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ABSTRACT 

It is common for aerospace systems to exhibit nonlinear, time varying dynamics. This 

thesis investigates the development of adaptive control laws to stabilize and control a 

class of nonlinear, time varying systems.  Direct adaptive control architectures are 

implemented in order to compensate for time varying dynamics that could, for example, 

be caused by varying inertia resulting from fuel slosh or settling in a tank.  The direct 

adaptive controller can also respond to external disturbances and unmodeled or nonlinear 

dynamics.  Simulation results are presented for a prototype system that consists of two 

rotating tanks with time varying inertia due to the motion of fluid inside the tanks.  This 

system is characterized by highly unstable rotational dynamics which are illustrated 

through simulation.  An adaptive regulator is implemented to control the three-

dimensional angular velocity to a desired operating point.  It is shown that the adaptive 

controller provides improved performance compared to a baseline linear quadratic 

regulator designed using a simplified linear dynamics model of the plant. Finally, a direct 

model reference adaptive controller was implemented to enable the system to track 

trajectories generated by a reference model. The stability of this control law is 

investigated via Lyapunov analysis, and simulation results are provided showcasing 

overall controller performance in the presence of both internal and external disturbances 

and dynamical effects.  
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1. Introduction 

Chapter 1 will provide the necessary background for this thesis and provide a 

justification for the pursuit of this research. It is split into two sections. Section 1.1 will 

provide the motivation for pursuing this topic. Section 1.2 will provide a brief 

walkthrough of the thesis objectives, and provide a detailing of the structure of this thesis. 

1.1. Motivation 

When developing controls for simple systems such as Linear Time Invariant (LTI) 

systems, there is a myriad of techniques that can be deployed to produce acceptable 

levels of performance through a wide range of the system’s operating envelope. 

However, it is common in aerospace applications to see systems exhibiting non-linear, 

time varying dynamics. Examples include the deployment of payloads or munitions, 

refueling scenarios, and the expenditure of fuel during flight. These types of scenarios are 

inertial changes that can be inimical to the desired translational and rotational dynamics. 

 As one attempts to control more complex systems such as nonlinear time varying 

(NLTV) systems, the implementation of linear techniques will often result in undesired 

closed loop dynamics and inability to guarantee stability throughout the entire operational 

envelope. This is because when one applies linear techniques to a nonlinear system, the 

control law is tailored to a linearization point in the state space. Discretizing the 

operational envelope of such systems becomes more tedious as those systems become 

more complicated. 

Development of highly dynamic plants, such as advanced unmanned aerial vehicles, 

hypersonic aircraft and space infrastructure applications creates systems with large 

performance envelopes whose characteristics may vary greatly throughout the use cycle. 
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Non-adaptive methods of control may prove inadequate to meet the demands of such 

systems; thus, more advanced methods of control are required in order to guarantee 

system stability and acceptable levels of performance for more complicated systems.  

One such method of controlling these more complex systems is to create a simplified 

reference model, whose outputs are compared to the outputs of the plant. This provides a 

way to feed the controller a desired trajectory for the system to track. The comparison of 

the two is used to inform the control law and allows the controller gains to “adapt” to the 

often unknown and un-modeled time varying effects exhibited by the plant in real time. It 

also provides a way to cope with disturbances that may be inflicted upon the system. This 

approach is referred to as Model Reference Adaptive Control (MRAC).  

1.2. Thesis Objectives 

As will be discussed in later sections, there has been extensive research in the area of 

adaptive control for aerospace applications. However, much of this work falls into two 

distinct categories, linear systems with time varying effects, or nonlinear systems that are 

time invariant. The contributions that attempt to address both of these effects 

simultaneously are far sparser, and it is in this space that this document attempts to 

contribute. 

In this thesis, the use of MRAC on a highly nonlinear, time varying system is 

explored. This will be accomplished by generating a candidate model system that exhibits 

both nonlinear and time varying dynamical behavior. This system will then be linearized 

in order to employ a linear quadratic regulator (LQR) as a baseline controller. A MRAC 

will then be generated to control this candidate system. Finally, simulations modeling 
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possible operating regimes will be produced to demonstrate the overall effectiveness of 

MRAC for such systems. 

This thesis will be presented in the following sections: Chapter 2 will contain a 

review of relevant literature including a sampling of knowledge on nonlinear and time 

varying systems, nonlinear control methods, and examples of the implementation of 

adaptive control. Chapter 3 will be a description of the methodology of achieving the 

goals described in the previous paragraph. This chapter will include the development of 

the candidate system, baseline controller, and adaptive controller. Chapter 4 will present 

simulation results that test the proposed adaptive controller on the candidate system. 

Finally, Chapter 5 will be a synthesis of the results and will interpret them in order to 

draw conclusions on this control strategy and provide paths for future research. 
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2. Review of the Relevant Literature 

This chapter is intended as a primer to the concepts that are discussed later in this 

document as well as a sampling of related work in this area of research. The chapter is 

split into 3 sections. The first will discuss the concepts of nonlinear and time varying 

systems. The second section reviews some of the control methods that are commonly 

applied to these systems. Finally, Section 2.3 will discuss model reference adaptive 

control, the particular class of controller that is utilized in this thesis. 

2.1. Nonlinear and Time Varying Systems 

As stated in the introduction, few real world systems in aerospace exhibit linear, time 

invariant dynamical behavior. As this will prove to be an integral part of the work to 

follow, it is important to understand these concepts and their implications on system 

behavior and control. This section will be dedicated to providing a reference to these 

concepts. 

Conceptually speaking, nonlinear systems are a group of systems that do not follow 

superposition. That is, if one were to scale the input to a given system, it would result in a 

proportional scaling of the output. A dynamical system is considered nonlinear if the time 

derivative of the states cannot be written as a linear combination of the states and inputs. 

Nonlinearities can take the form of coupled states, trigonometric functions and high order 

terms. Nonlinearities are common in real systems such as the equations of motion for 

fixed wing and rotor aircraft. A more complete description of nonlinear systems and their 

properties can be found in “Nonlinear Systems” by Khalil (2002).  

Time varying systems are systems whose inherent parameters change with time. This 

includes qualities such as mass, moment of inertia and system form. Examples of time 
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varying systems include plants that expend some form of fuel or change in shape thus 

affecting drag coefficient or other relevant parameters. In many cases, these changes are 

small enough that they can be ignored, such as the effect of changing mass in a car as it 

burns fuel. However, if these changes are drastic enough, they can have significant 

impacts on the dynamics of the system being considered. 

2.2. Control Techniques for Nonlinear Systems 

Outside of academic interest, there are relatively few systems of significance that 

happen to behave linearly. Almost all systems will exhibit nonlinearities, discontinuities, 

and other inconvenient effects. In the case of many systems however, linearization about 

some nominal operating point of interest is sufficient to capture the relevant dynamics 

and thus linear controls techniques may be utilized. If the system in question is highly 

nonlinear, or there are many operational conditions that the system must behave at, a 

simple linearized model of the system may not give an adequate description of the 

dynamics, and thus linear control techniques may prove ineffective. For such systems, 

there are many available nonlinear control methods. In this section, a subset of these 

methods including gain scheduling, sliding mode, H∞, and model predictive control will 

be discussed in order to provide context of the nonlinear control landscape. While these 

will be discussed independently for the sake of structure, it is important to note that it is 

common to see some combination of these techniques in the literature. 

One of the most common techniques for controlling nonlinear systems is gain 

scheduling. This is due to how conceptually simple this method is to implement, while 

still proving to be quite effective in real world applications. It requires two key parts: the 

first is a set of linearization points of interest, usually related to different operational 
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points of the plant. The second is a logical operator that observes the system in order to 

determine which of these operational points the system is currently at, so the correct 

feedback gains will be used. As this is a popular method of control for nonlinear systems, 

in depth descriptions of its use are abundant in the literature (Leith, 2000). Gain 

scheduling is a common method of control for aerospace applications, but is limited in 

that it requires the discretization of a system’s operational cycle and its ability to 

accommodate unmodeled dynamic effects such as external disturbances. 

Another method of nonlinear control is sliding mode control. This is similar to gain 

scheduling as it targets discrete points in the state space of the system where it exhibits 

desirable dynamics. The control law changes based on which of these areas the plant is 

currently in where it attempts to force the system to “slide” along this subset of its 

dynamics. Like gain scheduling, this method also requires a system observer with some 

form of logical operator that switches the control law as the plant moves about the state 

space. As this method is so closely related to gain scheduling, it is common to see a 

hybrid of the two methods (Palm, 2001). Sliding mode control has also been used 

extensively in aerospace applications (Zou, 2017;  Besnard, 2007). As discussed in the 

introduction to this document, the problem being addressed in this thesis is time varying 

as well. There are examples of sliding mode control for set NLTV systems in work 

conducted by Meza‐Aguilar et al. (2019). Sliding mode control can be a very powerful 

tool, but still requires discretization of the plant’s operational envelope. This can be very 

labor intensive in development, as it requires one to sort through the dynamics of the 

system at different conditions. 
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Another popular control strategy for nonlinear systems is H∞ control. This method 

takes the form of an optimization problem where the resulting control law is the solution 

that minimizes a user defined cost function. This method has been extensively explored 

for nonlinear and aerospace applications, as can be seen in work from Saat and Nguang 

(2014), as well as contributions from Raffo, Ortega, and Rubio (2010). 

A final method of nonlinear control is nonlinear model predictive control (MPC). 

This method requires the projection of the plant dynamics into the future, and seeks to 

find the optimal control inputs over that time horizon to minimize a prescribed cost 

function. For nonlinear MPC, this is usually done by recursively generating numerical 

solutions to the optimization problem over the given projection time horizon. Aerospace 

examples of this method of control can be found throughout the literature including the 

work of Kang and Hedrick (2009), where nonlinear MPC is used to control a UAV to 

track a linear trajectory. As previously stated, many of these methods can be combined to 

form a control law, such as the work of Raffo et al. (2010) where MPC was used to make 

a quadrotor track a trajectory in conjunction with H∞ control to stabilize the plant’s 

rotational dynamics. While there are mathematical simplifications that can be utilized 

when performing MPC, it still requires one to forecast future paths of the system, and 

thus can be computationally taxing for complex dynamical systems. This can make it 

difficult to implement as a real time control strategy. 

2.3. Model Reference Adaptive Control 

Model reference adaptive control (MRAC) refers to a class of adaptive controllers in 

which a reference plant, which usually represents a simplified model of the plant that is to 

be controlled, is used to generate trajectories for the plant to track. This can be 
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accomplished in two different forms: direct MRAC and indirect MRAC. In the first case, 

the gains are left unrelated to the underlying parameters that are forcing a need for 

adaptation. This form of MRAC is simply concerned with mitigating tracking error. 

Indirect MRAC relates the adaptation of the gains to the unknown system parameters. 

Thus, indirect MRAC can be used for parameter ID if the system model is sufficiently 

accurate to the true system dynamics. In either case, the ultimate goal is to accurately 

track the desired trajectories provided by the reference model. In this thesis, direct model 

reference adaptive control is implemented, and thus will be the primary focus of this 

review.  

Model reference adaptive control has received a significant amount of research 

interest especially in the era of unmanned systems. This is due to the resilience of the 

control architecture in its ability, as the name suggests, to adapt to unanticipated and 

unmodeled dynamical effects. This attribute provides opportunities for this controller to 

solve safety and reliability concerns for both civilian and military applications. One such 

example was demonstrated by Jourdan et al. (2010) in which MRAC was used for 

attitude control on a reduced scale model F-18 that was exposed to severe structural 

damage. These damages included missing or unresponsive control surfaces as well as up 

to 80% wing area detachment from one side. These theoretical results were extended to 

pitch and yaw axes, and flight tests were conducted with promising results. Similar tests 

were performed on a GT Twinstar using a MRAC for attitude control with a single layer 

neural network to update the control gains. In this case, 25% of the left wing was 

jettisoned mid-flight. These results were compared to a nominal test flight and shown to 

maintain similar performance (Chowdhary, 2013). In addition to structural damage 
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conditions, publications can be found investigating the use of MRAC to accommodate 

actuator failures (Kutay, 2008; Idan, 2001). A derivative free update law has also been 

proposed, and is well suited to certain classes of plants with rapid dynamic changes 

(Yucelen, 2011; Yucelen, Calise, Nguyen, 2011).  In all, there has been extensive 

research in the use of MRAC in applications where system survivability is at risk due to 

unforeseen failures. 

In most of the previous examples, MRAC was developed from a linearized, time 

invariant model of the aircraft. However, research does exist for nonlinear plant models 

(Hovakimyan, 2002). In this case, the controller was implemented on both a Van der Pol 

oscillator and R-50 helicopter model.  In another example, time varying effects are 

considered in the adaptive control formulation (Arabi, 2018). This paper also considered 

a nonlinear reference plant similar to a contribution by Yucelen et al. (2015), which 

allows more novel trajectories for highly maneuverable systems. 
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3. Methodology 

In this chapter, the process of achieving the objectives set in Section 1.2 is discussed. 

The methodology chapter will be divided into 4 sections. The first will discuss the 

development of a candidate system that exhibits both time varying and nonlinear effects. 

This section also provides a mathematical model of the system dynamics, and graphically 

displays the system’s behavior. Section 3.2 will discuss the development of the baseline 

LQR controller that will be used as a comparative tool to illustrate the need for adaptive 

control. Section 3.3 will show the development of the model reference adaptive 

controller. Finally Section 3.4 will provide a stability analysis of the proposed model 

reference adaptive controller. 

3.1. Dynamical System Model 

Consider a rotating system of changing moment of inertia as pictured Figure 3.1: 

 

 

Figure 3.1  2-Tank System, Base Tank Translation 

 

The system is intended to rotate about its z-axis. As it rotates, fluid in the upper tanks 

settles out to the ends, thus resulting in a time varying moment of inertia. A mathematical 

model of this system was generated using the definition of angular momentum for rigid 

bodies. Angular momentum about the center of mass,    , is defined as follows: 
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where Icm is the positive definite 3 x 3 mass moment of inertia matrix computed with 

respect to body-fixed axes and ω is the three-dimensional angular velocity vector. Taking 

a time derivative of angular momentum results in: 

 
B

cm cm cm cm

d
I I I

dt
         

Rearranging terms results in: 

 ̇     
       

  
 

  
                                             (1) 

where τcm is a control input torque that can be applied about all 3 axes, and ω, the 3 

dimensional angular velocity vector, is equivalent to the state vector in this model.  The 

derivative of the moment of inertia matrix is taken with respect to the body-fixed axes, 

and it is worth noting this term is not positive definite.  It should be emphasized that the 

moment of inertia is time-varying due to the fluid motion in the tanks, which significantly 

affects the rotational stability of the system. Note that, in this model, only three states 

exist; for the purposes of this thesis, this will be sufficient to display results of the 

proposed control strategy. Angular position, therefore, will not be tracked.  

A full 6 degree-of-freedom simulation was developed for a scale version of this two-

tank rotational system under the following conditions.  Figures 3.2 – 3.4 present results 

from a scenario in which the 2 12 inch long tanks contain fluid with density of 1000 

kg/m^3.  The system initially has zero angular velocity but is then subjected to a pulse 

torque input about the z-axis, which initiates rotational motion and induces fluid motion 

within the tanks.  The results show that the uncontrolled rotational dynamics, as seen 

from the plots of angular velocity and Euler angles in Figures 3.2 and 3.3, show 
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considerable instability.  It should be noted that the angular velocity in Figure 3.2 is 

plotted with respect to inertial axes, which explains the periodic nature of the rotational 

rates in the x and y directions.  The rotational instability also impacts the translational 

dynamics, as can be seen in the translational motion of the center of the base tank 

provided in Figure 3.4. Considering the inherent instability of this system and the 

underlying nonlinear, time-varying dynamics, the objective of this thesis is to design an 

adaptive control architecture to stabilize the rotational dynamics and control the angular 

velocity to track a desired trajectory.  

 

 

Figure 3.2  2-Tank System Angular Velocity (Inertial Axes) 
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Figure 3.3  2-Tank System Euler Angles (3-2-1 Sequence) 

 

 

Figure 3.4  2-Tank System, Base Tank Translation 
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3.2. Baseline Controller Development 

Using the rotational equation of motion derived previously, control laws can be 

constructed to mitigate undesired out-of-plane motion while maintaining the required 

rotational rate. Due to the time-varying nature of the described system, adaptive control 

techniques will likely be necessary to produce desired closed loop characteristics. 

However, a baseline LQR controller was developed using a linearized model of the 

system. This will later be used for comparison with the adaptive controller to verify its 

improved performance over the more simple techniques implemented in the baseline 

controller.  

The classical linear quadratic regulator (LQR) addresses the following optimal 

control problem: Find the optimal control input  u t


, 0 t T  , that minimizes the cost 

functional: 

   
        1

2

0

T T
J x t Qx t u t Ru t dt



 
                                 (2) 

where 0,  0Q R   (i.e., Q is a     symmetric, positive semi-definite matrix and R is a 

    symmetric, positive-definite matrix). These values act as weighting coefficients for 

the states and inputs within the cost function that is subject to the linear dynamical 

system model: 

           

     

  00

x t Ax t Bu t

x x

 


   

n

m

x

u



    (3) 

where   is the number of states and   is the number of inputs, such that   is     and   

is    . The cost function in Equation (2) is designed to drive the states to the origin 
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while penalizing control effort.  The optimal control law for the linear quadratic regulator 

is given by: 

   
   u t K x t


 

       (4) 

K is a     constant gain matrix computed as:  

1 TK R B S                    (5) 

where S is a     symmetric, positive-definite matrix obtained as the solution to the 

algebraic Riccati equation:  

1 0T TA S SA SBR B S Q              (6) 

The classical LQR controller is only applicable to linear, time invariant systems. The 

candidate system meets neither of these criteria; thus some assumptions must be made. 

First, the time varying nature of the system will be addressed. This will be followed by a 

description of the linearization of the simplified time invariant system. 

In order for LQR control to be applied to this system, a reduction in complexity is 

required. To this end, it is first assumed that the change in mass moment of inertia, 

defined in Equation (1) as  
   

  
     , is negligible and thus, the resulting equation of 

motion takes the form: 

 ̇     
                                   (7) 

The LQR controller was designed using a linearized model of the nonlinear rotational 

dynamics Equation (7). The linearization was performed about a nominal equilibrium 

condition corresponding to zero angular velocity in the x and y directions, 0
x y

   , 

and a constant angular velocity in the z direction, 
z

 


 , corresponding to a desired spin 
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rate. All inputs are linearized about zero, such that           . To complete this 

task, first the nonlinear equation is expanded: 

 ̇  

[
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A jacobian is then taken with respect to the states and inputs: 

  ̇

  
  

[
 
 
 
 
 
  

 

  
           

 

  
           

 

  
             

 

  
            

 

  
           

 

  
            

]
 
 
 
 
 
 

 

  ̇
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When the jacobian is evaluated about the linearization point, it yields a linear model of 

the form in Equation (3) with: 

 

such that the resulting linearized dynamical system takes the form: 

  ̇                  
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The states       and inputs       are now defined as deviations from their respective 

linearization points. 

The LQR control law    u t K x t


   was then designed for the linear model using 

Equations (5) and (6), where the control inputs correspond to control torques that can be 

applied about all 3 axes, as would be the case with thrust control for example.  The LQR 

controller was then implemented on the nonlinear rotational system as shown in Figure 

3.5 below.  

 

 

Figure 3.5: Block Diagram of State Feedback LQR controller 

 

In general, it would be expected to see good performance of this control scheme when 

the states and inputs are relatively close to the linearization point. As the states and inputs 

deviate, the controller may struggle as it was formulated with a simplified model of the 

full dynamics of the system. It should also be noted that the linearization point is referred 

to as the reference state in the diagram, and must be subtracted from the true value of the 

states to produce a deviation from the linearization point, which is then fed to the control 

law. 
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3.3. Direct Model Reference Adaptive Control Development 

The linear quadratic regulator controller is limited in its ability to compensate for 

external disturbances and time-varying dynamics.  Therefore, to produce more desirable 

closed loop dynamics, adaptive control techniques must be utilized.  The control design 

entails the design and implementation of a direct adaptive control system of the form 

depicted in Figure 3.6.  This adaptive control architecture, which is based on 

implementations originally derived by Fuentes and Balas (2000) represents a form of 

direct model reference adaptive control that includes disturbance accommodation.  In this 

implementation, the system is subjected to external disturbances, which are modeled as a 

linear combination of basis functions, which in turn can be used to construct a state space 

disturbance generator model.  In this formulation, a linear reference model is used to 

provide reference trajectories for the adaptive control system to track.  These reference 

trajectories correspond to desirable trajectories for system; for example, a first order 

response to some desired rotational rate.   

 

 

Figure 3.6: Adaptive Control Architecture 

 

MRAC requires a reference model that the reference model produces bounded 

outputs, inputs and states, which can be accomplished by having a Hurwitz     , or a 
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control law within the reference model that bounds the outputs, inputs and states. In 

addition to this, the outputs of the reference model should correspond with the real 

outputs given by the plant. The direct adaptive control law includes four adaptive gains 

that are updated based on the output tracking error as well as the reference input, the 

reference states, and the disturbance basis functions.  The adaptive control law, including 

the update laws for the adaptive gains, takes the form:   

{
  
 

  
 
                         

 
 ̇       

                 

 ̇         
             

 ̇         
           

 ̇       
             

    (8) 

In Equation (8), 
n

ref
x   and 

m

ref
u   are the reference states and control inputs that 

correspond to trajectories that are commanded by the guidance system, d

D
   represents 

a vector of disturbance basis functions of length  , and 
p

y ref
e y y    is the output 

tracking error, where   is the number of outputs.          and   are adaptive gains and 

         and    are positive definite matrices that can be used to tune the controller 

response. It should be noted that in all results and analysis conducted in this thesis, the 

disturbance term is not included in the control law. 

An adaptive regulator was first implemented in this analysis which includes a single 

adaptive gain matrix as an initial step towards mitigating the effects of time-varying 

moment of inertia.  This implementation employed an adaptive control law of the form: 

;      ;     0T

e y e y y e eGu e G e e     
   (9) 
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The model reference adaptive control architecture does not require a model of the 

system to be controlled, although a model is employed to generate the reference 

trajectories.  Therefore, the adaptive controller can be applied with little knowledge of the 

system or for systems that are modeled with a significant degree of error. However, it 

will be later shown that there are potential advantages to using a controlled linearized 

model of the system if it is possible to do so. The theoretical foundations of this adaptive 

control strategy have been developed and applied in numerous publications (Balas, 2000; 

Wen, 1989; Fuentes, 2014). There are also publications utilizing this form of control for 

aerospace systems specifically, including applications to aircraft and UAV flight control 

(Prabhakar, 2018). 

3.4. Controller Stability Analysis 

Lyapunov stability proofs for nonlinear time varying systems controlled by model 

reference adaptive controllers are extremely sparse in the current literature. The analysis 

where both nonlinear and time varying effects occur simultaneously is challenging, and is 

left as future work. In this thesis however, the system will be evaluated with these two 

effects occurring separately. In the first case where the system is linearized but allowed to 

vary with time; a Lyapunov analysis can guarantee a bounded result for the tracking error 

and gains. In the second case, the stability of the time invariant nonlinear system is 

evaluated. This second case also results in bounded tracking error and controller gains. 

Both stability proofs invoke Lyapunov’s Theorem for uniform ultimate boundedness 

(UUB) which is commonly found in the literature (Khalil, 2002).  The theorem states the 

following: 
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Given a Lyapunov function: 

             || ||             

The solution to  ̇         is uniformly bounded if: 

    (|| ||)            (|| ||)                            

such that: 

1)    (|| ||)           (|| ||)              

2)   ̇                                                                        

  || ||                                                                                       

The system is UUB if, in addition to the uniform boundedness conditions; it can also 

satisfy the following: 

    (|| ||)       

such that: 

 ̇         (|| ||) 

  || ||             

3.4.1. Stability of the Time Varying Case 

The first case will consider Equation (1). However, unlike the approach taken to 

produce the LQR architecture, the time varying dynamics will be preserved during 

linearization. This results in the following jacobians: 

  ̇

  
  

[
 
 
 
 
 
 

  ̇
  

 

  
           

 

  
           

 

  
            

  ̇

  

 

  
            

 

  
           

 

  
           

  ̇
  ]
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  ̇

  
 

[
 
 
 
 
 
 
 

  
  

 
 

  
 

  
 

  ]
 
 
 
 
 
 

 

The jacobians are evaluated at the following equilibrium point: 

   [
 
 
 
]                          [

 
 
 
] 

This results in the following time varying A and B matrices: 

  

[
 
 
 
 
 
 
  

     ̇

     
  

  
     ̇

     
 

   
     ̇

     ]
 
 
 
 
 
 
 

                 

[
 
 
 
 
 
 

 

     
  

 
 

     
 

  
 

     ]
 
 
 
 
 
 

 

The linearized system now takes the form: 

  ̇                        

             

where   will be the identity matrix, corresponding to an output of the three states. This 

stability proof, which is found in the text written by Kaufman et al. (1998), is highly 

reliant on the system satisfying the condition of almost strictly passive (ASP); thus this 

condition must be proven first. A system of the form detailed above is considered ASP if 

it satisfies: 

 ̇                  
                                          (10)                    

                                                                 (11) 

where   and   are positive definite and uniformly bounded and: 
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where      is a positive definite stabilizing feedback gain. From (11), and substituting   

and   as defined prior: 

                 

     [
   
   
   

]  [

       
       

       

] 

     [

       
       

       

] 

Thus, 

 ̇    [

  ̇     

   ̇    

    ̇   

] 

To find a stabilizing gain,   is left generalized and used to solve for     such that: 

       

[
 
 
 
 
 
  

  ̇           

     
 

       

     
 

       

     

 
       

     
 

  ̇           

     
 

       

     

 
       

     
 

       

     
 

  ̇           

     ]
 
 
 
 
 
 

 

To prove the ASP condition, it must be shown that a stabilizing gain exists, even if it 

cannot be known in practice. To produce a stable    , the following      matrix is 

chosen: 

     [

  ̇         ̇        

   ̇         ̇       

    ̇         ̇      

]                   
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where       are positive definite tuning parameters. With this choice in K values, the 

closed loop time varying system takes the form: 

       

[
 
 
 
 
 
  

  ̇      ̇         ̇      

     
  

  
  ̇      ̇         ̇      

     
 

   
  ̇      ̇         ̇      

     ]
 
 
 
 
 
 

 

This choice in    guarantees closed loop stability of     such that the eigenvalues of     

will now satisfy: 

     
 

     
   

     
 

     
   

     
 

     
   

Finally, substituting     ,     ̇  and        into Equation. (10): 

      [

  ̇     

   ̇    

    ̇   

]   

[

       
       

       

]

[
 
 
 
 
 
  

  ̇      ̇         ̇      

     
  

  
  ̇      ̇         ̇      

     
 

   
  ̇      ̇         ̇      

     ]
 
 
 
 
 
 

  

[
 
 
 
 
 
  

  ̇      ̇         ̇      

     
  

  
  ̇      ̇         ̇      

     
 

   
  ̇      ̇         ̇      

     ]
 
 
 
 
 
 

[

       
       

       

] 

This equation reduces to: 

     [

     ̇        ̇          ̇       

      ̇        ̇          ̇      

       ̇        ̇          ̇     

] 

where:  
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Thus the time varying system is ASP. 

This system is then provided a reference model that will provide trajectories to track 

that takes the following form: 

 ̇                     

This reference model is required to produce bounded trajectories and inputs. 

              

For simplicity, the linearized state space plant model will be written as: 

 ̇                      

           

An error term is defined for        such that: 

                                                       (12) 

The time varying system is subjected to the following control law: 

                          

                

      [  
    

    
 ]

 
 

    ̇            

  [
    
    
    

] 

First, it must be shown that ideal trajectories exist, and perfect tracking of the reference 

model is possible. Ideal trajectories exist if: 

            

such that: 
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                                                                     (13) 

where the ideal state trajectory is defined as: 

                          

        
         

       

Substituting the ideal state trajectory into Equation (13) results in the first condition for 

perfect tracking such that: 

                                                                (14) 

where a solution exists when: 

                         ̇      

In this case,        thus: 

             ̇      

A second condition for perfect tracking is found by differentiating the ideal state equation 

such that: 

 ̇      ̇              ̇      ̇              ̇     

Substituting  ̇                 with their respective definitions results in: 

 ̇                         [               
   ̇          ]     

 [               
   ̇          ]           ̇     

where the first two terms are the definition of the state derivative. Thus all other terms 

must be zero such that: 

 [               
   ̇          ]      

 [               
   ̇          ]           ̇                     (15)                                                            

Reducing terms by substituting     ,  ̇   ,     ,  ̇   : 
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As      , and       are nonzero: 

            
        

        
                                                        (16) 

The second condition defined by Equation (16) cannot be met in this case as   and   

are functions of time and the ideal gains are static. This suggests that perfect tracking is 

not possible, but bounded tracking can still be shown (Kaufman, 1998). However, 

Equation (14) can still be satisfied, with no requirements for   
  and   

  and definitions 

for      and      as well as their derivatives. With these terms defined, the derivative 

state error Equation (12) can be written as: 

 ̇      ̇      ̇     

                                    
             

       

 [               
   ̇          ]      

 [               
   ̇          ]            ̇    

This can be written as: 

 ̇                                                                     (17) 

where: 

                 

         
    

     
    

     [               
   ̇          ]     

 [               
   ̇          ]           ̇     

Reducing terms by substituting     ,  ̇   ,     ,  ̇   : 

                 
                  

           



28 

 

The residual term      is zero when the second condition for perfect tracking is 

satisfied. Note that in this case,      is bounded, as       and       are bounded by 

definition.   
    

     and    are fixed.      and      are time varying due to the 

moment of inertia terms that appear in them. Both the moment of inertia and its 

derivative have physical bounds in any real system, and thus these terms are considered 

bounded. A Lyapunov stability analysis can now be conducted where: 

               
     

           
     

           
     

   

                                                

 ̇     ̇   ̇        ̇     (     
    ̇ 

 )     (     
    ̇ 

 )     (     
    ̇ 

 ) 

Substituting Equation (17) for  ̇ results in: 

 ̇    [ ̇          
  ]                             (     

    ̇ 
 )

    (     
    ̇ 

 )     (     
    ̇ 

 ) 

Expanding the second and third term, and reducing the first term from Equation (10) 

yields: 

 ̇                                          
        

    
     

   
    

               (     
    ̇ 

 )     (     
    ̇ 

 )

    (     
    ̇ 

 ) 

Note that: 

     
        

    
        

    
      

are scalars, which are therefore equal to their transpose, thus: 

 ̇                                             

    (     
    ̇ 

 )     (     
    ̇ 

 )     (     
    ̇ 

 ) 

where: 
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Thus: 

 ̇           (   [  
      

    ̇ 
 ])     (   [   

      
    ̇ 

 ])

    (   [         
    ̇ 

 ])        

Using the prescribed update law from Equation (8) and the relationship provided in 

Equation (11) the trace terms are eliminated resulting in: 

 ̇              

Recall that all values in   are considered bounded in this system. This is because all 

time varying effects on the system have physical limits. While the first term is negative 

definite, the second term is undetermined. However, the quadratic nature of the first term 

will cause it to become dominant if the tracking error is too large. Due to the second term 

having some theoretical maximum value, the system is considered UUB.  Therefore, one 

can conclude a bounded tracking result such that            are all bounded. 

3.4.2. Stability of the Nonlinear Case  

Next, the stability of the nonlinear case will be examined. The following equation of 

motion will be used to describe the system dynamics: 

 ̇     
                                     (18) 

Note that this is simply Equation (1) with the time varying term omitted. This equation 

can be written in the following form: 

 ̇                      
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where: 

     

[
 
 
 
 
 
  

    
  

 
    

  

 
    
  

 
    
  

    

  
 

    
  

 
]
 
 
 
 
 
 

                 

[
 
 
 
 
 
 
 

  
  

 
 

  
 

  
 

  ]
 
 
 
 
 
 

 

As before, this proof follows what is provided in the adaptive control book written by 

Kaufman et al. (1998). It is again important to prove the system is ASP for the stability 

proof. A system of the form detailed above is considered strictly passive if it satisfies: 

 ̇                                                           (19)                                 

                                                                    (20) 

Thus: 

                 

     [

    
    

    

]          

where the time invariant case dictates that: 

 ̇      

From Equation (19) and leaving K as a positive definite general matrix: 
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(

 
 
 
 

[
 
 
 
 
 
  

    
  

 
    

  

 
    
  

 
    
  

    

  
 

    
  

 
]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 

  
  

 
 

  
 

  
 

  ]
 
 
 
 
 
 

[
         

         

         

]

)

 
 
 
 

 

 

(

 
 
 
 

[
 
 
 
 
 
  

    
  

 
    

  

 
    
  

 
    
  

    

  
 

    
  

 
]
 
 
 
 
 
 

 

[
 
 
 
 
 
 
 

  
  

 
 

  
 

  
 

  ]
 
 
 
 
 
 

[
         

         

         

]

)

 
 
 
 

 

     

Reducing terms: 

          

[
 
 
 
 
 
  

   

  

        

  
 

        

  

 
        

  
 

   

  

        

  
        

  
 

        

  
 

   

  ]
 
 
 
 
 
 

 

[
 
 
 
 
 
  

   

  

        

  
 

        

  

 
        

  
 

   

  

        

  
        

  
 

        

  
 

   

  ]
 
 
 
 
 
 
 

     

Further reducing gives: 

       [

                  

                  

                  

] 

or equivalently: 

     [

                  

                  

                  

] 

where      will now need to be proven as positive definite. If K is defined as: 



32 

 

     [
   
   
   

]                   

then: 

     [
    
    
    

] 

where  

                  

Thus the nonlinear system is ASP. This system is then provided a reference model that 

will provide trajectories to track that takes the following form: 

 ̇                     

              

The system is subjected to the following control law: 

                          

                

      [  
    

    
 ]

 
 

    ̇            

  [
    
    
    

] 

Just like the time varying case, ideal trajectories must be investigated. The existence of 

these trajectories is considered satisfying the following: 

 ̇          
    

                                                      (22) 

         
  

such that: 
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                                                                     (23) 

The ideal state trajectory is defined as: 

                    

        
         

       

Substituting the ideal state trajectory into Equation (23) results in: 

                                                                (24) 

Solutions exist when: 

              

In this case,         thus: 

    

The plant is required to reach ideal states, thus an error term is formed: 

                                                                         (25) 

Differentiating Equation (25) results in: 

 ̇       ̇     ̇                                          (26) 

where: 

                 

         
    

     
    

     {      
                  

 }     

 {      
                  

 }      

Note that in the nonlinear case, the   matrix is a function of the states, but   is constant 

and only defined by the initial mass moment of inertia.  Therefore,      reduces to: 

     {      
         }      {      

         }      

Finally, by substituting the values of   and   that satisfy Equation (24): 
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     {     
       }      

A Lyapunov analysis can now be conducted. The following Lyapunov function is 

selected: 

               
     

           
     

           
     

   

                                                

 ̇     ̇   ̇        ̇     (     
    ̇ 

 )     (     
    ̇ 

 )

    (     
    ̇ 

 ) 

Substituting Equation (26) for  ̇ results in: 

 ̇    [ ̇          
  ]                             (     

    ̇ 
 )

    (     
    ̇ 

 )     (     
    ̇ 

 ) 

Expanding the second and third term, and reducing the first term from Equation (19) 

yields: 

 ̇                                          
        

    
     

   
    

               (     
    ̇ 

 )     (     
    ̇ 

 )

    (     
    ̇ 

 ) 

Note that: 

     
        

    
        

    
      

are scalars, which are equal to their transpose. Thus: 

 ̇                                             

    (     
    ̇ 

 )     (     
    ̇ 

 )     (     
    ̇ 

 ) 

where: 
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Thus: 

 ̇           (   [  
      

    ̇ 
 ])     (   [   

      
    ̇ 

 ])

    (   [         
    ̇ 

 ])        

Using the prescribed update law from Equation (8), the trace terms are eliminated 

resulting in: 

 ̇              

Similar to the time varying case discussed in the last section, it must now be shown 

that a bounded result will exist from this resulting expression for   ̇. That is to say, it can 

be shown that if the error term becomes too large, the negative definite first term will 

dominate resulting in a negative semi definite  ̇. To this end, the terms will be expanded 

as such: 

           
      

      
  

         [            
               

  ]

    [            
               

  ]

    [            
               

  ] 

where all values in   and    are either constant or bounded. Notice the expanded second 

term takes the form of the definition of the error terms. It can be re-written such that: 

        [(                  )    (                 )    (                  )]  

where   ̇ is negative semi definite when: 

    
     

     
    [(                  )    (                 )    (                  )]  

   
     

     
      (             )      (             )      (             ) 

The negative definite, quadratic first term will be dominant when: 
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‖  ‖  ‖
  
 

(             )‖  ‖  ‖  ‖
  

 
(             )‖      ‖  ‖  ‖

  
 

(             )‖   

where the values of       can be arbitrarily large, positive definite scalars. Provided at 

the initialization of the controller, the error terms are finite; the arbitrarily large scalars 

can allow values of ‖  ‖ ‖  ‖ ‖  ‖  to be quite large and still result in a negative semi 

definite  ̇. Due to the second term not having a maximum value, the system is simply 

uniformly bounded.  Thus, one can conclude a bounded tracking result such that 

           are all bounded. 
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4. Results 

This chapter will present simulation results from MATLAB. It will display two 

distinct types of results. The first two simulations, 4.1 and 4.2, are used to justify using 

adaptive control for this type of system by comparing it to a baseline LQR controller. All 

results displayed after 4.2 show simulations using the MRAC developed in Section 3.3 , 

where a variety of reference trajectories will be tracked. Some of the following 

simulations provide quantifiable performance metrics in the form of error performance    

and input performance   . These metrics were determined as follows: 

   ||  ||  ||  ||  ||  ||                                            

   ||  ||  ||  ||  ||  ||                                            

For both cases, the optimal case would be        , thus smaller values will be 

indicitive of better performance.  

4.1. Adaptive Regulator with Slosh and Disturbance 

The adaptive controller in Equation (9) and the baseline LQR controller were applied 

to the nonlinear rotational system model under the following conditions: 

• Target angular velocity:   .= [0 0 15]
T
 rpm 

• Initial velocity= [0 0 0]
 T

 rpm 

• Initial inertia values:    [
      
        
        

]       

• Persistent sinusoidal torque disturbances about all axes with frequencies of 0.5 Hz (30 

rpm), 0.25 Hz (15 rpm) and 0.5 Hz (30 rpm), respectively. 

• Time varying inertia: 
 

  
    [

   
               
               

]
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• LQR      , with closed loop eigenvalues:                          

These conditions are intended to simulate a sloshing motion in the tanks as the system 

is controlled from an initial angular velocity of zero to a desired spin rate of 15 rpm about 

the z-axis. The sloshing effect is modeled with orthogonal sine and cosine functions of 

equal magnitude and frequency on the y and z axis. Figures 4.1 – 4.3 provide the 

resulting angular velocity, control torque inputs about each axis, and the diagonal values 

of the adaptive gain matrix, respectively. The results demonstrate that, while both 

controllers result in stable rotational dynamics about the x and y axes, the adaptive 

regulator is better able to compensate for the time-varying nature of the system to control 

the angular velocity about the z-axis.  The adaptive gains in Figure 4.3 demonstrate the 

adaptation in response to both the time-varying moment of inertia and external 

disturbances.  

 

 

Figure 4.1  Angular Velocity, Simulation Case 1 
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Figure 4.2  Torque Control Inputs, Simulation Case 1 

 

 

Figure 4.3  Adaptive Gains, Simulation Case 1 
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Table 4.1 

Simulation 4.1 Performance Metrics 

       

LQR 108.16 198.71 

Adaptive Regulator 28.92 117.51 

 

4.2. Adaptive Regulator with Fluid Settling and Disturbance 

This simulation is a representation of fluid moving to the ends of the tanks. However, 

the initial velocity is non-zero to demonstrate the uncontrolled system’s reactions to this 

maneuver.  

• Target angular velocity,   = [0 0 15]
T
 rpm 

• Initial velocity= [0 0 7]
 T

 rpm 

• Initial inertia values:     [
      
        
        

]       

• Time varying inertia:  
 

  
    [

   
    
    

]
     

 
 

• Persistent sinusoidal torque disturbances about all axes with frequencies of 0.5 Hz (30 

rpm), 0.25 Hz (15 rpm) and 0.5 Hz (30 rpm), respectively. 

• LQR      , with closed loop eigenvalues:                          

These conditions are intended to simulate fluid settling in the tanks along with 

unmodeled external disturbances. Figures 4.4 – 4.6 provide the resulting angular velocity, 

control torque inputs about each axis, and the diagonal values of the adaptive gain matrix, 

respectively. The uncontrolled angular velocity is also plotted in this case to demonstrate 

that, in the absence of control, the system will decrease its spin rate as fluid moves 
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towards the ends of the tanks and the moment of inertia about the axis of rotation 

increases.    

As in the previous case, the results demonstrate that the adaptive regulator is better 

equipped to compensate for the time-varying nature of the system as well as the external 

disturbances.  Specifically, the adaptive control provides better mitigation of undesired 

out-of-plane motion, and provides better tracking of the desired rotation rate about the z-

axis. Note that, in the case of the LQR controller, as the fluid continues to settle further 

from the z-axis, the controller is unable to retain the rotation rate about z, and its angular 

velocity begins to approach zero like the uncontrolled system. It is also important to note 

that, in the case of the adaptive regulator, although no disturbance basis functions are 

provided in this example, the adaptive gain is still attempting to mitigate the effects of the 

external disturbance. This explains why the input performance,    , is higher for the 

adaptive regulator.   

 

 

Figure 4.4  Angular Velocity, Simulation Case 2 
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Figure 4.5  Torque Control Inputs, Simulation Case 2 

 

 

Figure 4.6  Adaptive Gains, Simulation Case 2 
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Table 4.2 

Simulation 4.2 Performance Metrics 

       

LQR 42.19 43.25 

Adaptive Regulator 9.35 54.43 

 

 The next section of results will display simulations with the MRAC controller 

implemented rather than an adaptive regulator. In these cases, the first three terms of the 

controller are active with the disturbance term omitted. 

4.3. MRAC First Order Tracking with Fluid Settling 

In this case, the model reference adaptive controller as described from Equation (8) 

will be tracking the output of the linearized, time invariant model controlled by the LQR 

controller discussed in Section 3.2 under the conditions described below. The only 

omission to the adaptive gains in Equation (8) is the optional disturbance accommodating 

term, which is zero for this, and all other MRAC simulation examples provided in this 

thesis. This simulation is meant to represent a fluid settling condition where fluid will 

flow from the axis of rotation as the system begins to spin in order to follow a reference 

trajectory. 

• Initial velocity= [0 0 0]
T
 rpm 

• Initial inertia values:     [
      
        
        

]       

• Time varying inertia:  
 

  
    [

   
    
    

]
     

 
 

• Adaptive gain Ge is initialized as the gain matrix used by the LQR controller 

• All remaining adaptive gains are initialized at zero 
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Figures 4.7 – 4.11 provide the resulting angular velocity, control torque inputs about 

each axis, and the diagonal values of the adaptive gain matrices Ge, Gr and Gu 

respectively. In this case, external disturbances are absent, so the oscillatory behavior is 

born from the internal disturbance of the time varying moment of inertia coupled with the 

nonlinear equation that is driving the system dynamics. The desired trajectory is simply 

to achieve an asymptotic first order response to a desired rotation rate about the z axis. 

Due to the reference trajectories being derived from a simplified dynamics model, much 

of the off axis effects are not present in the reference trajectories and thus provide 

relatively flat regulating trajectories for the x and y axis. The result is very little rotation 

about the x and y axes while a first order response is tracked in z. In addition to the 

production of desirable trajectories, the LQR controlled reference model also provides the 

initial gain,  , for Ge which helps generate such an effective response shortly after the 

initiation of the controller. 

 

 

Figure 4.7  Angular Velocity, Simulation Case 3 
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Figure 4.8  Torque Control Inputs, Simulation Case 3 

 

 

Figure 4.9  Adaptive Gains Ge, Simulation Case 3   
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Figure 4.10  Adaptive Gains Gr, Simulation Case 3 

 

 

Figure 4.11  Adaptive Gains Gu, Simulation Case 3 
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4.4. MRAC First Order Tracking with Fluid Slosh 

In this case, the controller will again be tracking the output of the linearized, time 

invariant model controlled by the LQR controller discussed in Section 3.2 under the 

conditions described below. This simulation is similar to the previous case, with the same 

reference trajectory being provided. However, this case is meant to represent a fluid slosh 

condition similar to simulation 4.1.  

• Initial velocity= [0 0 0]
T
 rpm 

• Initial inertia values:     [
      
        
        

]       

• Time varying inertia:  
 

  
    [

   
               
               

]
     

 
 

• Adaptive gain Ge is initialized as the gain matrix used by the LQR controller 

• All remaining adaptive gains are initialized at zero 

Figures 4.12 – 4.16 provide the resulting angular velocity, control torque inputs about 

each axis, and the diagonal values of the adaptive gain matrices Ge, Gr and Gu 

respectively. Note that as was the case in the previous simulation, no external disturbance 

has been added to the system. The MRAC is then only forced to attenuate internal effects 

while trying to track the reference trajectory. 
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Figure 4.12  Angular Velocity, Simulation Case 4 

 

 

Figure 4.13  Torque Control Inputs, Simulation Case 4 
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Figure 4.14  Adaptive Gains Ge, Simulation Case 4 

 

 

Figure 4.15  Adaptive Gains Gr, Simulation Case 4 
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Figure 4.16  Adaptive Gains Gu, Simulation Case 4 

 

4.5. MRAC  First Order Tracking with Fluid Settling and Disturbance 

This simulation is a representation of fluid moving to the ends of the tanks similar to 

Section 4.3.  In this case, the controller will be tracking the output of the linearized model 

controlled by the LQR controller under the conditions described below. 

• Initial velocity= [0 0 0]
T
 rpm 

• Initial inertia values:     [
      
        
        

]       

• Time varying inertia:  
 

  
    [

   
    
    

]
     

 
 

• Persistent sinusoidal torque disturbances about all axes with frequencies of 0.5 Hz 

(30 rpm), 0.25 Hz (15 rpm) and 0.5 Hz (30 rpm), respectively. 

• Adaptive gain Ge is initialized as the gain matrix used by the LQR controller 
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• All remaining adaptive gains are initialized at zero 

Figures 4.17 – 4.21 provide the resulting angular velocity, control torque inputs about 

each axis, and the diagonal values of the adaptive gain matrices Ge, Gr and Gu 

respectively. The results demonstrate the ability of the MRAC to force the nonlinear 

time-varying system to track the trajectory generated using the LQR controlled LTI 

model, as was used in simulations 4.4 and 4.5, while the system is experiencing both 

internal and external disturbances. Note that, although additional disturbances have been 

inflicted on the system, the MRAC is still able to track a reference trajectory and mitigate 

the effects of external disturbance. This is accomplished by continuing to adapt the gains 

to eliminate the external effects and is illustrated in Figures 4.19-4.21, which are much 

more active than the analogous disturbance free example in simulation 4.3.  

 

 

Figure 4.17  Angular Velocity, Simulation Case 5 
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Figure 4.18  Torque Control Inputs, Simulation Case 5 

 

 

Figure 4.19 Adaptive Gains Ge, Simulation Case 5 
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Figure 4.20  Adaptive Gains Gr, Simulation Case 5 

 

 

Figure 4.21  Adaptive Gains Gu, Simulation Case 5 
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4.6. MRAC Sinusoidal Tracking with Fluid Settling and Disturbance 

This simulation is also a representation of fluid settling to the ends of the tanks.  In 

this case, the system is trying to track the output from the LQR controlled linear system 

which is tracking a .1 Hz (3 rpm) sinusoid under the following conditions: 

• Initial velocity= [0 0 0]
T
 rpm 

• Initial inertia values:     [
      
        
        

]       

• Time varying inertia:  
 

  
    [

   
    
    

]
     

 
 

• Persistent sinusoidal torque disturbances about all axes with frequencies of 0.5 Hz (30 

rpm), 0.25 Hz (15 rpm) and 0.5 Hz (30 rpm), respectively. 

• Adaptive gain Ge is initialized as the gain matrix used by the LQR controller 

• All remaining adaptive gains are initialized at zero 

Figures 4.22 – 4.26 provide the resulting angular velocity, control torque inputs about 

each axis, and the diagonal values of the adaptive gain matrices Ge, Gr and Gu 

respectively. In this case, the MRAC is trying to regulate all dynamics about the x and y 

axes and track a more novel trajectory in the form of a sinusoid about the z axis. This 

more dynamic trajectory coupled with time varying, nonlinear, and external disturbance 

effects, forces much more activity in all three adaptive gains. Ultimately, the result is 

small, bounded oscillations about x and y axes, with a slight lag in following the target 

trajectory about the z axis. It is also worth noting that, as can also be seen in example 4.5, 

the disturbances about all three axes are attenuated with time as the adaptive gains adjust.  
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Figure 4.22  Angular Velocity, Simulation Case 6 

 

 

Figure 4.23  Torque Control Inputs, Simulation Case 6 
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Figure 4.24   Adaptive Gains Ge, Simulation Case 6 

 

 

Figure 4.25  Adaptive Gains Gr, Simulation Case 6 
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Figure 4.26  Adaptive Gains Gu, Simulation Case 6 

 

4.7.  MRAC Offset Sinusoidal Tracking with Fluid Settling, Slosh, Disturbance 

and Noise 

 

This simulation is also a representation of fluid settling to the ends of the tanks.  In 

this case, the system is trying to track the output from the LQR controlled linear system 

which is tracking a .1 Hz (3 rpm) sinusoid oscillating about 15 rpm under the following 

conditions: 

• Initial velocity= [2 5 -5]
T
 rpm 

• Initial inertia values:     [
      
        
        

]       

• Time varying inertia:  
 

  
    [

   
                 
                 

]
     

 
 

• Persistent sinusoidal torque disturbances about all axes with frequencies of 0.5 Hz (30 

rpm), 0.25 Hz (15 rpm) and 0.5 Hz (30 rpm), respectively. 
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• Zero mean measurement noise with standard deviation:        
   

 
 

• Adaptive gain Ge is initialized as the gain matrix used by the LQR controller 

• All remaining adaptive gains are initialized at zero 

Figures 4.27 – 4.31 provide the resulting angular velocity, control torque inputs, and 

the diagonal values of the adaptive gain matrices Ge, Gr and Gu respectively. This 

simulation is meant to represent a fluid sloshing condition with a combination of all the 

effects discussed in prior examples to display the resilience of MRAC. In this case, there 

is a nonzero initial condition, external disturbance, internal slosh disturbance and a 

reference trajectory oscillating about 15 rpm. In addition to all of these effects, zero mean 

measurement noise was also introduced. Under all of these conditions, the MRAC is able 

to track the reference trajectory reasonably well, while the combination of nonlinear, time 

varying and external effects are well mitigated with small rotations about x and y. 

 

 

Figure 4.27  Angular Velocity, Simulation Case 7 
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Figure 4.28   Torque Control Inputs, Simulation Case 7 

 

 

Figure 4.29  Adaptive Gains Ge, Simulation Case 7 
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Figure 4.30   Adaptive Gains Gr, Simulation Case 7 

 

 

Figure 4.31   Adaptive Gains Gu, Simulation Case 7 
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4.8. Results Analysis 

In this section, the results will be summarized so that conclusions on the use of 

MRAC for this class of system can be drawn. In sections 4.1 and 4.2, a pared down 

version of MRAC was applied to the plant along with an LQR which was generated from 

linearizing a time invariant model of the plant about a desired rotation rate about the z 

axis. These two cases demonstrate the need for more capable methods of control and 

show how MRAC can be used to reach a desired point in state space rather than track a 

trajectory. In these examples, the adaptive controller was quantifiably better at reaching 

the desired state compared to the LQR. However, the real benefit of MRAC is to use a 

simplified model of the plant in order to generate trajectories for the plant to track. To 

demonstrate this, further cases displayed results of the plant controlled using a full 

MRAC implementation. 

In simulation 4.3 and 4.4, MRAC was applied to the nonlinear time varying plant, 

with trajectories provided by the LQR controlled, time invariant, linearized plant model. 

Both of these cases were void of external disturbances, but were subjected to internal 

time varying effects. Using reference trajectories rather than a desired reference state, as 

in simulations 4.1 and 4.2 reduces input spikes that are caused from large errors during 

initialization. To illustrate this, consider simulations 4.2 and 4.3. These cases are exposed 

to the same disturbances and initial conditions and are both trying to achieve a final state 

of [0 0 15]
T
 rpm, but 4.2 is generating an error from its current state to this desired state, 

while 4.3 is generating an error based off the reference trajectory that achieves the 

desired state derived by a simplified model of the system. If one analyzes the input plots 

for the z axis of both systems, it can be seen that 4.2 initializes with an input spike while 
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4.3 does not. This is formed because of the large error seen at the controller’s initiation. 

In other words, there is an increased potential of actuator saturation when a reference 

trajectory is not provided. 

 In addition to a lack of initial input spikes, using a reference model will provide a 

smooth trajectory to follow which may reduce more drastic oscillatory behavior when 

compared to providing a simple reference point. Another interesting aspect of using an 

LQR controlled linearized reference model is that these trajectories are inherently 

optimized to mitigate tracking error to the desired state as well as control effort based on 

Equation (2). Although this optimization is based on a simplified model of the plant 

dynamics, including some amount of state and input optimization may have potential 

benefits, although no empirical study was performed for this thesis. 

Simulation 4.5 demonstrates the model reference adaptive controller’s ability to 

compensate for both internal and external effects simultaneously while still tracking a 

first order response to the desired rotation rate about z. It is shown in these results that 

this combination of disturbances can be accommodated, with the desired steady state 

condition being reached, and respectable tracking exhibited through the transient phase of 

the first order response. Simulation 4.6 is simply a combination of all of these effects 

with a slightly more sophisticated reference trajectory and a nonzero initial condition. 

The only additional effect added was zero mean measurement noise. Measurement noise 

seems to affect the controller performance more than either internal or external 

disturbances. Although the states are bounded, the rotations about the x and y axes are 

not regulated as well as cases where measurement noise is absent. Measurement noise 

also forced the torque inputs to become more erratic than other cases, which may be hard 
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to realize when actuator dynamics are included. If the standard deviation of the noise is 

increased, it will eventually cause the controller to fail. This may be solved by either 

through filtering, or by adding an additional term to the control law commonly referred to 

as a sigma or e-modification.  
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5. Conclusions and Recommendations 

Modern aerospace systems often exhibit highly nonlinear, time varying dynamical 

effects. As the operational envelopes of these systems increase in complexity, the need 

for control methods that can adapt to both internal system changes and external effects 

become more imperative. While this can be sidestepped by discretizing the system into its 

main operating regimes, there are potential benefits to adaptive methods such as model 

reference adaptive control including reduced development time and resistance to failure 

in the event of unforeseen internal or external dynamical events. Implementation of such 

control methods can therefore result in safer systems with lower development costs. In 

this thesis, the control of a candidate system that exhibited both nonlinear and time 

varying dynamics was investigated. Using direct MRAC as the form of adaptive control 

architecture, simulations were produced to both demonstrate the increased performance 

of adaptive control compared to a linear quadratic regulator. After having demonstrated 

this, full MRAC was applied to the nonlinear, time varying system under various test 

conditions to illustrate its effectiveness for trajectory tracking under both internal and 

external effects.  

Results from these simulations showed not only the advantages of using adaptive 

control over a linear quadratic regulator, but also the benefits of using model reference 

adaptive control when compared to an adaptive regulator. In all cases, the adaptive 

controller outperformed the LQR, and an analogous MRAC case was used to show how 

input spikes can be mitigated when compared to an adaptive regulator. It was also shown 

that the adaptive controller will attempt to compensate for external disturbances even if 

the disturbance accommodating term in the control law is not present. Activating this 
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term, if it is assumed the form of the disturbance is known may yield even better tracking 

performance than what is displayed in this thesis, and is an area of research worth 

investigating in the future.  

The simulation that was displayed in Section 4.7 demonstrated the effect of 

measurement noise on the system. It was discovered that this had a profound impact on 

the controller performance and that this noise can eventually cause the controller to fail. 

Future research should be invested in determining effective methods of adding controller 

robustness in the presence of measurement noise. Two potential approaches include 

filtering the output that is fed to the adaptive controller, or to mitigate the effects of noise 

within the controller by adding a so-called sigma or e-modification. Determining a 

solution to this particular failure mode of the controller is critical, as any real system will 

have measurement noise. 

A full Lyapunov analysis of the nonlinear, time varying system was not attempted in 

this thesis; however nonlinear and time varying cases were separately investigated. An 

analysis of this kind where both effects occur simultaneously is very sparse in the current 

literature, and as such is worth investigating. Ultimately, although there is still much 

work to be done in this area of research, it was shown that the case can be made for 

MRAC as an effective control architecture for this class of nonlinear, time varying 

systems. 
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