A novel synthesis of spiro[5*H*-1,4-diazepine-5,3'-[3*H*]indol]-2'(1'H)-ones and spiro[2*H*-1,5-benzodiazepine-2,3'-[3*H*]indol]-2'(1'*H*)-ones

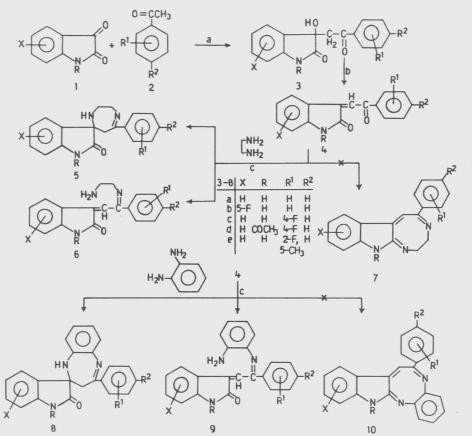
Saroj Nishith Bajpai^{*†}, Renuka Jain & Krishna C Joshi Department of Chemistry, University of Rajasthan, Jaipur 302 004

Received 1 October 1996; revised and accepted 6 October 1997

Reactions of 3-aroylmethyleneindol-2(H)-ones 4 with ethylenediamine and ρ -phenylenediamine have been investigated for the first time leading to novel system of spiro compounds 5 and 8 respectively. Schiff's bases 6 and 9 have also been isolated and properly characterized.

Diazepines and benzodiazepines are important seven membered heterocyclic ring systems widely acclaimed for their physiological activities. Librium, valium and anthramycin are but a few examples of this diverse group of diazepines¹. A comprehensive literature survey revealed that indolvl carbinols with on treatment ethylenediamine and o-phenylenediamine afford exclusively spiro[5H-1, 4-diazepine-5,3'-[3H] indol]-2'(1'H)-one and spiro [2H-1,5-benzodiazepine-2,3'-[3H] indol]2'(1'H)-one respectively^{2,3}. Similar reactions with 3-aroylmethyleneindol-2(H)-ones 4 have not been studied so far. It was therefore thought worthwhile to investigate these reactions. Since 4 are quite reactive compounds with an alkene system flanked on either side by two carbonyl groups, their reaction with each of these diamines theoretically offers three possibilities, viz. formation of a spiro derivative 5/8, a Schiff's base 6/9 and a condensed system 7/10 (cf. Scheme I). Isolation of products indicated the formation of spiro derivatives 5 and 8 along with Schiff's bases 6 and 9 with ethylenediamine and o-phenylenediamine, respectively. The condensed systems (7 and 10) were not formed with either of the diamines-probably because of the involvement of eight membered rings.

Fluorinated isatin 1, prepared by literature method^{4,5} from the corresponding aniline, on treatment with acetophenones 2 in the presence-of


diethylamine as catalyst, afforded 3aroylmethylene-3-hydroxyindol-2-ones 3 which on dehydration in hydrochloric acid-glacial acetic acid yielded the corresponding compound^{6,7} 4. Reaction of 4 with ethylenediamine in absolute ethanol under reflux for 10-12 hr gave a mixture which showed two spots on TLC plate visualized in iodine. Column chromatography of the mixture on a silica gel column afforded compounds 5 and 6 (added yields of the spiro products and Schiff's bases (5 and 6) were >90%. Physical data of all the synthesized compounds are given in Table I.

The reaction mixture obtained by reacting 1,2phenylenediamine with 4 under exactly similar conditions although showed one spot on the TLC plate when visualized in iodine vapours, it revealed the presence of a second compound under UV lamp which fluoresced in ultra violet light. Separation of the two compounds 8 and 9 was effected by preparative TLC, over silica gel G run in benzene; ethyl acetate (80:20) system, under UV lamp. Physical data of isolated compounds 8 and 9 are listed in Table II.

To check that the Schiff's bases 6 and 9 are not intermediates but stable products and do not get cyclised to the corresponding spiro products 5 and 8, the uncyclised products 6 and 9 were further refluxed in absolute ethanol for 28-30 hr. It was observed that respective percentage yields of the two products (spiro : Schiff's bases) remained unchanged for both the diamines.

Appearance of a peak in the region 1660-1700 cm⁻¹ for >C=O absorption in IR spectra of the products formed eliminated the possibility of the

Address for correspondence: 3, A-33, Raghav Apartments, Shyam Nagar, Jaipur 302 019

a: anhyd.EtOH, Et $_2$ NH, Δ , 30 mts; b: HCI: CH $_3$ CO $_2$ H, 30 mts, anhyd. EtOH; c: anhyd, EtOH, Δ

Scheme I

Table I—Analytical data of 7-aryl-2,3-6-tetrahydrospiro[5*H*-1,4-diazepine-5,3'-[3*H*]indol]-2'(1'*H*)-ones **5** and 1,3-dihydro-3- $\{1-[(2-iminoethyl)amine]-2-arylethylidene\}indol-2'($ *H*)-ones**6**

Compd	Yield	m.p.	Mol.formula	Found % (Calcd)		
	(%)	°C		С	Н	N
5a	48	216-18	C ₁₈ H ₁₇ N ₃ O	74.14	5.90	14.50
				(74.20	5.88	14.42)
5b	51	222	C ₁₈ H ₁₆ FN ₃ O	69.86	5.20	13.61
				(69.88	5.21	13.58)
5c	53	201	C ₁₈ H ₁₆ FN ₃ O	69.77	5.27	13.51
				(69.88	5.21	13.58)
5d	52	225	C ₂₀ H ₁₈ FN ₃ O ₂	68.38	5.09	12.01
				(68.36	5.16	11.96)
5e	50	236	$C_{19}H_{18}FN_2O$	70.74	5.56	13.03
				(70.57	5.61	12.99)
6a	50	239-42	C ₁₈ H ₁₇ N ₃ O	74.37	5.83	14.39
				(74.20	5.88	14.42)
6b	46	240	C ₁₈ H ₁₆ FN ₃ O	69.73	5.27	13.53
				(69.88	5.21	13.58)
6c	45	209-10	C ₁₈ H ₁₆ FN ₃ O	69.72	5.28	13.60
				(69.88	5.21	13.58)
6d	40	235	C ₂₀ H ₁₈ FN ₃ O ₂	68.27	5.18	11.87
				(68.36	5.16	11.96)
6e	45	257	C ₁₉ H ₁₈ FN ₃ O	70.45	5.55	13.00
				(70.57	5.61	12.99)

Compd	Yield (%)	m.p. °C	Mol.formula	Found % (Calcd)		
				С	Н	N
8a	70	68-69	C ₂₂ H ₁₇ N ₃ O	77.77	5.12	12.40
				(77.85	5.05	12.38)
8b	68	98	C ₂₂ H ₁₆ FN ₃ O	74.85	4.52	11.81
				(73.93	4.51	11.76)
8c	70	110	C ₂₂ H ₁₆ FN ₃ O	73.98	4.47	11.69
				(73.93	4.51	11.76)
8d	61	115	C ₂₄ H ₁₈ FN ₃ O ₂	76.88	4.80	11.11
			2, 10 7 2	(75.97	4.78	11.08)
8e	65	121	C ₂₃ H ₁₈ FN ₃ O	74.44	4.91	11.37
			25 10 5	(74.37	4.88	11.31)
9a	28	130	C ₂₂ H ₁₇ N ₃ O	77.98	5.03	12.32
				(77.85	5.05	12.38)
9b	25	93	C ₂₂ H ₁₆ FN ₃ O	73.87	4.46	11.69
			24 10 5	(73.93	4.51	11.76)
9c	20	105	C ₂₂ H ₁₆ FN ₃ O	73.81	4.54	11.74
			22 10 5	(73.93	4.51	11.76)
9d	22	135	C ₂₄ H ₁₈ FN ₃ O ₂	75.89	4.76	11.12
			2. 10 5 2	(75.97	4.78	11.08)
9e	25	114	C ₂₃ H ₁₈ FN ₃ O	74.48	4.84	11.34
			25 10 5	(74.37	4.88	11.31)

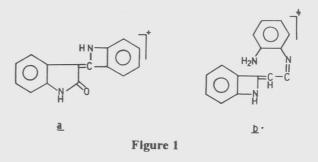
Table II—Analytical data of 4-aryl-2,3-dihydrospiro[2H-1,5-benzodiazepine-2,3'-[3H]indol]-2'(1'H)-ones 8 and 1,3-dihydro-3-{1-[(2-iminophenyl) amine]-2-arylethylidene}indol-2(H)-ones 9

formation of a condensed system (7/10). Formation of spiro compound 5a from 4 was evidenced by IR spectrum having absorption bands at 3280, 3160-3060 cm^{-1} for the two >NH groups, at 1680 for carbonyl group and at 1610 cm⁻¹ for >C=N stretching. ¹H NMR spectrum showed a singlet at δ 2.40 for $-CH_2$ - and two triplets centered at δ 2.88 and δ 3.42 for the two $-CH_2$ groups attached to the sp^3 and (sp^2) hybridized nitrogen respectively. A multiplet in the region δ 6.63-7.71 integrating for 9 aromatic protons and singlets at δ 9.45 and δ 10.85 (NH) were also observed. Mass spectrum of 5a depicted M⁺ at m/z 291, corresponding to the molecular formula C₁₈H₁₇N₃O. Molecular ion peak was also the base peak. IR spectrum of Schiff's base 6a revealed, a doublet at 3030 and 3060 cm⁻¹ representing the 'free' asymmetrical and symmetrical stretching due to -NH₂ group and singlets at 3100 (-NH stretching),1680 (>C=O stretching) and 1610 cm⁻¹ (>C=N stretching). In the 'H NMR spectrum of 6a, two triplets at δ 3.14 and δ 3.65 (two -CH₂groups) and a singlet at δ 5.60 (=CH-) were observed. A multiplet in the region δ 6.09-7.59 integrating for 9 aromatic protons and singlets at δ 9.23 (NH) and d 10.48 (-NH₂) were also present. The presence of molecular ion peak at m/z 291

corresponding to the molecular formula $C_{18}H_{17}N_3O$ and of a base peak, obtained by the loss of a neutral H_2 molecule at 289 further confirmed the structure assigned.

The conversion of compound 4 to 8a on its reaction with 1,2-phenylenediamine was evidenced by the presence of absorption bands at 3260 and 3140-3050 (two >NH groups), 1675 (C=O) and 1610 cm⁻¹ (C=N stretching) in the IR spectrum. ¹H NMR spectra of 8a revealed a singlet at δ 1.67 (-CH₂-), a multiplet integrating for 13 aromatic protons at δ 7.17-8.37 and singlets at δ 9.38 and δ 9.62 for >NH protons. In the mass spectrum of 8a M⁺ was observed at m/z 339 which correspond to the molecular formula $C_{22}H_{17}N_3O$. The molecular ion peak was also the base peak. IR spectrum of the Schiff's base 9a showed an absorption band at 3360-3240 (>NH stretching) and a doublet at 3040 and 3080 cm⁻¹ representing respectively the 'free' asymmetrical and symmetrical stretching of amino group. Absorption bands at 1680 (C=O) and 1610 cm⁻¹ (>C=N) were also observed. Its ¹H NMR spectrum exhibited a resonance signal at δ 3.51 characteristic of the methine proton. Aromatic protons at δ 6.70-7.37 and imido and amino proton resonance signals at δ 8.61 and 10.20 respectively were also observed. The presence of molecular ion

peak at m/z 339 corroborating with $C_{22}H_{17}N_3O$ and of a base peak obtained by the loss of a H₂ moiety at 337, further supported the proposed sturcture. Subsequent fragmentation follows two major pathways viz. loss of a C_6H_5CN (103) moiety from the base peak or alternatively, loss of a C_6H_5 (77) free radical followed by a neutral CO(28) fragment from the molecular ion peak, giving a radical cation, in both the cases, of m/z 234 which may thus have two structures **a** and **b** (Fig. 1).


¹⁹F NMR spectra of the fluorinated analogues of **5a**, **6a**, **7a** and **8a** revealed a fluorine attached to the indole ring at δ -112.474 to δ -116.061 and of aryl ring at δ -119.125 to δ -120.783, depending upon the substitution position.

Experimental Procedure

Melting points are uncorrected. IR spectra were recorded on a Perkin-Elmer Ac-1 spectrophotometer (λ_{max} in cm⁻¹); ¹H NMR and ¹⁹F NMR spectra were recorded on Perkin-Elmer R-32 spectrometer at 89.55 and 84:25 MHz respectively using TMS as internal reference for ¹H NMR and hexafluorobenzene as external standard for ¹⁹F NMR spectra. Mass spectra were recorded on a Jeol JMS D-300 spectrometer. The elemental analyses were performed at RSIC, Lucknow. Purity of the compounds was checked on TLC plates.

3-Aroylmethyleneindol-2(H)-ones 4, viz. 3benzoylmethyleneindol-2-one, 5-fluoro-3-benzoylmethyleneindol-2-one, 3-(4'-fluorobenzoyl)-methyleneindol-2-one, 1-acetyl-3-(4'-fluorobenzoyl)methyleneindol-2-one and 3-(2'-fluoro-5'-methylbenzoyl)-methyleneindol-2-one were prepared by literature methods^{5,6}.

7-Aryl-2,3,6-tetrahydrospiro [5H-1,4-diazepine-5,3'-[3H]indol]-2'(1'H)-ones 5a-e and 1,3dihydro-3-{1-[(2-iminoethyl) amine]-2-arylethylidene} indol-2(*H*)-ones ба-е. General procedure. A mixture of appropriate 4 (.01 mole) and ethylenediamine (0.01 mole, 0.60g) in absolute ethanol (60 mL) was refluxed for 10-12 hr. The residue obtained on concentrating and cooling showed two spots on TLC run in C₆H₆ : EtOAc (9:1) when visualized in I₂ vapours. Separation was effected by column chromatography on silica gel. The eluents were used in increasing order of polarity. Spiro compounds 5a-e obtained from the benzene fraction were filtered and recrystallized

from benzene. The Schiff's bases **6a-e** were obtained from the benzene ethyl acetate (80:20) fraction and recrystallized from ethanol. All the compounds along with their analytical data are given in Tables I and II.

4-Aryl-2,3-dihydrospiro [2H-1,5-benzodiazepine-2,3'-[3H]indol]-2' (1'H) ones 8a-e and 1,3-dihydro-3-{1-[(2-iminophenyl) amine]-2arylethyledene}indol-2(H)-ones 9a-e. General procedure. Appropriate 4 (0.01 mole) and 1,2phenylenediamine (0.01 mole, 1.08 g) were refluxed together in 50 mL of absolute ethanol for 5 hr. The solid mixture obtained showed two spots on TLC visualized under UV lamp and was therefore subjected to preparative TLC on silica gel G using benzene ethyl acetate (80:20) solvent system as irrigant. The fluorescent band was cut, taken in acetone, stirred and filtered. The filterate on concentration yielded a residue which was recrystallized from pet. ether to give needle shaped crystals of spiro compounds 8a-e. The Schiff's bases 9a-e appeared as brown spots and were also recrystallized from pet. ether.

Acknowledgement

One of the author (SNB) is thankful to the UGC, New Delhi, for the grant of JRF.

References

- Newkome G R & Paudler W M, Contemporary Heterocyclic Chemistry, (John Wiley & Sons, USA), 1982, 375.
- 2 Zhungietu G I, Vlad L A & Chukhrii F N, *Khim. Prir.* Soedin, **1976**, 797; Chem Abstr, 90, **1976**, 123886f.
- 3 Zhungietu, G I, Vlad L A & Chukhrii F N, V Sb, Khimiya i Farmacol Indol'n Soedinenii, 1975, 61; Chem Abstr, 84, 1976, 121786d.
- 4 Yen Y Q, Buu-Hoi N P & Xuong N D, J Org Chem, 23, 1958, 1858.
- 5 Salder P W, J Org Chem, 21, 1957, 169.
- 6 Popp F D & Donigan B E, J Pharm Sci, 68, 1979, 519.
- 7 Popp F D, Parson R & Donigan B E, *J Heterocyclic Chem*, 17, **1980**, 1329.