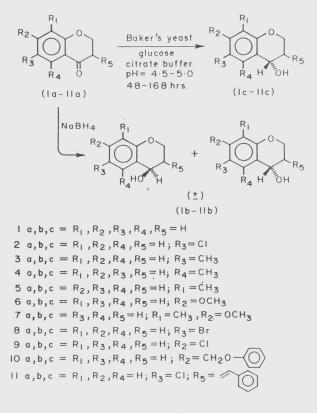
Baker's yeast catalysed enantioselective reduction of chroman-4-ones

S Ramadas & G L David Krupadanam*

Department of Chemistry, Osmania University, Hyderabad 500 007, India


Received 30 April 1997; accepted (revised) 2 September 1997

Substituted chroman-4-ones 1a-10a on catalytic reduction with Baker's Yeast give (S)-chroman-4-ols 1c-11c with high enantioselectivity. The absolute configuration has been determined by specific rotation and CD spectra.

The enantioselective reduction of carbonyl compounds using bio-catalysts such as isolated pure enzymes or whole cells such as yeasts, bacteria and fungi continue to attract the attention of synthetic organic chemists^{1,2}. Whole cell yeast catalysed reactions are particularly attractive in this respect as yeast is readily and cheaply available bio-catalyst and the use of whole cells obviates the need for the addition of expensive co-factors. It is now known that, in general, the Baker's yeast catalysed enantioselective reduction of carbonyl compounds proceed in accordance with the Prelog's rule³. Earlier, (S)-chorman-4-ol **1c** was obtained by the lipase catalysed kinetic resolution of racemic chroman-4-ol **1b**⁴.

Substituted chroman-4-ones, a class of oxygen heterocyclics, are common among natural products and are extensively used synthetic as intermediates⁵. Earlier Holl et al.⁶ studied the Mortierella isabellina catalysed reduction of chroman-4-one 1a and thiochroman-4-one and the products are (S)-chroman-4-ol 1c and (S)thiochroman-4-ol in 84% ee and 88% ee respectively. There are no reports in the literature regarding the enantioselective reduction of chroman-4-ones using Baker's yeast. We report herein the bio-reduction of several substituted chroman-4-ones 1a-10a using Baker's yeast (Scheme I).

In a typical experiment, chroman-4-ones **1a-10a** (0.3 mol) dissolved in ethanol (5 mL) was slowly added during 24 hr to a citrate buffer 0.05 M (300 ml) containing Baker's yeast beads immobilised in calcium alginate⁷ and stirred at RT for 48-168 hr,

Scheme I

maintaining. pH of the reaction mixture at 4.5-5.0 by the addition of ammonia. The reduction was monitored by TLC by comparison with authentic racemic chroman-4-ols **1b-10b**. When there is no further increase in the product concentration, the supernatant solution was decanted, extracted with ethyl acetate and column chromatographed on silica gel. The yields of **1c-10c** was 30-40% (Table I). Racemic **1b-10b** needed to monitor the bio-

Table I—Characterization data of (S)-chroman-4-ols 1c-10c						
Compd	Reaction time (hr)	% of Chemical yield	% of ee (from chiral HPLC)	Specific rotation (in CHCl ₃)	CD data	$\theta \times 10^{-3}$ (deg.cm ² .d. mol ⁻¹)
1c	48	30	88.4	-40.00	(-)228 nm	(-) 220×10 ⁻³
2c	96	40	73.3	(c, 0.5%) -30.30 (c, 0.33%)	(-)280 nm (-)232 nm (-)240 nm	(-) 48×10 ⁻³ (-) 293×10 ⁻³ (-) 79×10 ⁻³
3c	72	34	44.2	-2.70	(-)230 nm	(-) 210×10 ⁻³
				(c, 2%)	(-)285 nm	(-) 59×10 ⁻³
4c	168	37	32.5	-28:04	(-)234 nm	(-) 200×10 ⁻³
5c	72	36	10.3	(c, 0.97%) -2.00 (c, 0.5%)	(-)270 nm (-)233 nm (-)279 nm	(-) 25×10 ⁻³ (-) 234×10 ⁻³ (-) 52×10 ⁻³
6c	96	30	74.1	-8.80	(-)229nm	(-) 249×10 ⁻³
				(c, 0.05%)	(-)262 nm	(-) 27×10 ⁻³
7c	48	30	25.0	-8.46	(-)243 nm	(-) 246×10 ⁻³
				(c, 0.26%)	(-)274 nm	(-) 33×10 ⁻³
9c	48	30	53.1	-25.00	(-)233 nm	(-) 236×10 ⁻³
10c	168	35	65.8	(c, 1%) -9.00	(-)275 nm (-)236 nm	(-) 47×10 ⁻³ (-) 220×10 ⁻³
		1. 		(c, 1%)	(-) 203 nm	(-) 39×10 ⁻³

reduction were obtained by the NaBH₄ reduction of 1a-10a using reported method⁸.

The absolute configuration of the Baker's yeast reduction products 1c-10c as S is determined from specific rotation and CD spectra. Earlier Maja et al.⁴ reported the CD spectral data for 1c. It showed negative cotton effect with bands at 228 and 280 nm. 1c-10c showed negative CD spectral bands similar to the reported for 1c (Table I). The % ee of the (S)-chroman-4-ols is determined by chiral HPLC. Table I gives the % chemical yields, % ee, specific rotation and CD spectral data of Baker's yeast reduction products. Good enantioselectivity was observed for unsubstituted chroman-4-one 1a and 6- and 7-substituted chroman-4-ones 2a, 6a, 8a. The bio-reduction of prochiral chroman-4-ones proceed in accordance with Prelog's rule, with the hydride delivered to the re-face. This study shows that Baker's yeast reduction of chroman-4-ones 1a-10a offers a new route to optically active (S)chroman-4-ols 1c-10c.

Experimental Section

Baker's yeast, Eagle brand, India was used. Specific rotations were recorded on JASCO J-20 polarimeter. and CD spectra on JASCO J-20 spectropolarimeter. Chiral HPLC was done on Shimadzu LC 6A with Chiracel OD column $(250\times5 \text{ mm})$, using *n*-hexane: isopropanol (98:2). ¹H (200 MHz) and ¹³C NMR (50.3) MHz) were recorded on Varian Gemini 200 NMR spectrometer.

The chiral HPLC of (\pm) racemic chroman-4-ols 1b-10b as well as the Baker's yeast reduction products 1c-10c was recorded on Chiracel O.D. column (25×0.46 cm, Diacel, Japan) under following conditions: flow 0.5 mL/min using 2% isopropanol in *n*-hexane as the eluent. The retention times (min) were (\pm) 1b 23.4 and 26.9, (±) **2b** 13.0 and 14.1, (±) **3b** 18.0 and 20.3, (±) **4b** 10.6 and 13.5, (+) 5b, 13.5 and 16.9, (+) 6b 22.0 and 27.6, (±) 7b 16.3 and 18.4, (±) 8b 13.2 and 16.1, (±) **9b** 13.0 and 14.5, (±) **10b** 17.2 and 18.3; (±) 11b 17.7 and 20.2; (-) 1c 23.6 and 27.0, (-) 2c 13.1 and 14.7, (-) 3c 18 and 20.4, (-)4c 10.7 and 13.9, (-) 5c 13.9 and 17.1, (-)6c 22.1 and 27.6, (-) 7c 16.4 and 18.7, (-) 8c 13.8 and 15.2, (-) 9c 13.1 and 14.6, (-) 10c 17.4 and 18.4; (-) 11c 17.9 and 20.6.

Chroman-4-ones **1a-10a** are already known⁹. **1b-10b** were obtained by NaBH₄ reduction of chroman-4-ones **1a-10a**⁸. (\pm) Chroman-4-ols (**1b**, **2b**, **3b**, **6b**, **8b**, **9b**, **10b**) are already known⁸. Baker's yeast beads immobilised in calcium alginate are prepared as per reported method^{7.10}.

General procedure for the Baker's yeast mediated synthesis of (S)-chroman-4-ols. Baker's veast (10 g) immobilised in calcium alginate to give beads, was kept in 20% glucose solution for 48 hr The beads were filtered, washed with water and transferred to a flask containing 0.05 M citrate buffer (300 mL) with pH 4.5-5.0. Chroman-4-ones 1a-10a (0.3 mol) dissolved in ethanol (5 ml) were added slowly during 24 hr The reaction mixture was gently stirred at RT for 48-168 hr The pH of the reaction mixture was maintained by addition of $3 N NH_3$. The progress of the reaction was monitored by TLC by comparison with racemic chroman-4-ols. When there is no further increase in the concentration of the product, the supernatant solution decanted and extracted with ethyl acetate (200 ml), dried and chromatographed on silica gel. Chroman-4-ols 1c-10c were obtained in 30-40% yield.

1b: IR: 3375 cm⁻¹; ¹H NMR (CDCl₃): δ 4.15 (m, 2H, OCH₂), 1.95 (m, 2H, CH₂), 4.60 (t, J = 2 Hz, 1H, H-4), 3.0 (bs, 1H, OH), 6.82 (m, 2H, H-5, 8), 7.20 (m, 2H, H-6); ¹³C NMR (CDCl₃): δ 62.0 (C-2), 37.1 (C-3), 63.0 (C-4), 124.4 (C-4a), 130.0 (C-5), 121.0 (C-6) 130.0 (C-7), 117.0 (C-8), 135.0 (C-8a). MS: (m/z) 150 (100), 121 (75), 105 (20), 77 (25) and 51 (20).

2b: IR: 3352 cm⁻¹;. ¹H NMR (CDCl₃): δ 4.18 (m, 2H, OCH₂), 2.00 (m, 2H, CH₂), 4.65 (bs, 1H, H-4), 1.90 (bs, 1H, OH), 7.20 (d, J = 2 Hz, 1H, H-5), 7.08 (dd, J = 10 Hz, 2 Hz, 1H, H-7), 6.70 (d, J = 10 Hz, 1H, H-8); ¹³C NMR (CDCl₃): δ 62.1 (C-2), 30.3 (C-3), 63.0 (C-4), 125.7 (C-4a), 130.0 (c-5), 125.2 (C-6), 129.2 (C-7), 118.5 (C-8), 153.3 (C-8a). MS: (m/z) 184 (90), 165 (20), 156 (70), 107 (20), 103 (20), 75 (20), 63 (25) and 39 (20).

3b: IR: 3348 cm⁻¹; ¹H NMR (CDCl₃): δ 4.15 (m, 2H, OCH₂), ¹.98 (m, 2H, CH₂), 4.60 (t, *J*=2Hz, 1H, H-4), 2.40 (bs, 1H, OH), 7.02 (d, *J*=2Hz, 1H, H-5), 6.95 (dd, *J*=10 Hz, 2 Hz, 1H, H-7) 6.60 (d, *J*=10 Hz, 1H, H-8), 2.26 (bs, 3H, CH₃); ¹³C NMR (CDCl₃): δ 62.0 (C-2), 31.0 (C-3), 63.0 (C-4), 124.0 (C-4a), 130.2 (C-5), 130.0 (C-6), 130.0 (C-7), 117.0 (C-8), 152,3 (C-8a), 20.1 (CH₃). MS: (m/z) 164 (100), 149 (70), 135 (80), 121 (25), 107 (30), 91 (20), 77 (30) and 51 (20).

4b: IR: 3334 cm⁻¹; ¹H NMR (CDCl₃): δ 4.24 (m, 2H, OCH₂), 2.10 (m, 2H, CH₂), 4.70 (bs,1H, H-4), 1.65 (bs, 1H, OH), 6.74 (dd, J = 10 Hz, 2Hz, 1H, H-6), 6.74 (dd, J=10 Hz, 2 Hz, 1H, H-7), 7.00 (m, 1H, H-8) 2.20 (m, 3H, CH₃); ¹³C NMR (CDCl₃): δ

62.0 (C-2), 31.0 (C-3), 63.2 (C-4), 123.8 (C-4a), 126.3 (C-5), 127.3 (C-6), 131.0 (C-7), 120.0 (C-8) 153.0 (C-8a), 16.0 (CH₃).

5b: R: 3299 cm⁻¹; ¹H NMR (CDCl₃): δ 4.20 (m, 2H, OCH₂), 2.02 (m, 2H, CH₂), 4.70 (bs,1H, H-4), 1.72 (bs, 1H, OH), 7.21 (m, 1H, H- 5) 6.64 (m, 1H, H-6) 6.64 (m, 1H, H-7), 2.28(s, 3H, CH₃); ¹³C NMR (CDCl₃): δ 61.6 (C-2), 30.9 (C-3), 62.9 (C-4), 123.8 (C-4a), 129.1 (C-5), 129.9 (C-6), 130.1 (C-7), 116.7 (C-8) 152.2 (C-8a), 20.4 (CH₃).

6a: IR: 3336 cm⁻¹; ¹H NMR (CDCl₃): δ 4.28 (m, 2H, OCH₂), 2.05 (m, 2H, CH₂,), 4.75 (bs,1H, H-4), 1.95 (bs, 1H, OH), 7.20 (d, *J*=10 Hz, 1H, H-5), **6.52** (dd, *J*=10 Hz, 2 Hz, 1H, H-6), 6.38 (d, *J*=2 Hz, 1H, H-8), 3.80 (s, 3H, OCH₃); ¹³ C NMR (CDCl₃): δ 61.7 (C-2), 30.8 (C-3), 62.0 (C-4), 130.8 (C-4a), 131.0 (C-5), 116.8 (C-6), 130.9 (C-7), 101.1 (C-8) 155.5 (C-8a), 55.1(OCH₃).

7b: IR: 3375 cm⁻¹; ¹H NMR (CDCl₃): δ 4.38 (m, 2H, OCH₂), 2.10 (m, 2H, CH₂), 4.80 (bs,1H, H-4), 1.75 (d, *J*=6 Hz, 1H, OH)₆ 7.15 (d, *J*=10 Hz, 1H, H-5), 6.55 (d, *J*=10 Hz, 1H, H-6), 3.90 (s, 3H, OCH₃). 2.15 (s, 3H, CH₃); ¹³ C NMR (CDCl₃): δ 61.9 (C-2), 30.9 (C-3), 63.4 (C-4), 117.3 (C-4a), 127.0 (C-5), 103.1 (C-6), 153.1 (C-7), 113.7 (C-8) 158.3 (C-8a), 55.7 (OCH₃), 8.0 (CH₃).

8b: IR: 3389 cm⁻¹; ¹H NMR (CDCl₃): δ 4.25 (m, 2H, OCH₂), 2.05 (m, 2H, CH₂), 4.75 (m,1H, H-4), 1.75 (bs, 1H, OH), 7.44 (d, *J*=2 Hz, 1H, H-5), 7.28 (dd, *J*=10 Hz, 2 Hz, 1H, H-7), 6.72 (d, *J*=10 Hz, 1H, H-8). ¹³ C NMR (CDCl₃): δ 62.0 (C-2), 30.3 (C-3), 62.7 (C-4), 126.2 (C-4a), 132.4 (C-5), 112.3 (C-6), 132.1 (C-7), 119.0 (C-8) 153.8 (C-8a). MS: (m/z) 228 (100), 211 (25), 200 (75), 149 (75), 131 (20), 107 (40), 103 (15), 91 (15) and 63 (30).

9b: IR: 3297 cm⁻¹; ¹H NMR (CDCl₃): δ 4.18 (m, 2H, OCH₂), 2.00 (m, 2H, CH₂), 4.68 (bs, 1H, H-4), 1.68 (bs, 1H, OH), 7.12 (d, *J*=10 Hz, 1H, H-5), 6.80 (m, 1H, H-6), 6.80 (m, 1H, H-8); ¹³C NMR (CDCl₃): δ 62.0 (C-2), 30.8 (C-3), 62.9 (C-4), 122.2 (C-4a), 130.5 (C-5), 121.0 (C-6), 130.1 (C-7), 96.3 (C-8) 154.1 (C-8a). MS: (m/z) 184 (95), 165 (35), 155 (100), 149 (95), 131 (10), 103 (5), 91 (10), 75 (20); 63 (15) and 51 (20).

10b: IR: 3364 cm⁻¹; ¹H NMR (CDCl₃): δ 4.18 (m, 2H, OCH₂), 2.00 (m, 2H, CH₂), 4.63 (bs, 1H, H-4),1.52 (bs, 1H, OH), 7.10 (d, *J*=10 Hz, 1H, H-5), 6.47 (dd, *J*=10 Hz, 2 Hz, 1H, H-6), 6.32 (d, *J*=2 Hz, 1H, H-8), 4.95 (s, 2H, OCH₂), 7.30 (m, 5H,

Ph);¹³C NMR (CDCl₃): δ 61.7 (C-2), 30.8 (C-3), 61.7 (C-4), 117.1 (C-4a), 128.4 (C-5), 108.3 (C-6), 159.7, (C-7) 102.3 (C-8) 155.5 (C-8a). 69.7 (OCH₂), 127.2, 128.4, 136.8 130.5 (Ph).

11b: IR: 3274 cm^{-1} ; ¹HNMR (CDCl₃): δ 4.85 (s, 2H, OCH₂), 5.15 (d, *J*=8 Hz, 1H, H-4), 1.90 (bs, 1H, OH), 7.10-7.50 (m, 1H, H-5), 7.10-7.50 (m, 1H, H-5), 7.10-7.50 (m, 1H, H-7), 6.74 (d, *J*=9 Hz, 1H, H-8), 6.90 (1H, =CH), 7.10-7.50 (m, 5H, Ph).

Acknowledgement

We thank Heterodrugs (P) Ltd, Hyderabad, India for a research fellowship to SR.

References

- 1 Servi S, Synthesis, 1990, 1.
- 2 Roberts S M, Wiggins K, Casy K & Phythian S, Preparative Bio-transformations of whole cell and isolated enzymes in organic synthesis (John Wiley, New York), **1993**.

- 3 Prelog V, Pure Appl Chem, 9, 1964, 119.
- 4 Majeric M, Gelo-pujic M, Sunjic V, Levai A, Sebok P & Timar T, *Tetrahedron Asymmetry*, 6, **1995**, 937.
- 5 Ellis G P, Chromenes, chromanones and Chromones (John Wiley, New York), 1977.
- 6 Holland H L, Manoharan S T & Schweizer F, *Tetrahedron* Asymmetry, 2, 1991, 335.
- 7 Utaka M, Konishi S, Okubo T, Tsuboi S & Takeda A, *Tetrahedron Lett*, 28, **1987**, 1447.
- 8 (i) Thakar G P, Janaki N & Subba Rao B C, Indian J Chem, 3, 1965, 74.
 (ii) Canalini G, Degani I, Fochi R, Spunta G, Ann Chim (Rome), 57, 1967, 1045.
 (iii) Steven M F, Lai, Orchison J A, Whiting D A, Tetrahedron, 45, 1989, 5895.
 (iv) Breytenbach J C, Rall G J H, J Chem Soc Perkin I, 1980, 1804.
 9 (i) Loudon J D & Razdan R K, J Chem Soc, 1954, 4299.
- (i) Chakravarti D & Dutta J, J Indian Chem Soc, 16, 1939, 639.

(iii) Bennett P, Donnelly J A, Meaney D C & Boyle P O, J Chem Soc Perkin I, **1972**, 1554.

10 Bhalerao U T, Chandraprakash Y, Lukebabu R & Fadnavis N W, Synthetic Commun, 29, 1993, 1201.