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Abstract: A significant portion of the operating power of a base station is consumed by power
amplifiers (PAs). Much of this power is dissipated in the form of heat, as the overall efficiency of
currently deployed PAs is typically very low. This is because the structure of conventional precoding
techniques typically results in a relatively high variation in output power at different antennas in the
array, and many PAs are operated well below saturation to avoid distortion of the transmitted signals.
In this work, we use a realistic model for power consumption in PAs and study the impact of power
variation across antennas in the array on the energy efficiency of a massive MIMO downlink system.
We introduce a family of linear precoding matrices that allow us to control the spatial peak-to-average
power ratio by projecting a fraction of the transmitted power onto the null space of the channel.
These precoding matrices preserve the structure of conventional precoders; e.g., they suppress
multiuser interference when used together with zeroforcing precoding and bring advantages over
these precoders by operating PAs in a more power-efficient region and reducing the total radiated
distortion. Our numerical results show that by controlling the power variations between antennas
in the array and incorporating the nonlinearity properties of PA into the precoder optimization,
significant gains in energy efficiency can be achieved over conventional precoding techniques.

Keywords: energy efficiency; massive MIMO; downlink; linear precoding; spatial PAPR; nonlinear
power amplifier

1. Introduction

Massive multiple-input-multiple-output (MIMO) has become the key technology to
meet the capacity requirements of fifth-generation (5G) wireless communications and
beyond [1]. The basic idea of massive MIMO is to equip the base station with many
antennas and serve multiple users over the same time/frequency resources through spatial
multiplexing. However, the performance benefits of massive MIMO come from using more
hardware, e.g., multiple radio frequency (RF) chains per base station. Therefore, the study
and optimization of the total cost and energy efficiency of massive MIMO systems has
been an active research area over the last decade [2].

In this context, energy efficiency is typically defined as the number of bits that can
be reliably transmitted per unit of power consumed. The authors in [3] consider a model
to quantify the power consumed by digital signal processing and analog circuits in a
multi-user MIMO system. This model is then used for analyses that provide insight into
how to choose the number of antennas at the base station, the number of user equipment
(UEs) served, and the transmit power to maximize energy efficiency. A key finding of [3]
is that energy-efficient multi-user systems operate in a high signal-to-noise ratio (SNR)
region where interference-suppressing processing, such as zeroforcing (ZF) precoding, is
strongly preferable to interference-ignoring transmission schemes, such as maximum-ratio
transmission (MRT).

A significant portion of the operating energy of a base station is consumed by the
power amplifiers (PAs); see, e.g., Reference [4]. Much of this power is dissipated as
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heat, as the overall efficiency of currently deployed PAs is typically very low. This is
because in conventional transmission schemes, many of the PAs are operated well below
saturation to avoid distortion of the transmitted signals. Therefore, a reasonable approach
to improve energy efficiency is to design the transmission schemes in such a way that
the PA power dissipation is minimized. Examples of such energy efficient transmission
schemes are proposed in [5–7]. The authors in [5] consider a single-user MIMO channel
and propose a transmission power allocation strategy that provides an improved rate
for a given consumed power compared to conventional MRT transmission. In [6], it is
shown that transmit antenna selection can achieve near-optimal performance (in terms
of ergodic capacity) over a multiple-input-single-input (MISO) channel under constraints
on per-antenna and total power consumed. More recently, the authors in [7] extended the
analysis of [5,6] to point-to-point and multiuser MIMO scenarios. In the multiuser case,
a non-convex optimization problem is formulated and approached to minimize the total
power consumed at the PAs such that a certain minimum signal-to-interference-plus-noise
ratio (SINR) is achieved by all UEs.

The solutions in [5–7] do not take into account the effects of the distortion introduced
by the nonlinear PAs on the quality of the received signal. The amount and directivity
of the nonlinear distortion depend strongly on the covariance matrix of the beamformed
signal [8,9]. Motivated by this fact, a precoder optimization framework was proposed
in [10] that incorporates the PA nonlinearity properties in maximizing the spectral and
energy efficiency.

As a continuation of the work in [10], in this paper, we study the impact of per-antenna
power distribution among different antennas in the array on the energy efficiency of a
massive MIMO downlink system. We show that using a precoding matrix with a lower
spatial peak-to-average power ratio (SPAPR), it is possible to operate all PAs with high
power efficiency. Moreover, with such a precoding matrix, the total amount of distortion
emanating from nonlinear PAs can be drastically reduced by using a relatively small
backoff. We introduce a family of linear precoding matrices generated by adding a term
to the expression of conventional precoding matrices and exploiting the excess of spatial
degrees of freedom in massive MIMO systems. This term is projected onto the null space of
the channel and adjusted such that the resulting precoding matrix provides equal transmit
power at different antennas. The beneficial properties of this precoding scheme are achieved
at the cost of increased total transmission power and by wasting some of this power by
transmitting into null space. Accordingly, transmission with zero power variation can be
significantly suboptimal in different scenarios. For this reason, we introduce a framework
that allows a more flexible control of SPAPR by jointly optimizing both the precoder matrix
and the power variation across the antennas in the array. Finally, we perform numerical
simulations to compare the energy efficiency of the proposed precoding solutions with that
of conventional ZF precoding.

The remainder of this paper is organized as follows. In Section 2, we introduce the
system model considered and give relevant formulations for quantifying the spectral and
energetic efficiency. The impact of power variations between antennas in the array on the
spectral and energy efficiency is studied in Section 3. In Section 4, a simple framework for
generating precoding matrices with equal antenna powers is presented. This framework is
extended to a more general case with flexible control of SPAPR in Section 5. Numerical
results are given in Section 6, and finally the paper is concluded in Section 7.

Notation: The vectors and matrices are marked in bold with lower and upper case
letters. The superscripts (·)∗, (·)T , and (·)H denote the complex conjugate, the transpose,
and the Hermitian transpose, respectively. We use E[·] to denote the expected value.
Moreover, ‖a‖ is used to denote the `2-norm of the vector a. The M×M identity matrix
is denoted by IM. By A� B, we denote the Hadamard product (entry-wise product) of
two equally sized matrices A and B. Furthermore, diag(a) represents a diagonal matrix
containing the elements of the vector a on its diagonal, and diag(A) is the principal
diagonal of a square matrix A. The element-wise magnitude of a matrix A is represented
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by |A|. The distribution of a circularly symmetric complex Gaussian random vector with
covariance matrix C ∈ CM×M is denoted by CN (0, C).

2. System Model and Preliminaries

We consider the downlink of a multiuser MIMO transmission where the base sta-
tion uses a co-located array of B antennas to serve U single-antenna UEs as depicted in
Figure 1. The data symbols to be transmitted to the UEs, s = [s1, s2, . . . , sU ] ∼ CN (0, IU),
are precoded using a linear precoding matrix P = [p1, . . . , pU ] ∈ CB×U , yielding the
precoded signal

x = [x1, x2, . . . , xB] = Ps. (1)

+ =

Figure 1. System model: multiuser MIMO downlink with single-antenna UEs. The base station is
equipped with B transmit antennas serving U UEs via spatial multiplexing. Each transmit antenna
is equipped with a PA whose nonlinearity characteristics and power consumption are modeled as
(2) and (20), respectively.

The signal at each antenna branch xb passes through a nonlinear PA. The nonlinear
characteristics of the PAs are modeled using (2K + 1)th order polynomial as [11]

fb(xb) =
K

∑
k=0

β
(b)
2k+1xb|xb|2k = β

(b)
1 xb + β

(b)
3 xb|xb|2 + · · ·+ β

(b)
2K+1xb|xb|2K, (2)

where β
(b)
1 , β

(b)
3 , . . . , β

(b)
2K+1 are complex-valued model parameters corresponding to the bth

PA capturing both amplitude-to-amplitude modulation (AM/AM) and amplitude-to-phase
modulation (AM/PM) distortions.

Considering the multiuser MIMO system model in Figure 1, the received signal at the
uth user is given by

yu = hT
u f (x) + wu, (3)

where hu ∈ CB is the channel vector, x is the precoded signal as in (1), and f (x) =
[ f1(x1), . . . , fB(xB)]

T denotes the output of the PAs as described in (2). Furthermore, wu ∼
CN (0, N0) is the additive white Gaussian noise (AWGN).

2.1. Channel Model

In this paper, we use a channel model that captures the sparse scattering properties of
millimeter-wave channels in non-line-of-sight (nLoS) environments, namely when there is
no dominant path. In this model, typically referred to as a geometric channel model [12],
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each scatterer contributes to a single path, and the channel coefficients can be expressed
as follows:

hu =

√
B

Npath

Npath

∑
`=1

ζu,`a(ψu,`), (4)

for u = 1, . . . , U, where Npath represents the number of paths. Moreover, ψu,` is the angle
of departure (AoD) for the `th path, and a(ψu,`) is the corresponding array response vector.
For a uniform linear array (ULA) with half a wavelength antenna element separation, the
bth entry of the array response vector is given by

[a(ψu,`)]b =
1√
B

e−jπ(b−1) cos(ψu,`), (5)

for b = 1, . . . , B. Furthermore, ζu,` ∼ CN (0, γ2
u) is the independent and identically dis-

tributed (i.i.d.) channel gain (including path loss) corresponding to the `th path. Through-
out the paper, we assume that the UEs know the channel coefficients perfectly. However, on
the transmitter side, we consider the availability of both the perfect and imperfect channel
state information (CSI).

2.2. A Lower Bound on the Sum Rate Capacity

The nonlinear power amplifiers introduce distortion into the transmitted signal, which
can significantly degrade the capacity of the multiuser MIMO system. As a first step in
deriving a tractable approximation of the ergodic sum rate capacity of the channel input-
output model in (3), we use Bussgang’s theorem [13], which allows us to decompose the
output of the nonlinear function into a scaled linear signal and an uncorrelated distortion.
Since x is circularly symmetric complex Gaussian distribution (which follows from the
assumption of Gaussian s), we can decompose f (x) into

f (x) = Gx + e, (6)

where G = diag(g1, g2, . . . , gB) is diagonal matrix whose entries are the Bussgang gain
values given by [14]

gb =
E
[

f (xb)x∗b
]

E [|xb|2]
=

∑K
k=0 β

(b)
2k+1 E

[
|xb|2k+2

]
E [|xb|2]

. (7)

The distortion term in (6), i.e., e ∈ CB, is uncorrelated with x, i.e., E[xeH ] = 0B×B.
For the (2K + 1)th order polynomial model in (2), the Bussgang gain in (7) can be derived
using the moments of complex Gaussian random variables [15] as

gb =
∑K

k=0 β
(b)
2k+1(k + 1)! (σ2

xb
)k+1

σ2
xb

=
K

∑
k=0

(k + 1)! β
(b)
2k+1(σ

2
xb
)k, (8)

where σ2
xb

is the variance of the precoded signal at the bth antenna, i.e., xb. Using (1), the
matrix G can be derived as a function of the precoding matrix P as

G(P) =
K

∑
k=0

(k + 1)! A2k+1diag(Cx)
k (9)

= A1IB + 2A3diag(Cx) + · · ·+ (K + 1)! A2K+1diag(Cx)
K, (10)

where
A2k+1 = diag

([
β
(1)
2k+1, . . . , β

(B)
2k+1

])
, (11)
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for k = 1, . . . , K and Cx = E[xxH ] = PPH is the input covariance matrix. Using (9) and
following a similar approach as in, e.g., Equation (11) of Reference [8], the covariance
matrix of the distortion e can be derived as

Ce(P) =
K

∑
k=1

LkCx � |Cx|2kLH
k , (12)

where

Lk =
1√

k + 1

K

∑
l=k

(
l
k

)
(l + 1)! A2l+1diag(Cx)

l−k. (13)

The linear decomposition described in (6)–(13) allows for derivation of a lower bound
on the ergodic sum rate capacity. Substituting the Bussgang decomposed transmitted
signal in (3) yields

yu = hT
k G(P)Ps + hT

k e + wk = hT
u G(P)pusu + ∑

r 6=u
hT

u G(P)prsr + hT
u e + wu︸ ︷︷ ︸

weff,u

, (14)

where weff,u is the effective noise that consists of the inter-user interference, the received
nonlinear distortion, and the AWGN terms. In view of the fact that weff,u is not Gaussian,
the exact evaluation of the capacity is not straightforward. Using the so-called “auxiliary
channel lower bound” [16] and via replacing weff,u by a complex Gaussian noise w̃eff,u that
has the same variance as weff,u, the following achievable sum rate is obtained in closed form

Rsum(P) =
U

∑
u=1

log2(1 + SINDRu(P)), (15)

where SINDRu(P) denotes the signal-to-interference-noise-and-distortion ratio (SINDR) at
the uth user and is given as

SINDRu(P) =
|hT

u G(P)pu|2

∑
r 6=u
|hT

u G(P)pr|2 + hT
u Ce(P)h∗u + N0

. (16)

It is worth noting that the lower bound in (15) and (16) corresponds to the ergodic sum
rate that can be obtained using a Gaussian codebook and a mismatched nearest-neighbor
decoder at the UEs under the assumption that the channel coefficients hu are perfectly
known to the uth UE [17].

2.3. Power Consumption and Energy Efficiency

Energy efficiency analysis requires careful modeling of the power consumption. In
this paper, we focus on quantifying and minimizing the power consumption in the PAs.
The power efficiency of the bth PA is defined as

ηb =
ρ
(b)
tx

ρ
(b)
cons

, (17)

where ρ
(b)
tx denotes the output power, given by

ρ
(b)
tx = E

[
| fb(xb)|2

]
, (18)
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and ρ
(b)
cons represents the consumed power. Similarly to [5–8], we adopt the following simple

yet accurate model for the power efficiency:

ηb = η
(b)
max

√√√√ ρ
(b)
tx

ρ
(b)
max

. (19)

Here, ρ
(b)
max is the maximum output power of the bth PA, and η

(b)
max ∈ [0, 1] denotes the

maximum power efficiency obtained when ρ
(b)
tx = ρ

(b)
max. From (17) and (19), the consumed

power at the bth PA can be expressed as

ρ
(b)
cons =

1

η
(b)
max

√
ρ
(b)
tx ρ

(b)
max, (20)

for b = 1, . . . , B where ρ
(b)
tx ≤ ρ

(b)
max. In other words, the consumed power is proportional to

the square root of the output power, which was experimentally verified in various studies;
see, e.g., Equation (6.93) in Reference [18].

The achievable sum rate in (15) and the power consumption model in (20) facilitate
quantification of an energy efficiency metric, measured in bits per Joule, as

ηEE =
WRsum(P)

ρ
(tot)
cons(P)

, (21)

where W denotes the bandwidth and

ρ
(tot)
cons(P) =

B

∑
b=1

ρ
(b)
cons(P) (22)

is the total consumed power which can be evaluated using (20).

3. The Impact of SPAPR on Spectral and Energy Efficiency

As can be seen from the metrics formulated in Sections 2.2 and 2.3, the choice of the
precoder matrix P not only affects the spectral efficiency by controlling the useful signal
power, multiuser interference, and distortion, but it also directly affects the power efficiency
of the PAs and the overall energy efficiency of the system. In conventional precoding
schemes, the structure of P is such that there is considerable variation in the average output
power between antennas in the array at each coherence interval. An example of such
power variation can be seen in Figure 2a, where we have plotted the per-antenna output
power with ZF precoding and for one realization of the channel in (4) with a setup with
B = 32. Assuming ρ

(b)
max = 30 dBm and η

(b)
max = 0.55 for all b = 1, . . . , B, the corresponding

PA efficiencies are shown in Figure 2b. It can be seen that as a consequence of the power
variation across the antennas, many of the PAs exhibit poor efficiency. Furthermore,
as shown in Figure 2c, the contribution of these PAs to the nonlinear distortion is very
different. More specifically, it can be seen that small backoffs can considerably reduce the
amount of distortion. This is because the covariance of the distortion (12) is a function
of Cx � |Cx|2k, where Cx = PPH , and thus the distortion decreases faster than linearly at
reduced per-antenna powers.

Motivated by the observations made in Figure 2, in what follows, we seek precoding
matrices that yield a favorable tradeoff between total power consumption and total radiated
distortion. To this end, we propose precoding schemes with reduced power imbalance
over different antennas. It is worth noting that our proposed solutions are different from
precoding techniques with low peak-to-average power ratio (see, e.g., References [19,20]),
which aim at reducing the power variation in the temporal dimension. They also differ from
the solutions proposed in [21], where the power variation between antennas is reduced by
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precoding at the symbol level. Instead, we focus on block-level precoding schemes, which is
the common approach in this context.
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Figure 2. (a) Per-antenna transmit power values, (b) corresponding PA efficiencies, and (c) transmit-
ted nonlinear distortion from different antennas. These results have been obtained by considering
one realization of the geometric channel in (4) with B = 32, U = 4, and ZF precoding. The maximum

output power is ρ
(b)
max = 30 dBm and the maximum power efficiency of the PAs is η

(b)
max = 0.55 for

b = 1, . . . , B. The nonlinearity characteristics of the PAs are as in (2) with K = 1, β
(b)
1 = 1, and

β
(b)
3 = −0.0426− 0.0191j.

4. Precoding with Equal Antenna Powers

In this section, we present a family of linear precoding schemes with equal transmit
powers from different antennas in the array. To this end, we propose exploiting the excess
of spatial degrees of freedom in massive MIMO transmission to project part of the transmit
power to the null space of the channel. In particular, the precoding matrices with equal
antenna powers (EAP) can be generated as

PEAP = α(Pconv + P⊥Q), (23)

where Pconv is the precoding matrix corresponding to a conventional precoding scheme,
such as ZF and MRT, and P⊥ is the orthogonal projection onto the null space of the channel
matrix H = [h1, . . . , hU ] given by

P⊥ = I−H†H, (24)

where (·)† stands for the pseudo-inverse operation and assuming that H has linearly
independent rows, it is defined as H† = HH(HHH)−1. Moreover, Q is an arbitrary matrix,
which will be used to guarantee the EAP condition, as explained below. Finally, α in (23)
stands for the normalization factor, which is introduced such that the following two
constraints are satisfied for different choices of precoding matrix:

1. The per-antenna power constraint (PAPC) given by

ρ
(b)
tx = E

[
| fb(xb)|2

]
≤ ρ

(b)
max, (25)

for b = 1, . . . , B, where xb is the precoded signal input to the bth PA and can be
obtained by multiplying the bth row of the precoding matrix P by the transmitted
symbols s.

2. The total radiated power constraint (TRPC) given by

E
[
‖ f (x)‖2

]
≤ ρtot. (26)
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We now introduce a simple approach for finding Q such that the EAP transmission is
realized. In particular, we start by generating a matrix P̃ without power variation across
the antennas by normalizing the rows of Pconv such that

E
[
| fb(xb)|2

]
= ρ

(b)
max, (27)

for all b = 1, . . . , B. We then calculate the difference between P̃ and Pconv as

Q̃ = P̃− Pconv, (28)

and find the matrix Q such that Q̃ = P⊥Q, namely, by calculating

Q = P†
⊥Q̃. (29)

With a few iterations of (28) and (29), a precoder matrix is found that yields an almost
zero power variation. The reason why we need multiple iterations is the numerical impre-
cision in the computation of P⊥P†

⊥Q̃ ≈ Q̃. In particular, the differences between P⊥P†
⊥Q̃

and Q̃ in the first iteration lead to some disturbances in the per-antenna powers which
can be circumvented with some iterations of (28) and (29). A final step of normalization to
satisfy the TRPC in (26) gives the final solution for PEAP.

The precoding scheme in (23) allows for preserving the structure of the conventional
precoding matrix Pconv. For example, if Pconv is substituted by the ZF precoder, the resulting
precoding matrix for PEAP also suppresses the multiuser interference as the remaining part
of the signal is projected onto the null space of the channel.

In Figure 3a, we plot the per-antenna power values for PEAP obtained by replacing
Pconv with the ZF precoding in Figure 2. The fractions of power transmitted in the direction
of the UEs and the null space of the channel are shown in blue and white, respectively.
The corresponding PA efficiencies are shown in Figure 3b and are compared with the PA
efficiencies in conventional ZF precoding. The precoding scheme with EAP in (23) operates
the PAs with their highest efficiency, namely with ηb = 0.55 for all b = 1, . . . , B in this
particular example. Moreover, in precoding with EAP, unlike conventional ZF, where
different PAs contribute very differently to the distortion (see Figure 2c), different PAs
contribute almost equal amounts of nonlinear distortion, and therefore the total amount of
distortion can be drastically reduced by small backoffs. However, this is achieved at the
cost of increased total radiated power and by wasting some of this power by transmitting in
the null space of the channel. Nevertheless, we show in Section 6 that precoding with EAP
can lead to improved energy efficiency over conventional precoding schemes in certain
output power ranges.
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Figure 3. (a) Per-antenna transmit power values and (b) corresponding PA efficiencies for transmis-
sion with equal antenna powers versus conventional ZF for the same realization of the geometric
channel as in Figure 2.
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5. SPAPR-Controlled Distortion-Aware Precoding

Despite its attractive properties, the solution proposed in Section 4 can be significantly
suboptimal in different scenarios, since a large amount of power is wasted when transmit-
ting along the null space of the channel. Moreover, the conventional precoding schemes
such as ZF do not take into account the effects of nonlinear distortion and thus may provide
poor performance in the distortion-limited regimes. Motivated by these, in this section, we
present a more advanced precoding technique that provides more flexible control over the
power variation across antennas and further considers the effects of nonlinear distortion.
In particular, we extend the solution in (23) by considering the following structure

PSPDA = α(PDA + κP⊥Q), (30)

where the conventional precoder Pconv in (23) is replaced with a distortion-aware precoder
PDA and the parameter κ is introduced for a more flexible control of the power variation
across the antennas. Next, we present a two-step optimization procedure for finding PDA
and κ. In the first step, similarly to Algorithm 1 in [10], we adopt a projected gradient
ascent, to solve for

maximize
PDA∈CB×U

ΓEE(PDA) = Rsum(PDA)/ρ
(tot)
cons (PDA)

subject to E
[
‖ f (x)‖2] ≤ ρtot

and ρ
(b)
min ≤ E

[
| fb(xb)|2

]
≤ ρ

(b)
max for b = 1, . . . , B.

(31)

In particular, we seek a precoding matrix that maximizes energy efficiency under TRPC
and PAPC. Here, ρ

(b)
min is introduced for two purposes. First, it prevents the algorithm from

converging to a precoding matrix PDA with very low ρ(tot)
cons and Rsum values. The second

advantage of constraining the per-antenna power from below is that the optimization
solutions inherently exhibit less power variation across the antennas in the array, which
can be favorable in light of the analysis in Sections 3 and 4.

Algorithm 1 Steps for computing PDA [10].

Inputs: h1, . . . , hU , β
(b)
1 , . . . , β

(b)
K , ρ

(b)
min, ρ

(b)
max, η

(b)
max for b = 1, . . . , B, ρtot, and N0

Output: PDA

Initialization: µ(0) and P(0)

1: Γ(0)
EE ← Rsum(P(0))/ρ

(tot)
cons (P(0))

2: for i = 1, . . . , I do

3: P̃←
[
P(i−1)+µ(i−1)∇PΓEE

(
P(i−1))]+

4: Γ̃EE ← ΓEE(P̃)
5: if Γ̃EE > Γ(i−1)

EE then

6: P(i) ← P̃, Γ(i)
EE ← Γ̃EE, and µ(i) ← µ(0)

7: else
8: P(i) ← P(i−1), Γ(i)

EE ← Γ(i−1)
EE , and µ(i) ← 1

2 µ(i−1)

9: end if
10: end for
11: PDA ← P(I)

To solve (31), similarly to Algorithm 1 in [10], we start with an initial precoding matrix
P(0) and update it by taking steps along the steepest ascent direction of the objective func-
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tion ΓEE(PDA) = Rsum(PDA)/ρ
(tot)
cons (PDA). The resulting precoding matrix is then normalized to

ensure the feasibility of the solution. This procedure can be formulated as [22]

P̃ =
[
P(i−1) + µ(i−1)∇PΓEE

(
P(i−1))]+, (32)

where i = 1, . . . , I is the iteration index, I is the maximum number of iterations, µ(i) is the
step size of the ith iteration, and [·]+ denotes the normalization of the updated precoding
matrix such that the two power constraints are satisfied. Once this normalization is applied,
the objective function ηEE(P̃) = Rsum(P̃)/ρ

(tot)
cons (P̃) is calculated, and if ηEE(P̃) > ηEE(P(i−1)),

we update the precoding matrix to P(i) = P̃ and reset the step size µ(i) = µ(0). Otherwise,
we do not update the precoding matrix, i.e., P(i) = P(i−1), and decrease the step size
µ(i) = 1

2 µ(i−1). Finally, we choose PDA = P(I) as the output of the algorithm. The steps
required for computing PDA is summarized in Algorithm 1.

Now, for a fixed PDA, we obtain the matrix Q in (30) using a similar procedure as
described in Section 4 and then find the optimal value for κ by conducting a simple line
search over the interval [0, 1] with the goal of maximizing Rsum(PSPDA)/ρ

(tot)
cons (PSPDA). The

value of κ = 1 corresponds to the special case with EAP precoding similar to the solution
in (23). The optimization over κ provides an additional control on the SPAPR value,
yielding a better tradeoff between the total consumed power and the amount of the
radiated distortion.

6. Numerical Results

In this section, we perform numerical simulations to compare the performance of
the solutions presented in Sections 4 and 5 with the performance of conventional ZF
precoding, assuming both perfect and imperfect CSI at the transmitter (CSIT). In our
simulation setup, we assume that all base station antennas are equipped with identical
PAs whose nonlinearity characteristics are modeled by (2) with K = 1, β

(b)
1 = 1, and

β
(b)
3 = −0.0426− 0.0191j. These coefficients have been obtained by linear regression on

measurements over the class AB amplifier performed using [23]. The maximum output
power at each antenna is ρ

(b)
max = 30 dBm, and the maximum power efficiency of the PAs is

η
(b)
max = 0.55 for b = 1, . . . , B [7]. The maximum total radiated power is ρtot = 45 dBm, and

the variance of the AWGN is set to N0 = −82 dBm.
The channel coefficients are generated according to (4) and (5), where we set Npath = 4

and assume that the AoD ψu,` is uniformly distributed over the interval [0◦, 180◦). More-
over, we adopt the nLoS path loss model presented in [24] and, assuming that the system
operates at a carrier frequency fc = 28 GHz, calculate the path loss for user u (at a distance
of du meters) using

γ2
u = −72− 29.2 log10(du) [dB]. (33)

We further assume that the UEs are uniformly distributed in a disk-shaped area with
the base station at its center. The minimum and maximum distances from the base station
are set to dmin = 5 and dmax = 35 m, respectively. At this setting, the average path loss is
approximately γ2

avg = −108.5 dB, which corresponds to a user at the distance of 17.8 m
from the base station.

6.1. Performance Analysis under Perfect CSIT Assumption

We first consider a setup with B = 32 antennas and U = 4 UEs. Assuming that the
perfect CSI is available at the transmitter and UEs, we evaluate in Figure 4 the average sum
rate (evaluated using (15)) versus the average total consumed power (computed using (22))
for three different precoding schemes, namely PSPDA in (30), ZF with EAP in (23), and the
conventional ZF by sweeping the total radiated power. It can be seen that the ZF with EAP
has worse energy efficiency compared to the conventional ZF at the lower radiated power
values. This is because in this regime, the performance degradation due to the power
wasted in transmission along the null space outweighs the benefits that can be obtained by



Sensors 2021, 21, 5534 11 of 14

EAP transmission. However, at higher transmit powers, due to the operation of PAs with
higher power efficiencies and due to the introduction of a smaller amount of nonlinear
distortion, ZF with EAP outperforms the conventional ZF precoding, resulting in a higher
maximum achievable sum rate (marked by circles in Figure 4). For instance, in Table 1,
we compute the average received useful signal power E

[
|hT

u G(P)pu|2
]

and the average
received nonlinear distortion power E

[
hT

u Ce(P)h∗u
]

for a total average consumed power
of 15.25 dBW (this is the point where ZF achieves its maximum achievable sum rate as
depicted in Figure 4). It can be seen that ZF with EAP results in about 4.5 dB less distortion
than ZF at the price of about 1 dB less average useful signal power, improving the overall
signal-to-distortion ratio by about 3.5 dB. Figure 4 also shows that the SPAPR-controlled
distortion-aware precoding yields a superior performance compared to ZF with EAP and
conventional ZF. This improved performance is due to the consideration of the impact of
nonlinear distortion in the precoder optimization procedure, as well as the mechanism for
more flexible control of the SPAPR via optimization of the parameter κ. It is worth noting
that the performance of the SPAPR-controlled distortion-aware precoding can be further
improved by using a more sophisticated optimization to find the matrix Q instead of the
procedure described in Section 4. However, this extension is beyond the scope of this paper
and will be left to future work.
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22
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34

Consumed power [dBW]

Su
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te

[b
it

s/
c.

u.
]

Conventional ZF
ZF with equal antenna powers as (23)
SPAPR-controlled distortion-aware precoding as (30)

limited by
PAPC in (25)

limited by
TRPC in (26)

Figure 4. Energy efficiency comparison between PSPDA, PEAP, and conventional ZF precoding
averaged over the realizations of the geometric channel (4) for a setup with B = 32 antennas and

U = 4 UEs. The maximum output power at each PA is ρ
(b)
max = 30 dBm, and the maximum power

efficiency is η
(b)
max = 0.55 for b = 1, . . . , B. The nonlinearity characteristics of the PAs are as in (2) with

K = 1, β
(b)
1 = 1 and β

(b)
3 = −0.0426− 0.0191j for b = 1, . . . , B.

Table 1. Resulting average received useful signal and nonlinear distortion power for conventional

ZF and ZF with EAP for a total consumed power equal to ρ
(tot)
cons = 15.25 dBW.

Avg. Rx. Useful Sig. Power Avg. Rx. Nonlinear Dist. Power

ZF −85.62 dBW −113.4 dBW
ZF with EAP −86.36 dBW −117.9 dBW

6.2. Performance Analysis under Imperfect CSIT Assumption

The results in Figure 4 were obtained assuming perfect CSIT, but this assumption is
not generally valid in practice. To investigate the impact of the channel estimation error on
the performance of the proposed transmission schemes, we model the estimated CSIT with
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ĥu =
√

1− τ2hu + τv, (34)

where the channel estimation error is modeled as an additive independent random error
term. In particular, in (34), ĥu and hu denote the estimated and the actual channel for the uth
user, respectively. Moreover, τ ∈ [0, 1] is a parameter reflecting the accuracy of the channel
estimation, and the elements of the CSI error v are distributed according to CN

(
0, σ2

hu

)
.

In the following, we consider three different scenarios with different channel estimation
accuracies. More precisely, we consider τ = 0, which corresponds to the assumption of
perfect CSIT, τ2 = 0.01, which is an example of a case with low to moderate channel
estimation errors, and τ2 = 0.1, which reflects a scenario with poor channel estimation
accuracy. For these scenarios, in Figure 5, we plot the cumulative distribution function
(CDF) of the maximum achievable sum rate for ZF with EAP and the conventional ZF
for a setup with B = 64 antennas and U = 4 UEs and over realizations of the geometric
channel described in (4). As expected, both transmission schemes suffer from performance
degradation in scenarios with imperfect CSIT, since precoding matrices computed using an
erroneous channel lead to multiuser interference. More importantly, it can be seen that,
while PEAP can still provide a performance gain over the conventional ZF transmission in
low to moderate channel estimation errors, this gain vanishes in the scenarios with large τ
values (e.g., τ2 = 0.1). This is because with imperfect CSIT, the computed P⊥ matrices in
(23) are not perfectly orthogonal to the channel, leading to additional interference in the
direction of the UEs. This additional interference can therefore negate the improvements
that can be obtained by transmitting with the equal antenna powers. Extending the
proposed solutions to achieve additional robustness to channel estimation errors is a
subject of future studies.
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C
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τ2 = 0.01

Figure 5. The CDF for the maximum achievable sum rate with PEAP and conventional ZF precoding
under different channel estimation qualities τ2 ∈ {0, 0.01, 0.1}. These sum rate values are achieved
over different realizations of the geometric channel (4) for an array with B = 64 antennas and U = 4

UEs. The maximum output power at each PA is ρ
(b)
max = 30 dBm, and the maximum power efficiency

is η
(b)
max = 0.55 for b = 1, . . . , B. The nonlinearity characteristics of the PAs are as in (2) with K = 1,

β
(b)
1 = 1, and β

(b)
3 = −0.0426− 0.0191j for b = 1, . . . , B.

7. Conclusions

We have studied the impact of per-antenna power distribution among different anten-
nas in the array on the energy efficiency of a massive MIMO downlink system. In particular,
we have shown that beneficial properties in terms of power efficiency and total radiated
distortion can be achieved with a precoding matrix that operates all power amplifiers
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under the same backoff conditions. We have introduced a family of precoding matrices
that can achieve these properties at the cost of some power wastage due to transmission in
channel null space. Moreover, we have proposed a more advanced method to maximize
energy efficiency by jointly optimizing the precoding matrix and the power variation across
the antennas in the array. The performance gains that can be achieved with these pre-
coding schemes over conventional zeroforcing precoding have been demonstrated using
numerical experiments.
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Abbreviations
The following abbreviations are used in this manuscript:

AM/AM amplitude-to-amplitude modulation
AM/PM amplitude-to-phase modulation
AoD angle of departure
AWGN additive white Gaussian noise
CDF cumulative distribution function
CSI channel state information
CSIT channel state information at the transmitter
EAP equal antenna powers
MIMO multiple-input-multiple-output
MISO multiple-input-single-input
MRT maximum-ratio transmission
PA power amplifier
PAPC per-antenna power constraint
RF radio frequency
SINDR signal-to-interference-noise-and-distortion ratio
SINR signal-to-interference-plus-noise ratio
SNR signal-to-noise ration
SPAPR spatial peak-to-average power ratio
TRPC total radiated power constraint
UE user equipment
ULA uniform linear array
ZF zeroforcing
i.i.d. independent and identically distributed
nLoS non-line-of-sight
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