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Frequency Logarithmic Perturbation on the
Group-Velocity Dispersion Parameter with
Applications to Passive Optical Networks

Vinı́cius Oliari, Student Member, IEEE, Erik Agrell, Fellow, IEEE, Gabriele Liga, Member, IEEE, and
Alex Alvarado, Senior Member, IEEE

Abstract—Signal propagation in an optical fiber can be de-
scribed by the nonlinear Schrödinger equation (NLSE). The
NLSE has no known closed-form solutionwhen both dispersion
and nonlinearities are considered simultaneously. In this paper,
we present a novel integral-form approximate model for the
nonlinear optical channel, with applications to passive optical
networks. The proposed model is derived using logarithmic
perturbation in the frequency domain on the group-velocity
dispersion (GVD) parameter of the NLSE. The model can be seen
as an improvement of the recently proposed regular perturbation
(RP) on the GVD parameter. RP and logarithmic perturbation
(LP) on the nonlinear coefficient have already been studied in
the literature, and are hereby compared with RP on the GVD
parameter and the proposed LP model. As an application of
the model, we focus on passive optical networks. For a 20 km
PON at 10 Gbaud, the proposed model improvesthe normalized
square deviation by 1.5 dB with respect to LP on the nonlinear
coefficient. For the same system,histogram-based detectors are
developed using the received symbols from the models. The
detector obtained from the proposed LP model reduces the
uncoded bit-error-rate by up to 5.4 times at the same input power
or reduces the input power by 0.4 dB at the same information
rate compared to the detector obtained from LP on the nonlinear
coefficient.

Index Terms—Channel modeling, chromatic dispersion, Kerr
nonlinearity, logarithmic perturbation, nonlinear Schrödinger
equation, optical fiber, regular perturbation, weakly dispersive
regime.

I. INTRODUCTION

ANALYTICAL models for optical fiber transmission have
been widely studied in the literature. These models are

based on the equations that govern the optical field propa-
gation: the nonlinear Schrödinger equation (NLSE) [1, Ch.
2] and its variants. The NLSE has no known exact solution
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Fig. 1. Illustration of the regions in the β2 vs γ plane where different models
are valid. This paper presents a new model for the region to the left of and
under the green curve.

for an arbitrary input waveform. One of the most efficient
alternatives for approximated numerical solutions is the split
step Fourier method (SSFM) [2], which simulates the effects of
fiber propagation. On the other hand, to analyse these effects
and design novel transceivers, analytical models are highly
desirable.

Some of the NLSE’s most used analytical models are only
valid under some restricted values of two fiber parameters:
the (Kerr) nonlinear coefficient γ and the group-velocity
dispersion (GVD) parameter β2. The validity1 of the models
with respect to these parameters is shown in Fig. 1. When
γ is equal to zero, the NLSE admits an analytical solution,
given by the dispersion-only model [1, Ch. 3] and represented
by the horizontal line at γ = 0 in Fig. 1. When β2 is set
to zero, the NLSE also admits an analytical solution, given
by the nonlinear phase noise model (NLPN) [1, Ch. 4], [3],
represented by the vertical line at β2 = 0 in Fig. 1. If both
parameters are nonzero, usually a perturbation approach is
used [4].

A perturbation on the nonlinear coefficient γ considers the
nonlinearities a minor effect [4], [5] and is accurate for high
accumulated dispersion, where the accumulated dispersion can

1The validity of a model is defined in this paper as the set of parameters
values in which the model waveform is sufficiently close to the true waveform
obtained from the NLSE. Details on the metric that measures the distance
between the two waveforms are given in Sec. III.
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increase with the signal bandwidth and with the product of
β2 with the fiber length. The development of a perturbation
on γ, specifically the regular perturbation (RP) on γ, was
an important mark in the literature since it has been used in
many applications. For example, RP on γ is a key step in the
derivation of the Gaussian noise [6] and enhanced Gaussian
noise [7] models. These two latter models have been widely
used to estimate system performance, even in the presence
of effects such as stimulated Raman scattering [8]. RP on γ
has also been used in the literature to build low-complexity
receivers [9].

For the opposite regime, where the nonlinearities are the ma-
jor effect and the accumulated dispersion is low but nonzero,
a perturbation on the GVD parameter can be performed. The
perturbation techniques usually considered for the optical fiber
propagation areRPand logarithmic perturbation (LP) [4]. It was
shown in [10] that LP converges faster to the true NLSE’s
solution than RP. RP and LP on γ cover the area under the
yellow and blue curves in Fig. 1, respectively. Recently, we
proposed RP on β2 in [11] and compared with RP on γ. RP
on β2 provided more accuracy in the weakly dispersive and
highly nonlinear regimes, represented by the area under the red
curve in Fig. 1. A preliminary investigation of LP on β2 was
reported in our recent work [12], where LP methods on both
γ and β2 were compared on the waveform level. This paper is
an extension of [12], to which we add two more contributions.
Our first contribution is to derive the two perturbative models
on β2 presented in [12]. These models are obtained applying
LP in either time or frequency. The latter approach, which
we call frequency logarithmic perturbation (FLP), is the most
accurate of the two for the β2 expansion.

The FLP on β2 covers the area under the green dashed curve
in Fig. 1, which improves upon RP on β2. FLP should not be
confused with the frequency resolved logarithmic perturbation
(FRLP) proposed in [13]–[15]. FRLP consists in applying
LP on the frequency components of the time-domain signal
individually and using the superposition principle to combine
them. However, FRLP still applies the LP principle in the time
domain, whereas FLP we study here applies this principle in
the frequency domain. In this paper, the FLP on β2 model is
compared with the LP on γ, RP on γ, and RP on β2 models.

The second contribution of this paper is to demonstrate the
applicability of the proposed FLP on β2 model. To this end,
we consider passive optical networks (PONs), wherein the ac-
cumulated dispersion is typically low. PONs are usually short-
reach fiber links where the transmitted signal is split to nu-
merous users [16]. The input power can increase significantly
when the split ratio is high, in order to compensate for the
split loss [17], [18]. At a high input powers, the transmission
can enter a highly-nonlinear regime, where even pre-distortion
using digital backpropagation based on the SSFM has been
proposed in the literature [19].

We use the models in a PON system to estimate optimum
decision regions at the receiver. Simulations are carried out
in the C- and O-band, where the latter has a close-to-zero
GVD parameter β2. At a waveform level (continuous-time),
the proposed FLP on β2 is shown to outperform the other three
models at powers higher than 7 dBm for both C- and O-band

systems. At a symbol level (discrete-time), decision regions
obtained from LP on β2 result in bit-error-rates (BER) more
than five times lower than the ones obtained from LP on γ.
Finally, these decision regions are analysed in a system with
forward-error-correction (FEC).

This paper is organized as follows: Section II provides the
mathematical background for the derivation of the models;
Section III compares the models in both continuous- and
discrete-time; and Section IV concludes the paper.

II. MATHEMATICAL BACKGROUND

TheNLSE normalized by the attenuation factor for noiseless
propagation of an optical field A at a retarded time frame t
and distance z for a single-polarization can be approximated
as [5]

∂A(t, z)

∂z
=− jβ2

2

∂2A(t, z)

∂t2

+ jγe−αz|A(t, z)|2A(t, z), (1)

where α is the attenuation coefficient, β2 the GVD parameter,
and γ the nonlinear coefficient. The first term on the right-
hand side of (1) represents the chromatic dispersion. This
effect on the waveform A is larger when the bandwidth
and/or the fiber length is increased. The last term represents
the Kerr nonlinearity, which has a cubic dependence on the
instantaneous signal power and also increases with the fiber
length. The solution A of (1) can be numerically estimated by
the SSFM [1, Ch. 2], [2]. Other effects, such as third-order
dispersion (TOD) [1, Ch. 3], are not taken into account in (1).
TOD becomes significant for large bandwidths or when β2 is
low. This effect will be taken into account for our simulations
in the O-band, although it is not used in the derivation of the
proposed model. For the C-band, we consider solely the effects
in (1).

In what follows, we first review three models available in
the literature. Sec. II-A and Sec. II-B describe the RP on γ
and on β2, respectively, while Sec. II-C presents the LP on γ.
Finally, Sec. II-D introduces the FLP on β2.

A. Regular Perturbation on the Nonlinear Coefficient

The RP on γ was first derived in [4], [5]. To approximate
the solution of (1), the RP method represents the signal by a
power series of a certain coefficient. For the RP on γ, the RP
solution can be written as

A(t, z) =

∞∑
k=0

γkA
(γ)
k (t, z). (2)

To obtain the functions A(γ)
k , (2) is substituted into (1) and

the terms multiplied by the k-th power of γ are equated. An
approximate solution for (1) can be obtained by considering
only the functions A(γ)

0 and A
(γ)
1 . This approximation is the

first-order RP on γ [5, Eqs. (7), (9)], [4, Eq. (12)]

A(t, z) ≈ A(γ)
RP (t, z) = A

(γ)
0 (t, z) + γA

(γ)
1 (t, z), (3)
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where

A
(γ)
0 (t, z) = Dz{A(·, 0)}(t), (4)

A
(γ)
1 (t, z) = j

∫ z

0

e−αuDz−u
{
|A0(·, u)|2A0(·, u)

}
(t)du,

(5)

and the dispersion operator Dz is

Dz{f}(t) , (f ∗ h(·, z)) (t), (6)

h(t, z) =
1√

j2πβ2z
e−

j
2β2z

t2 . (7)

The function A(γ)
0 in (4) is called the dispersion-only solution

of (1). This solution can be seen as a model that is accurate
only when the nonlinear effect is negligible. The first-order
RP on γ in (3) is accurate for low nonlinear effects and is
illustrated by the yellow curve in Fig. 1.

The RP on γ also benefits from a simple mathematical trick
that yields an increased accuracy. This trick was developed in
[5] and is based on modifying (1) by making

A(t, z) = AP (t, z)e
jγP0G(z), (8)

where G(z) = (1− exp(−αz))/α. Although P0 was defined
in [5] as the peak input power, we use P0 as the average
input power, which yields better accuracy in our simulations.
After substituting (8) in (1), one can apply the RP on γ
method over the function AP instead of A and obtain the
first order RP approximation for AP . Multiplying the obtained
approximation by ejγP0G(z), as in (8), yields

A(t, z) ≈ A(γ)
ERP(t, z)

=
[
(1− jγP0G(z))A

(γ)
0 (t, z) + γA

(γ)
1 (t, z)

]
ejγP0G(z),

(9)

where A(γ)
0 and A

(γ)
1 are given by (4) and (5), respectively.

Another benefit from RP on γ is that it can easily generate
a solution that also accounts for TOD. This new solution is
derived from (1) with an additional term accounting for TOD
[1, Eq. (3.3.1)]

∂A(t, z)

∂z
=− jβ2

2

∂2A(t, z)

∂t2
+
β3
6

∂3A(t, z)

∂t3

+ jγe−αz|A(t, z)|2A(t, z). (10)

The RP on γ with TOD is then obtained by replacing the
operator Dz in (4) and (5) by

Tz{f}(t) , F−1
{
T̃ (·, z) · f̃

}
(t), (11)

T̃ (ω, z) = e(
jβ2
2 ω2+

jβ3
6 ω3)z, (12)

where F−1 denotes the inverse Fourier transform2, ω is the
angular frequency, and f̃ is the Fourier transform of the
function f .

2We define the Fourier transform of a function A(·, z) as Ã(ω, z) ,∫∞
−∞A(t, z)e

+jωtdt, which depends on the angular frequency ω and is
evaluated at distance z. The inverse Fourier transform of Ã(·, z) is A(t, z) =
[1/(2π)]

∫∞
−∞Ã(ω, z)e

−jωtdω.

B. Regular Perturbation on the GVD Parameter

We recently proposed the RP on β2 in [11]. The same
procedure as in (2) can be applied by considering A as a
power series of β2, i.e.,

A(t, z) =

∞∑
k=0

βk2A
(β2)
k (t, z). (13)

In analogy to RP on γ, the functions A(β2)
k are also obtained

by replacing (13) in (1) and equating the terms related to
the k-th power of β2. For the first-order RP, involving the
functions A(β2)

0 and A(β2)
1 , an approximate solution for A can

be obtained by

A(t, z) ≈ A(β2)
RP (t, z) = A

(β2)
0 (t, z) + β2A

(β2)
1 (t, z), (14)

where
A

(β2)
0 (t, z) = A(t, 0)ejγ|A(t,0)|2G(z), (15)

and
A

(β2)
1 (t, z) = B(t, z)ejγ|A(t,0)|2G(z), (16)

with B given by

B(t, z) =−M(t)z +G1(z)R(t) +G2(z)P (t)

− 2jγA(t, 0)<{A∗(t, 0)V (t, z)}, (17)
V (t, z) = G(z) [M(t)z −G1(z)R(t)−G2(z)P (t)]

−G1(z)M(t) +G2(z)R(t) +G3(z)P (t), (18)

M(t) =
j

2

∂2A(t, 0)

∂t2
, (19)

R(t) =
γ

2
A(t, 0)

∂2|A(t, 0)|2

∂t2
+ γ

∂A(t, 0)

∂t

∂|A(t, 0)|2

∂t
,

(20)

P (t) =
jγ2

2
A(t, 0)

(
∂|A(t, 0)|2

∂t

)2

, (21)

G1(z) =
αz + e−αz − 1

α2
, (22)

G2(z) =
2αz + 4e−αz − e−2αz − 3

2α3
, (23)

G3(z) =
6αz + 18e−αz − 9e−2αz + 2e−3αz − 11

6α4
. (24)

Analogously to RP on γ, the function A
(β2)
0 in (15) for RP

on β2 is an accurate model when dispersion is negligible, and
is called the NLPN model [3], [11]. The first-order RP on
β2 in (14) is accurate for low accumulated dispersion and is
illustrated as the red curve in Fig. 1.

C. Logarithmic Perturbation

LP is a mathematical technique similar to RP. LP on γ was
first presented in [4], [10] and can be shown to converge faster
to the true NLSE’s solution than RP on γ. LP functions can
be obtained directly by the RP functions Ak. For example,
following an approach similar to [4], consider that the signal
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A can be written as a power series of a coefficient θ (e.g., γ
or β2 as done in (2) and (13)) as

A(t, z) =

∞∑
k=0

θkA
(θ)
k (t, z), (25)

where A(θ)
k is the k-th RP function. We now want to express

A in its LP version, which takes the form

A(t, z) = A
(θ)
0 (t, z) exp

( ∞∑
k=1

θkψ
(θ)
k (t, z)

)
, (26)

where the function ψ(θ)
k is the k-th LP function and A(θ)

0 is the
0-th order RP function. Representing the exponential function
in (26) by its Taylor expansion yields

A(t, z) = A
(θ)
0 (t, z)

∞∑
m=0

1

m!

( ∞∑
k=1

θkψ
(θ)
k (t, z)

)m
. (27)

The functions ψ(θ)
k can now be obtained by equating (27)

with (25), and further equating the terms that have the same
power of θ. For example, equating the terms multiplied by θ1,
we obtain the first-order LP function as

ψ
(θ)
1 (t, z) =

A
(θ)
1 (t, z)

A
(θ)
0 (t, z)

. (28)

Equating the terms multiplied by θ2 we can also obtain the
second-order LP function

ψ
(θ)
2 (t, z) =

A
(θ)
2 (t, z)

A
(θ)
0 (t, z)

− 1

2

(
A

(θ)
1 (t, z)

A
(θ)
0 (t, z)

)2

. (29)

The function ψ(θ)
2 in (29) depends on the RP term A

(θ)
2 . For

RP on γ, A(γ)
2 is well defined [5, Eq. (11)], [4, Eq. (12)].

However, for RP on β2, A(β2)
2 is not known in the literature

at the time this paper is being written. Thus, we will restrict
the analysis to first-order LP and RP only.

Setting θ = γ or θ = β2 in (26) and (28) and truncating the
sum in (26) at k = 1, we obtain the first-order LP on γ and
on β2, respectively. The first-order LP on γ is written as

A(t, z) ≈ A(γ)
LP (t, z) = A

(γ)
0 (t, z) exp

(
γ
A

(γ)
1 (t, z)

A
(γ)
0 (t, z)

)
, (30)

where A(γ)
0 and A

(γ)
1 are given by (4) and (5), respectively.

The accuracy of A(γ)
LP is qualitatively illustrated by the blue

curve in Fig. 1. The first-order LP on β2 is similarly obtained
as

A(t, z) ≈ A(β2)
LP (t, z) = A

(β2)
0 (t, z) exp

(
β2
A

(β2)
1 (t, z)

A
(β2)
0 (t, z)

)
,

(31)
where A(β2)

0 and A(β2)
1 are given by (15) and (16), respectively.

D. Frequency Logarithmic Perturbation

The linearity of (25) with respect to the functions A
(θ)
k

suggests another approach to obtain a different LP solution.
The new approach consists of performing the same steps as
in (25)–(28) in the frequency domain, which we refer to as
FLP. To obtain the FLP solution, we first express (25) in the
frequency domain, i.e.,

Ã(ω, z) =

∞∑
k=0

θkÃ
(θ)
k (ω, z), (32)

where Ã represents the Fourier transform of A and ω is the
angular frequency. Analogous to (26), now Ã is expressed in
its FLP version as

Ã(ω, z) = Ã
(θ)
0 (ω, z) exp

( ∞∑
k=1

θk ζ̃
(θ)
k (ω, z)

)
, (33)

where the function ζ̃(θ)k is the k-th FLP function and Ã(θ)
0 is

the Fourier transform of the 0-th order RP function.
In complete analogy with the procedure used to obtain (28),

the first-order FLP function is

ζ̃
(θ)
1 (ω, z) =

Ã
(θ)
1 (ω, z)

Ã
(θ)
0 (ω, z)

, (34)

which is used to obtain the first-order FLP on γ and on β2.
The first-order FLP on γ is

Ã(ω, z) ≈ Ã(γ)
FLP(ω, z) = Ã

(γ)
0 (ω, z) exp

(
γ
Ã

(γ)
1 (ω, z)

Ã
(γ)
0 (ω, z)

)
,

(35)
where Ã(γ)

0 and Ã(γ)
1 are the Fourier transforms of (4) and (5),

respectively. The first-order FLP on β2 is given by

Ã(ω, z) ≈ Ã(β2)
FLP (ω, z) = Ã

(β2)
0 (ω, z) exp

(
β2
Ã

(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)

)
,

(36)
where Ã(β2)

0 and Ã(β2)
1 are the Fourier transforms of (15) and

(16), respectively. The qualitative behaviour of the accuracy
of Ã(β2)

FLP is illustrated as the green dashed curve in Fig. 1.
The functions ζ̃(θ)k in (33) differ from the Fourier transform

of ψ(θ)
k in (26), since the exponential of the LP method was

applied in the frequency domain. The expressions in (28)
and (34) are the simplest example of this fact, since they
do not form, in general, a Fourier transform pair. Therefore,
we expect that these LP-based models result in a different
accuracy for each perturbation coefficient (γ or β2). As it
will be seen later in Sec. III, A(γ)

LP is more accurate than
A

(γ)
FLP, while A

(β2)
FLP is more accurate than A

(β2)
LP . We believe

that the difference between β2 and γ when comparing LP
and FLP could be explained by the solution of (1) for only
the chromatic dispersion effect or only the Kerr effect [1].
The solution for the chromatic dispersion effect only is an
exponential in the frequency domain, which resembles the FLP
approach. Similarly, the solution for the Kerr effect only is
an exponential in the time domain, which resembles the LP
approach.

Calculating the waveforms for both LP and FLP leads
to a numerical issue related to the ratio in (28) and (34).
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TABLE I
SUMMARY OF THE FIRST-ORDER PERTURBATION METHODS DISCUSSED IN THIS PAPER

Coeff. θ

Perturbation method
1st order RP 1st order LP 1st order FLP

A(t, z) = A
(θ)
0 (t, z) + θA

(θ)
1 (t, z) A(t, z) = A

(θ)
0 (t, z) exp

(
θψ

(θ)
1 (t, z)

)
Ã(ω, z) = Ã

(θ)
0 (ω, z) exp

(
θζ̃

(θ)
1 (ω, z)

)
γ

A
(γ)
0 (t, z) Dz{A(·, 0)}(t)

ψ
(γ)
1 (t, z)

A
(γ)
1 (t, z)

A
(γ)
0 (t, z)

ζ̃
(γ)
1 (ω, z)

Ã
(γ)
1 (ω, z)

Ã
(γ)
0 (ω, z)A

(γ)
1 (t, z) (5)

β2
A

(β2)
0 (t, z) A(t, 0)ejγ|A(t,0)|2G(z)

ψ
(β2)
1 (t, z)

A
(β2)
1 (t, z)

A
(β2)
0 (t, z)

ζ̃
(β2)
1 (ω, z)

Ã
(β2)
1 (ω, z)

Ã
(β2)
0 (ω, z)A

(β2)
1 (t, z) (16)

Coherent
Tx

·

·

·

·
·
·

Coherent
Rx20 km

SSMF
1 km
SSMF

Splitter
1:64

0 ≤ PTx [dBm] ≤ 20
C-band: −22.3 ≤ PRx [dBm] ≤ −2.3
O-band: −26.5 ≤ PRx [dBm] ≤ −6.5

A(t, 0) A(t, z)

Fiber Model AM (t, z) NSD (33)

Symbol
Mapping

x ∈ S01001 Symbol
Detector

y ∈ C Symbol
Demap.

01001x̂ ∈ S

BER

Fiber Channel

Fig. 2. PON system setup used for the simulations in this paper. This system presents low accumulated dispersion and operates in the highly nonlinear
regime for the used range of input powers. The NSD is calculated using the fiber output A, obtained via the SSFM, and a fiber model output AM . The NSD
exact formula given by (37). The BER is estimated using the bits corresponding to the input symbols x and the bits corresponding to the estimated input
symbols x̂, where x, x̂ ∈ S and S is the set of constellation points. Demap.: demapping.

TABLE II
FIBER PARAMETERS FOR C- AND O-BAND TRANSMISSION

Parameter C-band O-band
Wavelength λ [nm] 1550 1310

α [dB/km] 0.2 0.4
β2 [ps2/km] −21.67 −0.2
γ [1/W/km] 1.2 1.4
β3 [ps3/km] − 0.0765

When the denominator in one of those two equations tends
to zero, the respective model becomes inaccurate. To address
this problem in the LP case, [10] proposed to replace A(θ)

LP (t, z)

by A
(θ)
RP (t, z) whenever |A0(t, z)| < ε, where ε > 0 is a

fixed threshold. In our implementation, we chose to replace
A

(θ)
LP (t, z) by A

(θ)
RP (t, z) whenever |A(θ)

LP (t, z)| > c |A(θ)
RP (t, z)|

for a certain fixed real c > 0. Similarly, we replace Ã(θ)
FLP(ω, z)

with Ã
(θ)
RP (ω, z) whenever |Ã(θ)

FLP(ω, z)| > c|Ã(θ)
RP (ω, z)| or

|Ã(θ)
FLP(ω, z)| = 0, where Ã(θ)

RP is the Fourier transform of A(θ)
RP .

The value of c for each model was heuristically found and is
discussed in Sec. III-D.

Together with the models in the previous sections, we
obtained six perturbation models: two RPs in (3) and (14);
two LPs in (30) and (31); and two FLPs in (35) and (36).
Table I summarizes these six first-order perturbation methods.
As shown in Table I, LP and FLP can be obtained using the
RP terms.

III. SIMULATION SETUP AND RESULTS

The model presented in this work is validated in a PON
transmission scenario where the accumulated dispersion is ex-

pected to be low. Fig. 2 shows the coherent PON system setup
under consideration. The fiber parameters are given in Table II.
As depicted in the figure, we consider a standard single mode
fiber (SSMF) of 20 km, followed by a splitter of ratio 1 : 64
and a final fiber segment of 1 km. With this split ratio, the total
link loss is 22.3 dB for the C-band and 26.5 dB for the O-band.
The fiber input power PTx varies from 0 to 20 dBm, which
leads to a received power PRx between −22.3 and −2.3 dBm
in the C-band and between −26.5 and −6.5 dBm in the O-
band. The range of powers was chosen to cover and go beyond
launch powers for typical PON systems according to [20],
[21]. All the results were obtained using randomly generated
bits which were mapped into symbols drawn from a quadrature
phase shift keying (QPSK) constellation S = (±1 ± j)/

√
2.

The coherent transmitter applies pulse shaping and scales the
waveform such that the average transmitted power is PTx.
The coherent receiver undo the waveform scaling, and then
applies matched filtering and sampling, without chromatic-
dispersion compensation. The symbol rate of the transmitted
signal is 10 Gbaud for both C- and O-band systems. The
considered pulse shape is a root-raised cosine (RRC), with
a roll-off factor of 0.1. We consider a noiseless scenario since
for the considered bandwidth and received powers, nonlinear
distortions dominate over the shot noise [19], [22].

In the considered system setup, we want to evaluate the
impact of nonlinearities and dispersion on the models. For
evaluating the impact of the nonlinearities, the power was
varied as specified before. The effect of the dispersion in the
models is evaluated by comparing the C-band and the O-band
scenarios, which have different β2 values. We consider the
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Fig. 3. NSD for for RP, ERP, LP and FLP on γ and on β2 in the C-band
using the system in Fig. 2. The fiber parameters are given in Table II.

effect of the TOD in the O-band since in that regime values
of β2 are low. Therefore, the equation used for the SSFM
simulation in the presence of TOD is (10). In addition, our
LP on γ results are also accounting for TOD by using (11).

We evaluate the model accuracy on two levels, comparing
either the channel output waveforms or detected symbols. For
the former, no receiver is considered. The accuracy is quanti-
fied using the normalized squared deviation (NSD) metric [5],
[11]

NSD ,

∫∞
−∞|AM (t, z)−A(t, z)|2dt∫∞

−∞ |A(t, z)|2dt
, (37)

where AM is a model output (i.e., A(γ)
LP or A(β2)

FLP , for example)
and A is the true fiber output obtained from the SSFM. The
NSD integrates the absolute error squared over the entire
signal duration, and normalizes it with the energy of the signal
A. Therefore, the lower the NSD, the more accurate is the
waveform predicted by the model. The inputs for the NSD
calculation are illustrated inFig. 2.

For the symbol-level evaluation, decision regions are op-
timized according to each model as described in Sec. III-B.
In that section, the accuracy is quantified in terms of BER
(illustrated in Fig. 2), while in Sec. III-C, the accuracy is
quantified in terms of achievable information rate (AIR).
Sec. III-D investigate numerical implementation aspects, such
as time complexity and the choice of the threshold c.

A. Waveform Comparison

Fig. 3 shows the NSD for RP, LP, and FLP on γ and on
β2. As depicted in Fig. 3, FLP on β2 (solid red line with
squares) is the most accurate at powers higher than 7.5 dBm
and NSD below 0.1%, while LP on γ (solid blue line) is the
most accurate at powers lower than 7.5 dBm. FLP on γ (solid
blue line with squares) and LP on β2 (solid red line) have a

0.01 0.1 1 10 100 1000
10−15

10−12

10−9

10−6

10−3

100

C-band

β2 for
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≈
×42

|β2| [ps2/km]

N
SD

(%
)

RP on γ
ERP on γ
LP on γ
RP on β2

FLP on β2

Fig. 4. NSD versus |β2| (negative β2) forfive models at an input power of
10 dBm. The system is represented in Fig. 2. All considered models except
RP on γ get higher accuracy as |β2| decreases.

slightly better performance than RP on γ (dashed blue line)
and RP on β2 (dashed red line), respectively. However, we do
not consider FLP on γ and LP on β2 further in this paper,
since their performance is surpassed by LP on γ and FLP on
β2, respectively. RP on β2 crosses the 0.1% NSD line at an
input power approximately 4.2 dB higher than RP on γ, at 14
and 9.8 dBm, respectively. This gap in favor of RP on β2 was
expected since input powers greater than 10 dBm and small
distances such as 20 km put the fiber in the highly nonlinear
regime with low accumulated dispersion. The gap of 4.2 dB
is reduced to 1.9 dB when comparing ERP on γ and RP on
β2. This reduction is justified by the change of variables made
in (8), which improves the nonlinear tolerance of that model
with respect to RP on γ. As discussed in [11], RP on β2 is
accurate on this regime, while RP on γ loses accuracy at high
powers. If we change from RP on γ to LP on γ, the latter
outperforms RP on β2 for powers below 16 dBm. This gain
in accuracy by changing from the LP on γ to the RP on γ
was previously shown in [10]. In addition, LP on γ has its
performance increased due to low accumulated dispersion. By
letting β2 → 0 in (30), LP on γ tends to the NLPN solution,
which is accurate in very low dispersion scenarios [11].

The dependence of the models on |β2| can be seen in Fig. 4,
where four models are compared at a fixed power of 10 dBm
for different values of |β2| and the other parameters for C-
band transmission (with no TOD). All the simulated β2 values
were negative. Among the four models, RP and ERP on γare
the onlyones thatare virtually invariant to changes in β2 for
|β2| < 30 ps2/km. Nevertheless, RP on γ has worse accuracy
than LP on γ for all displayed values of β2. When increasing
|β2|, LP on γ increases its NSD at a rate of approximately
102 per decade. Although LP on γ outperforms RP on β2 at
10 dBm for the C-band, the latter has an increasing rate of
approximately 104 per decade, and surpasses the accuracy of
LP on γ for β2 values lower than −6 ps2/km. If we now also
consider FLP on β2, we can gain approximately 42 times in
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NSD accuracy with respect to RP on β2 at 10 dBm. This gap
can also be seen in Fig. 3 and remains approximately constant
for different values of β2, since both RP and FLP on β2 have
the same increasing rate of approximately 104 per decade. The
higher increasing rate for RP and FLP on β2 when compared
with LP on γ shows that the two former models converge
to the true solution of (1) faster than the latter model when
decreasing the accumulated dispersion. For β2 = −21.67 (C-
band), FLP on β2 already outperforms LP on γ. In addition,
we see back in Fig. 3 that FLP on β2 crosses the line for an
NSD of 0.1% at an input power 1.5 dB higher than LP on γ.
For high values of |β2| > 30 ps2/km, the NSD for LP and for
ERP on γ start to converge to a value closer to the NSD for
RP on γ.

The results for LP on γ, RP on β2, and FLP on β2
using the O-band parameters in Table II are shown in Fig. 5,
where the NSD is displayed as a function of the input power.
First, we consider a system without TOD (dotted and dashed
dotted lines). As shown in Fig. 5, the NSD for LP on γ
and FLP on β2 significantly decay when reducing the input
power in the absence of TOD. On the other hand, RP on
β2 converges to an NSD of approximately 4.6 · 10−11% for
powers lower than 2 dBm. This convergence to a non-zero
NSD value reflects the mismatch between (13) and (14) in
the absence of nonlinearities. FLP on β2 outperforms LP
on γ for all the displayed input powers, while RP on β2
outperforms LP on γ for input powers higher than 2.5 dBm.
At 10 dBm, the difference in NSD between RP and FLP on
β2 is approximately 91 times, which is different from the 42
factor for the C-band results at the same input power (see
Fig. 4). This discrepancy is due to the new set of γ and α
values, which boost the difference between the two models at
that input power.

The results for the O-band in Fig. 5 shows that when TOD
is considered,RP and FLP on β2 converge to a constant NSD
of 10−9 for input powers lower than 3 dBm. This behavior can

be explained by the absence of TOD in the model derivations.
The error introduced by not accounting for TOD becomes
approximately constant when input powers are lower than
3 dBm, and dominates the error introduced by incorrectly
modeling the other fiber effects. From 0 to 20 dBm, the
performance of RP and FLP on β2 in the system with TOD
is worse than without TOD. This behavior is expected, since
for the system without TOD, RP and FLP on β2 cross the
constant NSD of 10−9 (TOD error floor for low powers) only
at 14.7 dBm and 18.2 dBm, respectively. For LP on γ, the
NSD for the system without TODis virtually the same as for
the system with TOD since we already account for TOD in
the model derivation, as done in (11).

B. Decision Region Optimization

As discussed in [11], comparing models in discrete time
can lead to slightly different conclusions than on a waveform
level. For this reason, this section compares LP on γ, FLP
on β2, and SSFM results at the symbol level, measured by
BER. The results are shown for the C-band system with
parameters given in Table II. To obtain the received symbols,
the output waveform from these three models is filtered by a
matched filter and sampled as done for the signal A(·, z) in
Fig. 2. We do not include chromatic dispersion compensation
(CDC) at the receiver due to the high amount of interaction
between chromatic dispersion and nonlinearities which cannot
be efficiently compensated by CDC. For example, the BER
for this setup with a CDC block is virtually the same as
the BER without CDC when using a minimum distance
symbol detector. The resulting complex samples are used to
optimize decision regions for each model, originating a symbol
detector. Finally, SSFM simulations are performed to validate
the accuracy of each symbol detector when receiving the true
(SSFM) output waveform.

The decision region optimization for the symbol detector
is based on the histogram of the received complex samples.
This histogram-based (HB) detector follows the principle of
choosing the most probable transmitted symbol, given that
the corresponding received sample falls in certain area of the
complex plane. This principle corresponds to the maximum
a-posteriori (MAP) rule

x̂ = argmax
sm∈S

Pr{X = sm | Y = y}. (38)

where X and Y are random variables associated with the
transmitted symbols and received samples (see Fig. 2), re-
spectively, and sm ∈ S where S = {s1, · · · , sM} is the set
of constellation points with cardinality M and 1 ≤ m ≤ M .
The MAP rule, as stated in (38), is optimal for a memoryless
channel, and thus, suboptimal for the optical fiber channel,
which includes memory.

To build the HB detector and numerically approximate the
rule in (38), training symbols are transmitted through the fiber
in order to obtain an estimation of the probability distribution.
Their respective received samples will fall in a specific bin,
which is an small area in the complex plane. For each bin, we
count the number nm,b of received samples that fall inside the
b-th bin and were drawn from the m-th constellation point,
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Fig. 6. Optimized decision regions obtained with HB detection after the propagation for PTx ∈ {15, 16, 17} dBm of a QPSK constellation based on: (a)
SSFM; (b) FLP on β2; (c) LP on γ. Each of the four differently colored areas represents the decision region for a specific constellation point. The respective
constellation points are illustrated with red crosses. A contour plot of the histogram for the received samples for the transmitted symbol (1− j)/

√
2 is plotted

on top of each subfigure.

where 1 ≤ b ≤ B, 1 ≤ m ≤M , and B is the total number of
bins. The value of m = m̂b that maximizes nm,b is considered
to be the most probable transmitted constellation point for
that bin. If maxm{nm,b} = 0, we replace b by the closest
bin b′ in Euclidean distance such that maxm{nm,b′} > 0,
and decide m̂b = argmaxm{nm,b′}. After obtaining m̂b for
all possible b, the decision regions are defined and every
time a received sample y is received in the b-th bin, we
assume that received symbol x̂ = sm̂b was transmitted. For
computational reasons, we only consider a subset A = {z ∈
C : |<{z}| < 2, |={z}| < 2} of the complex plane, divided
into B = 400 × 400 square bins of side 0.01. This region is
sufficient to contain virtually all the received samples in the
simulation. We simulate 2000 times the transmission of 218

symbols, totalling approximately5.2 · 108 symbols to obtain
histograms that define nm,b. Each sequence of 218 symbols
was randomly generated and the transmitted waveform had an
oversampling factor of 16 samples per symbol. The decision
regions were optimized for each transmitted power separately.

Fig. 6 depicts the decision regions obtained by using HB
detectors for SSFM, FLP on β2, and LP on γ at input powers
PTx ∈ {15, 16, 17} dBm. The transmitted constellation is
illustrated with red crosses. Fig. 6 also includes contour plots
of the histogram for the received samples when transmitting
the constellation point (1 − j)/

√
2. The decision regions

associated to this constellation point are represented in yellow
and contain most of the received samples shown by the contour
plots. The samples that fall outside the yellow regions are not
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classified as (1−j)/
√
2 since there are more received samples

originating from another constellation point in those specific
bins.

The optimum decision regions are considered as the ones
obtained via SSFM in Fig. 6(a). At 15 dBm, the decision
regions differ significantly from the four quadrants of the
complex plane that represent the minimum distance decision
regions. This difference originates from the nonlinearities,
which creates a non-Gaussian distribution of the received
samples. Due to the high nonlinear effect present at 17 dBm,
the SSFM decision regions and the contour plots follow a
spiral shape. The decision regions obtained by FLP on β2
are shown in Fig. 6(b). At 15 dBm, these decision regions
are similar to the SSFM ones for the same PTx. However, at
17 dBm, these regions do not present a spiral shape, as in
Fig. 6(a). This new behavior can be explained by the contour
plots. The curvature of the contour plots in Fig. 6(b) is lower
than the curvature in Fig. 6(a), which results in the symbols
from the tail of the contour plot falling in bins with a high
number of points transmitted from another constellation point.
The curvature for the contour plot of symbols obtained via LP
on γ in Fig. 6(c) is even lower than for FLP on β2 in Fig. 6(b).
This fact results in decision regions with less accentuated
curves in center of Fig. 6(c) for each PTx. At 15 dBm, the
LP on γ decision regions already differ significantly from the
SSFM ones. For example, at both 15 and 16 dBm, a small
lobe (red dashed circle) present in both SSFM and FLP on
β2 decision regions is not present in the LP on γ ones. The
shape of the contour plots indicate that the decision regions
obtained with FLP on β2 might perform closer to the SSFM
decision regions than the ones obtained with LP on γ, as will
be discussed next.

The HB detectors obtained using LP on γ, FLP on β2, and
SSFM are compared in a system whose fiber propagation is

modeled by the SSFM. The results are shown in Fig. 7, where
the BER is evaluated for different launch powers using the ob-
tained HB detectors. The latter are obtained using the SSFM for
fiber propagation. The BER was estimated after averaging the
results for 100 realizations of randomly generated sequences
of 217 symbols, totalling approximately 1.3 · 107 symbols. As
shown in Fig. 7, the SSFM HB detector (black curve) shows
the lowest BER for the displayed input powers. The minimum
distance HB detector gives the worst performance since it
assumes a Gaussian distribution of the received samples. This
detector is obtained by minimum Euclidean distance from
the received samples to the possible transmitted symbols.
Replacing the minimum distance HB detector by the SSFM
one at 16 dBm reduces the BER approximately18 times(from
5.9 · 10−3 to 3.3 · 10−4). At 15 dBm, the BER for FLP on
β2 is4.6 times lower than for LP on γ. As expected, results
for FLP on β2 are closer to the SSFM results than LP on γ.
The highest gap between the SSFM and FLP on β2 occurs at
17 dBm, where the BER for FLP on β2 is 1.4 times higher
than the BER for SSFM. The fact that a higher gap appears
from 16.5 dBm could be related to the high NSD observed in
Fig. 3 for FLP on β2 at that range of input powers. Fig. 7 also
shows the performance of the SSFM detector obtained at 17
dBm when used for other input powers. As the input power
distance from 17 dBm increases, the performance of the SSFM
detector for 17 dBm decreases with respect to the performance
of other SSFM detectors obtained in those respective input
powers. For example, at 15 dBm, the BER for the 17 dBm
SSFM detector is 5.7 times higher than the 15 dBm SSFM
one, matching the performance of LP on γ. Nevertheless, the
BER of the 17 dBm SSFM detector is still lower than the BER
for minimum distance detection.

C. Achievable Information Rates

FEC is present in modern PON systems to improve system
performance [23]. In Fig. 7, pre-FEC BER thresholds are
shown for two Reed-Solomon (RS) codes [24]. The considered
codes in Fig. 7 are RS(n, k) with k = 239, 223 and n = 255,
where k and n are the information and codeword lengths, resp.
These two codes are typical low-complexity RS codes used
in PONs [23], [25] and have a code rate of 0.93 and 0.87,
respectively.

Along with RS codes, also stronger FEC codes such as
low-density parity-check codes or staircase codes have been
proposed for PONs in the literature [26]–[28]. In this section,
we evaluate the models for PON systems with hard-decision
(HD) FEC in terms of achievable information rates (AIRs)
[29]. We consider the simple RS codes described above and
a theoretical HD limit for the AIR. The latter is close to the
performance of strong HD FEC codes [30, Fig. 8]. The AIRs
are obtained by closed-form expressions based on pre-FEC
BER.

We consider a family of RS codes RS(n, k) with multiple
coding rates, where k is varied to obtain different code rates.
We use a fixed codeword length (n = 255 symbols) in order
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to constrain the code complexity. For every launch power, k
is determined by finding the highest k such that the post-
FEC BER falls below a certain threshold. Following [20, Table
IV.2], we use 10−12 as post-FEC BER threshold.

The post-FEC BER ppos can be approximated by substi-
tuting the pre-FEC BER p from the system in Fig. 2 in the
analytical expression for binary symmetric channels (BSCs)
and bounded-distance decoders [31]

ppos ≈
1

n

n∑
r=t+1

(
p

ps
r +

1

2(t− 1)!

)(
n

r

)
prs(1− ps)n−r,

(39)
where t = b(n − k)/2c is the RS error-correction capability,
ps = 1 − (1 − p)m is the (RS) symbol error probability, and
m = dlog2(n + 1)e is the number of bits per symbol. To
improve the total computation time, a binary search algorithm
on k over all integers between 1 and 253 is performed. After
finding k, the AIR for the RS system (AIRRS) is determined

by

AIRRS = log2(M)
k

n
=

2

255
k, (40)

since M = 4 for QPSK. We call (40) an achievable informa-
tion rate since we assume that ppos < 10−12 can be considered
virtually error-free for the system considered in this paper.

Since the expression in (39) is valid for BSCs, we need
to modify the system in Fig. 2 to fulfill that property. The
fiber channel in Fig. 2 presents memory due to the interaction
of dispersion and nonlinearities. Therefore, in our simulations
we included a bit interleaver and a bit deinterleaver so that the
fiber channel in Fig. 2 is well-approximated by a BSC. The
resulting system, together with the RS encoding and decoding
blocks, can be seen in Fig. 8. The system in Fig. 8 was
only simulated for ppos ≈ 10−5 and was used to validate the
results of (39). After this validation, (39) was used instead of
simulating the system in Fig. 8.

Fig. 9 depicts the AIRs for the RS system using (39). Before
analyzing the results for ppos ≈ 10−12, we validate (39) at
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ppos ≈ 10−5 to determine if the system in Fig. 8 can be well-
approximated by a BSC. This validation is done assuming a
minimum distance detector and is shown by the dotted lines
in Fig. 9. The results for the RS simulations of the exact
system in Fig. 8 at ppos ≈ 10−5 are shown with diamonds.
An almost perfect overlap with the results from (39) with the
same ppos (shown with triangles) is observed. The agreement
between these curves suggest that the system in Fig. 8 can be
approximated by a BSC. Therefore, from now on only (39) is
used for the RS systems at ppos ≈ 10−12.

We start by comparing the dashed lines in Fig. 9, which
represent the AIRRS results in (40). As shown in Fig. 9,
using the decision regions obtained by SSFM in a RS system
can provide a gain of approximately 1.8 dB for a rate of
1.6 bits/symbol in terms of nonlinear tolerance. The cross-
ing point between the rate of RS(255, 223) with AIRRS for
the SSFM decision regions is at 16.5 dBm, which closely
matches with the crossing point with BER in Fig. 7. When
comparing the models, the histogram-based detector obtained
using FLP on β2 outperforms the LP on γ one throughout
the considered power range, analogously to Fig. 7. Specifi-
cally for RS(255, 239), FLP on β2 outperforms LP on γ by
approximately 0.4 dB.

The AIRRS is also compared with a theoretical bound
on hard-decision bit-wise AIRs for independent, identically
distributed bit errors. The theoretical AIR (AIRTH) used in
this paper is defined as [32]

AIRTH = log2(M) (1− Hb(p)) , (41)

where Hb(p) = −p log2(p)− (1− p) log2(1− p) is the binary
entropy function for the given pre-FEC BER p in the system
of Fig. 2. The AIRTH from (41) can be approached by strong
FEC codes such as staircase codes, as reported in [30, Fig. 8].

As shown in Fig. 9, the theoretical bounds (solid lines) from
(41) show significant gains over the AIRRS results. These gains
show that, by using codes more complex than RS(255, k),
higher code rates can be achieved or the input power can be
improved for a specific rate. For the same code rate as in
RS(255, 223), the input power for the theoretical bound on
the SSFM decision regions is approximately 1.9 dB higher
than the one for the RS system. However, the complexity and
latency of codes that perform close to the theoretical bound
should be carefully analysed for a PON system design. The
results for the theoretical bounds in in Fig. 9 also show that the
histogram-based detector based on the FLP on β2 outperforms
the one based on LP on γ.

D. Numerical Analysis

As mentioned in Sec. II-D, LP on γ and FLP on β2 suffer
from a numerical issue related to the ratio between the first
and zeroth RP order. In this section, this issue is further
investigated, more details on the models’ implementation are
presented, and the time–complexity tradeoff is discussed.

The time derivatives present in the β2 perturbation models
were calculated in the frequency domain by using fast Fourier
transforms. Once the terms A(β2)

0 and A
(β2)
1 were obtained,

they were used to build both RP and FLP on β2 models to

avoid the recalculation of those terms for FLP. This last trick
was analogously done for RP and LP on γ. To obtain the
models RP and LP on γ, the integral in (5) was calculated
using Gauss–Legendre quadrature [33, Ch. 5], [34]. The
minimum number of necessary quadrature points to achieve
the NSDs displayed for the C-band was only 2, while for
the O-band this number increased to 4. The weights for the
Gauss–Legendre quadrature were obtained from a look-up
table. The SSFM calculations previously presented in the paper
were performed using uniform (constant) spacial step sizes of
0.1 km. However, for the time complexity comparison in this
section, we used logarithmic step sizes to increase the accuracy
for a given number of steps [35]. A multiplicative correction
factor of 0.6 was used to adjust α in the logarithmic step size
calculation. This correction factor changes the distribution of
the step sizes in order to improve the few-steps SSFM NSD.
The simulations were performed on a NVIDIA® Tesla®-P100
GPU and the code written in MATLAB®. The code used for
the models can be found in [36]. The simulation setup in this
section differs slightly from the one considered in Sec. III-A.
We consider C-band simulations at a fixed 10 dBm input
power. The splitter and the additional 1 km fiber are ignored
in order to measure the time and accuracy of a single fiber
segment for each method.

Fig. 10 shows the simulation time versus NSD for most of
the models considered on this paper. The NSD values were
averaged over 100 simulations, while the simulation time was
averaged over 3000 realizations of the MATLAB® function
gputimeit© for each model. In each simulation, 217 symbols
were transmitted, with an oversampling factor of 16. Random
symbol sequences were generated when obtaining each NSD
sample, while the input waveform for the simulation time
measurements was fixed for all models. The NSD for the
models and for SSFM simulations with a small number of
spatial steps was calculated using as the reference waveform
SSFM simulations with 70 logarithmically spaced steps. These
steps were calculated using the symmetrized SSFM approach
[1], where the nonlinear effect is included in the middle of each
step. The few-steps SSFM simulations also used symmetrized
logarithmically spaced steps. As depicted in Fig. 10, 2 sym-
metric steps SSFM simulations already yield higher accuracy
in lower simulation time than all the other models in that figure
for this system, except for RP on β2 which has a slightly lower
simulation time. Therefore, one might prefer using few-steps
SSFM for numerical simulations instead of analytical models
for this system.

However, our motivation for developing new integral-form
models is to focus on better understanding fiber propagation
instead of numerical aspects. Analogously to RP on γ, we
believe that the β2 perturbation models could also be used
to build low-complexity receivers and performance prediction
formulas. When comparing analytical models, Fig. 10 shows
that changing from RP to ERP on γ requires virtually no
increase in time, while yielding a lower NSD. The NSD of
ERP on γ is comparable to the NSD of RP on β2 at that
input power. Nevertheless, ERP on γ requires approximately
124% more simulation time than RP on β2. The gap in time
between RP and FLP on β2 is higher than the gap between
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Fig. 10. Average simulation time for most of the models considered in this
paper. The simulated system is a 20 km fiber in C-band with input power 10
dBm. The code used to generate the models can be found on [36]. Few-steps
SSFM simulations are also added to the figure (circles).

RP and LP on γ. This difference might be explained by the
additional fast Fourier transforms required in the FLP method
and by the additional search Ã

(β2)
0 (ω, z) = 0, as stated in

Sec. II-D. Although having a lower gap from RP on γ, the
simulation time for LP on γ is 50% higher than for FLP on
β2. In addition, FLP on β2 presents approximately 2.7 times
lower NSD than LP on γ.

The choice of the threshold c used for both LP and FLP
methods is also investigated. Fig. 11 illustrates the average
NSD versus c over 500 simulations. As shown in Fig. 11, for
c < 0.02, the NSD of LP on γ and FLP on β2 converge to the
NSD of their respective RP models. For c > 10, the NSD of
FLP on β2 starts to increase significantly. This increase is due
to high energy isolated points where the value of the zeroth
order perturbation term is significantly smaller than the first
order one. The lower the value of c, the more these isolated
points are filtered. The same behavior happens for LP on γ
for c > 103. At c = 1.1, the NSD is virtually the minimum
for both models and was the chosen threshold for simulations.

IV. CONCLUSIONS

In this paper we presented a novel model for optical fiber
transmission and evaluated its performance for a passive
optical network system. The proposed model was derived as
an improved version of the regular perturbation on the GVD
parameter model. The improvement was obtained by applying
frequency logarithmic perturbation on the GVD parameter.
Both regular and frequency logarithmic perturbation on the
GVD parameter models are suitable in the weakly dispersive
and highly nonlinear regime, whereas the frequency logarith-
mic perturbation is able to surpass the limitations of the regular
perturbation.

Apart from the regular perturbation on the GVD parameter,
the proposed model was compared with two other models
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Fig. 11. Average NSD versus threshold c over 500 simulations for LP on γ
and FLP on β2. For c = 1.1, the average NSD is approximately the minimum
for both models.

present in the literature: regular and logarithmic perturbation
on the Kerr nonlinear coefficient. For a fixed normalized
squared deviation of 0.1%, the proposed model was accurate
at 1.5 dB higher input powers compared to logarithmic per-
turbation on the Kerr nonlinear coefficient. Both frequency
logarithmic and regular perturbation on the GVD parameter
exhibit the highest convergence rate to the split-step Fourier
method results when reducing the dispersion effect. The pro-
posed model also proved to be more suitable for symbol and
bit detection, with and without FEC.

Possible extensions of this work are higher-order logarith-
mic perturbation models, perturbation on the GVD parameter
for dual-polarization systems, and nonlinearity-compensation
techniques based on the proposed model.
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