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ABSTRACT 

 

Jet impingement cooling is a widely used cooling method due to the high heat transfer 

rates associated with it. Research for improving heat transfer rates for this cooling 

method is still being carried out due to its broad application in various fields like gas 

turbine blade cooling, electronic component cooling, and paper drying. The unsteady jet 

oscillation effectively enhances the stagnation region and the time-averaged heat transfer 

rates. It is shown that a novel passive jet oscillation technique can be achieved using the 

vortices periodically shed from a cylinder placed upstream in a channel with an initial 

crossflow. Preliminary CFD results prove the hypothesis of jet oscillation induced by the 

cylinder vortices and that the lateral jet oscillation is an efficient method for uniform 

distribution of heat transfer. The statistical analysis concluded jet oscillation is most 

sensitive to cylinder vortex strength. A frequency spectral analysis is performed to 

classify oscillating and non-oscillating cases. Finally, unsteady numerical and 

experimental research is carried out to determine the effect of cylinder-jet distance, 

cylinder diameter, and velocity ratio on jet oscillation and heat transfer rate. The range of 

cylinder-jet distance and velocity ratio tested are S/d = 2 – 4 and VR = 4 – 12, 

respectively. The flow interaction mechanism leading the jet oscillation is analyzed using 

TKE, vorticity, and velocity contours in time. The flow feature analysis concluded the 

cylinder wakes deformed the jet core inducing lateral and angular oscillations. The heat 

transfer results showed the Nusselt number is proportional to the velocity ratio for 

oscillating jet cases. The non-oscillating jet enhances the heat transfer rate by 94% in the 

wall jet region due to crossflow interaction. And the optimum oscillating jet case 

improved the stagnation region Nusselt number by 19%.  
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1. Introduction 

The gas turbine engine (GTE) is efficient and extensively used in power production 

and gas propulsion. The ever-growing demand for higher power and efficiency has led 

researchers and industries to take advantage and invest their skills and finance in this 

field of study. A typical gas turbine engine (shown in Figure 1.1) consists of four 

components: compressor; combustor; turbine; and nozzle. The axial compressor ingests 

the incoming air and delivers compressed air to the combustor. In the combustor, heat is 

added by burning chemical fuel further increases the working fluid's total temperature. 

The high-energy hot gas is expanded in the turbine to extract energy to drive the 

compressor and generator (for industrial GTE). Finally, a nozzle is used to expand the 

gasses to produce thrust for a gas propulsion engine. The application of the gas generator 

output determines the GTE configuration (Boyce, 2011). 

 

 

Figure 1.1 Gas turbine engine (Boyce, 2011) 

 

1.1. Motivation 

 Jet impingement cooling is a widely used cooling method due to the high heat transfer 

rates associated with it. Research for improving heat transfer rates for this type of cooling 

is still being carried out due to its wide application in various fields like gas turbine blade 
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cooling, electronic component cooling, and paper drying. 

     One approach which yields high heat transfer rates is the use of unsteady oscillating 

impingement jets. Here, the target surface is cooled by a high-speed fluid jet whose 

position periodically transitions from one extreme to another. Implementation of existing 

oscillation techniques may not be suitable for current industrial manufacturing methods 

and environments. The adverse impacts of crossflow development, passage clogging, and 

breakage of small features must be addressed. Therefore, a robust design is necessary that 

will continue to yield adequate rates of heat transfer even in the presence of these 

failures. 

1.2. Thermodynamics of Gas Turbine Engine 

The thermodynamic ideal Brayton cycle (neglecting losses) is shown in Figure 1.2, 

which shows the cyclic working process of a gas turbine engine. The first process is the 

isentropic compression of the incoming air to high pressure using an axial or a centrifugal 

compressor, process1-2. This process also leads to an increase in temperature due to the 

rise in pressure. Secondly, heat energy is added into the system by burning fuel in the 

combustor, process 2-3 (constant pressure heat addition). The maximum temperature 

allowable at the exit of the combustor is limited by the material and cooling capability of 

the turbine blade used in the following stage. The combustor exit temperature limit of the 

current generation engine is approximately 1500 ºCelsius (Hill et al., 1992). The turbine 

expands the working fluid and extracts energy for driving the compressor, process 3-4 

(isentropic expansion). The 4-1 is an isobaric process, decreasing the temperature from 

T4 to T1 to close the ideal cycle. The thermal efficiency (shown in equation 1) is derived 

as a function of the working temperatures.  
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𝜂𝐵𝑟𝑎𝑦𝑡𝑜𝑛 = 1 −

𝑇4 − 𝑇1

𝑇3 − 𝑇2
  

(1) 

The atmospheric inlet temperature (T1), the compressor outlet temperature (T2), and 

the turbine outlet temperature (T4) are fixed by the compressor design and working 

conditions of the GTE. The turbine blade's thermal capability limits the turbine inlet 

temperature (T3). The turbine inlet temperature (T3) is also found to be proportional to 

the efficiency of the Brayton cycle. Hence, the material capability and cooling technology 

advancement dictate the efficiency of a gas turbine engine. Currently, the superalloy 

material limit is approximately 1000 ºCelsius. Further cooling the blade using the known 

cooling methods will increase the limit to 1500 ºCelsius (Hill et al., 1992; Halbig et al., 

2013). 

 

 

Figure 1.2 Brayton cycle 

 

1.3. Gas Turbine Cooling 

The cooling of a gas turbine's hot components is a crucial process required to 

maintain lower thermal stresses and facilitate higher working turbine inlet temperatures. 

The allowable turbine inlet temperature is also limited by the material capability of the 
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turbine components. In the early 1950s, the increase in turbine inlet temperature is only 

governed by material property research advancement (shown in Figure 1.3). Later in the 

1960s, researchers explored the importance of cooling technology, leading to the 

increased turbine inlet temperature. Further comparing the trend between material 

capability and cooling capability research advancement, cooling methods have led to a 

higher increase in turbine inlet temperature due to the variety of cooling methods 

available for researchers to enhance and develop. 

 

 

Figure 1.3 Evolution of turbine inlet temperature (Ricklick et al., 2015) 

   

The cooling techniques used can be mainly classified into two streams: internal blade 

cooling and external surface cooling. Internal cooling of the turbine blade configures 

using cooling methods like jet impingement cooling, pin fin cooling, serpentine cooling 

channels, and ribbed channel cooling. The external surface cooling of the turbine blade is 

based on producing a layer/film of relatively cold air around the blade to protect it from 

the hot gasses. Complex designs incorporating both internal and external cooling methods 

are being used and developed to provide higher turbine inlet temperatures for GTE. An 
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example of an intricate design involving internal and external cooling arrangement in a 

gas turbine blade is shown in Figure 1.4 (Ricklick et al., 2015; Han et al., 2012).  

 

 

Figure 1.4 Typical internal and external turbine blade cooling (Han et al., 2012) 

 

1.4. Jet Impinging Cooling 

 The jet impingement cooling method is an effective cooling method used to generate 

high local heat transfer rates. This method's high heat removal capability has led to its 

implementation in fields like internal cooling of a gas turbine blade, food industry, paper 

drying, textile drying, and electronic component cooling (Han et al., 2012).  

 A typical jet impingement cooling (shown in Figure 1.5) constitutes a core fluidic jet 

produced by an orifice or a slot (jet diameter = D) targeted onto a plate (impingement 

surface/ target surface). The distance between the jet orifice and the target plate is the 

displacement height of impingement (H/D), the geometrical point of impingement of the 

jet onto the target plate is the stagnation point (r/D = 0). 
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 An impingement flow is divided into three regions: the free jet region, the stagnation 

region, and the wall jet region. The free jet region is the jet developed from the slot and 

acts like a submerged jet when the slot is sufficiently distant from the impingement 

surface (H/D>2). Due to the shear-driven interaction between the jet and the surrounding, 

the surrounding is entrained into the jet leading to an increase in mass flow rate. 

 

 

Figure 1.5 Jet impingement configuration 

 

The free jet is further divided into three regions: potential core region, developing 

region, and fully developed region (shown in Figure 1.6). The core region is the region 

with the centerline velocity equal to jet exit velocity. The core region is continuously 

expanding in the spatial direction with the entrainment of the surrounding fluid due to the 

shear layer mixing. The length of the core region is found to be 6-7 jet diameter. At the 

end of the potential core, the center line jet velocity is 95% of the exit jet velocity. 

Further, the jet velocity decreases with the increase in shear layer interaction moving into 

the developing zone. The velocity profile is stretched in the x-direction in the fully 

developed region, further reducing the centerline velocity (Shukla et al., 2017). 
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Figure 1.6 Flow schematic of a jet impingement flow (Shukla et al., 2017) 

 

The jet moves towards the wall creating a stagnation region and deflects upon 

impingement. As a result, the jet's kinetic energy in the z-direction decreases, leading to 

increased static pressure on the wall. The local point with the highest static pressure is the 

stagnation point. Later on, the jet flow is expanded radially outwards from the stagnation 

point, creating the wall jet.  

Jet impingement flow is classified into confined and unconfined jet impingement. The 

unconfined jet impingement is the geometrical arrangement with no walls, and the wall 

jet can move radially downstream parallel to the target surface, as discussed above. The 

confined jet impingement is the geometrical arrangement where the fluidic jet is 

contained within the channel walls, usually in a multiple jet arrangement (Figure 1.7). In 

this configuration, the wall jet impinges on the sidewall and deflects upwards, creating a 

vortical entraining of more fluid. These vortices move downstream, interacting and 

deflecting downstream jets (Figure 1.7). The deflection of the jet downstream is directly 

proportional to the crossflow accumulation produced by the upstream jets. The jet 
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deflection creates an adverse effect on the heat removal capability of the jet. Hence the jet 

deflection should be minimum for maximum heat transfer (Shukla et al., 2017).  

 

 

Figure 1.7 Impingement channel configuration  

 

 

1.5. Unsteady Jet Impingement 

 Unsteady jet impingement studied in this current research is the periodic jet core 

oscillation leading to benefits in heat transfer rate. Jet impingement is a quasi-steady-state 

process provided the flow and geometrical parameters discussed earlier are fixed, with no 

flow interaction with the crossflow or the neighboring jet. Therefore, studies on unsteady 

jet impingement are related to the method in which the unsteadiness is generated in the 

jet impingement flow structure. Broadly unsteady jet impingement can be classified 

based on the excitation method. Jet oscillation produced by external energy sources like 

piezoelectric reeds can be classified as active jet oscillation.  And passive jet oscillation is 

a technique utilizing the internal energy of the jet or surrounding flow structure to impart 

jet oscillation. A flow chart showing the classification of unsteady jet impingement is 

shown in Figure 1.8. Also, examples of active and passive jet oscillation techniques are 

listed in the flow chart. 

Plenum

Jet Nozzle/Orifice

Channel Side Walls

Target Wall

Jet Plate

Upstream Wall Channel/Crossflow
Outlet
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Figure 1.8 Unsteady jet impingement classification  
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2. Literature Review 

The current work intends to find a robust technique for jet oscillation leading to 

enhanced heat transfer rate. Numerous methods exist leading to jet oscillation. However, 

none fit the intended goal of this study to develop a robust jet oscillation technique. 

Hence, the literature works of basic jet impingement characteristics and previous jet 

oscillating techniques are discussed in the first and second subsections. Soon to discuss 

the hypothesis of using cylinder wakes for jet oscillation. Therefore, the last subsection 

discusses the literature on cylinder wake formation from a cylinder. 

2.1. Jet Impingement 

The impingement heat transfer configuration results in a heat transfer rate peak at the 

stagnation point (r = 0) and decays radially outward (for H/D > 2). A secondary peak in 

heat transfer distribution is observed if the impingement surface is closer to the jet orifice 

(H/D < 2). This phenomenon is caused by the increase in the wall jet turbulence, as 

shown in Figure 2.1 (O’Donovan et al., 2007). The heat transfer capability of this cooling 

technique is directly proportional to the Reynolds number of the jet and inversely 

proportional to the height of impingement. Due to the change in kinetic energy of the jet 

impinging onto the target plate. However, maximum heat transfer capability is attained at 

a jet to plate distance, H/D = 6 (Chakroun et al., 1997). 

Heat transfer rates due to impingement are among some of the highest per unit mass 

flow and are therefore often used in areas with high thermal loading (Ligrani et al., 2003; 

Lee, 1999). Another implementation of the jet impingement is within a channel, such that 

the exhausted jet flow is confined to flow axially along the channel after impingement, as 

shown in Figure 2.2. (Parida, 2015; Liang, 2012). 
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Figure 2.1 Unconfined jet impingement Nu distribution (O’Donovan et al., 2007) 

 

 

The crossflow rate increases in the downstream direction with an increase in the 

number of jets. The crossflow interacts with the impinging jets downstream and 

aerodynamically pushes the core jet from the geometrical point of impingement (shown 

in Figure 2.2). The jet deflection causes a detrimental effect on the heat transfer rate 

(Ricklick, 2009; Ricklick and Kapat, 2010).  

 

 

Figure 2.2 Velocity contour of row jet impingement (Ricklick, 2009) 

 

In channel jet impingement, the heat transfer distribution (Figure 2.3) is highest at the 

individual stagnation point. The heat transfer rate radially decays similar to unconfined 

jet impingement, an additional decrease in HTC is observed in the x-direction due to the 
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crossflow interaction. While high heat transfer rates are achieved at the stagnation point, 

the radial decay can lead to thermal stresses if not accounted for (Ricklick et al., 2010). 

The high local heat transfer rate can be distributed radially, improving the average heat 

transfer rate and reduce thermal stresses. An approach to distributing the thermal load and 

improving average HTC is to utilize an unsteady oscillating jet, spreading the stagnation 

region into a wider area. 

 

 

Figure 2.3 Channel row jet impingement span averaged HTC (Riclick, 2009) 

 

2.2. Jet Impingement in Crossflow 

The jet flow field in a crossflow (JICF) is primarily affected by the crossflow 

strength, quantified by the jet-crossflow momentum ratio (J). A typical flow structure 

evolved by the interaction of a jet in crossflow is shown in Figure 2.4. The flow 

structures observed are dominated by the counter-rotating vortex pair (CVP) generated 

near the jet nearfield region. Also, the JICF leads to the formation of vortical structures 

like horseshoe vortices, leading-edge/lee-side vortices, wake vortices, and the counter-

rotating vortex pair. (Karagozian, 2014). 
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Figure 2.4 Schematic of flow structure of a jet in crossflow (Karagozian, 2014) 

 

Working under the assumption of constant density flows the momentum ratio can be 

reduced to velocity ratio, shown in Equation 2. Hence, the jet deflection is primarily 

influenced by the velocity ratio (He et al., 1999).  

 
𝑉𝑅 =

𝑉𝑗

𝑉𝐶𝐹
   

(2) 

As the jet is primarily affected by the velocity ratio (VR), a generalized jet trajectory 

equation can be formed, shown in Equation 3. Various works of literature exist 

determining an effective way to predict the jet deflection, primarily predicting the 

constants A and B. The jet-crossflow interaction will lead to the deformation of the jet 

core as the jet penetrates the crossflow. The jet nozzle shape also influenced the 

deflection and deformation of the jet (Muppidi et al., 2005). 

 𝑦

𝑉𝑅 𝑑
= 𝐴 (

𝑥

𝑉𝑅 𝑑
)

𝐵

  
(3) 

 

2.3. Unsteady Jet Impingement 

Unsteady jet impingement can be achieved in various methods like flow rate control, 

Coanda effect, fluidic oscillator, vortex shedding from a cylinder/active reed placed at the 

nozzle exit, and cavity interaction.  
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An experimental analysis was carried out to study the effect of unsteady jet flow rate 

on heat transfer rate. This study showed that the active jet flow rate control technique 

augmented the heat transfer rate by 30% in some cases when compared against its quasi-

steady counterpart. In addition, a detailed analysis of the flow feature using PIV and 

hotwire technique was carried out. Results concluded that the unsteadiness induced 

generated vortical structures at the free boundary shear layer interface as the jet exited the 

nozzle, which was the primary driver to increase the heat transfer rate. The results also 

showed uniform Nusselt number distribution at a higher frequency of flow rate 

oscillation, whereas at lower frequencies deteriorating heat transfer rates were observed 

near the stagnation region (Middelberg and Herwig, 2009; Zhou et al., 2009). 

Similar to the previous study, a 2D numerical investigation was carried out on two 

inline jet configuration with unsteady jet flow rate (Figure 2.5). The results showed that 

the unsteadiness disrupted the boundary layer leading to an augmentation in heat transfer 

rate and uniform temperature distribution on the target surface, as shown in Figure 2.6 

(Hewakandamby, 2009). 

 

 

Figure 2.5 Multiple jet flow rate control (Hewakandamby, 2009) 
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Figure 2.6 Consecutive oscillating jet (Hewakandamby, 2009) 

 

Research on inducing jet oscillation was initially investigated by H. Viets, 1975 for 

thrust enhancement by oscillating the jet using a flip-flop nozzle with a fluidic actuator 

controlling the jet flow path. This nozzle had no moving parts hence classified as a 

passive jet oscillation technique, shown in Figure 2.7. As the jet emerges from the orifice, 

it is pushed by the fluidic actuator to either right or left wall. Consider the jet now being 

attached to wall A by the Coanda effect. Due to fluid entrainment, the pressure at port A' 

is lower, whereas port B' is higher on the other side. As the two ports are connected, a 

compression wave travels from port B' to port A', leading to the rise in pressure pushing 

the jet across to wall B. Conversely, leading to the decrease in pressure at port B and a 

compression wave from port A' to B' to push the jet back to wall A. Results also show the 

jet frequency is dependent upon the geometrical characteristics of the actuator loop 

(Viets, 1975; Herwig et al., 2004).  

Due to the thrust improvement and enhanced mixing (turbulent features) capability 

shown by H. Viets (1975), researchers showed interest in developing self-excited passive 

jet oscillation methods like the Karman jet nozzle and the precessing jet nozzle. The 

Karman jet nozzle is a geometrical arrangement with a cylinder at the nozzle exit. The 
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cylinder introduces von Karman vortex street into the jet by periodic vortex shedding 

(Figure 2.8a). The precessing jet nozzle works on the Coanda effect; the inverted chamfer 

at the exit of the jet orifice amplifies the perturbation in the flow. This perturbation 

results in the jet attaching to one side of the wall, and it revolves around the chamfer 

producing a precessing motion. The frequency of precession depends on the size of the 

nozzle and the jet Reynolds number. The setup of this nozzle is shown in Figure 2.8b 

(Herwig et al., 2004). 

  

 

Figure 2.7 Flip-Flop nozzle (Herwig et al., 2004) 

 

 

Figure 2.8 Karman nozzle (a); precessing nozzle (b) (Herwig et al., 2004) 
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Experimental analysis was carried on a flip-flop nozzle with no wall separator 

combined with a pulsed flow rate nozzle. Also, the author investigated the effect of these 

nozzles on fluid entrainment. Results showed that the pulsed flow rate nozzle performed 

better than the fluidic flip-flop nozzle (Platzer et al., 1978). The use of two flip-flop 

nozzles at an angle targeted towards a primary jet at the center was experimentally 

investigated to force oscillations into the primary jet. This technique successfully forced 

velocity perturbation in the main jet. The jet velocity decayed more rapidly for the forced 

cases than the unforced cases, proving higher entrainment due to shear layer interaction. 

However, the effect of heat transfer rate was unexplored (Raman and Cornelius, 1995). 

 

 

Figure 2.9 CFD vorticity contour of a fluidic oscillator (Uzol and Camci, 2002) 

 

Experimental and computational analysis was carried out on a fluidic oscillator 

similar to a self-excited flip-flop nozzle. The jet movement is caused by the vortical 

structures generated by the target wall (Figure 2.9). The vorticity distribution of this 

nozzle for one time period is shown in Figure 2.9. At t = 0.995seconds, the jet is attached 

to the upper side of the concave wall, resulting in vortical structures. These vortices push 
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the jet to the other side of the wall (t = 1.33s). The author concluded that the jet spends 

more time on the sidewalls than the transition period between walls due to the stability 

criteria. Also, the oscillating jet frequency was proportional to the jet Reynolds number 

(Uzol and Camci, 2002). 

Researchers further investigated the passive jet oscillation similar to flip-flop nozzle 

to understand the frequency control and flow dynamics under different jet inlet conditions 

and control port conditions (Tesar and Zimmerman, 2006; Koklu and Owens, 2014). The 

effect of the control port in a flip-flop nozzle was studied experimentally. 

An empirical formula (Equation 4-5) was developed to show the jet oscillation 

frequency (or Strouhal number) is a function of the inner diameter of the connecting tube 

(d/s), length of the connecting tube (L/s), and Jet Reynolds number (Rej). The results also 

showed that the frequency decreased with the increase in the tube length due to the time 

required for the compression wave to travel (Inoue et al., 2016). 

 
𝑓 =

𝑆𝑡 𝑉

𝑠
  

(4) 

Where, V = jet velocity, s = orifice/slot width and St = Strouhal number. 

 
𝑆𝑡 = 𝐶 (

𝐿

𝑠
)

𝛼

(
𝑑

𝑠
)

𝛽

𝑅𝑒𝛾   
(5) 

Where, C = 0.068, α = -0.72, β = 1.37 and 𝛾 = 0.22. 

The use of the flip-flop fluidic actuator in heat transfer applications has found interest 

during the 21st century. Camci and Herr (2002) experimentally tested the effect of the 

flip-flop jet on heat transfer capability. The results showed augmentation of heat transfer 

rate by 70% compared to the steady jet impingement result. The Nusselt number 

distribution comparing a steady and oscillating jet at Reynolds number Rej = 7500 is 
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shown in Figure 2.10. The oscillating jet has higher local heat transfer rates than a steady 

jet. Also, the lateral jet oscillation leads to an increase in the stagnation area region. The 

author mentioned that the level of heat transfer augmentation achieved would be useful if 

implemented in a turbine blade. But, it is also essential to understand the effect of 

manufacturing and maintenance difficulties experienced in implementing this technology. 

 

 

Figure 2.10 Steady and oscillating jet Nu Distribution (Camci and Herr, 2002) 

 

 Similar to the previous study, a hybrid synthetic flip-flop nozzle was experimentally 

investigated to determine the heat transfer rate. Results showed a maximum of 300% 

increase in heat transfer rate (Tesar, 2009).  

Experimental analysis of a fluidic oscillator invented by Bowels Fluidic Corporation 

was investigated to determine heat transfer rate (Agricola et al., 2017). The Fluidic 

oscillator is shown in Figure 2.11. As the jet expands downstream through the nozzle, the 

unstable jet attaches to one sidewall. Upon attachment, a recirculation region is 

developed at the entrance of the opposite wall feedback loop blocking it, and a part of the 

flow is forced into the wall feedback loop (Figure 2.11). The flow travels upstream near 

the throat to push the jet onto the other sidewall, and the process is repeated.  
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The results showed that a sweeping jet's maximum heat transfer rate is obtained at a 

jet to plate distance, h/D = 5. The literature on steady jet impingement suggests maximum 

heat transfer is achieved at a jet to plate distance, h/D = 6. A sweeping jet travels an 

additional distance before impingement; hence the h/D required by a sweeping jet is less 

than its steady counterpart for maximum heat transfer rate (Agricola et al., 2017). 

 

   

Figure 2.11 Fluidic oscillator (Agricola et al., 2017) 

 

 

Figure 2.12 Temperature profile of oscillating jet (Lundgreen et al., 2017) 

 

A numerical investigation was carried out on a sweeping jet using unsteady RANS k-

ω SST and k-ε v2f turbulence model. Comparing the CFD and experimental results 

showed k-ω SST model performed better than the k-ε v2f turbulence model in matching 

the experimental results. The time-averaged temperature distribution for a jet to plate 
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distance, h/D = 4, is showed in Figure 2.12. The temperature distribution is uniform for 

the oscillating jet, whereas the steady jet produces non-uniform radially decaying 

temperature profiles (Lundgreen et al., 2017). 

An array of fluidic jet oscillators was applied to a turbine vane leading edge, as 

shown in Figure 2.13. Conjugate heat transfer experiments were carried out in a low-

speed wind tunnel. The sweeping jet was fabricated using additive manufacturing. The 

literature quantified the effect of jet spacing, jet to plate distance, jet Reynolds number, 

and aspect ratio of the sweeping jet on overall cooling effectiveness. The literature 

concluded maximum heat transfer rate at a jet plate distance H/D = 5, the cooling 

performance is higher at a pitch P/D = 4, and the sweeping jet tends to produce smaller 

pressure drop than the steady jet (Hossain et al., 2018). 

Implementing the above-discussed literature into an industrial application will rely on 

advanced manufacturing methods, and the geometries may be susceptible to clogging. 

Similarly, the impact of crossflow on performance is not yet understood. 

Another method explored by researchers was the use of vortical shedding and fluid-

structure interaction from spring supported cylinders or active reeds placed downstream 

of the jet to induce unsteady oscillations into the jet flow structure, the setup is shown in 

Figure 2.14 (Haneda et al., 1998; Hidalgo et al., 2010; Hidalgo et al., 2015).  

The vortical structure jet interaction augmented heat transfer rate in the wall jet 

region. Whereas the cylinder obstructed the jet impinging into the stagnation region and 

deteriorating heat transfer capability. Overall heat transfer enhancement of 20% and 

higher observed in cylinders, and the use of active reeds lead to a 4x times increase in 

thermal performance. However, the need for small-scale moving parts limits the 
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applicability of this technique to harsh industrial environments and gas turbine engines. 

 

 

Figure 2.13 Fluidic oscillator in a turbine blade (Hossain et al., 2018) 

 

 

Figure 2.14 Cylinder downstream (a); piezoelectric reed (b)(Hidalgo et al., 2015) 

 

Secondary synthetic jets have been used to impart unsteadiness into a primary jet in 

different geometrical arrangements for jet vectoring and promote shear layer mixing (Yu 

et al., 2014; Smith and Glezer, 2005; Chiekh et al., 2011). A maximum of 20% heat 

transfer enhancement was observed in some configurations, and also results showed 

deteriorating stagnation region Nusselt number. However, using active synthetic 

diaphragms in generating the synthetic jet is not a reliable method for harsh industrial 

application. To eliminate the use of moving parts, some researchers found interest in 
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utilizing aeroacoustics tones to promote jet instabilities (Page et al., 1995; Arthurs and 

Ziada, 2012). The nozzle length and jet-plate distance controlled the acoustics driving the 

jet instabilities. Results concluded that overall heat transfer enhancement in some 

configurations by 50% and adverse effects were observed for higher jet-plate distance. 

The sensitivity of this technique makes their industrial application a challenge. 

Jet impinging into a rectangular cavity leads to the development of vortical structure 

due to fluid-wall interaction, and these vortices push the jet in either direction causing jet 

oscillation (Kalter et al., 2014; Righolt et al., 2015). The PIV results of the jet movement 

in time for half cycle is shown in Figure 2.15. The vortical structures causing the jet 

oscillation can also be observed near the wall. Several other groups have studied this 

phenomenon to understand the flow physics of this configuration. However, due to the 

large jet to plate distance in these works of literature, heat transfer effects were not given 

importance (Mataoui and Schiestel, 2009; Kolsek et al, 2007; Lawson and Davidson, 

2001).  

The jet impingement process is a quasi-steady process. Researchers have studied the 

unsteady flow structures occurring naturally in a jet/ multiple jet impingement process. 

An unsteady DNS (direct numerical simulation) numerical investigation was carried out 

on a two-dimensional jet impinging on a target plate and confined by the top wall for a 

range of Reynolds number, Re = 300 - 1,000 (Chung and Luo, 2002). The scalar flow 

field is shown in Figure 2.16; as the jet fluid exits the orifice, primary vortices are formed 

due to shear layer interaction. These primary vortices move downstream, periodically 

impinging on the target plate, leading to an unsteady Nusselt number in the stagnation 

region. The interaction of the primary vortex and the wall jet also imparted unsteady 
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Nusselt number distribution in the wall jet region. The unsteady vortex separation in the 

wall jet region led to a secondary peak at a higher Reynolds number and lower jet-plate 

distance. 

 

 

Figure 2.15 PIV contour of jet flow into a cavity (Righolt et al., 2015) 

 

 

 Figure 2.16 Flow features of unsteady jet impingement (Chung and Luo, 2002) 

 

The experimental and numerical investigation comparing steady and unsteady RANS 

simulation to experimental results was carried out by Yang et al. (2014) for multiple jet 

impingement channel (Figure 2.17). Results show that the unsteady k- ω SST turbulence 
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model better matches the experimental results than the steady RANS model. Also, 

unsteady flow features were being developed due to vortical structures generated in the 

channel. These vortical structures are formed due to the confined channel jet 

impingement and travel downstream, interacting with the downstream jet imparting 

additional unsteadiness (Yang et al., 2014 ). 

 

 

Figure 2.17 Effect of turbulence model on Nu distribution (Yang et al., 2014) 

 

2.4. Unsteady Vortical Structures 

The unsteady vortex shedding strength from a cylinder in a flow field is proportional 

to the flow velocity. The unsteady wake generation stretches in the shear layer transition 

regime (Re = 1,000 - 200,000), where the Strouhal number is found to be St = 0.2 

(Williamson, 1996). The flow physics for finite and infinite length cylinders is different 

due to the tip vortex protruding into the 2-D vortex shedding from the cylinder. The flow 
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physics also depends on the blockage ratio, cylinder length, and Reynolds number. The 

vortex formation length for an infinite cylinder is around two-cylinder diameters from the 

cylinder center. The formation length is further downstream for a shorter cylinder (FC) 

and increases with the cylinder height (as shown in Figure 2.18). 

 

 

Figure 2.18 TI plot behind a finite/infinite cylinder (Park et al., 2000) 

 

The local maximum of the turbulent kinetic energy behind the cylinder corresponds to 

the formation length (Park et al., 2000; Giordano et al., 2008). The vortex shedding is 

symmetric for an FC with an aspect ratio of less than 4 and develops into an asymmetric 

wake with the increase in aspect ratio (Okamoto et al., 1992). 

The flow feature for flow around a cylinder in a confined channel is different from 

the finite or infinite cylinder case discussed above. The wakes shed from the cylinder 

interact with the walls to cause further turbulent features downstream. The interaction 

between the wakes and sidewall leads to a beating effect observed at high blockage ratio 

(b>0.5). The drag coefficient for this case increases with the increase in Reynolds number 

and the blockage ratio (Griffith et al., 2011; Khan et al., 2004). 
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The interaction between the jet and the upstream cylinder can be related to the flow 

features around two cylinders inline. The forces acting on the second cylinder 

downstream are significantly affected by the spacing between the cylinders. A critical 

spacing (L/d = 3) below which the shear layer separated from the upstream cylinder 

attaches to the downstream cylinder, and no wakes are produced. The forces acting on the 

downstream cylinder beyond this critical spacing fluctuate and reach a maximum value 

when the wakes generated by each cylinder are in phase (Alam et al., 2003; da Silveria et 

al., 2005). 

A study by Singh et al. (2017), on the combined effect of pin fin and jet impingement 

in an inline/staggered array arrangement was recently investigated. The literature aimed 

to protect the jet behind the pin to reduce crossflow effects. Results showed enhancement 

in heat transfer rates, but the jet was positioned close to the cylinder in the recirculation 

region. Hence, the literature showed no unsteady jet oscillation. 

The literature review shows there is potential for significant gains in heat transfer 

using oscillating jets. Active and passive jet oscillation techniques exist, but the 

complexity of an active flow control system inside a gas turbine blade will be a 

challenge. The suitability of the available active/passive jet oscillation approaches to a 

harsh industrial environment is limited due to reliability concerns and the expected 

negative impact of an accumulated crossflow. The purpose of this research is to alleviate 

the issues associated with implementing a passive jet oscillating technique through the 

interaction with vortex structures periodically shed from a cylinder placed upstream in 

the channel with an initial crossflow. These modifications will be readily adapted to the 

existing designs and will likely benefit from some level of crossflow accumulation. 
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2.5. Problem Statement and Hypothesis 

The industrial application of the existing active and passive jet oscillation techniques 

is an engineering challenge. Hence, a robust passive jet oscillation technique is in 

demand due to its enhanced heat transfer rates.  

The hypothesis of this study is a novel method to utilize wakes generated from an 

upstream cylinder in a channel with initial crossflow to impart periodic oscillation into a 

jet downstream. And, the achieved jet oscillation leads to more uniform/enhanced heat 

transfer rates on the target plate. 

The overall objective of this study is to investigate the flow interaction of an 

impinging jet with vortex structures periodically shed from a cylinder placed upstream in 

the channel with an initial crossflow for jet oscillation causing heat transfer enhancement. 

Further, perform experimental analysis to understand the underlying flow physics causing 

the jet oscillation and develop an optimum design with correlations. The proposed study 

is broken down into three phases: 

• A response surface sensitivity analysis using unsteady RANS simulations for an 

oscillating jet through interactions with a cylinder; to prove the above-stated 

hypothesis and determine the effect of geometrical/flow parameters on the jet 

oscillation frequency and amplitude. Finally, develop an optimum geometrical 

design generating effective jet oscillation. 

• To experimentally study the effect of the geometrical/ aerodynamic parameters 

and benchmark the computational results. Finally, decrypt the flow physics of jet-

cylinder interaction using tools like unsteady pressure & velocity measurement, 

and turbulence using hotwire technique. 
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• Finally, thermal performance comparison of the developed optimum oscillating 

jet with a  non-oscillating jet. 
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3. Methodology 

The current work utilizes both computational and experimental analysis to prove the 

above-discussed hypothesis and achieve the goal of this study. The primary approach is 

the initial use of inexpensive CFD analysis to identify the critical geometrical and flow 

parameters responsible for jet oscillation. Subsequently, design and perform detailed 

experimental analysis to further study the observed CFD results and cylinder wake-jet 

flow interaction. 

A single confined jet is considered with a cylinder placed upstream in the channel at S 

from the orifice, as shown in Figure 3.1. The vortex shedding induced by the crossflow 

around the cylinder interacts with the downstream jet leading to lateral jet oscillation. The 

turbulent air jet impinges onto the heated surface and removes heat by convection. 

 

 

Figure 3.1 Schematic diagram of the setup 

 

Table 3.1 

Constant parameters 

Parameter Value 

Channel height H/D = 3 

Channel width W/D = 8 

Channel length L/D = 33.34 
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3.1. Response Surface Sensitivity Analysis Methodology 

For the first phase of this study, a response surface sensitivity analysis is carried out 

to identify the parameters affecting the oscillation and produce a maximum enhancement 

in the time-averaged Nusselt number. In this initial phase, assuming momentum required 

to oscillate the jet is directly proportional to the strength of the cylinder wake. The 

parameters selected for this initial study are the cylinder diameter (d/D), cylinder height 

(h/D), and crossflow velocity/ cylinder Reynolds number (Recyl). In addition, the 

literature on inline cylinders identified the distance between the cylinders played a 

significant role in wake generation (Alam et al., 2003; da Silveria et al., 2005). Hence, 

the effect of cylinder-jet distance (S/D) on jet oscillation is also studied. 

A full factorial design of trials for the four parameters with three variations will result 

in 81 trials. To reduce time and resources, a statistical approach is followed to utilize 

Box-Behnken Method (BBM) in this study to reduce the number of tests to 25 (Nguyen, 

2010). The selected three levels of variables for each parameter are shown in Table 3.2.  

 

Table 3.2  

List of varying parameters 

Parameter 
Value 

-1 0 1 

Cylinder diameter (d/D) 1 2 3 

Cylinder height (h/D) 1 2 3 

Cylinder Reynolds number (Recyl) 5,000 10,000 15,000 

 

For the jet cylinder distance (S/d), a preliminary study of the cylinder alone in a 

confined channel is carried out. The cases studied in this preliminary analysis of cylinder 
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with no jet impingement are shown in Table 3.3. The cylinder diameter is defined as the 

characteristic length for the crossflow Reynolds number for literature reference. The test 

matrix is developed using MINITAB software (version 18); the developed test matrix is 

shown in Table 3.4. 

 

Table 3.3  

Preliminary study of the cylinder wake test case matrix 

Case d/D h/D Recyl 

0 1 3 5,000 

0.1 1 3 15,000 

0.2 2 1 10,000 

0.3 2 2 10,000 

0.4 2 3 5,000 

0.5 2 3 10,000 

0.6 2 3 15,000 

0.7 3 3 10,000 

 

Table 3.4  

Test matrix 

Case d/D h/D S/d Recyl 

1 0 1 1 0 

2 -1 -1 0 0 

3 0 -1 0 -1 

4 0 1 0 -1 

5 -1 0 0 -1 

6 1 0 -1 0 

7 -1 0 1 0 

8 0 1 0 1 

9 -1 0 0 1 

10 0 -1 0 1 

11 0 0 0 0 

12 0 0 -1 1 

13 1 0 1 0 
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14 0 0 -1 -1 

15 -1 0 -1 0 

16 1 1 0 0 

17 0 0 1 -1 

18 0 1 -1 0 

19 0 -1 -1 0 

20 1 0 0 1 

21 0 0 1 1 

22 1 0 0 -1 

23 -1 1 0 0 

24 0 -1 1 0 

25 1 -1 0 0 

 

3.2. Computational Setup 

The computational domain developed for the initial phase is set up similar to the  

schematic shown above. The initial phase CFD domain used is shown in Figure 3.2. The 

surfaces featuring the jet orifice and the crossflow inlet are specified velocity inlet 

conditions. The channel outlet surface is set as a pressure outlet condition. The side walls 

are set as a periodic interface to simulate an infinite series of parallel domains. The target 

wall is given a constant heat flux boundary condition. Whereas all other surface faces are 

set to be an adiabatic wall. A table featuring all the physical properties used in this 

approach is shown in Table 3.5.  

 

 

Figure 3.2 Initial phase computational domain 

Orifice

Cylinder

Impinging Wall

Cross-Flow Inlet

Outlet

Jet
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Table 3.5  

Initial computational domain physical properties 

 

 

 

 

 

 

 

A second and final computational domain is setup to incorporate the design 

constraints from the designed experimental rig. The final computational and mesh 

domain developed is shown in Figure 3.3. The surface featuring the plenum inlet and the 

crossflow inlet are given mass flow inlet condition. A pressure outlet condition is 

specified for the channel outlet. The target wall is given a constant heat flux boundary 

condition. Whereas all other surface faces are set to be an adiabatic wall. The final CFD 

domain constants are listed in Table 3.6; the viscosity and thermal conductivity are 

predicted using Sutherland’s law using the temperature. 

The 3D flow problem is solved using an unsteady k-ω SST turbulence model in a 

commercial software (STAR-CCM+ version 14.02.01). This model can predict good 

results for both jet impingement and flow around a cylinder, hence selected (Yang et al., 

2014).  The target surface Nusselt number is averaged over time, and the final time-

averaged Nusselt number is used to compare with experimental results. The simulation is 

run for a total time, t = 10s, until the time-averaged Nusselt number remained constant 

over time. 

Description Value 

Atmospheric temperature (K) T∞ = 300 

Atmospheric pressure (Kgm-1s-2) P∞ = 101325 

Density of air (kgm-3) ρ = 1.18415 

Dynamic viscosity of air (kgm-1s-1) µ = 1.855X10-5 

Specific heat of air (JKg-1K-1) cp = 1003.62 

Temperature of bottom wall (K) Tw = 344.9 

Temperature of impinging jet (K) Tj = 300 

Thermal conductivity of fluid air (Wm-1K-1) kf = 0.0260305 
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Figure 3.3 Final computational domain 

 

Table 3.6  

Final CFD parameters 

 

 

 

 

3.2.1. Mesh Independent Study 

 

A mesh independent study is carried out for an oscillating jet case to determine the 

effect of cell density; three cell counts are analyzed. The geometric and flow 

characteristic of the selected oscillating jet case are listed in Table 3.7. 

The target wall is designed with 25 prism layers and 0.1D prism thickness to maintain 

a wall y+ < 1, which is an essential requirement for this problem type.  A volumetric 

mesh constraint is used to finely mesh the cylinder's stagnation and wake region 

downstream (shown in Figure 3.3). 

The streamwise average Nusselt number in the stagnation region is used to 

differentiate the effect of cell size (shown in Figure 3.4). The method of streamwise 

Description Value 

Atmospheric temperature (K) T∞ = 300 

Atmospheric pressure (Kgm-1s-2) P∞ = 101325 

Heat flux supplied to bottom wall (Wm-2) qw = 2500 

Temperature of impinging jet (K) Tj = 300 
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averaging will be discussed in detail in the result section. The results show that the curves 

representing the medium and fine cell size overlap with less than 1% change. Therefore, 

medium cell size is efficient in producing results with minimum computational cost and 

time. 

 

Table 3.7  

Oscillating jet case parameters. 

Parameter Value 

Cylinder diameter d/D = 2 

Cylinder-jet distance S/d = 3 

Velocity ratio VR = 6 

Jet Reynolds Number Rej = 38,000 

 

 

Figure 3.4 Effect of mesh size on streamwise average Nu 

 

As the CFD domain includes a cylinder producing cylinder wakes. The mesh size 

must not affect the wakes produced. Hence a CFD domain is generated, including only 

the cylinder diameter (d = 2D) exposed to a crossflow channel Reynolds number, Re = 

32,000 . The effect of mesh size on cylinder lift, drag and Strouhal number is also 

quantified (shown in Table 3.8). A medium cell size of 3 million proved efficient in all 
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the categories, with a less than 2% change from the results. 

Further, the turbulent intensity (TI) behind the cylinder is also compared for different 

cell sizes shown in Figure 3.5. The curves representing the medium and fine cell size are 

in close proximity of each other, indicating a minimum change. Summarizing the above 

results, to reduce computational cost and time. A medium cell size of 3 million is selected 

to perform the current CFD analysis for all trials efficiently and effectively. 

 

Table 3.8  

Mesh independent study 

Mesh Cell Cell Size Clrms % change CdAvg % change St % change 

Fine 6 Million 0.99 - 1.68 - 0.25 - 

Medium 3 Million 1.00 1% 1.67 0% 0.26 2% 

Coarse 2 Million 0.96 -3% 1.61 -4% 0.25 0% 

 

 

Figure 3.5 Effect of mesh size on Turbulent intensity 

 

3.2.2. Time Step Study 

 

A preeminent parameter defining the accuracy of the simulated cylinder wake 

amplitude, frequency, and phase is the time step. The time step of an unsteady simulation 

involving cylinder wake shedding is dependent on the wake frequency. The vortex 

shedding frequency (f) is calculated based on the Strouhal number (St) given by, 
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𝑓 =  

𝑆𝑡 × 𝑉

𝑑
 

(6) 

Where V is the free stream velocity and d is the cylinder diameter. The time period 

(T) of the wake shedding is given by, 

 
𝑇 =

1

𝑓
 

(7) 

A generalized method defined by the works of literature on cylinder wakes is to 

determine the time step by dividing the wake time period (dt)  by a factor of 20 (Equation 

8). This leads to the CFD simulation of 20-time steps in between each vortex shedding.  

 
𝑑𝑡 =

𝑇

20
 

(8) 

 

Table 3.9  

Time step independent study 

Time step Clrms % change Cdavg % change St % change 

0.0001 0.834 - 1.684 - 0.259 - 

0.0005 0.919 10% 1.718 2% 0.253 -2% 

0.001 0.975 17% 1.744 4% 0.253 -2% 

0.002 1.151 38% 1.819 8% 0.248 -4% 

 

Substituting the extreme flow and geometric conditions of this current study, the time 

step can be calculated to be, dt = 0.001 for a Strouhal number, St = 0.21. However, the 

Strouhal number from the mesh independent study did not match with the literature 

findings of St = 0.21. Hence, the effect of different time steps on vortex shedding 

frequency, cylinder lift, and drag is analyzed. The CFD domain considered for this study 

is similar to the cylinder mesh independent study.  

The CFD results listing the cylinder drag/lift and Strouhal number for various time 
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steps are shown in Table 3.9. The cylinder RMS lift is found to be sensitive to the time 

step, which represents the wake strength driving jet oscillation. The results show the time 

step, dt = 0.0005 leads to a minimum percentage change in lift, drag and St assuming the 

results of time step, dt = 0.0001 as the base. Confined by computational time and cost, a 

dt = 0.0005 is selected for this current study and held constant for all the trials 

investigated. 

3.2.3. Inner Iteration Study 

 

CFD numerical error comprises rounding error, spatial/time discretization error, and 

iteration error. The spatial/ time discretization error is minimized by the mesh 

independent study and time step study. In addition, to minimize iteration error in an 

unsteady simulation, the following inner iteration study is conducted (Bartesaghi & 

Columbo, 2013). 

 

 

Figure 3.6 Effect of inner iteration on streamwise average Nu 

 

To investigate the effect of inner iteration, the CFD domain of the oscillating jet case 

from the mesh independent study is utilized. The inner iteration analysis is performed 

0

50

100

150

200

-4 -2 0 2 4S
tr

ea
m

w
is

e 
A

v
er

ag
e 

N
u

Y/D

i = 5

i =10

i = 20



40 
 

similar to the literature work of Bartesaghi and Columbo (2013); the inner iteration tested 

are i = 5, 10, and 20. Figure 3.6 shows that the inner iteration, i = 10 is sufficient in 

predicting results close to inner iteration, i = 20. Hence, for the current CFD analysis, an 

inner iteration of i = 10 is selected to perform all other trials. 

3.3. Experimental Setup 

The experimental setup designed for this study is shown in Figure 3.7. For the initial 

frequency analysis, a compressor and a rotameter are used to generate and measure the jet 

orifice flow. Later on, to investigate higher jet Reynolds numbers, a blower is used to 

generate the necessary upstream driving pressure. The flow through the jet orifice is 

forced through a settling chamber and flow conditioner to reduce turbulence. The setup 

also includes another blower working under suction at the outlet to generate the crossflow 

velocity. The flow through the blower is measured using an adjacent inline venturi meter. 

The open-loop channel also contains a bypass valve near the downstream blower to 

regulate the flow through the channel. 

 

 

Figure 3.7 Schematic of experimental setup 
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The designed experimental rig for the initial frequency analysis is shown in Figure 

3.8. The cylinder-jet distance (S/d) is varied by placing the cylinder inside a thin 

rectangular sheet metal duct that slides inside the channel (telescopic duct shown in 

Figure 3.9). The duct also maintains a constant cylinder-inlet distance of 13 jet diameters.  

 

 

Figure 3.8 Initial experimental rig 

 

 

Figure 3.9 Telescopic duct front-view 

 

The experimental investigation aims to collect the unsteady time-averaged Nusselt 

number of a laterally oscillating jet. A schematic of the setup used to collect temperature 

measurement is shown in Figure 3.10. The target surface is painted utilizing a 

Temperature Sensitive Paint (TSP) to measure the local temperature. The Inconel heater 

is attached to the target surface using high-temperature adhesive tape. The resistive 
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Inconel heater is heated using an external electrical source. The internally generated heat 

flux (qsupplied) is convected by the oscillating jet. A part of this thermal energy (qloss) is 

lost through the acrylic plate, driven by the temperature difference on either side of the 

acrylic plate.  

The thermal conductivity of the double-sided tape is k = 0.46 W/mK, and the 

thickness of the tape is t = 0.004inch (0.1mm), leading to a negligible amount of 

resistance compared to the heat flux transferred through it. The TSP is excited using an 

LED excitation source to the required wavelength (490 nm), and data from the excited 

TSP is collected using a CCD camera. The measured heat flux and temperature can be 

deduced to determine the Nusselt number, using Newton's law of cooling. A detailed 

explanation of the data reduction process to derive the Nusselt number is discussed later 

on under the data reduction subchapter. 

 

 

Figure 3.10 Schematic setup to measure temperature using TSP 

 

The impinging surface is a low thermal capacity material to minimize fast dissipation 

of the oscillating jet stagnation region. A low thermal conductivity 1” transparent acrylic 
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sheet is used to build the entire channel, including the target wall. The area of interest on 

the target surface (10 X 8 inches in dimension) is heated electrically using Inconel heater 

strips connected in series (Figure 3.11). The Inconel strip is of a thickness of 0.004inch 

(0.1mm) with thermal conductivity of 11.2 W/mK. The strips are laid out in the 

streamwise direction, separated by a small gap connected in series. The temperature data 

collected in this gap is rejected as there is no heat flux supplied. Also, the Inconel heater 

is fabricated inhouse using a spot welder, hence the strip junction data is corrupted (0.59 

inch) on either edge, as shown in Figure 3.11.   

 

 

Figure 3.11 Inconel heat strip 

 

3.3.1. Heat Leakage Test 

As discussed above, constant heat flux is supplied to the target surface through the 

Inconel heater. A part of the heat flux is lost through the bottom surface into the 

surrounding atmosphere (as shown in Figure 3.10). The heat lost should be quantified to 

determine the heat transfer coefficient accurately. The heat flux lost (𝑞𝑙𝑜𝑠𝑠
" ) is  
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proportional to the temperature difference between the top surface and the surrounding 

room temperature. 

 𝑞𝑙𝑜𝑠𝑠
"  𝛼 ∆𝑇 (9) 

A heat leakage test is conducted to determine the constant in the above Equation 9. 

The top surface of the Inconel heater is covered by a thick layer of fiberglass insulation 

material. The insulation leads to an assumption of no heat leakage from the top surface. 

Hence the heat flux supplied through the Inconel heater will be equal to the heat flux 

through the bottom surface, as shown in Figure 3.12. 

 

 

Figure 3.12  Schematic setup of heat leakage test 

 

The temperature of the top surface and room atmosphere is measured using a type-T 

thermocouple. The heat flux supplied is varied to determine the temperature difference 

((∆𝑇) on heat flux lost (𝑞𝑙𝑜𝑠𝑠
" ). The literature of Prasad (2021) followed the same 

experiment hence its results from the heat leakage study is shown in Figure 3.13. The 

heat loss is found to be directly proportional to the temperature difference between the 

wall and room temperature. Hence, the curve is simulated using the straight-line Equation 

10 shown below. 
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  𝑞𝑙𝑜𝑠𝑠
" = 6.31442 ∗ ∆𝑇 (10) 

   

 

Figure 3.13 Heat leakage test result (Prasad, 2021) 

 

3.3.2. Temperature Sensitive Paint (TSP) 

The temperature-sensitive paint is used to measure the local surface temperature and 

eliminates the use of numerous thermocouples. A TSP constitutes luminescent molecules 

in a transparent polymer binder. A typical arrangement of the TSP measurement system 

is the TSP painted surface, excitation light source, and a digital camera. 

 

 

Figure 3.14 Jablonski diagram (Bell et al., 2001) 

 

The luminescence process of the TSP molecules through different energy states is 

shown in the Jablonski diagram (Figure 3.14). Initially, the TSP is excited by a light 
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source to the required excitation wavelength, and the excited molecules are now at a 

higher energy state (S2). These molecules are unstable and return to the ground state (S0) 

either by luminescence emitting photons (emission wavelength) or thermal quenching. 

Thermal quenching is caused by the change in temperature of the TSP surface; an 

increase in temperature decreases the photons emitted by the TSP. The number of 

photons emitted is directly proportional to the intensity of the TSP surface. Hence, the 

increase in surface temperature leads to a decrease in TSP intensity. 

 

 

Figure 3.15 Reference image (a) and data image (b) 

 

The excited TSP at room temperature with higher intensity is showed in the reference 

image (Figure 3.15a). The local TSP temperature is assumed to be constant, and multiple 

thermocouples are used to measure the reference temperature. Later on, running the 

experiment, a heated data image is captured (Figure 3.15b). The data image intensity is 

observed to be reduced due to the temperature rise. The local temperature of the data 

image can be calculated using the change in intensity ratio (IR). 

𝐼𝑅 =  
𝐼𝑆

𝐼𝑟𝑒𝑓
 (11) 

Where Is is the data image intensity and Iref is the reference image intensity. 
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The TSP should be calibrated to determine the effect of the intensity ratio on the 

temperature change. The calibration setup consists of a small test coupon with TSP on 

one side. The test coupon is heated electrically in an insulated environment to a uniform 

temperature. The temperature of the test coupon is measured using multiple 

thermocouples. The TSP intensity is captured using the CMOS camera discussed above. 

Multiple TSP measurements are carried out at different temperatures to derive the 

calibration curve (intensity ratio versus temperature difference) shown in Figure 3.16. 

The same TSP paint from the literature work of Prasad (2021) is utilized in this current 

study. Hence the same calibration equation (Equation 12) is used to calculate the data 

surface temperature. 

𝑇𝑆 − 𝑇𝑟𝑒𝑓

100
= 2.52 𝐼𝑅4 − 8.3 𝐼𝑅3 + 10.18 𝐼𝑅2 − 6.24 𝐼𝑅 + 1.85 (12) 

  

 

Figure 3.16 Calibration of TSP, Prasad (2021) 

 

The TSP utilized in this current research is ISSI UniCoat TSP; the manufacturer 

specification is shown in Table 3.10. An LED excitation source is used to excite the TSP 

to the required excitation wavelength of 400 nm. A scientific-grade CMOS camera with a 
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550 nm filter is used to capture the emitting wavelength and the intensity of the TSP 

paint. The uncertainty analysis of the TSP was carried out by Liu et al. (2006), results 

showed a maximum error of ±0.93 ºCelsius for a temperature range of 20-70 ºCelsius. 

 

Table 3.10  

ISSI UniCoat TSP specifications 

Parameter Value 

Pressure sensitivity 0.0% per kPa 

Pressure range 1-kPa to 10-MPa 

Temperature sensitivity 0.9% per °C 

Temperature range 10°C to 80°C 

Response time 750 ms 

Excitation wavelength 380 – 520 nm (460 nm ideal) 

Emission wavelength 500 – 720 nm 

Photo-degradation rate 1% per hour (Excitation) 

Filter 550 nm 

 

3.4. Constant Temperature Anemometry 

A constant temperature hotwire anemometer is used to measure the velocity 

magnitude and fluctuation in a flow field. A hotwire works on the principle of the sensor 

heat transfer rate being proportional to the flow velocity. The hot wire is used to measure 

the downstream turbulence effect of a cylinder in a channel (shown in Figure 3.17). The 

local velocity behind the cylinder is measured at various distances (S/d), similar to the 

literature work of Park et al (2000). The velocity fluctuation is used to derive the 

turbulence intensity behind the cylinder, the detailed process of TI calculation is 

discussed in the data reduction section. The cylinder vortex shedding frequency is 

calculated by spectral analysis of the measured velocity fluctuations. The sampling 



49 
 

frequency of fs = 1666Hz is selected for this study which satisfies the Nyquist criteria. 

 

 

Figure 3.17 Schematic of hotwire measurement 

 

The hotwire utilized in this study is a 5-micron single-strand tungsten-wire, shown in 

Figure 3.18. The tungsten wire is heated to 200 ⁰Celsius electrically by Joule heating, and 

the resistance of the hotwire is continuously monitored using a Wheatstone bridge. 

However, by heat transfer, the velocity fluctuations try to impose a temperature change. 

A servo amplifier maintains the temperature of the tungsten wire constant by varying the 

current through the sensor. Hence, the measured bridge voltage is directly proportional to 

the velocity fluctuations. 

 

 

Figure 3.18 Single strand hotwire probe 
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The hotwire should be calibrated before and after each day experiment to maintain 

accuracy. The calibration of a hot wire is performed by placing the hot wire in the jet core 

of an isentropic nozzle. The velocity of the jet is proportional to the chamber pressure, 

derived from the isentropic equation below, 

 
𝑃0

𝑃∞
= ( 1 +  

𝛾 − 1

2
 𝑀∞

2)

𝛾
(𝛾−1)

  (13) 

Where P0 is the chamber pressure, P∞ is the atmospheric pressure, γ is the specific 

heat ratio, and M∞ the Mach number at the jet exit. Equation 13 can be rearranged to 

determine the jet Mach number. Finally, the jet velocity can be calculated using the Mach 

number using Equation 14. 

 𝑉∞ =  𝑀∞ √𝛾𝑅𝑇∞ (14) 

Where T∞ is the atmospheric temperature. 

 

 

Figure 3.19 A typical hotwire calibration curve 

 

The calibration experiment is performed to determine the effect of velocity on the 

hotwire bridge voltage. The calibration curve (velocity versus voltage measured) 

generated before and after a particular experiment is shown in Figure 3.19. The jet 
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temperature (Ta) and the room temperature (T0) will also affect the accuracy of the 

hotwire measurement system; hence it is to be corrected. The equation used to correct the 

measured bridge voltage (Ea) is shown below, 

 𝐸𝑐𝑜𝑟𝑟 =  √
𝑇𝑤 −  𝑇0

𝑇𝑤 −  𝑇𝑎
×  𝐸𝑎 (15) 

The corrected voltage (Ecorr) and corresponding velocity (V) is used to generate the 

algebraic calibration equation shown below, 

 𝑉 =  𝐶0 +  𝐶1𝐸𝑐𝑜𝑟𝑟 +  𝐶2𝐸𝑐𝑜𝑟𝑟
2 + 𝐶3𝐸𝑐𝑜𝑟𝑟

3 + 𝐶4𝐸𝑐𝑜𝑟𝑟
4 (16) 

3.5. Pressure Transducers 

A typical jet oscillation will lead to an oscillating stagnation region. Hence, a 

miniature pressure sensor is placed in the stagnation region to measure pressure 

fluctuation. The pressure probe is dislocated away from the stagnation point by 0.6D 

(10mm) downstream to account for the crossflow effect on the jet (shown in Figure 3.20). 

The pressure fluctuations measured will be utilized to calculate the oscillating jet 

frequency. The pressure probe will also measure the cylinder wake shedding frequency. 

Analyzing the measured frequency spectrum will help to differentiate oscillating and 

non-oscillating jets. 

 

 

Figure 3.20 Schematic of pressure measurement 
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3.6. Data Reduction 

In this subsection the data reduction process of all the calculated values are discussed 

below. However, additional data reduction processes of other parameters are discussed in 

the result section, for ease of explanation. 

 

3.6.1. Nusselt number 

The heat transfer experiment aims to measure the local Nusselt number from the TSP 

surface temperature measurement. Firstly, the supplied heat flux (𝑞𝑠𝑢𝑝
" )  through the 

Inconel heater strips is calculated using Equation 17 by measuring the current (I) flowing 

through the heater strip using a shunt resistor in series. The effective heat flux (𝑞𝑒𝑓𝑓
" ) 

flowing through the test specimen is given by Equation 18. 

 𝑞𝑠𝑢𝑝
" =

𝐼2𝜌

𝑤2𝑡
 (17) 

 𝑞𝑒𝑓𝑓
" = 𝑞𝑠𝑢𝑝

" −  𝑞𝑙𝑜𝑠𝑠
"  (18) 

Where ρ is the Inconel strip resistivity, w is the Inconel strip width, t is the Inconel 

strip thickness, and 𝑞𝑙𝑜𝑠𝑠
"  is the heat leaked through the acrylic plate. Newton’s law of 

cooling defines heat transfer coefficient (h) as the ratio of effective heat flux to wall-jet 

temperature difference (Equation 19). The local heat transfer coefficient is calculated 

from the TSP surface temperature (Ts) measurement. Finally, the local Nusselt number 

(Nu) is computed using the HTC (h) and the jet orifice diameter (D) from Equation 20. 

 ℎ =  
𝑞𝑒𝑓𝑓

"

(𝑇𝑠 − 𝑇𝑗) 
 (19) 

 𝑁𝑢 =
ℎ 𝐷

𝑘
   (20) 

Where Tj  is the jet temperature, and k is the thermal conductivity.  
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3.6.2. Reynolds Number and Velocity ratio 

The mass flow rate through the jet orifice is measured using a venturi meter or 

rotameter. The total mass flow rate through the jet orifice and channel inlet is measured 

downstream using a venturi meter. The flow rate through the channel inlet can be 

calculated using the difference, Equation 21. 

 ṁchannel inlet = ṁchannel outlet − ṁjet orifice (21) 

The jet velocity (Vjet) and jet Reynolds number (Rej) is calculated using the equations 

below, 

 Vjet =  
 ṁjet

 Ajet
 (22) 

 Rejet =  
𝐷 ṁjet

µ Ajet
 (23) 

Where Ajet is the jet orifice cross-sectional area, and µ is the jet fluid viscosity. The 

channel velocity (Vch) and jet-crossflow velocity ratio (VR) is calculated using the 

equations below, 

 Vch =  
 ṁchannel inlet

 A𝑐ℎ
 (24) 

  𝑉𝑅 =  
Vjet

Vch
  (25) 

Where Ach is the channel cross-sectional area. 

3.6.3. Turbulence Intensity 

The local velocity behind the cylinder is measured using the hotwire anemometer in 

time. The time-averaged mean velocity (Umean) is given by Equation 26.  
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 𝑈𝑚𝑒𝑎𝑛 =  
1

𝑁
∑ 𝑈𝑖

𝑁

1

 (26) 

Where N is the sample size and Ui is the measured local velocity. The root mean 

square velocity (Urms) is calculated using the Equation 27 below. Finally, the turbulent 

intensity (TI) can be calculated using Equation 28. 

 𝑈𝑟𝑚𝑠 =  √
1

𝑁 − 1
 ∑(𝑈𝑖 − 𝑈𝑚𝑒𝑎𝑛)2

𝑁

1

 (27) 

  𝑇𝐼 =
𝑈𝑟𝑚𝑠

𝑈𝑚𝑒𝑎𝑛
 (28) 

3.6.4. Uncertainty Analysis 

The uncertainty of the experimental result is calculated using the root sum square 

method. Consider an expression where y is a function dependent on x, and y represents 

one experimental result term. Assuming the function y to be a straight-line equation with 

slope, m (Prasad, 2016). 

 𝑦 = 𝑚𝑥 (29) 

The uncertainty (uy) can be derived as a function of bias/systematic uncertainty (b) 

and random uncertainty (S) of the result (y), shown in the equation below. Also, the root 

sum square method propagates the error from all the dependent and independent 

variables. 

 𝑢𝑦 =  √(
𝜕𝑦

𝜕𝑚
∗ 𝑏𝑚)

2

+  (
𝜕𝑦

𝜕𝑥
∗ 𝑏𝑥)

2

+  (
𝜕𝑦

𝜕𝑚
∗ 𝑆𝑚)

2

+  (
𝜕𝑦

𝜕𝑥
∗ 𝑆𝑥)

2

 (30) 

The systematic uncertainty is the RMS sum of all the errors generated by the 

measuring devices utilized (Equation 31). The  random uncertainty represents the 
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precision and repeatability of the measurement. The random uncertainty is determined by 

performing multiple experimental measurements. The standard deviation (𝜎𝑥) of the 

measurement is used to calculate the random uncertainty (Sx). 

 𝐵𝑥 =  √𝑒1
2 + 𝑒2

2 … … . +𝑒𝑛
2 (31) 

 𝑆𝑥 =  
𝜎𝑥

√𝑁
 (32) 

Where e1, e2…...en are the bias errors and N is the sample size. The uncertainty (uy) 

is factored in by a constant (t95) to produce a 95% confidence level in the result. The 

constant (t95) is determined from the student t distribution table for the sample size (N) 

selected. In this current study, the sample is five, and the corresponding constant, t95 = 

2.164. Also, the t95 constant affects only random error; hence the bias uncertainty is 

divided by the constant, t95 (Equation 33). Finally, the uncertainty (Uy) with 95 % 

confidence level is given by Equation 34 

 𝑏𝑥 =
𝐵𝑥

𝑡95
 (33) 

 𝑈𝑦 =  𝑡95 × 𝑢𝑦 (34) 
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4. Results 

The result section has been split into four sections. The first subsection will discuss 

the preliminary response surface CFD results and prove the current research hypothesis. 

The second subsection will discuss the flow feature analysis of the jet cylinder-wake 

interaction. Lastly, the final CFD and experimental results subsections will discuss the 

optimum design for maximum heat transfer rate. 

4.1. Preliminary Response Surface Study 

The hypothesis of this study is to utilize the cylinder wake to oscillate the jet laterally 

in the y-direction. The response surface sensitivity analysis is carried out to identify the 

parameters affecting the oscillation and produce a maximum enhancement in the time-

averaged Nusselt number. The parameters selected for this initial study are the cylinder 

diameter (d/D), cylinder height (h/D), cylinder-jet distance (S/d), and crossflow velocity/ 

cylinder Reynolds number (Recyl). A Box-Behnken Method (BBM) is utilized in this 

study to reduce the number of tests to 25; the test matrix is shown in Table 3.4.  

4.1.1. Initial Cylinder Wake Analysis Result 

The jet cylinder distance (S/d) is an essential characteristic of the sensitivity study. To 

perform the response surface analysis, three levels of variable are to be selected for the 

cylinder-jet distance. Hence, a preliminary study of just the cylinder in the confined 

channel is carried out. The cases studied in this initial analysis are shown in Table 3.3. 

The literature study shows that the jet should be placed in front of the wake formation 

length (S/d = 2) to prevent shear layer reattachment. The shear layer from the cylinder 

separates from the recirculation region moving downstream for a maximum deflection, 

and this maximum deflection is proportional to the maximum lift coefficient. Hence, the 



57 
 

lift coefficient is a direct measure of momentum generated for jet oscillation. The 

equation used in this analysis defining the non-dimensional lift coefficient (Cl) is shown 

in Equation 35. 

 𝐶𝑙 =
𝐿

1
2 𝜌𝑈∞

2ℎ𝑑
   (35) 

Where L is the lift force, d is the cylinder diameter, h is the cylinder height, 𝜌 is the 

fluid density, and 𝑈∞ is the channel inlet velocity. 

The time period of one oscillation of the lift coefficient curve can be defined as the 

unit cycle time (tp), used to calculate the non-dimensional time (t/tp). The time-resolved 

lift coefficient is shown in Figure 4.1 for Case 0.5. The corresponding wake profile at 

peak amplitude is shown in Figure 4.2 using the turbulent kinetic energy, for Case 0.5. 

For the cylinder height, h/d = 3, the TKE at the mid cylinder height is considered for jet 

deflection measurement. In the case of short cylinders to avoid tip vortex interference, the 

TKE at height, h/d = 0.13, is considered for jet deflection measurement. 

 

 

Figure 4.1 Lift coefficient for Case 0.5 
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Figure 4.2 TKE showing the wake deflection at peak amplitude for Case 0.5 

 

The corresponding horizontal length between the maximum lateral deflection and the 

cylinder is measured. The cylinder-jet distance at maximum wake deflection for different 

cases investigated is listed in Table 4.1. The measured maximum deflection for each case 

is found to be close to two diameters. Therefore, the jet is placed at this point for maximum 

deflection. However, the corresponding point is still in the region where the shear layer 

detached from the cylinder can reattach to the jet, as stated in the literature (Alam et al., 

2003; da Silveria et al., 2005). 

 

Table 4.1  

The cylinder-jet distance for maximum wake deflection 

Case S/d 

0 2.18 

0.1 2.16 

0.2 2.13 

0.3 2.13 

0.4 2.1 

0.5 2.03 

0.6 1.83 

0.7 1.955 
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In this current study, the jet is deflected in the downstream direction from the original 

position due to the crossflow. Hence the cylinder-jet distance for the following sensitivity 

study is S/d = 2d, 3d, and 4d. To be noted, the distance between the jet and the cylinder is 

non-dimensionalized by the cylinder diameter. The table showing the final three levels of 

variation for the parameters studied in the response surface analysis is listed in Table 4.2. 

 

Table 4.2  

The three level of variation of parameter for response surface  

Parameter 
Value 

-1 0 1 

Cylinder diameter (d/D) 1 2 3 

Cylinder height (h/D) 1 2 3 

Cylinder Reynolds number (Recyl) 5,000 10,000 15,000 

Jet-cylinder distance (S/d) 2 3 4 

 

4.1.2. Jet Core Oscillation Result 

The 25 cases investigated resulted in only two cases leading to jet oscillation. The 

lateral position of the oscillating jet velocity core is tracked in time at a plane 1/3D above 

the target plate (shown in Figure 4.3). The maximum lateral jet deflection (y/D) of the jet 

core for Case 8 at a peak amplitude is shown in Figure 4.3. It can be observed that the 

vortex which caused the jet core deflection towards the top has travelled downstream, and 

the vortex in front of the jet core is ready to push the jet downwards as it passes around 

the jet. The physics of the vortex interaction with the jet will be discussed in detail later 

on. 

The lateral position of the jet core (s/D) and the cylinder lift coefficient plotted versus 

time for Case 8 are shown in Figure 4.4. It can also be observed that the cycle time for 
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the lift coefficient curve and the jet core position oscillation are equal; therefore, “t0” 

represents the time period of the jet position curve. The time taken for one jet oscillation 

is equal to t0 = 0.0225s; the maximum lateral oscillation of the jet core is s/D = 1.94. In 

Figure 4.4, the two waves are out of phase by 0.5t0; this is the time taken for the wake 

shedding from the cylinder to interact with the jet core. The peak magnitude of the jet 

core position curve fluctuates due to the jet core stretching when in contact with high-

energy crossflow. Also, the cylinder wake interaction induces a twisting motion into the 

jet core. Although the core position curve possesses unsteadiness in magnitude, the 

frequency of both the waves are equal in magnitude, f = 44.4Hz. 

 

 

Figure 4.3 Velocity profile showing maximum jet deflection at peak amplitude 

 

 

Figure 4.4 Lift coefficient and the jet core position versus time, for Case 8 
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To compare the jet core oscillation for Case 1 and 8, the jet core position is plotted in 

time for the two cases (Figure 4.5). The cycle time for Case 1 and Case 8 is tp = 0.0287s 

and tp = 0.0225s respectively; the frequency for Case 1 and Case 8 is f = 34.48Hz and f = 

44.44Hz respectively.  The Case 1 curve exhibits a smooth change in slope compared to 

Case 8, and Case 8 exhibit a higher slope at the peak of the waveform. It can be observed 

that the curve slope changes at y/D = 1, this is due to the jet moving away from the path 

behind the cylinder into the higher crossflow region. Due to the higher crossflow 

Reynolds number, the jet position curve amplitude of Case 8 is higher than Case 1.  

 

 

Figure 4.5 Jet core position versus time, for Case 1 and 8 

 

4.1.3. Statistical Analysis Result 

For the 25 cases investigated, jet oscillation occurred only in two cases (Case 1 and 

8). Hence the jet oscillation is extremely sensitive to the parameters studied. Also, the 

combination of the parameters studied is an essential characteristic of jet oscillation. The 

statistical analysis of the results is carried out in Minitab software. The average Nusselt 

number and the uniform distribution of the local Nusselt number are proportional to the 

jet oscillation and its frequency (Raman and Cornelius, 1995; Camci and Herr, 2002). 

Hence, the two-parameter considered for the sensitivity study are the maximum lateral jet 
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oscillation and the frequency. 

 

Table 4.3  

Maximum jet deflection and frequency for oscillating cases 

Case 
 Maximum jet 

deflection (s/D) 

Frequency 

(f) 

1 1.038 34.8432 

8 1.9413 44.44 

 

 

{ (
𝑠

𝐷
)  𝑜𝑟 𝑓} =   β0 + [β1 (

𝑑

𝐷
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𝐷
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𝐿

𝑑
) (𝑅𝑒𝑐𝑦𝑙)] 

(36) 

 

Table 4.4   

Percentage contribution of coefficients in the correlation above 

Term Coefficients 

Maximum Jet deflection 
(s/D) 

Frequency (f) 

Values 
Contribution 

(%) 
Values 

Contribution 
(%) 

Constant β0 0 0.00 0 0.00 

(d/D) β1 0 0.00 0 0.00 

(h/D) β2 0.22167 22.17 6.6067 16.52 

(S/d) β3 0.06 6.00 2.9036 7.26 

Recyl β4 0.1617 16.17 3.7033 9.26 

(d/D) ×(d/D) β11 -0.1108 -11.08 -3.3033 -8.26 

(h/D) ×(h/D) β22 0.2217 22.17 6.6067 16.52 
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(S/d) ×(S/d) β33 -0.0208 -2.08 1.0517 2.63 

Recyl ×Recyl β44 0.1317 13.17 2.2517 5.63 

(d/D) ×(h/D) β12 0 0.00 0 0.00 

(d/D) ×(S/d) β13 0 0.00 0 0.00 

(d/D) ×( Recyl) β14 0 0.00 0 0.00 

(h/D) ×(S/d) β23 0.18 18.00 8.71 21.78 

(h/D) ×( Recyl) β24 0.485 48.50 11.11 27.78 

(S/d) ×Recyl β34 0 0.00 0 0.00 

    Summation 100   100 

  

The maximum deflection of the jet and jet oscillation frequency for the oscillating 

cases are determined and listed in Table 4.3; for other non-oscillating cases, the 

maximum deflection and frequency is zero. The correlation developed for the two 

parameters is shown in Equation 36; the corresponding coefficients for the two 

parameters are shown in Table 4.4 

From Table 4.4, the critical factors (maximum contribution percentage) responsible 

for the jet-core oscillation are the height of the cylinder (h/D), the position of the jet 

(S/d), and crossflow Reynolds number (Recyl); the major contributor being the height of 

the cylinder. The maximum cylinder height is equal to the channel height. Hence, the 

channel height is also a vital characteristic to be studied in the future. Furthermore, the 

term “(h/D) × (Recyl)” having the highest contribution describes that the height and the 

crossflow Reynolds number of the cylinder have a coupled effect on the jet oscillation 

characteristic; this term is directly proportional to the vortex strength generated by the 

cylinder (Williamson, 1996). 

The jet is oscillating for only two cases whereas stationary for all other cases. It is 

found that all different combinations investigated led to the reattachment of the shear 

layer separated from the cylinder onto the jet, shown in Figure 4.6 (Case 23). The other 
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factor causing the adverse effect is the cylinder height (h/D). From the statistical results, 

the jet is oscillating only for the full cylinder or (h/D) = 3. For the (h/D) < 3, the tip 

vortex protrudes into the low-pressure recirculation region behind the cylinder decreasing 

the cylinder wake effectiveness (shown in Figure 4.7). It can also be observed that the 

upstream wall jet facilitates this protrusion of the tip vortex into the recirculation region. 

 

 

Figure 4.6 Velocity profile of stationary jet in recirculation region for Case 23 

 

 

Figure 4.7 Velocity profile of tip vortex in the recirculation region for Case 6 

 

4.1.4. Heat Transfer Result 

The velocity profile of the oscillating jet for a half-time cycle showing the jet moving 

from one extreme to the other end, is shown in Figure 4.8 for Case 1. The jet is 

oscillating at a frequency of 34Hz, which causes an increase in time average Nusselt 
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number; this leads to a more uniform distribution of the Nusselt number.  The wall jet 

tends to curl near the sidewall due to crossflow interaction; this causes a decrease in 

Nusselt number. 

 

 

Figure 4.8 Half cycle jet oscillation for Case 1 

 

 

Figure 4.9 Time-averaged Nu in streamwise direction for Case 1, 8 and 18 

 

The local Nusselt number distribution about the stagnation point in the y-direction is 

plotted for Cases 1, 8, and 18 (shown in Figure 4.9). The oscillating jet cases are Case 1 

and 8, whereas Case 18 is a non-oscillating jet case. The secondary peak is formed for the 

stationary jet case, whereas it is smoothened by the uniform distribution of the Nusselt 

number for the oscillating cases. The maximum local Nu for the stationary jet is higher 

than the oscillating jet as expected (Lundgreen et al., 2017). However, the three cases are 

the same (h/D) and (d/D). The effect of Reynolds number and (S/d) is primarily 
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responsible for the differences in Nusselt number distribution.  

Comparing Cases 1 and 18, having the same Reynolds number results in close 

stagnation Nusselt number; the more uniform Nu curve is formed due to the oscillating 

jet. Comparing the oscillating Cases 8 and 1, the change in Nusselt number distribution is 

caused by the difference in (S/d) and (Recyl). The statistical analysis shows that the 

channel Reynolds number contributes higher to the jet oscillation than the percentage 

contributed by the cylinder-jet distance. Although the frequency and amplitude are higher 

in Case 8, the time-averaged local Nusselt number is less for Case 1 because of the higher 

crossflow velocity. 

4.2.Flow feature Analysis 

 The first phase of experimental analysis investigates the flow feature interaction of 

the cylinder wake with the jet. This subsection intends to study the effect of cylinder 

diameter and channel Reynolds number on vortex strength distribution and jet oscillation. 

Finally, decrypt the flow physics of cylinder wake-jet interaction using tools like 

unsteady pressure measurement using probes and local turbulence measurement using 

hotwire technique. 

4.2.1. Effect of Cylinder-Jet Distance on Turbulence Intensity 

The jet must be positioned at a distance downstream from the cylinder for 

synchronized wake interaction and jet oscillation. Therefore, the unsteady flow behavior 

behind the cylinder in the streamwise direction must be quantified by measuring 

turbulence intensity. For the following cases discussed below, the jet has been shut off to 

isolate the effect cylinder wake in the channel. The effect of cylinder-jet distance on 

turbulence intensity is quantified at various channel Reynolds numbers and cylinder 
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diameters. The various cylinder diameters investigated are, d = 1D, 2D, and 3D; the 

various channel Reynolds number investigated are, Rech = 22,000, 27,000, and 32,000. 

 

 

Figure 4.10 TI distribution for different cylinder diameters at Rech = 22,000 

 

 

Figure 4.11 TI distribution for different cylinder diameters at Rech = 27,000 

 

In Figure 4.10, the turbulence intensity initially increases steeply with the change in 

cylinder-jet distance. The initial peak of TI is formed near a one-cylinder diameter similar 

to the literature findings; the initial peak also determines the extent of the recirculation 

region behind the cylinder. However, the TI distribution downstream from the peak 

continues to be constant for cylinder diameter, d = 1D. In the case of cylinder diameters, 

d = 2D and 3D, the turbulence intensity degrades slowly. 
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The peak turbulence intensity magnitude is proportional to the cylinder diameter, 

indicating the cylinder wake strength is higher for a larger cylinder diameter. In Figure 

4.10, the turbulence intensity plots for cylinder diameters, d = 2D and 3D, show 

minimum change. Whereas for channel Reynolds number, Rech = 27,000, turbulence 

intensity is strongly dependent on the cylinder diameter, shown in Figure 4.11.  

 

 

Figure 4.12 TI distribution for different cylinder diameters at Rech = 32,000 

  

 In Figure 4.12, the cylinder diameter is found to have a minimum change in 

turbulence intensity at a higher Reynolds number of Rech = 32,000. However, the initial 

peak is observed at cylinder-jet distance, S/d =1, similar to earlier plots; later, the TI 

remains constant for change in cylinder-jet distance. 

     Comparing Figure 4.10, Figure 4.11, and Figure 4.12, it can be observed that the 

turbulence intensity is inversely proportional to the channel Reynolds number. The TI is 

normalized by their respective flow velocities. Hence, it can be concluded that the lower 

velocities are more efficient in producing unsteady flow perturbation. 

     From the previous sensitivity analysis, it is observed that a lower threshold jet position 

(S/d) exists below which the jet is deflected into the low-pressure recirculation region of 

the cylinder. The TI results can be summarized stating, to achieve jet oscillation the jet 
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should be placed at a cylinder-jet distance, S/d = 1-3. Also, higher cylinder diameter and 

lower channel velocities are more efficient for jet oscillation. 

4.2.2. Spectral Analysis of the Cylinder Wake 

To determine the cylinder wake frequency, spectral analysis is carried out on the 

measured velocity readings behind the cylinder. The data is deciphered to determine the 

cylinder wake frequency using the fast Fourier transformation (FFT). The effect of 

cylinder diameter (d) and channel Reynolds number (Rech) on cylinder wake frequency is 

shown in Figure 4.13. The cylinder wake frequency increases with the increase in 

channel Reynolds number, and the wake frequency is inversely proportional to the 

cylinder diameter. The literature results are calculated for a Strouhal number, St = 0.21, 

and plotted for comparison (Williamson, 1996). The results observed are in good match 

with the literature; this analysis also suffice initial rig validation. 

 

 

Figure 4.13 Effect of cylinder diameter and channel Re on wake frequency 

 

4.2.3. Spectral Analysis of Target Wall Stagnation Pressure 

To determine the effect of cylinder diameter and channel Reynolds number on jet 

oscillation, pressure fluctuation in the jet stagnation region is measured. The power 

spectral analysis of the pressure fluctuation leads to the computation of jet oscillation 
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frequency. The comparison of experimental results with the cylinder wake frequency 

should conclude that the jet is oscillating due to the interaction of cylinder wakes. The 

pressure probe measures the cylinder wake frequency and the jet oscillation frequency; 

hence, it is necessary to differentiate both. However, the pressure fluctuation amplitude 

of the cylinder wakes is less than the oscillating jet's near-stagnation pressure amplitude. 

 To demonstrate this theory, two cases are considered, one with jet oscillating (air-jet 

on) and the other with the jet orifice closed (air-jet off), producing only the cylinder 

wakes. The frequency spectrum for both the cases with cylinder diameter, d = 3D and 

channel Reynolds number, Rech = 22,000, is shown in Figure 4.14. For the case with jet 

orifice open, the jet oscillates at a particular frequency, f = 22Hz, and with a pressure 

fluctuation amplitude of P = 4.5Pa. For the case with the jet orifice closed, the cylinder 

wake frequency is measured to be f = 11Hz with its harmonic at f = 21Hz; and the 

amplitude is P = 1Pa. Thus, the amplitude of the cylinder wake is relatively four times 

smaller than the jet oscillation. The jet Reynolds number is a constant in this analysis. 

Hence the expected pressure amplitude to certify jet oscillation will be close to P = 5Pa. 

 

 

Figure 4.14 Comparison of jet oscillation (a) and cylinder wake oscillation (b) 
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The jet oscillates laterally in the spanwise direction from one sidewall to the other. 

On this path, the jet encounters the pressure probe at the center of the channel. One jet 

oscillation period is the jet starting at one sidewall and moving to the other end and 

coming back to the same sidewall, the half time period of jet oscillation is shown in 

Figure 4.15. The pressure probe's three stages of jet oscillation are tracked in time to 

understand the pressure fluctuation measurement, as shown in Figure 4.15. It can be 

observed that the pressure probe measures one jet oscillation period with two pressure 

oscillation wave periods. Hence, the pressure fluctuation frequency measured will be 

double the actual jet oscillation frequency. The jet oscillation frequency is assumed to be 

equal to cylinder wake frequency. Therefore, the measured jet oscillation frequency using 

the pressure probe will be double the cylinder wake frequency. 

 

 

Figure 4.15 Jet oscillation traced in time using the pressure fluctuation 
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Figure 4.16 Power spectrum of pressure fluctuation at d = 1D and Rech = 22,000 

 

Assuming the interaction of the cylinder wakes is the primer driver for jet oscillation, 

the higher the wake turbulence intensity more momentum exists to oscillate the jet. 

Figure 4.16 shows the frequency spectrum for cylinder diameter, d = 1D, and channel 

Reynolds number, Rech = 22,000. It can be observed that the high amplitude frequency 

does not exist for cylinder-jet distance, S = 0 - 2.5d in the 50Hz region (double the 

cylinder wake frequency); hence there is no jet oscillation. However, at S = 3d, a peak is 

observed at f = 48.38Hz, proving the jet oscillates in this case. Comparing the results 

with the TI distribution (Figure 4.10), the jet is oscillating at S = 3D when the TI is the 

maximum (TI = 0.39). Hence, a threshold, TI = 0.39, is the minimum required above 

which the jet tends to oscillate.  
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Also, a high amplitude frequency, f = 11.85Hz, is observed for S = 0.5D. This is an 

unexpected pressure fluctuation observed in the cylinder recirculation region. Further 

study has to be performed to determine the cause for this low-frequency oscillation. 

The Figure 4.17 and Figure 4.18, shows the frequency spectrum for channel Reynolds 

number, Rech = 27,000 and Rech = 32,000, respectively. It can be concluded that the jet is 

not oscillating in these cases because there is no high amplitude frequency in the 70Hz 

and 84Hz regions, respectively. Also, the turbulence intensity in these cases is less than 

the threshold, TI = 0.39 for all the cylinder-jet distances tested. 

 

 

Figure 4.17 Power spectrum of pressure fluctuation at d = 1D and Rech = 27,000 
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Figure 4.18 Power spectrum of pressure fluctuation at d = 1D and Rech = 32,000 

 

Figure 4.19 shows the frequency spectrum for cylinder diameter, d = 2D and Channel 

Reynolds number, Rech = 22,000. The high amplitude frequency is observed at an 

average frequency, f = 28.85Hz for S = 2 - 3D; this is close to the cylinder wake 

frequency, f =  2×13.78 = 27.56Hz; hence the jet is oscillating for S = 2 - 3D cases. For 

the same cylinder diameter and channel Reynolds number, the TI is above threshold (TI = 

0.39) for S = 1 - 3D, but the jet is oscillating only for S = 2 - 3D. This phenomenon is due 

to the jet being deflected into the low-pressure cylinder recirculation region for S < 2D, 

as explained in the previous sensitivity analysis. 



75 
 

 

Figure 4.19 Power spectrum of pressure fluctuation at d = 2D and Rech = 22,000 

 

 

Figure 4.20 Power spectrum of pressure fluctuation at d = 2D and Rech = 27,000 
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Figure 4.20 shows the frequency spectrum for cylinder diameter, d = 2D, and channel 

Reynolds number, Rech = 27,000. At S = 2D, the high amplitude frequency, f = 36Hz, is 

closely matched with the cylinder wake frequency, f = 2×18.94 = 37.88Hz; hence, the jet 

oscillates. Also, the TI results confirms, for S = 1 - 2 D, the TI is above the threshold, TI 

= 0.39. Applying the second limit that the S ≥ 2D, the jet should oscillate only at S = 2D. 

Figure 4.21 shows the frequency spectrum for cylinder diameter, d = 2D, and channel 

Reynolds number, Rech = 32,000 for various cylinder-jet distance. The results show no 

frequency peaks; hence, the jet is not oscillating at any cylinder-jet distance. 

 

 

Figure 4.21 Power spectrum of pressure fluctuation at d = 2D and Rech = 32,000 
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Figure 4.22 Power spectrum of pressure fluctuation at d = 3D and Rech = 22,000 

 

 

Figure 4.23 Power spectrum of pressure fluctuation at d = 3D and Rech = 27,000 
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Figure 4.24 Power spectrum of pressure fluctuation at d = 3D and Rech = 32,000 

 

Figure 4.22 shows the frequency spectrum for cylinder diameter, d = 3D, and channel 

Reynolds number, Rech = 22,000. The average jet oscillation frequency, f = 21.82Hz 

matching cylinder wake frequency, f = 2×10.21 = 20.42Hz, is observed for the cylinder-

jet distance, S= 1.67 - 3D. The local TI for this case is higher than the threshold TI. 

Results for the same cylinder diameter at channel Reynolds number, Rech = 27,000, 

are different from the previous results discussed (Figure 4.23). The jet oscillates at S = 

1.33 - 2.33 D at an average frequency, f = 28.61 Hz compared to the cylinder frequency, f 

= 2×14.21 = 28.42Hz. Although the TI is higher than the threshold for S > 2.33D, there is 

no jet oscillation. Probably due to the jet deflected away from the pressure probe leading 
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to the probe not measuring the fluctuation. For the same cylinder at channel Reynolds 

number, Rech = 32,000, no jet oscillation frequency is observed in Figure 4.24. Also, the 

TI distribution for this case is less than the threshold for all cylinder-jet distance. 

Comparing all the results, a common trend can be observed that the frequency 

amplitude decreases with the increase in cylinder-jet distance. The decrease in pressure 

fluctuation magnitude is due to the jet being deflected away from the pressure probe. 

However, to confirm this assumption, further experimentation is required. 

4.3. Final CFD Analysis 

The flow field of the jet in a crossflow (JICF) is primarily affected by the jet-

crossflow momentum ratio (J). For constant density flows, the momentum ratio can be 

reduced to the velocity ratio (VR). The above initial results did study the effect of 

channel Reynolds Number on jet oscillation, but the velocity ratio was not calculated or 

given any importance. In this final analysis, the flow interaction between the cylinder 

wake and jet is studied in detail for various velocity ratios. The preliminary CFD analysis 

and flow feature analysis results can be summarized to define the oscillating region. The 

parameters leading to jet oscillation can be summarized in the table below. 

 

Table 4.5  

Parameters for jet oscillation 

Parameter Value 

Cylinder diameter d/D = 2 - 3 

Cylinder-jet distance S/d = 3 - 4 

Velocity ratio VR = 4 

Jet Reynolds Number Rej = 38,000 
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The above parameters leading to jet oscillation are investigated in the following 

subsection. In this analysis, the cylinder diameter selected is d = 2. Additionally, the 

cylinder-jet distance, S/d = 2, will be investigated. The cylinder-jet distance, S/d = 2, will 

lead to non-oscillating cases. These cases are used to compare the effect of oscillating 

and non-oscillating cases.  The velocity ratio is increased from VR = 4. The jet oscillation 

is continuously monitored and helps limit the velocity ratio investigated when a non-

oscillating case is encountered. 

4.3.1. Validation 

The current work heat transfer result is validated from the literature work of 

Florschuetz et al., 1980. The literature test domain includes a channel jet impingement 

with no initial crossflow; the geometrical parameters include H/D = 3, W/D = 8, and x/D 

= 10. The literature includes a series of inline multiple jet impingements; however, the 

current work results include only the first jet. The target plate Nusselt number is averaged 

in segments similar to the literary work; a graphical representation of the averaging 

scheme is shown in Figure 4.25.  

The segment average Nusselt number of the CFD and literature results are shown in 

Figure 4.26. Comparing the CFD and literature results, the CFD results have a maximum 

error of 10% near the stagnation point (Segment 2). It is an expected trend observed in 

CFD results that the RANS model over-predicts the stagnation Nusselt number. 

However, the segment 1 and 3 CFD results are in close agreement with the literature 

findings. In this current work, the result from the CFD is utilized to determine an initial 

estimate of Nusselt number and classify oscillating and non-oscillating jets. And to 

understand the flow structure of jet oscillation due to vortex interaction. 
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Figure 4.25 Graphical representation of averaging scheme 

 

 

Figure 4.26 CFD Validation segment average Nu 

 

4.3.2. Spectral Analysis of Lift Coefficient 

The above-discussed results conclude that the cylinder wake frequency will be equal 

to the cylinder lift force-frequency (Williamson, 1996). Hence, an FFT analysis is 

performed on the cylinder lift coefficient from the CFD result to determine the wake 

frequency. The varying parameters are the velocity ratio and cylinder-jet distance. The 

cylinder diameter is a constant value, d = 2D. 

The spectral analysis of lift coefficient for varying velocity ratios at S/d = 2 is shown 
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in Figure 4.27. The results show no distinctive peaks in the frequency plots for all the 

velocity ratios tested. Hence, no cylinder wakes are produced in this case. Figure 4.28 

shows the spectral analysis for varying velocity ratios at S/d = 3. The distinctive peaks 

are observed for velocity ratios, VR = 4 and 4.5.  

 

 

Figure 4.27 Spectral analysis of lift coefficient at S/d = 2 

 

The two peaks observed for S/d = 4 and 4.5 are at frequency, f = 28Hz and f = 

24.6Hz, respectively. Therefore, the frequency determined will be equal to cylinder 

vortex shedding frequency.  For velocity ratios, VR = 5 – 6 no frequency peaks are 

observed, concluding no-wake shedding for these cases. This may be due to the 

reattachment of the shear layer onto the jet, and this assumption can be confirmed by the 

vorticity distribution in the following subsections. 
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Figure 4.28 Spectral analysis of lift coefficient at S/d = 3 

 

Figure 4.29 shows the spectral analysis of lift coefficient for the tested velocity ratios 

at S/d = 4. In this case, frequency peaks are observed for velocity rations ranging from 

VR = 4 – 7. The wake frequency decreases with the increase in velocity ratio due to the 

decrease in crossflow velocity. Also, the increase in cylinder-jet distance prevents 

reattachment of the shear layer and hence produces cylinder wakes. For velocity ratio, 

VR = 8, no peaks are observed, certifying no cylinder vortex shedding.  

Comparing Figure 4.28 and Figure 4.29, the vortex shedding is observed for velocity 

ratios, VR = 4 – 4.5 at S/d = 3; whereas for cylinder jet-distance, S/d = 4 vortex shedding 

is observed for a higher velocity ratio range, VR = 4 – 7. This phenomenon is due to the 

increase in the cylinder-jet distance causing difficulty in the reattachment of the shear 

layer onto the jet in case of S/d = 4. 
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Figure 4.29 Spectral analysis of lift coefficient at S/d = 4 

 

The observed frequencies for cylinder diameter, d = 2D at different velocity ratios can 

be verified with the literature results using Strouhal number. The literature result 

frequency is calculated using the uniform crossflow velocity and Strouhal number, St = 

0.21. The cylinder wake frequency observed for the various velocity ratios is summarized 

in Figure 4.30. It can be observed that the CFD frequency predicted is higher than the 

literature findings. This is because the k-ω SST turbulence model overpredicts the 

Strouhal number/ frequency, and the blockage ratio has considerable effects on the 

increase in Strouhal number (Anagnostopoulos et al., 1996). The Strouhal number in the 

CFD case is calculated to be, St = 0.25, and the literature community does accept results 

in the range of St = 0.2 - 0.3 (Bearman, 1969). However, this study is focused on the flow 

interaction and jet oscillation, which depends mainly on the wake strength. Hence, this 

overprediction is acceptable for this current investigation. 
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Figure 4.30 Comparison of CFD and literature wake frequency  

 

4.3.3. Spectral Analysis of Target Wall Stagnation Pressure 

The stagnation pressure data measured in time is utilized to differentiate oscillating 

and non-oscillating jets. As discussed before in the flow feature analysis, the frequency 

peaks determining the jet oscillation will equal twice the cylinder wake frequency. 

The stagnation pressure data is obtained from a point probe placed in the stagnation 

region. The same cases discussed above in the cylinder wake spectral analysis are 

investigated. Figure 4.31 shows the FFT analysis of pressure fluctuation for various 

velocity ratios at S/d = 2. The results show no frequency peaks for all the velocity ratios 

tested. This is an expected result, as no cylinder wakes were observed in the S/d = 2 case. 

Also, the response surface analysis concluded no jet oscillation for the cylinder-jet 

distance, S/d = 2. 

Figure 4.32 shows the spectral analysis of stagnation pressure for various velocity 

ratios at S/d = 3. The results show two peaks, a strong peak with its harmonic for the 

cases with velocity ratio, VR = 4 and 4.5. The pressure frequency observed is f = 56Hz, 

and f = 49.2 Hz for a velocity ratio, VR = 4 and 4.5, respectively. The pressure frequency 

is equal to twice the wake frequency, f = 28 × 2 = 56Hz and f = 24.6 × 2 = 49.2 Hz, 

justifying jet oscillation for these cases. As discussed earlier, no wakes were produced for 
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velocity ratios, VR = 5 – 6; hence jet cannot oscillate. Therefore, no peaks are observed 

for velocity ratios, VR = 5 – 6. 

 

 

Figure 4.31 Spectral analysis of stagnation pressure at S/d = 2 

 

 

Figure 4.32 Spectral analysis of stagnation pressure at S/d = 3 
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Figure 4.33 Spectral analysis of stagnation pressure at S/d = 4 

 

Figure 4.33 shows the spectral analysis of stagnation pressure for various velocity 

ratios at S/d = 4. The results show peaks at a frequency, f = 56Hz for VR = 4 and f = 

46.2Hz for VR = 5. The pressure frequency is equal to twice the wake frequency, f = 28 × 

2 = 56Hz and f = 23.2× 2 = 46.4 Hz, justifying jet oscillation for these cases. The jet does 

not oscillate for velocity ratios, VR = 6 – 8 because no peaks are observed. From cylinder 

wake spectral analysis, cylinder wakes were detected for velocity ratios, VR = 4 – 7. This 

defines an anomaly stating that cylinder wakes do not lead to jet oscillation in all cases. 

This anomaly may be due to the insufficient cylinder wake strength to move the jet. 

The above results can be summarized, stating jet oscillation is only observed for low-

velocity ratios, VR = 4 – 5 for cylinder-jet distance, S/d = 3 – 4. Also, cylinder-jet 

distance, S/d = 2, led to non-oscillating jet cases for all the velocity ratios tested. 
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4.3.4. Flow Field Results 

The mechanism of cylinder wake-jet interaction leading to jet oscillation is analyzed 

using vorticity, turbulent kinetic energy (TKE), and velocity contour distribution. Also, 

from the previous section, the non-oscillating jet case (VR = 6 – 8  & S/d = 4) stating the 

presence of cylinder wakes does not lead to jet oscillation is analyzed. Hence, the flow 

field results are divided into two subsections, oscillating jet case, and non-oscillating jet 

case. 

4.3.4.1. Oscillating Jet Case 

The flow features of an oscillating jet are analyzed at different time intervals using 

vorticity, TKE, and velocity contours. The oscillating jet case with velocity ratio, VR = 4, 

and cylinder-jet distance, S/d = 3, is selected for this analysis. The oscillating jet as a time 

period of tp = 0.035seconds. The observed contour plots are obtained after steady jet 

oscillation is attained (approximately after 10 seconds). 

Figure 4.34 shows the vorticity distribution for a jet oscillation cycle for every ¼th 

time period. The vorticity distribution plot is obtained from the x-y plane at a channel 

height of z/D = 1.5. The cylinder sheds counter-clockwise rotating vortex and clockwise 

rotating vortex consecutively at cylinder wake frequency. The counter-clockwise rotating 

vortex is denoted by negative vorticity (blue color), and the clockwise rotating vortex, 

denoted by positive vorticity (red color). The jet core deforms into a bean shape due to 

the crossflow and wake interaction, similar to literature findings (Muppidi et al., 2005). 

Also, it is observed that the jet core rotates clockwise and anticlockwise in time due to 

consecutive wake vorticity interaction. Along with the cylinder vortex shedding, the 

deformed jet core also produces wakes downstream. Hence, these jet core wakes 
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produced also induces forces onto the jet core itself. 

At the initial time cycle (t = tp), the jet core is at the maximum displacement in the y-

direction. Due to previous clockwise (CW) rotating vortex interaction, the jet is sheared 

to rotate in counter-clockwise (CCW) direction and pushed away. At the exact moment, a 

CCW rotating vortex is shed from the cylinder. Also, an anticlockwise rotating vortex is 

shed for the jet core, inducing an additional torque in the anticlockwise direction. 

At the time cycle, t = 1/4tp, the vortex shedding moves downstream, and the jet core 

is rotating anticlockwise. But the jet core induced clockwise rotating vortex will 

introduce a torque in the CW direction, reducing the cylinder wake induced torque. 

At time cycle, t = 1/2tp, the jet core at its maximum displacement on the other 

sidewall. And the counter-rotating vortex comes in contact with the jet core, inducing a 

torque onto the jet core. Simultaneously, a clockwise-rotating vortex is started to shed 

from the cylinder. Also, the jet core vortex produced is moving downstream. 

At time cycle, t = 3/4tp, the previously induced torque rotates the jet core in the 

clockwise direction, and the clockwise-rotating vortex is completely shed from the 

cylinder traveling downstream. Also, the jet core produces a CCW vortex, which induces 

a torque in the CCW direction, restricting the force indued by the cylinder. And complex 

flow interaction of the vortices will lead to the production of secondary and tertiary 

vortices. 

Finally, the clockwise-rotating cylinder vortex forces the jet core to rotate 

anticlockwise, and the cycle repeats. As the deformed jet rotates in either direction, it can 

also be observed that the jet core position moves in the y-direction. 

Summarizing the results, the deformed jet core rotates and moves in the y-direction, 
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primarily driven by the cylinder vortex interaction. However, the jet core-induced vortex 

is not synchronized with the cylinder vortex shedding; hence, the cylinder vortex's 

effectiveness is reduced. Also, the vortex strength of the cylinder wakes produced is 

above the threshold to induce jet oscillation. 

The turbulent kinetic energy (TKE) data is plotted in the x-y plane at a channel height 

of z = 0.25D above the target plate (shown in Figure 4.35). The time steps shown in the 

TKE contour plots are synchronous with the above discussed time steps of the vorticity 

plots. As the TKE plot is in proximity with the target plate, the wall jet's extent and shape 

can be observed. Also, the jet core and its recirculation region possess high turbulent 

kinetic energy. The wall jet is also observed to move laterally and rotate with jet core 

motion in time. 

At the initial time cycle (t = tp), the jet core and the wall jet sync with maximum 

lateral and angular deflection. However, at cycle time, t = 1/4tp, the jet and wall jet lag 

behind the jet core rotation. This is due to the cylinder vortex induces a torque only into 

the jet core. And the jet core in turn, tries to rotate the wall jet, which will consume time 

due to the compressibility of the fluid material. 

At time cycle, t = 1/2tp, the jet core at its maximum displacement on the other end 

sidewall. However, the wall jet lags behind and attains maximum angular and lateral 

deflection at the time cycle, t = 3/4tp. And the jet core is trying to go back to its initial 

position. Once it reaches the top sidewall, the cycle repeats. 

Figure 4.36 shows the velocity contour of the jet oscillation cycle in the y-z plane at 

the jet orifice center. The jet core is observed to move laterally in the y-direction, and the 

wall jet follows the lead of the jet core. The wall jet curls at the sidewalls and the amount 
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of curling increases as the wall jet move towards the sidewall. Initially, the wall jet 

curling is limited under the shade of the cylinder, however near the sidewall, the 

crossflow strength is higher, introducing more curling of the wall jet.   

 

 

Figure 4.34 Vorticity distribution of a jet oscillation cycle 
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Figure 4.35 TKE distribution of a jet oscillation cycle 
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Figure 4.36 Velocity distribution of a jet oscillation cycle 
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4.3.4.2. Non-Oscillating Jet Case 

The flow features of the anomaly observed in the spectral analysis are analyzed 

further using the vorticity, TKE, and velocity contours at different time intervals. The 

oddity of the observed cylinder wakes to lead to no jet oscillation is investigated in this 

section. The non-oscillating jet case with a velocity ratio, VR = 7, and cylinder-jet 

distance, S/d = 4, is selected for this analysis. The non-oscillating jet as a cylinder wake 

time period of tp = 0.061seconds. The observed contour plots are obtained after steady 

cylinder wake oscillations are attained (approximately after 10 seconds). 

Figure 4.37 shows the vorticity distribution for a jet oscillation cycle for every ¼th 

time step. The figure shows the cylinder wakes and jet core wakes are produced, but the 

deflection and rotation of the jet core is minimum. Therefore, stating the cylinder wake 

strength is below the threshold to oscillate the jet. Also, the cylinder wake shedding and 

jet core shedding are not synchronized. The jet core movement is unsteady and irregular 

to the cylinder wake interaction. The cylinder wakes observed will induce an oscillating 

lift and drag force into the cylinder itself. Hence the spectral analysis of the lift 

coefficient facilitates in determining the cylinder wake frequency. 

The initial time step (t = tp) shows that the counter-rotating vortex has already been 

shed from the cylinder and traveling downstream. Simultaneously, a CCW rotating 

vortex is shed from the deformed jet core. The vortex shedding would induce a torque in 

the CCW direction. Hence the deformed jet starts to rotate in the CCW direction; 

however, no lateral deflection is observed. At the time step, t = 1/4tp, the CCW rotating 

vortex shears the jet core in the CW direction. At the same time, a CW rotating vortex is 

ready to detach from the cylinder. Now the jet core rotates in the CW direction. 
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At time cycle, t = 1/2tp, the CW rotating cylinder wake is detached from the cylinder 

and moving downstream. And a CCW rotating vortex started to form on the cylinder. The 

CW rotating cylinder wake impacts the jet core, forcing it to rotate in the CCW direction 

(at time step, t = 3/4tp). The maximum rotation of the jet core is observed at this 

movement. lastly, the CCW vortex detaches from the cylinder, and jet continues in CCW 

rotation. 

Comparing oscillating and non-oscillating jet case vorticity contour plots, the 

oscillating jet case's vortex strength is higher than the non-oscillating jet. The cylinder 

wakes from the oscillating jet induce more rotation into the deformed jet core. Secondary 

and tertiary vortex pairs are formed in oscillating jet cases but absent in the non-

oscillating jet case. The jet core does not produce vortex shedding similar to the 

oscillating jet case, and the jet core wakes shed are irregular. 

Figure 4.38 shows the turbulent kinetic energy contour plots of the x-y plane above 

the target plate at a distance of z = 0.25D for one cylinder wake shedding. As the 

vorticity plots showed, the cylinder wakes imparting energy into the jet core to rotate it. 

The TKE plots show the wall jet and recirculation region displays minimum change in 

rotation or deflection, for time steps, t = tp -  ½ tp. And suddenly, the deformed jet core 

rotates to its maximum angle from time, t = ¾ tp - tp. The jet rotation observed in the last 

two-time steps is irregular and unsteady behavior of the jet. The current results compared 

to jet oscillation case TKE distribution, the wall jet rotates and moves laterally in the 

oscillating jet case. 

The velocity contour plot of the jet core is shown in Figure 4.39, in the y-z plane. The 

jet oscillation for one cylinder wake time period is shown for every ¼th time step. The 
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plots show minimum to no jet oscillation compared to the previous oscillating jet case 

findings. Hence, no frequency peak is observed in the spectral analysis of the target wall 

pressure data. Further, the wall jet appears to show less curling near the sidewall region 

than the oscillating jet case results due to lower crossflow strength (VR = 7). 

 

 

Figure 4.37 Vorticity distribution of a non-oscillating jet 
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Figure 4.38 TKE distribution of a non-oscillating jet 
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Figure 4.39 Velocity contour of a non-oscillating jet 
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For a non-oscillating jet case with no cylinder wakes, the jet core is in close proximity 

to the cylinder. Driving the reattachment of the shear layer separated from the cylinder 

onto the jet core (shown in Figure 4.6). Hence the cylinder did not shed any vortical 

structures. Therefore, a few similar cases tested in the spectral analysis led to no cylinder 

wake frequency peaks. 

Summarizing the results of the flow feature analysis of jet oscillation, the deformed 

jet core oscillates in both lateral and angular directions. The jet oscillation is primarily 

driven by the cylinder wakes. Also, non-synchronous jet core wakes are produced, 

reducing the effectiveness of cylinder wakes for jet oscillation. The wall jet also oscillates 

in a lateral and angular direction but lags behind the jet core. The wall jet curling at the 

sidewall is observed under the crossflow effect. 

The non-oscillating jet case flow features exhibit no lateral deflection or angular 

rotation of the jet core. Due to the reattachment of the shear layer onto the jet core. 

However, jet core irregular angular rotation is observed for the non-oscillating jet cases 

with cylinder wake shedding (at a higher cylinder-jet distance). The cylinder wakes did 

interact with the jet core and imparted energy into the jet, but the vortex strength is 

insufficient to induce jet oscillation. 

4.3.5.  Heat Transfer Results 

The final objective of the current study is to derive an optimum design of jet 

oscillation for maximum heat transfer rate. Therefore, the effect of oscillating cases and 

non-oscillating jet cases on heat transfer rate are studied. The parameters varied are the 

velocity ratio and cylinder-jet distance similar to the previous section. And, the cylinder 

diameter is a constant, d = 2D. 
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4.3.5.1. Local Nusselt Number 

The local Nusselt number contour plots are used to investigate the effect of oscillating 

and non-oscillating jets on heat transfer rate. For all contour plots, the x-axis and y-axis 

values are non dimensionalized by the jet diameter (D). And the geometrical position of 

the jet orifice is used as the origin (0,0). The crossflow is moving from left to right of the 

page. The cylinder is located at a cylinder-jet distance (S/d) from the origin, upstream 

towards the left of the page. 

 

 

Figure 4.40 Nusselt number distribution at varying VR and S/d = 2 

 

Figure 4.40 shows the local Nusselt number distribution for various velocity ratios 

tested at S/d = 2. It can be observed that the stagnation region Nusselt number for all the 
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velocity ratios are similar, with a bean shape in nature. This shape is formed due to 

crossflow-jet interaction, pushing the jet downstream. The outer boundary observed 

represents the extent of the wall jet region. The shape of the wall jet region does change 

with the velocity ratio. The crossflow velocity compresses the wall jet region. And the 

wall jet compression is proportional to the velocity ratio. The previous results confirmed 

no jet oscillation for all the velocity ratios tested for S/d = 2. The jet oscillation primarily 

intends to spread the stagnation region. However, as expected for non-oscillating cases 

(S/d = 2), the local Nusselt number data show no change in the shape of the stagnation 

region observed. And the observed shape of the stagnation region can be used to confirm 

future non-oscillating cases. 

Figure 4.41 shows the local Nusselt number distribution for various velocity ratios 

tested at S/d = 3. The previous results confirmed jet oscillation only for the velocity ratio, 

VR = 4 & 4.5. The effect of jet oscillation can be observed from the change in the shape 

of the stagnation region. The Nusselt number distribution for velocity ratio, VR = 4, is 

the lowest compared to all other velocity ratios tested. Although jet oscillation is 

observed for this velocity ratio (VR = 4), the decrease in Nusselt number suggests the 

heat transfer capability of the jet is deteriorated by the high crossflow strength. 

The Nusselt number distribution for the other oscillating jet case (VR = 4.5) shows 

the stagnation region is spread outwards uniformly in the spanwise direction (y/D). Also, 

the wall jet region downstream appears to be enhanced in a spanwise direction. The 

stagnation region Nusselt number is the highest compared to all other velocity ratios, 

hence the best performing oscillating jet case for S/d = 3. The stagnation region Nusselt 

number distribution for the velocity ratios, VR = 5 – 6, resembles the bean shape 
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observed for the non-oscillating cases (S/d = 2). Also, the previous spectral analysis did 

certify non-oscillating jet for velocity ratios, VR = 5 – 6. 

Comparing results for the two oscillating cases (VR = 4 &4.5), a decrease in 

stagnation region Nusselt number is observed for the velocity ratio, VR = 4. Thus, 

suggesting the vortex strength is too high in VR = 4 to cause an acceptable increase in 

uniform Nusselt number distribution. And the vortex strength of the velocity ratio, VR = 

4.5, leads to uniform Nusselt number distribution. 

 

 

Figure 4.41 Nusselt number distribution at varying VR and S/d = 3 
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Figure 4.42 Nusselt number distribution at varying VR and S/d = 4 

 

Figure 4.42 shows the local Nusselt number distribution for various velocity ratios 

tested at S/d = 4. From the CFD spectral analysis, the oscillating jet cases are velocity 

ratios, VR = 4 & 5. The shape of the stagnation region Nusselt number of velocity ratios, 

VR = 4 & 5, does resemble the oscillating jet case of S/D = 3 (VR = 4.5). The stagnation 

region Nusselt distribution is highest for velocity ratio, VR = 4. The Nusselt number 

distribution for velocity ratios, VR = 6 – 8, is similar to the non-oscillating cases 



104 
 

discussed earlier. 

For quantitative comparison discussed in the next section, a steady jet impingement 

case with no crossflow is investigated for the same jet Reynolds number, Rej = 38,000. 

The velocity ratio of this case can be calculated to be VR = ∞. The local Nusselt number 

distribution is shown in Figure 4.43. The high Nusselt number stagnation region is 

observed at the geometrical point of impingement (0,0). Also, an outer circle of a high 

heat transfer rate is observed, representing the secondary peak formed. Lastly, the Nusselt 

number radially decays outwards. 

 

 

Figure 4.43 Local Nu distribution of steady jet impingement 

 

4.3.5.2. Spanwise Average Nusselt Number 

The spanwise average Nusselt number is analyzed for quantitative comparison of 

oscillating and non-oscillating jet cases. The spanwise average Nusselt number is 

calculated by averaging the local Nusselt number in the x-direction. 

The spanwise average Nusselt number for various velocity ratios at S/d = 2 is shown 
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in Figure 4.44. The adverse effect of crossflow velocity on Nusselt number distribution is 

observed. The crossflow velocity is inversely proportional to the velocity ratio. The peak 

Nusselt number is pushed downstream by the crossflow velocity. The peak for velocity 

ratio, VR = 8, is offset downstream to x/D = 0.48. The stagnation peak offset decreases 

with the increase in velocity ratio. The non-oscillating cases discussed here show similar 

Nusselt number distribution with crossflow effects. 

The spanwise average Nusselt number for the steady jet (VR = ∞) shows a maximum 

peak at the geometrical point of impingement. Also, a secondary peak effect on the 

spanwise average result is observed at x/D = ±1. 

Comparing the non-oscillating jet cases with the steady-state jet case (VR = ∞), the 

crossflow significantly affects the wall jet region Nusselt number. The peak magnitudes 

of the non-oscillating cases are higher than the steady jet case due to the crossflow 

compressing the jet flow features. The upstream wall jet region Nusselt number decreases 

due to the wall jet advancing against the crossflow. However, the wall jet is assisted by 

the crossflow in the downstream direction in enhancing the heat transfer rate. 

 

 

 

Figure 4.44 Spanwise average Nusselt number for S/d = 2 
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The spanwise average Nusselt number for various velocity ratios at S/d = 3 is shown 

in Figure 4.45. The previous results conclude jet oscillation only for velocity ratios, VR = 

4 & 4.5. The spanwise average Nusselt number results suggest the non-oscillating jets are 

outperforming the oscillating jets. However, the jet is intended to oscillate laterally and 

spread the stagnation region in the spanwise direction (y/D). Hence, the spanwise average 

Nusselt number suppresses the effect of jet oscillation. The increase in Nusselt number 

for the non-oscillating cases is mainly due to the crossflow effect, verified by the offset of 

the stagnation peak for the oscillating jets. The non-oscillating jets share the same Nusselt 

number with a minimum crossflow effect. 

 

.  

Figure 4.45 Spanwise average Nusselt number for S/d = 3 

 

Comparing the peak Nusselt number, the lowest magnitude is found for the 

oscillating case with velocity ratio, VR = 4 (Figure 4.45). The peak Nusselt number 
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the change in peak magnitude decrease to 3% for the change in velocity ratio of VR = 4.5 

to 5. And less than 1% change in peak magnitude for velocity ratios, VR = 5 – 6. Thus, 

suggesting the increase in peak Nusselt number for the raise in velocity ratio is 

exponential. 

The oscillating jet case (VR = 4) and the steady jet case (VR = ∞) share the same 

peak Nusselt number magnitude, and the Nusselt number distribution upstream is greatly 

affected by the crossflow. The oscillating jet case, VR = 4.5, has comparatively better 

performance in heat transfer rate in the stagnation region compared to the steady jet case. 

 

 

Figure 4.46 Spanwise average Nusselt number for S/d = 4 

 

Figure 4.46 shows the spanwise average Nusselt number for various velocity ratios at 

S/d = 4. The Nusselt number distribution for the non-oscillating cases changes 

substantially with velocity ratio than the SD = 2 & 3 results. The stagnation region 

Nusselt number for the oscillating jet cases (VR = 4 & 5) is higher than the steady jet 
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case result. A similar effect of crossflow strength on the spanwise average results for the 

change in velocity ratio continues. 

Summarizing spanwise average Nusselt results, the Nusselt number distribution is 

significantly affected by the crossflow strength. The peak Nusselt number determined for 

all the non-oscillating cases falls within 2% of Nu = 153. Thus, the oscillating jet cases 

thermal performance is less than the non-oscillating jet cases. However, the jet oscillates 

in the spanwise direction; hence the spanwise average results are not appreciated for 

comparing oscillating and non-oscillating jet cases.    

4.3.5.3. Streamwise Average Nusselt Number 

As discussed above, to understand the effect of the spanwise oscillating jet on thermal 

performance, the Nusselt number is averaged in the streamwise direction. For a fair 

comparison of streamwise average Nusselt number, Nusselt number is averaged in 

streamwise direction x = ±1D from their stagnation peak. The streamwise averaging is 

limited to x = ±1D to study the effect of the stagnation region Nusselt number, expecting 

the oscillating jet to spread the stagnation region. An example showing the area 

considered for streamwise averaging for the oscillating jet case (S/d = 4 & VR = 4) is 

shown in Figure 4.47. 

 

 

Figure 4.47 Stagnation region offset by x/D =  -0.78 for streamwise averaging 
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The streamwise average Nusselt number for various velocity ratios at S/d = 2 is 

shown in Figure 4.48. The stagnation region (y/D = ±1) Nusselt number shows two small 

peaks similar to the steady jet case. However, the overall Nusselt number distributions for 

all the non-oscillating jet cases are identical to each other. The non-oscillating jet shows a 

maximum increase of 28% in streamwise average Nusselt number compared to the steady 

jet case. And this increase is due to the crossflow compressing the jet flow features. 

 

 

Figure 4.48 Spanwise average Nusselt number for S/d = 2 

 

The streamwise average Nusselt number for various velocity ratios at S/d = 3 is 

shown in Figure 4.49. The increase in uniform heat transfer rate in the stagnation region 

for the oscillating jet case (VR = 4.5) can be observed compared to non-oscillating cases. 

The stagnation region of the oscillating case is found to be plateau with an increase of 7% 

in Nusselt number from the two-peak valley of the non-oscillating case. The oscillating 

case (VR = 4) result shows an overall reduction in Nusselt number because the crossflow 

suppresses the effect of jet oscillation. The oscillating jet results conclude a maximum 
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increase of 35% in streamwise average Nusselt number compared to the steady jet case. 

However, there is a reduced heat transfer rate near the sidewall due to the crossflow. 

The Nusselt number distribution for the non-oscillating cases (VR = 5 – 6) shows 

similar findings to S/d = 2 results. Compared to the steady jet case, the non-oscillating 

case leads to a maximum increase of 26% in streamwise average Nusselt number. 

 

 

Figure 4.49 Streamwise average Nusselt number for S/d = 3 

 

 

Figure 4.50 Streamwise average Nusselt number for S/d = 4 
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Figure 4.50 shows the streamwise average Nusselt number for various velocity ratios 

at S/d = 4. The maximum heat transfer rate is observed for the oscillating jet case (VR = 

4 – 5) results, with a maximum increase of 36% in the Nusselt number. The non-

oscillating jet cases show a maximum increase of 27% in Nusselt number compared to 

the steady jet case. Also, there is a reduction in the Nusselt number for the oscillating jet 

case compared to the non-oscillating jet case closer to the sidewall. 

Summarizing the streamwise average results, The non-oscillating cases for S/d = 2, 3 

and 4, show the same increase of 27% in Nusselt number in the stagnation region. This is 

expected as the local stagnation region Nusselt number results show no change in the 

contour for the non-oscillating jet cases. However, a maximum increase of 36% is 

observed for the oscillating jet cases compared to the steady jet case. Also, the 

streamwise averaged Nusselt number is uniformly distributed compared to the non-

oscillating and steady jet case. 

4.3.5.4. Area Average Nusselt Number 

The area-averaged Nusselt number is calculated to determine the overall effect of the 

oscillating and non-oscillating jet case. The area considered for averaging is the same x = 

±1D stagnation region shown in Figure 4.47. The area-averaged Nusselt number result 

for the velocity ratio and cylinder-jet distance tested is shown in  Figure 4.51. For thermal 

comparison with the steady jet case, the individual test results are divided by the steady 

jet case average Nusselt number, Nu0 = 92.17.  

The results show an increase in the average Nusselt number with the increase in 

velocity ratio. This increase proves that although the jet oscillates for Velocity ratio, VR 

= 4 – 5 at S/d = 3 & 4, the effect of crossflow is dominant in area-averaged Nusselt 
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number. It can be observed that the Nusselt number decreases with the increase in 

cylinder-jet distance; however, the S/d = 2 shows a minimum change in the Nusselt 

number. 

 

 

Figure 4.51 Area average Nusselt number for varying velocity ratios 

 

4.4. Experimental Results 

The final experimental analysis includes investigating the effect of velocity ratio, 

cylinder diameter, and cylinder-jet distance on jet oscillation. The range of velocity ratios 

and cylinder-jet distances tested is similar to the final CFD analysis. However, additional 

velocity ratios were tested for detailed analysis. The range of velocity ratios tested 

depended on their previous test results. The method employed, is to increase the velocity 

ratio till the maximum possible streamwise average Nusselt number is reached compared 

to the steady jet case. The jet Reynolds number is kept constant for all the cases tested at 

Rej = 38,000. 

The uncertainty analysis of the experimental results showed a maximum area-

averaged Nusselt number error of ±9.8%, jet Reynold’s number error of  ±2.3%, and 
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4.4.1. Validation 

The experiment heat transfer result is validated from the literature work of Florschuetz 

et al., 1980 similar to CFD validation. The same test case validated in the CFD result is 

tested experimentally. The averaging scheme is identical to literature work and CFD 

validation, shown in Figure 4.25. 

The segment average Nusselt number for literature, experimental, and CFD result is 

shown in Figure 4.52. Comparing experimental and literature results, the stagnation 

region (Segment 2) Nusselt Number is predicted within the error limit of the literature 

result. However, the CFD result at the stagnation region Nusselt number is over 

predicted. The segment 2 & 3 experimental results have the maximum error due to the 

data corrupted by the heater strip junction. Therefore, the result showcased in this paper 

comprises only data near the stagnation region and excludes the data near the heater 

junction area. 

 

 

Figure 4.52 Experimental result validation segment average Nu 
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and cylinder-jet distance. The spectral analysis will aid in differentiating oscillating and 

non-oscillating jet cases. The method employed to distinguish the oscillating and non-

oscillating jet case is as discussed before. If a frequency peak of twice the cylinder wake 

frequency exists in the frequency spectrum of pressure measurement, it confirms jet 

oscillation. To determine cylinder wake frequency, the target wall pressure fluctuation is 

measured downstream of the cylinder in the absence of the jet. The frequency spectrum 

of the pressure fluctuations for cylinder diameters, d = 2D, and 3D are analyzed, and the 

cylinder wake frequency are summarized in Table 4.6 and Table 4.7, respectively. 

 

Table 4.6  

Cylinder wake frequency of cylinder diameter, d = 2D 

Velocity Ratio Frequency, Hz 

4 28.59 

5 25 

6 22 

7 18.79 

8 16.49 

10 13.56 

12 11.23 

 

Table 4.7  

Cylinder wake frequency of cylinder diameter, d = 3D 

Velocity Ratio Frequency, Hz 

4 23.59 

6 17.06 

8 13.26 

10 10.7 

12 8.9 

15 7.1 
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The Strouhal number can be calculated using the frequency and their respective 

velocity. The Strouhal number for cylinder diameter, d = 2D and 3D is equal to, St = 0.26 

and 0.30, respectively. The Strouhal number is higher for the cylinder diameter, d = 3D, 

due to the increase in blockage ratio. The cylinder wake frequency tabulated will be used 

for differentiating oscillating and non-oscillating jet cases. 

4.4.2.1. Spectral Analysis of Stagnation Pressure at d = 2D 

The spectral analysis is carried for various velocity ratios, VR = 4 – 12 and cylinder-

jet distances, S/d = 2 – 4. Figure 4.53 shows the frequency spectrum of pressure 

fluctuations at various velocity ratios at a cylinder-jet distance of S/d = 2. The results 

show no frequency peaks for all the velocity ratios tested; hence, all the cases are non-

oscillating jets. Also, these results are in match with the CFD results confirming the jet 

core is in the recirculation region with no oscillations. 

 

 

Figure 4.53 Frequency spectrum of stagnation pressure at S = 2d & d = 2D 
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The frequency spectrum of stagnation pressure at various velocity ratios at S/d = 3 is 

shown in Figure 4.54. The results show frequency peaks for velocity ratios, VR = 4 – 6, 

and the frequency is equal to twice the cylinder wake frequency. Hence the velocity 

ratios, VR = 4 – 6, are concluded oscillating jet cases. Whereas, with no frequency peaks 

the velocity ratios, VR = 7 – 12 is considered non-oscillating jets. However, the CFD 

results show jet oscillation only for velocity ratios, VR = 4 – 4.5. Concluding the vortex 

strength required for jet oscillation is overpredicted by the CFD simulation. 

 

 

Figure 4.54 Frequency spectrum of stagnation pressure at S = 3d & d = 2D 

 

 Figure 4.55 shows the frequency spectrum of pressure fluctuations at various velocity 

ratios at a cylinder-jet distance of S/d = 4. The results confirmed jet oscillation for 
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velocity ratios, VR = 4 – 8 with frequency peaks. The frequency spectrum shows no 

peaks for velocity ratios, VR = 10 and 12, confirming these as non-oscillating jet cases. 

 

 

Figure 4.55 Frequency spectrum of stagnation pressure at S = 4d & d = 2D 

 

4.4.2.2. Spectral Analysis of Stagnation Pressure at d = 3D 

The spectral analysis is carried out for various velocity ratios, VR = 4 – 15 and 

cylinder-jet distances, S/d = 3. Figure 4.56 shows the frequency spectrum of pressure 

fluctuations at different velocity ratios at a cylinder-jet distance of S/d = 3. The results 

show frequency peaks for velocity ratios, VR = 4 – 10 leading to jet oscillation. The 

remaining cases with no peaks can be concluded as non-oscillating jet cases. 
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Figure 4.56 Frequency spectrum of stagnation pressure at S = 3d & d = 3D 

 

Summarizing the spectral analysis results, the cases tested are sorted into oscillating 

and non-oscillating jet cases. The experimental results confirm the jet oscillates for 

higher velocity ratios than the CFD findings. This confirms the CFD overpredicts the 

momentum required for jet oscillation.  

4.4.3. Heat Transfer Results 

The experimental heat transfer result is the crucial element of this current research to 

determine the effect of jet oscillation on heat transfer rate. The parameters varied are the 

velocity ratio, cylinder diameter, and cylinder-jet distance. For a cylinder diameter of, d = 

2D the velocity ratio is varied from, VR = 3 – 15, and the cylinder-jet distance is varied 

for S/d = 2, 3, & 4. Later the cylinder diameter, d = 3D, is tested for the optimum 

cylinder-jet distance and varying velocity ratios. 
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4.4.3.1. Local Nusselt Number 

The target wall local Nusselt number contour plots are used to investigate the local 

effect of oscillating and non-oscillating jets on heat transfer rate. For all contour plots, the 

x-axis and y-axis values are non dimensionalized by the jet diameter (D). The 

geometrical position of the jet orifice is used as the origin (0,0). The crossflow is moving 

from left to right of the page. The corrupted data are not shown in the contour plots; 

hence blank areas are observed in the following figures. 

Figure 4.57 shows the local Nusselt number distribution for tested velocity ratios at 

S/d = 2 and d = 2D. The spectral analysis concluded all velocity ratios led to non-

oscillating jet cases. The stagnation region Nusselt number shows the deformed jet core 

shape (bean shape) from the previous result. The wall jet boundary limit is governed by 

the crossflow strength, similar to the earlier findings. Also, the Nusselt number 

distribution is proportional to the velocity ratio. 

Figure 4.58 shows the local Nusselt number distribution for the various velocity ratios 

tested at S = 3d and d = 2D. The previous results confirmed jet oscillation only for the 

velocity ratio, VR = 4 – 6. The local Nusselt number plots show the bean shape is 

dominant for velocity ratios, VR = 4 – 8. But the shape of the oscillating jet core does not 

match the unique shape found in the CFD results. Also, the maximum Nusselt number is 

observed for the oscillating jet case with velocity ratio, VR = 6. The lateral spread of 

stagnation region heat transfer coefficient increases with the increase in velocity ratio. 

This shows the oscillating jet core is leading to the lateral deflection and angular rotation 

of the wall jet. Also, the curling of the wall jet is reduced with a decrease in crossflow 

strength. 
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Figure 4.57 Nusselt number distribution at varying VR at S = 2d and d = 2D 

 

For the velocity ratio VR = 12, the jet core region Nusselt number is the lowest, and 

also, the shape of the stagnation region is round in nature. This shape proves that the 

crossflow has a minor effect in compressing the flow features. Also, with the decrease in 

velocity ratio, the upstream wall jet entered the cylinder recirculation region. 

The local Nusselt number distribution for the oscillating and non-oscillating cases at 

S/d = 4d is shown in Figure 4.59, and the range of velocity ratios tested is VR = 4 – 12. 

The usual trend of increase in stagnation region Nusselt with velocity ratio is observed. 

The extent of the upstream wall jet is found to be a maximum of x/D = -3, showing the 
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wall jet is not in the recirculation region. Hence, cylinder wakes can be shed from the 

cylinder without interruption. Also, the uniform distribution of Nusselt number in the 

wall jet region is observed for higher velocity ratios. 

 

 

Figure 4.58 Nusselt number distribution at varying VR at S = 3d and d = 2D 
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Figure 4.59 Nusselt number distribution at varying VR and S = 4d and d = 2D 
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Figure 4.60 Nusselt number distribution at varying VR and S = 3d and d = 3D 
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Figure 4.60 shows the local Nusselt number distribution for various velocity ratios 

tested at S = 3d and d = 3D. The spectral analysis concludes jet oscillation for velocity 

ratios, VR = 4 – 10. The local Nusselt number results for the oscillating and non-

oscillating jet cases follow the same stagnation region and wall jet region Nu distribution 

findings. For the velocity ratios, VR = 8 – 12, the sidewall Nusselt number spreads more 

uniformly in nature on either side. 

 

 

Figure 4.61 Local Nu distribution of steady jet impingement 

  

For quantitative comparison, a steady jet impingement case with no crossflow is 

investigated for the jet Reynolds number, Rej = 38,000. The velocity ratio of this case can 

be calculated to be VR = ∞. The local Nusselt number distribution is shown in Figure 

4.61. The high Nusselt number stagnation region is observed at the geometrical point of 

impingement (0,0). The Nusselt number radially decays outwards from the stagnation 
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point, similar to the literature findings (O’Donovan et al., 2007). There is no secondary 

peak formed near the stagnation region, that was observed in the CFD results (Figure 

4.43). 

Summarizing the experimental spanwise average results, the stagnation region bean 

shape is dominant in both oscillating and non-oscillating jet cases. And the wall jet region 

is spread laterally in the y-direction with the increase in velocity ratio. 

4.4.3.2. Spanwise Average Nusselt Number 

The spanwise average Nusselt number is analyzed for quantitative comparison of 

oscillating and non-oscillating jet cases. The spanwise average Nusselt number is 

calculated by averaging the local Nusselt number in the x-direction. 

The spanwise average Nusselt number for various velocity ratios at S/d = 2 and d = 

2D is shown in Figure 4.62. The peak stagnation region Nusselt number magnitude and 

position are dictated by the crossflow strength, similar to CFD results. The jet core is 

deflected downstream a maximum distance of x/D = 0.5D, for the velocity ratio, VR = 4. 

The upstream wall jet region Nusselt number increases with the increase in velocity ratio. 

And a maximum change of 25% in the Nusselt number is observed at the upstream wall 

jet region compared to the steady jet case. The curves for all the velocity ratios overlap 

each other in the downstream wall jet region, suggesting a minimum change in Nusselt 

number. 

Comparing the current results with the steady jet case, the curve for velocity ratio, VR 

= 10, closely follows the steady jet case result with a higher magnitude. A maximum 

increase of 20% is observed in the stagnation region. The velocity ratio, VR =  4 results, 

shows a reduction in heat transfer rate near the upstream wall jet similar to CFD results. 
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The CFD results also concluded the steady jet case showed maximum Nusselt number 

compared to other cases in the upstream wall jet region. But the experimental results 

suggest the non-oscillating cases possess better thermal performance than the steady jet 

case. 

 

 

Figure 4.62 Spanwise average Nusselt number for S = 2d and d = 2D 

 

The spanwise average Nusselt number for various velocity ratios at S/d = 3 and d = 

2D is shown in Figure 4.63. The previous spectral analysis results conclude jet oscillation 

only for velocity ratios, VR = 4 – 6. The spanwise average Nusselt number results 

suggest the non-oscillating jets are outperforming the oscillating jets in the upstream wall 

jet region. A maximum increase of 94 % in Nusselt number is observed between the 

velocity ratios, VR = 4 and 12. However, the peak stagnation region Nusselt number is 

found for the oscillating jet case with VR = 6. The downstream Nusselt number for all the 

cases tested are in close proximity resulting in minimum change. 

The upstream wall jet region Nusselt number of the oscillating jet cases (VR = 4 – 6) 
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is underperforming compared to the steady jet case. But the oscillating jet overperforms 

the steady jet case in the stagnation and downstream region, with a maximum increase of 

21% in spanwise average Nusselt number. 

 

 

Figure 4.63 Spanwise average Nusselt number for S = 3d and d = 2D  

 

 

Figure 4.64 Spanwise average Nusselt number for S = 4d and d = 2D 
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Figure 4.64 shows the spanwise average results for velocity ratios, VR = 4 – 12 at S/d 

= 4 and d = 2D. The overall trend of the oscillating and non-oscillating jet results is 

similar to the previous discussion. The change in Nusselt number in the stagnation region 

is minimum compared to other cylinder-jet distances. A maximum increase of 58% in 

Nusselt number is observed in the upstream wall jet region for the velocity ratios (VR = 4 

& 12). 

The non-oscillating case outperforms the steady jet case with a maximum increase of 

18% in the stagnation region Nusselt number. On the other hand, the oscillating jet cases 

(VR = 4 – 8) show reduced heat transfer rate in the upstream region and enhanced heat 

transfer rate in the stagnation region. A maximum increase of 17.6 % in Nusselt number 

is observed for the oscillating case, VR = 8 compared to the steady jet case. 

 

 

Figure 4.65 Spanwise average Nusselt number for S = 3d and d = 3D 

 

Figure 4.65 shows the spanwise average results for velocity ratios, VR = 4 – 12 at S/d 

= 3 and d = 3D. The spectral analysis concluded the velocity ratios, VR = 4 – 10, as the 

oscillating jet cases. The non-oscillating jet case shows a maximum change of 44% in 
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Nusselt number compared to the oscillating jet case in the upstream wall jet region. The 

stagnation region Nusselt number increases with the increase in velocity ratio. The effect 

of the oscillating jet is not significant due to lateral jet oscillation. The downstream wall 

jet region Nusselt number shows minimum change for the velocity ratios tested. 

Summarizing spanwise average Nusselt results, the Nusselt number distribution is 

significantly affected by the crossflow strength similar to CFD results. The non-

oscillating jet enhances heat transfer rate in the upstream region, with a maximum 

increase of 94% in Nusselt number. And the oscillating jet cases thermal performance is 

better in the stagnation region than the non-oscillating jet cases. However, the jet 

oscillates in the lateral direction; hence the spanwise average results are not appreciated 

for comparing oscillating and non-oscillating jet cases.    

4.4.3.3. Streamwise Average Nusselt Number 

As discussed above, to understand the effect of the spanwise oscillating jet on thermal 

performance, the Nusselt number is averaged in the streamwise direction. Therefore, for a 

fair comparison of streamwise average Nusselt number, Nusselt number is averaged in 

streamwise direction x = ±1D from their stagnation peak. An example showing the area 

considered for streamwise averaging for the oscillating jet case is shown in Figure 4.47. 

The streamwise average Nusselt number for various velocity ratios at S/d =2 and d = 

2D is shown in Figure 4.66. The overall Nusselt number distributions for all the non-

oscillating jet cases are in close proximity. The non-oscillating jet shows a maximum 

increase of 15% in streamwise average Nusselt number compared to the steady jet case. 

The steady jet case stagnation region Nusselt number exhibits a flat peak extending 

laterally, y/D = ±0.4D, and the Nusselt number suddenly drops. 
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Figure 4.66 Streamwise average Nusselt number for S = 2d and d = 2D 

 

The streamwise average Nusselt number for various velocity ratios at S/d = 3 and d = 

2D is shown in Figure 4.67. The stagnation region Nusselt number increases with the 

increase in velocity ratio and reaches the maximum Nusselt number at velocity ratio, VR 

= 6. Then, further starts reducing with the increase in velocity ratio. The oscillating jet 

case (VR = 6) shows a maximum increase in Nusselt number of 19% in Nusselt number 

in the stagnation region than the steady jet case. And a maximum Nusselt number 

increase of 17% in the sidewall region. 

The non-oscillating jet cases show a reduced heat transfer rate in the stagnation 

region compared to oscillating jet cases. However, the non-oscillating jet case (VR = 12) 

outperforms the oscillating jet case in the sidewall region. And the stagnation region 

Nusselt number starts producing the sudden drop in Nusselt number at y/D = ±0.4D, 

similar to the steady jet case. 

Figure 4.68 shows the streamwise average Nusselt number for various velocity ratios 

tested at S/d = 4 and d = 2D. The results show a minimum change in Nusselt number in 
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the stagnation region, and maximum change is observed near the sidewall region. The 

sidewall Nusselt number increases with the increase in velocity ratio and a maximum 

increase of 18.4% compared to the steady jet case. Thus, the general trend of the 

experimental results is in good agreement with CFD results but higher in magnitude. 

 

 

Figure 4.67 Streamwise average Nusselt number for S = 3d and d = 2D 

 

 

Figure 4.68 Streamwise average Nusselt number for S = 4d and d = 2D 
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Figure 4.69 Streamwise average Nusselt number for S = 3d and d = 3D 

 

Figure 4.69 shows the streamwise average Nusselt number for various velocity ratios 

tested at S = 3d and d = 3D. The results show the maximum stagnation Nusselt number 

for the oscillating jet with velocity ratio, VR = 10. The stagnation and sidewall region 

Nusselt number showed a maximum increase of 15% and 20%, respectively, for the 

oscillating jet compared to the steady jet case. On the other hand, the non-oscillating jet 

case (VR = 12) shows a decrease in stagnation region Nusselt number compared to the 

oscillating jet case. Also, the non-oscillating jet Nusselt number profile follows the steady 

jet case results, with a magnitude offset. 

Summarizing the streamwise average results, the oscillating jet case with velocity 

ratio, VR = 6, and cylinder-jet distance, S = 3d, possess the best thermal performance 

compared to the steady jet case with a maximum increase of 19%. However, the 

experimental result uncertainty of ±9% in Nusselt number statistically reduces this 

effectiveness. Hence the current work claims the change in the Nusselt number trend for 

the oscillating jet case under the uncertainty limit. 
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The remaining oscillating and non-oscillating cases for d = 2D and S/d = 2, 3 & 4 

show an increase of 14% in Nusselt number in the stagnation region compared to the 

steady jet case. As the sidewall region Nusselt number increases with velocity ratio, it can 

conclude uniform distribution of Nusselt number in the sidewall region. 

4.4.3.4. Area Average Nusselt Number 

The area-averaged Nusselt number is calculated to determine the overall effect of the 

oscillating and non-oscillating jet case. The area considered for averaging is the same x = 

±1D stagnation region shown in Figure 4.47. The area-averaged Nusselt number result 

for the velocity ratio and cylinder-jet distance tested is shown in  Figure 4.70. For thermal 

comparison with the steady jet case, the individual test results are divided by steady jet 

case average Nusselt number, Nu0 = 175.84.  

The results show an increase in the average Nusselt number with the increase in 

velocity ratio. The Nusselt number change does plateau for higher velocity ratios. The 

increase in Nusselt number is lowest for the cylinder-jet distance, S/d = 4. The plot for 

S/d = 3 dose shows a sudden increase in Nusselt number at velocity ratio, VR = 6. 

 

 

Figure 4.70 Area average Nusselt number for varying velocity ratios 
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5. Conclusions 

The overall objective of this study is to investigate the flow interaction of an impinging 

jet with vortex structures periodically shed from a cylinder to impart jet oscillation leading 

to enhanced heat transfer rates. Further, perform CFD and experimental analysis to 

understand the underlying flow physics causing the jet oscillation and develop an optimum 

design with correlations. 

The preliminary response surface sensitivity results prove the feasibility of the 

hypothesis to use vortex shedding from the cylinder to oscillate an impinging jet laterally. 

And, to prove jet oscillation leads to a more uniform distribution of Nusselt number, 

potentially reducing thermal stress in the material. The statistical analysis for the 25 cases 

studied led to jet oscillation for only two cases, concluding the jet oscillation is highly 

sensitive to the parameters analyzed. The shear layer detached from the cylinder attaches 

to the jet when placed at a distance of 1 - 2 jet diameter downstream; additionally, the 

crossflow velocity also affects this phenomenon. The jet oscillation occurred only for the 

cylinder hieght equal to the channel height, below which the cylinder tip vortex had an 

adverse effect on the production of cylinder wakes and jet oscillation.  

A correlation was developed to determine the impact of each parameter and its 

combination; a thorough understanding of the sensitivities led to the development of 

preliminary correlation and optimization of the jet oscillation. The jet oscillation critical 

parameters are the cylinder height, the cylinder-jet distance, and crossflow Reynolds 

number. The major contributor is the cylinder height and the crossflow Reynolds number, 

which is proportional to the vortex strength generated by the cylinder. 

From the initial spectral analysis, a method was developed to distinguish oscillating 
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and non-oscillating jet cases. FFT analysis has been carried out on the collected unsteady 

velocity and pressure measurement to determine cylinder and jet oscillation frequency. 

Also, the effect of cylinder diameter and channel Reynolds number on the cylinder vortex 

strength is determined for various distances downstream in the channel by mapping the 

local turbulence intensity. A conclusion has been defined on the interaction of the 

cylinder vortex strength with the downstream jet leading to jet oscillation. Also, it was 

determined that higher cylinder diameter and lower channel velocities are more efficient 

for jet oscillation. 

A significant conclusion on the effect of cylinder wakes on jet oscillation is the steps 

leading to jet oscillation. Firstly, the local turbulence intensity for the particular cylinder 

diameter has to be higher than the threshold, TI = 0.39. Finally, the jet has to be 

sufficiently placed away from the low-pressure recirculation region such that it is not 

deflected into this region. 

The flow field of the jet in a crossflow (JICF) is primarily affected by the velocity 

ratio (VR). The above initial results did study the effect of channel Reynolds Number on 

jet oscillation, but the velocity ratio was not calculated or given any importance. In the 

final analysis, the flow interaction between the cylinder wake and jet was studied in detail 

for various velocity ratios. The varying parameters in the final CFD and experimental 

investigation are the velocity ratio, cylinder-jet distance, and cylinder diameter. Firstly, a 

spectral analysis was followed to distinguish oscillating and non-oscillating jets. The 

CFD spectral analysis came across an anomaly where no jet oscillation was observed, 

although cylinder wakes were produced. 

The detailed mechanism of wake-jet interaction leading to jet oscillation is explained 
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using TKE, vorticity, and velocity contours at different time intervals. The result showed 

the cylinder wakes deformed the jet core and induced lateral and angular oscillations. The 

jet core also produces wakes, inducing momentum driving the jet oscillation. However, 

the jet core wakes were not synchronized with the cylinder wakes, reducing jet oscillation 

at specific time intervals. Also, the flow interaction leading to a non-oscillating jet is 

analyzed. The flow features of the anomaly observed in the spectral analysis are analyzed 

in detail. Anamoly states in the presence of cylinder wake, the jet may not oscillate if the 

vortex strength is insufficient. 

     The final objective of the current study is to derive an optimum design of jet 

oscillation for maximum heat transfer rate. Therefore, the effect of oscillating cases and 

non-oscillating jet cases on heat transfer rate are quantified for different cylinder-jet 

distances, velocity ratios, and cylinder diameters. The local Nusselt distribution discusses 

the effect of velocity ratio and cylinder-jet distance on the stagnation region and wall jet 

region Nusselt number. 

     The CFD results concluded the stagnation region of non-oscillating jet cases 

resembled a bean shape due to the jet core deformation. The oscillating jet cases 

possessed a unique stagnation region shape showing off uniform Nusselt number 

distribution. The spanwise average Nusselt number results concluded the Nusselt number 

distribution is significantly affected by the crossflow strength. The peak Nusselt number 

determined for all the non-oscillating cases is  equal to Nu = 153±3. The oscillating jet 

cases spanwise average results were less than the non-oscillating jet case results. 

However, the jet oscillates in the spanwise direction; hence the streamwise average 

results are appreciated to certify the thermal performance of oscillating and non-
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oscillating jet cases. 

To understand the effect of oscillating jet, the streamwise average Nusselt number 

was averaged in the oscillating jet region, x = ±1D of stagnation region. The streamwise 

average results concluded the non-oscillating cases for S/d = 2, 3 and 4, show the same 

increase of 27% in Nusselt number in the stagnation region. However, a maximum 

increase of 36% is observed for the oscillating jet cases compared to the steady jet case. 

Also, the Nusselt number distribution is uniformly distributed compared to the non-

oscillating and steady jet case. The area-averaged results showed minimum change, as the 

jet Reynold number is constant. 

The experimental heat transfer results concluded the stagnation region bean shape is 

dominant in both oscillating and non-oscillating jet cases. And the wall jet region is 

extended laterally in the y-direction with the increase in velocity ratio. The spanwise 

average results concluded the Nusselt number distribution is significantly affected by the 

crossflow strength similar to CFD results. The non-oscillating jet enhances heat transfer 

rate in the upstream region by 94% in Nusselt number. 

The streamwise average results concluded the oscillating jet case with a velocity ratio 

of VR = 6, cylinder diameter of d = 2D, and cylinder-jet distance of S = 3d possess the 

best thermal performance. Hence, this oscillating case is considered the current work's 

optimum design for maximum heat transfer rates. The oscillating jet results compared to 

the steady jet case showed a maximum increase of 19%. However, the experimental 

result uncertainty of ±9% in Nusselt number restricts in claiming this increase. Hence the 

current work claims there is an increase in the Nusselt number for the oscillating jet case. 

But the percentage increase in Nusselt number is governed by the uncertainty limit. 
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The uncertainty of the heat transfer experiment result is crucial; hence, future work 

should develop new methods to reduce error. Further studies have to be conducted to 

synchronous the cylinder wake and jet core wake shedding for maximum effectiveness. 

Also, the effect of inlet conditions should be studied for the application of this method in 

a gas turbine blade. 
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