
PhD Dissertations and Master's Theses 

6-2021 

Adaptive-Optimal Control of Spacecraft near Asteroids Adaptive-Optimal Control of Spacecraft near Asteroids 

Madhur Tiwari 

Follow this and additional works at: https://commons.erau.edu/edt 

 Part of the Atmospheric Sciences Commons, and the Space Vehicles Commons 

This Dissertation - Open Access is brought to you for free and open access by Scholarly Commons. It has been 
accepted for inclusion in PhD Dissertations and Master's Theses by an authorized administrator of Scholarly 
Commons. For more information, please contact commons@erau.edu. 

http://commons.erau.edu/
http://commons.erau.edu/
https://commons.erau.edu/edt
https://commons.erau.edu/edt?utm_source=commons.erau.edu%2Fedt%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=commons.erau.edu%2Fedt%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/220?utm_source=commons.erau.edu%2Fedt%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:commons@erau.edu


 

 

ADAPTIVE-OPTIMAL CONTROL OF SPACECRAFT  

NEAR ASTEROIDS 

 

By 

 

Madhur Tiwari 

 

 

 

 

A Dissertation Submitted to the Faculty of Embry-Riddle Aeronautical University  

In Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy in Aerospace Engineering 

 

 

 

 

 

June 2021 

Embry-Riddle Aeronautical University 

Daytona Beach, Florida 



ii 

 

ADAPTIVE-OPTIMAL CONTROL OF SPACECRAFT 

NEAR ASTEROIDS 

 

 

By 

 

 

Madhur Tiwari 

 

 

This Dissertation was prepared under the direction of the candidate’s Dissertation 

Committee Chair, Dr. Troy Henderson, Department of Aerospace Engineering, 

 and has been approved by the members of the Dissertation Committee. It was 

submitted to the Office of the Senior Vice President for Academic Affairs and  

Provost, and was accepted in the partial fulfillment of the requirements for the  

Degree of Philosophy in Aerospace Engineering. 

 

 

 

 

DISSERTATION COMMITTEE 

 

 

Chairman, Dr. Troy Henderson 

 

 

 

 Member, Dr. Richard Prazenica 

 

Member, Dr. Eric Coyle 

 

 

 

 

 Member, Dr. Morad Nazari 

Graduate Program Coordinator, 

Dr. Sirish Namilae 

 

 

 

 Date 

Dean of the College of Engineering, 

Dr. Maj Mirmirani 

 

 

 

 Date 

Senior Vice President for Academic 

Affairs and Provost,  

Dr. Lon Moeller 

 Date 



iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my mom and dad for their continuous

support throughout my life. I want to thank my wife, Kanika, for all her sacrifices and

being there during all the ups and downs. Without you, this wouldn’t have happened. I

want to thank my brothers, Varad and Veeru. My friends for life.

I want to thank Dr. Troy Henderson for giving me an opportunity when no one else

did. Thank you for believing in me and being there for me whenever I needed it. Special

thanks to Dr. Richard Prazenica, who is not only a great mentor but a very good friend.

Thank you for taking the time out for our long conversations and sharing your part of

life with me. I want to thank Dr. Eric Coyle for being such a fantastic advisor and being

available for our discussions whenever I needed it. I look forward to our future works. I

would also like to thank Dr. Morad Nazari for being there as someone I strive to be. Your

discipline and work ethic is something I try to incorporate in my academic life. Honestly,

I couldn’t have asked for a better group of gentlemen to guide me through my academic

journey. I am so thankful to all of you that no words can describe.

Nothing can be accomplished without a team. I want to thank all my friends

throughout my academic life. Thank you, Naveen, Anu, Krishna, Audrey, Sharath, David,

Chris, Daniel, Suma, Peter, for all the good times.

I want to thank everyone in the Aerospace Department for giving me this opportunity

and for always supporting me throughout my Ph.D. I want to acknowledge the grant

from Defense Advanced Research Projects Agency (DARPA) under Contract No.

D16PC00110 for partly funding my Ph.D.



iv

ABSTRACT

Spacecraft dynamics and control in the vicinity of an asteroid is a challenging and

exciting problem. Currently, trajectory tracking near asteroid requires extensive

knowledge about the asteroid and constant human intervention to successfully plan and

execute proximity operation. This work aims to reduce human dependency of these

missions from a guidance and controls perspective. In this work, adaptive control and

model predictive control are implemented to generating and tracking obstacle avoidance

trajectories in asteroid’s vicinity.

Specifically, direct adaptive control derived from simple adaptive control is designed with

e modification to track user-generated trajectories in the presence of unknown system

and sensor noise. This adaptive control methodology assumes no information on the

system dynamics, and it is shown to track trajectories successfully in the vicinity of the

asteroid. Then a nonlinear model predictive control methodology is implemented to

generate obstacle avoidance trajectories with minimal system information namely mass

and angular velocity of the asteroid.

Ultimately, the adaptive control system is modified to include feed-forward control input

from the nonlinear model predictive control. It is shown through simulations that the new

control methodology names direct adaptive model predictive control (DAMPC), is able

to generate sub-optimal trajectories. A comparative study is done with Asteroid Bennu,

Kleopatra and Eros to show the benefits of DAMPC over adaptive control and MPC. A

study on effect of noisy measurements and model is also conducted on adaptive control

and direct adaptive model predictive control.
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1. Introduction

Autonomous spacecraft trajectory tracking near asteroids is a challenging and

exciting problem that has received considerable attention from researchers and scientists.

The problem presents several challenges, but one of the main issue is the unknown

dynamical environment near asteroids. Before missions to these asteroids, very little is

known about the asteroid characteristics, especially for close proximity missions. This

is because the asteroids are usually very small and distant, and earth-based technologies

cannot capture precise details of the asteroid environment.

Another big challenge is a delay in communication. Currently, it takes around

15-20 minutes to send a one-way signal to spacecrafts orbiting around asteroids due

to large distances (Shea, 2018). This delay causes significant issues as real-time

control of spacecraft becomes impossible, and the scientists have to rely on old data

for estimating spacecraft trajectories and parameters. This is a significant problem for

missions to asteroids where the dynamical environment is rapidly changing and real-time

communication is necessary (Tsuda et al., 2013).

With communication delays and lack of knowledge, the spacecraft has to rely on

an earth-based ground station to perform mission objectives like orbiting, proximity

missions, landing, and sample collection (Scheeres, 2006). In the future, the goal would

be to minimally rely on ground stations and perform various aspects of missions like

trajectory generation and tracking autonomously.

The main objective of this work is to design and implement a control methodology

that does not rely on knowledge of an asteroid’s dynamical environment and can

generate and track sub-optimal/optimal trajectories around asteroids. This is achieved by



2

designing and implementing adaptive control techniques based on simple adaptive control

(Kaufman et al., 1997a). The adaptive controller is further modified to include model

predictive control to the control system while generating obstacle avoidance trajectories

around the asteroid.

1.1. Adaptive Control

In this work, a direct adaptive controller based on simple adaptive control

methodology is considered. This is an output feedback controller with two feed-forward

terms as follows:

u = Ke(t)ey + Kx(t)xm + Ku(t)um (1.1)

In Equation 1.1, ey is the output tracking error, defined as,

ey(t) = ym(t)− y(t) (1.2)

ey(t) = Cxm(t)−Cx(t) (1.3)

where ym ∈ Rm and y ∈ Rm are the output vectors of the reference and system models

respectively. Ke(t) ∈ Rm×m is the time-varying control gain matrix, Kx(t) ∈ Rm×n and

Ku(t) ∈ Rm×m are time-varying feedforward control gains, and xmv ∈ Rn and um ∈ Rm

are the states and control vectors of the reference model.

This form of adaptive control is very advantageous to our mission scenarios as it

does not require any dynamical parameters such as asteroid’s gravity, rotation rate, inertia,

solar radiation pressure, or spacecraft parameters. The adaptive control also does not

require full state feedback, but only the states are being tracked.

The adaptive controller above requires a user-given trajectory to track and cannot

generate obstacle-avoidance trajectories to achieve full control autonomy. Also, the
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adaptive control is not optimal, which could be an issue for long-term missions with

limited fuel capacity.

Therefore, to address the shortcomings of adaptive control, a nonlinear model

predictive controller (NMPC) is designed and implemented. Initially, the NMPC is

studied as a standalone controller to generate trajectories, but later the adaptive control

law is modified to include NMPC as a feed-forward term. The ultimate goal is to design

a controller that combines the adaptive control and nonlinear model predictive control

advantages while using minimal information about the asteroid parameters.

1.2. Model Predictive Control

Model predictive control is currently being extensively studied and implemented

in various applications such as autonomous driving, unmanned aerial vehicles, and

spacecrafts. MPC works by optimizing a cost function to generate trajectories over a

finite time horizon (Mehrez Said, 2018). The trajectories generated could be optimal or

sub-optimal depending on the convexity or non-convexity of the system or constraints.

One of the main advantages of the MPC is that a nonlinear system with nonlinear system

constraints can be considered for optimization.

This work aims to implement a feed-forward nonlinear model predictive control

methodology to generate sub-optimal trajectories that can be tracked by implementing

the adaptive controller (Andersson et al., 2019). The NMPC designed in this work will

use only the least amount of available information, such as the mass of the asteroid and

approximated rotation rate, which is readily available by light curve analysis.

Clearly, the feedfoward NMPC designed with a two-body approximation will not

able to handle the disturbances produced from the non-spherical gravity and other forces
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acting on the spacecraft. In that case, the adaptive control works as a disturbance rejecting

control while tracking sub-optimal/optimal trajectories from the NMPC. Even though a

feedback NMPC control can be applied in this case which inheritably rejects disturbances,

the stability of the NMPC cannot be guaranteed and the system is computationally

expensive.

Therefore, an NMPC is implemented as a feed-foward control which is augmented

by the direct adaptive control. The nonlinear model predictive control implemented is

a discrete control system which is discretized by the fourth order Runge-Kutta scheme

and the multiple shooting method is implemented with an interior point numerical solver

known as Casadi (Andersson et al., 2019). In the section, the modified adaptive control

with the feed-forward NMPC is presented where the control law takes the adavante of

the optimality of the NMPC and the robust of the direct adaptive control system. The

formulation of NMPC is given as follows:

min
uk,..,uk+N−1,xk,..,xk+N−1

F (xN) +
N−1∑
k=0

[x(k)− xr(k)]TQ[x(k)− xr(k)] + u(k)TRu(k)

(1.4)

subjected to:

xk+1 = f(xk,uk), x ∈ R6, k = 0, ..., N (1.5)

umin(k) ≤ u(k) ≤ umax(k), k = 0, ..., N − 1 (1.6)

1−
[(

xk
a

)2

+

(
yk
b

)2

+

(
zk
c

)2]
≤ 0 (1.7)

Here Equation 1.4 defines the cost function to be minimized. The dynamical constraints

are given in Equation 1.5 and control constraints are given in Equation 1.6 where umin

and umax are the lower and upper-bound of the control effort. The safety ellipsoid
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constraint is given in Equation 1.7. The term F (xN) is the cost on the final state and is

defined as,

F (xN) = [xN − rN ]TP[xN − rN ] xN , rN ∈ R6, P ∈ R6×6 (1.8)

1.3. Direct-Adaptive Model Predictive Control

A control methodology that takes advantage of the adaptive control and the model

predictive control is designed such that adaptive control is implemented as a feedback

control law while the NMPC is implemented as a feed-forward control law. The resulting

control system computationally efficient and sub-optimal while being robust to the

unknown dynamical parameters and noise. The direct-adaptive model predictive control

(DAMPC) is defined as follows,

uDAMPC = Ke(t)ey + uMPC (1.9)

Here Ke(t) ∈ Rn×n is the adaptive control law, ey ∈ Rn is the error term between

the actual and ideal reference model and uMPC is the feed-forward model predictive

control.

The direct adaptive-model predictive control (DAMPC) has a few major advantages:

• The adaptive control component adds robustness to the MPC since the system

model for the MPC is a low-fidelity simplified version of the gravitational field,

and the unmodeled forces are missing.

• The MPC adds optimality to the control system via the feed-forward control inputs

and generates sub-optimal trajectories for the adaptive control to track.

• MPC also adds better noise handling to the adaptive control system by the addition

of feed-forward control. This especially helps since the adaptive control is
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initialized by zero initial condition.

1.4. Contributions of this dissertation

The main objective of this work is to design and implement adaptive control and

model predictive control systems to increase the autonomy of spacecraft proximity

operations near asteroids. Three different asteroids are considered for simulation

purposes. A summary of the contributions is outlined as follows:

• A detailed spacecraft orbital and attitude dynamical model in asteroid body frame

is implemented with solar radiation pressure, polyhedral gravitational model, and

gravity gradient force and torques.

• An adaptive control system with a simple adaptive control methodology is

implemented and studied.

• The adaptive control system is modified using an e modification for robustness to

system and sensor noise. A Lyapunov stability analysis is presented with robustness

modification terms. Several simulation studies are done to show the adaptability of

the control system.

• A nonlinear model predictive control framework with obstacle avoidance is

designed and implemented. Trajectory tracking and point-to-point trajectory

generation cases are discussed.

• A novel control system based on adaptive control and model predictive control is

designed and implemented. The control system is studied in detail with various

simulations, and the performance and robustness of the control system is compared

to both the MPC and adaptive control systems.
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2. Literature Review

There has been a growing interest in exploring near-earth asteroids for scientific,

threat avoidance, and future industrial projects. Due to these recent developments, the

scientific community is actively working to devise innovative technologies that can make

accessing asteroids easy, autonomous and safe. This chapter will present state of the art in

spacecraft dynamics and control in the vicinity of asteroids and other small solar system

bodies.

2.1. Spacecraft Dynamics

Spacecraft dynamical modeling in the small bodies’ vicinity is an ongoing research

area in the aerospace community. This topic is not fully explored because each mission to

these bodies presents different challenges. The main factors that influence the dynamical

uncertainty include:

(1) Irregular and unknown shape: precise estimation of small bodies’ shape is

difficult, if not impossible, with earth-based technologies. Therefore, an accurate

gravitational model cannot be generated, resulting in poor dynamical modeling. The

irregular shape of the asteroids results in an irregular gravitational field, which results in

unknown forces and torques acting on the spacecraft (Scheeres & Schweickart, 2004).

(2) Solar radiation pressure (SRP): Usually, SRP cannot be fully modeled, as it is

dependent on the spacecraft’s position, attitude, shape, and reflective properties. This

introduces uncertainty in the dynamics and usually needs to be resolved with active

control methodologies (Kikuchi et al., 2017).

(3) Asteroid rotation: Small bodies like asteroids rotate at a high rate. Earth-based

methodologies such as light curve methods are used to estimate the rotation. However,
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the precise and the axis of rotation is unknown. Nearly half of the asteroids are known to

rotate on a time-varying axis, and many of them have a periodic rotation axis (Scheeres,

2006).

(4) Other factors: There are several other known and unknown factors that affect

the motion of the spacecraft near asteroids such as, variable inertia due to rover and

solar panel deployment, mass change due to fuel consumption, solar winds, n-body

gravitational effects (Tsuda et al., 2013).

Theoretical analysis of the gravitational field of the asteroids is studied in vast detail.

A polyhedral gravity model for irregularly shaped bodies is presented by Werner and

Scheeres (1996). This model is the benchmark for simulating the asteroid’s gravitational

field due to its accuracy and validity for irregularly shaped bodies. However, this model

could be computationally expensive, especially for online implementation. Triaxial

ellipsoidal gravity models are used in several studies to study the effect of gravity. These

models are computationally efficient and can be easily implemented online. Even though

these models suffer from inaccuracies, they could be sufficient for short-term proximity

missions to asteroids and other small bodies.

Another extensively used gravity model is the spherical harmonic gravitational

model (SHM). This model is beneficial for shapes that differ from a perfect sphere.

Several studies have been conducted using this model for asteroid proximity missions;

however, due to the fact that the SHM fails to converge inside the Brillouin sphere, they

are not suitable for estimating gravity for proximity operations.

Recently, more precise and detailed models are being considered that treat asteroids

and spacecraft as point masses. This model fills the asteroid with several finite point
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masses, and the gravitational field at a specific location is calculated from the effect of

all the point masses. Even though this model captures a better picture of the gravitational

field at a large distance, this model fails to provide an accurate estimate. To precisely

capture the gravitational field’s effect on the spacecraft, it is necessary to model the

orbit-attitude coupling effects. One of the early works by Sincarsin and Hughes (1982)

shows the impact of orbit-attitude coupling via Taylor series expansion. The authors

conclude that the attitude is affected by orbital motions depending on the size of the

spacecraft.

In Scheeres (2006), the author highlights the effect of orbit-attitude coupling the

proximity of a small asteroid. The paper concludes that a non-negotiable mass of the

small body can significantly perturb the spacecraft’s orbital path due to coupling effects.

This is specifically important if the spacecraft is required to deflect the asteroid via

mechanical attachments (Scheeres & Schweickart, 2004) or tugging (Lu & Love, 2005).

The problem of studying the coupled effects is reviewed by several researchers (Sanyal

et al., 2004; Wang, Krishnaprasad, et al., 1990).

Recently, a lot of effort is put into capturing this effect to precisely model the

spacecraft dynamics in the proximity of the asteroid and other small bodies. In Wang Yue

and Xu Shijie (2014), the authors model a spheroid planet’s gravity field by considering

the spacecraft as 36 point masses, and gravity is represented using an SHM. The paper

concludes that the spacecraft is severely affected by coupled effects. The effects are

largely dependent on the parameter ρ/r (Bolatti & de Ruiter, 2020; Sincarsin & Hughes,

1982; Wang, Zhong, et al., 2018), where ρ is the largest dimension (characteristic

dimension) of the spacecraft and r is the orbit radius. Therefore, as the proximity to the
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asteroid increases, so does the effect of orbit-attitude coupling. In (Kikuchi et al., 2017)

the authors model gravity using a tri-axial ellipsoidal model. The spacecraft is treated

as a rigid body, and the force due to gravity is up to fourth-order while the torque acting

the spacecraft due to its shape is up to second order. Effect of solar radiation pressure

(SRP) is also included. This model, however, is not appropriate for proximity missions,

especially inside the Brillouin sphere.

In Bolatti and de Ruiter (2016), as well as Bolatti and de Ruiter (2020), the authors

present a novel formulation by considering a polyhedral gravity model for the asteroid

and treating the spacecraft as a combination of several points masses. This model can

effectively capture a very precise dynamical model for spacecraft at proximity.

In Misra (2016), the authors present another coupled orbit-attitude model that

captures the effects of SRP and solar tides. The gravity is modeled using a uniformly

rotating tri-axial model up to second degree and order.

2.2. Spacecraft Control Around Small Bodies

Currently, the spacecraft control for proximity asteroid operations is a combination

of autonomous and ground-in-loop systems. Most of the control strategy is tediously

designed offline and uploaded to the spacecraft. As an example, Hayabusa2’s GNC

system consists of PD control and a sliding mode control strategy. PD control is deployed

when the spacecraft is close to the asteroid (under 5 km), and the sliding mode control is

deployed at other times. PD control gains are calculated via a ground-based Monte-Carlo

simulation, and the delta-v commands are calculated onboard the spacecraft.

In the case of the sliding mode control, after receiving the commands (image-based

navigation) from the spacecraft (20 mins), the ground team calculates the required delta-v
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commands and uploads them to the spacecraft (Ono et al., 2020). The complete process

requires a team of scientists and 65 min to send a velocity command. The process is

repeated after acquiring additional images. Therefore, a more autonomous navigation and

control methodology is needed for future missions.

Recently, spacecraft control in an asteroid’s vicinity has been studied in quite some

detail. The problem of orbital control is a primary concern for most asteroid missions.

However, attitude control is also essential for several applications such as mapping,

photography, and other scientific experiments. There are several control objectives for

spacecraft missions near asteroids. Near inertial hovering focuses on tracking a fixed

point in inertial space. This is helpful in studying asteroid properties. Asteroid body-fixed

hovering is another important maneuver where the spacecraft tracks a fixed location with

respect to the asteroid. This is essential, especially during the landing and sampling phase

of the mission.

Thirdly, circumnavigation and orbital tracking maneuvers are implemented to guide

the spacecraft to the desired location. In this section, a literature review on spacecraft

control in the asteroid’s vicinity is presented. Broschart and Scheeres (2005) designed a

feedback control for spacecraft hovering with application to asteroid Itokawa. First, an

open-loop control with a combination of deadband control is designed. The open-loop

control cancels the nominal acceleration and centrifugal acceleration. In contrast,

deadband control is enabled whenever the spacecraft loses altitude outside the band

defined by ho±δ where ho is the altitude with a tolerance factor δ. The controller assumes

the gravity and rotational information of the asteroid.

Second, feedback control is designed that estimates the nominal and centrifugal
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accelerations at the required altitude. This improves the performance and saves fuel

because the estimation of the accelerations is more accurate in this case. In Kumar and

Shah (2007), authors designed an invariance based feedback control. The controller is

designed to follow an ideal attitude trajectory, and a PD type of tracking controller is

designed with a feedforward term that cancels nominal and centrifugal accelerations. The

controller inherently assumes the orbital and gravitational properties of the asteroid.

Guelman (2014) designed an elegant feedback orbital control law. The control is

designed to achieve a circular orbit around asteroids with the desired radius, inclination,

and right ascension of the ascending node (RAAN). The gravitational field is modeled

using McCullagh’s approximation. Again, the controller assumes rotational and

gravitational information of the asteroid.

Reyhanoglu (2012) presented a Lyapunov-based nonlinear feedback control law to

control the rotational and translational motion of the spacecraft. The orbital controller is

designed to reach a desired circular orbit, while the attitude control is designed to track

a nadir pointing attitude. A finite-time control law for body-fixed hovering is designed

by (Lee, Sanyal, et al., 2015). The dynamics are expressed in exponential coordinates.

A Lyapunov stability analysis is presented. The controller is able to hover at the desired

location successfully.

Liu (2015) presented a controller based on a combination of PD and terminal sliding

mode control. The PD control is implemented for the descending phase, while the sliding

mode controller for the landing phase. Open-loop sub-optimal fuel trajectories are

designed for tracking. It is shown that the controller can successfully perform the desired

maneuvers.
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Li (2019) presented a novel attitude control law for trajectory tracking near

small bodies. The controller exploits gravitational coupling arising from the irregular

gravitational field of the asteroid and the shape of the spacecraft. A polyhedral model of

the asteroid is implemented, and the spacecraft is modeled using a distributed point-mass

model. The results show successful tracking using only attitude control. However, a

detailed polyhedral shape model of the spacecraft is required to implement the control

law.

2.3. Adaptive Control

In Lee and Vukovich (2015), as well as, Lee and Vukovich (2016), authors design

an adaptive sliding mode control scheme for autonomous body-fixed hovering in an

asteroid’s vicinity. The controller does not assume upper and lower uncertainty bounds.

The controller requires an online estimation of gravitational parameters and upper bound

disturbances. The paper shows successful hovering maneuvers. However, in the case of

trajectory tracking, the estimation of parameters will be more complex due to the irregular

gravity of the asteroid.

Tiwari and Henderson (2020) authors present a direct adaptive control strategy to

track a hovering trajectory in an asteroid’s vicinity. The controller does not require a

system model of the spacecraft or the asteroid. The adaptive control law can successfully

track the given trajectory in the presence of uncertain parameters.

In Tiwari and Prazenica (2020), the spacecraft is required to follow an ellipsoidal

trajectory around an asteroid, an adaptive control law based on simple adaptive control

(SAC) is designed and implemented. The spacecraft is modeled using a point mass, and

the asteroid’s gravity field is modeled using McCullagh’s gravity approximation. The
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adaptive control is successfully able to track the trajectory with an unknown system

model and disturbances. In Stackhouse (2020), authors present an adaptive control

design using Udwadia-Kalaba (UK) formulation to perform a hovering maneuver over

an asteroid. The gravity is modeled using spherical harmonics. An indirect adaptive

control law is designed where the gravitational parameters are estimated online. The

UK formulated is fed with adaptive estimates from the adaptive control. The results

show effective tracking over asteroid Bennu. However, the UK formulation required

exact dynamics to output control accelerations which ultimately relies on the choice of

gravitational model.

Non-Certainty-equivalence based indirect adaptive control law is designed by

Lee (2019) for attitude control of the spacecraft around an asteroid. It does not assume

spacecraft inertial and asteroid gravitational parameters. The control is required to

track reference attitude trajectories for precise nadir pointing in elliptical prograde

and retrograde orbits. The control system comprises a control module and a parameter

identifier. The results show successful attitude tracking with unknown system parameters.

Another paper by the same authors (Lee 2019) presents a super twisting adaptive control

law for translational trajectory tracking around asteroids.

Silva (2020) present an indirect adaptive control law for spacecraft control for

trajectory tracking around asteroids. The certainty equivalence-based adaptive control law

is designed to estimate the unknown system parameters using an extended Kalman filter.

Estimated states and the parameters are then fed into the adaptive control. The adaptive

control law is simply a nonlinear version of LQR. However, the error dynamics are

linearized using Taylor series expansion, and the resulting system is a time-varying LQR
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problem. The optimal gains are calculated by solving the differential Riccati equation

for each time step. Even though the control is inherently adaptive due to its time-varying

nature, it’s still dependent on the assumed dynamical model of the asteroid and spacecraft.

In Li (2018), authors designed a self-adaptive control for orbit maintenance. The

control law is designed using Lyapunov theory, and the stability is shown using Barbalat’s

lemma. The spacecraft is successfully able to maintain the orbit with added system

disturbances. A numerical analysis is shown on binary asteroids.

2.4. Optimal Control and Model Predictive Control

Model predictive control (MPC), also known as receding horizon control, is

currently being implemented in several spacecraft GNC applications. Unlike traditional

LQR, MPC can be linear or nonlinear, adaptive to disturbances online, and offer superior

constraint handling.

In Nazari (2014), authors designed an observer-based optimal control for spacecraft

hovering in a body-fixed frame. A time-varying LQR based on Lyapunov-Floquet

transformation (LFT) and a time-invariant LQR are considered. The gravity is modeled

using a tri-axial gravity model, and the states are estimated using an EKF. The rotation of

the asteroid is considered periodic in nature. The controller can successfully hover over a

tumbling asteroid. However, the controller requires gravitational and rotational estimates.

Authors Yang and Baoyin (2015) design a fuel optimal control problem for a soft

landing on an asteroid. The optimal trajectory designed is taken as a reference trajectory

for sliding mode control. Monte-Carlo simulations are done to show the controller’s

performance numerically.

Researchers have designed a multiple-horizon multiple-model predictive control for
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a soft landing on an asteroid (AlandiHallaj & Assadian, 2017). The MPC is designed such

that it uses multiple models for prediction. A polyhedral gravity model is used in the near

time horizon, while a spherical harmonic model is used for a far future. This is based

on studies that show that the control effort is not affected by the dynamical model in the

distant future in the prediction horizon. The methodology requires a very detailed shape

model of the asteroid for successful application.

A convex model predictive control is implemented by Reynolds and Mesbahi

(2017) where authors convexify the soft landing problem and the system constraints. A

collision avoidance method using an optimal separating hyperplane is designed. Spherical

harmonics expansion is used to model the asteroid’s gravity, which required a-prior for

fast online estimation. It is numerically shown that the spacecraft is successfully able to

circumnavigate and land on the asteroid.

Liao and McPherson (2016), authors present multiple optimal strategies to tackle

the problem of soft landing on an asteroid using MPC. An extended command governer

(ECG), convex model predictive controller (CMPC), and a nonlinear model predictive

control (NMPC) are employed. The results show that an NMPC has superior performance

for disturbance rejection and constraint handling.

Authors present a solar radiation pressure based optimal orbit control strategy in

Oguri and McMahon 2020. The orbit-attitude coupling due to SRP is exploited to design

an optimal feedback controller. The control strategy is designed such that the optimal

control problem reduces a Lyapunov function.
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2.5. Direct Adaptive Control

In this section, we present the literature review on the direct adaptive control

methodology implemented in our work. A direct adaptive controller based on simple

adaptive control (SAC) (Kaufman et al., 1997a) is modified and implemented. SAC is

a model reference adaptive control (MRAC) which can track desired trajectories from

a low-order reference model in the presence of system uncertainty and disturbance. In

fact, SAC does not require a system at all for implementation, making it suitable for

applications where it is difficult or impossible to estimate system models.

There have been several developments and applications related to SAC. Researchers

have implemented a modified version of the controller for trajectory tracking for UAVs

(Prabhakar et al., 2018). The control has been added for disturbance rejection. In Shi (),

authors present an application of SAC for spacecraft attitude control in the presence of

added disturbances and system uncertainties. Ulrich and Saenz-Otero (2012) use SAC for

adaptive control flexible joint manipulator. The adaptive control is successfully able to

track desired trajectories in the presence of uncertainties in the model.

Simple adaptive control (SAC) is used for application to spacecraft proximity

maneuvers in the presence of system uncertainties in Ulrich (2016). Experimental

and numerical results are presented to show that the adaptive control is able to track

desired trajectories. Tiwari and Prabhakar (2020), as well as, Tiwari (2016) presented

space-related applications of SAC. It can be noted that the most of the work disscussed

here do not assume a system model for the spacecraft and shows that the simple adaptive

control (SAC) is able to handle system uncertainty.



18

2.6. Nonlinear Model Predictive Control

In this work, a modified nonlinear predictive control (NMPC) is implemented in

conjunction with an adaptive control. NMPC is a sub-optimal finite-horizon control that

can handle nonlinear systems models and constraints.

Schlipf (2013) presented an NMPC to control wind turbines using light detection

and ranging (LiDAR). It shows that an NMPC is able to optimize the performance

in the presence of disturbances. Lee (2018) presented an NMPC scheme using direct

collocation. A learning-based nonlinear model predictive control for robot path tracking

by (Ostafew et al., 2016). The algorithm uses a simple vehicle model and learned

disturbances model. The disturbances are modeled using a Gaussian process. The results

show that controllers can learn to reduce tracking errors over time based on experience.

Rybus (2017) implement an NMPC for a free-floating space manipulator. The

NMPC is used to track end-effectors in the presence of uncertainties. The NMPC is then

compared with a modified simple adaptive control (Ulrich & de Lafontaine, 2007). The

results show superior tracking with NMPC as compared to SAC-based control. Starek and

Kolmanovsky (2014) implement NMPC for low thrust spacecraft missions. The NMPC is

used to solve a low thrust rendezvous problem.

It is shown that the NMPC can handle control objectives even in the presence of

system uncertainties. However, (Grimm et al., 2004) showed that a nonlinear model

predictive control with nonlinear states and constraint does not guarantee asymptotic

stability and may have no robustness to external disturbances.
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3. Spacecraft Dynamics Near Small Bodies

In this chapter, we discuss the formulation of dynamics, forces, and coordinate

frames. The dynamical model presented here is then implemented as a true to numerically

verify the performance of adaptive control and direct adaptive model predictive control

methodology. The model is numerically propagated using fourth order Runge-Kutta

formulation in MATLAB and Simulink.

Polyhedral model implemented in this dissertation is from (Bolatti & de Ruiter,

2020). The system is dynamics is represented in the usual two-body form as well as

Euler-Lagrange form. Euler-Lagrange form is used to prove the stability of the direct

adaptive control. The coupling between translational and attitude dynamics arising from

gravity gradient and solar radiation pressure is also shown. The attitude dynamics is

parametrized via modified Rodriguez parameters.

3.1. Dynamics

This section presents the dynamical formulation and the forces acting on the

spacecraft in small bodies’ (asteroid’) vicinity. First, we discuss the coordinate frames

and coordinate transformations applied in this work. Next, we provide the details on

gravitational forces, external forces, coupled forces, and the SRP.

In this work, a hybrid approach is taken to model the forces due to gravity and

coupled translational-rotational motion. A polyhedral gravity model is considered to

model the asteroid’s gravity for the spacecraft’s point mass model. However, the gravity

gradient torque and translational-rotational coupling for the rigid body spacecraft are

modeled using the asteroid’s point mass gravity model.
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This hybrid approach captures the dominant forces due to the asteroid’s irregular

shape while keeping the rigid body spacecraft model relatively simple.

3.1.1. Coordinate Frames

In this research, we have implemented five-coordinate frames to describe the

spacecraft’s orbital and attitude states. It is conventional to write the orbital dynamics

in the small body-fixed frame. Simultaneously, it is conventional to write the attitude

dynamics in spacecraft fixed body frame. The approach taken here is similar to (Kikuchi

et al., 2017).

The coordinate frames are given as follows:

1. Inertial coordinate system (xI , yI , zI): A right-handed coordinate system inertially

fixed at the center of the sun.

2. Asteroid fixed coordinate system (SB) (xSB, ySB, zSB): The origin is at the center

of mass of the asteroid. zSB axis is in the direction of the angular velocity of the asteroid.

The asteroid is assumed to be rotating with a constant angular velocity about the zSB axis.

3. Spacecraft fixed body frame (SC) (xSC , ySC , zSC): The origin is at the spacecraft

center. The axes are aligned along the principal axes of the moment of inertia.

4. Orbit Fixed Frame (Hill Frame) (xH , yH , zH): The origin is fixed at the center

of the asteroid. The xH axis is parallel to the sun direction but points in the opposite

direction. The zH axis is in the direction of the angular velocity of the asteroid around

the sun, and the yH axis completes the triad. See Figure 3.1.

5. Sun-pointing coordinate frame (xSP , ySP , zSP ): The coordinate frame is at the

center of the spacecraft. The zSP axis is fixed to point at the sun, xSP points parallel to
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the plane formed by xH and yH . The attitude of the spacecraft is defined with respect to

this frame. See Figure 3.2.

Figure 3.1 Asteroid body frames with respect to sun.

Figure 3.2 Spacecraft body frames with respect to sun.

3.1.2. Orbital Dynamics

The controlled spacecraft dynamics relative to the asteroid is expressed in the

rotating asteroid body fixed frame (SB) is given as,

mr̈ + 2m(Ω× ṙ) +m(Ω× (Ω× r)) = F(r)gp + f(r,σ)gg + f(σ)srp + u (3.1)



22

where m is the mass of the spacecraft, r = [x y z]T is the position vector from the center

of mass of the asteroid to the center of mass of the spacecraft expressed in the asteroid

body frame (SB) as shown in Figure 3.3. The angular velocity vector Ω = [0 0 ω]T

is considered constant, where ω is the magnitude of the angular velocity. The vector Ω

is aligned with the unit vector ẑSB and σ = [σ1 σ2 σ3]
T are the modified Rodrigues

parameters (MRPs).

Here F(r)gp = [Fgpx Fgpy Fgpz ]
T is the force due to the polyhedral gravity model

of the asteroid and f(r,σ)gg = [fggx fggy fggz ]
T is the gravitational gradient force arsing

from the interaction between point mass gravity model of the asteroid and the rigid body

model of the spacecraft.

Here f(σ)SRP = [fsrpx fsrpy fsrpz ]
T is the force due to solar radiation pressure which

is dependent on the attitude of the spacecraft. Here u = [ux uy uz]
T is the thrust control

vector assumed to be aligned with the principal axes of the asteroid.

Figure 3.3 Spacecraft rigid body with respect to asteroid

It can be noted that the functions f(r,σ)gg and f(σ)SRP shows the coupling between

translational and attitude dynamics through SRP and gravitational gradient effects. These
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forces are derived in the subsequent sections.

For this research, and without loss of generality, the asteroid’s angular velocity

vector is aligned with the z axis of the asteroid. The state-space formulation for the

orbital dynamics with state vector x = [r(t) ṙ(t)]T is given as,

ẋ = F(x) + Bu

y = Cx

(3.2)

where F(x), B and C are given as,

F(x) =
1

m



ẋ

ẏ

ż

2mωẏ +mω2x+ Fgpx + fggx + fSRPx

−2mωẋ+mω2y + Fgpy + fggy + fSRPy

Fgpz + fggz + fSRPz



,B =
1

m

03×3

I3×3

 ,C = [I3×3 I3×3]

(3.3)

For the sake of stability analysis, higher order forces can be considered as both low

frequency and low magnitude perturbations, which can be handled by the robustness of

the adaptive controller. The adaptive controller implemented in this work requires the

system to be in square state-space form to satisfy the almost strictly passive conditions

(ASP) (see section III). The square state-space form, with a point mass gravity model is

given as,

ẋ = Assx + Bu +
1

m
Fe (3.4)

y = Cx (3.5)
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where Fe = F(r)ghot + f(r,σ)gg + f(σ)srp are the sum of disturbance forces to higher

order gravity terms F(r)ghot, SRP, and gravity gradient and Ass ∈ Rn×n is a square

matrix given as,

Ass =



03×3 I3×3

ω2 − µ
|r|3 0 0 0 2ω 0

0 ω2 − µ
|r|3 0 −2ω 0 0

0 0 − µ
|r|3 0 0 0


(3.6)

Equation (3.4) is exploited to study the stability of the adaptive controller in

subsequent sections, which is derived from the theoretical results presented by Barkana

(Barkana, 2010). It can be noted here that C from Equation (5.10) outputs the states as

the summation of position and velocity, also known as blended output, which has shown

to significantly improve the controller performance by adding damping effects on the

control thrust, and it assists in satisfying the minimum phase conditions.

3.1.3. Attitude Dynamics

The attitude dynamics of the spacecraft are expressed in the spacecraft fixed body

frame (xSC , ySC , zSC). The frame is fixed at the center of mass of the spacecraft and is

aligned with the principle axes of the spacecraft. The attitude dynamics is expressed using

Euler rotational equations as follows:

Iω̇ = −ω×Iω + τ + TSRP (σ) + TGG(σ, r) (3.7)

where I ∈ R3×3 is the inertia of the spacecraft written in the SC frame and, ω ∈ R3

is the angular velocity vector of the spacecraft with respect to the orbit fixed frame (H).
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Here, τ ∈ R3 is the attitude control thrust vector, TSRP (σ) ∈ R3 is the torque due to

solar radiation pressure, TGG(σ, r) ∈ R3 is the torque due to gravity gradient. It can be

noted that the function TGG(σ, r) shows the coupling between translational and rotational

dynamics. ω× ∈ R3×3 is a skew symmetric matrix and I is the inertia tensor as given in

Equation 3.8.

ω× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 , I =


Ix 0 0

0 Iy 0

0 0 Iz

 (3.8)

3.1.3.1. Attitude Kinematics

A brief overview of attitude kinematics is provided in this section. In this research,

attitude kinematics is parameterized using modified Rodrigues parameters (MRPs). The

MRPs are defined in terms of quaternions by applying a stereo-graphic projection and can

be defined as follows:

σi =
qi

1 + q0
, i = 1, 2, 3 (3.9)

where q is the quaternion and σ is the MRP. The MRPs have few advantages over

quaternions such as they are unique and non-redundant. However, MRPs do suffer from

geometric singularity at q0 = −1. Further, the MRPs can be expressed in terms of a

principal rotation angle and principal axis vector as follows:

σ = tan
Φ

4
ê (3.10)

where σ ∈ R3 is the MRP vector, Φ is the principal rotation vector, and ê ∈ R3 is the

principal axis vector. It can be seen from Equation (3.10) that the geometric singularity in

terms of the principal rotation angle is at Φ = ±360 deg. Therefore, in order to resolve
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the singularity issue, shadow sets are defined as follows:

σsi =
−qi

1− q0
, i = 1, 2, 3 (3.11)

Introducing a shadow set allows to switch and avoid discontinuities when working with

MRPs. Hence, when the Φ = ±360 deg, the MRP formulation is switched to the

shadow set as given in Equation (3.11). It can be noted that shadow sets suffer from the

singularity at Φ = 0 deg.

3.1.3.2. Attitude Kinematic Differential Equations

The kinematics differential equation using MRPs is given as follows:

σ̇ =
1

4


1− |σ|2+2σ2

1 2(σ1σ2 − σ3) 2(σ1σ3 + σ2)

2(σ2σ1 + σ3) 1− |σ|2+2σ2
2 2(σ2σ3 − σ1)

2(σ3σ1 − σ2) 2(σ3σ2 + σ1) 1− |σ|2+2σ2
3




ω1

ω2

ω3



SC

(3.12)

where ωSC = [ω1, ω2, ω3]
T are the angular velocities of the spacecraft in the

spacecraft body fixed frame (xSC , ySC , zSC), and |σ| is the magnitude of the MRP vector.

The MRP kinematics differential equation can be written in a more compact vector

form as,

σ̇ = S(σ)ω (3.13)

where,

S(σ) =
1

4
[(1− |σ|2)[I3×3]] + 2σ× + 2σσT ] (3.14)

where σ× ∈ R3×3 is the skew symmetric matrix is given as,
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σ× =


0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0

 (3.15)

Alternatively, the kinematics can be expressed in terms of angular velocity as,

ω = S−1(σ)σ̇ (3.16)

where S−1(σ) is given as,

S−1 =
4

(1 + |σ|2)
[(1− |σ|2)I3×3 − 2σ× + 2σσT ]σ̇ (3.17)

The MRP kinematics differential equation for the shadow are given as,

σ̇S = − σ̇

|σ|2
+

1

2

(
1 + |σ|2

|σ|4

)
σσTωSC (3.18)

Shadow set switching is applied in this research to resolve the singularity issue. However,

it has been shown in (Schaub & Junkins, 2018) that switching between original and

shadow set at |σ|= 1 or Φ = 180 is more beneficial than switching when MRPs reach

singularity. Therefore, in this research shadow set, switching is employed when MRPs

reach |σ|= 1.

For convenience, the square state-space form for attitude dynamics is formulated in

Euler-Lagrange form (Shi et al., n.d., Wong et al., 2001).

J(σ)σ̈(σ) + C∗(σ, σ̇)σ̇ = S−1(σ)τ (3.19)

where J(σ) and C∗(σ, σ̇) are given as,

J = S−T IS−1, C∗ = −JṠS−1 − S−T (JS−1σ̇)×S−1 (3.20)

The state-space formulation for attitude dynamics consists of state vector x =

[σ(t) σ̇(t)]T , where σ(t) and σ̇(t) are the MRPs and rate of change of MRPs vector
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respectively. Using the formulation from Equation (3.19), the square state-space form

is given as,

ẋ = Aattx + Bu + Te (3.21)

y = Cx (3.22)

where Te = TGG(σ, r) + TSRP (σ) is the sum of disturbances due to SRP and gravity

gradient torques. The system matrices can be expressed as,

Aatt =

03×3 I3×3

03×3 −J−1C

 , B =

 03x3

J−1S−1

 , C = [I3×3 I3×3] (3.23)

It may be noted that the output matrix C is the same for orbital and attitude

dynamics; however, in general, the matrix C could be different. Again, in attitude

dynamics, the out vector y is the blended output of MRPs and angular velocities.

Also, the Euler-Lagrange form formulated in Equation (3.19) is not necessary for

implementation. However, this form is exploited to study the stability of the attitude

dynamics of the system.

3.1.3.3. Direction Cosine Matrix (DCM)

Here we formulate the relationship between DCM and MRPs in order to implement

coordinate frame transformations between various frames, as defined in the following

section. The DCM can be paramterized in terms of MRPs as follows:

CDCM = I3×3 +
8(σ×)2 − 4(1− |σ|2)σ×

(1 + |σ|2)2
(3.24)

where CDCM ∈ R3×3 is the DCM in terms of MRPs, and I ∈ R3×3 is the identity matrix.
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3.1.4. Coordinate Frame Transformations

This section discusses the various coordinate transformations required to implement

the spacecraft’s controlled coupled translational and rotational dynamics in the asteroid’s

vicinity. Let us define η and ψ to be any two arbitrary coordinate frames and let ψCη be

the DCM that transforms an arbitrary vector ηr ∈ R3 (not necessarily a position vector)

defined in η-coordinate frame to the vector ψr ∈ R3 defined in ψ-coordinate frame. This

transformation can be expressed as follows with various transformation:

ψr = ψCη
ηr (3.25)

1. Spacecraft fixed frame to sun-pointing frame (SPCSC): This transformation defines

the attitude of the spacecraft with respect to the spacecraft fixed sun-pointing

frame. The DCM SPCSC is calculated via the attitude dynamics/kinematics of the

spacecraft from Equation (3.24).

2. Sun-pointing frame to Hill frame (HCSP ): The transformation between these frame

is a time-invariant transformation since these frames are considered almost inertial

due to the fact that z << d, i.e. the distance from the sun is large enough to

consider this transformation time-invariant. The DCM to transform between the

frames is given as,

HCSP =


0 1 0

0 0 −1

−1 0 0

 (3.26)

3. Hill frame to asteroid body-frame(SBCH): This frame is the transformation

between orbit fixed Hill frame and asteroid fixed body-frame. This results from
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the asteroid’s rotation with respect to the Hill frame. Since the angular velocity

(SBΩ = [0, 0, Ω]T (rad/s)) of the asteroid is constant with respect to the Hill frame,

the transformation can be easily parametrized using single axis Euler angle rotation

about the zSB axis. The transformation is given as,

SBCH =


cos θ(t) sin θ(t) 0

− sin θ(t) cos θ(t) 0

0 0 1

 (3.27)

where θ(t) = Ω × t (rad) is the angle of rotation, and t is the time. It can be

noted that an exception is made and Euler angles are used instead of MRPs. This

is because the rotation is a single axis rotation and the singularity associated with

Euler angles is avoided.

Finally, a complete transformation from spacecraft fixed frame to asteroid

fixed frame (SBCSC) can be formulated using the formulations mentioned

above. It is convenient to calculate forces and torques in their original frame of

references and then transforming them to their final frame. As an example, two

transformations between SC and SB frame are shown as follows:

(a) Transformation of SRP force (fSRP ) from SC frame to SB frame: Due to the

dynamical coupling, the attitude of the spacecraft directly relates to the SRP

force. This transformation sequence is given as,

SBfSRP = SBCH
HCSP

SPCSC
SCfSRP (3.28)

where SPCSC is the attitude of the spacecraft with respect to the sun-pointing

frame (SP ), HCSP is a time-invariant transformation from the sun-pointing
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frame to the Hill frame (H) and SBCH is the transformation from the Hill

frame (H) to asteroid fixed body-frame (SB), which is dependent on the

asteroid’s rotation.

(b) Transformation of gravity gradient torque (TGG): Since the torque due

to gravity gradient is dependent on the position of the spacecraft which is

expressed in the asteroid body-frame, a transformation from for position is

required from SB to SC frame. The sequence of rotation in this is simply the

inverse sequence of Equation (3.29) and is given as,

SCTGG = SCCSP
SPCH

HCSB
SBTGG (3.29)

3.1.5. Forces and Moments

This section presents the formulation of the external forces and moments acting

on the spacecraft due to gravity and solar radiation pressure. Mainly, the formulation of

forces and moments appearing on the right-hand side of Equation 3.1 and 3.7 is presented.

3.1.5.1. Polyhedral Point Mass Gravitational Model

This work has implemented a polyhedral gravitational model that was first

proposed by Werner & Scheeres (1996). This gravity model has several advantages over

conventional models, such as spherical harmonics and McCullagh’s approximations,

which are widely used in control-based applications.

The polyhedral model calculates the exact gravitational field for the given shape and

density of the body (Werner & Scheeres, 1996). The model is valid up to the asteroid’s

surface, and unlike the spherical harmonics gravitational model, it does not diverge inside

the Brillouin sphere. Generally, Spherical harmonics models are used to develop optimal
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and robust control near the asteroid’s vicinity due to its relatively simple formulation and

because these controllers are model-dependent.

However, since a model-free direct adaptive control methodology is implemented

in this work, a more complex but accurate gravitational model can be implemented. The

polyhedral gravitational model assumes the spacecraft to be a point mass. In this work,

we have modeled the coupled gravitational effects due to the rigid-body shape separately.

Figure 3.4 Polyhedron facets and edges.

A polyhedral model is developed using a triangular facet with three vertices. Each

edge of the facet is the boundary between two facets, as shown in Figure 3.4. Here rf

is the vector from the field point (spacecraft position in the asteroid body frame) to any

point on the face plane. Vector n̂f is a unit vector normal to the face plane.

Each triangular facet is associated with its own coordinate frame (̂i, ĵ, k̂) where

the k̂ is aligned with the normal vector n̂f . Vector re is a vector from the field point to

any point at the edge e. Each edge has a normal edge vector, which is normal to the edge



33

vector e and the face normal vector n̂f . Here, the edge vector e is the vector along the

edge of the facet. Each edge is associated with two edge normal vectors (one for each

face plane) namely nAe and nBe . The edge and face dyads constants are given as,

Ee = n̂Af n̂Ae + n̂Bf n̂Be (3.30)

Ff = n̂f n̂
T
f (3.31)

The potential due to the edge is denoted by Le and is given as,

Le = ln
‖re1‖+ ‖re2‖+ ‖e‖
‖re1‖+ ‖re2‖ − ‖e‖

(3.32)

where ‖.‖ is the magnitude of the vectors. Dimensionless factor ωf is defined for each

facet and is given as,

ωf = 2 arctan
r̂f1 · r̂f2 × r̂f3

1 + r̂f1 · r̂f2 + r̂f2 · r̂f3 + r̂f3 · r̂f1
(3.33)

where the vectors rf1, rf1 and rf1 are the vectors from the field point to each vertex of

the triangular facet. Given the above mentioned definitions, the acceleration due to the

polyhedral shape of the body is given as,

agp = −Gρ
∑
e∈edges

Eere · Le +Gρ
∑
f∈faces

Ffrf · ωf (3.34)

where G and ρ are the gravitational constant and density of the asteroid. The gravitational

force (Fgp) from due the polyhedral gravitational field of the asteroid on the spacecraft

with mass m is simply given as,

Fgp = magp (3.35)

Gravitational gradient force (fgg) is the force acting on the spacecraft due to the

interaction between the shape of the spacecraft and the gravitational field of the asteroid.

Figure 3.3 shows the rigid body spacecraft model in the vicinity of the asteroid. In this
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work, gravitational gradient force is calculated using a point mass gravity model for the

asteroid. It can be interpreted from (Bolatti & de Ruiter, 2020) that a point mass gravity

model for the asteroid is sufficient in cases where the mission duration is short.

The force due to gravity gradient is given as,

fSBgg = − 3µ

‖r‖5

[
I +

1

2
(tr(I)− 5(r̂T Ir) I3×3

]
r (3.36)

where, tr(I) is the trace of the inertia tensor, I3×3 is a identity matrix and r is the position

vector in expressed in the body-frame.

Again, the torque due to gravitational gradient results from the interaction of

point mass gravity of the asteroid with the spacecraft. The mass closer to the asteroid

experiences stronger force compared to the mass away from it, which results in a net

torque. The torque due to gravity gradient in the spacecraft body frame (SC) is given as,

TSC
gg = − µ

‖rdm‖3

∫
ρ× rdm dm (3.37)

where rdm = r + ρ is the vector from center of the asteroid to the mass element in the

spacecraft (SC) frame and, ρ is the vector from center of spacecraft to the mass element.

See Figure 3.3.

The torque can be expressed in a more manageable form:

TSC
gg =

3µ

‖r‖5
r× Ir (3.38)

3.1.5.2. Solar Radiation Pressure (SRP) Model

To model the acceleration due to the solar radiation pressure, a flat plate model is

adopted. This model is used in (Kikuchi et al., 2017) to model Hayabusa2’s SRP model.

This model assumes that the effect of SRP is primarily due to the solar panels. Without

the loss of generality, the solar panel is assumed to be perpendicular to the zSC axis. A
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vector n̂SC is defined to be a unit vector parallel to the zSC axis. For maximum power

output from the solar array, the goal would be to align n̂SC axis with the sun-pointing

vector ŝSC . The sun-pointing vector (ŝSC) is given as,

ŝSC = SCCSP ẑSP (3.39)

Maximizing the power output from the solar panels results in maximizing the force due to

SRP. This results n̂SC · ŝSC = 1. In this work, the goal of the attitude adaptive control is

to align the sun-pointing vector ŝSC with n̂SC . The SRP force due to a flat plate model is

given as,

fSRP = −PA(n̂SC · ŝSC)[(2(n̂SC · ŝSC)Cs +BfCd)n̂
SC + (Cd + Ca)ŝ

SC ] (3.40)

where Bf = 2
3

is the Lambertian coefficient, A is the surface area of the flat plate, and

P = P0

d2
is the SRP acting on the surface of the spacecraft. Also, P0 = 1 × 1017 kg.m

s2
and

Cs, Cd, Ca correspond to optical constants of the spacecraft.

Torque due to SRP is given as,

TSRP = SCLSRP ×maSRP (3.41)

where SCLSRP is the position vector from center of the spacecraft to the center of SRP

force. This vector is defined to SCLSRP = [0, L, 0]T . Here, L is the distance between the

SRP force and center of mass of the spacecraft.
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4. Direct Adaptive Control

A direct adaptive control strategy is implemented in this work. This form of

model reference adaptive controller (MRAC) is based on the simple adaptive control

(SAC) strategy (Kaufman et al., 1997a). This controller has several advantages over the

conventional feedback controllers, such as it does not require a plant model, it is an output

feedback controller, and it does not require a full state-feedback, and the estimation of

system parameters is not required.

This gives this controller several advantages for spacecraft missions in unknown

environments, such as asteroid proximity missions, where it is challenging to estimate

system parameters in a short amount of time. SAC requires a reference model to track

trajectories. A linear or low order reference model can be used as a reference model,

making it simple to implement in real-world applications. In this section, the formulation

of SAC and stability analysis of the orbit-attitude model is discussed.

4.1. Dynamical System

The nonlinear system dynamics are given as,

ẋ(t) = Ax(t) + Bu(t) (4.1)

y(t) = Cx(t) (4.2)

where, x(t) ∈ Rn,u(t) ∈ Rm,y(t) ∈ Rm are the state, control, and output vectors and

A = A(x, t) ∈ Rn×n, B = B(x, t) ∈ Rn×m, and C ∈ Rm×n. It should be noted that in

SAC, it is necessary to maintain the square state-space form; that is, the number of control

inputs (u) must be equal to number of states being tracked (y) (i.e. dim(u) = dim(y) =

m).
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The reference model to be tracked is given as,

ẋm(t) = Amxm(t) + Bmum(t) (4.3)

ym(t) = Cmxm(t) (4.4)

The order of reference model state and control vectors is independent of the system

dynamics. However, the order of the output vector of the reference model (ym ∈ Rm)

must match the output vector of the system dynamics (y ∈ Rm) i.e. dim(ym) =

dim(y) = m.

4.2. Control Structure

SAC is an output feedback controller and only requires the measurement of the states

to be tracked. The adaptive control is given as,

u = Ke(t)ey + Kx(t)xm + Ku(t)um (4.5)

In Equation (4.5), ey(t) is the output tracking error, defined as,

ey(t) = ym(t)− y(t) (4.6)

ey(t) = Cxm(t)−Cx(t) (4.7)

where ym(t) and y(t) are the output vectors of the reference and system models

respectively. Ke(t) ∈ Rm×m is the time-varying control gain matrix, Kx(t) ∈ Rm×n

and Ku(t) ∈ Rm×m are time-varying feedforward control gains, and xm and um are the

states and control vectors of the reference model.

The adaptive gains Ke(t), Ku(t) and Ku(t) from Equation (4.5) are the summation

of integral adaptive gains KI(t) = [KIe KIx KIu] and proportional adaptive gains
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KP (t) = [KPe Kx KPu] given as,

Ke(t) = KIe(t) + KPe(t)

Kx(t) = KIx(t) + KPx(t)

Ku(t) = KIu(t) + KPu(t)

(4.8)

To guarantee stability and achieve desired tracking performance, it has been shown

that only the integral gains KI(t) are necessary (Kaufman et al., 1997a). However,

proportional adaptive gains KP (t) have been shown to improve the rate of convergence

of the SAC (Ul). Hence, they have been implemented in this work.

The integral control update law is given as,

K̇Ie(t) = ey(t)e
T
y (t)Γe

K̇Ix(t) = ey(t)x
T
ref (t)Γr

K̇Iu(t) = ey(t)u(t)TΓu

(4.9)

In Equation (4.9), Γe, Γr and Γu are positive definite weighting matrices (tuning

parameters) for the integral adaptive control law. It can be noted that these parameters

must be manually tuned to adjust the rate of adaptation.

The proportional control update law is given as,

KPe(t) = ey(t)e
T
y (t)Γ̄e

KPx(t) = ey(t)x
T
ref (t)Γ̄r

KPu(t) = ey(t)u(t)T Γ̄u

(4.10)

In Equation (4.10), Γ̄e, Γ̄r and Γ̄u are positive semi-definite matrices used for the

proportional adaptive gain laws.
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The adaptive control law can be expressed in a compact form as,

u = K(t)r(t) (4.11)

where,

K(t) = [Ke(t) Kx(t) Ku(t)]

r(t) = [ey(t)
T xm(t)T um(t)T ]T

(4.12)

4.3. SAC Modification for Orbital Dynamics

Adaptive controllers are designed separately for the orbital and attitude controller.

The underlying assumption is that the spacecraft is equipped with thrusters, so the

controllers can be decoupled, even though the system dynamics are coupled. In the case

of orbital dynamics, the SAC is modified to exclude the feed-forward adaptive control

law (um). This is done because a user-defined reference model is designed such that the

trajectories are directly generated without the need for reference control (um).

The modified adaptive control is given as,

u = Ke(t)ey(t) + Kx(t)xm(t) (4.13)

It can be noted from (Kaufman et al., 1997b) that the feed-forward reference control is not

required to guarantee stability. Also, in the case of attitude control, the full form of SAC,

as given in Equation (4.5), is implemented.

4.4. Robustness Modification

The adaptive control gains can diverge during non-ideal tracking scenarios from the

presence of noise as the tracking error continues to grow and the adaptive law (Equation

(4.9)) struggles to compensate (Barkana, 2016). To address this issue, a σ modification



40

was introduced by Ioannou and Kokotovic (Ioannou & Kokotovic, 1984). The sigma

modification for the feedback integral control law (KIe) can be given as,

K̇Ie(t) = ey(t)e
T
y (t)Γe − σKIe(t) (4.14)

The value for the σ modification is set between 0 and 1 to avoid divergence (Ioannou

& Kokotovic, 1983). It has also been shown in Reference (Barkana, 2016) that this

modification is only needed for the feedback term i.e. KIe. This modification has been

applied in several applications (Ulrich, Saenz-Otero, et al., 2016b, Barkana, 2016, Ulrich,

Sasiadek, et al., 2012).

Even though the σ modification increases the robustness for noisy/non-ideal

systems, it decreases robustness in case of ideal scenario. This is also known as bursting

phenomenon. The σ modification hinders the adaptive gains to tend to zero. Therefore,

in order to resolve this issue, we have introduced an e modification for SAC. This

modification was initially introduced for adaptive control systems by Narendra and

Annaswamy (Narendra & Annaswamy, 1987). The e modification for SAC is defined as,

K̇Ie(t) = ey(t)e
T
y (t)Γe − µ‖ey‖KIe(t) (4.15)

Here µ is a constant, and ‖ey‖ is the norm of the output tracking error. As the output

tracking error tends to zero for an ideal tracking case, the e modification term also tends

to zero. This modification resolves the issue introduced due to the σ modification.

A numerical comparison between σ modification and e modification is shown in

Section 4.7.3.3. and the stability analysis is given in the following section. It can be

noted that the robustness modification is given in Equation (4.15) is applied for numerical

analysis in this work.



41

4.5. Stability Conditions

It is necessary to prove that the system is almost strictly passive (ASP) to guarantee

SAC stability. A nonlinear system (A(x, t),B(x, t),C) is called almost strictly passive if

there exists a constant feedback gain K̃e (unknown and not needed for implementation)

such that the system is stable (Barkana, 2010). In this section, some necessary definitions

are discussed that are required to prove stability for the SAC.

4.5.1. Strictly Passive Systems

A nonlinear system as in Equation (4.1) is strictly passive (SP) if there exists two

positive definite symmetric matrices P(x, t) and Q(x, t) such that the following two

conditions are satisfied,

Ṗ + PA + ATP = −Q (4.16)

PB = CT (4.17)

The conditions in Equation (4.16)-(4.17) imply that a strictly passive (SP) system is

an asymptotically stable system. This also implies that the system is a minimum phase

system and the product CB > 0.

4.5.2. Almost Strictly Passive (ASP) System

A nonlinear system as in (4.1) is called as almost strictly passive (ASP) system if

there exist positive definite matrices P and Q, and constant output feedback gain K̃e

(unknown and not needed for implementation) such that the closed-loop system satisfies

the following conditions,

Ṗ + P(A−BK̃eC) + (A−BK̃eC)TP = −Q (4.18)
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PB = CT (4.19)

Satisfying the ASP property conditions in Equations (4.18) and (4.19) implies that the

system is minimum phase and the product CB > 0 and vice-versa, i.e. if the system is

minimum-phase and the product CB > 0, then the system is ASP.

In summary, a nonlinear system, as given in Equation (4.1), with the adaptive

control input, is guaranteed to be stable if the system is minimum-phase and the product

CB > 0. The resulting system is also known as ASP. The proof is shown in the following

section.

In case of orbital dynamics, the product CB is given as,

CB =
1

m
[I3×3 I3×3]

03×3

I3×3

 =
1

m
I3×3 > 0 (4.20)

where C and B are given from Equation (4.20). From Equation (4.20), the product CB >

0 for orbital dynamics system.

In the case of attitude dynamics, the product CB is given as,

CB = I−1[I3×3 I3×3]

03×3

I3×3

 = I−1I3×3 > 0 (4.21)

where C and B are given from Equation (4.21) and the product CB > 0 for attitude

dynamics system. Therefore, one of the conditions for the system to be ASP is satisfied.

4.5.3. Minimum-Phase Systems

A linear system model is minimum-phase if the zero-dynamics of the transfer

functions are stable. However, this cannot be shown for a nonlinear system since the

transfer function is not defined for these systems. Therefore, Barkana (2010) provides

an alternative set of conditions to determine if a nonlinear system is minimum phase.
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If there exists M ∈ Rn×n−m and N ∈ Rn−m×n such that,

CM = 0 (4.22)

NB = 0 (4.23)

NM = In−m (4.24)

then applying the transformation x(t) = Mz(t) results in the zero-dynamics (ż(t)), given

as,

ż(t) = (Ṅ + N)Az(t) (4.25)

Defining appropriate M and N that satisfy the conditions from Equation (4.22) through

Equation (4.24) results in a uniformly asymptotically stable zero-dynamics, and the

system is defined to be minimum-phase.

For the orbital and attitude dynamics systems, the relationships from Equation (4.22)

through Equation (4.24) are satisfied by defining M(x, t) and N(x, t) as,

M(x, t) =

 I3×3

−I3×3

 , N(x, t) =

[
I3×3 −03×3

]
(4.26)

Applying the transformation x(t) = Mz(t), results stable in zero-dynamics for orbital

and attitude given as,

żorb(t) = NAorbMzorb(t) = −I3×3zorb(t) (4.27)

żatt(t) = NAattMzatt(t) = −I3×3zatt(t) (4.28)

here I3×3 is the identity matrix.

Therefore, the controlled orbital and attitude dynamics systems are minimum-phase.

Note that the choice of matrices M(x, t) and N(x, t) is non-unique, and any non-trivial

and well-defined matrices can be chosen as long as the relationship given in Equation
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(4.22) through Equation (4.24) are satisfied.

Therefore, it can be concluded that the orbital and attitude dynamics systems are

almost strictly passive (ASP).

4.6. Stability Analysis

For MRAC, the stability of the system is defined on the error dynamics of the

system. An ideal trajectory is defined such that y(t)∗ = ym(t). Ideal trajectories

(x∗(t),u∗(t),y∗(t)) can be defined using the nonlinear system dynamics (A∗ =

A∗(x, t),B∗ = B∗(x, t)) model as follows:

ẋ∗(t) = A∗x∗(t) + B∗u∗(t) (4.29)

y∗(t) = Cx∗(t) (4.30)

In this application, y∗ = ym such that the ideal trajectories correspond to tracking the

reference output. The ideal state and control can be represented as a linear combination of

reference states xm(t) and control input um(t) as follows:

x∗(t) = Xxm(t) + Uum(t) (4.31)

u∗(t) = K̃xmxm(t) + K̃umum(t) (4.32)

y∗(t) = Cx∗(t) (4.33)

= Cxm(t) (4.34)

where X, U, K̃xm , K̃um are constant unknown gains for the ideal system.

A condition for stability is such that the system states must converge to the ideal

states. The error between the ideal and system states is given as,

ex(t) = x∗(t)− x(t) (4.35)
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Differentiating Equation (4.35) with respect to time results in error-dynamics equation,

given as,

ėx(t) = ẋ∗(t)− ẋ(t) (4.36)

The output tracking error (ey) is defined as,

ey(t) = ym(t)− y(t) = Cx∗(t)−Cx(t) (4.37)

The goal of the adaptive controller is to drive the error between the ideal states and the

system states to zero (i.e. ex(t) −→ 0).

The final form of error dynamics is given as (see Appendix for full derivation):

ėx(t) = Aex(t)−BK̃eyey(t)−B[K(t)− K̃]r(t) (4.38)

The stability is proven using Lyapunov’s direct method. The Lyapunov function

is defined such that the dynamical gains resulting from the adaptive control laws are

considered as the part function as well. The Lyapunov function is defined as follows:

V (t) = eTx (t)Pex(t) + tr[KI(t)− K̃]Γ−1[KI(t)− K̃]T (4.39)

where, ex,P,KI are functions of time and K̃ is constant, and Γ > 0 is a symmetric,

positive definite matrix.

Using the ASP property and substituting (4.18) and (4.19) in (16), and rearranging

the terms, the final form of derivative for the Lyapunov function is given as,

V̇ (t) = −eTx (t)Q(t)ex(t)− 2eTy (t)ey(t)r(t)TΓr(t) (4.40)

From ASP property, the Lyapunov derivative negative definite with respect to ex but only

negative semi-definite with respect to the overall adaptive system. Thus, the system is

bounded. From LaSalle’s invariance principal for non-autonomous systems (LaSalle,
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1976) it is shown from (Kaufman et al., 1997b) that the system asymptotically converges

such that the tracking error ex = 0. Therefore, the Lyapunov function defined in Equation

(4.39) reaches zero.

4.7. Simulation and Results

In this section, the SAC is implemented in simulation studies by formulating

reference models for orbital, and attitude dynamics. There are two types of simulation

scenarios chosen for this research: orbit-attitude coupled trajectory tracking for

time-varying trajectories in the asteroid body-frame and orbit-attitude coupled trajectory

tracking for the body-frame hovering.

Asteroid Kleopatra is chosen for the simulation as shown in Figure 4.1, the asteroid

properties are taken from NASA’s Planetary Data System (PDS) (NASA, 2020). The

properties of asteroid Ida and the spacecraft can be found in Table 4.1 and Table 4.2.

Asteroid Kleopatra is a metallic dog-bone shaped asteroid with a highly irregular

gravitational field. The system dynamics are integrated with Runge-Kutta fourth-order

(RK-4) with a time step of 0.01 seconds. Asteroid Kleopatra has the highest gravitational

field amongst the three asteroids that are used to simulate the gravity in this work

followed by asteroid Eros and asteroid Bennu.

Table 4.1

Asteroid 216 Kleopatra Parameters

Body mass m 5.1732 × 1016 kg
ω 3.77× 10−4 rad/s
Brillouin Radius 138.24 km
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Table 4.2

Spacecraft Parameters

Mass (m) 600 kg
Moments of Inertia (Ix, Iy, Iz) 360,360,480 kg.m2

CS-CM distance 0.2 m
Optical elements Cs, Cs, Ca 0.1,0.1,0.8

4.7.1. Orbital-Attitude Trajectory Tracking

Here, we present the formulation of reference models and results for orbital

dynamics. Time-varying trajectories for orbital and hovering scenarios are designed.

First, we discuss the orbital reference trajectory modeling, followed by attitude reference

trajectory modeling.

4.7.1.1. Orbital Model

In this case, a closed time-varying trajectory is designed based on (Lee & Singh,

2019). Generally, any smooth reference time-varying trajectory can be considered. In this

case a closed orbit trajectory xm(t) = [rm, ṙm]T is given as,

xm(t) = xine
αt3 + xf (1− eαt

3

) (4.41)

ym(t) = Cxm (4.42)

where xin = [rin, ṙin]T is the initial condition of the the reference trajectory, and

xf = [rf (t), ṙf (t)]
T is the final time-varying orbital reference trajectory. The tuning

parameter α = −1 × e−8 corresponds to the response characteristics and can be tuned

depending on the dynamics of the system. The blended output ym is the combination of

reference position (rm) and velocity (ṙm). The time-varying final orbital trajectory (xf =
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[rf (t), ṙf (t)]
T ) is given as,

rf (t) =


0.5Rd sin (ωet)

Rd cos (ωet)

Rd sin (ωet)

 , ṙf (t) =


0.5Rdωe cos(ωet)

−Rdωe sin(ωet)

Rdωe cos(ωet)

 (4.43)

where Rd is the desired final orbit radius and ωe = 1.974ω, where ω is the angular

velocity of the asteroid. It can be noted that the trajectory is designed such that, as time

grows, the initial reference state (xin) converges to the final reference orbit (xf ).

The initial condition for the reference model with Rd = 60 km is given as,

rin = [20 45 6 ]T km, ṙin = [0 0 0]T × 10−3km/s (4.44)

The total simulation time is taken to be 20000 seconds. The integral adaptive gains are

initialized with zero initial condition. The adaptive gains are chosen as Γe = Γ̄e =

106I3x3 and Γr = Γ̄r = 0.001I3x3. In this case, the modified adaptive control model

from Equation (4.13) is implemented.

Spacecraft orbital tracking and the time-varying positions can be in seen Figures 4.1

and 4.2(a), respectively. The adaptive controller is able to successfully track the desired

reference trajectory around asteroid Kleopatra in the body-frame of the asteroid. It can be

noted that the spacecraft translates from close proximity of the asteroid to the final closed

and time-varying trajectory. The position error between the actual and reference trajectory

can be seen in Figure 4.2(c).

The control accelerations are given in Figure 4.2(b). It can be noted that a non-zero

control effort is required to track the trajectories. Acceleration due to the polyhedral

gravity model is shown in Figure 4.2(d). It can be noted that the gravity of asteroid
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Figure 4.1 Spacecraft trajectory of the spacecraft around asteroid Kleopatra in asteroid
body-frame.

Kleopatra is highly time-variant and perturbed. The accelerations due to the solar

radiation pressure (SRP) can be seen in Figure 4.2(e) and Figure 4.2(f). The SRP

accelerations converge to a constant value when the attitude trajectory reaches the desired

final orientation. This depicts the effect of orbit-attitude dynamical coupling. It can be

noted that for a Hayabusa sized spacecraft, the magnitude of acceleration due to SRP

is comparable to the gravity of the asteroid. The position tracking error (e) is shown in

Figure 4.2(c). These figures show that the adaptive control is able track trajectories and

while keeping the acceleration of the spacecraft to a realistic value (<240 N).

4.7.1.2. Attitude Model

One of SAC’s advantages is that a reference model independent of the system model

dynamics can be implemented (Kaufman et al., 1997b). Therefore, the attitude reference

model is designed based on a simple harmonic oscillator with damping. In this case, the

full expression of SAC is implemented as given in Equation (4.5).
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Figure 4.2 Plots for asteoroid tracjectory tracking case for asteroid Kleopatra(a) position
vs. time, (b) control effort vs. time, (c) output error vs. time, (d) acceleration due to
gravity, (e) SRP vs. time in Sb frame, (f) SRP vs. time in SC frame.

The reference model is given as (Shi et al., n.d.):

ẋm(t) = Amxm(t) + Bmum(t) (4.45)

ym(t) = Cmxm(t) (4.46)

where the system matrices are given as,

Am =

 03x3 I3x3

−ω2I3x3 −2ηωI3x3

 ,Bm =

 03x3

ω2I3x3

 ,Cm =

[
I3x3 I3x3

]
(4.47)

where η = 1 is the damping ratio and ω = 0.009 rad/s is the natural frequency of
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the linear reference model. The reference trajectories are generated by integrating the

reference model dynamics. A rest-to-rest maneuver is designed for the attitude tracking

problem. Therefore, the initial and final angular velocities are zero. The initial conditions

for angular velocity and MRPs are given as,

σin = [−0.1 0.5 0.8 ]T , ωin = [0 0 0]T rad/s (4.48)

The reference control (um) is generated by using a linear quadratic regulator (LQR).

The built-in MATLAB function is used for generating the reference control where the

state and control weighting matrices are Q = 0.1I6×6 and R = 0.1I3×3. The adaptive

control tuning parameters are given as using Γe = 1e5I3x3, Γr = 1e3I3x3, Γu = 1e3I3x3.

The adaptive control gains are initialized with zero.

The MRPs and angular velocities are shown in Figure 4.3. It can be seen that the

MRPs are successfully regulated with adaptive control. The spacecraft’s final orientation

is such that the acceleration due to the SRP is maximum, thus resulting in maximum

torque. The control torque can be seen in Figure 4.3 (c). Note that a non-zero control

is required to counter the SRP and gravity gradient torque in the final orientation. The

torque due to SRP and gravity gradient can be seen in Figure 4.3 (d) and (e). The MRP

tracking error can found in Figure 4.3 (f).

4.7.2. Body-Frame Hovering Trajectory Tracking

The reference trajectory for hovering is designed in the asteroid fixed body frame.

The spacecraft is required to track a time-varying trajectory from the initial position to the

final hovering position.
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Figure 4.3 Attitude plots for asteroid Kleopatra(a) MRPs vs. time, (b) angular velocity
vs. time (c) control torque history in SC frame, (d) Torque due to SRP in SC frame, (e)
gravity gradient torque in SC frame vs. time (f) MRP error vs. time.

The reference trajectory xm(t) = [rm, ṙm]T is given similar to the orbital model as,

xm(t) = xine
αt3 + xf (1− eαt

3

) (4.49)

ym(t) = Cxm(t) (4.50)

where ym ∈ R3 is the time-varying output for the spacecraft to track. The tuning

parameter α = −1 × e−9 corresponds to the rate of change of position, which can be

tuned depending on the dynamical constraints. xin = [rin ṙin] is the initial position and

velocity of the spacecraft, and xf = [rf ṙf ] is the final spacecraft hovering position and
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velocity in the asteroid fixed body frame. The reference trajectory from Equation (4.49)

generates a time-varying smooth trajectory for the adaptive controller for tracking.

A rest-to-rest hovering maneuver is designed and the initial and the final positions

are randomly chosen for the reference model as:

rin = [20 45 6 ]T km, ṙin = [0 0 0]T km/s

rf = [25 120 6 ]T km, ṙf = [0 0 0 ]T km/s

(4.51)

The adaptive gains are initialized with zero initial conditions. The adaptive tuning

parameters are chosen as Γe = Γ̄e = 106I3×3 and Γr = Γ̄r = 0.001I3×3.

The spacecraft trajectory, as seen from the inertial frame, is shown in Figure 4.4.

The relative magnitude of the external forces on the spacecraft is of the 10−5km/s2.It

can be seen from Figure 4.4 that the spacecraft successfully translated from the initial

position to the desired final hovering position. Figure 4.5 shows the spacecraft position in

the asteroid fixed body frame. The adaptive controller is able to successfully hover at the

desired position with respect to the asteroid.

In the body fixed hovering scenario, the accelerations due to gravity from the

asteroid are time-invariant. This is due to the fact that the position of the spacecraft is

fixed with respect to the asteroid. Figure 4.6(d) shows the total acceleration acting on the

spacecraft due to the asteroid gravity field. It can be noted that non-zero control effort is

required for station keeping at the desired location. Figure 4.6(a) shows the time-varying

trajectory of the spacecraft in the asteroid fixed body-frame.

The control effort from the direct adaptive controller can be seen in Figure 4.6(b). At

the final hovering position, the control effort converges to the summation of acceleration

due to gravity, solar radiation pressure, and centrifugal acceleration from rotation of the
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Figure 4.4 Spacecraft trajectory for asteroid Kleopatra for hovering maneuver in an
inertial frame.

Figure 4.5 Spacecraft trajectory for asteroid Kleopatra during hovering in asteroid body
frame.

asteroid. The control effort resulting from this problem can be further reduced depending

on the trajectory and tuning α in Equation (4.49). It can be noted that, since the y

coordinate of the spacecraft has the largest change in position, the control effort uy is also

the highest. Further command shaping can reduce this control effort. Also, the control
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efforts are within the acceptable range of currently available chemical thrusters. The

final hovering is approximately reached in 1696 seconds (∼ 30 minutes). The maximum

magnitude of the control effort is umax = 1.9257× 10−4 km/s2.

Figure 4.6 Spacecraft trajectory tracking near Bemnu for hovering case(a) Position w.r.t
time in SB frame, (b) control effort vs time in SB frame, (c) output error, (d) acceleration
due to gravity, (e) SRP accelerations in SB frame, (f) SRP accelerations in SC frame.

4.7.3. Off-Nominal and Robustness Evaluation

Here we present numerical simulations to show the robustness of the adaptive control

with e modification. The evaluation is categorized as follows:

1. Numerical simulation of the control system using a different asteroid without
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changing the control parameters.

2. Adding Gaussian noise to the system model and high-frequency sinusoidal noise to

the measurement model.

3. Showing the advantages of the e modification term in adaptive control for an ideal

tracking scenario.

It can be noted that robustness evaluation is performed on asteroid Kleopatra for parts (2)

and (3).

4.7.3.1. Numerical Simulation for Asteroid Bennu

To show the robustness of the adaptive control to change in dynamical scenarios, we

also show the numerical simulations for asteroid Bennu without changing the adaptive

control tuning gains (Γ, Γ̄). Asteroid Bennu is chosen since it vastly differs from the

asteroid Kleopatra in terms of physical characteristics. The properties of asteroid Bennu

are given in Table 4.3. Orbital tracking scenario from Equation (4.42) is considered. The

tuning parameter α is changed to α = −1× e−12 to further change the tracking scenario.

Table 4.3

Asteroid Bennu Parameters

Body mass m 7.329 × 1010 kg
ω 4.0626× 10−4 rad/s
Brillouin Radius 282.5 m

The initial condition for the reference model with Rd = 0.7 km is given as,

rin = [1 1 1 ]T km, ṙin = [0 0 0]T × 10−3km/s (4.52)
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Figure 4.7 shows the actual and reference trajectory of the spacecraft in asteroid

body frame. Figure 4.8 shows successful results for trajectory tracking near asteroid

Bennu without changing the control parameters.

Figure 4.7 Spacecraft trajectory in asteroid body-frame for asteroid Bennu.

4.7.3.2. Effects of Unknown Noise

To further show the robustness of the adaptive control law in off-nominal conditions,

we have shown the effects of random Gaussian noise on the system. A random Gaussian

of the order of the gravitational field of asteroid Kleopatra in the reference trajectory is

considered (1 × 10−5N (0, I3×3). It can be seen from Figure 4.9 that the adaptive control

is able to successfully handle the disturbances while keeping the order of tracking error

low. It can be noted that the adaptive tuning parameters have not been changed for this

analysis.
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Figure 4.8 Spacecraft trajecotry tracking plots for asteroid Bennu(a) position vs. time, (b)
control effort vs. time, (c) output error vs. time, (d) acceleration due to gravity, (e) SRP
vs. time in Sb frame, (f) SRP vs. time in SC frame.

To test the effect of measurement noise on the adaptive control, a high-frequency

sinusoidal disturbance is added to the measurements (y). The disturbance is given as,

ν = 0.001× [(1 + sin 0.1t), (1 + sin 0.1t), (1 + sin 0.1t)]T (4.53)

The results from Figure 4.10 show that the controller is able to successfully account

for the measurement disturbance without the need to re-tune.
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Figure 4.9 (a) Control effort with Gaussian Noise, (b) Output error vs. time.

Figure 4.10 (a) Control effort with sinusoidal noise, (b) Output error vs. time.

4.7.3.3. e Modification Analysis

In this section, we present the comparison between SAC with sigma modification

and SAC with e-modification for ideal tracking (without system and measurement noise).

For sigma modification the sigma value of σ = 0.1 is considered, see Equation (4.14).

In case of of e modification, a µ of µ = 0.1 is considered. Results from Figure 4.11

show that a significant improvement in control effort and output error when applying

the e modification for the ideal tracking case. Therefore, it is recommended to use e
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modification for the cases where sigma modification fails to achieve ideal control effort.

The results are explained by the fact that during ideal tracking, the e modification term

from the adaptive control law from Equation (4.15) tends to zero. It can be noted that

lowering the sigma value reduces these effects. However, it does not eliminate the issue

and decreases the robustness of the control system.

Figure 4.11 (a) Control effort e with modification (b) Output error vs. time for e
modification (c) Control effort with σ modification and (d) Output error vs. time for σ
modification.
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5. Nonlinear Model Predictive Control

Discrete nonlinear model predictive control (NMPC) is implemented in this work.

NMPC is a sub-optimal finite horizon control scheme that minimizes the user defined

cost function and outputs the control. Unlike MPC, NMPC is a non-convex optimal

problem and the model dynamics are nonlinear in nature. Non-convexity can arise from

the model or the constraints. NMPC is solved numerically using direct single shooting,

direct multiple shooting or direct collocation methods. The schemes are discussed in

(Andersson et al., 2019).

In this work, the optimal control problem is solved using direct multiple shooting.

The states of the system model are propagated using fourth order Runge-Kutta scheme.

Initially, NMPC is used to generate reference trajectories to be fed into the adaptive

controller block. Thus reducing the dependency on manual trajectory generation. The

trajectories can be generated using the model and constraints.

Two scenarios for reference trajectories are discussed in this chapter: (1) MPC

tracking for a user given trajectory, and (2) MPC trajectory generation and tracking given

initial and final conditions. A schematic that gives an overview of the process is shown in

Figure 5.1. In case of NMPC, a simplified model for the orbital dynamics is used as the

higher order gravity terms are assumed to be unknown. A schematic for the the NMPC

reference block is shown in Figure 5.2.

5.1. MPC Process

Generally, MPC has three steps,

1. Prediction: Given a set of control inputs the future states are predicted for a given

system model.
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Figure 5.1 MPC Schematic

Figure 5.2 MPC Reference Block Schematic

Let a discrete nonlinear system model be defined as,

xk+1 = f(xk,uk) (5.1)

where xk is the system state, k is the prediction step, f is a nonlinear function that

captures the system dynamics, and u is the control input.
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Given the control sequence u = [uk,uk+1, ...,uk+N−1], the prediction step outputs

the predicted future states of the system x = [xk,xk+1, ...,xK+N ]. Here N is the

length of the prediction horizon.

2. Optimization: In this step, an optimal control problem is solved online for a given

cost function. The optimal control problem (OCP) is given as,

min
u,x

J(x0,u) = F (xN) +
N−1∑
k=0

l(xk,uk) (5.2)

subject to xk+1 = f(xk,uk) (5.3)

xk ∈ X (5.4)

uk ∈ U (5.5)

The OCP is required to solve for the control effort u such that the cost function

J(x0,u) is minimized. The OCP is subjected to dynamical, state and control

constraint given from Equation (5.3), (5.4) and (5.5) respectively.

The cost function J(x0,u) is defined as the summation of terminal cost F (xN) and

the running cost l(x,u). The terminal cost is defined as deviation of the state at the

final step from the desired state. The terminal cost is given as,

F (xN) = [xN − rN ]TP[xN − rN ] xN , rN ∈ R6, P ∈ R6×6 (5.6)

Here P is a tunable positive-definite weighting matrix that penalizes difference

between the final state and the desired state. The running cost l(x,u) is given as,

l(x,u) =
N−1∑
k=0

[xk − rk]
TQ[xk − rk] + uTkRuk (5.7)

Here Q and R are the positive-definite weighting matrices that are manually tuned

to penalize the difference between current and desired state and control effort.
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Running cost l(x,u) is calculated as a sum of deviation of the current state xk from

the desired state rk and the deviation of the control uk from the reference control.

The reference control is considered to be zero in this case.

3. Implementation: OCP outputs a sequence of control inputs u∗ =

[u∗k,u
∗
k+1, ...,u

∗
k+N−1]. In this step, the first control input u∗k is applied drive the

system. The process is repeated for new initial state until the desired reference state

is achieved. An example of the MPC algorithm is give in Algorithm 1.

Algorithm 1: MPC algorithm
Set x0

for k = 1,2,3,...,N do
solve J(x0,u)

subject to the constraints

find the the sequence u∗ = [u∗k,u
∗
k+1, ...,u

∗
k+N−1]

apply the control input u∗k

end

get new x0

repeat until [xk − rk] < tolerance(1× 10−4km)

5.2. NMPC for Orbital Control

In this section, we discuss the formulation of NMPC for spacecraft control and

tracking in the asteroid’s vicinity. Model predictive control requires a system model

in order to solve of the optimal control problem. However, in the case of asteroids, a
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precise model is usually unavailable until several months after the spacecraft’s arrival to

the asteroid. Therefore, a simple model based on two-body problem is considered in this

case. Usually, the mass of the asteroid can be estimated using ground based methods such

as light curve analysis prior to the launch (Scheeres & Schweickart, 2004).

5.2.1. System Model For NMPC

The system model of NMPC is given as using a two-body problem. The mass and

the rotation of the asteroid is assumed to be known. Note that the mass and rotation can

be estimated and updated online as well using filtering techniques. The dynamics of the

spacecraft around the asteroid is written in asteroid fixed body frame (xSB, ySB, zSB)

centered at the center of mass of the asteroid as shown in Figure 5.3. The frame is aligned

with the principle axis of the asteroid and the z-axis is aligned with the angular velocity

vector (Ω ∈ R3) of the asteroid. The asteroid fixed body (SB) frame is also known an a

rotating Hill frame which is orbiting around the sun as shown in Figure 5.3.

The dynamics of the spacecraft are given in Equation 5.8.

r̈ + 2Ω× ṙ + Ω× (Ω× r) = − µ
r3

r + u (5.8)

where r = [x(t), y(t), z(t)]T and ṙ = [ẋ(t), ẏ(t), ż(t)]T are the position and velocity

vector of the spacecraft in Cartesian coordinates respectively. u = [ux(t), uy(t), uz(t)]
T

is the thrust control vector. It assumed that a six-thruster configuration is available for

controlling the spacecraft in the configuration space.

The state-space formulation of a the two-body problem for a rotating asteroid for

nonlinear model predictive control formulation is given as,
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Figure 5.3 Asteroid Frame

ẋ = Ax + Bu

y = Cx

(5.9)

where A, B and C are given as,

A =



ẋ

ẏ

ż

− µ√
x2+y2+z2

3x+ 2ωẏ + ω2x

− µ√
x2+y2+z2

3y − 2ωẋ+ ω2y

− µ√
x2+y2+z2

3 z



,B =

03×3

I3×3

 ,C = [I3×3 I3×3] (5.10)

5.2.2. Safety Ellipsoid

During the path planning and execution phase, a safety ellipsoid is considered as

a constraint to the NMPC. This helps ensure a safe distance of the spacecraft from the

asteroid during the circumnavigation phase of the mission. This is common constraint that

is used during the circumnavigation phase. For a landing scenario, cone constraint can be

implemented for an irregular asteroid. An example of the safety ellipsoid for asteroid Eros
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can be seen in Figure 5.4. The safety ellipsoid constraint is given as follows,

1−
[(

xk
a

)2

+

(
yk
b

)2

+

(
zk
c

)2]
≤ 0 (5.11)

Here k is the time step, [x, y, z] are the position coordinates of the spacecraft, and [a, b, c]

are the half-length of the principle axes of the ellipsoid.

Figure 5.4 Safety Ellipsoid

5.3. NMPC Design

In this section, we formulate the discrete NMPC for spacecraft trajectory planning

and tracking. Figure 5.1 shows the schematic of the NMPC controller. It can be noted that

the NMPC controller is implemented on the "actual" system model as given in Equation

3.1.

A discrete time NMPC with piece-wise continuous control effort is formulated

in this paper. The prediction model is discretized using the fourth order Runge-Kutta

integration scheme.
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xk+1 = f(xk,uk), x ∈ R6, u ∈ R3 (5.12)

The Runge-Kutta scheme for the state-space system defined in Equation 5.9 is given in

Algorithm 2. It can be noted that the dynamics are discretized in RK-4, but the controller

are assumed to be piece-wise continuous.

Algorithm 2: Runge-Kutta Algorithm
Set x1 = x0

Set T = ∆T (Time step)
for k = 1,2,3,...,N do

k1 = f(xk,uk)
k2 = f(xk + 0.5Tk1,uk)
k3 = f(xk + 0.5Tk2,uk)
k4 = f(xk + Tk3,uk)
xk+1 = xk + T/6(k1 + 2k2 + 2k3 + k4)

end

5.3.1. Nonlinear Program

A direct multiple shooting method is implemented to solve the optimal control

problem. In direct multiple shooting, the problem is lifted to higher dimension by

including state variables optimization variables. Even though this increases the number

of variables, this process reduces the non linearity of the OCP and improves the

computational efficiency.

Equation 5.13 defines the cost function to be minimized. The dynamical constraints

are given in Equation 5.14 and control constraints are given in Equation 5.15 where

umin and umax are the lower and upper-bound of the control effort. The safety ellipsoid

constraint is given in Equation 5.16.
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The nonlinear program a nonlinear model predictive control is given as follows:

min
uk,..,uk+N−1,xk,..,xk+N−1

F (xN) +
N−1∑
k=0

[x(k)− xr(k)]TQ[x(k)− xr(k)] + u(k)TRu(k)

(5.13)

subjected to:

xk+1 = f(xk,uk), x ∈ R6, k = 0, ..., N (5.14)

umin(k) ≤ u(k) ≤ umax(k), k = 0, ..., N − 1 (5.15)

1−
[(

xk
a

)2

+

(
yk
b

)2

+

(
zk
c

)2]
≤ 0 (5.16)

The term F (xN) is the cost on the final state and is defined as,

F (xN) = [xN − rN ]TP[xN − rN ] xN , rN ∈ R6, P ∈ R6×6 (5.17)

5.4. Comments on Stability of NMPC

The stability of NMPC has been studied extensively. Generally, the stability of the

system with a nonlinear model predictive control for a non convex system cannot be

guaranteed (Mehrez Said, 2018). However, there are several types of approaches that are

discussed in this section.

Mehrez (2018) presents various NMPC stability analysis for a nonlinear dynamical

system. Regulation and tracking problem using NMPC is discussed based on Lyapunov

stability analysis for multiple shooting problem. The proofs are accompanied with several

non-holonomic examples. Worthmann (2011) presents Lyapunov based stability proof for

unconstrained receding horizon control systems.

Grune (2010) presents an analysis of unconstrained nonlinear MPC schemes for

discrete dynamic systems satisfying an finite time controllability assumption. Asymptotic

stability is proved these systems. Tuna (2006) presented work on shorter horizons for



70

model predictive control (similar to ones used in our work). Asymptotic stability is

proved using Lyapunov analysis and example.

The stability of nonlinear model predictive control is difficult to guarantee even after

proving mathematically because its also dependent of solvers implemented. Therefore, its

important to present examples via simulations or experiments to further test the stability

of NMPC.

5.5. Simulations and Results

In this section, we present the simulation and results for orbital trajectory tracking

for three different asteroids. As previously mentioned, two types of scenarios are

discussed for orbital trajectory tracking: (1) trajectory tracking for a user given trajectory,

(2) trajectory generation and tracking for a given initial and final condition. The second is

more relevant to a realistic scenario where only the initial and a desired final condition of

the spacecraft is known and the NMPC is required to generate the trajectory and track it.

The simulation is shown for asteroid Eros, Kleopatra and Bennu.

5.5.1. Reference Trajectory Model

The reference model for the user given trajectory case is similar to shown in Chapter

4. For completeness, the trajectory is given as follows.

In this case a closed orbit trajectory xm(t) = [rm, ṙm]T is given as,

xm(t) = xine
αt3 + xf (1− eαt

3

) (5.18)

ym(t) = Cxm (5.19)

where xin = [rin, ṙin]T is the initial condition of the the reference trajectory, and

xf = [rf (t), ṙf (t)]
T is the final time-varying orbital reference trajectory. The tuning
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parameter α corresponds to the response characteristics and can be tuned depending

on the dynamics of the system. The blended output ym is the combination of reference

position (rm) and velocity (ṙm). The time-varying final orbital trajectory (xf =

[rf (t), ṙf (t)]
T ) is given as,

rf (t) =


0.5Rd sin (ωet)

Rd cos (ωet)

Rd sin (ωet)

 , ṙf (t) =


0.5Rdωe cos(ωet)

−Rdωe sin(ωet)

Rdωe cos(ωet)

 (5.20)

where Rd is the desired final orbit radius. It can be noted that the trajectory is designed

such that, as time grows, the initial reference state (xin) converges to the final reference

orbit (xf ). For the second case, simply an initial and final states are given along with

ellipsoidal constraints.

5.5.2. Asteroid 433 Eros

In this section we present the simulation results for Asteroid Eros. The parameters

for asteroid is given in Table 5.1. Asteroid Eros has in studied in several studies due to

its unique shape and composition. The asteroid has varying composition and the shape

is irregular with high a relatively high angular velocity compared to several asteroids

in the asteroid belt. User given and point-to-point cases are studied in the following

sub-sections.

Table 5.1

Asteroid Eros Parameters

Body mass m 6.69 × 1015 kg
ω 5.27 hours
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5.5.2.1. Case 1: User Given Reference Trajectory

The NMPC parameters and required parameters for this case is given in Table 5.2.

The initial condition for the reference model with Rd = 20 km is given as,

rin = [5 22 6 ]T km, ṙin = [0 0 0]T × 10−3km/s (5.21)

Table 5.2

NMPC Parameters for Case 1

N 20

Q

[
I3×3 03×3
03×3 I3×3

]
R 100I3×3
∆T 0.2
α −1× 10−8

It can be seen from Figure 5.5 that the spacecraft is able to successfully track the

desired trajectory around the asteroid Eros. It was found that the tracking performance

is less ideal compared to the case of adaptive control since in the MPC formulation the

tracking is considered as a part of cost and not constraint. This effect can be in seen in

Figure 5.6 (d). The gap can be closed by further tuning Q.

Figure 5.6 (a) shows the position versus time plot for the spacecraft and Figure 5.6

(b) shows the velocity of the the spacecraft. It can be seen from the Figure 5.6 (c) that

the control efforts remains realistic compared to current thruster availability. The control

effort never reaches a steady state value as the the desired trajectory is time-dependent.
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Figure 5.5 Trajectory of spacecraft around asteroid Eros in asteroid fixed body-frame.

5.5.2.2. Case 2: Point-to-Point Tracker

In case of point-to-point tracker. An initial and final state of the spacecraft is given

and the NMPC is used to solve for a sub-optimal trajectory and control while avoiding the

asteroid. The NMPC parameters for this case is given in Table 5.3. It can be noted tha the

velocities are independently constrained in each axis. The initial and final conditions are

given as follows:

rin = [0 − 8 8 ]T km, ṙin = [0 0 0]T km/s

rf = [0 10 5 ]T km, ṙf = [0 0 0 ]T km/s

(5.22)

It was found that a large control horizon of N = 100 is implemented in this

case. Control horizon significantly affects the performance and efficiency of the NMPC

formulation. Increasing the the horizon increases the performance and results in a more

optimal trajectory while meeting all the constraints.
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Figure 5.6 Plots for trajectory of spacecraft around asteroid Eros (a) position vs. time, (b)
velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

However, this significantly increases the computational load and increases the time

to compute. The NMPC is also highly dependent on the weighting matrices Q and R.

Tuning these matrices was found to be a challenging task. Therefore, this formulation

suffers from lack of computational efficiency and might not be suitable for on-board and

online implementation.

Spacecraft trajectory with the ellipsoid can be seen in Figure 5.7. It can be seen

that the trajectory remains above the ellipsoid and the NMPC formulation is able to

successfully avoid the asteroid. Figure 5.8 shows the trajectory without the ellipsoid and

shows the successful trajectory generation using the NMPC.
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Table 5.3

NMPC Parameters for Case 2

N 100

Q 1× 10−5
[
I3×3 03×3
03×3 I3×3

]
R 0.5I3×3
∆T 0.2
Control Constraint −0.0007 ≤ u ≤ 0.0007 km/s2

Velocity Constraint −0.05 ≤ u ≤ 0.05 km/s
a 22 km
b 10 km
c 10 km

Figure 5.7 Trajectory of spacecraft around asteroid Eros for point-to-point case with
ellipsoidal constraint.

Figure 5.9 shows the position, velocity and control plots for this case. The position

plots shows a successful convergence to the desired location. The velocities are shown
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in Figure 5.9 (b). It can be noted that the velocities are also constrained in this case. This

is done in order to limit the spacecraft speeds such that the spacecraft is still controllable

given the control constraints.

It was found that if the velocities are not constrained the spacecraft cannot maneuver

in the case of obstacle avoidance situations due the constraints on the control effort. The

control effort plot is shown in Figure 5.9 (c). It can be seen that the control effort stays

withing the defined control constraints.

Figure 5.8 Trajectory of spacecraft around asteroid Eros for point-to-point case without
ellipsoidal constraint.

5.5.3. Asteroid Bennu

In this section we present the simulation results for Asteroid Bennu. Asteroid

Bennu has been recently visited by NASA by OSIRIS-Rex. Asteroid Bennu is almost

spherical in shape and the gravitational field is very close to a spherical. This effect will

be demonstrated in the later chapter.
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Figure 5.9 Plots for point-to-point case for spacecraft around asteroid Eros (a) position
vs. time, (b) velocity vs. time, (c) control effort vs. time.

5.5.3.1. Case 1: User Given Reference Trajectory

The NMPC parameters and required parameters for this case is given in 5.4. The

initial condition for the reference model with Rd = 0.7 km is given as,

rin = [1 1 1 ]T km, ṙin = [0 0 0]T × 10−3km/s (5.23)
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Table 5.4

NMPC Parameters for Case 1

N 100

Q

[
I3×3 03×3
03×3 I3×3

]
R 100I3×3
∆T 0.2
α −1× 10−8

The trajectory of the spacecraft around the asteroid Bennnu can be seen in

Figure 5.11. It can be seen from that figure that the spacecraft is able to successfully

track the desired path. Due to the extremely low gravitational force of Bennu the

control requirements were found to be low as well. Resulting mainly due the tracking

requirements. The positions and velocities for this case can be seen in Figure 5.10 (a)

and Figure 5.10 (b).The output tracking error is given in Figure 5.10 (d). It can be seen

that the tracking error is low in this case. The control effort plot is given in Figure 5.10

(b). It can be noted that the NMPC solver was found to be more time efficient in this due

the high thruster force availability i.e. higher upper and lower limit on thrust constraints

compared to the gravitational force of the asteroid.

5.5.3.2. Case 2: Point-to-Point Tracker

In case of point-to-point tracker. An initial and final state of the spacecraft is given

and the NMPC is used to solve for a sub-optimal trajectory and control while avoiding the

asteroid. The NMPC parameters for this case is given in Table 5.5. The initial and final
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Figure 5.10 Plots for trajectory tracking case for spacecraft around asteroid Bennu (a)
position vs. time, (b) velocity vs. time, (c) control effort vs. time, (d) output error vs.
time.

conditions are given as follows,

rin = [0 − 0.35 0.1 ]T km, ṙin = [0 0 0]T km/s

rf = [0.1 0.4 0.2 ]T km, ṙf = [0 0 0 ]T km/s

(5.24)

In case of the asteroid Bennu, an ellipsoidal constraint is used for generating an

obstacle avoidance trajectory. The velocity constraint is also reduced since the the control

requirement is reduced relative to asteroid Eros. Figure 5.11 shows the trajectory of the

spacecraft with spherical constraint. It can be seen that the NMPC formulation is able to

successfully generate and converge to the desired final position. Figure 5.13 shows the

same trajectory without the spherical constraint.

The position and velocities plot can be seen in Figure 5.14 (a) and (b). It can be seen
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Figure 5.11 Trajectory of spacecraft around asteroid Bennu.

Table 5.5

NMPC Parameters for Case 2 for asteroid Bennu

N 100

Q 1× 10−5
[
I3×3 03×3
03×3 I3×3

]
R 0.5I3×3
∆T 0.1
Control Constraint −0.0025 ≤ u ≤ 0.0025 km/s2

Velocity Constraint −0.005 ≤ u ≤ 0.005 km/s
a 0.3 km
b 0.3 km
c 0.3 km

that the positions converge to the desired final position and the velocities converge to

zero. As in the previous case, the velocities are constrained and reach the maximum value
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Figure 5.12 Spacecraft Trajectory for point-to-point case for asteroid Bennu with the
ellipsoidal constraint.

initially. The control effort can be in Figure 5.14 (c) and (d). The last figure shows the

zoomed-in control plot and it shows the steady state control effort for the hovering case.

Figure 5.13 Spacecraft Trajectory for point-to-point case for asteroid Bennu without the
ellipsoidal constraint.
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Figure 5.14 Plots for trajectory of spacecraft around asteroid Bennu (a) position vs. time,
(b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

5.5.4. Asteroid Kleopatra

In this section we present the simulation results for Asteroid Kleopatra.

5.5.4.1. Case 1: User Given Reference Trajectory

he NMPC parameters and required parameters for this case is given in Table 5.6. The

initial condition for the reference model with Rd = 60 km is given as,

rin = [20 45 6 ]T km, ṙin = [0 0 0]Tkm/s (5.25)

It can be seen from Figure 5.16 that the spacecraft is able to successfully track the

desired trajectory around the asteroid Kleopatra. Due to a stronger gravitational pull from

the asteroid the the tuning matrices Q and R are updated as compared to the previous
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Table 5.6

NMPC Parameters for Case 1 for asteroid Kleopatra

N 20

Q

[
I3×3 03×3
03×3 I3×3

]
R I3×3
∆T 0.2
α −1× 10−8

Figure 5.15 Plots for trajectory of spacecraft around asteroid Kleopatra (a) position vs.
time, (b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

case to the values as shown in Table 5.6.

The positions and velocities are shown in Figure 5.15 (a) and (b). The control effort
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Figure 5.16 Trajectory of spacecraft around asteroid Kleopatra in asteroid fixed
body-frame.

is given in Figure 5.15 (c). It can be noted that the control effort is higher than previous

cases due the stronger effect of gravitational force of asteroid Kleopatra.

5.5.4.2. Case 2: Point-to-Point Tracker

In case of point-to-point tracker. An initial and final state of the spacecraft is given

and the NMPC is used to solve for a sub-optimal trajectory and control while avoiding the

asteroid. The NMPC parameters for this case is given in Table 6.3. The initial and final

conditions are given as follows,

rin = [10 − 100 0 ]T km, ṙin = [0 0 0]T km/s

rf = [50 60 25 ]T km, ṙf = [0 0 0 ]T km/s

(5.26)

In case of the asteroid Kleopatra, an ellipsoidal constraint is used for generating

an obstacle avoidance trajectory. The velocity constraint is also increased since the the

control requirement can be higher relative to asteroid Eros and Bennu. Figure 5.16 shows

the trajectory of the spacecraft with spherical constraint. It can be seen that the NMPC

formulation is able to successfully generate and converge to the desired final position.
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Table 5.7

NMPC Parameters for Case 2 for asteroid Kleopatra

N 100

Q 1× 10−5
[
I3×3 03×3
03×3 I3×3

]
R 0.5I3×3
∆T 0.2
Control Constraint −0.007 ≤ u ≤ 0.007 km/s2

Velocity Constraint −0.1 ≤ u ≤ 0.1 km/s
a 150 km
b 70 km
c 50 km

Figure 5.17 shows the same trajectory without the spherical constraint.

The position and velocities plot can be seen in Figure 5.18 (a) and (b). It can be seen

that the positions converge to the desired final position and the velocities converge to

zero. As in the previous case, the velocities are constrained and reach the maximum value

initially. The control effort can be in Figure 5.18 (c) and (d).

Figure 5.17 Trajectory of spacecraft for point-to-point case around asteroid Kleopatra
without ellipsoidal constraint.
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Figure 5.18 Plots for point-to-point case for spacecraft around asteroid Kleopatra (a)
position vs. time, (b) velocity vs. time, (c) control effort vs. time.
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Figure 5.19 Trajectory of spacecraft for point-to-point case around asteroid Kleopatra
with ellipsoidal constraint.
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6. Direct Adaptive-Model Predictive Control

A novel control approach combining the benefits of a direct model reference

adaptive control and a model predictive control is proposed in this chapter. A schematic

of this control is scheme is shown in Figure 6.1.

Figure 6.1 Schematic for direct-adaptive model predictive control.

Here the reference trajectories are generated using a nonlinear model predictive

controller for the adaptive controller to track. The reference control generated from the

model predictive control is added to the adaptive control law as a feedforward control

input.

As mentioned before, the direct adaptive-model predictive control (DAMPC) has two

major advantages:

• The adaptive control component adds robustness to the MPC since the system

model for the MPC is a low-fidelity simplified version of the gravitational field and

the unmodeled forces are missing.

• The MPC adds optimality to the control system via the feedforward control inputs
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and generates sub-optimal trajectories to for the adaptive control to track.

This approach balances the effects of both adaptive and MPC control. Even though the

NMPC is inherently adaptive it cannot guarantee stabilizing input for unknown model

and system parameters (Grimm et al., 2004).Therefore, the adaptive control increases

the robustness of the MPC. Also, as it will be shown later in the section, adding MPC

control inputs as feedforward is more computationally efficient since the adaptive control

converges several times faster than MPC.

6.1. DAMPC Formulation

DAMPC is built on the direct model reference adaptive control and model predictive

control methodology. The control law comprises of an integral control law with e

modification for robustness with a feedforward nonlinear/linear MPC term. The control

law is defined as follows:

uDAMPC = Ke(t)ey + uMPC (6.1)

Here Ke(t) ∈ Rn×n is the adaptive control law, ey ∈ Rn is the error term between actual

and ideal reference model and uMPC is the feedforward model predictive control.

The adaptive gain Ke(t) is a combination of integral and proportional gain given as,

Ke(t) = KIe(t) + KPe(t) (6.2)

The update law for the adaptive gains KIe(t) and KPe(t) is given as,

K̇Ie(t) = ey(t)e
T
y (t)Γe − µ‖ey‖KIe(t) (6.3)

KPe(t) = ey(t)e
T
y (t)Γ̄e (6.4)

Here Γe and Γ̄e are the constant weighting matrices. As shown in (Kaufman et al.,

1997a), the adaptive control doesn’t require feedforward given in 4.11 to guarantee
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stability. Therefore, Ke(t) is sufficient. The feedforward MPC terms adds another

advantage to the adaptive control by initializing the control input by a non-zero stabilizing

control effort. As shown in previous chapter, the adaptive gains were initialized by a zero

initial condition which causes the control signal to overshoot. However, this is avoided by

use of MPC feedforward terms as shown in later sections.

6.2. Comments on Stability

The stability if DAMPC is dependent on the stability of the adaptive control term

and the feed-forward nonlinear model predictive term. The adaptive control terms has

been shown to work without the feed-forward term and it has been proven by (Kaufman

et al., 1997a) that only the feedback term is necessary to guarantee the stability of the

adaptive control.

Therefore, in order to guarantee the stability of the system, only the stability of

NMPC needs to be proven, which has been discussed in the previous chapter. A more

rigorous analysis will the part of future work. It can noted that since the NMPC control is

applied as a feedforward term (which is calculated offline), only the stable solutions are

accepted and hence the DAMPC is inherently stable due to this assumption.

6.3. Simulation and Results

To showcase the improvements from DAMPC, three following scenarios for a

point-to-point tracking case are considered:

1. NMPC feedforward control with application to the actual system: In this case

the NMPC control generated from the point-to-point tracker from the previous

chapter will be applied to the actual system with polyhedral gravitational model

and additional forces as discussed in Chapter 3.
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2. Adaptive control application: In this case the adaptive control will be implemented

to track the trajectories generated from the NMPC. It will be shown that even

though the adaptive control can successfully track the trajectories, the control effort

overshoots in some cases.

3. Application of DAMPC: In this case, the full DAMPC formulation will be

implemented to track the trajectories from the NMPC on the actual model. It will

be shown that the DAMPC is superior in terms of control effort. The DAMPC

formulation will be compared to the adaptive control system in the presence of

noise.

4. Effect of unknown noise:In this case we will present the results for DAMPC in the

presence of unknown system noise. We also compare the performance of DAMPC

with adaptive control.

6.3.1. Asteroid Eros

In this section we consider asteroid Eros and present the simulation results.

Point-to-point tracker case is considered and the conditions are similar to as previously

defined.

The initial and final conditions are given as follows:

rin = [0 − 8 8 ]T km, ṙin = [0 0 0]T km/s

rf = [0 10 5 ]T km, ṙf = [0 0 0 ]T km/s

(6.5)

The NMPC conditions are given in Table 6.1. The adaptive control tuning parameter

is set to α = −1 × e−9. The adaptive control gains are initialized with zero initial

condition and the adaptive tuning parameter is set to Γe = Γ̄e = 103I3×3.
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Table 6.1

NMPC Parameters for Asteroid Eros

N 100

Q 1× 10−5
[
I3×3 03×3
03×3 I3×3

]
R 0.5I3×3
∆T 0.2
Control Constraint −0.0007 ≤ u ≤ 0.0007 km/s2

Velocity Constraint −0.05 ≤ v ≤ 0.05 km/s
a 22 km
b 10 km
c 10 km

6.3.1.1. Case 1: MPC Feed-forward Only

In this section, we present the results for the first case where we apply the NMPC

control found in the previous chapter to asteroid Eros with the "actual" system as

presented in Chapter 3. The actual trajectory and desired trajectory is given in Figure 6.2.

As expected the trajectories do not completely coincide since the system model differs

from the NMPC model. However, it can also be noticed that the actual final position

does not differ by much due to the low mass of asteroid Eros. However, for a long term

trajectory tracking the difference will grow and the MPC feedforward control will not be

able to track the final desired position.

Figure 6.3 (a) shows the actual positions of the spacecraft with NMPC feedforward

control law. It can be noted that the position do not converge to the desired final position

which is further confirmed by Figure 6.3 (d) where the output error is shown. The output
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Figure 6.2 Trajectory of spacecraft around asteroid Eros.

error is the combination of position and velocity. The output clearly shows that the error

is diverging as the time grows. The control effort is given in Figure 6.3 (c), the control

is solely from the feedforward NMPC control found in previous chapter. Figure 6.3 (b)

shows the actual velocity of the spacecraft and it can be noted that the velocity does not

converge to zero as the spacecraft approaches the final actual position. It is shown in the

following sections that a stronger gravitational field drastically affects the performance of

NMPC feedforward control.

6.3.1.2. Case 2: Adaptive Control

In this section, we discuss the simulation and results for the case where the adaptive

control is implemented to track the trajectories found using the NMPC methodology

from the previous chapter. The adaptive control will be tuned once and the tuning the

parameters will be kept constant for other asteroids. This is to show the robustness of
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Figure 6.3 Plots for MPC Failure case for asteroid Eros, (a) position vs. time, (b) velocity
vs. time, (c) control effort vs. time, (d) output error vs. time.

adaptive control to different asteroids and dynamical conditions.

Figure 6.4 shows the actual and desired trajectory of the spacecraft with adaptive

control. It can be seen that the adaptive control is able to successfully track the

trajectories and the final position coincides with the desired position. Therefore, adaptive

control is able to reject the disturbances and track the NMPC generated trajectory.

The positions and velocities can be seen in Figure 6.5 (a) and (b). The positions

converge to the final desired and locations the velocities converge to zero as desired.

The control effort from adaptive control is shown in Figure 6.5 (c). It can be seen that

even though control effort remains within the realistic thruster limit, there is significant

overshooting resulting from initialization and the inherent issue that the adaptive control

does not any a-priori knowledge about the system model. However, the output error
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Figure 6.4 Trajectory of spacecraft around asteroid Eros with adaptive control only.

approaches zero which can be seen from Figure 6.5 (d) which shows that the adaptive

control is not only robust to the unknown environment but also improves the tracking

performance.

The adaptive control tuning parameters can be further tuned depending upon the

mission requirements and robustness. Generally, increasing the gains increases the

tracking performance but reduces the robustness of the adaptive control especially in the

presences of sensor and system noise. It found that the adaptive control was fairly easy to

tune and a wide variety of gains can be implemented.

6.3.1.3. Case 3: DAMPC Implementation

In this section we show the simulation and results for the combined control i.e. direct

adaptive model predictive control (DAMPC). As mentioned before, the DAMPC is a
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Figure 6.5 Plots for adaptive control case for asteroid Eros, (a) position vs. time, (b)
velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

combination of adaptive control and MPC, where the adaptive control is the feedback

control and the NMPC is the feedfoward control. The NMPC feedforward control values

are similar to one used in Case 1 and in the previous chapter.

As in the case for adaptive control, DAMPC is able to successfully track the desired

trajectories generated from NMPC with actual system model. The desired position and

actual position coincides. However, the tracking performance is superior to adaptive

control and the output error can be seen in Figure 6.7 (d). The addition of the feedforward

control has shown to improve the tracking performance of the adaptive control while

adding optimally to trajectory tracking.

The position and velocities can be seen in Figure 6.7 (a) and (b). The control system

is able to reach the desired state as the position converges to desired position and the
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Figure 6.6 Trajectory of spacecraft around asteroid Eros with DAMPC.

velocities converge to zero. The control effort from DAMPC can be seen in Figure 6.7

(c). It can be seen that the control effort from DAMPC does not overshoot like the case

where only adaptive control is applied.

Therefore, DAMPC not only offers superior tracking performance by reducing the

output error but also a better control effort in terms of overshooting and chattering. In

case of DAMPC, the feedforward term helps to better initialize the control effort which

is not possible with the adaptive control since the adaptive control is initialized by zero

initial condition.

Also, the adaptive control effort is relatively low as compared to the total control

effort applied since the adaptive control acts as a disturbance rejection control for higher

order forces and system disturbances. The contribution of adaptive control in DAMPC
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Figure 6.7 Plots for DAMPC case for asteroid Eros, (a) position vs. time, (b) velocity vs.
time, (c) control effort vs. time, (d) output error vs. time.

is shown in Figure 6.8 and it can be noted that the adaptive control is much lower than

compared to the total control effort from DAMPC as shown in Figure 6.7 (c).

Figure 6.8 Adaptive control plot for asteroid Eros for DAMPC formulation.
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6.3.1.4. Case 4: Effects of Unknown Noise

In this section we discuss the effects of system noise on the DAMPC and compare

it with the case adaptive control only. It was found that DAMPC offers a better tracking

performance in the presence of noise and a reduced chatter in the control effort as

compared to the adaptive control only. A random Gaussian noise of (1 × 10−4N (0, I3×3)

is added to the system. The magnitude of the error is taken to be higher than the order of

the gravity to further test the robustness of the control system to unknown noise.

Figure 6.9 Plots for adaptive control with noise case for asteroid Eros, (a) position vs.
time, (b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

Figure 6.9 (a) and (b) shows the position and velocities for the case where only

adaptive control is implemented. The control effort is given in Figure 6.9 (c). It can be
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Figure 6.10 Plots for DAMPC case with noise for asteroid Eros, (a) position vs. time, (b)
velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

seen that the control effort is not only higher in this case as compared to DAMPC (shown

in Figure 6.10 (c)) but also there is high chatter in the control effort.

The magnitude of the output error is also less in the case where DAMPC is

implemented as shown in Figure 6.10 (d) compared to the output error for adaptive

control only as given in Figure 6.9 (d). However, both adaptive control with e

modification and DAMPC can handle system noise and tracking performance is

comparable.

6.3.2. Asteroid Bennu

In this section we consider asteroid Bennu and present the simulation results.

Point-to-point tracker case is considered and the conditions are similar to as previously

defined.
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The initial and final conditions are given as follows,

rin = [0 − 0.35 0.1 ]T km, ṙin = [0 0 0]T km/s

rf = [0.1 0.4 0.2 ]T km, ṙf = [0 0 0 ]T km/s

(6.6)

The NMPC conditions are given in Table 6.2. The adaptive control tuning parameter

is set to α = −1 × e−9. The adaptive control gains are initialized with zero initial

condition and the adaptive tuning parameter is set to Γe = Γ̄e = 103I3×3.

Table 6.2

NMPC Parameters for Case 2 for asteroid Bennu

N 100

Q 1× 10−5
[
I3×3 03×3
03×3 I3×3

]
R 0.5I3×3
∆T 0.1
Control Constraint −0.0025 ≤ u ≤ 0.0025 km/s2

Velocity Constraint −0.005 ≤ u ≤ 0.005 km/s
a 0.3 km
b 0.3 km
c 0.3 km

6.3.2.1. Case 1: MPC Feed-forward Only

In this section, we present the results for the first case where we apply the NMPC

control found in the previous chapter to asteroid Bennu with the "actual" system as

presented in Chapter 3. The spacecraft actual and desired trajectory can be seen in Figure

6.11. It can be seen that the desired and actual position are very close. This is due to the

fact that asteroid Bennu is small and almost spherical asteroid with a weak gravitational

pull. The gravitational field is dominated by the two-body terms and the off two-body
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terms do not play a significant role. However, the divergence between actual and desired

trajectory is subject to the duration of the mission. Increasing the mission duration tends

to increase the divergence.

The position and velocities are given in Figure 6.11 (a) and (b). Both tends to

converge to the desired location. However, it can be seen from the output error plot that

the error does tend to zero, but in fact is increasing as the time grows. This is expected

since only feed-forward MPC is being implemented. The control effort can be shown in

Figure 6.12 (c).

Figure 6.11 Trajectory of spacecraft around asteroid Bennu for MPC feed-forward case.

6.3.2.2. Case 2: Adaptive Control

In this section we discuss the simulation and results for the case where the adaptive

control is implemented to track the trajectories found using the NMPC methodology
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Figure 6.12 Plots for MPC Failure case for asteroid Bennu, (a) position vs. time, (b)
velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

from the previous chapter. The adaptive control will be tuned once and the tuning the

parameters will be kept constant for other asteroids. This is to show the robustness of

adaptive control to different asteroids and dynamical conditions.

Figure 6.13 shows the actual and desired trajectory of the spacecraft with adaptive

control. It can be seen that the adaptive control is able to successfully track the

trajectories and the final position coincides with the desired position. Therefore, adaptive

control is able to reject the disturbances and track the NMPC generated trajectory.

The positions and velocities can be seen in Figure 6.14 (a) and (b). The positions

converge to the final desired and locations the velocities converge to zero as desired.
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Unlike the previous case the errors tends to converge to zero which can be seen in

Figure 6.14 (d). This shows that a feedback control is still necessary even though the

gravitational field of the Bennu is weaker than asteroid Eros.

It can be noted that the forces due to solar radiation pressure in this case could be

larger than the gravitational field of the asteroid depending on the size and shape of the

spacecraft. The control effort can be seen in Figure 6.14 (c). It can be seen that there

is significant overshooting and chatter in the adaptive control which will be further

improved using the DAMPC modification. The steady-state adaptive control effort can

be seen in the magnified Figure 6.14 (e). It can be seen that a non-zero adaptive control

effort is required to keep hovering over asteroid Bennu.

Figure 6.13 Trajectory of spacecraft around asteroid Bennu with adaptive control.
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Figure 6.14 Plots for adaptive control case for asteroid Eros, (a) position vs. time, (b)
velocity vs. time, (c) control effort vs. time, (d) output error vs. time, (e) control effort
zoomed in.

6.3.2.3. Case 3: DAMPC Implementation

In this section we show the simulation and results for the combined control i.e. direct

adaptive model predictive control (DAMPC). As mentioned before, the DAMPC is a

combination of adaptive control and MPC, where the adaptive control is the feedback

control and the NMPC is the feed-forward control. The NMPC feedforward control

values are similar to one used in Case 1 and in the previous chapter.
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As in the case for adaptive control, DAMPC is able to successfully track the desired

trajectories generated from NMPC with actual system model. The desired position and

actual position coincides. However, the tracking performance is superior to adaptive

control and the output error can be seen in Figure 6.16 (d).

The addition of the feedforward control has shown to improve the tracking

performance of the adaptive control while adding optimally to trajectory tracking. The

position and velocities can be seen in Figure 6.16 (a) and (b). The DAMPC control

system is able to successfully track the trajectories.

Figure 6.15 Trajectory of spacecraft around asteroid Bennu for DAMPC.

6.3.2.4. Case 4: Effects of Unknown Noise

In this section we discuss the effects of system noise on the DAMPC and compare

it with the case adaptive control only. It was found that DAMPC offers a better tracking
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Figure 6.16 Plots for DAMPC case for asteroid Bennu, (a) position vs. time, (b) velocity
vs. time, (c) control effort vs. time, (d) output error vs. time.

performance in the presence of noise and a reduced chatter in the control effort as

compared to the adaptive control only. A random Gaussian noise of (1 × 10−5N (0, I3×3)

is added to the system. The magnitude of the error is taken to be one order higher than the

gravity to further test the robustness of the control system to unknown noise.

Figure 6.17 shows the plots for the case where only adaptive controller is

implemented with noise and Figure 6.18 shows the plots for where DAMPC is

implemented. It can be seen from the figures that the DAMPC is able to handle the

noise better than adaptive control in terms of the output error and control effort. Figure

6.17 (e) and Figure 6.18 (e) shows the magnified control efforts and it can be seen that
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the DAMPC’s control effort less in magnitude and chatter as compared to the adaptive

control.

Figure 6.17 Plots for adaptive case with noise for asteroid Bennu, (a) position vs. time,
(b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time, (e) control effort
zoomed in.

6.3.3. Asteroid Kleopatra

In this section, we will discuss the simulation and results for asteroid Kleopatra.

Asteroid Kleopatra is dog-bone shape metal asteroid. The gravitational field of the

asteroid is highly variable and much stronger asteroid Eros and Bennu which will be

reflected in control effort and poor tracking via feed-forward MPC control. The initial



109

Figure 6.18 Plots for DAMPC with noise case for asteroid Bennu, (a) position vs. time,
(b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time, (e) control effort
zoomed in.

and final conditions are given as follows,

rin = [10 − 100 0 ]T km, ṙin = [0 0 0]T km/s

rf = [50 60 25 ]T km, ṙf = [0 0 0 ]T km/s

(6.7)

The NMPC conditions are given in Table 6.3 case. The adaptive control gains are

initialized with zero initial condition and the adaptive tuning parameter is set to Γe =

Γ̄e = 103I3×3.
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Table 6.3

NMPC Parameters for Case 2 for asteroid Kleopatra

N 100

Q 1× 10−5
[
I3×3 03×3
03×3 I3×3

]
R 0.5I3×3
∆T 0.2
Control Constraint −0.007 ≤ u ≤ 0.007 km/s2

Velocity Constraint −0.1 ≤ u ≤ 0.1 km/s
a 150 km
b 70 km
c 50 km

6.3.3.1. Case 1: MPC Feed-forward Only

In this section, we present the results for the first case where we apply the NMPC

control found in the previous chapter to asteroid Kleopatra with the "actual" system

as presented in Chapter 3. The desired and actual trajectory after implementing MPC

feed-forward only can be seen in Figure 6.19. In this case it can be seen clearly that the

trajectories are diverging significantly. This is because the the two-body assumption used

for calculating MPC trajectory. In case of Kleopatra, the gravitational model is better

represented by a polyhedral gravity model due its shape and mass. Also, as the duration

of mission get longer the divergence from the desired position also increases and causes

even further drift. The output error can be seen in Figure 6.21 (d). As compared to the

previous asteroid, the output error in this case is significantly high. The position and

velocities are given in Figure 6.21 (a) and (b) respectively.

It can be seen that the positions do not converge to the desired position and velocities
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do not converge to zero. The control effort from the feed-forward MPC is given in Figure

6.21 (c). It can also be noted that the ellipsoidal constraint for obstacle avoidance is not

met and the spacecraft eventually ends up inside the ellipsoid. This can be seen in Figure

6.20.

Figure 6.19 Trajectory of spacecraft around asteroid Kleopatra for MPC feed-forward.

Figure 6.20 Ellipsoidal constraint for MPC feed-forward case for Kleopatra.

6.3.3.2. Case 2: Adaptive Control

In this section we discuss the simulation and results for the case where the adaptive

control is implemented to track the trajectories found using the NMPC methodology
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from the previous chapter. The adaptive control will be tuned once and the tuning the

parameters will be kept constant for other asteroids. This is to show the robustness of

adaptive control to different asteroids and dynamical conditions.

Figure 6.21 Plots for MPC feed-forward case for asteroid Kleopatra, (a) position vs.
time, (b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

It can be seen from the Figure 6.22 that the adaptive control is able to successfully

track the desired trajectory generated from the MPC and converge to the final desired

position. Which shows that the adaptive control is robust to varying gravity field of the

asteroid Kleopatra without re-tuning the adaptive control gains. Note that the adaptive

control weighting gains are kept constant for all three asteroids. The position and

velocities are shown in Figure 6.22 (a) and (b). The positions successfully converge to the
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desired final position and the velocities converge to the zero. The adaptive control effort

can be seen in Figure 6.22 (c).

The adaptive control can be further improved reducing the overshoot and chatter.

The output error can be seen in Figure 6.22 (d). The output error is far less as compared

to the previous case which shows that the adaptive control is able to track the trajectories

in the presence of disturbances.

Figure 6.22 Trajectory of spacecraft around the asteroid Kleopatra for the adaptive
control case.

6.3.3.3. Case 3: DAMPC Implementation

In this section we show the simulation and results for the combined control i.e. direct

adaptive model predictive control (DAMPC). As mentioned before, the DAMPC is a

combination of adaptive control and MPC, where the adaptive control is the feedback

control and the NMPC is the feed-forward control.

The NMPC feedforward control values are similar to one used in Case 1 and in the
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Figure 6.23 Plots for adaptive control case for asteroid Kleopatra, (a) position vs. time,
(b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

Figure 6.24 Trajectory of spacecraft around asteroid Kleopatra for DAMPC case.
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previous chapter. The actual and desired trajectories can be seen in Figure 6.24. It can be

seen that the DAMPC is able to track the trajectories successfully.

However, the tracking performance of DAMPC is better as compared to the adaptive

control which is shown in Figure 6.25 (d). The control of DAMPC is also better in terms

of overshoot and chatter and can be seen in Figure 6.25 (c). The position and velocities

and can be seen in Figure 6.25 (a) and (b).

6.3.3.4. Case 4: Effects of Unknown Noise

In this section we discuss the effects of system noise on the DAMPC and compare

it with the case adaptive control only. It was found that DAMPC offers a better tracking

performance in the presence of noise and a reduced chatter in the control effort as

compared to the adaptive control only. A random Gaussian noise of (1 × 10−4N (0, I3×3)

is added to the system. The magnitude of the error is taken to be one order higher than the

gravity to further test the robustness of the control system to unknown noise.

Figure 6.26 shows the plots for the case where only adaptive controller is

implemented with noise and Figure 6.27 shows the plots for where DAMPC is

implemented. It can be seen from the figures that the DAMPC is able to handle the

noise better than adaptive control in terms of the output error and control effort. Figure

6.26 (e) and Figure 6.27 (e) shows the magnified control efforts and it can be seen that

the DAMPC’s control effort less in magnitude and chatter as compared to the adaptive

control.

Minimum and maximum errors for each asteroid for all three cases are given in

Table 6.4, Table 6.5 and Table 6.6. It can be seen that the minimum error is the lowest for

DAMPC for asteroids and the maximum error is also the lowest for DAMPC for all the



116

Figure 6.25 Plots for DAMPC case for asteroid Kleopatra, (a) position vs. time, (b)
velocity vs. time, (c) control effort vs. time, (d) output error vs. time.

asteroids. This shows that DAMPC outperforms adaptive control and MPC-feedforward

control for all the cases.
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It can be noted that the perforamance of MPC is also dependent on the

type of numerical solver used and its various parameters. In this work, CASADI

(Andersson et al., 2019) is used as a solver. However, several other types of solvers and

methodologies can be implemented and more research needs to be in order to conclude

the best case solver. It can also be noted that the DAMPC is also agnostic to type of

optimal control technique applied. Therefore, for a linear system, a linear quadratic

regular (LQR) or linear quadratic tracker can be also implemented.

Table 6.4

Output error for asteroid Eros

Errors MPC Only (km) Adaptive (km) DAMPC (km)
Min ex 0 -8.92e-4 -3e-4
Min ey 0 -0.0070 -5.25e-4
Min ez -0.3367 -0.0075 -6.9e-4
Max ex 0.0104 7.5185e-4 2.32e-4
Max ey 0.0574 0.0028 7.16e-4
Max ez 0 0.007 4.19e-4

Table 6.5

Output error for asteroid Bennu

Errors MPC Only (km) Adaptive (km) DAMPC (km)
Min ex -0.0014 -0.0033 -5.9e-5
Min ey -0.0011 -0.01 -3.25e-4
Min ez -0.0029 -0.02 -6e-5
Max ex 1e-5 0.03 2.32e-5
Max ey 2e-4 0.01 7.16e-5
Max ez 4.149 0 1.19e-5
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Figure 6.26 Plots for adaptive control case with noise for asteroid Kleopatra, (a) position
vs. time, (b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.
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Figure 6.27 Plots for DAMPC case with noise for asteroid Kleopatra, (a) position vs.
time, (b) velocity vs. time, (c) control effort vs. time, (d) output error vs. time.
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Table 6.6

Output error for asteroid Kleopatra

Errors MPC Only (km) Adaptive (km) DAMPC (km)
Min ex -0.0132 -0.0033 -8e-4
Min ey -0.0132 -0.01 -0.0013
Min ez -0.0132 -0.02 -8e-5
Max ex 0 0.0058 4.2e-4
Max ey 16 0.0035 0.001
Max ez 0 0.0081 4e-4
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7. Conclusions and Future Works

This work focused on developing and implementing adaptive control and model

predictive control methodologies for spacecraft missions in the proximity of asteroids.

Asteroid and spacecraft dynamical parameters were assumed to be unknown, and it was

shown that the adaptive control could track user-given trajectories successfully. The work

was divided into four main parts:

1. Spacecraft dynamics near the asteroid.

2. Adaptive control of the spacecraft near asteroid without system knowledge.

3. Nonlinear model predictive control formulation for sub-optimal trajectory

generation.

4. Development of direct adaptive-model predictive control methodology.

The spacecraft dynamics near the vicinity of the asteroid were developed using a

polyhedral gravity model and coupled orbit-attitude dynamics, which included forces

from solar radiation pressure and gravity gradient.

The dynamical model was used to test the performance and robustness of the

adaptive control system. A direct adaptive control based on simple adaptive control was

developed and implemented. A robust control e modification was developed to enhance

further the adaptive control’s ability to handle system and sensor noise. The adaptive

control was tested numerically on three different asteroids with the varying gravitational

field.

The adaptive control weighting matrices were kept constant for three cases to test

the robustness of the adaptive control. The adaptive control was able to track user-given

trajectories for orbital and hovering cases successfully. The controller was further tested
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for robustness by adding random Gaussian noise and sinusoidal noise on the system and

sensor. It was shown that the adaptive control was able to handle the unknown noise

successfully. The e modification was compared with the more popular µ modification,

and it was shown that the e modification performs superior to the µ modification.

A nonlinear model predictive control methodology was developed to add further

autonomy to the control system. The NMPC was developed using multiple shooting. It

was shown that the NMPC was able to successfully generate sub-optimal trajectories

for the given initial and final state while successfully avoiding obstacles. An ellipsoidal

constraint was implemented as a nonlinear constraint. The NMPC was also tested on

three different asteroids.

Lastly, the nonlinear model predictive control was paired with direct adaptive control

as a feed-forward control to add optimality and reduce overshooting resulting from the

adaptive control. It was shown that the new control method named direct-adaptive model

predictive control (DAMPC) was able to successfully track trajectories and significantly

reduce the overshooting of the adaptive control. The DAMPC methodology was also

tested with system noise, and it was shown that the DAMPC is able to better handle

system noise compared to adaptive control, the only system. The DAMPC was also

implemented on three different asteroids. Overall, this work showed the successful design

and application of adaptive control and model predictive control to track trajectories in the

vicinity of asteroids.

In the future, this work can be further improved in the following ways:

• Improve the adaptive control by adding self-tuning weighting matrices to increase

the autonomy further.
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• Further test the adaptive control with modeling and sensor noise.

• Modify the adaptive control to work input constraint.

• Enhance the capability of the control system to work in thrust failure scenarios.

Which is a common problem for spacecrafts.

• Rigorously develop a stability proof for the DAMPC system.

• Add moving horizon estimator and test the performance of the control in various

conditions.

• Experimentally test the viability of the DAMPC system.

• Numerically develop and test DAMPC system without other forms of MPC.

• Test the ability of DAMPC to handle thrust failure.

• Further develop the ability to handle moving obstacles in real-time.
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APPENDIX A - Adaptive Control Stability

Given the error dynamics equation below:

ex(t) = x∗(t)− x(t) (1)

Substituting (4.1) and (4.29),

ėx(t) = A∗x∗(t) + B∗u∗(t)−Ax(t)−Bu(t) (2)

Adding and subtracting Ax∗(t) in (2)

ėx(t) =A∗x∗(t) + B∗u∗(t)−Ax(t)−Bu(t)−Ax∗(t) + Ax∗(t) (3)

Substituting the ideal system equation (4.31), ideal system control law (4.32), adding

and subtracting BK̃eyey(t), BK̃xmxm(t) and BK̃umum(t), and substituting the compact

adaptive control law from (4.11) in above equation (3),

ėx(t) = A(x∗(t)− x(t))−A(Xxm + Uum) + A∗(Xxm + Uum)

−BK(t)r(t) + BK̃eyey(t) + BK̃xm + BK̃umum(t) (4)

−BK̃eyey(t)−BK̃xmxm(t)−BK̃umum(t)

+ B∗(K̃xmxm + K̃umum)

Combining terms and substituting system error equation ex from (4.35) in (4)

ėx(t) = Aex −BK̃eyey(t)−B[K(t)− K̃]r(t) + [(A∗ −A)X

+ (B∗ −B)K̃xm ]xm(t) + [(A∗ −A)U (5)

+ (B∗ −B)K̃um ]um(t)
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Here,

K̃ = [K̃ey K̃xm K̃um ] (6)

Generally, system parameters vary slowly, therefore,

A∗ = A (7)

B∗ = B (8)

Substituting the the above equations. The final form of error dynamics is given as,

ėx(t) = Aex(t)−BK̃eyey(t)−B[K(t)− K̃]r(t) (9)

ėTx (t) = eTx (t)AT − eTy (t)K̃T
eyB

T − rT (t)[K(t)− K̃]TBT (10)

Rewriting the Lyapunov function from (4.16),

V (t) = eTxPex + tr[KI − K̃]Γ−1[KI − K̃]T (11)

Differentiating V (t),

V̇ (t) = ėTxPex + eTx Ṗex + eTxPėx + tr[K̇IΓ
−1(KI − K̃)T ] + tr[(KI − K̃)Γ−1K̇T

I ]

(12)

K̇I can be written as follows

K̇I = [K̇Ie K̇Ix K̇Iu] (13)
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Substituting the for each adaptive law

K̇I = [ey(t)ey(t)
TΓe − µ‖ey(t)‖KIe, ey(t)xm(t)TΓx, ey(t)um(t)TΓu] (14)

K̇I = ey(t)r(t)TΓ− [µ‖ey(t)‖KIe, 0, 0] (15)

Substituting ėx from (9) and K̇I from Equation (15) in Equation (12)

V̇ (t) = [eTxAT − eTy K̃T
eyB

T − [B(K− K̃)r(t)]T ]Pex + eTx Ṗex

+ eTxP[Aex −BK̃eyey −B[K(t)− K̃]r(t)] (16)

+ tr[(eyr
TΓ− [µ‖ey‖KIe, 0, 0])Γ−1(KI − K̃)T ] (17)

+ tr[(KI − K̃)Γ−1(ey(t)r(t)TΓ− [µ‖ey(t)‖KIe, 0, 0])] (18)

Simplifying and rearranging terms

V̇ (t) = eTx [Ṗ + P(A−BK̃eyC) + (A−BK̃eyC)TP]ex

− rT (t)[K(t)− K̃]TBTPex − eTxPB[K(t)− K̃]r(t)

+ tr[eyr
T (KI − K̃)T ] (19)

+ tr[(KI − K̃)reTy ] (20)

− tr[[µ‖ey(t)‖KIe, 0, 0]Γ−1(KI − K̃)T ] (21)

− tr[(K− K̃)Γ−1[µ‖ey(t)‖KIe, 0, 0]T ] (22)

Using trace property tr(b(a1a2)
T ) = aT2 aT1 b and substituting KI(t) = K(t) −Kp(t) =

K(t)− ey(t)r
T (t)Γ̄,
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V̇ (t) = eTx [Ṗ + P(A−BK̃eyC) + (A−BK̃eyC)TP]ex

− rT (t)[K(t)− K̃]TBTPex − eTxPB[K(t)− K̃]r(t)

+ rT (K(t)− ey(t)r
T (t)Γ̄− K̃)Tey (23)

+ eTy (K(t)− ey(t)r
T (t)Γ̄− K̃)r (24)

− tr[[µ‖ey(t)‖KIe, 0, 0]Γ−1(K− K̃)T ] (25)

− tr[(K− K̃)Γ−1[µ‖ey(t)‖KIe, 0, 0]T ] (26)

Using ASP property PB = CT and substituting ey = Cex and cancelling like terms

V̇ (t) = eTx [Ṗ + P(A−BK̃eyC) + (A−BK̃eyC)TP]ex

− rT Γ̄reTy ey − eTy eyr
T Γ̄r (27)

− 2tr[(K− K̃)Γ−1[µ‖ey(t)‖KIe, 0, 0]T ] (28)

Adding like terms and substituting ASP property from Equation (4.18)

V̇ (t) = −eTx (t)Q(t)ex(t)− 2eTy (t)ey(t)r(t)T Γ̄r(t)− 2tr[(KI − K̃)Γ−1[µ‖ey(t)‖KIe, 0, 0]T ]

(29)
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