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Summary
This paper proposes the novel past-faults fault prediction algorithm Linespots,
based on the Bugspots algorithm. We analyse the predictive performance and
runtime of Linespots compared with Bugspots with an empirical study using
the most significant self-built dataset as of now, including high-quality samples
for validation. As a novelty in fault prediction, we use Bayesian data analysis
and Directed Acyclic Graphs to model the effects. We found consistent
improvements in the predictive performance of Linespots over Bugspots for all
seven evaluation metrics. We conclude that Linespots should be used over
Bugspots in all cases where no real-time performance is necessary.

KEYWORDS
Bayesian data analysis, Bugspots, directed acyclic graphs, fault prediction, Linespots, past faults

1 | INTRODUCTION

The field of fault prediction has brought up many different metrics to base predictions on. From simple size-based
metrics like lines of code (LOC), complexity metrics like McCabe and Halstead, object-oriented metrics such as
coupling and cohesion, all the way to process metrics like code churn, socio-technical networks, and development
history [1,2]. In this paper, we will focus on one specific category of temporal metrics, that is, past faults [3,4].
Rahman et al. [5] showed that they perform similar to the more complex BugCache algorithm and are easier to
compute. Since then, multiple studies have found past faults to be good predictors for future faults [6,7].

Based on the idea by Rahman et al. [5], Lewis et al. [8] developed the Bugspots algorithm, which added a weight
decay for older faults. In this paper, we present Linespots, a novel fault prediction algorithm based on Bugspots. As the
name hints, Linespots runs on a line-level granularity instead of files, as is the case with Bugspots. This focus on lines
follows from the insights from Kochhar et al. [9] who showed that developers prefer more granularities in results, and
Hata et al. [10], who showed a trend in better performance when using finer granularities.

In this paper, we present an empirical study of Linespots’ predictive performance and runtime compared with
Bugspots. Focusing on predictive performance and runtime is due to them being considered the main benefits of
Bugspots. In order to conduct such a comparative analysis, we have spent considerable effort in collecting
representative data.

While there are pre-built datasets to benchmark fault prediction metrics and algorithms (e.g., PROMISE [11]),
many of them do not provide the necessary information for Linespots. Additionally, more involved datasets, like
defects4j [12], lack in sample size. To avoid such limitations, this study uses an open-source dataset and self-built
validation data. While self-built validation data can be unreliable [6], we used high-quality samples to vet the collected
validation data.

As a novelty in the field of fault prediction, we use Bayesian data analysis to model the effects of different
algorithms and data quality and find improvements in critical areas for Linespots over Bugspots. When applying
Bayesian data analysis, we follow the recommendations of Wasserstein et al. [13] to abandon the use of p values and
point estimates.
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The key contributions of this paper are:

• The proposal of Linespots, a novel fault prediction algorithm.
• Presentation of the results from a comparative study analysing performance and runtime using Bugspots and
Linespots as artifacts.

• Use of Bayesian data analysis and directed acyclic graphs (DAGs) to model different algorithms’ effects on
evaluation metrics.

• Validation of a self-built dataset with a high-quality subsample.
• Finally, to our knowledge, this study uses the largest dataset published, based on the revision count of different
projects in the field, as of now [14].

The research questions we pose are as follows:

• RQ1: How does the predictive performance of Linespots compare with Bugspots?
• RQ2: How does the runtime performance of Linespots compare with Bugspots?

In the following background section (Section 2), we will present the history and details of Bugspots and Linespots.
Section 3 provides details concerning study design, including the research questions, our process for gathering and
preparing the dataset, and, finally, a high-level explanation of our analysis.

We present our results in Section 4 and explain threats to the study validity in Section 5. Following that, we
discuss the implications, of said results, in Section 6. In Related Work (Section 7), we explain the connection to
other work. Finally, we, before presenting a summary and our conclusions, together with suggestions for future work in
Section 8.

We offer a reference implementation of Linespots together with the evaluation code [15], a replication package [16],
and a detailed analysis report [17], as supplements to this paper.

2 | BACKGROUND

Fault prediction is the process of using statistical techniques to predict where faults might occur in the code of a project.
The process of prediction can classify parts of the code as faulty or not faulty and can flag fault-inducing modifications
to the projects or rank code elements by their likelihood of containing faults. Common approaches for fault prediction
are based on static code metrics like size and complexity and object-oriented metrics like coupling, cohesion, and
inheritance. More recently, process metrics that include development process information are being developed. This
includes the past faults class that Bugspots and Linespots are a part of, as well as concepts like code churn and
socio-technical networks [1]. Before going into details about the Bugspots and Linespots algorithms, we want to present
our use of the terms metric, model, and algorithm to avoid confusion. As the terms have not been used with the same
meaning consistently throughout past works in fault prediction and localization, these are the definitions for how we
use the terms:

• Algorithm: Algorithms are procedures that compute fault prediction metrics. In this study, Linespots and Bugspots
refer to the algorithms as outlined in Algorithms 1 and 2 and not to the resulting fault prediction metrics.

• Fault prediction metric: These are metrics like LOC, complexity, class size, and past-faults, that can be used to
predict faults. Linespots and Bugspots both output a version of the past-faults fault prediction metric.

• Evaluation metric: Evaluation metrics are the metrics we calculate to compare different fault prediction metrics’
performance. The evaluation metrics we use are described in Section 3.1.

• Model: These are the statistical models we built to analyse the effects of the fault prediction metrics on the evaluation
metrics, as described in Section 3.4.

• Fault prediction model: A combination of multiple fault prediction metrics.

2.1 | Bugspots

The idea of using past faults to predict future faults was pioneered by Hassan et al. [3]. A comparison of past faults
metrics with other fault prediction metrics by D’Ambros et al. [7] showed that past faults metrics could perform well
and Rahman et al. [5] found that ranking files by the number of past faults could perform as well as their more complex
FixCache.
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To the basic idea of ranking files by the number of past faults, Lewis et al. [8] added a weight decay so that more
recent faults would impact the ranking more than faults further in the past. This was done to allow files that contained
faults in the past but were fixed to move down in rank over time. The algorithm by Lewis et al. [8] has since been used
in multiple other studies [7,18-20]. Finally, Grigorik [21] wrote an implementation and called it Bugspots, which is the
namesake of our newly proposed algorithm, Linespots. A pseudo-code representation of Bugspots is shown in
Algorithm 1. The exponential weighting function was chosen to focus most of the weight on the last 6 months of
development. This would have to be modified depending on the project. In practice we found that most applications
would instead just use the last 500 commits, based on the default from the Bugspots implementation. We found that
different weighting functions had little impact on the results in this case so we stuck with the default one to add less
variance.

2.2 | Linespots

As simple and promising Bugspots seems, the limitation of reporting on the file level granularity was an immediate and
obvious drawback. From our experience there are usually only a few faulty lines in an entire file, so that there is a lot of
false positives bundled in with the few faulty lines. This gave the basic idea for Linespots: reporting on line level
granularity. This move is supported by the findings of Hata et al. [10] who showed that finer granularity gave better
prediction results. As tracking line changes is not as straight forward as file changes, we want to discuss some of the
decisions we made when developing the algorithm in this section.

As we work with the Git commit history of the projects, we get all of the information we use from there. Each Git
commit contains some metadata and the file diffs, which describe the changes that the commit applies to the files. Each
file diff is further split into hunks, sections of changed code with some padding before and after, for context. There are
different algorithms to calculate the diffs and hunks, the Myers algorithm [22] which is used by default is just one of
them. We chose to use the Histogram diff algorithm by Nugroho et al. [23] who found that it better reflects the
intention of developers for code changes and recommend it over the Myers algorithm for repository mining. However
we found that the two algorithms lead to very similar results when briefly comparing them.

Each line in a project starts with a score of 0 that is increased each time a line is part of a fix inducing commit. This
is not trivial as git does not support line modifications and instead removes and adds lines. Starting with removed lines,
Linespots simply removes the corresponding scores from the file’s score list. Added lines could either be modified or
truly new lines. We do not differentiate between the two and calculate the score of added lines by using the mean hunk
score and applying the score increased based on the weighting function to it. Finally, we assume that unmodified lines
that are close to a fix inducing modification share the risk of being faulty and thus increase their score based on the
weighting function as well. We use the hunk offered by git to define closeness out of convenience.

A pseudo-code representation of Linespots is shown in Algorithm 2. An open-source reference implementation [15]
is available for those interested in implementation details.
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3 | METHOD

This study gathered samples from different projects for both Bugspots and Linespots and compared their predictive
and runtime performance. This section describes the study design, our sampling strategy, and our modelling and
analysis approach. Figure 1 shows an overview of the complete study.

3.1 | Study design

The goal of this study is to evaluate and compare Bugspots and Linespots concerning predictive performance and
runtime. To focus our efforts, we investigate the following research questions:

• RQ1: How does the predictive performance of Linespots compare with Bugspots?
• RQ2: How does the runtime performance of Linespots compare with Bugspots?

To evaluate the predictive performance, we use common evaluation metrics from the field of fault prediction.

F I GURE 1 Overview of the study design
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3.1.1 | Area under the receiver operating characteristic curve (AUROC)

The AUROC [24] is a way to assess the performance of a ranking algorithm by calculating the precision and recall for all
possible cut-off points and plotting them against each other. In other words, we plot the precision-recall points from
treating only the highest ranked result as faulty up to treating all results as faulty. An optimal ranking would result in
an area of 1 under the curve, with only faulty elements at the top of the ranking. While we have not extensively tested
this, we assume that it is not valid to compare AUROC values between studies that use different granularities. AUROC
values are usually not normalized, so any differences in the artifacts might bias the comparison.

3.1.2 | Area under the cost-effectiveness curve (AUCEC)

The AUCEC [25] is a performance measure that accounts for effort. The cost-effectiveness curve results from going
through the result list of a fault prediction algorithm and plotting the proportion of LOC on the x-axis and the propor-
tion of found faults on the y-axis. Better performing algorithms will result in a curve with a higher slope. To compare
two curves, the area under the curves can be calculated as a summarization, as a higher sloped curve will also lead to a
larger area under the curve. To improve the reliability when comparing different projects, Arisholm et al. [26] proposed
normalizing the AUCEC to the optimal curve achievable with the project as such:

CEπ ¼ CEπðmodelÞ�CEπðbaselineÞ
CEπðoptimalÞ�CEπðbaselineÞ ð1Þ

where CEπðxÞ is the area under the curve x (baseline, model, or optimal) for a given π percentage of LOC. The baseline
curve represents faults randomly distributed throughout the results such that the cost-effectiveness curve matches y= x.
The model curve is the one derived from the results of Bugspots and Linespots in this case.

The optimal curve has all faults at the top of the result list such that the faults with the least lines come first. With
the high number of faultless lines compared to faulty ones, the optimal AUCEC approaches zero. As the optimal curve
depends on the used granularity, the normalized result depends on it as well. Hence, these normalized AUCEC values
cannot directly be compared between studies using different granularities.

As mentioned, AUCEC values are often calculated for only parts of the x-axis, for example, AUCEC1 is the area up to
1% of LOC and AUCEC5 up to 5% of LOC. The reasoning behind focusing on early parts of result lists relies on results
from Parnin and Orso [27], as well as Long and Rinard [28]. They found that developers would only inspect the first
few elements of a result list and even automated tools performed best with result numbers in the low hundreds.

3.1.3 | Einspect

Einspect [20] measures the expected rank of the first faulty element in a ranked list. Assuming a group of t tied elements
starting at Pstart that contains tf faulty elements and there is no faulty element before Pstart, Einspect is defined as

Einspect ¼Pstartþ
Xt�tf

k¼1

k
t�k�1
tf�1

� �

t
tf

� � ð2Þ

Based on Einspect and the acc@n measure by Le et al. [29], Einspect@n counts the number of faults that were within
the top n positions of the ranked list. A value of 10 is reasonable for users, as most users will only inspect the first few
entries [27]. For automated tools, Long and Rinard [28] propose 200, which they found to work well.

We propose the EinspectF evaluation metric as the lowest Einspect value of all faults or, the absolute number of LOC
that has to be inspected to encounter the first fault. If a developer inspects the first 10 elements of the result list, that is
the threshold to meet. The same holds for automated tools. While proportional evaluation metrics can be useful to
compare different fault prediction metrics and models across multiple projects, we believe the absolute numbers are
more relevant for most use cases.
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3.1.4 | EXAM

The EXAM [30] score is defined as the proportions of a project to be examined to find the first line of a fault (averaged
across all faults). Thus, an algorithm with a lower EXAM score finds faults faster, on average, than one with a higher
EXAM score. In terms of Einspect, the EXAM score can be defined as

1
n

Xn

i¼1

EinspectðFnÞ, ð3Þ

where Fn are the faults.
From our experience, the EXAM score is a good approximation for the AUCEC100 with EXAM =1 � AUCEC100

having a mean error of 0.005 in our dataset. For this reason, we only report AUCEC1 and AUCEC5, and use the EXAM
score instead of AUCEC100.

3.1.5 | Research question mapping

While the AUROC and EXAM values are averaging the performance across the entire result list, in realistic scenarios the
performance in the early parts of the results are more important. This is why we also use the AUCEC5, AUCEC1,
Einspect100, Einspect10, and EinspectF measures. These metrics allow us to answer the first research question more nuanced
and with more certainty.

For the second research question, we measure the runtime of just Bugspots and Linespots, excluding the remaining
parts of the evaluation code.1

3.1.6 | Comparing granularities

As Bugspots and Linespots report their results on different granularity levels, we have to be careful when comparing
them. One way to compare them is to transform the file-based results of Bugspots into line-based results, as proposed
by Zou et al. [20]. We do this by setting each line’s score to the corresponding file’s score. This results in lists of ranked
lines for both Bugspots and Linespots, and thus, all metrics can be calculated. Depending on the exact way of how
metrics are calculated, this kind of transformation can impact the results for Bugspots. We argue that this does not put
Bugspots at a disadvantage, as we found that past research had calculated results so that files could only be inspected
as a whole. Transforming the results to the line granularity metrics like EXAM will show better performance for
Bugspots due to the way blocks with the same score are handled. While we do not think this will influence our
conclusions, Bugspots might perform better with this kind of transformation.

While there could be value of a comparison between Linespots and Bugspots by transforming Linespots’ results to
file-level results, we found that the performance of Linespots was sensitive to the specific mapping used and thus
decided against a comparison using the file-level granularity.

3.2 | Dataset

There are two options for what kind of dataset to use in the field of fault prediction, either a released repository of
artifacts and faults or a self-built dataset based on repository mining. Examples of released sets are PROMISE [11] or
Defects4J [12]. The benefit of using such repositories is the ease of use, reliability, and the comparability they offer
between studies using the same repositories. The drawback, however, is the limitation of the content. Usually, only a
limited number of projects, revisions, and information is available. Be it the limitation to a single programming
language, a specific granularity, or lack of history and process information. Moreover, while faults in those repositories
usually are verified, that can lead to a false sense of security, with artifacts marked as non-faulty. This could lead to an
inflation of wrongly classified false positives as algorithms find real faults that are not marked as such in the repository.

The repository mining approach comes with a different set of trade-offs. While the dataset’s size can be almost
arbitrarily big, it is usually limited to open-source projects. The quantity of data is usually higher than for a pre-built
dataset, but the quality might suffer. For this study, we wanted to build a representative sample for, at least,

1The evaluation suite’s code, including metric calculation, is available together with the reference implementation [15].
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open-source projects. While there have been alternatives growing in recent years, GitHub remains the biggest collection
of open source projects, which is why we collected our sample of projects from there.2 Ultimately, we applied a
combination of different sampling strategies, as described by Baltes and Ralph [31].

First, we applied cluster sampling by randomly choosing projects from the top-1000 starred projects on GitHub.
While limited to the top-starred projects, we assume that this improves our generalizability.

We then used purposive sampling by collecting a number of projects from related studies such as the works of
Rahman et al. [5], T�oth et al. [32], D’Ambros et al. [6], and Zou et al. [20]. These projects would allow us to better
connect this study’s results with the broader field of fault prediction and localization. To those, we also added
additional projects to receive a more disparate sample, for example, from the web-commerce domain.

All of the projects were filtered to meet our requirements concerning commit count and concerning the reliability
of commit messages. As the reliability of commit messages is a threat to our validity, we then searched for projects
that followed strict CMCs (while also enforcing this!) In the end, 32 projects as shown in Table 1, were added to the
sample.

3.2.1 | Identification of fix-inducing commits

To identify fix-inducing commits, we performed pattern matching on commit messages. While D’Ambros et al. [6]
showed that simple string matching could be unreliable, we believe that is at least partially due to poorly chosen regular
expressions (regexes), since we see evidence from other studies catching unnecessary false positives this way [18,19].
To improve reliability, we used separate regexes for each project, derived from studying past commits (also shown in
Table 1). The table also shows that while the three commit message conventions (CMCs) differ in detail, they all use
the same format to denote fix-inducing commits.

3.2.2 | Parameters

We use a depth of 500 commits for both algorithms as it is the default of the Bugspots reference implementation used
by other studies [21]. A preliminary investigation resulted in no improved performance for increased depths. While
Lewis et al. [8] suggest tuning the weighting function for each project, we kept the default values to allow for better
comparability with other studies using them. However, we calculate the ages of commits based on the index instead of
the Unix timestamps. The use of timestamps resulted in some corner case problems with rewritten or merged histories.
(We did not see a significant difference in results due to the change in time stamps.) As our origins, the commit to run
the algorithms from, we randomly chose up to three commits from the entire project history, under the condition that
both the 500 depth commits and the pseudo-future commits used for validation did not overlap between samples
(i.e., stratified random subsampling).

3.3 | Validation data

As we do not have a pre-built repository of faults to validate our predictions, we had to develop our own. We used the
commits after the origin commit as a pseudo future. We then used the same pattern matching and line tracking as
Linespots uses, to identify lines that already existed at the origin commit and were later removed during a fix-inducing
commit. This follows Pearson et al. [33] and Le et al. [29], in that faulty lines are those that get removed; remember git
does not modify lines during a fix-inducing commit. In case only new lines are added, Pearson et al. [33] proposes to
tag the line immediately following the newly added lines as faulty. Based on this collection of faulty lines, we could
calculate the evaluation metrics.

3.3.1 | Determining when a fault was predicted

The last missing piece for evaluation is to decide at what point a fault counts as predicted. With rougher granularities
like modules, it is rather straightforward. If you propose a module it can either be faulty or not, although faults
involving multiple modules would pose problems.

2270m+ repositories on Github versus 19m+ on GitLab at the time of writing.
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It becomes even more complicated with lines, as most faults will consist of multiple lines, and it is not clear if
evaluating on line- or fault-level is the right choice if such a thing even exists. Following Zou et al. [20], we evaluate on
the fault level, determining how well the algorithms predicted faults instead of individual faulty lines. Both Pearson
et al. [33] and Meng et al. [34] argue that a fault is predicted if any individual line is predicted. An alternative was
proposed by Rahman et al. [35] in the form of partial credit, where for each line, a partial prediction credit is given.
This might be a more honest representation of performance. Similarly, Pearson et al. [33] present their results for the
best case, average case, and worst-case scenario. The best case is similar to what we use, where a fault counts as
predicted with just a single line. The worst-case requires all lines for a fault to count as predicted while the average
requires half of the lines.

While the idea of giving partial credit, or presenting performance with different thresholds, could paint a more
balanced picture of performance, it is not compatible with all fault prediction metrics that are commonly used.
Furthermore, this can add substantial computational requirements, especially when working on line-level granularity.

TABLE 1 Project properties

Project Language Regex CMC Samples Source
angular TypeScript ^fix(∖((.*)∖))?: angulara 3 CMC

angular-cli TypeScript ^fix(∖((.*)∖))?: angular 2 CMC

angular.js JavaScript ^fix(∖((.*)∖))?: angular 3 CMC

components TypeScript ^fix(∖((.*)∖))?: angular 3 CMC

discourse Ruby ^fix(∖((.*)∖))?: discourseb 3 Random

electron C++ ^fix(∖((.*)∖))?: conventionalc 1 CMC

karma JavaScript ^fix(∖((.*)∖))?: angular 1 CMC

material JavaScript ^fix(∖((.*)∖))?: angular 2 CMC

monica PHP ^fix(∖((.*)∖))?: conventional 1 CMC

umbrella TypeScript ^fix(∖((.*)∖))?: conventional 2 CMC

tinacms TypeScript ^fix(∖((.*)∖))?: conventional 1 CMC

bootstrap JavaScript fix None 3 Author

broadleafcommerce Java fixjfixesjfixed None 3 Author

ceylon-ide-eclipse Java fixjfixed None 3 Past Work

closure-compiler Java fixjfixed None 3 Past Work

coalad Python Fixes None 2 Author

commons-math Java fixjfixed None 3 Past Work

cpython Python fixjfixes None 3 Author

evolution C fixjfixes None 3 Past Work

ffmpeg C fixjfixed None 3 Random

httpd C fix None 3 Randome

jfreechart Java fixjfixed None 1 Past Work

junit5 Java fixes None 3 Past Work

lucene-solr Java fix None 3 Past Work

mongoose JavaScript fix:jfix None 3 Random

mysql-server C++ fix None 3 Author

prestashop PHP fixjfixes None 3 Author

rails Ruby fixjfixes None 3 Author

rt.equinox.framework Java fix None 2 Past Work

scikit-learn Python fixjfixes None 3 Author

serverf C++ fixjfixedjfixing None 3 Author

woocommerce PHP fixjfixes None 3 Author

ahttps://github.com/angular/angular/blob/22b96b9/CONTRIBUTING.md#-commit-message-guidelines
bhttps://meta.discourse.org/t/github-checkin-prefix-convention/19392
chttps://www.conventionalcommits.org
dThe main author is a maintainer of coala.
ehttpd was chosen randomly, but is used in past work as well.
fMariaDB Server.
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3.4 | Analysis

To analyse Bugspots’ and Linespots’ effects on the evaluation metrics, we use Bayesian data analysis as outlined by
Schad et al. [36]. By doing so, we follow the recommendation to move away from p-value based reporting as called for
by Wasserstein et al. [13]. In this paper, we only give a summary of the process. Documenting the entire process in
detail would exceed this paper’s scope; thus, we instead provide a replication package and detailed analysis reports [17].

Based on the work of Pearl [37,38], we started by building a directed acyclic graph (DAG) to represent the causal
relationships of our measured variables, as shown in Figure 2. This not only allows us to make stronger claims about
the causality but also documents our assumptions regarding the process. This allows readers to better understand our
reasoning, find potential flaws in it and adapt it for their own work. The arrows in the graph display a causal relation-
ship between the nodes and can be used to check for confounders and guide model building. We can then query the
graph and use do-calculus to check if the query can be answered. Below is the query for a statistical model that tries to
estimate the algorithms’ causal effect on the evaluation metrics controlling for project, language, LOC, and fix count.
Or more precise, the probability of EM given treatment A and controlling for P, L, LOC and, FC.

PðEMjdoðAÞ,P,L,LOC,FCÞ

The do-operator indicates an intervention or treatment; in our case, the use of either Bugspots and Linespots. The goal
of the do-calculus application is to eliminate the do-operator, so we are left with classical probability expressions. In our
case, we will apply the second rule of do-calculus that states,

PðYjdoðXÞ,ZÞ¼PðYjX,ZÞ

if Z satisfies the back-door criterion. The back-door criterion is satisfied if a set Z of variables blocks all back-door
paths from X to Y. Back-door paths are paths that start with an arrow pointing into X (algorithm in our case). With
only one outgoing arrow for algorithm, there are no possible back-door paths in the graph. Hence, the backdoor-
criterion is satisfied for any combination of the four control variables. If we apply the rule to our query, we get the
following,

PðEMjdoðAÞ,P,L,LOC,FCÞ¼PðEMjA,P,L,LOC,FCÞ

With no do-operator left, we confirm that we can measure the causal effect of the algorithm on the evaluation metrics
controlling for project, language, LOC, and fix count. (Disregarding omission bias, which we will discuss later.)

This technique contrasts with the practice of just adding all available predictors to a model, and reduces the risk of
confounding and bias, based on the assumptions. For a good primer on the use of DAGs, we recommend [39].

F I GURE 2 Simplified DAG of the experiment. A: algorithm, EM: evaluation metrics, FC: fix count, L: programming language, LOC: lines of
code, P: project
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With the DAG’s possible models, we then chose the likelihood according to the assumed underlying data generation
process. Finally, we sampled from the models using Hamiltonian Monte Carlo. Concerning priors, which we set on the
model, we aimed to follow recommended practices. We verified that the combinations of priors were uniform on the
outcome scale by conducting prior predictive checks.

After compiling and sampling multiple models per evaluation metric using brms [40] and Stan [41], we ensured all
necessary model diagnostics passed and then compared models’ relative out of sample prediction capabilities (for details
please see the replication package) [42]. The results we report are from the models that showed the best relative out of
sample prediction capabilities.

Below is the definition of one of the models used in our analysis. We will next use it to explain our approach.

EXAMi � Betaðμi,ϕÞ ð1Þ

logitðμiÞ¼ αþβAAlgorithmiþβLLOCi ð2Þ

þ βFFixCountiþαPROJECT½i� ð3Þ

α � Normalð-1; 1Þ ð4Þ

βA,βL,βF � Normalð0,0:15Þ ð5Þ

αPROJECT � Normalð0,ϕpÞ for PROJECT¼ 1,…,32 ð6Þ

ϕp � Weibullð2,1Þ ð7Þ

logðϕÞ � Normalð50,20Þ ð8Þ

On Line 1, we define the use of a Beta distribution to model the individual EXAM scores. We use a Beta distribution,
as EXAM scores can be a real number � (0, 1). We further use a parameterization of the beta distribution with a mean μi
and a precision parameter ϕ [40]. The next two lines are the linear model that we use to approximate μi. As the Beta
distribution’s mean has to be � (0, 1), we use a logit link function to transform the results of the linear model to the
(0, 1) interval.

In the linear model, we then use a global intercept α, slopes for algorithm (βA), LOC (βL), and the fix count (βF).
Finally, we have varying intercepts per project. The idea is that we will model a deviation from the global intercept for
each project. Some projects we will be able to estimate quite precisely and other projects will then learn something from
these projects (a concept called partial pooling, used mainly to avoid overfitting, i.e., learn too much from the data).

Line 4 is the prior for the global intercept, in this case, a normal distribution with mean �1 and standard deviation
of 1. We derived the �1 mean from experience with our past work, where the mean EXAM value was around 0.226
(i.e., approximately �1 on the logit scale).

The priors on Lines 5, 6, and 7 were chosen iteratively using prior predictive checks to allow the model to explore
the outcome space uniformly. Lines 6 and 7 define the hierarchical or multi-level part of the model, where we define
varying intercept per project and assume all project intercepts to have a mean of 0 and a Weibull(2, 1) distributed
standard deviation. The prior for ϕ on Line 7 uses a log link by default, and we set a wide prior, as we assume most of
the outcome values to be small and somewhat concentrated, which leads to higher ϕ values on the log scale.

In this section we explained our choice of evaluation metrics, the approach for how we built our dataset and
validation data and gave a brief introduction to the usage of DAGs and Bayesian modelling. We will explain how to
interpret the results of this kind of analysis in the following results section.

4 | RESULTS

Before presenting the results, we want to provide some details on how to interpret the results, as the use of Bayesian
data analysis is a novelty in the field of fault prediction, as far as we know. We present interesting effects in two ways:
(1) the effects of a model as-is and (2) as conditional effects.

While, usually, one can just present model effects as-is, some link functions increase the possibility for misinterpreta-
tions. For all models where the outcomes range between 0 and 1, we use Beta likelihoods and a logit link function, to
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map the result of the linear model to the p � (0, 1) scale. However, the effect a parameter has on the outcome scale
depends on where the model lies on the logit scale (as it is not linear).

To illustrate this, assume μ¼ 0 on the logit scale, which is equal to 0.5 on the outcome scale. With an effect of �1,
the result becomes �1 on the logit or 0.27 on the outcome scale—a difference of 0.23. However, if μ¼�2 on the logit
scale, or 0.12 on the outcome scale, and we have the same effect of �1, the result equals �3 on the logit scale or 0.05 on
the outcome scale. Now the effect only leads to a difference of 0.07 on the outcome scale.

Figure 3 shows a logistic curve with the example points. It shows how the y-axis’s differences become smaller with a
larger distance from 0 on the x-axis. So while effects on the logit scale can still be used to make statements such as
“Algorithm A has a positive effect on metric M,” the size of that effect on the outcome scale is not as intuitive as when
designing models employing an identity link. (Some of the models use a log link instead of logit, and while the log link
does not behave exactly like the logit, it shares the nonlinearity.)

One pragmatic approach to solve this are conditional effects. Conditional effects set all model predictors, besides
the one we are interested in, to their mean value or reference category for factors. This allows us to see the effect of the
predictor of interest on the outcome scale for the average sample; that is, in our case, this tells us the effect of the
algorithm on the average project. Worth mentioning in this context is that the effect of interest very often has broad
uncertainty connected to its interpretation. This is due to the uncertainty propagated by the model, and, generally
speaking, we consider it to be a good thing. The conditional effects plots we show in this paper show the median and
95% credible intervals. A summary of the conditional effects for all evaluation metrics is shown in Table 2.

The replication package [16] and analysis report [17] allow the reader to reproduce both the data collection and
analysis procedure.

4.1 | RQ1: Predictive performance comparison

To answer our research question, we collected seven evaluation metrics. We start with AUROC and EXAM as more high
level, averaging evaluation metrics. Figure 4 shows the effect of Bugspots compared to Linespots on the logit scale and
the conditional effects of both algorithms with median and 95% credible intervals. While there is overlap between the
two algorithms on the outcome scale (b), the effect on the logit scale (a), shows us that Bugspots produces lower AUROC
values than Linespots. The uncertainty in the conditional effects is caused by the uncertainty propagated by the model,
and not the necessarily by the algorithm.

The EXAM score shows a similar picture in Figure 5. Again, the difference between Linespots and Bugspots on the
logit scale is entirely positive, while there is overlap on the outcome scale. As in the previous example, this points
towards Linespots producing lower EXAM scores than Bugspots.

The AUCEC5 results in Figure 6, and AUCEC1 results in Figure 7, are more focused towards the early parts of the
result lists.

AUCEC1 and AUCEC5 show apparent negative effects for Bugspots on the logit scale, with no overlap for the
algorithms on the outcome scale. This is a clear indicator that Linespots consistently produces higher AUCEC1 and
AUCEC5 values than Bugspots.

Next, we look at the very first parts of the result lists with the Einspect@10 and Einspect@100 evaluation metrics. The
results of Einspect@10, see Figure 8, show some overlap with 0 for the logit effect of Bugspots, while the outcome scale
shows much overlap. This is probably caused by the zero-inflation that both algorithms produce, that is, their overall
low performance. However, Linespots can produce higher Einspect@10 values than Bugspots and does so on average.

F I GURE 3 Non-linear transformation of the logistic function
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TABLE 2 Conditional effect size summary

Algorithm Mean Median SE l–95% u–95%

AUROC

Linespots 0.0166 0.0165 0.00221 0.0127 0.0215

Bugspots 0.0118 0.0116 0.00156 0.00889 0.0153

EXAM

Linespots 0.209 0.209 0.00745 0.195 0.224

Bugspots 0.225 0.225 0.00779 0.21 0.241

AUCEC5

Linespots 0.231 0.23 0.0148 0.202 0.261

Bugspots 0.159 0.159 0.0114 0.137 0.182

AUCEC1

Linespots 0.102 0.102 0.00747 0.0879 0.117

Bugspots 0.0627 0.0625 0.00524 0.0529 0.0735

Einspect@100

Linespots 0.341 0.335 0.0877 0.187 0.529

Bugspots 0.213 0.209 0.0563 0.115 0.334

E inspect@10

Linespots 0.0505 0.0484 0.0174 0.0231 0.0907

Bugspots 0.034 0.0324 0.0119 0.0153 0.0614

E inspectF

Linespots 310 301 79.5 180 490

Bugspots 1318 1279 337 765 2097

Runtime

Linespots 11.3 11.2 1.73 8.26 15

Bugspots 0.0115 0.0115 0.000784 0.0101 0.0132

F I GURE 4 Effects of algorithm on AUROC

F I GURE 5 Effects of algorithm on EXAM
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The results for Einspect@100, see Figure 9, are similar, albeit more distinct. On the logit scale, there is just barely some
overlap in the tail, and the overlap on the outcome scale is less pronounced. There is still some uncertainty here, but the
trend seems to be for Linespots to outperform Bugspots in Einspect@100.

Finally, we compared the position of the first fault in the result list with the EinspectF scores. Again, the results in
Figure 10, indicate that the effect of Bugspots on the logit scale is entirely positive, and there is no overlap on the out-
come scale. Linespots consistently produces lower EinspectF scores than Bugspots.

4.2 | RQ2: Runtime comparison

The results of the runtime model need some additional information. Initially, we opted for designing relatively simple
generalized linear models (GLMs). However, when we conducted posterior predictive checks, they indicated an inferior
fit. The main reason was that the posterior consisted of three modes (i.e., three distinct peaks in the posterior
probability distribution).

F I GURE 6 Effects of algorithm on AUCEC5

F I GURE 7 Effects of algorithm on AUCEC1

F I GURE 8 Effects of algorithm on E inspect@10
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Based on the results of the simple GLMs, and our experience when developing and testing the algorithms, we
assumed that two different phenomena caused the three modes. The first two modes would be the well-behaving
samples that would execute quickly for both algorithms. The third mode would be caused by samples that include big
commits, likely with formatting changes or generated code across many files, that take substantially longer to generate
diffs for and parse them. Based on these assumptions, we built a mixture model for the runtime using two shifted-
lognormal likelihoods. Looking at the effects in Figure 11, both components estimate Bugspots to have reduced
runtime compared to Linespots with no 0 overlap. (The runtime effect sizes are the only ones with an identity link,
meaning the effects are on the outcome scale.) The conditional effects show the same, with Linespots consistently
having longer runtimes than Bugspots. This follows our expectation, as Linespots should have longer execution time.
After all, Linespots does everything Bugspots does but adds diff generation and parsing on top of it.

F I GURE 9 Effects of algorithm on E inspect@100

F I GURE 1 0 Effects of algorithm on EinspectF

F I GURE 1 1 Effects of algorithm on runtime

14 of 19 SCHOLZ AND TORKAR



Table 2 shows the summary of the model results concerning runtime performance. In the table, one will find a
summary of the estimated conditional effects for all eight evaluation metrics for both algorithms. We were able to show
that Linespots outperforms Bugspots consistently for different ranges of the result list while taking substantially longer
to compute.

5 | THREATS TO VALIDITY

As the results of this study are based on the confidence we have in the dataset, and especially the validation data we
collected ourselves, it is necessary to ensure their accuracy. Recall, that we added 10 projects to our dataset that used
stringent commit message guidelines and consistently enforced them. We call the group of samples from those
10 projects “good,” while we call the group of samples from projects using no CMC “base.”

To ensure that our conclusions are not based on a subpar data collection procedure, we can compare the results of
the good samples with those of the base samples. We also show the individual CMCs to show how the individual
CMCs compare to the good and base groups.

Figure 12 shows a simple comparison for the EXAM score between the two CMC groups and the three individual
CMCs. There are differences between the individual CMCs and the base group, especially for the discourse samples.
But when combined into the good group, the differences average out and the result looks very similar to the base
group. This is probably caused by the relatively small number of samples per CMC compared to the base group.

The similarity between the base and the good group does support our method of data collection. While we would
expect more uncertainty in the good group compared to the base group based on the smaller sample size,
132 compared to 348, respectively, the higher quality could cause the reduction. Nevertheless, we also built a model to
investigate the effect of the CMC on the result, and the effect of the algorithm on the result.

Figure 13a shows the conditional effects of the CMCs on the EXAM score for Bugspots (1) and Linespots (2), and
while there is variation in the means and tails, the overlap between CMCs is considerable. The small sample size could

F I GURE 1 2 Comparison of CMCs on EXAM score

F I GURE 1 3 Effects of CMCs on EXAM
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simply cause the higher uncertainty in the good quality groups. It is also easy to see that Linespots produces smaller
EXAM scores for every case. The logit scale effect of the CMCs on the algorithm effect in Figure 13b shows similar
behaviour. Only the conventional commits convention is close to having a significant effect.

Another possible threat is the assumptions we made when developing the DAG. The two critical assumptions are
that there is no incoming arrow for algorithm and only a single outgoing one, towards the evaluation metrics. We are
confident that there are no incoming arrows to algorithm, as we ran every sample with both Bugspots and Linespots, so
nothing influenced which sample used which algorithm. The second assumption would not hold if there were an
unknown variable that the entity algorithm influences. We argue that the only output of the algorithms is the result list,
which directly leads to all the performance-related evaluation metrics and the runtime of the algorithm itself. While
there could be an interaction with the memory use of the algorithm, we assume it to be neglectable unless it would lead
to out-of-memory problems.

Finally, when we checked the bad smells of software analytics by Menzies and Shepperd [43], we find that all of the
frequentist statistics problems are non-issues due to our use of Bayesian data analysis and reporting of posteriors and
credible intervals. Furthermore, with us publishing both our entire code, data, and complete replication packages
[15–17], we actively prevent any of the presentation related problems as listed by Menzies and Shepperd.

6 | DISCUSSION

Starting with the performance, Linespots does perform better than Bugspots for all evaluation metrics in the average
case scenario. The summary for conditional effect sizes is shown in Table 2. Starting with AUROC and EXAM, as both
are averaging across the entire result list, there is much overlap for the two algorithms on the outcome scale. As the
effects on the logit scale, shown in Figures 4 and 5, have no 0 overlap in both cases, the overlap on the outcome scale is
caused by uncertainty propagated by the model. Both algorithms still perform poorly, and the absolute differences are
small, with a 0.0059 increase in AUROC and a 0.016 decrease in EXAM for Linespots. However, the relative improve-
ments of Linespots over Bugspots are substantial, with a 40% increase in AUROC and a 7% decrease in EXAM.

Moving to AUCEC5 and AUCEC1, the differences between the algorithms become even clearer as Linespots
outperforms Bugspots consistently in both measures (both on the logit and outcome scale) as shown in Figures 6 and 7.
Here the trend starts to show that Linespots’ relative performance to Bugspots improves, the further up the result list
one measure. With an advantage of 0.0395 or 63% for AUCEC1, 0.069 or 45% for AUCEC5 and with both effects being
far from 0 on the logit scale.

When looking at the very first entries on the result list with the Einspect@10 and Einspect@100 evaluation metrics, the
picture becomes less certain again. While Linespots still outperforms Bugspots on average, with 0.128 or 60% improved
Einspect@100 and 0.0165 or 49% improved Einspect@100 on average, there is now some zero overlap in the tails on the
logit scale and wide overlap on the outcome scale as Figures 8 and 9 show. We assume that this is due to both
algorithms just not performing well enough to make the Einspect@1n evaluation metrics reliable with such small values.
There are many cases where both algorithms predict zero faults in the first 10 or 100 results. However, Linespots still
performs better on average than Bugspots. As the zero overlap on the logit scale is only in the tails, we still conclude
that Linespots offers better Einspect@10 and Einspect@100 performance than Bugspots.

Finally, we look at EinspectF , which again shows a definite advantage to Linespots in Figure 10. Bugspots has a clear
negative effect on the log scale and Linespots predicts the first fault 1008 lines before Bugspots on average, or in just
24% of the lines of what Bugspots needs. While 310 lines on average is still a lot, it moves a lot closer to the 200 lines
threshold Long and Rinard [28] found to be of value.

Together, all seven evaluation metrics show clear improvements for Linespots over Bugspots in predictive
performance. Both, when averaged across all faults, but especially for the result list’s critical early parts.

The second aspect that made Bugspots an interesting algorithm was that it was simple and easy to compute. As
Linespots does more computations than Bugspots, we expect the runtime to increase, which is reflected in the results.
Bugspots is many times faster than Linespots, even with the more complex effects from the mixture model. Moreover,
the results of Linespots are somewhat bloated by a smaller number of very slow running samples, which is a drawback
of Linespots. Ultimately, we believe that the runtime of Linespots can be improved by refactoring the code with a
particular emphasis on performance; however, it will never be as fast as Bugspots.

While fast runtimes are usually desirable, there is some leeway in how long an analysis can take before it becomes a
burden to developers. This heavily depends on where in the workflow, something is done. Some things, like syntax
highlighting, auto-completion, or simple linting, are usually expected to give the developer real-time feedback. A simple
unit test suite could take a few seconds or minutes, while more complex tests or analyses can take a lot longer. The
usual scenario for fault prediction algorithms is to focus code review or testing efforts. In both of these cases, the
algorithm would run once, and then, based on the result, the next steps will be decided. For this kind of work, that
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could easily be added to a continuous integration pipeline, even the most extended runtimes of a few minutes for
Linespots would be feasible. This assessment is supported by the findings of Kochhar et al. [9] who showed that
runtimes of under one minute are acceptable for more than 90% of developers.

7 | RELATED WORK

Before presenting specific studies, we want to point out that a comparison of results between studies can be compli-
cated. One of the main reasons is that the datasets differ between studies, and without standardized implementations,
the calculation of both fault prediction and evaluation metrics could deviate.

This can range from slightly different implementations of the same algorithm to problems like differing granular-
ities. When Bugspots predicts a fault by proposing a file that potentially contains a fault, it is not clear how to compare
that to Linespots predicting a fault by pointing to an individual line in a file. We tried to reduce these problems by
mapping Bugspots’ results to lines, following Zou et al. [20] as discussed in Section 3.1.6.

When comparing our results to Zou et al. [20], we can see that not all of the results match. Starting with the runtime,
Bugspots performed a lot faster on our test system than it did for them. However, this could simply be down to the used
hardware or implementation. In both cases, the runtime is under a second. When comparing Einspect@10 results, the
0.03 average that Bugspots achieved in our study is not far from the 0 by them, in absolute terms. The difference can
easily come from the dataset. When we ran a model with the projects both studies have in common, Bugspots did not
find a single fault as well.

However, when comparing EXAM results, our values are roughly half of what Zou et al. [20] report. This persists
when running a model with just the common projects. We assume that this is due to the differences in validation data.
While we have not tested how similar our approach is to the Defects4J set, we expect there to be more defects in our
approach. While it is not clear if those are false positives due to ambiguous commit messages, or true faults that are not
part of Defects4J, it could explain why our study showed better EXAM results. If we assume that there are no significant
differences between the two Bugspots implementations and use the difference between Bugspots’ results to scale our
Linespots’ results, Linespots would lie between Bugspots and BugLocator in terms of performance.

D’Ambros et al. [7] compared different fault prediction metrics, including the number of past faults metric, which
Bugspots is based on. We expect Bugspots to perform better than the NFIX-ONLY metric, due to the added weight
decay. The peff mean result of 0.66, by D’Ambros et al. [7], is within the range of what we see reasonable when
compared to the 0.78 result of the AUCEC100 model (not reported due to redundancy with EXAM results as discussed in
Section 3.1.4). While not all of the differences can be attributed to the weight decay, that is, different projects and
granularities used in the studies, it allow us to set Linespots in perspective. The best performing fault prediction metric
LDHH has a mean peff of 0.81, which is close to Linespots’ 0.80 result in our study.

It is important to remember that we cannot merely compare these values as they are gathered with different
methods. However, the results indicate that Linespots is competitive with some of the better performing fault prediction
metrics in the field and could serve as part of future fault prediction models.

8 | CONCLUSIONS

In this study, we proposed Linespots, a novel variant of the Bugspots fault prediction algorithm, and evaluated it by
investigating two research questions.

RQ1: How does the predictive performance of Linespots compare with Bugspots? We found that Linespots out-
perform Bugspots on all evaluation metrics regarding predictive performance, especially when focusing on the result
lists’ earlier parts. This is important as developers and tools will only look at the very early parts of a result list [27].

While the overall performance is not good enough to be useful in a code review scenario, in our opinion, Linespots
can serve as an improved Baseline when evaluating new techniques and as an essential part of fault prediction models.
We also agree with Lewis et al. [8] in their assessment that fault prediction is more suitable to support focusing
testing efforts instead of code reviews. This will be true until fault prediction can offer actionable results to developers,
in our opinion.

RQ2: How does the runtime performance of Linespots compare to Bugspots? We found that Linespots can take a
lot longer to run than Bugspots, as was somewhat expected. While the runtime might be too long in some extreme
cases, we assume that projects with that kind of size will already have substantial testing suites and continuous integra-
tion pipelines, so even a runtime of a few minutes might not affect the possibility to include Linespots in their setup.
However, it might be interesting to investigate what exactly causes the big spikes in runtime and how much the runtime
can be reduced. When looking at the comparison by Zou et al. [20], Linespots would still be substantially faster than
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most fault prediction methods, which is why we conclude that it does fill a similar role to Bugspots in regards to
runtime.

Based on the related work comparison and our findings, we argue that Linespots is a well-performing fault predic-
tion metric. Combined with the performance improvements over Bugspots, we recommend using Linespots over
Bugspots in all cases where real-time performance is not needed. We can confidently attribute the performance
improvements to the change in granularity between Bugspots and Linespots. The only other differences between the
two algorithms are some additional corner-case handling for Linespots that are not necessary for Bugspots.
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