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Abstract— One way of potentially improving the use
of robots in a collaborative environment is through
prediction of human intention that would give the
robots insight into how the operators are about to
behave. An important part of human behaviour is arm
movement and this paper presents a method to predict
arm movement based on the operator’s eye gaze. A
test scenario has been designed in order to gather
coordinate based hand movement data in a virtual
reality environment. The results shows that the eye
gaze data can successfully be used to train an artificial
neural network that is able to predict the direction of
movement ~500ms ahead of time.

Index Terms—Virtual reality (VR), movement pre-
diction, collaborative robots, human intention predic-
tion, eye tracking.

I. Introduction

Collaborative robots are becoming increasingly more
popular in industries [1]. The advantages of having hu-
mans and robots in the same workspace interacting with
each other are many, such as; increased flexibility [2] and
increased productivity for complex tasks [2]. However, the
robots are not yet that interactive since they cannot yet
interpret humans and adapt to their swift changes in be-
haviour in a way that another human would do. The main
reason is that the collaborative robots today are limited in
their sensory input, which makes the human responsible
to stay out of the way. Human intention prediction can
be achieved using camera images and probabilistic state
machines [3] with the goal of determining between explicit
and implicit intent. Other ways are to monitor the gaze
to predict an upcoming decision [4], analyze bioelectric
signals, such as electromyography, to predict human mo-
tion [5], or use a mixture of eye gaze and movement
tracking to predict the goal location of a movement [6].

Other fields that have been rapidly expanding and could
make collaborative robots smarter through an understand-
ing of the operators behaviour and intentions are; virtual
reality, eye tracking, gathering and management of large
datasets, and artificial intelligence.

*This work has been supported by UNIFICATION, Vinnova,
Produktion 2030.

A way to gather more insight into how a person is
reasoning is to measure and analyze where the person is
looking [7] and the technique of doing this is called eye-
tracking (ET). It is, for example, possible to gain insight
into, which alternatives the person is considering or what
strategy a person is using while doing a task, based on
what a person is looking at. ET has, for example, been
used in an industrial context to; use the gaze as the input
for machine control [8], analyze industrial visualization
of information [9], and evaluate new ways to facilitate
human–robot communication [10].
Virtual Reality (VR) can be described as a technology

through which visual, audible and haptic stimuli is able
to give the user a real world experience in a virtual envi-
ronment [11]. Benefits such as being able to provide more
relevant content and present it in a suitable context [12]
are reasons to promote the use of VR. It can, for example,
be used; when making prototypes [13], to train operators
in assembly [14], and improve remote maintenance [15].
The use of modern technologies such as ET and VR

makes it possible to collect larger amounts of data, with
higher accuracy, and at a higher pace than before [16].
These large volumes of data, created at high speed, and
with great variety [17] is referred to as Big Data. One
area of artificial intelligence that can be used to process
these huge datasets is called deep machine learning [18].
Big data and artificial intelligence has been shown to
be important tools for the future to improve industrial
manufacturing [19]–[21].
Combining these areas to increase the intelligence of the

collaborative robots can, according to [22], be broken down
into the following three stages:

Stage one: Movement Direction Classification
Deep machine learning requires large amount of data to
train the neural networks. The first step is therefore to
create a virtual, measurable environment that is capable
of gathering all the necessary data. The environment has
to limit distractions and ambiguous stages to ensure that
it is possible to evaluate any results and draw conclusions
using domain knowledge. The end goal of the first stage is
to be able to classify the movement direction of the test
participant upon completion of the test. A solution to this



stage has been provided by [22].
Stage two: a) Movement Direction Prediction

The goal of part a) of the second stage is to be able to
predict the intended human movement direction in the
horizontal plane, ahead of time, based solely on a set of
historical gaze data.

Stage two: b) Movement Phase Classification
The goal of part b) of the second stage is to provide more
information about the movement through identification
of where in the movement a person is. This means that
the network should be able to classify the phase of a
movement, i.e. when there is; no movement, the beginning
of a movement, an ongoing movement, and the end of a
movement.

Stage three: Movement Intention Prediction
Finally, the third stage is to be able to predict the in-
tended movement direction of a test participant ahead of
time, including the ability to classify different phases of
a movement, merging the two parts of the second stage.
In this stage it is important to incorporate uncertainty
estimation regarding network performance in order to be
able to safely utilize the intended functionality in collabo-
rative manufacturing. The implementation of a real world
application could be done using the same ET technology
mounted to the safety glasses that the operator already
wears.

The goal of this paper is to design a test case, in VR,
with pre-determined movement patterns that can be used
to collect movement data. The data can be used to train
an artificial neural network that is able to predict at what
angle the user’s hand is located at a given step forward
in time, thereby providing a solution to Stage two: a)
Movement Direction Prediction.

II. Background
This section provides a background to the areas of VR,

ET, and CNN.

A. Virtual reality
A device that is used to visualize the virtual envi-

ronment to the user is called a head mounted display
(HMD) [11]. The HMD is, according to [11], equipped
with sensors that measure the user’s head motions and
also a display, which is providing the user with the visual
content. The system is also providing the user with audible
and haptic stimuli to immerse the user in a real world
experience [11] of the virtual environment.

B. Eye tracking
The eye gaze is an interesting biological marker because

it is possible to analyze underlying neurophysiology based
on the movement of the eyes [23]. Tracking gaze is there-
fore an appealing test method due to that insight, and
also because it is objective, painless, and noninvasive [23].
There are different types of eye movement, namely; fixa-
tion, saccade and mixed, which describe the coordinate of

the pupil, quick movements from point to point and the
relation between these [24]. The method used to measure
these movements are called temporal, spatial and count
methods, which analyze the gaze duration, time between
each movement and the traveled distance of the gaze.

C. Convolutional neural networks
Convolutional neural networks are a type of artificial

neural networks that are more robust to shift, scale, and
distortion invariance [25] than fully connected networks,
and are therefore better at detecting spatial and temporal
features. This is achieved by convolving or sub-sampling
the input to the layer with local receptive fields [25]
(filters) of a given size [n x m]. Each filter has n · m
number of trainable weights + a trainable bias and these
are shared [25] for all outputs of the filter.

III. Development of VR test environment
The VR environment (VRE) will be visualized using the

HMD and the two hand-held controllers that are part of
the “Tobii Eye Tracking VR Devkit” [26], which is an ET
solution based on the HTC-Vive. The system is capable
of tracking the position and the orientation of the HMD
and the hand held controllers, and the eye gaze is tracked
with Binocular dark pupil tracking at a frequency of 120
Hz [26]. The ET can be performed in the entire 110◦ field
of view of the HTC-Vive HMD [26], with an accuracy of
~0.5◦ and a delay of ~10 ms from the illumination of the
eye to that the data is available in the SDK [26].
The 3D components in the project are modelled in the

software Blender [27] and implemented in a VRE using
Unity [28], a game creation engine.
The VRE, based on [22], that is designed to collect the

data consists of four stages; language selection where the
test participant selects whether the written instructions
in the VRE should be given in Swedish or English, an
information form where the participant enters age, gender
and whether they are right handed or not, and the last
stage is the test itself. The test stage, Fig. 1, features two
half circles distributed at two height levels with 9 cubes
each.

Fig. 1: A top-down view of the block placement and
movement types.



The height levels (h0, h1, h2), measured from the floor,
and radii (r1, r2) are individually adjusted to each test
person based upon a calibration procedure using the two
controllers. The participant is instructed, as further de-
scribed in Section IV, to raise their hands forwards in two
stages and click the touchpads at these locations to collect
the different controller positions. The heights, h1 for the
inner cubes and h2 for the outer ones, are calculated as
the average distance to the floor from the controllers for
the second and third position whereas h0 = h1 − 0.1m.
The radii, r1 for the inner semicircle and r2 for the outer
one, are defined as the average distance along the z-
axis between the controllers and the headset, as seen in
Fig. 1 where the large black X corresponds to the headset
position.
The test stage has been designed in a way that is meant

to force the test participant to move in certain predictable
patterns and at a stable pace, and is described in Table I.

TABLE I: Description of the designed system.

• An even distribution of 9 cubes each at two different heights and
radii allows for a flexible design of a sequence of movements.

• The support for all basic movements; forward, backward, left,
right, sweep left, and sweep right. A few examples of how these
may occur are illustrated in Fig. 1.

• Each test starts with a warmup sequence of 28 movements that
first covers the forward, backward, left, and right movements
followed by some sweeping motions.

• A sequence of 304 movements using the right hand and 304
movements using the left hand are presented to each participant.
The sequence is the same for everyone to ensure balanced data
and that all combinations are used.

• The cubes appear at two different lengths, based on the partici-
pant’s arm length, and requires the test person to touch it while
simultaneously pressing a button on the controller to make the
cube disappear.

• After a cube has disappeared, and a delay of 0.2s, the next cube
in the pre-defined sequence is lit. The delay is used as a way to
force a slower pace throughout the test and no data is collected
during this time.

• Sweeping motions are indicated by lighting several neighbouring
cubes where the goal for the participant is to pass through the
intermediary cubes, that fades out as they are hit, and click on
the last one to mark the motion as complete.

The test is launched when the test participant presses
the start button in the environment. Data is then col-
lected, in the same manner as in [22], during the time
between two pressed cubes and saved as one data sample.
The data that is collected from each test participant, each
test, and at each timestamp are; the eye gaze direction
vector for each eye (EyeDirection)[x, y, z], the head po-
sition (HeadPosition)[x, y, z], and the controller position
for each controller (ControllerPosition)[x, y, z]. The gen-
eral information about the user includes an anonymous
participant ID, age, gender, the language that was used,
whether the person is right handed or not, as well as the
date and time when the data was gathered.

IV. Description of test execution
The data was collected in the VR-area of a laboratory

at Chalmers University of Technology in Gothenburg. All

test participants were given the same instructions that are
described below.

A. Instructions given to participants
The instructions for the tasks that were the same as

in [22] such as; putting on the headset, entering the
required information, and starting the test, was given in
the same way. The test specific instructions and how to
perform the height and reach calibration was developed
in a similar fashion. The complete set of instructions are
given in Table II.

TABLE II: Overview of the complete set of instructions.

Calibration instructions

1 Put on the headset and adjust it such that the displays are
centered in front of the eyes.

2 Receive a controller in each hand. The controllers are used to
navigate the menus (using the laser pointer), touch the cubes
during the test, and acknowledge all actions using the click
function of the touchpad.

3 Now it is time to:
3.1 Choose the desired language, either Swedish or English by

clicking the corresponding flag using the laser pointer.
3.2 Enter the required information using the laser pointer.
3.3 Calibrate the height and reach parameters:
3.3.1 Stand still with the head pointing forwards and the arms

resting along the side of the body then click the touchpad on
the right controller.

3.3.2 Raise the right forearm to a horizontal level, pointing forwards,
while keeping the elbow fixed against the side of the body then
click the touchpad on the right controller.

3.3.3 Extend the right arm fully and raise it to a horizontal level,
pointing forwards, then click the touchpad on the right con-
troller.

3.3.4 Repeat steps 3.3.1-3.3.3 for the left arm.
3.3.5 Press “Done” when the calibration is complete or “Re-

calibrate” to start over if something went wrong.

Test instructions

1 Press the “Start”-button on the screen by reaching towards it
and touching it.

2 Reach for the cube that is lit up and touch it, press the
touchpad while doing so to acknowledge the completion of the
movement.

3 Wait for the next cube to light up.
4 Repeat steps 2 & 3 until the cubes stop emitting light.
5 Press the “Done”-button and remove the headset.

V. Description of dataset and selected
features

This section will present some details about the gath-
ered data, the process of selecting features to use as inputs
to the network, and preprocessing of the data.

A. The obtained dataset
The dataset consists of 8512 data points obtained from

14 participants. Each participant provides 608 data points
since that is the total number of movements that the
test phase consists of. The data has been collected at
Chalmers University of Technology, which resulted in a
dataset with a majority of adults that have a higher level
of education. The gender distribution of the collected data
is 21% female, 79% male and 0% other. The variations in



age ranged from the youngest participant being 22 and the
oldest 56 years old with an average age of 30.5.

B. Selection of features
The features, shown in Table III, that were used as

input to the network are the eye gaze direction vectors
(x, y, z) for both eyes. The target hand position vectors
PT,i(x, z) at a desired timestep i, corresponding to the
horizontal plane for the left or the right controller, were
converted into an angle, θi, relative to the headsets po-
sition PH,i(x, z) at the same timestep. This is described
in Equation (1) and θ was used as the target label during
training of the network. The points along the vertical axis,
y, are discarded since these are not used to calculate the
horizontal movement direction, which is the scope of this
paper.

θi = tan−1
(
PT,i,z − PH,i,z
PT,i,x − PH,i,x

)
, (1)

The ID, age, and gender was used to manage the dataset
as well as to provide some general information, these were
however not used to train the network.

TABLE III: Description of data used in classification.

Type Feature

Input Timestamp
Input LeftEyeDirection [x, y, z]
Input RightEyeDirection [x, y, z]

Label HandDirection [θ]

C. Preprocessing of the data
The data from the tests was loaded into the computer

memory from previous storage in files on the harddrive
and the warm-up sequences, described in Section IV, were
discarded. From visual inspection of the histogram in
Fig. 2 it can be seen that the data has similar structure to
the data in [22] and the filtering using a Beta-distribution
has, therefore, been performed accordingly and the results
after filtering are shown in Table IV.

Fig. 2: Histogram of the number of samples for all data
points.

TABLE IV: Distribution information for unfiltered and
filtered data.

Type Mean σ Min Max N

Unfiltered 98 60 6 1025 8512
β-filtered 91 50 6 277 8308
w=25 + LA=50 120 47 75 277 4297

The desired look ahead(LA), to use as the timestep for
the target label, was set to LA=50. This corresponds to
approximately 500ms due to a system sampling frequency
of 100-120Hz( 10ms/sample). Then the window size, the
number of historical gaze data samples used as network
input, was set to w=25. It was chosen based on that
the window should be able to capture entire saccadic eye
movements, which have durations between 10-100ms [29].
The data points that contained fewer than w+LA samples
were then discarded since they cannot be used and the
resulting dataset can be seen in the last row of Table IV.
The next step was to filter out all samples, within each

data point, that contained NaN values and replace these
with the gaze vector from the previous sample. NaN values
appear when the ET fails to read the eye properly, the
most common cause being due to the participant blinking.
The last step formats the data using a moving win-

dow, of size w=25, to group the feature data in seg-
ments of historical data that is then coupled with a label
LA=50 timesteps ahead.
The data was split into three categories, training/vali-

dation/test. The proportions of the splits are; 46% of the
data for training, 5% for validation, and the remaining
49% was used for testing and evaluation of the network.

VI. Neural network design and classification
A description of the development of the convolutional

neural network architecture, along with the prediction
results, and a comparison of networks of different sizes
will be provided in this section.

A. Convolutional neural network
The convolutional neural network used in this paper

has been built as follows; the network takes the matrix
X as the input and feeds it to a Conv1D-layer with F
filters, blue rectangle in Fig. 3, it is then followed by
D more layers with the same specifications. These acts
as the base for extracting information from the data,
analyzing the time-dependency between a few nearby data
samples at the same time, across all the features. The
network also contains a global pooling layer (red rounded
rectangle) that performs pooling across the entire input to
this layer, thereby extracting the most important features
and reducing its dimensions, followed by a dense layer with
as many neurons as there are outputs (one) that gives the
output, Ŷ .
All layers of the network uses the tanh activation func-

tion apart from the final dense layer which uses a linear
activation to enable real-valued outputs. The network
has been trained using the adam optimizer [30], mean
absolute error as the loss function and the training
was done until the validation loss stopped decreasing,
terminating using early stopping.

B. Prediction results
The performance of the networks has been evaluated

using a custom metric that is more suitable to the task
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Fig. 3: A flowchart that describes the convolutional net-
work architecture.

than a standard measure of error. It is defined as the
network’s hit-rate (HR) inside a cone in front of the test
person with an angular spread θT that can be varied to
change the size of the cone. The HR, Equation (2), is
calculated as the fraction of how many of theN predictions
of θ̂ that were less than θT

2 degrees away from the target
hand direction, θ.

HR =

∑N
n=1

(
|θ̂n − θn| < θT

2

)
N

. (2)

A number of networks have been trained using all
combinations of values for D ∈ [2, 4, 6, 8, 10] and
F ∈ [2, 4, 6, 8, 16, 32, 64], which gives a total number of 35
networks. Each one of these combinations has been trained
ten different times and the average resulting HR has been
used to evaluate the performance of a combination. This
has been done in order to reduce the possibility that a
lucky training session made a certain combination success-
ful. The results from the eight parameter combinations
that performed the best and the eight worst ones, for
θT=20◦, are shown in Table V. This is the most interesting
threshold since the nine cubes in each layer are spread
over an arc of 180◦, which gives each cube roughly 20◦

of space. It is clearly seen in Table V that a parameter
count above 104 does not improve the HR, however, the
deviations in accuracy between all models are small, and
the combination that performs the best is F=16 and D=2.

TABLE V: Table showing a HR-comparison of the 8 best
models and the 8 worst ones, for several values on θT ,
sorted based on the performance when θT=20◦.

Model Params θT=10◦ θT=20◦ θT=45◦ θT=90◦

F16-D2 1.9 · 103 39.90% 62.50% 86.80% 96.43%
F16-D4 3.5 · 103 39.53% 62.44% 86.69% 96.45%
F64-D2 2.6 · 104 38.94% 62.30% 86.78% 96.51%
F32-D2 6.8 · 103 39.02% 62.29% 86.77% 96.51%
F16-D6 5.0 · 103 39.23% 62.28% 86.67% 96.41%
F16-D8 6.6 · 103 39.11% 62.27% 86.61% 96.39%
F32-D6 1.9 · 104 38.67% 62.21% 86.87% 96.52%
F8-D2 5.6 · 102 39.62% 62.18% 86.59% 96.29%

...
...

...

F64-D8 1.0 · 105 37.90% 61.47% 86.61% 96.56%
F2-D10 1.8 · 102 39.64% 61.32% 86.02% 96.13%
F4-D8 5.0 · 102 39.82% 61.27% 86.07% 96.23%
F64-D10 1.2 · 105 37.10% 61.25% 86.51% 96.51%
F2-D8 1.5 · 102 39.67% 61.07% 85.95% 96.15%
F2-D6 1.3 · 102 39.52% 61.07% 85.95% 96.19%
F2-D4 9.7 · 101 39.56% 60.95% 86.04% 96.17%
F2-D2 6.9 · 101 39.33% 60.81% 85.94% 96.11%

VII. Discussion
The accuracies 62.50%, 86.80% produced by the net-

work, with F=16 and D=2, for θT=20◦ and θT=45◦

respectively could both be used to segment where in a
workspace, in front of an operator, that movements are
likely to occur at a given time. Implementing Bayesian
inference [31], as a way to estimate uncertainty similarly to
how it is done in [22], would make the results more useful
since it would help deciding whether to trust a prediction
or not.
The network comparison, Section VI, was done in order

to determine the optimal network size, since it is desirable
to have as small of a network as possible while still
maintaining a good prediction accuracy. This is the case
because more parameters takes more time to process when
making a prediction and if the network is to large, in a
real world application, then the computation time might
render the prediction useless since the time to act upon
the obtained information has already passed. The theo-
retical execution time, using an Nvidia GTX1080 GPU,
for a single prediction by the network, with F=16 and
D=2, is roughly 0.07 ms. However, this is not considering
formatting the data and loading the network into memory.
Initial experiments seem to indicate that the accuracy

may increase slightly for smaller angles if the eye gaze data
is post-processed to extract new features that can be used
in the training of the network, for example estimating the
focal point.
The data collected in the study is very structured and

foreseeable, this is intentional to ensure that the data
would be easier to understand and reason around. How-
ever, from a network training standpoint it could be better
to have a randomized sequence of movements, compared
to the current setup where all movements are the same
for each test participant, in order to reduce the risk that
the network learns parts of the sequence instead of the
gaze patterns that were intended. There are currently no
indications of this issue in the presented solution. This
would also reduce the likelihood of participants predic-
tively pressing cubes and thereby performing movements
before instructed to do so.
The data is also biased towards shorter movement times,

due to the closeness of the cubes in the test, this could
potentially be countered if longer continuous sequences
of shorter movements were collected instead of separating
each individual movement on its own.
The next step is to investigate if it is possible to deter-

mine in what state of movement a person is, i.e. when there
is; no movement, the beginning of a movement, an ongoing
movement, and the end of a movement, presented as Stage
two: b) Movement Phase Classification in Section I.

VIII. Conclusions
One way of potentially improving the use of robots in a

collaborative environment is through prediction of human
intention that would give the robots insight into how the



operators are about to behave. An important part of hu-
man behaviour is arm movement and this paper presents a
method to predict arm movement based on the operator’s
eye gaze. A test scenario has been designed in order to
gather coordinate based hand movement data in a virtual
reality environment. The results shows that the eye gaze
data can successfully be used to train an artificial neural
network that is able to predict the direction of movement
~500ms ahead of time, providing a solution to Stage two:
a) Movement Direction Prediction. It is also shown that
a deeper and wider neural network does not necessarily
always give better results. The next steps are to develop
Stage two: b) Movement Phase Classification and finally
Stage three: Movement Intention Prediction.

References

[1] I. El Makrini, K. Merckaert, D. Lefeber, and B. Vanderborght,
“Design of a collaborative architecture for human-robot assem-
bly tasks,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 1624–
1629.

[2] J. Krüger, T. K. Lien, and A. Verl, “Cooperation of human and
machines in assembly lines,” CIRP annals, vol. 58, no. 2, pp.
628–646, 2009.

[3] M. Awais and D. Henrich, “Human-robot collaboration by
intention recognition using probabilistic state machines,” in
19th International Workshop on Robotics in Alpe-Adria-Danube
Region (RAAD 2010). IEEE, 2010, pp. 75–80.

[4] C.-M. Huang and B. Mutlu, “Anticipatory robot control for
efficient human-robot collaboration,” in 2016 11th ACM/IEEE
international conference on human-robot interaction (HRI).
IEEE, 2016, pp. 83–90.

[5] L. Bi, C. Guan, et al., “A review on emg-based motor intention
prediction of continuous human upper limb motion for human-
robot collaboration,” Biomedical Signal Processing and Control,
vol. 51, pp. 113–127, 2019.

[6] H. chaandar Ravichandar, A. Kumar, and A. Dani, “Bayesian
human intention inference through multiple model filtering with
gaze-based priors,” in 2016 19th International Conference on
Information Fusion (FUSION). IEEE, 2016, pp. 2296–2302.

[7] C. Karatekin, “Eye tracking studies of normative and atypical
development,” Developmental review, vol. 27, no. 3, pp. 283–
348, 2007.

[8] F. Jungwirth, M. Murauer, M. Haslgrübler, and A. Ferscha,
“Eyes are different than hands: An analysis of gaze as input
modality for industrial man-machine interactions,” in Proceed-
ings of the 11th PErvasive Technologies Related to Assistive
Environments Conference. ACM, 2018, pp. 303–310.

[9] L. Wu, L. Guo, H. Fang, and L. Mou, “Bullet graph ver-
sus gauges graph: Evaluation human information processing
of industrial visualization based on eye-tracking methods,” in
International Conference on Applied Human Factors and Er-
gonomics. Springer, 2018, pp. 752–762.

[10] G. Tang, P. Webb, and J. Thrower, “The development and eval-
uation of robot light skin: A novel robot signalling system to im-
prove communication in industrial human–robot collaboration,”
Robotics and Computer-Integrated Manufacturing, vol. 56, pp.
85–94, 2019.

[11] M. Dahl, A. Albo, J. Eriksson, J. Pettersson, and P. Falkman,
“Virtual reality commissioning in production systems prepa-
ration,” in 22nd IEEE International Conference on Emerging
Technologies And Factory Automation, September 12-15, 2017,
Limassol, Cyprus. IEEE, 2017, pp. 1–7.

[12] A. A. Rizzo, M. Schultheis, K. A. Kerns, and C. Mateer, “Analy-
sis of assets for virtual reality applications in neuropsychology,”
Neuropsychological Rehabilitation, vol. 14, no. 1-2, pp. 207–239,
2004.

[13] M. Abidi, A. Al-Ahmari, A. El-Tamimi, S. Darwish, and A. Ah-
mad, “Development and evaluation of the virtual prototype of
the first saudi arabian-designed car,” Computers, vol. 5, no. 4,
p. 26, 2016.

[14] A. M. Al-Ahmari, M. H. Abidi, A. Ahmad, and S. Darmoul,
“Development of a virtual manufacturing assembly simulation
system,” Advances in Mechanical Engineering, vol. 8, no. 3, p.
1687814016639824, 2016.

[15] D. Aschenbrenner, N. Maltry, J. Kimmel, M. Albert, J. Schar-
nagl, and K. Schilling, “Artab-using virtual and augmented
reality methods for an improved situation awareness for tele-
maintenance,” IFAC-PapersOnLine, vol. 49, no. 30, pp. 204–
209, 2016.

[16] J. Pettersson, A. Albo, J. Eriksson, P. Larsson, K. Falkman, and
P. Falkman, “Cognitive ability evaluation using virtual reality
and eye tracking,” in 2018 IEEE International Conference on
Computational Intelligence and Virtual Environments for Mea-
surement Systems and Applications (CIVEMSA). IEEE, 2018,
pp. 1–6.

[17] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and
D. Barton, “Big data: the management revolution,” Harvard
business review, vol. 90, no. 10, pp. 60–68, 2012.

[18] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable arti-
ficial intelligence: Understanding, visualizing and interpreting
deep learning models,” arXiv preprint arXiv:1708.08296, 2017.

[19] K. Nagorny, P. Lima-Monteiro, J. Barata, and A. W. Colombo,
“Big data analysis in smart manufacturing: a review,” Interna-
tional Journal of Communications, Network and System Sci-
ences, vol. 10, no. 3, pp. 31–58, 2017.

[20] O. Morariu, C. Morariu, T. Borangiu, and S. Răileanu, “Man-
ufacturing systems at scale with big data streaming and online
machine learning,” in Service Orientation in Holonic and Multi-
Agent Manufacturing. Springer, 2018, pp. 253–264.

[21] J. Wang, Y. Ma, L. Zhang, R. X. Gao, and D. Wu, “Deep
learning for smart manufacturing: Methods and applications,”
Journal of Manufacturing Systems, vol. 48, pp. 144–156, 2018.

[22] J. Pettersson and P. Falkman, “Human movement direction
classification using virtual reality and eye tracking,” Procedia
Manufacturing, 2020.

[23] T. D. Gould, T. M. Bastain, M. E. Israel, D. W. Hommer, and
F. X. Castellanos, “Altered performance on an ocular fixation
task in attention-deficit/hyperactivity disorder,” Biological psy-
chiatry, vol. 50, no. 8, pp. 633–635, 2001.

[24] M.-L. Lai, M.-J. Tsai, F.-Y. Yang, C.-Y. Hsu, T.-C. Liu, S. W.-
Y. Lee, M.-H. Lee, G.-L. Chiou, J.-C. Liang, and C.-C. Tsai,
“A review of using eye-tracking technology in exploring learning
from 2000 to 2012,” Educational Research Review, vol. 10, pp.
90–115, 2013.

[25] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al., “Gradient-
based learning applied to document recognition,” Proceedings of
the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[26] Tobii AB, Tobii Pro VR Integration – based on HTC Vive
Development Kit Description, v.1.7 - en-us ed., Tobii AB,
accessed on: Feb. 13, 2020. [Online]. Available: https://
www.tobiipro.com/siteassets/tobii-pro/product-descriptions/
tobii-pro-vr-integration-product-description.pdf/?v=1.7.

[27] Blender Documentation Team, Blender 2.82 Reference Manual,
Blender Foundation, license: CC-BY-SA v4.0. Accessed on: Feb.
13, 2020. [Online]. Available: https://docs.blender.org/manual/
en/dev/.

[28] Unity Technologies, Unity User Manual (2018.1), 2018th ed.,
Unity Technologies, accessed on: Feb. 13, 2020. [Online].
Available: https://docs.unity3d.com/2018.1/Documentation/
Manual/index.html.

[29] A. T. Bahill, M. R. Clark, and L. Stark, “The main sequence,
a tool for studying human eye movements,” Mathematical bio-
sciences, vol. 24, no. 3-4, pp. 191–204, 1975.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[31] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep learning,” in
international conference on machine learning, 2016, pp. 1050–
1059.


