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Introduction
The Tropical Cyclones’ (TCs) intensity forecast is 

one of the most important elements used to assess 
the risks and potential damage of approaching TCs 
because it helps to identify what conditions affect-
ed areas will be subjected to. The intensity of a TC 
is highly correlated to how high the storm surge is 
upon landfall, and Edward Rappaport (2000) stated 
that the main cause for loss of life during the land-
fall of a TC is storm surge. Elsberry et al. (1992) also 
noted that many “emergency managers make evac-
uation decisions based on the predicted maximum 
1-min sustained surface wind speed”. Determin-
ing how severely an area will be affected by strong 
winds and storm surge can prevent loss of life and 
property. Therefore, an increase in intensity forecast 
accuracy would help authorities in their risk man-
agement process and allow them to issue accurate 
evacuation orders and warnings.

Although operational track forecasts of TCs 
have improved substantially in recent years and 
are sufficiently accurate, intensity forecasts have 
not shown similar improvements, especially for 
rapidly intensifying storms. In a Science magazine  

article that addressed the shortcomings of TC 
intensification forecasts, Dr. Robert F. Rogers, 
a meteorologist at the National Oceanic and 
Atmospheric Administration’s Hurricane Research 
Division (HRD), explained:

Predicting a hurricane’s track is relatively 
straightforward because storms are propelled 
in one direction or another by the large-scale 
air currents in the atmosphere (…) We’ve 
gotten a much better handle on predicting 
those large-scale currents over the past 20 
years (qtd. in Schembri, 2018).

In that same article, Dr. Kerry A. Emanuel, 
meteorologist and professor at MIT, pointed that 
“when it comes to predicting changes to a storm’s 
intensity, the underlying physics becomes much 
more complicated”.”.  That’s because hurricanes are 
complex, massive rotating heat engines.” The micro-
processes which determine hurricane intensification 
are much harder to model and there is a lack of 
data and knowledge on the lowest layer of the 
atmosphere where sea and air interact and most 
of a TC heat flux takes place (Schembri, 2018).  
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Another group of tropical meteorology experts also 
acknowledged that operational intensity forecasts 
have shown little improvement when compared to 
operational tracks forecasts, and that that is likely 
due to the difficulty in resolving the eyewall regions 
to reflect the physics of the boundary layers and air-
sea interactions (DeMaria 2014). This aligns with 
the studies of Elsberry et al. (1992) that concluded 
that the inaccuracies in sea surface temperature 
measurements and the models’ low resolution, which 
could not correctly resolve the eyewall evolution, 
make it difficult to forecast intensity changes in 
TCs. Even though significant improvements have 
been made in model resolution since 1992, it is 
still not high enough for accurate intensification 
predictions.

A demonstrative example of the shortcomings of 
TC intensity forecasting is Hurricane Michael in 
2018. As this hurricane became a TC three days 
before landfall, the National Hurricane Center 
(NHC) had successfully predicted landfall to 
happen near Mexico Beach, Florida, Wednesday 
October 10, 2018 in the early afternoon. However, 
the intensity predicted at landfall was not above 
a Category 2 hurricane, when in fact it rapidly 
intensified to a Category 5 hurricane during the last 
24 hours before landfall. 

The purpose of this project is to develop a statistical 
linear regression model and determine if it can better 
predict TC intensification over the ocean. To do so, 
Atlantic basin storms from 2011-2017 are analyzed, 
limiting the data to observations where the storms 
were at least 100 km from a major landmass and 
above the Tropical Depression threshold, i.e., storms 
with maximum sustained surface winds of 34 knots 
or greater.  The initial set of predictors selected for 
the model are Reynolds sea surface temperatures 
(RSST), 700-500 hPa relative humidity (RHMD), 
200-800 km disk average 850-200 hPa wind shear 
magnitude (SHRD), 200-800 km disk average 850-
500 hPa wind shear magnitude (SHRS), and 200 
hPa divergence of the wind (D200). With these data 
the initial model is developed, optimized, and tested 
to determine its forecast accuracy. This project also 
intends to identify which of the variables are the 
most deterministic in predicting TC intensification.

 Similar studies have been done before, such 

as DeMaria and Kaplan’s A Statistical Hurricane 
Intensity Prediction Scheme (SHIPS) for the Atlantic 
Basin (1994). They analyzed named Atlantic TCs 
from 1989 to 1992 and developed a model using 
a multiple regression technique utilizing sea surface 
temperatures, vertical shear of the horizontal wind, 
persistence, and the flux convergence of angular 
momentum evaluated at 200 hPa data as their 
predictor variables (DeMaria et al., 1994 & 2005). 
This model was then improved in 2004 and has 
been used by the NHC, in conjunction with other 
models, to predict storm intensification.

In the present study, we introduce the Atlantic 
Tropical Cyclone Intensification Regression Model 
(ATCIRM). The ATCIRM was developed using a 
similar approach to DeMaria and Kaplan’s SHIPS, 
but this study had different goals. It is not meant 
to be a replication of the SHIPS prediction tool; 
instead, ATCIRM analyzes similar variables on a 
smaller scale with a different data set.

Data and Methodology
Two separate data sets were used to develop the 

regression model. The predictors were obtained 
from the Automated Tropical Cyclone Forecasting 
System (ATCF) SHIPS archive (Sampson and 
Schrader, 2000). These data contain a set of over 50 
atmospheric predictors, obtained from the National 
Centers for Environmental Prediction (NCEP) 
global model re-analyses or operational model 
forecasts, at a 6-hour forecast interval. Since our 
model predicts the 24-hour TC intensity change, 
the 24-hour forecasts of the relevant predictors were 
extracted from the SHIPS archive. The data were 
limited to Atlantic basin storms from 2011 – 2017 
that reached the Tropical Depression threshold. In 
addition, the distance to the nearest major landmass 
(DTL) data column was examined at the 0-hr and 
24-hour forecast so that the data points 100 km or 
closer to a major landmass at either of these times 
were not considered. The second data set contained 
the predictand: the change in maximum sustained 
windspeed in the 24-hour period. These data were 
obtained from the Hurricane Data 2nd generation 
(HurDat 2) Best Track data stored in the ATCF 
archives (Landsea et al. 2015). The data were based 
on a post-storm analysis performed by the NHC, 
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who used all available observations. According to 
the HRD, these observations were mostly collected 
by ships, the Hurricane Hunter Navy, Air Force, 
and Environmental Science Services Administration 
(ESSA) aircraft reconnaissance planes, weather 
stations, dropsondes, and satellite imagery 
(Hurricane Research Division, 2019).

The predictor variables were chosen to best outline 
the factors that contribute to the intensification of 
TC. The relations between TC and heat engines, and 
the accuracy of system analysis methodologies for TC 
intensification prediction were subjects of extensive 
discussion. Given that this is a smaller-scale study 
than those previously completed by DeMaria et al. 
(1994), the variables were carefully chosen to reflect 
each part of the TC system. The selected variables 
were: 700-500 hPa relative humidity (RHMD), 
200-800km disk average wind shear magnitude at 
the 850-200 hPa (SHRD) and the 850-500 hPa 
level (SHRS), Reynolds sea surface temperatures 
(RSST), and 200 hPa divergence (D200).

The RHMD was chosen as a predictor variable 
because it is important to determine whether a TC 
has entered an area of dry air or an area of moist air, 
as this has a significant effect on the strength of the 
storm. This happens because the “ultimate energy 
source for the tropical cyclone is evaporation from 
the ocean” (Elsberry et al., 1992). Relative humidity 
can represent the potential energy sources for the 
TC. The study also used the SHRD and SHRS to 
consider factors that may inhibit intensification. 
Elsberry et al. (1992) revealed that “vertical shear is 
cited by the forecasters as the primary impediment 
of achievement of the potential intensity for a given 
sea surface temperature”. A TC that enters an area of 
high shear is often torn apart and weakened. RSST 
was selected because it is widely acknowledged 
that the sea surface temperature is one of the 
main contributing factors to TC development and 
intensification. Some experts even claim that “the 
cyclone intensity may be affected by an SST (sea 
surface temperature) decrease of only 1°C” (Elsberry 
et al., 1992). The warm water, or lack thereof, 
correlates to the amount of moisture and heat 
available to TCs, which can enable it to strengthen 
or weaken. Lastly, D200 was selected to consider the 
strength of the outflow of the hurricane, which can 

be related to the power and intensity of the storm. 
This relates back to a key analogy that compares 
each part of the hurricane to a heat engine:

If the [TC] is interpreted as a heat engine, 
as Emanuel (1988) suggests, it involves a fuel 
tank (ocean), cylinders (eyewall convection), 
and exhaust pipes (upper-tropospheric out- 
flow) (Elsberry et al.1992).

Once the data were properly formatted, the initial 
linear regression model was created. A hypothesis 
test was performed to determine the validity of 
this initial model and determine whether it was 
statistically significant. In addition to the hypothesis 
testing, the predictors’ test statistics (t-stats) were 
examined, and the most deterministic predictors 
were identified. The t-stats were also evaluated to 
determine if they were all above the threshold of 
1.961, and those that were not were removed.

Once the initial linear regression model had 
been created and tested, a correlation analysis was 
performed on all the variables to determine if there 
was multicollinearity between them. A variance 
inflation factor (VIF) test was performed on those 
predictors that had multicollinearity, indicated 
by high correlation values between them. Those 
predictors with high VIF values were removed from 
the model. Once the inadequate predictors had 
been removed, a second linear regression model 
was created with the remaining variables and a new 
hypothesis test was performed.

Finally, the strength, validity, and accuracy of 
the model were tested. Smaller-scale models were 
created for subsets of data, each containing a 
single year, creating a total of seven new models. 
With this, the coefficients of the new models were 
compared to the coefficients of the original model. 
The final model was also tested on storms from the 
2018 season (i.e., an independent dataset), and its 
accuracy at predicting 24-hr TC intensification 
was measured. Additional statistical experiments 
were performed to try to optimize the model such 
as transforming the predictors with an exponential 
function and testing the predictors individually as a 
single variable regression model.
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Results
The first regression model was created with a sample size of 1674 in the developmental dataset:

Since in meteorology many atmospheric processes and parameters are influenced by each other, the correlation 
between predictors was a concern because multicollinearity could be detrimental to the model. Once the 
correlation analysis was performed, a high multicollinearity value of 0.79 was detected between SHRS and 
SHRD, shown in the first correlation chart (Table 1).

To determine which value was more redundant and statistically insignificant, a VIF test was performed on 
the SHRD and SHRS variables. The VIF values were 2.87 and 3.10 for SHRD and SHRS, respectively. It is 
important to note that that SHRD was more correlated to the predictand than SHRS. Therefore, SHRS is not 
highly deterministic in the result of the model.

A hypothesis test was also performed. The null hypothesis was assumed truthful: the model does not fit the 
data and the predictors do not influence the predictand. The t-stat and critical t-stats for all the coefficients 
were calculated and all predictors but one passed the hypothesis test: SHRS had a t-stat of -0.59, smaller in 
magnitude than the critical t-stat of +/- 1.961. Because of that, the SHRS predictor was eliminated from the 
model using a backward linear regression optimization method, which coincides with the results of the VIF 
tests. The model is now statistically significant, and it can be inferred that the predictors affect the predictand. 
Without SHRS, the new optimized regression model is:

The final four predictors are Reynolds sea surface temperature, 700-500 hPa relative humidity, 200-800 km 
disk average wind shear magnitude at the 850-200 hPa level, and 200 hPa divergence. The new model has a 
mean absolute error of 9.64 knots when evaluated using all the 1674 data points. The minimum absolute error 
is 0.012 knots, and the maximum absolute error is 65.72 knots. The predictors were also tested individually 
as single variable regression models and as expected, these models have a higher mean absolute error (Table 2).

The model’s regression statistics, analysis of variance (ANOVA) results, and correlation values are shown in 
Tables 3, 4, and 5, respectively. The correlation coefficient shows that the linear relationship of the regression 
model is not strong. Both R2 and the adjusted R2 are small and therefore the model’s fit is not optimal. Only 
18% of the variation in the change in intensity is explained by the predictors. The standard error of 13.5 shows 
that the data points do not fall sufficiently close to the model’s regression line. However, R2 and adjusted R2 
are very similar, suggesting that the model is generalizable. The significance F is smaller than 0.05, and the F 
statistic is much greater than the critical F statistic, validating the model because it shows that it is statistically 
significant. All the predictors had p values of much less than 0.05, strengthening the confidence in the linear 
regression model. The predictor’s standard errors are low, and the absolute value of their t-stats are much 
greater than 1.961.

The new correlation data (Table 6) show that the highest correlation is -0.51 between Reynolds sea surface 
temperature and wind shear. This is an acceptable value and should not be detrimental to the model because 
wind shear is not physically dependent on sea surface temperature, except for areas with a strong sea surface 
temperature gradient.

When using the model to predict Atlantic TC intensification of the 2018 season’s storms and then testing 
the error by comparing the predictions to the observations 24 hours later, the mean absolute error of the 
whole season is 10.43 knots. The minimum error is 0.02 knots, and the maximum error is 54.88 knots. Figure 
1 shows the 2018 Official NHC forecast mean intensity error, and at 24 hours it is approximately 8 knots 
(Cangialosi, 2019). This confirms that the error level of the linear regression model is satisfactory. Table 7 shows 
the mean absolute error (MAE), minimum absolute error (MIN AE), and maximum absolute error (MAX AE) 

Y RSST RHMD SHRD SHRS� � � � �1 075609 0 196394 0 21322 0 06667 0. * . * . * . * .004365 200 34 2199* .D �

Y RSST RHMD SHRD D� � � � �1 091699 0 197384 0 234427 0 041933 200. * . * . * . * 334 7660.

[ 1 ]

[ 2 ]
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of the model, tested against the individual storms of 
the 2018 season. It is important to mention that the 
model tends to underpredict the magnitude of the 
24-hour intensity change in both weakening and 
intensifying storms, and that when no changes are 
observed in this period the model tends to wrongly 
predict a weakening.

To determine if the model could be improved, 
residual plots were created for all the predictors 
(Figures 2-5). The residual plots for RHMD and 
D200 look randomly dispersed, so this linear model 
is probably most appropriate for them. However, 
the residual plots for RSST and SHRD show some 
heteroscedasticity, indicating that a transformation 
is necessary or that a variable is missing in the model.

In order to avoid heteroscedasticity, four new 
models were created and tested. In each model, 
one of the predictors was transformed with an 
exponential function. The mean absolute errors 
produced by these new models with the exponential 
transformation are shown in Table 8. These results 
show that the model did not improve, and that is 
consistent with the new residual plots obtained. 
The heteroscedasticity grew and shifted to the other 
side (Figure 6) indicating that these transformations 
are not adequate. Different transformations and 
additional testing with other predictors are required 
to further improve the model.

A linear regression was also performed on smaller 
datasets, each containing one year’s worth of data. 
Table 9 summarizes the model coefficients and 
their  respective t-stats. The predictors’ coefficients 
and t-stats vary a lot depending on the year with 
these smaller data sets and there is no clear trend, 
probably due to the smaller size of these data. 
However, when all the 2011-2017 observations 
are used, the sea surface temperature is the most 
deterministic predictor, and the divergence at 200 
hPa is the least deterministic one. RSST being the 
most deterministic predictor is consistent with what 
would be expected meteorologically. It is known 
that warmer sea surface temperatures are favorable 
for TC intensification, and therefore RSST has 
a positive coefficient. The relative humidity and 
wind shear have a similar level of influence on TC 
intensification and it makes sense that RHMD has a  
positive  coefficient because  it favors intensification, 

and that SHRD has a negative coefficient because it 
opposes intensification.

Discussion
Even though the model passed the hypothesis 

tests, and it was concluded that it is statistically 
significant, some regression statistics such as the 
low R2 and the high standard error suggest that 
there is room for model improvement. The low R2 

suggests that other variables might be necessary to 
make a more accurate prediction, since only a small 
percentage of the variability in the response variable 
is explained by the model. The high standard error 
suggests that there is a significant difference between 
the predicted values and the observed values. Even 
if R2 is low, the predictors of the final model are 
all statistically significant, and therefore the mean 
change in the response is still represented by the 
predictors. It is also important to note that R2 and the 
adjusted R2 are nearly equal. This means that none 
of the predictors are redundant nor unnecessary, 
and that the model is generalizable.

In order to improve the model and fix its 
shortcomings, residual plots were created. The plots 
revealed that there is heteroscedasticity in the model, 
and that the variability of the predictand is unequal 
throughout the predictors’ range. This suggests that 
a linear model might not be ideal for this data set 
and that a transformation on one or more variables 
is necessary, or that a new predictor variable should 
be added. To improve the model in the future, 
further research is necessary as the transformations 
tested did not yield better results. This would allow 
us to determine which transformations should be 
implemented on which variables, and/or what other 
predictor variables could be added to enhance the 
model.

When our model was tested on the 2018 Atlantic 
TC season, the mean absolute error was 10.43 
knots. Even though this value might seem relatively 
high, the model’s error shows comparable accuracy 
to that of the 2018 NHC official forecast, which 
had a mean 24-hour intensity error of 8 knots 
(Cangialosi, 2019). However, it is important to 
mention that the model had a maximum error of 
54.88 knots for a given day, and this error level 
could potentially be inappropriate when it comes 
to emergency management and decision making. 
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Further research is necessary to determine why there 
were some instances that had such a high error, and 
what statistical methods could be implemented to 
minimize them. Since manually testing all possible 
transformations and regression techniques would 
be very cumbersome, implementing a machine 
learning regression technique is potentially a 
reliable approach. These new results could help 
either enhance the model to minimize these large 
errors or determine in which scenarios/atmospheric 
conditions should the model not be used.

Valuable conclusions can also be drawn from the 
regression model coefficients and t-stats. Reynolds 
sea surface temperature is the most deterministic 
predictor, having the largest coefficient and t-stat. 
This is consistent with what would be expected 
meteorologically. The fuel of the heat engine that 
constitutes a TC is water vapor, which depends on 
the surface temperature of the ocean. The next most 
deterministic predictors are the relative humidity 
and wind shear, which have a similar level of 
influence on TC intensification. Divergence at 200 
hPa would have been expected to have a stronger 
impact on TC intensification. Physically, divergence 
aloft should intensify surface low pressure systems, 
but this is not clearly shown by the model since 
D200 is the least deterministic predictor. Therefore, 
further research would be necessary to understand 
why this is not the case.

Finally, our results help confirm the findings of 
previous studies: sea surface temperature most 
strongly affects TC intensification and therefore 
there is a need for a higher density of surface weather 
observing systems in the ocean and higher quality 
temperature measurements. Understanding and 
gathering data from the sea and the lowest layer of 
the atmosphere is fundamental to accurately predict 
TC intensification.

References
Cangialosi, J. P., (2019). National Hurricane Center forecast 

verification report. National Hurricane Center (NHC), 79.
DeMaria, M. and J. Kaplan. (1994).A Statistical Hurricane 

Intensity Prediction Scheme (SHIPS) for the Atlan-
tic Basin.Wea. Forecasting, 9, 209–220, https://doi.
org/10.1175/1520- 0434(1994)009<0209:ASHIPS>2.0.
CO;2

DeMaria, M., Mainelli, M., Shay, L. K., Knaff, J. A., & 
Kaplan, J. (2005). Further improvements to the statistical 
hurricane intensity prediction scheme (SHIPS). Weather 
and Forecasting, 20(4), 531-543.

 DeMaria, M., Sampson, C. R., Knaff, J. A., & Musgrave, 
K. D. (2014). Is Tropical Cyclone Intensity Guidance 
Improving? Bulletin of the American Meteorological Soci-
ety, 95(3), 387–398. doi: 10.1175/bams-d-12-00240.1 

Elsberry, R. L., Holland, G. J., Gerrish, H., Demaria, M., 
Guard, C. P., & Emanuel, K. (1992). Is There Any Hope 
for Tropical Cyclone Intensity Prediction?—A Panel 
Discussion. Bulletin of the American Meteorological Soci-
ety, 73(3), 264–277. doi: 10.1175/1520-0477-73.3.264 

Emanuel, K., and Zhang, F. (2016). On the Predictability 
and Error Sources of Tropical Cyclone Intensity Fore-
casts. Journal of the Atmospheric Sciences, 73(9), 3739–
3747. doi: 10.1175/jas-d-16-0100.1

Hurricane Research Division. (2019). Link to the Reanalysis 
Data. Retrieved May 13, 2020, from https://www.aoml.
noaa.gov/hrd/data_sub/re_anal.html

Landsea, C., Franklin, J., & Beven, J. (2015). The revised 
Atlantic hurricane database (HURDAT2). NOAA/NHC.
[Available online at nhc.noaa.gov.]

 National Hurricane Center. (n.d.). Automated Tropical Cy-
clone Forecast Archive. Retrieved February 2, 2020, from 
https://ftp.nhc.noaa.gov/atcf/archive/MESSAGES/2011/ 

Rappaport, E.N., 2000: Loss of Life in the United States 
Associated with Recent Atlantic Tropical Cyclones. Bull. 
Amer. Meteor. Soc., 81, 2065–2074 

Sampson, C. R., & Schrader, A. J. (2000). The automated 
tropical cyclone forecasting system (version 3.2). Bulletin 
of the American Meteorological Society, 81(6), 1231-1240.

 Schembri, F. (2018, October 15). Why scientists had trouble 
predicting Hurricane Michael’s rapid intensification. Re-
trieved from https://www.sciencemag.org/news/2018/10/
why- scientists-had-trouble-predicting-hurricane-mi-
chael-s-rapid-intensification

https://journals.ametsoc.org/view/journals/wefo/9/2/1520-0434_1994_009_0209_aships_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/wefo/9/2/1520-0434_1994_009_0209_aships_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/wefo/9/2/1520-0434_1994_009_0209_aships_2_0_co_2.xml
https://www.aoml.noaa.gov/hrd/data_sub/re_anal.html
https://www.aoml.noaa.gov/hrd/data_sub/re_anal.html
https://www.nhc.noaa.gov/
https://ftp.nhc.noaa.gov/atcf/archive/MESSAGES/2011/
https://www.sciencemag.org/news/2018/10/why-scientists-had-trouble-predicting-hurricane-michael-s-rapid-intensification
https://www.sciencemag.org/news/2018/10/why-scientists-had-trouble-predicting-hurricane-michael-s-rapid-intensification
https://www.sciencemag.org/news/2018/10/why-scientists-had-trouble-predicting-hurricane-michael-s-rapid-intensification


Beyond Vol. 4  ATCIRM

7

Appendix 1 Figures

Figure 1. NHC official and Decay-SHIFOR5 (OCD5) Atlantic basin average intensity errors for 2018 (solid lines) and 2013-2017 
(dashed lines). Retrieved from Cangialosi (2019), Fig. 8.
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Figure 2. Residual plot for the RSST predictor. Figure 3. Residual plot for the RHMD predictor.

Figure 4. Residual plot for the SHRD predictor. Figure 5. Residual plot for the D200 predictor.

Figure 6. Residual plot for the exponentially transformed RSST predictor
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Appendix 2 Tables

Correlation RSST RHMD SHRD SHRS D200 VMAX
RSST 1
RHMD 0.239313 1
SHRD -0.50447 -.024937 1
SHRS -0.50102 -0.14912 0.790265 1
D200 0.009222 0.462894 0.117104 0.253493 1
VMAX 0.352139 0.251268 -0.3108 -0.25359 0.148903 1

Table 1. Correlation table of the initial model.

RSST RHMD SHRD D200
MAE 10.57972 10.70034 10.83447 10.96876

Table 2. Mean absolute error (MAE) of each single-variable regression model in knots.

Regression Statistics
Multiple R 0.434381
R Square 0.188686853
Adjusted R Square 0.186743588
Standard Error 13.50821026
Observations 1675

Table 3. Regression Statistics.

ANOVA df SS MS F Significance F
Regression 4 70870.45527 17717.61 97.09785 2.35822E-74
Residual 1670 3047273.8134 182.4717
Total 1674 375598.2687

Table 4. Analysis of Variance results.
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Coefficients Standard Error t-stat P-value
Interecept -34.76604278 4.015060201 -8.65891 1.1E-17
RSST 1.091699207 0.121252051 9.003553 5.8E-19
RHMD 0.197384214 0.039214347 5.033469 5.34E-07
SHRD -0.234427057 0.036201942 -6.47554 1.24E-10
D200 0.041933712 0.010329946 4.059432 5.15E-05

Table 5. Model coefficients, Standard Errors, t-stats, and P-values.

Correlation RSST RHMD SHRD D200 VMAX
RSST 1
RHMD 0.239313244 1
SHRD -0.504465183 -0.249368434 1
D200 0.009221567 0.462893565 0.117104 1
VMAX 0.352138758 0.281268242 -0.3108 0.148903 1

Table 6. Correlation table of the final model.

MAE MIN AE MAX AE
Alberto 5.767 0.137 15.724

Beryl 8.427 0.191 26.243
Chris 12.407 0.747 29.789

Debby 4.412 1.164 10.805

Ernesto 6.629 3.037 9.668
Florence 16.223 0.025 54.876
Helene 9.504 0.097 20.141
Isaac 10.287 1.734 18.350
Joyce 5.654 1.361 14.343
Kirk 8.594 0.544 20.823

Leslie 8.573 0.018 28.174
Michael 24.020 18.118 28.083
Nadine 11.966 1.292 18.885
Oscar 13.841 0.723 26.371

Table 7. Mean absolute error (MAE), minimum absolute error (MIN AE), and maximum absolute error (MAX AE) for each 2018 
storm in knots.



Beyond Vol. 4  ATCIRM

11

exp(RSST) exp(RHMD) exp(SHRD) exp(D200)
MAE 10.33346 10.2622 10.24401 10.25044

Table 8. Mean absolute error of each transformed regression model in knots.

Intercept RSST RHMD SHRD D200

2011
Coefficients -46.776 1.736 0.043 -0.024 -0.024

t-stat -3.824 6.381 0.316 -0.257 -0.961

2012
Coefficients -33.654 1.119 0.138 -0.109 0.025

t-stat -4.281 4.415 1.949 -1.440 1.127

2013
Coefficients -4.665 -0.096 0.226 -0.386 0.057

t-stat -0.546 -0.326 2.555 -4.431 2.214

2014
Coefficients -62.705 1.707 0.498 -0.186 0.003

t-stat -4.128 3.613 2.539 -1.253 0.060

2015
Coefficients -54.748 0.917 0.632 -0.140 -0.070

t-stat -3.551 1.943 4.900 -1.139 -1.713

2016
Coefficients -29.030 0.889 0.134 -0.172 0.112

t-stat -3.250 3.402 1.394 -2.216 4.522

2017
Coefficients -18.903 0.564 0.334 -0.710 0.070

t-stat -1.603 1.529 2.493 -6.527 2.581

Table 9. Coefficients and t-stats of the regression models created with a year of data for 2011-2017.
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