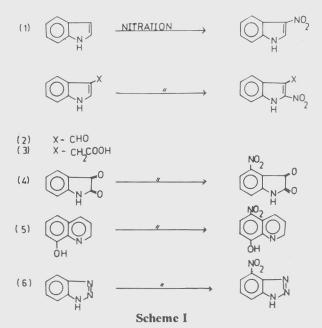
Note

Nitration of nitrogen heterocycles using microwaves

Mazaahir Kidwai* & Seema Kohli Department of Chemistry, University of Delhi, Delhi 110 007, India

Received 14 July 1997; accepted (revised) 17 October 1997

A comparative study of reaction time and yields for nitration of nitrogeneous heterocyclic compounds using $Cu(NO_3)_2$, KNO_3 and $NaNO_3$ under microwave irradiation as well as by conventional heating is reported.


Nitro compounds are not only used as reactive intermediates¹ but also in nuclear nitration²⁻⁵. Recently reported studies on the use of domestic microwave oven for the synthesis of hetero-cycles⁶⁻¹⁰ show that it is a safe and practically convenient methodology. Keeping in view the potential of microwave irradiation in organic synthesis we undertook the study on the nitration of some heterocyclic compounds using commonly available reagents under microwave irradiation and also by conventional heating.

Results and Discussion

Nitration of selected heterocycles using $Cu(NO_3)_2$, $Pb(NO_3)_2$, KNO_3 and $NaNO_3$ in gl. acetic acid under microwave irradiation and also by conventional heating method furnished products as are given in Scheme I. The results are reported in Tables I and II. The comparative study reveals that $Cu(NO_3)_2$ in gl. acetic acid is superior reagent over others. KNO_3 and $NaNO_3$ are the least reactive nitrants while $Pb(NO_3)_2$ is moderately reactive. The products were obtained in fairly good yields with enhanced rate of reaction using microwave irradiation. IR and mass spectra confirm the prosence of mono nitro group in the products. This procedure provides an easier and safer method for nitration of heterocycles.

Experimental Section

Melting points were taken on electrothermal melting point apparatus and are uncorrected. IR

spectra (v_{max} in cm⁻¹) were recorded on 1710 Perkin Elmer FTIR spectro-photometer using KBr discs, ¹H NMR on FT NMR Hitachi R-600 using TMS as internal reference (chemical shifts in δ , ppm) and mass spectra on Jeol, JMS DX303 at 70eV. Reaction monitoring and the purity of compounds were checked on TLC (silica gel coated plates). Cupric nitrate, lead nitrate, potassium nitrate and sodium nitrate used were of laboratory reagent grade. All the sequences of irradiation were carried out in Padmini essentia microwave oven model Brownie using high as the cook level

Nitration of Compounds

Method A. Indole (0.01 mole) was dissolved in a minimum quantity of gl. acetic acid (6 mL) and to it was added a solution of $Cu(NO_3)_2$ (0.011 mole) in water (5 mL). The contents were subjected to microwave irradiation for an appropriate time. It was diluted and extracted with ethyl acetate (10 mL). The product obtained was recrystallized from ethyl acetate-pet. ether (10-15 mL).

Method B. Indole (0.01 mole) was dissolved in a minimum quantity of gl. acetic acid (6 mL) and

Lıt	(°C) (°C)		2104			248-50 ¹¹	3 180 ¹²	220 ¹³										
1	m.p. (°C)		214	213	213	251	182-3	216										
	Time	B (hr.)	22	31	35	29	38	40									1H, 7H)	
	Tir	A (Sec) B (hr.)	210	360	360	330	360	360					(H	(O)	H, NH)		, 7.9 (d,	
NaNO3	ield %	B	40	29	26	30	22	20					ır, 1H NI	, 1H, CE	.7 (br, 1I		1H, 6H)	
	Yield %	A	50	41	35	40	32	28				l ₃)	l), 9.0 (b	l), 9.8 (s	Ar-H), 8	(H	, 7.6 (d,	
	e	B (hr.)	20	28	32	31.5	25	36				H NMR (CDCl ₃)	1H 2CH	r 1H NH	m, 4H, /	, 1H, NF	H Ar-H)	
	Time	A (Sec) B (hr.)	180	300	330	360	300	360				WN H ₁	7.5-7.7 (m, 4H, Ar-H), 8.2 (s, 1H 2CH), 9.0 (br, 1H NH)	7.2-7.5 (m, 4H Ar-H), 8.50 (br 1H NH), 9.8 (s, 1H, CHO)	3.3-3.4 (s, 2H, CH ₂), 7.3-7.6 (m, 4H, Ar-H), 8.7 (br, 1H, NH)	7.3-7.8 (m, 3H, Ar-H), 8.6 (br, 1H, NH)	6.0 (s, 1H, OH), 7.2-7.4 (m, 3H Ar-H), 7.6 (d, 1H, 6H), 7.9 (d, 1H, 7H)	
VINO3	q	m	40	31	25	35	30	18			40 1 K	P-T er	4H, Ar-F	4H Ar-H	H, CH ₂),	3H, Ar-F	ОН), 7.2-	
	Yield %	A	53	40	39	45	39	30)unouno	Simodillo	-7.7 (m,	-7.5 (m,	-3.4 (s, 2	-7.8 (m,	(s, 1H, 0	
ľ		B (hr)	80	16.5	23	11.5	10	15			data of C		7.5	7.2	3.3	7.3	6.0	
- 1	I ime	A (Sec)	90	150	180	210	120	210			Table II Sneetral data of Communde 1.6	-opecual						
1 U(1103/2		B	51	40	38	48	43	35			Tahla II			sym)				
	Yield	Ă	60	50	45	57	55	42					deform)	1310 (NO ₂ sym)	(NO_2)	(² ON) (
1		(hr)	3	9	7	5	3.5	00							10, 1360	520, 135(
	l'ime	A (Sec) B (hr)	30	45	55	90	30	120				cm ⁻¹)	330 (NO	2 (NO ₂ 8	OH), 15	C=0), 1:		
Cu(1103/2												IR (V _{max} in cm ⁻¹)	sym), 1	str.),151	, 3480 (, 1710 ((² ON)	
_	Yield %	B	70	50	45	30	60	35				IR) (NO ₂ a	(C+0	(C=0)	(C=0)	, 1330 (
		A	92	80	70	68	70	50	iation ating), 1520), 1647), 1695), 1750), 1495	
Comnd Heterocycles	erocycles		ole	Formyl Indole	Carboxyl Indole	u	8-Hydroxy Oninoline	Benzo-Triazole	A—Using microwave irradiation B—Using conventional heating				3220 (NH), 1520 (NO ₂ asym), 1330 (NO ₂ sym,	3180 (NH), 1647 (C+O str.),1512 (NO ₂ asym),	3200 (NH), 1695 (C=O), 3480 (OH), 1510, 1360 (NO ₂)	3280 (NH), 1750 (C=O), 1710 (C=O), 1520, 1350 (NO ₂)	3400 (OH), 1495, 1330 (NO ₂)	
TT-4-	pd Het		Indole	Fоп	Carl	Isatin	8-H	Ben	sing mic			Compd	-	7	3	4	ŝ	
2	EOC		1	7	3	4	5	9	AUs 3Us			0						

INDIAN J. CHEM. SEC B, NOVEMBER 1997

Ξ

1072

to it was added a solution of $Cu(NO_3)_2$ (0.011 mole) in water (5 mL). It was refluxed for an appropriate time, and worked-up as described in Method A.

References

- 1 Feuer H, in *Nitration, methods and mechanisms Organic nitro chemistry series* edited by G A Olah R Malkoba, & S C Narang, (VCH Publishers Inc), **1989**, pp 1-7.
- 2 Alazard J P, Kagan H B & Setton R, Bull Soc Chem Fr 1977, 499.
- 3 Bisarya S C, Joshi S K & Holkar A C, Synth Commun 23, 1993 1125.

- 4 Noland W E & Rush K R J org Chem 31, 1966, 70.
- 5 Aldrich Chemical Company, Inc USA 967, **1990**, NI, 780-7.
- 6 Caddick S, Tetrahedron 51, 1995, 10403.
- 7 Kidwai M, & Kumar P, J Chem Research (S) 1996, 254.
- 8 Kidwai M, & Goel Y, Polyhedron, 15 1996, 2829.
- 9 Kidwai M, Kumar R, & Kumar P, Indian J Chem 35B, 1996, 1004.
- 10 Kidwai M & Negi N, Monatshefte Chemie 128, 1997, 85.
- 11 Gassman P G, Cue (Jr) B W & Luh T Y, *J Org Chem* 42, 1977, 1344.
- 12 Gershon H, & McNeil M W, J Hetrocycl Chem 8, 1971, 821.
- 13 Elgurero, J et al, Ann Quim 74, 1978, 1529.