	1
A [b]
	

b (c,x]

1
Node 1 	 Node 2

(Source of request)

STEP 2

Task Graph Maintained 	I Task Graph Maintained
At This Node At This Node

A 	 I 	 A(1)
1 	 1
b(2) (1)b

/ 1
0(3?) x(4?)

Local Resources 	 1 Local Resources
A [b] 	 1 b (o,x]

Node 1 	 Node 2
(Source of request)

Task Graph Maintained
1

f Task Graph Maintained 	 I Task Graph Maintained I Task Graph Maintained
At This Node f 	At This Node 	 At This Node I At This Node

1
A(1) I 	 A(1) I 	A(1) i A(1)

1 I 1
b(2) I b(2)

\
1 	(2?)c I (2?)x
1
1

Local Resources
	

Local Resources
	

1 	Local Resources 	 Local Resources
o [Y]
	

x
	

I 0 [Y]
7
	

1 7

Node 3 	 Node 4
	

Node 3 	 Node 4

Comments:
In this example, a romnlete copy of the task graph
is to be maintained at 'Very ggag involved.
File b is located on node 2 and a tentative
delegation of responsibility is made to node 2.

Comments:
Node 2 accepts responsibility for b. Files c
and x are located and responsibility is
tentatively delegated as shown.

STEP 2

Task Graph Maintained 	1 Task Graph Maintained

STEP 2

Task Graph Maintained 	Task Graph Maintained
At This Node

A
1
b(2)

/ \
c(3) 	x(4)

i 	At This Node

A(1)

(1)b
\

I 	0(3) 	x(4)

At This Node

A

b(2)
/ \

0(3) 	x(4)

7(3)

At This Node

A(1)

(1)b
/ \

c(3) 	x(4)

7(3)

Local Resources Local Resources 	1 	 Local Resources Local Resources
A [b] I 	b 	[c,x] 	 A 	[I)] b [0,4

Node 1 Node 2 	 Node 1 	 Node 2
(Source of request) (Source of request)

Task Graph Maintained
At This Node

A(1)
1
b(2)

Task Graph Maintained
At This Node

A (1)

b(2)

Task Graph Maintained
At This Node

A(1)

b(2)

Task Graph Maintained
At This Node

A(1)

b(2)
/ \ / / \ / \

I 	(2)o x(4) o(3) (2)x (2)o x(4) 0(3) 	(2)x

1 7 7(3)
I-

Local Resources Local Resources Local Resources I 	Local Resources
I 	0 [Y] x 0 [7]

Y

Node 3 Node 4 Node 3 Node 4

Comments:
	 Comments:

Modes 3 and 4 accept responsibility for c and x
	

The rest of the task graph is eompleted.
respeetively.

Figure 31. Example 11

Georgia Institute of Technology 	 FDPS Control Models

assignments.
>I 	.

• I<
• 1<-------I

1<-------1 	•
1 	.

All assignments acoepted
. 	.

execution .
>I 	•

Make work
• I<------

. f< 	I 	. •
• I 	NOS waiting
• I 	>I for replies

>I
NOS waiting
for replies

•

nitiate

>1
>I

I 	•

Selec

▪

ted
distant

nodes
. I
.I
• I

VARIATIONS IN FDPS CONTROL MODELS 	 Page 77 Section 7

Saila lima Sigma=

I< 	Local Node

>I< 	Distant Nodes ------>1

. Users & . LOS . NOS 	Hag . NOS . LOS . Users & .

.Resources. 	

▪ 	

.Resources.

.

▪

 I User generates.
. I a Work Bequest. 	 •
• I 	>1 	.

. I Work Request p

▪

rocessed by LOS

▪

Command.
. I Interpreter and passed to NOS

• . I------>
▪ NOS initiates information gathering 	.
• a) Obtain information on

.

•

First, check . 	resources required (cover all
. local resources 	visible nodes of task graph)

—
• 1<.-----1 	•

I . 	• •
• 1 	 •

▪ . I then, check externally as required.
•

• • 	. I------>I

	

• 	

• 	

I 	>1
• NOS waiting for .

responses from 	.
• distant nodes

•
•

lAl •
distant

nodes
involved

•

l<

•
I 	.

Determine work distribution .
and allocation.

Check local and
I<

l< 	1 	. •
I 	

• 	

NOS waiting
>1 for replies

. 	I 	>1
NOS waiting

• for replies
•

	

I 	>1
•

I<
• I<

I<
I 	•

•

	

b) Obtain i

▪

nformation

▪

 on 	•
resources available

•
distant nodes simultaneously..

—>I .
• I ------>I
▪ • 	I 	>1

• •
I 	>I • •

Selected
. 	• distant

1 • NOS awaits • nodes
<-----.> • I 	•

LOS . 	 monitorsI<------>
termination •

of all •
looal1<------> tasks •

exeoution1<------> • •
I 	.
1<

•
•

. 	1< •
1<-----.1 	 •
I

Signal user that
▪ Work Request
• been completed

. 1<-
 I

• •

•
this .
has .

•

Figure 32. Basic Steps in Work Request Processing

Georgia Institute of Technology 	 FDPS Control Models

. 	.• 	• 	• 	 . 	1 	.
.• 	. 	< 	 1 	.

. 	. • 	. 1<--- Builds local 	•

. 	. < 	 I• 	task graph 	•

. 	. lode 2 aftepts 	 . 	.
. 	delegation . 	o(1)-->I1Id

• . 	for task d . 	 . / \. 	 .
. 	. 	 . 	Y(?) 	a(?) 	-

. 	• 	• 	. 	. 	.
. 	. 	 . 	. Search for y i z 	.

• Update 	. locally ..
• task graph . 	 > I

. 	. 	i . 	 1—>1

	

/I\ . 	 IY 	.
. 	. 	e-->d(2) 	. y & x found 	 Ix 	.

• I 	• 	. loftily I< —I 	.
. 	x 	• 	. < 	I

. 	. 	• 	• 	 .

	

Exeoute a Execute d . Update local . 	 .
. 14----- 	 >I . task graph 	.

<-----1 	. 	. 1—>. 	.
.

	

. 	. 	o(1)-->(1)d
. 	 . 	 . /\
. 	 . 	. 	 . 7 	X . 	.

Node

. 	 •
•
•
•

Page 78
	

VARIATIONS IN FDPS CONTROL MODELS 	 Section 7

=WA= Sava as Dana ft alas= 20

l< 	Local lode 	 >1<------ Distant Nodes 	 >1 	l< 	Local Node 	 >I<— Distant Node, — >1

. Deers A . LOS 	MOS . Nag . NOS • LOS • Users A . 	. Caere i . LOS . NOS . Meg . NOS . LOS . User* & .
Alesouraea. 	 .Resourcea. 	•Reocuroes. 	 Alesourcea.

. 	 .
(aeatinu•d from diagram on the loft) •

. 	. 	• 	• 	.

. 	. 	• 	• 	. 	.

. 	. I Establish IRO from o to d and •
• . I Trenasit delegation request •
. 	. I for task d to node 2 .
• I 	>1 	. 	.

• I 	I 	.
. 	.

• • •I 	>1

• MOS awaits 	. 	. lode 2 . 	I 	>1
. moolotanoe of . 	. deoidea to 	. 	Id
• delegation 	. 	. aoaept d. 	1<------I

	

. 	 . 	. 	.
....- 	. 	 .

. 1[o—>d). 1 	. 	Initial. 	 . 	I . d[7,z) .

. o(x) 	. 1< 	locations of 	 >I . 7

. X 	,__I 	. 	file resouroes 	. 	1.-,* 	.

. 	. 	. 	• 	• 	• 	 •
• • 	. 	 .

. *ROA A* . 	. 	 • 	• 	 . 	 .

. 	User generates

. I a Work Request 	•

▪ 	

.

. I 	>I LOS Command Interpreter

. 	. 	I prooesses the Bequest 	. 	.

. 	. 	1.---->1 	• 	9 	 • 	• 	 • 	•
• •

	

. I NOS analyses the

. 	. I Pork Bequest 	 . 	. 	 . 	•

. 1 .‹.■■■ I 	 . 	. 	• 	•

. !Search for A 	•

I<— I locally 	 • 	•

... 	A 	I. 	. 	. 	 • 	•
I ------>11 found 	. 	.

. I locally

• 1----> 	
. 	• 	Start to build 	

• • 	task graph

.
• A

• . 	/I\ 	•
• . 	o(7)-->d(7)

• I<-- 	. 	•
• [Swab for o & d

. I< —I locally : 	: 	.
. 	0 	1
. I 	>la found 	 .

	

I loyally : 	. 	 . 	 .

	

. 	.

	

I—> 	

	

. 	Update 	. 	 .
. 	 . 	task graph . 	 . 	. 	 • 	•

. 	 .

. 	 . 	. 	A

. 	 . 	. 	/IN

. 	 . 	. 	0-->d(?) 	. 	 . 	. 	 • 	•

. 	 . 	• 	I 	 • 	•

. x(7)

	

•
	. 	. 	 .

. 	. •

• 	

Searob for

. 	 . 	• 	d externally 	 . 	.

. 	. 	. 	>1 	. 	. 	. 	• I

. 	 . 	1.(---- 	. I 	>1 	. 	. 	*All* .

. 	 . 	(Search for x . 	 I 	. 	. 	Distant .

. 1<------1 locally 	. 	 1 	>1 	 Bodes .

• x 1• 	. 	. 	 >I 	.
1 ------>lx found 	. 	 . 	I d •

. 	. 	1 locally 	.. 	 1.4.---1 	•

. 	• 	1-..-_> • 	it 	1 	. 	.

. 	 . • a towed I(
• 	

I 	. 	. 	.
• . 	• 	on node! 2 (and pomaibly others)

. 	 . < 	I 	 . 	.
• . 	.

• • . 	• Run *Bork Distribution
. 	 • 	. 	sad Teak Allooatioc" . 	.

• . 	. 	(In this ease, declaim la.
. 	 • 	. 	made not to moss any files) •

. lode 2 esleoted for task d 	•

• . 	• 	•
. 	 . 	. Ilegord• tenta ‘iive delmailtion .

• • 	• 	In task graph 	. 	.
. 	 • 	• 	A
. 	• 	• 	/IN
. 	 . 	0-44(2?) 	. 	 . 	. 	 •
• . 	• 	I 	•
• • 	• 	 • 	. 	•
• • 	• 	• 	• 	. 	. 	•

(esatimmmd me the diagram om the KIRA)

• • 	•

• •

• 4

• !saute d 	.

	>I
•

•
>1 	.
I->

d

2

• • •

. 	•
....›1 	•

. 1->1

. 1 	>1 	.
Imamaes 	1--->1

----->1 	. 	troo 	I
• 1->1 	o to d
. I 	>I 	.
• • I--->1
. 	. 	 . 1 	>1

.

	

>1Taak a 	 I ----->
• 1 ----->1

. 	. complete! 	 >I 	 . 	.

. 	. 	• • 	• 	I.--->1 	. 	.

. 	. 	 • 	. 	. 1■■-■■■••••■->1

. 	. 	. • 	. 	. 	 I—>

. 	 . 	IDS awaits. 	.

. 	 . 	completion of d 	.
. • . 	 . 	.

. 	. * 	• 	• l<

. 	• • Teak d 1<---f
• . 1< 	I 	.
. 	• I =Wet* •
• I(-----I

	

<■■-■--IBIgmal user . 	.

Figure 33. An Example of Work Request Processing

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 79

SECTION 8

MODELS OF CONTROL

In this section, we demonstrate how both existing and proposed models of

control fit into the classification scheme described in Section 7. With the

exception of the first model, these controls are designed to service work

requests that specify multiple concurrent communicating processes. The first

model considers work requests that involve only a single process.

8.1 ARAMIS

A decentralized operating system model for the ARAMIS Distributed Com-

puter System is described in [Caba79a,b]. A brief outline of how this model

fits into the classification scheme of Section 7 is provided by Table 3.

8.1.1 Architecture

The ARAMIS Distributed Computer System consists of two types of

machines, hosts and managers. Users are connected to hosts which in turn are

connected to managers. The managers are connected to each other in a virtual

ring. Execution of work requests is provided by the hosts while control

decisions are made by the managers.

8.1.2 Work Requests

This system is designed to handle a work request that is less

sophisticated than those handled by the other systms described in this sec-

tion. The work request must specify only a single process or task and the

list of resources (sharable and nonsharable) required by that task.

8.1.3 The Control Model

Control of the system is accomplished through the managers. Each

manager maintains a data structure called the resource state table (RST) which

contains state information for every resource available on the system. To

insure that these redundant copies remain consistent, two vectors are

utilized. The control vector (CV) cycles around the virtual ring. Only the

manager possessing the CV is permitted to allocate and deallocate resources.

Upon completing this work, a manager can pass the CV along. In addition,

modifications made to the RST (information describing the allocation and deal-

location of files) are passed along to the other managers on the virtual ring

in the form of an update vector (UPV).

Georgia Institute of Technology 	 FDPS Control Models

Page 80
	

MODELS OF CONTROL 	 Section 8

Table 3. The Decentralized Control Model of the ARAMIS
Distributed Computer System

TASK GRAPH CONSTRUCTION:

Who builds the task graph?
A manager on each node builds the task graph for the work requests
arriving at that node.

What is the nature of the task graph?
A single structure.

Where is the task graph stored?
On the node initially receiving and analyzing the work request
and the node where execution of the task occurs.

When is the task graph built?
Completely prior to execution.

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
All nodes maintain common information.

Where is the information maintained?
In multiple redundant copies.

ALLOCATION a RESOURCES:

How is concurrency control provided?
Resources are locked before the work distribution decision is made.

PROCESS INITIATION:

How is responsibility distributed?
Each node has a manager. The node initially receiving and analyzing
the work request retains enough information to restart the task if
the execution node dies.

How is refusal of a request to execute a process by a
node handled?

This possibility is not discussed.

PROCESS MONITORING:

What type of interprocess communication is provided?
IPC is not supported.

How are task graphs resulting from additional work requests handled?
Additional requests cannot occur.

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 81

When a work request arrives at a host, it is passed along to the local manager

to which the host is connected. This manager is in charge of resource alloca-

tion and task routing. It first identifies the resources that are needed and

allocates sharable resources. After the CV has arrived and various algorithms

insuring mutual exclusion and the prevention of deadlocks have been executed,

the nonsharable resources are allocated. Next the optimal site for execution

of the task is determined taking into account the burden various choices place

on the communication system. Finally, the information concerning the alloca-

tion of resources is transmitted in the form of a UPV, and the information

describing the task routing is sent to the hosts needing the information.

8.1.4 Conclusion

This model represents a simplified approach to the control problem. All

nodes are provided with a complete global view of the system via their copy of

the RST. Modifications to the state are carefully controlled by permitting

only one manager at a time to change this information. The capability to per-

form modifications on the RST is passed around the virtual ring in the form of

the CV.

8.2 .MEDUSA

Medusa [Oust80a,b] is a distributed operating system for the Carnegie-

Mellon Cm* multimicroprocessor. This system differs from an FDPS in that it

allows multiple nodes to share primary memory. Table 4 describes how this

control model fits into the classification scheme of Section 7.

8.2.1 Architecture

Cm* consists of a number of relatively independent processors or com-

puter modules (Cm) and a number of communication controllers (Kmap). The Cm's

are arranged in clusters with a Kmap presiding over each cluster. A switch,

Slocal, connects a Cm with the interprocessor communication structure. Each

Slocal contains tables that allow it to decide on each memory reference

whether to access local memory or pass the reference along to the Kmap to

locate the desired information in either the local cluster or a distant

cluster. Thus, any processor can access the memory of any other processor.

It must be kept in mind, though, that a substantial time delay results from

accessing the memory of distant processors.

Georgia Institute of Technology 	 FDPS Control Models

Page 82
	

MODELS OF CONTROL 	 Section 8

Table 4. The Medusa Control Model

1151c. GRAPH CONSTRUCTION:

Who builds the task graph?
The node containing an activation of the task force manager.

What is the nature of the task graph?
Multiple structures (the task force control block is stored in the
SDL and the activity control block is stored in the PDLs).

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Completely prior to execution.

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
A number of utilities each realized as a task force.

Where is the information maintained?
In a shared data structure.

ALLOCATION a RESOURCES:

How is concurrency control provided?
By means of locks.

PROCESS)NITIATION:

How is responsibility distributed?
The task force manager keeps overall control, but other special
managers are available to provide specific services.

How is refusal of a request to execute a process by a node handled?
This is not discussed in the literature.

PROCESS MONITORING:

What type of interprocess communication is provided?
Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
It is not clear if additional work can be requested.

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 83

8.2.2 Work Reauests

Work requests are used to describe task forces. A task force consists

of a number of relatively independent communicating processes capable of

concurrent execution that are working toward the solution of some task.

Interprocess communication is accomplished via pipes which differ slightly

from those found in UNIX [Ritc78]. There are two unique features found in

these pipes: 1) they insure that only whole messages are read, and 2) they

identify the sender of the message to the receiver.

In addition to processes and pipes, a task force contains a shared

descriptor list (SDL) and a number of private descriptor lists (PDL). These

structures contain descriptors which are basically capabilities for certain

system objects. There is only one SDL per task force. This provides access

to objects that are shared among all processes of a task force. For each

process, there is a PDL which provides access to private objects. Thus, the

significant feature of the task force concept is the capability to directly

share objects by means of the SDL.

8.2.3 The Control Model

The distributed control is composed of a series of five utilities each

of which is implemented as a task force. The five utilities are as follows:

1. Memory Manager: allocates primary memory and aids the Kmap in
descriptor list manipulation.

2. File 	acts as a controller for all I/O devices of the
system and implements a hierarchical file system.

3. Task Force Manager: creates, schedules, and deletes task for-
ces and the processes that comprise task forces.

4. Exception Reporter: communicates information about unusual
occurrences to those processes that need to know this
information.

5. Debugger/Tracer: 	holds symbol table and 	performance
measurement information for all utilities and provides
facilities for on-line debugging of the system and gathering of
performance data.

Communication between user processes and utilities is accomplished by

means of pipes. There is one pipe for each utility. Access to these pipes is

provided by the utility descriptor list (UDL) which is present on all nodes.

A process utilizes this structure to locate the proper pipe into which a mes-

sage for a particular utility is to be placed.

Georgia Institute of Technology 	 FDPS Control Models

Page 84
	

MODELS OF CONTROL 	 Section 8

8.2.4 Conclusion

Medusa introduces two features that are pertinent to this discussion.

These are the concept of a task force and the concept of sharing primary

memory. A task force provides concurrent communicating processes to solve a

common task. In addition to communicating by means of messages, processes are

permitted to share data. The idea of shared memory is also seen in the hard-

ware by the ability to directly reference memory on distant processors.

8.3 CNET

CNET [Smit79, Smit80] is a distributed problem solver consisting of a

collection of loosely coupled knowledge sources located on a number of

distinct processors. Table 5 depicts how this model fits into the classifica-

tion scheme of Section 7.

8.3.1 Architecture

The system is intended for use on a network of loosely coupled asynch-

ronous processors. Communication between nodes is realized through broadcast

messages.

8.3.2 Work Requests

Applications for CNET can potentially take the form of cooperating

processes. An individual work request specifies the work that must be accom-

plished. Depending upon decisions of the control, a task may be divided into

subtasks, and the subtasks may be further divided.

8.3.3 The Control Model

CNET utilizes a hierarchical form of control for each task. At the top

level is the manager for the task that is described in the original work

request. This manager attempts to find a suitable contractor to execute the

task. This is accomplished by means of a negotiation that begins with a mes-

sage from the manager. This message can take the form of a general broadcast,

a limited broadcast, or a point-to-point announcement. The contents of the

message include an eligibility specification (a list of criteria required of a

node to execute the task), a task abstraction (a brief description of the

task), a bid specification (describes the expected form of a bid from a pos-

sible contractor), and an expiration time (describes the time period that the

announcement is valid). A general broadcast is utilized when the manager has

no knowledge concerning the nodes capable of executing the task. A limited

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 85

Table 5. The CNET Control Model

TASK GRAPH CONSTRUCTION:

Who builds the task graph?
Multiple nodes.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Piecemeal.

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
Each node maintains information about its own resources.

Where is the information maintained?
Separate pieces of information concerning a particular resource type
may be kept on different nodes.

ALLOCATION DE RESOURCES:

How is concurrency control provided?
Resources are locked before the work distribution decision is made.

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
Once a contract is made it is binding.

PROCESS MONITORING:

What type of interprocess communication is provided?
Not specified.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

Georgia Institute of Technology 	 FDPS Control Models

Page 86
	

MODELS OF CONTROL 	 Section 8

broadcast can be utilized when the manager knows a specific group of nodes is

capable of executing the task. Finally, a point-to-point announcement is made

when the manager knows about the availability of a single suitable node. This

knowledge is obtained from idle nodes that broadcast messages indicating their

availability.

The manager sends these messages and waits for the arrival of bids from

possible contractors. When the bids arrive, they are examined in order to

determine a choice for the task assignment. All bids are binding so the

manager can make a choice with confidence that a chosen node will accept the

task. Once a node is chosen, the contract is awarded and the chosen node

becomes known as a contractor. The contractor may further divide the task and

utilize other contractors for the various pieces. Thus, a node can act both

as a manager and a contractor.

A contractor provides the manager with reports that contain information

concerning partial execution (interim report) or completion (final report). A

report contains a result description that specifies execution results. A

manager has complete authority over a contractor and thus may terminate

contracts at any time with a termination message. This terminates execution

of a contract and all outstanding subcontracts.

8.3.4 Conclusion

CNET utilizes a hierarchical control scheme with a manager supervising

the work of possibly multiple contractors working to solve a given task. A

manager locates contractors by broadcasting an announcement for bids. It then

waits for the bids from the contractors to arrive. After this negotiation

phase, a bid is accepted, a contract is awarded, and execution of the task is

begun. The manager can terminate execution of a task at any time and is the

recipient of interim and final reports from the contractors.

8.4 THE XFDPS SERIES DE)10DELS

In Section 7, a list of design alternatives for an FDPS executive

control is presented (See Table 2). The rest of this section is devoted to

the presentation of a series of control models designed by this research team

by choosing among these alternatives. Each of the models is referred to as

XFDPS.i where i is an identifying numeral. It is neither possible nor prac-

tical to present all possible models for an FDPS executive control.

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 87

Therefore, only a few models are investigated. 	The models were chosen by

selecting a collection of design alternatives which were both logical and

provided significant distinction among the various models.

The models are described in such a manner as to give the reader a feel-

ing for the overall control strategy. A more complete comparison of the

models can be obtained through tables 6 through 8 which contain a list of

design alternatives for each model.

8.4.1 Architecture

An FDPS is composed of a multiplicity of independent processors

physically connected by a network providing communication by means of a two-

party protocol. There is no sharing of primary memory, and, thus, the proces-

sors are considered to be loosely coupled. The processors operate in an

autonomous but cooperative manner. Therefore, it is the responsibility of the

control to insure that there is a unification of operation in the system.

8.4.2 Work Requests

Work requests describe concurrent communicating processes and are

assumed to provide the functionality available with the command language

described in Figure 10.

8.4.3 XFDPS.1

The XFDPS.1 model [Sapo80] (see Table 6 for a characterization of this

model and Figure 34 for a view of the model's components) is a distributed and

decentralized control model that is designed to shield the user from the

system. In other words, it provides the system transparency that is fun-

damental to the FDPS definition. It is designed to encapsulate each proces-

sor's local operating system as advocated by Kimbleton [Kimb76]. This is the

meta-system approach to implementing distributed operating systems discussed

above and has been practiced in several systems including ADAPT [Peeb80]. The

XFDPS.1 model is composed of a set of cooperating processes called managers

and is similar in this respect to Medusa [Oust80] and ADAPT [Peeb80]. Each

manager is designed to control a subset of the system's resources (logical and

physical).

Each manager requires reliable message communication with the other

managers in order to perform its responsibilities. The XFDPS.1 model does not

assume the presence of any particular interconnection of processors or for

that matter any particular technique of message communication. This means

Georgia Institute of Technology 	 FDPS Control Models

Page 88
	

MODELS OF CONTROL 	 Section 8

Table 6. The XFDPS.1 Control Model

TASK GRAPH CONSTRUCTION:

Who builds the task graph?
The source node.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph with one copy of
the complete task graph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Completely prior to execution.

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
Each node maintains information about its own resources.

Where is the information maintained?
At the node which contains the resource.

ALLOCATION DE RESOURCES:

How is concurrency control provided?
Reservations are used prior to a work distribution decision and then
allocated by a lock.

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
After repeated attempts, the request is abandoned.

PROCESS MONITORING:

What type of interprocess communication is provided?
Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

Georgia Institute of Technology 	 FDPS Control Models

FILE

SYSTEM

MANAGER

I 	 I
---->1 FILE SET 1 I
<----1 MANAGER 	1

1 	

•
•
•

1
---->1 FILE SET i 1
<----1 MANAGER 1

I 	 I

---->1 PROCESSOR 1
I UTILIZATION

< 	MONITOR
PROCESSOR

UTILIZATION

MANAGER

---->1 PROCESSOR j
I UTILIZATION

<----I MONITOR

PROCESSOR 1
PROCESSING

< `••••
	MANAGER

•
 •

•

1
---->1 PROCESSOR k I

I PROCESSING 1
MANAGER I

I 	 I

PROCESS

MANAGER

MODELS OF CONTROL 	 Page 89 Section 8

<1101.■■■■•••

<

Figure 34. The XFDPS.1 Control Model

Georgia Institute of Technology 	 FDPS Control Models

Page 90
	

MODELS OF CONTROL 	 Section 8

that the model is applicable to systems that are interconnected in a variety

of ways including loops, stars, regular networks, irregular networks, or fully

interconnected networks [Ande75] and utilizing various message communication

techniques including the ISO model [Bach78, Desj78] and Ethernet [Metc76].

The XFDPS.1 model is composed of several types of processes called

managers which are responsible for various aspects of the control problem.

These managers include the Task Set Manager, the File System Manager, the

Processor Utilization Manager, and the Process Manager.

8.4.3.1 Task Set Manager

The Task Set Manager is responsible for handling work requests arriving

from either users or active processes. A Task Set Manager is assigned to

every work request. It must first identify the tasks comprising the Task Set

which are needed to satisfy the work request and then communicate with the

File System Manager to obtain information concerning the availability of

files. The Processor Utilization Manager is also consulted in order to

determine the relative utilization of the processors. Using the information

acquired in this manner, a work allocation decision is made that results in

the assignment of tasks to processors. This decision involves an optimization

problem similar in many respects to that discussed by Morgan [Morg77].

The second phase of the Task Set Manager's responsibility concerns

carrying out the decision arrived at in the first phase. This again involves

communication with the File System Manager to allocate needed files and to

deallocate these files when they are no longer needed. In addition, com-

munication is required with the Process Manager which activates the processes

and observes when these processes have terminated. The last act of the Task

Set Manager is to inform the original requester as to the completion status of

the request. In doing so it will either indicate that it was successful in

completing the request or provide a description concerning why the request

could not be completed.

8.4.3.2 File System Manager

The File System Manager is responsible for maintaining the file system

for the entire FDPS. Instances of the File System Manager are found on all

processors. Management of the file system is achieved through communication

among these instances of the File System Manager.

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 91

The implication of this design is that several requests to the file

system can be acted upon simultaneously provided these requests arrive at

different processors. These requests may either elicit availability informa-

tion or ask that the file status information be updated (i.e., making a reser-

vation, placing a lock, or releasing a lock on a file). This simultaneity is

in marked contrast to the resource allocation found in the ARAMIS Distributed

Computer System [Caba79a,b] in which all nodes possess a Resource State Table

containing the state of all resources in the system. This system only permits

resource allocation by at most one node at any one time.

In the XFDPS.1 model, the file system is divided into several disjoint

sets. The design of the control does not restrict how this division is

realized. For example, these sets can be defined by processor boundaries.

For each set, there is a separate manager called a File Set Manager. In order

to perform its management duties, the File System Manager must communicate

with each File Set Manager.

The File System Manager handles three types of requests, all originating

from the Task Set Manager. The first type of request is for availability

information concerning a collection of files. The File System Manager con-

verts this request into a series of requests concerning individual files and

presents these requests to the File Set Managers. The File System Manager

waits for responses from all File Set Managers before returning its response.

A File Set Manager will return an indication of the filets availability. If a

file is available, the File Set Manager will reserve the file for the Task Set

from which the request originated. This reservation remains effective for a

limited period of time, and it is the responsibility of the Task Set Manager

to confirm the reservation before its effectiveness has expired.

The second request that can be made to the File System Manager concerns

the allocation of a series of files. Again this request is converted into a

number of requests concerning the reservations of individual files and is sent

to specific File Set Managers which in turn perform the necessary locking of

the files.

Finally, the File System Manager can receive requests for the dealloca-

tion of files. These requests are handled in a manner similar to allocation

requests and result in the release of locks or reservations on specific files.

Georgia Institute of Technology 	 FDPS Control Models

Page 92
	

MODELS OF CONTROL 	 Section 8

8.4.3.3 Processor Utilization Manager

Another type of process found in the control is the Process Utilization

Manager. Instances of this manager are replicated on all processors. The

main function of the Process Utilization Manager is the maintenance of a data

base of processor utilization information for the processors comprising the

FDPS. The information in this data base is not intended to be complete and

accurate but rather is designed to provide the work assignment algorithm in

the Task Manager with an estimate of the utilization of the processors in the

system.

The Processor Utilization Manager obtains the information needed to

update its data base from periodic messages directed to it from Processor

Utilization Monitors located on each processor. These processes monitor the

utilization of the processor in which they are located and issue periodic mes-

sages reporting their findings. If a Processor Utilization Manager does not

receive a report from a Processor Utilization Monitor within a certain period

of time, a message from the Manager is sent to the Monitor asking for an

immediate response concerning the processor's state. If a response to this

request is not received within a certain time period, it is assumed the

processor is lost, and the Processor Utilization Manager updates its data base

to reflect this. This will prevent the Task Set Manager from attempting to

assign processes to a processor that has apparently been lost.

8.4.3.4 Process Manager

The last process type found in the control is the Process Manager. A

Process Manager is activated for each Task Set Manager. This process accepts

requests from the Task Set Manager for the activation of processes for the

Task Set. The Process Manager identifies which processors are to receive

processes. It then issues requests to Processing Managers on each processor.

Each Processing Manager is responsible for controlling the processes assigned

to its processor.

In addition to assigning processes and waiting for the notification of

their termination, the Process Manager is responsible for providing

interprocess communication between executing processes. In this model,

interprocess communication is provided by means of ports [Balz71, Have78,

Suns77, Zuck77]. A port provides a common location where communicating

processes can either send or fetch messages without knowing about the other's

Georgia Institute of Technology 	 FDPS Control Models

Section 8
	

MODELS OF CONTROL 	 Page 93

location. Buffer space is also required in order to allow the communicating

processes to operate as independently as possible. This type of interprocess

communication is similar to the stream communication utilized in TRIX

[Ward80]. The Process Manager must therefore decide where a buffer for the

port resides and then provide the necessary linkages within the communicating

processes in order for them to address the port.

8.4.3.5 Conclusion

The fundamental philosophy of the XFDPS.1 model is that the control over

logical and physical resources must be distributed among various processes or

managers. The reason for taking this approach is to provide better utiliza-

tion of system resources by making use of the inherent parallelism found in

distributed processing systems.

8.4.4 XFDPS.2.

XFDPS.2 is a variation of model XFDPS.1. The main difference between

the two models exists in the technique used to construct the task graph. A

complete outline of the characteristics of XFDPS.2 is found in Table 7.

The construction of task graphs in XFDPS.2 is performed by multiple

nodes resulting in a task graph that consists of multiple structures each of

which is a subgraph of the complete task graph. The overall strategy works as

follows. After a work request arrives at a particular node, work on construc-

ting a task graph is begun. When a node is chosen to perform part of a task

graph, responsibility for that portion of the task graph is given to a control

component on that node. This component will maintain that portion of the task

graph and in so doing may also choose other nodes to perform part of the work

that the subgraph represents.

Thus, there are two main differences between XFDPS.2 and XFDPS.1: 1)

the task graph is not maintained in one location but rather on multiple nodes,

and 2) this construction is performed in a piecemeal fashion in XFDPS.2. This

means that the components of XFDPS.2 possess greater independence than those

of XFDPS.1.

8.4.5 XFDPS.1

XFDPS.3 (see Table 8) is a variation on the XFDPS.2 model. In this

case, the difference exists in the maintenance of resource availability

information. In both XFDPS.1 and XFDPS.2, each physical node maintains

information about its own resources. XFDPS.3, though, utilizes the approach

Georgia Institute of Technology 	 FDPS Control Models

Page 94
	

MODELS OF CONTROL 	 Section 8

Table 7. The XFDPS.2 Control Model

TASK GRAPH CONSTRUCTION:

Who builds the task graph?
Multiple nodes.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Piecemeal.

RESOURCE AVAJLABILITY INFORMATION:

Who maintains this information?
Each node maintains information about its own resources.

Where is the information maintained?
Separate pieces of information concerning a particular resource type
may be kept on differentt nodes.

ALLOCATION .QE RESOURCES:

How is concurrency control provided?
Reservations are used prior to a work distribution decision and then
allocated by a lock.

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
After repeated attempts, the request is abandoned.

PROCESS MONITORING:

What type of interprocess communication is provided?
Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

Georgia Institute of Technology
	 pmpp. rnnfronl MnrInla

Section
	

MODELS OF CONThUL 	 Page 95

Table 8. The XFDPS.3 Control Model

TASK GRAPH CONSTRUCTION:

Who builds the task graph?
Multiple nodes.

What is the nature of the task graph?
Multiple structures each consisting of a subgraph.

Where is the task graph stored?
Multiple nodes.

When is the task graph built?
Piecemeal.

RESOURCE AVAILABILITY INFORMATION:

Who maintains this information?
Components for each type of resource.

Where is the information maintained?
Information concerning a particular resource type is kept on a
single node.

ALLOCATION IE RESOURCES:

How is concurrency control provided?
Reservations are used prior to a work distribution decision and then
allocated by a lock.

PROCESS INITIATION:

How is responsibility distributed?
There is a hierarchy of responsibility.

How is refusal of a request to execute a process by a node handled?
After repeated attempts, the request is abandoned.

PROCESS MONITORING:

What type of interprocess communication is provided?
Unsynchronized communication.

How are task graphs resulting from additional work requests handled?
The new task graph is kept separate.

Georgia Institute of Technology 	 FDPS Control Models

Page 96
	

MODELS OF CONTROL 	 Section 8

taken in Medusa which assigns a control component to each type of resource and

maintains information concerning a particular type of resource in a single

location.

Thus, when resource availability information is required, a resource

needs allocation, or a resource needs deallocation, it is only necessary to

determine the type of the resource in order to determine the proper control

component to perform the desired operation. This is in contrast to XFDPS.1

and XFDPS.2 both of which require a search for the correct component.

npnrsria institute of Technology 	 FDPS Control Models

Section 9
	

THE EVALUATION OF THE MODELS 	 Page 97

SECTION 9

THE EVALUATION OF THE MODELS

9.1 EVALUATION PLAN

As stated earlier in this report, it was planned from the initiation of

this survey of control models that it would be followed immediately by an

evaluation study of the various models identified or developed. It was also

anticipated that this evaluation would cover both the quantitative and

qualitative aspects of the various models.

To support the quantitative evaluation of the various forms of system

control, a distributed control model simulator is being developed.

9.2 EVALUATION CRITERIA

A number of evaluation criteria have already been identified. The

tentative list is summarized in Table 9.

Georgia Institute of Technology 	 FDPS Control Models

Page 98
	

THE EVALUATION OF THE MODELS 	 Section 9

Table 9. Possible Evaluation Criteria for
Distributed Control Models

RESOURCE UTILIZATION
Memory Space Utilization

By the Control Algorithm
Complexity
Redundancy

By the Control Information
Time

Local Processing Time
Communications Delays
Delays in Work Initiation

Communication
Complexity
Quantity

PERFORMANCE
Throughput
Response Time
Bottlenecks

SYSTEM FLEXIBILITY
Reconfiguration Potential
Modularity

Logical Complexity
Maintainability
Problem Partitioning and Algorithm Design

FAULT-TOL RANC
Detection
Recovery
Extent to Which Processed Work Can Be Recovered

PROTECTION
Privacy
Security

esP Me,nlewtrOnm.ar AAA, A 	 • • • •

References 	 Page 99

REFERENCES

Akin78 	Akin, T. Allen, Flinn, Perry B., Forsyth, Daniel H., "A Prototype
for an Advanced Command Language," Proceedings _of the 16th Annual
Southeastern Regional AO Conference (April, 1978): 96-102.

Ande75 	Anderson, George A., and Jensen, E. Douglas., "Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples," Computing
Surveys 4 (December, 1975): 197-213.

Bach78 	Bachman, Charles, and Canepa, Mike, "The Session Control Layer of an
Open System Interconnection," COMPCON Fall la (September, 1978):
150-156.

Balz71 	Balzer, R. M., "PORTS - A Method for Dynamic Interprogram Communica-
tion and Job Control," AFIPS Conference Proceedings 38 (1971 Spring
Joint Computer Conference): 485-489.

Brin78 	Brinch Hansen, Per, "Distributed Processes: A Concurrent Programming
Concept," Communications of the ACM 21 (November, 1978): 934-941.

Caba79a 	Cabanel, J. P., Marouane, M. N., Besbes, R., Sazbon, R. D., and
Diarra, A. K., "A Decentralized OS Model for ARAMIS Distributed Com-
puter System," Proceedings of the First International Conference an
Distributed Computing Systems (October, 1979): 529-535.

Caba79b 	Cabanel, J. P., Sazbon, R. D., Diarra, A. K., Marouane, M. N., and
Besbes, R., "A Decentralized Control Method in a Distributed
System," Proceedings of the First International Conference 9n,
Distributed Computing Systems (October, 1979): 651-659.

Clar80 	Clark, David D., and Svobodova, Liba, "Design of Distributed Systems
Supporting Local Autonomy," COMPCON =jag La (February, 1980): 438-
444.

Cook8O 	Cook, Robert P., "The STARMOD Distributed Programming System,"
COMPCON Fall $.11 (September, 1980): 729-735.

Davi79 	Davies, D. W., Barber, D. L. A., Price, W. L., and Solomonides, C.
M., Computer Networks and Their Protocols, John Wiley and Sons,
1979.

Denn78 	Denning, Peter J., "Operating Systems Principles for Data Flow
Networks," Computer (July, 1978): 86-96.

Desj78 	desJardins, Richard, and White, George, "ANSI Reference Model for
Distributed Systems," COMPCON Fall 7. (September, 1978): 144-149.

Ens174 	Enslow, Philip H., Jr. (ed.), 	Multiprocessors 	and 	Parallel
Processing, New York: John Wiley and Sons, 1974.

Ens178 	Enslow, Philip H., Jr., "What is a 'Distributed' Data Processing
System?" Computer (January, 1978): 13-21.

Farb73 	Farber, D. J., Feldman, J., Heinrich, F. R., Hopwood, M. D., Larson,
K. C., Loomis, D. C., and Rowe, L. A., "The Distributed Computing
System," COMPCON Spring /3_ (February, 1973): 31-34.

n=rw.ffin 7,10-ituto Af TAnhnnlnqv
	

FDPS Control Models

Page 100

Feld79

Gar-079

Have78

Hoar78

Hopp79

Jens78

Kimb76

Lein58

Macc80

Metc76

Morg77

Nels78

Oust80

Oust80

Peeb80

Rito78

References

Feldman, J. A., "High Level Programming for Distributed Computing,"
Communications 91 the ACM 22 (June, 1979): 353-368.

Garcia-Molina, H., "Performance Comparison of Update Algorithms for
Distributed Databases, Crash Recovery in the Centralized Locking
Algorithm," Progress Report No. 7, Stanford University, 1979.

1=1:1:t=2;NRiai , 187f ISItellrtegcle7794713172-f;Tns

 Hoare, C. A. R., "Communicating Sequential Processes,"
Communications 91_ the , ACM 21 (August, 1978): 666 -677.

Hopper, K., Kugler, H. J., and Unger, C., "Abstract Machines Model-
ling Network Control Systems," Dkergting Systems Review 13 (January,
1979): 10-24.

Jensen, E. Douglas., "The Honeywell Experimental Distributed Proces-
sor - An Overview," Computer (January, 1978): 28-38.

Kimbleton, Stephen R., and Mandell, Richard L., "A Perspective on
Network Operating Systems," AFIPS Conference Proceedings 45 (1976
National Computer Conference): 551-559.

Leiner,
System," Ailroteedi:

 Weinberger, A.,
	 Computer Conference

(1958): 71 -75.

Maccabe, Aurthur B., and Leblanc, Richard J., "A Language Model for
Fully Distributed Systems," COMPCON Fall Ba (September, 1980): 723-
728.

Metcalfe, R. M., and Boggs, D. R., "Ethernet - Distributed Packet
Switching for Local Computer Networks," Communications gr the ACM 19
(July, 1976): 395-404.

Morgan, Howard L., and
Locations in Computer
1977): 315-322.

Nelson, David L., and
Architecture for Data
1978): 296-301.

Ousterhout, John K., "Partitioning and Cooperation in a Distributed
Multiprocessor Operating System: Medusa," Ph.D. Thesis, Carnegie-
Mellon University, April, 1980.

Ousterhout, John K., Scelza, Donald A., and Sindhu, Pradeep S.,
"Medusa: An Experiment in Distributed Operating System Structure,"
Communications 91 the, ACM 23 (February, 1980): 92-105.

Peebles, Richard, and Dopirak, Thomas, "ADAPT: A Guest System,"
COMPCON Spring $Q (February, 1980): 445-454.

Ritchie, D. M., and Thompson, K., "The UNIX Time-Sharing System,"
The Bell Lyatezi Technical Journal 57 (July-August, 1978): 1905-1929.

Haverty, J. F.,
for a Server in

Icttiz;k:"
Communications oPfrotE71CMaig (I=

Gordon, Robert L., "Computer Cells - A Network
Flow Computing," COMPCON ?all 73. (September,

Georgia Institute of Technology 	 FDPS Control Models

References 	 Page 101

Sapo80 	Saponas, 	Timothy G., 	and Crews, Phillip L., "A Model for
Decentralized Control in a Fully Distributed Processing System,"
COMPCON Fall BSI (September, 1980): 307-312.

Smit79 	Smith, Reid G., "The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver," Proceedings or the 1st
International Conference on Distributed Computing (October, 1979):
185-192.

Smit8O 	Smith, Reid G., "The Contract Net Protocol: High-Level Communication
and Control in a Distributed Problem Solver," InELE Transactions saa.
Computers C-29 (December, 1980): 1104-1113.

Suns77 	Sunshine, Carl, "Interprocess Communication Extensions for the UNIX
Operating System: I. Design Considerations," Rand Technical Report
R-2064/1-AF, June 1977.

Thom78 	Thomas, Robert H., Schantz, Richard E., and Forsdick, Harry C.,
"Network Operating Systems," Bolt Beranek and Newman Report No. 3796
(March, 1978).

Ward80 	Ward, Stephen A., "TRIX: A Network-Oriented Operating System,"
COMPCON Spring aa (February, 1980): 344-349.

Zuck77 	Zucker, Steven, "Interprocess Communication Extensions for the UNIX
Operating System: II. Implementation," Rand Technical 	Report
R-2064/2-AF, June, 1977.

Georgia Institute of Technology 	 FDPS Control Models

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112

