Note

Synthesis of novel 3-cyano-4-methylthio-6-(arylcyclopropyl)-3-(1*H*)-pyridones and 5(3)-methylthio-3(5)-(arylcyclopropyl)pyrazoles

Okram Mukherjee Singh*a, H Junjappab & H Ilab aDepartment of Chemistry, Manipur University, Canchipur, Imphal 795 003, Manipur, India bDepartment of Chemistry, North-Eastern Hill University, Shillong 793 003, India

Received 11 June 1997; accepted 14 July 1997

Reactions of cyclopropyl compounds 1 with cyanoacetamide in the presence of sodium isopropoxide in refluxing isopropanol afford the novel pyridones 2. Similarly, when compounds 1 are reacted with hydrazine hydrate in refluxing ethanol, novel 5(3)-methylthio-3(5)-cyclopropylpyrazoles 3 are obtained in high yields.

α-Oxoketene dithioacetals have been proved to be the useful intermediates in organic synthesis¹⁻³. In this area, cyclopropyl substituted ketene dithioacetals 1 have been extensively used in Lewis acid assisted rearrangements for the synthesis of functionalised cyclopentanones⁴⁻⁶. Research in the cyclopropane compounds and their Lewis acid or thermal rearrangements has been of increasing interest over the past years^{7,8}. Prompted by these studies and in connection with a programme devoted to the preparation of biologically active heterocyclees we report herein a convenient method to prepare various cyclopropyl substituted heterocycles. The present method provides a general route to cyclopropylpyridones 2 and pyrazoles 3 by reacting the α -bis(methylthio)methylene cyclopropyl ketones 1 with cyanoacetamide and hydrazine hydrate, respectively.

In a typical experiment, when 1a (R'=H, R=C₆H₅) was reacted with cyanoacetamide in the presence of sodium isopropoxide in isopropanol, work-up of the reaction mixture afforded the corresponding 3-cyano-4-methylthio-6-phenylcyclopropyl-2(1*H*)-pyridone 2a in 75% yield. Similarly, other substituted 6-(arylcyclopropyl)-2(1*H*)-pyridones 2b-e

$$\begin{array}{c}
 & \text{NCCH}_2\text{CONH}_2 / \text{NaOPr}^i / \\
 & \text{Pr}^i\text{OH}, \Delta, 10-12h \\
 & \text{70-80}\% \\
 & & \text{1}_{\text{0}} - e
\end{array}$$

$$\begin{array}{c}
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1 \\
 & 1$$

Scheme I

Scheme II

were obtained from α -bis(methylthio)methylene cyclopropyl ketones **1b-e** under identical conditions in 70-80% overall yields (Scheme I). In an another experiment, when **1a** was refluxed with hydrazine hydrate in ethanol the corresponding 5(3)-methylthio3(5)-(phenylcyclopropyl)pyrazole **3a** in 90% yield. The α -bis(methylthio) arylcyclopropyl ketones **1b-f** similarly afforded the corresponding pyrazoles **3b-f** (Scheme II) in 86-92% overall yields.

Experimental Section

Melting points were determined on a Thomas Hoover melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 297 and 983 spectrometer (ν_{max} in cm⁻¹), PMR spectra on a Varian EM-390 spectrometer using TMS as internal standard (chemical shifts in δ , ppm) and mass spectra on a Jeol-D 300 mass to a solution of the appropriate S, S-acetal 1 (5 mmoles) in distilled ethanol (20 mL) and the reac-

rable I—¢h Compd.	naracterization data of Mol. formula	3-cyano-	4-methylt Yield	thio-6-(aryl Fc	yl cyclopropyl)-2 (I Found (Calcd) (%))-2 (IH)-pyrid	ones 2a-e and 5(3)-methylthio-3(5)	able I—Characterization data of 3-cyano-4-methylthio-6-(aryl cyclopropyl)-2 (IH)-pyridones 2a-e and 5(3)-methylthio-3(5)-(arylcyclopropyl)pyrazoles 3a-f Compd. Mol. formula m.p. Yield Found (Calcd) (%) IR(KBr/CCL ₄)
	(Mol. wt)	(°C)	(%)	C	Н	Z	(cm ⁻¹)	δ, ppm
7a	C ₁₆ H ₁₄ N ₂ OS (282)	151	75	68.32 (68.5	4.6	9.9	(KBr):3290 (vNH), 2201 (vC≡N), 1670, 1596	(DMSO- <i>d</i> ₆): 1.29-1.56(m, 2H, CH ₂),1.67-1.71(m,1H, 2CH), 1.98- 2.40 (m, 1H;CH), 2.50(s,3H SCH ₃) 5.98 (s,1H;H-5), 7.05- 7.21 (m, 5H, ArH).
2b	C ₁₇ H ₁₆ N ₂ O ₂ S (312)		74	65.38 (65.40	5.12 5.01	8.97	3292, 2209 (vCN), 1632, 1586, (vCO and pyridone ring)	1.25-1.50(m, 2H, CH ₂), 1.56-1.65(m, 1H, CH), 1.90- 2.25(m, 1H, CH),2.43,(s, 3H, SCH ₃), 3.65 (s, 3H, OCH ₃), 5.90(s, 1H,H-5),6.70 (d, 2H, <i>J</i> =9Hz, ArH), 7.00 (d, 2H, <i>J</i> =9Hz, ArH).
2c	C ₁₈ H ₁₈ N ₂ O ₃ S (342)	140	75	63.1 (62.6	5.21	8.18	3298, 2209,1659, 1589	1.35-1.65 (m, 1H, CH), 1.85-2.10 (m, 1H, CH), 2.28-2.51 (m, 1H, CH), 3.80 (s, 6H, 2OCH,), 6.10 (s, 1H, H-5) 6.90 (m, 3H, ArH).
2d	C ₁₆ H ₁₃ N ₂ SCl (300.5)	150	80	64.5 (64	4.3	9.33	3294, 2213, 1652, 1597	1.35-1.60 (m, 2H, CH ₂), 1.70-1.89 (m,1H,CH), (m,1H,CH), 2.59 (s, 3H, SCH ₃), 6.10(s, 1H, H-5), 7.20-7.50 (m, 4H, ArH).
2e	C ₁₇ H ₁₆ N ₂ OS (296)	145	70	68.91	5.40	9.45	3128, 2210, 1651, 1595	1.35-1.65 (m, 2H, CH ₂), 1.80-2.01 (m, 1H, CH), 2.25-2.45 (m, 1H, CH), 2.50 (s, 3H, CH ₃),2.68(s, 3H, SCH ₃), 6.20 (s, 1H, H-5), 7.20-7.45 (m, 4H, Ar).
æ (C)	C ₁₃ H ₁₄ N ₂ S (230	Oil	06	67.8	9.09	12.1	(CCl ₄):3156(vNH),1587 (vC=N), 1430	(CDCl ₃):1.10-1.25(m, 2H, CH ₂). 1.85-2.0 (m, 2H, 2CH), 2.29(s, 3H, SCH ₃), 5.85(s, 1H, H-4), 7.0-7.30(m, 5H, ArH).
3b	C ₁₄ H ₁₆ N ₂ OS (260)	Oil	92	64.45 (62.0	6.3	10.51	3176, 3130, 1609, 1510	1.20(m, 2H, CH ₂), 2.1(m, 2H, 2CH), 2.3 (s, 3H, SCH ₃), 3.70 (s, 3H, OCH ₃), 5.90(s, 1H, H-4), 6.75(d, 2H, <i>J</i> =9Hz, ArH), 6.95 (d, 2H, <i>J</i> =9 Hz, ArH)
36	C ₁₅ H ₁₈ N ₂ OS (260)	Oil	91.3	62.06 (62.0	6.20	9.65 9.70)	3155, 1590, 1280	1.20(m, 2H, CH), 2.0(m, 2H, 2CH), 2.23(s, 3H, SCH ₃), 3.65 (s, 3H, OCH ₃), 5.85(s, 1H, H-4), 6.50-6.65(m, 3H, ArH).

Contd.

Compd.	Mol. formula	m.p.	Yield	Ā	Found (Calcd) (%)	(%)	IR(KBr/CCL ₄)	¹ H NMR (Solvent))
	(Mol.wt)	(°C)	(%)	O	Н	z	(cm ⁻¹)	8, ppm
3d	C ₁₆ H ₂₀ N ₂ O ₃ S (320)	Oil	68	60.0	6.25	8.75	3133, 1576, 1499, 1232	1.20(m,2H,CH ₂), 1.98-2.20(m,2H,2CH) 2.29(s,3H,SCH ₃)3.65(s, 3H,OCH ₃),3.70(s,6H,2xOCH ₃),5.83(s,1H,H-4), 6.22 (s, 2H, ArH).
36	C ₁₃ H ₁₃ N ₂ SCI (264.5)	Oil	06	58.97 (58.85	4.91	10.58	3125, 1568, 1449, 1428	1.15-1.35 (m, 2H, CH ₂), 2.01-2.20 (m, 2H, 2CH), 2.29 (33H, SCH ₃), 5.89 (s, 1H, H-4), 6.95 (d, 2H, <i>J</i> =9Hz, ArH)) 7.20 (d, 2H, <i>J</i> =9Hz, ArH).
3f	C ₁₄ H ₁₆ N ₂ S (249)	Oil	98	68.85	6.55	11.47	3129, 2919, 1565, 1430	1.20(m, 2H, CH ₂), 2.0-2.11 (m,2H,2CH), 2.29(s, 3H, SCH ₃), 5.86 (s, 1H, H-4), 6.90-6.99 (m, 4H, ArH).

Table I—Characterization data of 3-cyano-4-methylthio-6-(aryl cyclopropyl)-2 (IH)-pyridones 2a-e and 5(3)-methylthio-3(5)-(arylcyclopropyl)pyrazoles 3a-f—Contd

(s,

spectrometer. Elemental analyses (C, H, N) were carried out on a Heraus CHN-O Rapid Elemental analyser. The required α -bis(methylthio)methylene cyclopropyl ketones $\mathbf{1a-f}$ were prepared according to the earlier reported^{1,4} procedure.

3-cyano-4-methylthio-6-Preparation of arylcyclopropyl)-2(1H)-pyridones (substituted 2a-e: General procedure. To a solution of sodium isopropoxide [prepared by dissolving 0.23 g (0.01 mole) sodium in 40 mL of dry isopropanol] in isopropanol, cyanoacetamide (0.01 mole) was added and the mixture shaken for 5-10 min. The appropriate cyclopropyl ketene S, S-acetal (0.01 mole) was then added and the reaction mixture refluxed for 8-15 hr. Evaporation of the solvent yielded a bright orange sodium salt, which was diluted with water (20-30 mL) and filtered. The residue obtained was acidified with dil. HCl (30%) to give the corresponding crude pyridone 2 as a pale yellow amorphous solid which was crystallized from acetic acid.

The characterization data of pyridones 2a-e, thus prepared, are given in Table I.

Preparation of 5(3)-alkylthio-3(5)-(aryl substituted cyclopropyl)-pyrazole 3a-f: General procedure. Hydrazine hydrate (6 mmoles) was added tion mixture refluxed for 3-4 hr (monitored by TLC). The solvent was removed under reduced pressure and the residue diluted with water (100 mL), extracted with chloroform (2×50 mL). The organic layer was washed with water (100 mL), dried (Na₂SO₄) and evaporated to give the corresponding crude pyrazole (3a-f; Table I) which was further purified by column chromatography over silica gel using hexane-ethyl acetate (20:1) as eluent.

References

MS(m/z,%) of 2b:312(M⁺,100), 297(M⁺-15,40.1), 180(64.7). MS(m/z,%) of 3a: 230(M⁺,70), 215(M⁺-15,60)

- Junjappa H, Ila H & Asokan C V, *Tetrahedron*, 46, 1990, 5423-5506.
- 2 Kolb M, Synthesis, 1990, 171-190.
- 3 Dieter R K, Tetrahedron, 42, 1986, 3029.
- 4 Deb B, Asokan C V, Ila H & Junjappa H, Tetrahedron Lett, 29, 1988, 2111.
- 5 Deb B, Asokan C V, Ila H & Junjappa H, *J Chem Res Synop*, 1990, 356.
- 6 Patro B, Deb B, Ila H & Junjappa H, J Org Chem, 57, 1992, 2257.
- 7 Merz A & Markl G, Angew Chem Intern Ed, 85, 1973, 845.
- 8 Murphy W S & Wattanasin S, *J Chem Soc Perkin Trans-I*, 1982, 1029 and references therein.