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Fabian Årén
Department of Physics
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Abstract
To power a sustainable future, interest in battery research and technology is at an
all time high. In order to enable a transition to green tech many applications, such
as the automotive industry, is in need of higher power densities, energy densities,
longer life-times, and safer batteries.

One crucial component of batteries is the electrolyte, which for lithium-ion batteries
(LIBs) have not developed as much as one would expect since its introduction in the
1990s. Through the use of novel electrolyte concepts such as highly concentrated
electrolytes (HCE) and localized highly concentrated electrolytes (LHCE) desired
qualities such as an increased energy density could be achieved. The e�ects of local
properties on macroscopic behaviour within these systems are much more striking
than conventional LIB electrolytes, constraining the use of common simulation
techniques used in battery research.

This thesis studies these novel electrolyte concepts using an array of di�erent
computational methods, such as DFT, AIMD, and classical MD. Based on these
techniques, as well as on the CHAMPION method, the work done in this thesis
attempts to develop a method for tying together understanding of materials physics
at the di�erent scales represented by AIMD and classical MD through force sampling.
This force sampling is presented as an alternative to commonplace MD force fields
such as AMBER, CHARMM and GROMACS.
Finding the local structure important for explaining global transport phenomenon
by showing that local HCE structure is retained when going from HCE to LHCE as
well as showing the possibility for these new types of FFs, even though more work
is needed on the accuracy of these FFs.

Keywords: lithium-ion batteries, machine learning, multi-scale modeling, electrolytes,
DFT, AIMD, MD
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1
Introduction

Materials are all around us. From the components in the electrical device you might
be reading this text on to the paper of the printed version. Our modern world is built
on the back of materials, and is propelled by humanity’s increased understanding of
the mechanisms and structures that give rise to all the unique and useful properties
of di�erent materials enabling the level of civilisation we have today.

Within the foreseeable future one of the most important research fields within
materials science is the development of energy storage materials, such as the materials
used to make batteries, which is a keystone in solving the climate issues [4] the human
species will be facing within the coming century. Currently the state-of-the-art
battery technology, the lithium-ion battery (LIB) has come a long way since its
introduction in the 1990’s by Sony [5]. Having an energy density of 200 Wh/l or 80
Wh/kg enabled the widespread adoption of handheld electronics. Today the energy
densities have more than tripled.

One of the major problems of battery material research is the trial and error process
used to discover new materials. Looking at trends in other fields [6, 7], it is clear
that computational approaches have a great potential to be a solution. However,
material simulations at the molecular level are di�cult if directly trying to solve
the Schrödinger equation, as it is a complex many body problem. One of the most
e�ective techniques to simulate systems at this scale is density functional theory
(DFT) [8]. Being able to simulate molecules accurately to achieve understanding
quickly breaks down as the system size increases due to DFT lacking the ability
to simulate dynamics, which becomes more important for explaining properties
emerging at larger system sizes. Hence a conundrum appears; how to describe and
simulate systems of any composition at a macroscopic scale with quantum accuracy.
Paper I used DFT to identify the origins of spectroscopic observations and showcase
the value of this method on a local scale.

Studying systems larger than a few molecules however requires a di�erent tool set.
Molecular dynamics (MD) simulations have been a functional tool since the 1950’s
[9, 10] and the method was the grounds for the 2013 Nobel Prize in Chemistry
[11]. However, even though MD simulations have been shown numerous times to
aid materials sceintists in their work [12, 13, 14], the method has several drawbacks,
such as the method used to evaluate forces at each time step being non-trivial, as
well as computationally expensive long range interactions. The umbrella term MD
should be separated into two distinct methods, ab initio MD (AIMD), and classical
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1. Introduction

MD (from now on simply referred to as MD), both with their own distinct problems
and benefits. Paper II display a proof-of-concept for a new method of analysing MD
trajectories. Specifically AIMD is used to propagate a system, generating realistic
structures, showcasing what AIMD in particular, and MD in general can be used
for when studying batteries.

In order to enable MD simulations of non-conventional electrolytes on a nano-scale,
a system for generating accurate force fields (FF’s) have to be developed. Many
attempts to circumvent this need have been made within the field of materials
science in general, quite successfully, using a number of machine learning (ML)
approaches, mainly using neural network (NN) approaches [15, 16, 17]. Even though
ML techniques have gigantic upsides when it comes to computing hard-to-model
problems there are certain drawbacks, such as the large data-sets needed for training,
and the long times needed for learning, as well as the lack of understanding of why a
model makes the predictions it does, colloquially called a "black box" [18]. Preferably
a method to easily generate accurate FFs on the go for specific systems, without the
drawbacks of conventional ML techniques, is needed. In paper III such a method
is suggested through generalising the methods developed by Åvall and Johansson to
exctract e�ective pair-wise forces and interaction energies from AIMD [19].

This thesis first shows how DFT and AIMD can be used to model electrolytes, at
multiple scales, but foremost it proposes a novel method to generate FFs. All in order
to study the rapidly changing landscape of modern battery electrolytes, in order to
obtain properties such as transport numbers, current density, etc., or to understand
the structure of these materials, which can enable complementary and comparative
information to experimental insights. The background for this thesis comes from
studies of electrolytes using conventional computational methods, and discovering a
gap in our ability to simulate complex systems at nano-scale, motivating the move
from multiple scales to multi-scale modeling.
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2
Batteries

2.1 Electrochemical cells
Electrochemical cells store chemical energy, which can be released as electrical
energy through redox reactions. There are some miscommunication regarding the
nomenclature of what a battery is, where battery can be used both to reference
the electrochemical cell, as well as a battery pack. However in this thesis the word
"battery" will refer to a battery pack, an assembly of cells and controlling electronics,
as well as housing, fully capable of storing energy for large scale applications and in
electric vehicles. Battery cells on the other hand are small single unit electrochemical
cells, containing the reaction.

The cell is made up of four main components; 1) the anode, where oxidation occurs
during discharge and electrons flow from, 2) the cathode, where reduction occurs
during discharge, and electrons flow towards 3) the electrolyte, which is the charge
carrying medium between the two electrodes, and 4) a separator which physically
separates the electrodes to prevent a short circuit (Fig. 2.1). In addition to these
components there are also current collectors, which are materials with high electronic
conductivity, e.g metal foil, connecting the cell to an external circuit, as well as some
sort of housing.

2.1.1 Li-ion Batteries
The most advanced battery chemistry in common use today are based on Li-ion
technology. Li-ion batteries are popular due to both having high specific power and
energy (≥ 300 Wkg≠1 and ≥ 150 Whkg≠1 respectively at cell level for electric vehilce
applications [20]) as well as a high voltage of ≥ 3 V against a standard hydrogen
electrode (SHE) which is three times that of a typical Ni-Cd battery [21].

One of the most common traditional Li-ion battery chemistries is graphite and
LiCoO2 (LCO) used together with the LiPF6 in EC/DMC (LP30) electrolyte. To
understand contemporary battery technology this system is a good starting point.
The ideal discharge reaction would be:

Oxidation at anode: LiC6 æ C6 + Li+ + e≠

Reduction at cathode: Li+ + e≠ + CoO2 æ LiCoO2

Total reaction: LiC6 + CoO2 æ C6 + LiCoO2

3



2. Batteries
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V

Figure 2.1: Schematic of a typical Li-ion battery cell with a Cu current collector,
a graphite anode, a 1 M LiPF6 in EC/DMC electrolyte, a LCO cathode, and a Al
current collector.

By physically separating the oxidation and reduction reaction and connecting them
through an external circuit cycling can be performed by transferring the electrons
outside the cell, and the Li+ through an electronically insulating medium, the
electrolyte. From these reactions it is clear that the limiting factor of the amount of
Li-ions that can be transported, and hence the energy content of the cell, is the Li+,
or an alternative charge carrier, storage capacity of both electrodes. This amount is
given by the capacity Q, although since Q can be increased by simply increasing the
electrode mass, which is not useful in most applications a more useful property to
keep track of is the specific capacity C. Using Faraday’s law the theoretical specific
capacity, which puts an upper limit on the actual capacity can be calculated:

Cth = nF0
MW

where n is the number of electrons transferred during the reduction or oxidation
reduction, F0 is Faraday’s constant, and MW is the molecular weight of the active
material (AM).

The theoretical voltage Vth is determined by the redox reactions taking place at
the electrode. Given knowledge about the free energy of of the redox reaction, the
theoretical voltage can be calculated as:

Vth = ≠�G

nF0
= ≠ �G

CthMW

Vth gives an upper limit to the voltage. The actual cell voltage is given by, V =
E

+ ≠ E
≠ where E

+ is the electrochemical potential at the positive electrode, and
E

≠ is the electrochemical potential at the negative electrode, compared to a reference
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2. Batteries

Figure 2.2: Schematic of an ESW.

electrode. Knowing the voltage at a charge Q, V (Q) allows to calculate the electrochemical
energy of the cell, given by:

Echem =
⁄ C

0
V (Q)dQ

where C is the full capacity of the cell, the total amount of charge that can be
reversibly transferred [22]. However when comparing batteries the more useful
quantities are the volumetric and gravimetric energy density, which is calculated
by dividing the total electrochemical energy by the volume, or the mass of the
battery pack, the battery cell, or the AM, meaning batteries can be compared at
three di�erent levels.

2.1.2 Solid-Electrolyte Interphase
In order to keep a cell cycling the operating voltage needs to be less than the
electrochemical stability window (ESW) (Fig. 2.2) of the electrolyte [23]. The
ESW is defined as the potential di�erence between the highest occupied molecular
orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). However
battery systems such as LIBs operate with a voltage window outside the ESW. These
systems continue operating through the decomposition of the electrolyte forming
a passivating, yet still ionically conductive film on the anode (Fig. 2.3), called a
solid-electrolyte interphase (SEI). The SEI is typically formed during the first couple
of cycles on the anode by the reduction of the electrolyte. The oxidation products
form the analogous cathode electrolyte interphase (CEI) on the cathode.

5



2. Batteries

Figure 2.3: Schematic of an SEI (N,⌅, •) forming on the anode, protecting it from
direct contact with the electrolyte whilst still allowing ionic transport.

2.1.3 Calcium Batteries
State-of-the-art battery technologies, aka Li-ion based battery technologies, utilise
a monovalent charge carrier. However this is not a fundamental limitation for
a working battery concept. In recent years the interest for multivalent battery
technologies, and especially calcium (Ca) batteries have risen [24, 25, 26]. The ability
to drive multiple electron exchanges for every carrier transfer puts technologies such
as these at comparable theoretical energy densities to Li-ion batteries [24], even
though Ca2+ is a much larger ion than Li+. This makes Ca-metal batteries a viable
option for future more sustainable and cheaper batteries. The Ca metallic anode
has a low redox potential of ≠2.87 V vs a SHE, meaning that all components in
the electrolyte are at risk of reduction, forming di�erent passivating layers. The
problem hence is finding a solution allowing for both plating and stripping of Ca2+.

Similarly cathode materials have to be developed also. A cathode needs to allow
for high ionic mobility of the intercalating species. This can be achieved through
using a host lattice where the di�using ion is not coordinated to the lattice in its
most thermodynamically stable configuration, as well as using a host structure with
minor changes in ion coordination along the di�usion pathway [25]. Even though
reversible Ca electrodeposition was demonstrated in 2016 [27] there are still a few
hurdles to overcome before Ca batteries will become ready for market, e.g. the
need to adapt the manufacturing process to be able to handle producing both Ca
metal anodes and cells in an inert atmosphere, alternatively develop pre-passivated
anodes.

2.2 Battery Properties
There are certain key performance indicators (KPI) important for comparing systems
to keep track of when studying batteries. Important to all applications is knowing
the energy content or battery capacity of the pack, as well as power, and the nominal
cell voltage. Generally each unique battery system is designed to either optimise for
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2. Batteries

power or energy content depending on the intended use. Hence knowing a battery’s
power-to-energy-ratio can indicate what a battery system can be used for, however
other aspects also play a role. The nominal cell voltage is the average voltage output
of the cell, which drops as the system discharges, for current LIBs this can drop from
4.6V to 2.5V [28].

Hence to understand the live operation of a system the state-of-charge (SOC) defined
as

SOC[%] = Q

Qmax
,

is needed, where the SOC represents the available charge in the system. Since
the SOC tend to drop when cycling, this property is important for understanding
the deterioration of the system. To understand the health of a battery cell the
number of cycles also have to be known. To make sense of the cycling term it is
easier to talk about equivalent full cycles. However this measurement lacks the
ability to distinguish between one cycle of 100% of depth of discharge (DOD),
two cycles of 50% of DOD, or ten cycles of 10% DOD. DOD is one of the largest
contributors of battery degradation, determining the lifetime of the system. For
example, Li-ion batteries undergo ten times more degradation when operated near
100% DOD compared to when operated at 10% DOD.

An almost equally important property for a cell is the Coulombic e�ciency that
quantifies the share of charges that are returned by the storage system, defined by:

÷Coulombic =
s

period I(tdischarge)dt
s

period I(tcharge)dt

The Coulombic e�ciency tends to decline when the battery is cycled, being one
of the main reasons why batteries have a limited life span. One reason for such a
degradation can be a parasitic reduction of electrode and electrolyte [29].

By studying materials at the cell level we can hope to develop systems that optimise
these KPIs; e.g. increased energy and power content, as well as slower degradation.
These indicators are tightly knit to the system dynamics, studied in paper I - III.
The voltage of the system on the other hand is heavily dependent on the choice of
chemistry, making the studies of di�erent mono, and multivalent systems interesting.
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3
Electrolytes

In a LIB the electrolyte, e.g. LP30, consists of solvents, and a solute, with the
main purpose to transport charge carriers from one electrode to the other whilst
remaining electronically insulating. Beyond ion transport the electrolyte has to
adhere to many other criteria, such as the ability to wet the separator and electrodes,
having a low flammability, low toxicity, and low environmental impact. In order
to understand the charge transport in electrolytes it is important to study the
mechanisms that facilitate transport, and what structures enable transport. The net
transport of charges is driven by the di�erence in electrochemical potential between
the electrodes. Even though this is the driving force on a macroscopic scale it is
important to keep in mind the importance of both time and length scale. Herein we
will discuss the importance of understanding the electrolyte structure at di�erent
scales in order to explain behaviour.

3.1 Highly Concentrated Electrolytes
Conventional electrolytes in modern batteries, such as the aforementioned LP30, are
most often found at concentrations around 1 M. However since the early 2010’s the
interest for much higher salt concentrations in battery electrolytes have increased
dramatically. The increased interest is due to some interesting properties displayed
such as a lower solubility of transition metals dissolving from cathodes [30], higher
rate capabilities [31, 32], and a widened ESW [31, 33]. The addition of more salt
causes the electrolyte to have high ion density more akin to solvent in salt, than salt
in solvent, making the electrolyte take on behaviour similar to ionic liquids. This
also means that there is a low amount of free solvent in the liquid, which is one
of the major identifiers of highly concentrated electrolytes (HCEs). Furthermore
this leads to a higher density, higher viscosity, and a lower total ionic conductivity.
Using a combination of experimental techniques Nilson et al. have shown that
ionic conductivity depends more strongly on ionicity than viscosity [34], which is
in agreement with the argument by Seo et al. [35]. In paper II we describe the
mechanism behind the lower ionic conductivity for lithium
bis(trifluoromethanesulfonyl)imide (LiTFSI) in acetonitrile (ACN) at a 1 : 2 molar
ratio and show that a percolating network form from the anions and cations at
such a high salt concentration whilst the solvent remains free. The lower ionic
conductivity is explained by a decreased amount of transportation being conducted
through a vehicular mechanism, which is defined as a cation in a shell of coordinated
solvent molecules moving freely through the electrolyte (Fig. 3.1a), contrary to a

9



3. Electrolytes

(a) How a solvent molecule shell forms
a "vehicle" surrounding the cation
and enabling transport through the
solvent

(b) Rotating a structure containing
cations can lead to a net charge
transfer. This is an example of
non-vehicular charge transfer.

Figure 3.1: Di�erent charge transfer mechanisms at intermediate and high salt
concentrations.

higher amount of non-vehicular transport, which is all type of transport that is not
vehicular. This could for example be structural deformation, structural rotation, or
jumping (Fig. 3.1b).

3.2 Localised Highly Concentrated Electrolytes
Localised highly concentrated electrolytes (LHCE) are designed to retain the positive
qualities of HCEs, whilst improving the reduced ionic conductivity, that comes
with an increased salt concentration. This is done by introducing a non-solvent,
diluent, keeping the 1st solvent shell of the cation of the HCE intact. Hence it
is globally similar to a liquid electrolyte (LE), but locally a HCE. The diluent
oftentimes are some kind of ether, particularly fluoroethers as seen in the works
of Qian et al [36], and Wang et al. [37, 38] . Given a shared local structure with
HCEs the SEI forming abilities remain [39]. As recently seen the SEI formed from
LHCE system are composed mainly of species coming from the anion decomposition
and (near the surface) from the decomposition of diluent as well [40, 41]. Hence
decomposition will occur using these systems, and the diluent has to be chosen
accordingly, increasing the complexity of choice for electrolytes. All choices can be
aided using computational means. For example: as preparatory work for paper I we
screened many potential fluoroethers using DFT for their interaction energy against
some standard acid in order to find out how inert their interaction is. Through this
method a set of suitable candidates could be preselected and the scope of testing
narrowed down. Similarly, MD is an additional method that could be used for
screening [42]. The importance of computational methods for investigating LHCEs
are even higher than for other electrolyte types due to properties of the diluent,
since many diluents contain high amounts of flourine and the F - F interaction
are important for many properties of these types of liquids. These interactions are
hard to probe spectroscopically, leaving computational methods as a more e�ective
choice.

10



3. Electrolytes

3.3 Ca2+ conducting electrolytes
The work done in this thesis touches upon the problem of finding a good electrolyte
for these types of systems. Currently Ca(BF4)2 salt and carbonate solvent electrolytes
show a large ESW. However these system require operating temperatures above
100 ¶C in order to be reversible [27], severely limiting the commercial applications as
well as the energy density of the system. At room-like operating temperatures THF
based electrolytes can used to produce operating Ca cells. These types of electrolyte
come with the drawbacks that the anodic stability is low (≥ 3 V vs Ca2+/Ca) which
limits the selection of high voltage cathode materials [43], in turn lowering the cell
energy density. Hence a viable middle ground has to be developed in order to make
Ca-metal batteries a commercial reality. In paper I we investigate some possible
special types of Ca electrolytes, and explore their structure using a combination of
computational and experimental tools.

Ca-ion electrolytes are more a�ected by a low redox potential than Li-ion systems
are. Since the Li-ion is ≥ 80 % the size of a Ca-ion and only carries half the charge it
moves more freely though the passive layer formed on the electrode, and compared
to other multivalent ions, Ca has a lower redox potential meaning other multivalent
systems do not induce a SEI layer mitigating ion transport. Aurbach et al. showed
that a wide range of Ca electrolytes form thick passivating films, making calcium
plating impossible on both Ca and noble electrodes making Ca2+ mobility impossible
[44]. Hence one of the main goals when studying calcium electrolytes is to develop
a system allowing for both calcium plating and stripping at the anode.

3.4 Ion Transport in Liquid Electrolytes
A common cell works with a cell voltage of the order of magnitude of < 5 V,
meaning that a Li+ experiences an energy contribution of 5 eV. Operating at room
temperature the thermal energy of the surroundings is kBT ¥ 25 meV. Hence,
on a global scale bulk transport is driven completely by the voltage di�erence.
Focusing on a local scale, assuming a thin separator (s 20 µm) we see that linearly
approximating cell voltage over separator thickness ¥ 2.5 · 105 Vm≠1 over a typical
distance of inter-molecular interaction (s 5 Å), E = 0.125 meV. As a consequence
the local dynamics is assumed to display motion uniformly distributed over all
directions. In practice however the voltage profile is extremely steep near the
electrode interfaces, making the importance of this potential more substantial there,
and even less important than assumed here within the bulk, but that is outside the
scope of this thesis.
The most important property for transport performance in a battery cell is the ion
conductivity ‡ of the charge carrier, defined by:

J̨
+ = ‡

+
Ę

relating the current density J̨ of the charge carrier to the applied electric field Ę.
Generally ‡ is a tensor. In isotropic media such as liquid electrolytes however it is
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reduced to a scalar.
Through the Nernst-Einstein equation, the ionic conductivity can be related to the
di�usivity D

+, which for monovalent electrolytes (which will be used for demonstrative
purposes here) takes the form:

‡
+ = cF

RT
D

+
,

where c is the salt concentration, F is Faraday’s constant, R is the gas constant, and
T is the temperature. Di�usivities tend to be easier to compute practically when
simulating electrolytes, making this a more useful metric. The di�usivity can be
approximated through the Stokes-Einstein equation:

Di = kBT

6fi÷ri
,

where ÷ is the dynamic viscosity of the electrolyte and ri is the hydrodynamic radius
of species i, typically on the order of 1 < ri < 10 Å in typical battery electrolytes
[45]. In practice however the di�usion is calculated through a method such as mean
squared displacement, or a Green-Kubo equation.

From the di�usivity two related, but distinct, and oftentimes confused concepts
can be defined: the transport number, and the transference number. The transport

number is defined as the fraction of the total current that is carried by the cation, e.g.

Li+, assuming no ion aggregation. Conversely the transference number is defined
as the fraction of the migration current excluding currents due to concentration
gradients, that is carried by the cations regardless of the speciation. The migration
current is defined as the current driven by an electric field. What can be obtained
from MD simulations however is neither of these concepts, but rather t

+, which is
oftentimes also called the transport number defined as

t
+ = D

+

D+ + D≠ .

Even though the confusion in definitions of transport properties cause problems
when comparing studies with each other, concentration trends, etc. seem to be
consistent enough across methods. In paper II we study an array of transport
properties using the newly developed CHAMPION software [46].
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4
Methods & Modelling of

Battery Electrolytes

This thesis focuses on the use of computational methods at multiple scales, ranging
from molecular level methods such as DFT, to methods such as classical MD simulations,
with AIMD in between (Fig. 4.1a). These methods provide vital information
about the system of study, at the scale of the method. However for electrolytes
it is important to also study the interconnectivity between the physics ranging
from molecules and up. This concept is called multi-scale modeling, a field of
science dedicated to studying and solving problems which have important features
at multiple temporal and spacial scales [47](Fig. 4.1b). In papers II and III an
attempt is made to marry the di�erent scales and here a deeper explanation of the
methods used will be given.

(a) Di�erent computational
techniques used at di�erent scales.

(b) Local clusters in an electrolyte
make up a global network.

Figure 4.1: Multiple scale modeling vs multi-scale modeling.

4.1 DFT
In paper I the local structures in CaB electrolytes were studied at the molecular level
using DFT calculations, in order to supplement and explain experimental data. At
the centre of DFT and other non relativistic quantum chemistry methods is solving
the Schrödinger equation:

H�(r, t, ‡) = i~ˆ�(r̨, t, ‡)
ˆt

13
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where � is the wavefunction describing the system, H is the system’s Hamiltonian,
r̨ = (x, y, z) all coordinates describing the system, and ‡ is the spin of the system.
Neatly packaged like this it is easy to think that all physics is solved, but as Paul

Dirac puts it [48]:

"The underlying physical laws necessary for the mathematical theory of a large part

of physics and the whole of chemistry are thus completely known, and the di�culty is

only that the exact application of these laws leads to equations much too complicated

to be soluble."

This quote summarises the problem with modern materials science and chemistry,
where the many-body-interactions necessary to describe the system quickly become
too complex to be solved for systems larger than the hydrogen atom. Hence approximations
of both the Hamiltonian and the wavefunction are needed to perform these calculations.
Since a true representation of the wavefunction cannot be replicated on a classical
computer [49], the first hurdle to overcome is to find an accurate representation of
the wavefunction. Oftentimes single-electron wavefunctions, and molecular orbitals
�n are written using a basis set of functions Ïµ centred on the nuclei. The basis set
functions are usually a linear combination of Gaussian functions

Ïµ =
ÿ

µ

dµg(›, r)

where dµ is a scale factor and

g(›, r) = Cx
niy

miz
lie

≠›ir2

where C is a normalisation constant, ni, mi, li determines the type of orbital the
function represent (s, p, d, etc.). Following the creation of a basis set ({Ïµ})
molecular orbitals can be defined as:

�k =
ÿ

µ

ck,µÏµ

Solving the Schrödinger equation is done through systematically making better
guesses for the wavefunction �(r1, r2, . . . , rn; R1, R2, . . . , RN) = q

k ak�k. What
is solved for are the values of all coe�cients ak, enabling the energy ‘ = È�|H|�Íto
be calculated. Since the variational principle states that E0 < ‘, where E0 is the
system’s ground state energy, it is possible to iterate systematically finding better
and better solutions to the wavefunction using an array of methods.

In this thesis DFT has been used as the method to find the ground state of a
number of systems. Through two theorems postulated by Hohenberg and Kohn,
DFT is used to identify a system’s ground state through the electron density rather
than its wavefunction, reducing the number of coordinates needed to describe the
system from 3(n + N) ≠ 6 to 3.

The two Hohenberg-Kohn theorems are:
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1. The ground state electron density uniquely determines the external potential of

the system, and thus the whole Hamiltonian.

2. A universal functional, valid for any external potential, can be defined in terms

of only the electron density.

Using these two theorems the energy of the ground state of the system can be
calculated from the elctron density:

E0 = T [n(r)] +
⁄

R3
Vnuclei(r)n(r)dr + 1

2
1

4fi‘0

⁄

R3

n(r)n(rÕ)
|r ≠ rÕ| drdr

Õ + Exc[n(r)]

where T [n(r)] is the kinetic energy functional of a non-interacting electron gas,
Vnuclei is the potential caused by the nuclei, and Exc[n(r)] is the exchange correlation
functional containing the remaining energy in the interaction [50]. Using the Kohn-Sham
equation: A

≠ ~2

2me
Ò2 + Veff (r)

B

�i(r) = ‘i�i(r)

where
Veff = Vnuclei(r) + 1

2
1

4fi‘0

⁄

R3

n(rÕ)
|r ≠ rÕ|dr

Õ + ”Exc[n(r)]
”n(r)

enables the electron density to be determined using a self-consistent field (SCF)
approach. The term ”Exc[n(r)]

”n(r) , called the exchange-correlation potential Vxc[n(r)] is
approximated di�erently by the various DFT functionals. Generally Vxc is approximated
by it being expanded in terms of electron density. There are functionals ranging from
simple and computationally inexpensive to very accurately and expensive ones. In
paper I the Minnesota functional M06-2X [51] has been used for the most part,
with some simulations done using the B3LYP functional [52]. The Minnesota
functionals are a group of parametrised exchange correlation energy functionals,
based on the meta-GGA approximation meaning they include terms including the
energy density, as well as it’s first and second derivatives. B3LYP on the other hand
is a less complex, GGA correlation function, simply containing information of the
energy density and the first derivative. However even though DFT is considered
accurate the computational cost scales cubically with the number of atoms in the
system, making simulations of a single solvation shell the most common in the field
of electrolytes. These typically target properties such as HOMO/LUMO levels,
vibrational modes and frequencies, and their associated IR intensities as well as
Raman activities etc.

4.2 AIMD
In paper II larger systems consisting of several solvation shells forming larger structures
are studied using AIMD. In order to update the atomic positions the force acting
on the atom has to be identified. The Hellmann-Feynman theorem shows that the
force acting on a particle i is simply determined by the electron density as well as
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the Coulomb interaction between the nuclei:

F = ≠ ˆE

ˆRi
= ≠

K

�
-----
ˆH

ˆRi

----- �
L

= Zi

Q

a
⁄

n(r) r ≠ Ri

|r ≠ Ri|3
dr ≠

Nÿ

j ”=i

Zj(Rj ≠ Ri)
|Rj ≠ Ri|3

R

b .

Therefore using similar methods for identifying the electron density as in DFT all
forces acting within the simulation system can be identified. Knowing all the forces,
the system can be propagated through time by solving Newtons second law, and
updating all particles position. One of the most common algorithms for updating
positions in MD methods is the Velocity-Verlet algorithm [50]. Updating positions
with a half-step the algorithm looks as follows:

1. v̨(t + 1
2�t) = v̨(t) + 1

2 ą(t)�t

2. x̨(t + �t) = x̨(t) + v̨(t + 1
2�t)�t

3. Derive ą(t + �t) for the updated positions x̨(t + �t)
4. v̨(t + �t) = v̨(t + 1

2�t) + 1
2 ą(t)�t

Where step 3 is non-trivial. Deriving new accelerations at each iteration means
solving a conventional matrix diagonalisation for an updated electron density with
each updated position, as is done when using Born-Oppenheimer molecular dynamics
(BOMD). This is computationally expensive when done at every time step, making
this approach risible for even moderate scale systems [50].

An alternative approach to combine the quantum mechanical way to derive the
forces acting in the system with classical MD was done by Car and Parrinello in
1985 [53]. By treating the total energy in the system as a functional of the electronic
wave function and nucleic positions:

Etot = Etot[{Âi}, {R̨j}]

in combination with the fact that the electronic wavefunctions are orthonormal
ÈÂi|ÂjÍ = ”ij Car and Parrinello were able to compute the total energy. They did this
by using the variational principle, minimizing Etot[{Âi}, {R̨j}], instead of computing
the electronic structure at every step of the MD simulation, as the nucleic positions
are varied simultaneously as the electronic orbitals. In order to propagate the system
in time and give the electrons a kinetic energy, a fictitious time dependence is given to
the wavefunction, which allows the following classical Lagrangian to be constructed:

L({Âi}, {R̨j}) = µ

2

nÿ

i=1
|Â̇i|2 + 1

2

Nÿ

j=1
Mj

˙̨
R

2
j + Etot[{Âi}, {R̨j}] +

ÿ

kl

�kl ÈÂk|ÂlÍ

where µ is a fictitious electron mass. The fictitious mass should be small enough such
that the Born-Oppenheimer approximation still holds and the electronic wavefunction
adapts to the position of the nuclei, whilst at the same time being large enough to
allow for relatively large time steps. A typical choice for µ = 400 me, which is what
we have used. Beyond the introduction of a fictitious mass, Lagrangian multipliers
�kl are introduced as to fulfil any external constraints, e.g retaining orthonormality
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of the Kohn-Sham orbitals at each time step. Solving for the classical equations of
motion yield:

µÂ̈i = ≠”Etot

”Âi
+ 2

ÿ

j

�ijÂj (4.1)

Mj
¨̨
Rj = ≠”Etot

”R̨j

+
ÿ

kl

�kl
” ÈÂk|ÂlÍ

”R̨j

(4.2)

which are implemented in CPMD [54], the software used to generate data for analysis
in paper II, and to generate training data in paper III.

4.3 Classical MD
Unlike AIMD where the forces are derived from the electron density and Coulombic
interactions between nuclei, classical MD calculate the interatomic forces using a
FF, which is a set of parameters and functions, together forming a potential energy
surface where the total system energy is determined by the atomic positions

Ó
R̨j

Ô
.

The energy is most often given by, but not limited to the form:

Etot = 4
ÿ

ij

‘ij

S

U
A

‡ij

rij

B12

≠
A

‡ij

rij

B6T

V + 1
4fi‘0

ÿ

ij

qiqj

rij

+
ÿ

bonds

kb(l ≠ l0,b)2

2 +
ÿ

bond angles

ka(◊ ≠ ◊0,a)2

2 +
ÿ

dihedrals

ÿ

n

kn,d cos(n„ + „0,n).

where the first term is the Lennard-Jones approximation describing the Pauli exclusion
principle and the van der Waals interactions, the second term is the Coulomb
interaction between all pairs of atoms. Term three to five are all bonded interactions
modelled as Hooke’s law for two body objects, an angle potential defined by the angle
between three bound bodies, and a proper/improper torsion potential defined by
the angle between the planes formed between four bonded atoms. This form for the
energy term (Fig. 4.2) is used in common FFs such as Amber [55], CHARMM
[56], and GROMACS [57]. From this form the FF parameters are the set of
{‘i, ‡i, qi, kb,i, l0,b,i, ka,i, ◊0,b,i, kn,d,i, „0,n,d,i} where ‡ij = ‡ii+‡jj

2 , ‘ij = Ô
‘ii‘jj, and ‡ii

is the distance at which the particle-particle potential energy is zero, ‘ii is the
depth of the potential well. Conventionally FF parameters are developed using a
combination of quantum chemistry computations of single molecules in vacuum, and
experimental data, often of thermodynamic nature. However, since FF parameters
are often validated by their ability to predict thermodynamical properties through
experimentally obtained values it is not guaranteed that a given FF accurately
represents local dynamics, even if the parameter set accurately recreates
experimental values.
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Figure 4.2: Schematic of bonded and non-bonded parameters making up a classical
FF.

4.4 Machine Learning Methods for
Electrolyte Simulations

There is a strong push to understand complex materials such as new electrolytes.
One method used to tackle this problem has been machine learning (ML), with
a recent surge in methods bridging the realm between AIMD and classical MD
simulations. ML used to describe materials structure began in 2007 when Behler
and Parinello [58] developed symmetry functions (SF), creating transferable neural
network (NN) potentials through the chemical locality around an element. Similarly
in 2013, Bartók et. al. developed the Smooth Overlap of Atomic Position (SOAP)
directly defining the similarity between any two atomic neighbourhood environments,
enabling the development of interatomic potentials through the GAP framework [59,
60]. Other alternatives to develop interatomic potentials have been through di�erent
NN approaches, such as SchNet [61]. More concretely relevant for electrolyte
applications, Wang et. al. for example have developed a NN based on SchNet,
learning chemical embeddings for elements in ionic liquids and new electrolytes [62].
Alternatively NN such as PiNet [63] can be used to learn electronic multipoles of
atomistic simulated liquids [64].

Common for almost all ML approaches, especially those based on NN is the need for
extensive amounts of data for training and testing of models, making the need for
available data more important than ever. This need can be seen in contemporary
projects such as BIG-MAP [65] as well as the Materials Genome Initiative [66] trying
to standardise data presentation as well as making it available to a wider audience.
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4.4.1 Gaussian Process Regression
A method for interpolation of data given a sparse set of data points is Gaussian
Process regression (GP), commonly known as Kriging. GP regression is used to
predict a function value at a given point by computing the weighted average of the
known values of the function in the neighbourhood of the point. This means that
a GP is completely specified by a mean function and a positive definite covariance
function. Given a set of inputs x

(1) · · · x
(n), a mean function Èf(x)Í = 0, and a

covariance function Kp,q = Cov
1
f(x(p)), f(x(q))

2
= K

1
x(p)

, x(q)
2
, a joint distribution

may be defined
f(x(1)) · · · f(x(n)) ≥ N (0, K).

Given this knowledge a GP can be obtained using Bayesian linear regression:

f(x) = xT w

where the weights w ≥ N (0, �p). Hence the mean function is given by:

E [f(x)] = xT E[w] = 0

and the covariance function is given by:

E [f(x)f(xÕ)] = xT E[wwT ]xÕ = xT �pxÕ
.

The Bayesian linear regression is based on Bayes theorem:

P (y|X, ◊) Ã P (◊)P (◊|X, y)

Where P (◊) is known as the prior, representing the assumption of the probability
of a set of parameters ◊ prior to knowledge of data, and P (◊|X, y) is known as
the likelihood, representing the probability of observing the parameters ◊ given
knowledge about the data X, y, and P (y|X, ◊) is the posterior of the given hypothesis
explaining the data. Commonly ◊ is chosen by optimising the marginal log-likelihood:

log P (y|X, ◊) = ≠1
2 log |K(X, X) + ‡

2| ≠ 1
2yT (K(X, X) + ‡

2)≠1y

through sampling the probability space of possible ◊.

4.5 CHAMPION
In paper II as well as Andersson et. al. [46] an algorithm for structure detection has
been created. Through dynamic structure discovery (DSD), finding and analysing
what moves together within a simulation, the CHAMPION software is capable of
detecting a global bond graph for the system that uniquely determines its bond
topology. This bond graph is later able to be subdivided into components such as
ionic aggregates and molecules, or into solvation shells. Through knowing all bonds
within a simulation, as well as all solvation shells and other structure, we are capable
of of sorting all data provided in the simulation in new unique ways providing us
with understanding of emergent structures within materials as well as giving insights
into the dynamics of the system.
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Figure 4.3: Schematic Åvall plot linking the probability distribution of generalised
forces to a generalised coordinate describing a interaction. Orange: Occupied bins.
Blue: Empty bins

4.6 Automated Force Field Finder
In paper III we propose a new light-weight method for generating system specific
FFs. Being inspired from the work of Åvall and Johansson (2020) [19] where they
investigated the force distribution between a solvation shell and a central atom
in terms of centre-of-mass coordinates, we herein develop a similar method by
generalising the Åvall method of binning central forces depending on distance to
binning the interaction strength related to each interaction type. The interaction
types used are the same as in conventional FFs, with 2-, 3-, and 4-body bonded
interactions, as well as an electrostatic term and a Lennard-Jones like term. In this
method however the long range electrostatic and dispersion interactions are treated
together and will henceforth be referred to as the pairwise interaction. By first
running small first principle MD simulations, the forces acting between all particles
of a system type can be found. Then projecting the generalised force acting on
all particles partaking in an interaction type based on a CHAMPION bond graph,
against a generalised coordinate q describing said interaction, a 2D histogram of
distributions (Fig. 4.3) are formed.

These 2D histograms contain all information about said e�ective interaction, e.g.

between two carbon atoms, where e�ective interaction denotes the distributions
of interactions in the presence of environmental noise assumed to be normally
distributed with zero mean. Having this method based upon the CHAMPION
bond-graph identifying method [46] also enables a FF that treats di�erent bond
types separately, e.g. separating linearly bonded carbon from cyclically bonded
carbon. Such distinctions have been shown to be useful in other, more conventional,
FFs such as AMBER and GROMACS [55, 57].
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From the positions of and forces acting on each atom, both the generalised coordinates
and forces can be computed and sampled. The statistical distributions of generalised
forces as functions of the corresponding generalised coordinates result from a combination
of the e�ective interaction between the atoms involved, and e�ects of the background.
The approach taken here is based on assuming the background e�ect to be unbiased
noise, so that the mean of the sampled distributions estimates the true e�ective
interaction.

Knowing the positions and forces acting on each particle within a trajectory, generalised
coordinates and generalised forces can be computed and sampled. The distributions
of generalised forces as function of the corresponding generalised coordinates give
rise to a 2D histogram similar to an Åvall plot. These histograms contain the
information about the e�ective interaction between all particles involved, as well as
the e�ective background.

Given a force distribution F|q of generalised forces {Fi(q)} as seen in Fig. 4.3, where
i œ {0, number of samples of interaction type} one can show that the specific force
Fi(q) can be written as:

Fi(q) = F (q) + �f

where F (q) is the true generalised interaction strength and �f is a stochastic
background noise. Assuming that the noise is Gaussian:

Nÿ

i

F (q) =
Nÿ

i

Fi(q) ≠
Nÿ

i

�f

∆
NF (q) = N ÈFi(q)Í ≠ N È�f)

…
F (q) = ÈFi(q)Í .

Hence any interaction described using the generalised Åvall method should be reproducible
given the mean force value at any point along the generalised coordinate axis.

Given the sparse but spread out nature of the data produced this way, a smooth
function filling the space between data points can be generated using GP regression.
This pairs well with the reactive capability provided by having the method based
upon the CHAMPION method. The FF identified can be made reactive through
computing bond likelihood functions as a function of distance. Hence it is possible
to determine on a snapshot-by-snapshot basis which atoms in the system are bonded
in, one, two, three, or even four of the four bond types previously discussed. This
possibility enables the look-up tables to be dynamically chosen during the simulation,
enabling a great amount of customiseability to the interactions.
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5
Results & Discussion

Here the results of the appended papers I - III are briefly presented and discussed.
These move from the molecular level using DFT methods to determine the Raman
spectra of solvation shells (paper I), to the microscopic scale where AIMD is used
to equilibrate what structures form in a HCE (paper II), and these are finally
tied together through the use of the newly developed CHAMPION [46] bond graph
discovery algorithm and the generalised Åvall method (paper III).

5.1 Ca2+ 1st Solvation Shells
In order to explain experimental results depending on local structure computational
methods are useful. In paper I we calculate the Raman spectra of a wide set of
Ca2+ 1st solvation shell structures in order to elucidate the local structure within
Ca2+ HCEs and LHCEs. Artificial Raman spectra are calculated from which it is
clear that free PC, [Ca(PC)4]2+, free TFSI, and [Ca(TFSI)2] all play an important
role (Fig. 5.1). These structures are limited in complexity by both the capabilities
of the DFT method as well as the researchers’ intuition, which puts limitations to
the predictions possible to make for complex materials.

By investigating a wide suit of structures of the form [Ca((TFSI)NPC)M ](N≠2)≠,
where N is the number of TFSI ions surrounding a central Ca-ion, and M is the
number of PC molecules surrounding said Ca ion, in paper I the main peaks in the
region of interest could be identified as the ones mentioned (Fig. 5.1c). From the
combination of experimental Raman data and computational DFT data we could
confirm that the first solvation shell is retained when diluting a HCE, creating a
LHCE, making this a viable approach when searching for Ca-electrolytes that have
the potential for SEI formation, and cycle at room temperature. By understanding
the local structure the design of electrolytes can be aided. DFT works well as a
complimentary method to Raman spectroscopy, however to make predictions about
structure DFT is not the most optimal method since the input structure is what
gets tested, making it a cumbersome approach to make predictions based on the full
structure space. Hence in order to understand fully unknown materials, methods
such as MD can provide a better fit.
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(a) Band assignments of HCE and LE
through the use of DFT (symbol key
subFig. 5.1c).

(b) Band assignment when diluting
HCE from 3.256 m to a nominal 0.45
m LHCE (symbol key subFig. 5.1c).

(c) A symbol key to 5.1a and 5.1b
. Free PC (�), [Ca(PC)4]2+ (Y), free

TFSI (D), [Ca(TFSI)2] (I).

Figure 5.1: Use of DFT to elucidate the local structure in bulk electrolytes.
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Figure 5.2: The most common topologies around a Li cation in order of probability.
Element colors: purple: Li, red: O, blue: N, grey: C, white: H, yellow: S, green: F.

5.2 Local to Global Structure
In paper II we identify how to use the newly developed CHAMPION method
together with AIMD simulations to gain knowledge of both the local and global
electrolyte structure. AIMD enables simulations where the local interactions are
replicated accurately, as can be observed with the coordination number (CN) for
Li+ ¥ 4, which is common for LIB electrolytes based on small organic molecules,
regardless of composition [67, 68]. In many electrolytes CN is similar to the solvation
number (SN) since almost all coordinations are monodentate. This is, however, not
true for LiTFSI in ACN at higher concentrations where the SN is closer to 3, even
though the CN remains close to 4 due to more bidentate TFSI coordination by Li+,
which concurs with other studies [69]. These results are reflected in the common
topologies (Fig. 5.2) found in the simulation.
On a global scale we see that these structures form a percolating network, in a sea of
free solvent (Fig. 5.3), which is in sharp contrast to the common conception about
HCEs, where its unique behaviour is believed to stem from a lack of free solvent
[70].
The accuracy of this analysis scales with the number of ions and even for a concentrated
system such as this, system size and trajectory length are both on the smaller scale in
order to say something with statistical accuracy. Hence less concentrated systems,
such as LHCEs for example, require much larger simulations to enable the same
accuracy level as the analysis results of a HCE which more or less disqualify AIMD
for such systems.
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Figure 5.3: Snapshots of the periodic simulation cell, highlighting the percolating
network in a sea of solvent.

5.3 Generated Force Fields
To use the CHAMPION method to the full extent large simulations must be utilised.
For systems that would benefit the most from being studied by the CHAMPION
method (HCE, LHCE, etc.) FFs usually do not capture the correct dynamics, hence
not allowing for these systems to be studied through MD simulations [13]. Paper
III focuses on extending the functionality of the CHAMPION method by combining
it with the insights gained in Åvall & Johansson 2020 [19]. The quality of the FF
generated depends heavily on the number of bins n (Fig. 5.4). To overcome this
hurdle a large enough number of bins was chosen after converging such that it was
unlikely that the bin size would a�ect the mean force values to a larger extent. Then
the data was used to generate a GP regression model. To ensure that the correct
interactions were captured the data was divided in two halves, where the first half
start from an unequilibrated state, and the second half starts where the first ends
(Fig. 5.5). As seen the method capture the same physics at both long and short
range, indicating that correct electrostatics as well as dispersion is found.
However even though we see that the GP regression take the same form for both
the equilibrated and unequilibrated data (Fig. 5.5) using these FFs deteriorate a
simulation after only a few time steps. These FF curves were generated by sampling
the data every 10 fs. This yields an incredibly low statistical ine�ciency s (table
5.6), hence the number of time steps for which a force correlations e�ectively persist
is on the scale of ≥ 1. Sampling the data every 0.1 fs yields a higher correlation of
the forces, hence, when calculating forces using finite di�erence, the forces should
be more accurate when compared to ones yielded using a longer time step, and in
turn indicate that the simulation will not melt or explode for a larger number of
time steps.
No parameter besides �t should a�ect s, however since this quality is measured
through a curve fit there is not an exact measurement, hence the order of magnitude
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(a) How the C-H force field depends
on the number of bins n.

(b) How the Li-O force field depends
on the number of bins n.

Figure 5.4: Comparing the quality of the generalised Åvall FF depend on number
of bins.

is more important than the specific number and the measured values in table 5.6
should be seen as a rough estimate.
When sampling every 0.1 fs for finite di�erence calculations of forces (Fig. 5.7) the
magnitude of forces are more similar to literature [19] than when sampling every
10.0 fs. However there is a large discrepancy of one to two orders of magnitude. This
discrepancy makes it apparent that finite di�erence used still does not capture the
true dynamics, which is also apparent since MD simulations using these FFs melt.
Note though that at present these results are under development, which underpins
the discussion here.

Moving forward the data collection has to be changed to solve the issue caused by
using a finite di�erence method to obtain forces. Worth noting is that the error bars
(Fig 5.7) are small, indicating that the data could be separated in such a manner
that e.g. linearly bonded C-C and cyclically bonded C-C can obtain their own FF
term. The fact that di�erent geometries does not at the moment obtain their own
term can of course also contribute to the erroneous results, especially since this could
explain the multi-peak nature of the FFs. Nonetheless more work is needed to tune
this method.
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5. Results & Discussion

(a) A force field generated for H-H
interaction using Gaussian Process
regression for the 1st and 2nd half of
a simulation trajectory.

(b) A force field generated for C-H
interaction using Gaussian Process
regression for the 1st and 2nd half of
a simulation trajectory.

(c) A force field generated for Li-O
interaction using Gaussian Process
regression for the 1st and 2nd half of
a simulation trajectory.

Figure 5.5: The form of the Åvall FF after using the raw data as input to a
Gaussian Process regression. The same physics is captured when studying the 1st

half of a simulation as when studying the 2nd half.
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5. Results & Discussion

Table 5.6: The statistical ine�ciency s dependence on �t, the number of time
steps Ntimesteps, and the graph radius d.

�t[fs] Ntime step d s

10.0 60218 3 1.869
0.1 1000 3 22.7221
0.1 10000 3 72.0633
0.1 10000 1 35.3487
0.1 5000 1 21.1608

(a) A force field generated for H-H
interaction using Gaussian Process
regression based on data with a
statistical ine�ciency s = 21.1608.

(b) A force field generated for C-H
interaction using Gaussian Process
regression based on data with a
statistical ine�ciency s = 21.1608.

(c) A force field generated for Li-O
interaction using Gaussian Process
regression based on data with a
statistical ine�ciency s = 21.1608.

Figure 5.7: The form of the Åvall FF after using the raw data as input to a
Gaussian Process regression. Data with a statistical ine�ciency s = 21.1608.
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6
Conclusion & Outlook

This thesis has studied battery electrolytes using computational means at di�erent
scales, and tied together these scales through the development of a new method.
In paper I and II the importance of studying one scale to understand another is
showcased. In paper I through seeing that the local structure of HCEs are retained
in LHCEs, and from this being able to create hypotheses regarding macroscopic
properties. Similarly in paper II through understanding how the local structure
gives rise to the global structure, and how the global structure can be used to explain
transport properties. These two papers exemplify how computational methods open
up a future where materials science can be made more e�ective and predictive.

In order to enable such predictions using the CHAMPION [46] framework large
scale MD simulations have to be easily available. In paper III the development of
a method trying to tackle this problem was initiated, however much work is still
needed on this method. Moving forward it would be interesting to fine tune the
FF by adding on bonded terms, ensuring that molecular shape is retained more
accurately. Besides adding bonded terms the immediate calls to action to improve
the method presented in this thesis are:

• Use AIMD forces instead of finite di�erence generated forces.
• Separate interactions based on local structure rather than solely on participating

elements.
• Enable a reactive FF for bonded terms.

Given all these pieces it would be interesting to study large scale simulations of
LHCEs and studying how these systems behave and what structures form on a
global scale. Especially the cumulative e�ects when large scale MD simulations
for any material quickly and cost e�ectively is combined with the CHAMPION
analysis. Through such endeavours it will be most interesting, seeing what physical
properties can be explained this way. These types of studies should enable probing
the phase separation between the diluent and the HCE structures, making it possible
to study cluster formation, and cluster size, transport phenomena etc. Similarly the
combination of the methods presented in this thesis could provide an avenue to study
electrolyte-electrode interface and interphase interactions. From there on it is up to
the imagination of the reader to find interesting problems where these methods can
be applied.
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