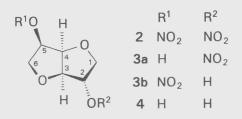
Note

A highly chemoselective reduction of isosorbide-2,5-dinitrate mediated by tetrathiomolybdate


Debjani Bhar & Srinivasan Chandrasekaran* Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

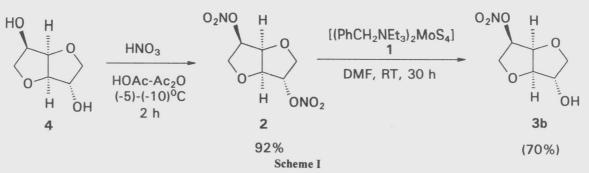
Received 24 April 1997; accepted 20 June 1997

In an interesting reaction mediated by benzyltriethylammonium tetrathiomolybdate, $[(PhCH_2NEt_3)_2MoS_4]$ isosorbide-2,5-dinitrate undergoes selective reduction to isosorbide- 5-mono-nitrate in good yield.

1,4:3,6-Dianhydro-D-glucitol-2,5-dinitrate 2 (isosorbide- 2,5-dinitrate) is a well established compound used in the treatment of coronary diseases. It is rapidly metabolized in the organism and 1,4:3,6-dianhydro-D -glucitol-2-nitrate 3a (isosorbide-2-nitrate) and 1, 4:3, 6 -dianhydro-Dglucitol-5- nitrate 3b (isosorbide-5-nitrate) occur as metabolities². The mononitrates 3a and 3b act as nonspecific smooth muscle relaxant and as blood vessel dilators³. Compared to the dinitrate 2, the mononitrates 3a and 3b are advantageously distinguished by various therapeutically important parameters such as resorption behaviour, half life, toxicity and oral applicability⁴. Because of this fundamental difference in the pharmaceutical application of the two compounds it is necessary to device methods so as to obtain isomerically pure mononitrates. A number of methods have been developed over the years for the synthesis of isosorbide mononitrates with varying degree of success. One of the approaches to the synthesis of 1,4:3,6-dianhydro-D-glucitol 5-mononitrate 3b involves selective esterification 1.4:3.6of dianhydro-D-glucitol 4 with carboxylic acids⁵⁻⁷. followed by nitration and hydrolysis^{7,8}.

In addition to these two methods, selective reductions of 1,4:3,6-dianhydro- D-glucitol 2,5-dinitrate to the 2- or 5- mononitrate using reagents like hydrazine hydrate^{3,9}, ferrous sulfate^{10,11}, cupric

chloride¹¹, powdered zinc^{10,12}, Pd/C in the presence of nickel chloride¹² and titanium (III) tetrahydroborates¹³ have also been described.


Of all the methods available for the synthesis of 2- or 5- mononitrate, the one reported by Modena involving chemoselective reduction of isosorbide-2,5-dinitrate with Zn/acetic acid or ferrous sulphate is the most attractive¹⁰.

Previously we have shown from our laboratory that benzyltriethylammonium tetrathiomolybdate, $(PhCH_2NEt_3)_2MoS_4(1)$ effects the reduction of a number of azides and isocyanides to the corresponding amines with evolution of nitrogen, a reaction reminiscent of nitrogenase enzyme¹⁴.

It has already been established that *Neurospora nitrate reductase*, an enzyme which catalyses the reduction of nitrates, is a metallo flavoprotein with flavine adenine dinucleotide (FAD) as the prosthetic group and molybdenum as the metal component¹⁵. As part of our continuing interest in the chemistry and reactivity of tetrathiomolybdate 1 it was of interest to find out whether tetrathiomolybdate 1 would induce reduction of nitrate esters and if so whether it can be utilized for the selective reduction of isosorbide 2,5-dinitrate **2**. Accordingly an exploratory reaction was carried out with **2**.

Treatment of the dinitrate 2 with benzyltriethylammonium tetrathiomolybdate 1 in DMF (RT, 30 hr) effected a smooth and highly chemoselective reduction of the 2-*exo*-nitrate group to afford the mononitrate 3b (Scheme I) as the only product in 70% yield.

Isosorbide dinitrate 2 possesses two different nitrate groups¹⁶⁻¹⁸, the sterically less hindered and more easily accessible 2- *exo*-nitrate and the more hindered 5-*endo*- nitrate^{16,17}. Regioselectivity in reduction in this particular substrate probably arises from the attack of the sterically more demanding

tetrathiomolybdate 1 on the more easily accessible 2- *exo*-nitrate.

This has proved to be an efficient method for the synthesis of isomerically pure isosorbide mononitrate 3b from the readily available isosorbide dinitrate 2. This simple procedure offers a practical route to selective monofunctionalization of isosorbide.

Experimental Section

General. Melting points were determined with a uni-melt capillary melting point apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer 781 spectrophotometer. ¹H NMR and ¹³C NMR were recorded on a Jeol 90 FXQ 90 MHz instrumental using tetramethylsilane as internal reference. Mass spectra were recorded on a Jeol DX-303 spectrometer. TLC was performed on 0.25 mm E. Merck precoated silica (60 F-254) plates. Product was purified by column chromatography over silica gel.

Isosorbide-2,5-dinitrate 2. Fuming HNO₃ (sp. gr. 1.57, 40 mL, 1 mole) was slowly added to acetic acid - acetic anhydride (1:1, 120 mL) maintained at -5 to -10 °C. The mixture was added dropwise with stirring, to isosorbide 4 (14.6g, 0.1 mmol) in acetic acid-acetic anhydride (2:1, 120 mL) maintained at -5 to -10 °C. After standing for 2 hr at 5 to 10 °C, the mixture was poured onto ice (600 g). The solid that separated was filtered, dried and recrystallised from pet. ether (60-80°) (21.6 g, 92%), m.p. 51-52° (lit.m.p., 50.5-51.5°); $[\alpha]_D^{22}$ +139.71° (c 2.1, EtOH, lit.1 + 141°); IR (thin film): 2930, 1650, 1290, 1120, 860 cm⁻¹; ¹H NMR (90 MHz, CDCl₃): δ3.90 (2H, dd, J = 7.5, 11.3 Hz), 4.05-4.20 (2H, m), 4.55(1H, d, J = 6.0 Hz), 5.00 (1H, t, J = 6.0 Hz), 5.35(2H, m); ¹³C NMR (22.5 MHz, CDCl₃): δ 69.3, 71.5, 80.7, 81.4, 84.7, 85.2; MS: m/z 237

(M⁺+1,2), 190 (1), 144 (36), 127 (50), 85 (53), 69 (89), 57 (85), 46 (100), 43 (98).

Reaction of dinitrate 2 with tetrathimolybdate 1. To a solution of 2 (0.21 g, 0.89 mmol) in DMF (6 mL) was added tetrathiomolybdate 1 (2.2 g, 3.6 mmoles). The reaction mixture was allowed to stir at RT for 30 hr. Once the reaction was over, DMF was removed under reduced pressure and the residue extracted with CH_2Cl_2 (5 x 2mL), ether (5 x 10 mL), and EtOH (5 x 10 mL), and filtered through a pad of Celite. The solvent was evaporated and the crude material purified by column chromatography on silica gel. The mononitrate 3b (0.12g; 70%) was obtained as a white solid using 25% EtOAc in pet. ether as eluent, m.p. 89.5- 91° (lit.19, m.p. 92°); $\left[\alpha\right]_{D}^{22}$ + 171.2° (c 1.4, (EtOH, lit.19 + 173.5°; IR (thin film): 3400, 2920, 1640, 1290, 1100, 860 cm⁻¹; ¹H NMR (90 MHz, CDCl₃): d 3.8-4.1 (5 H, m), 4.35 (1H, d, J = 3.7 Hz), 4.38 (1H, d, J = 6.0 Hz), 4.98 (1H, t, J = 6.0 Hz), 5.35(1H, td, J = 3.8, 6.0 Hz); ¹³C NMR (22.5 MHz, CDCl₃): d 69.1, 75.5, 75.6, 81.1, 81.3, 88.7; MS: m/z 192 (M^+ + 1,0.5), 146 (2.5), 127 (47), 85 (45), 69 (54), 57 (46), 43 (100).

Acknowledgement

The authors thank the Department of Science and Technology (DST), New Delhi for financial support of this investigation.

References

- 1 Jackson M & Hayward L D, Can J Chem, 38 1960, 496.
- 2 Sisenwine S F & Ruclius H W, J Pharmacol Exp Ther, 176, 1971, 269.
- 3 Emeury J M & Wimmer E, Eur Patent, 1981, 59664; Chent. Abstr, 99, 1983, 5968a.
- 4 (a) Abshagen U & Spoerl-Radun S, Eur J Clin Pharmacol, 19, 1981, 423; Chem Abstr, 95, 1981, 90776w.

(b) Stoss P, Merrath P & Schluter G, Synthesis, 1987, 174.

- 5 (a) Sanol S M, German Patent, 1980, 2903927; Chem Abstr, 1980, 239846n.
 - (b) Szeja W, J Chem Soc Chem Commun, 1981, 215.
- 6 (a) Buck K W, Foster A B, Perry A R & Wabber J M, *Carbohydr Res*, 2, 1966, 122.
 - (b) Lemieux R U & McInnes A G, Can J Chem, 38, 1960, 136.
- 7 (a) Stoss P, German Patent, 1981, 3124410; Chem Abstr, 98, 1983, 161103z.

(b) Gallardo Carrera A, Spanish Patent,, 1983, 518807; Chem Abstr,

(c) Fordonal S A, Chem Abstr, 101, 1984, 91399e.

- 8 Klessing K & Chatterjee S S, *Eur Patent*, **1980**, 44928; *Chem Abstr*, 96, **1982**, 200111f.
- 9 (a) Furst A, Berlo R C & Hooton S, Chem Rev, 65, 1965, 51;

(b) Toyokuni T, Cai S & Dean B, Synthesis, 1992, 1236.

- 10 De Lucchi O, Angius A, Filipuzzi F, Modena G & Camera E, Gazz Chim Ital, 117, 1987, 173; *Chem Abstr*, 108, 1988, 22180j.
- 11 Camera E, De Lucchi O, Filipuzzi F & Modena G, Eur Patent, 1986, 266450; Chem Abstr, 109, 1988, 23313n.

- 12 (a) Camera E, Filipuzzi F, De Lucchi O & Modena G, Eur Patent, 1985, 201067; Chem Abstr, 106, 1987, 67625.
 - (b) Stoss P & Hemmer R, *Adv Carbohydr Chem Biochem*, Vol. 49, (Academic Press, Inc. California) **1991**, p. 93.
- 13 Ravikumar K S & Chandrasekaran S, Synthesis, 1994, 1032.
- 14 Ramesha A R, Bhat S & Chandrasekaran S, J Org Chem, 60,1995, 7682.
- 15 (a) Nason A & Evans H J, J Biol Chem, 202, 1953, 655.
 - (b) Nicholas D J D & Nason A, J Biol Chem, 207, 1954, 353.
 - (c) Nicholas D J D & Nason A, Arch Biochem Biophys, 51, 1954, 310.

(d) Nicholas D J D, Nason A & McElroy W D, *J Biol Chem*, 207, 1954, 341.

- 16 Good win J C.Hodge J E & Weisleder D, Carbohydr Res, 79, 1980, 133.
- 17 Abbas S A & Haines A H, Carbohydr Res, 39, 1975, 358.
- 18 Brimacombe J S, Foster A B Stacey M & Whiffen D H , *Tetrahedran*, 4, 1958, 351.
- 19 Hayward L D, Livingstone D J Jackson M & Csizmadia V M, Can J Chem, 45, 1967, 2191.