
Selective Regression Testing based on Big Data: Comparing Feature
Extraction Techniques

Downloaded from: https://research.chalmers.se, 2021-08-31 16:47 UTC

Citation for the original published paper (version of record):
Al Sabbagh, K., Staron, M., Ochodek, M. et al (2020)
Selective Regression Testing based on Big Data: Comparing Feature Extraction Techniques
IEEE Software: 322-329
http://dx.doi.org/10.1109/ICSTW50294.2020.00058

N.B. When citing this work, cite the original published paper.

©2020 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from
the IEEE.

This document was downloaded from http://research.chalmers.se, where it is available in accordance with the IEEE PSPB
Operations Manual, amended 19 Nov. 2010, Sec, 8.1.9. (http://www.ieee.org/documents/opsmanual.pdf).

(article starts on next page)



Selective Regression Testing based on Big Data:
Comparing Feature Extraction Techniques

1st Khaled Walid Al-Sabbagh
Computer Science and Engineering Department

University of Gothenburg
Gothenburg, Sweden

khaled.al-sabbagh@gu.se

2nd Miroslaw Staron
Computer Science and Engineering Department

University of Gothenburg
Gothenburg, Sweden
miroslaw.staron@gu.se

3rd Miroslaw Ochodek
Institute of Computing Science
Poznan University of Technology

Poznan, Poland
miroslaw.ochodek@cs.put.poznan.pl

4th Regina Hebig
Computer Science and Engineering Department

University of Gothenburg
Gothenburg, Sweden
regina.hebig@gu.se

5th Wilhelm Meding

Ericsson AB
Gothenburg, Sweden

wilhelm.meding@ericsson.se

Abstract—Regression testing is a necessary activity in contin-
uous integration (CI) since it provides confidence that modified
parts of the system are correct at each integration cycle. CI
provides large volumes of data which can be used to support
regression testing activities. By using machine learning, patterns
about faulty changes in the modified program can be induced,
allowing test orchestrators to make inferences about test cases
that need to be executed at each CI cycle. However, one challenge
in using learning models lies in finding a suitable way for
characterizing source code changes and preserving important
information. In this paper, we empirically evaluate the effect
of three feature extraction algorithms on the performance of
an existing ML-based selective regression testing technique. We
designed and performed an experiment to empirically investigate
the effect of Bag of Words (BoW), Word Embeddings (WE),
and content-based feature extraction (CBF). We used stratified
cross validation on the space of features generated by the three
FE techniques and evaluated the performance of three machine
learning models using the precision and recall metrics. The results
from this experiment showed a significant difference between the
models’ precision and recall scores, suggesting that the BoW-
fed model outperforms the other two models with respect to
precision, whereas a CBF-fed model outperforms the rest with
respect to recall.

Index Terms—Regression Testing, Continuous Integration, Ma-
chine Learning, Feature Extraction

I. INTRODUCTION

Continuous integration (CI) is used increasingly often in
software engineering projects. Both large and small software
companies use this technique to increase the quality of their
products, as continuous integration advocates small increments
in software code and frequent testing. However, one of the
challenges in continuous integration is the need for an efficient
way to perform regression testing, which is essential to ensure
that the program under test has not been adversely affected by
new changes. Such type of testing is central for achieving CI
since it promotes for faster release of products and features.

Naturally, a safe but costly regression testing strategy is to
run all tests available for reuse [22]. However, this approach

demands an inordinate amount of hardware resources and
long execution time, which impede the continuous delivery of
features and products to the user community. To address this
growing cost of regression testing, several test case selection
(TCS) approaches have been proposed in the literature [18]
[13] [1] [8]. While these approaches seek to reduce the size of
a test suite, the majority of the selection techniques advocates
for maximizing test coverage, which typically involves static
analysis of the program code. In effect, trying to solve the
regression testing problem through coverage-based algorithms
leads to limited success, as emphasized by Antinyan and
Staron [3]. This is because TCS should be determined by
examining code changes that might influence test behavior
rather than on the coverage criteria they fulfill. In addition,
conventional selection techniques may not scale well to the
growing complexity of software systems, since they involve
static code analysis of the program, which is known for being
costly and prone to produce many false warnings [20] [4] [6]
[11]. On the other hand, over the recent years, there has been a
growing interest among researchers and software companies in
capitalizing on machine learning to automate testing activities
[2] [9] [12]. Such approaches process available data and build
models that embody patterns from which we can predict the
effectiveness of a test case in revealing faults. A number
of studies proposed combining large volume of defect data
with source code analysis for building predictive models to
identify defective software code. These defective source code
fragments are in need for testing and we need to predict
which test cases will trigger failures and thus lead to finding
the defects. One of the challenges in applying these methods
lies in selecting a suitable algorithm for extracting machine
learning features of these code fragments, which allow to train
models. The selection has an effect on the performance of the
predictive model (precision and recall).

Therefore, in this paper, we study the effects of three
different techniques for feature extraction — Bag-of-words
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(BoW), Word Embeddings (WE), and a new algorithm, called
content-based feature extractor (CBF). The first technique is
based on statistical analysis of the frequency of using software
code statements. The second technique is a semantic program
code analysis based on neural networks. The third technique
uses the source code content to build a features set of unique
tokens i.e. each feature in the set corresponds to a unique
token in the source code. Henceforth, in this paper, we pose
the following research question:

RQ: Is there a statistically significant difference
between the performance of the test predictor based
on the usage of BoW, WE, and the CBF?

In order to address this question, we design an experiment,
where we use 15 different sets of code commits as experiment
objects (one fragment for each experiment trial). We use
the statistical performance measures of precision and recall
as the dependent variables. The results of the experiment
show that the prediction from the BoW-based classifier have
a statistically significant higher precision than those reported
by a WE-based and CBF-based classifiers, whereas the CBF-
based classifier outperformed the other models with respect
to recall. This means that the simpler method for making
predictions is better in this context.

The paper is organized as follows: in section 2 we present
an example that demonstrates the relationship between code
modifications and test case failure; in section 3 we introduce
background information; in section 4 we introduce related
work on selective regression testing approaches, drawbacks of
static code analysis, and feature extraction techniques in text
classifications; in Section 5 we describe all the steps in the
design of our experiment; in Section 6 we provide the results
of our experiment; in Section 7 we introduce some threats to
validity and limitations; in Section 8 we make our conclusions.

II. EXAMPLE OF THE RELATIONSHIP BETWEEN CODE
CHANGE AND TEST CASE FAILURE

In this section, we introduce an example to illustrate the
relationship between source code changes and test case fail-
ure. Figure 1 shows two revisions of an example program
written in the C++ language. The modified revision consists
of all code fragments in the original revision except for the
framed lines of code. Here, the modified revision contains
a new assignment to pointers[2]. In the context of
C++ programming, any pointer set to zero is called a null
pointer, and since there is no memory location zero, it is
an invalid pointer assignment and will throw an error during
run-time execution. An example test case is a CppUnit test
testTaskArrayDeclarations that asserts whether all
elements in the pointers’ array equate to non-null values, as
shown in Figure 1. By observing the test execution result
of test case testTaskArrayDeclarations on both the
original and modified revisions, we can induce that the new
additions triggered test testTaskArrayDeclarations
to fail. Thus, analyzing those code lines in the modified
revision could help us build a model that derives coding style
patterns that trigger test case failures.

III. BACKGROUND

A. Method Using Bag of Words for Test Case Selection
(MeBoTS)

MeBoTS is a machine learning based model that aims
at predicting test case verdict using a training sample of
historical test execution results and the tested code churns. Our
predictive method detects regressions by analyzing features
derived from a collection of historical code churns and test
execution results. This way, we can use previous test execution
results and their relevant code changes for training a predictive
model on classifying changes of new code lines into either
defective or non-defective. The prediction of flawed lines
in the new code is achieved by comparing the abstraction
model of the derived feature-based set against similar or
equivalent abstraction models used in the training. The method
is comprised of 3 simple steps, as shown in Fig 2. This section
briefly describes these steps.

a) Code Churns Extractor (Step 1): The method uses
a code churn extractor program that collects and compiles
churns of source code from one or more repositories. The
program expects one input parameter: a time ordered list of
historical test case execution results queried from a database,
where each element in the list is a metadata state representation
of a previously run test case. Each state contains a hash
reference that points to a specific location in Git’s history for
the tested check in. The program performs a file comparison
utility (diff) across pairs of consecutive commit hashes in
the list using the GitPython library [19]. The output is then
arranged in a table-like format and written in a csv file, named
as ’Lines of Code’.

b) Textual Analysis and Features Extraction (Step 2):
The second step in the method is to extract features from
the collected code churns (output of step 1) and transform
the source code into a numerical form. For the used an open
source tool (ccflex) that utilizes BoW for modelling textual
data. The input to ccflex is the output of the churn extractor
in step 1. ccflex uses each line from the code churn and:

• creates a vocabulary for all lines (using the bag of words
technique, with a specific cut-off parameter)

• creates a token for the words that are seldom used(i.e. fall
outside of the frequency defined by the cut-off parameter
of the bag of words)

• finds a set of predefined keywords in each line
• checks each word in the line to decide if it should be

tokenized or if it is a predefined feature
This way of extracting information about the source code
is new in our approach, compared to the most common
approaches of analyzing code churns. In contrast with other
approaches, MeBoTS recognizes what is written in the code,
without understanding the syntax or semantics of the code.
This means that we can analyze each line of code separately,
without the need to compile the code and without the need to
parse it.

c) Training and Applying the Classifier Algorithm (Step
3): We exploit the set of extracted features provided by the
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Fig. 1. Two Revisions of Program Under Test

Fig. 2. The MeBoTS Method

textual analyzer in step 2 as the independent variables and the
verdict of the executed test cases as the dependant variable,
which is a binary representation of the execution result (passed
or failed). The MeBoTS method uses a second Python program
that utilizes and trains an ML model to classify test case
verdicts. The program reads the BoW vector space file in a
sequence of chunks, merging the extracted feature vectors and
the verdicts vector into a single data frame that gets split into
a training and testing set before it is fed into the models for
training.

B. Word Embeddings

Word embeddings is one of the approaches used to represent
words in a machine-friendly way. It has been proposed as an
alternative to the bag-of-words model and quickly become
the state-of-the-art method used while training neural net-
works. In word embeddings, each word is represented as a

dense, low-dimensional floating-point vector. Such vectors are
learned from data. Another important benefit of using word
embeddings is that the geometric relationships between word
vectors should reflect the semantic relationships between these
words. Using the word embeddings algorithm for source code
classification could be beneficial for two main reasons. Firstly,
it allows us to represent each of the tokens in a line of code and
feed them to a neural network capable of processing sequences
(e.g., a convolutional neural network). Secondly, it captures
similarities between the roles of tokens in the code without
the need for parsing the code.

C. Content-based Features Extraction Algorithm

The current way of generating numerical vectors from
textual input relies on statistical based approaches that either
uses a predefined set of vocabulary, such as BoW, or a
probability distribution function to capture similarities between
keywords, such as Word Embeddings [21] [7]. However, the
problem with such techniques is that they do not guarantee
constructing distinct vectors for syntactically different code
lines. In the context of MeBoTS, this distinction is necessary to
maintain a set of consistent training examples for the classifier.
At the core of all machine learning classification models,
the purpose is to find a function that can separate training
observations into their relevant classes and to converge into a
model that can accurately classify new instances. Therefore,
it is important to guarantee unique representations of similar
observations to minimize the probability of classification errors
in the predictive model.
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Figure 3 presents an activity diagram that summarizes the
procedure of the content-based feature extraction algorithm
used in this study. The algorithm starts by initializing an empty
list and reading one line at a time (steps 1 and 2) from the
input source code. Each line is then analyzed (step 3) using
an algorithm that creates a list of tokens based on the content
of the input code. The tokens’ list is created by splitting code
lines on whitespace, comma, full stop, and bracket characters.
In steps 4 and 5 the algorithm adds a new token from the
list and if there is no new token, then it takes one more
line and looks for new tokens there. In step 6, the algorithm
uses the list of features to check for features in each of the
lines analyzed so far. Then it checks whether there are feature
vectors that are identical and whether the corresponding lines
are identical (step 8). The exit condition in step 9 applies when
there are no more lines to featurize in the input set (end of
file) or when there are no more distinct tokens to be added. An
example of a scenario where the second condition applies is
when the algorithm reads lines that differ only in the number
of whitespaces – e.g. “x = x + 1;” and “x = x+1” (spaces
between x and 1)

�������	
����
	�

��
	
�
��
������������
�����������

����
	���
��������	�	���
	����������
��

���������
����
	�

��������
	�����������������������������������������

���������	���
	������������
��

��������
��
	����
	��������
�
�����	����������������� 

!�������	�"��
	������������
��

���
	�

#��������
	���
	������
���

���

	�

$��	�"�����	��%
��� 

���

	�

Fig. 3. Activity diagram presenting the algorithm for the content-based feature
extraction.

IV. RELATED WORK

Over the recent years, the problem of regression testing
has received a lot of attention from the research community.
Several studies on TCS were conducted, and a number of TCS
approaches were proposed [18] [13] [1] [8]. At the crux, most
of these approaches rely on white box static code analysis
techniques to automate selective regression testing [22]. Since
the ultimate goal of our study is to improve TCS, we start
by presenting an overview of existing approaches in this area

and explore their drawbacks. Then we review the literature on
static code analysis and report results from studies that discern
their usage.

A. Test Case Selection

Rothermel and Harrold [18] presented an algorithm that
employs control dependence graphs of two program revisions,
and used these graphs to select test cases that may exhibit
changed behavior on a modified revision of the program.
The algorithm uses two control dependency graphs (one for
the original program and one for the modified program) to
compare changes made between the two revisions – each node
in the graph contains an actual program statement. Then it
uses a list of test execution history that identifies regions in
the original program that are reached by each test. If any two
children nodes are different, then the algorithm computes and
returns a subset of test cases (from the execution history list)
that may have traversed the change in the modified version. A
weakness in this approach, as identified by Yoo and Harmen
[22], is the lack of data dependence, the technique will select
tests that execute the modified statements but not the actual
uses of variables, which leads to the inclusion of unnecessary
tests for regression testing.

Lee and He [13] proposed an approach that uses Integer
programming for finding a minimum subset of tests that
maximize test coverage at a minimal cost. A test case matrix
is maintained to map relevant test cases to one or more test
requirements, such that when new changes in the codebase
are introduced, a subset of relevant tests are selected. Then
a coverge algorithm is used to select another subset that
guarantees full test coverage at a minimal cost. One drawback
of this approach lies in the cost overhead for maintaining
dependency links between each test requirement and test case
identifiers. Additionally, the test case matrix depends on the
control-flow structure of the program, which means that the
approach does not handle control-flow modifications in the
program. So if the control-flow structure changes, the test case
matrix should be updated by re-executing the whole set of test
cases.

Dynamic slicing based approaches for TCS use slice ex-
ecutions to determine which subset of test cases should be
exercised. Agrawal et al [1] proposed an array of techniques
that use execution slice (i.e., statements in the program that
were executed by a test case) to decide on selective regression
tests. The general idea can be summarized as follow: given a
set of test cases t that were exercised against some execution
slices in the original program execution, statements that were
not reached in the control of set t will not affect the program’s
output for the same set t in future revisions. Based on this,
they proposed a technique that required finding execution
slices of the program under test given all test cases in a test
suite. Then selecting test cases whose execution slices contain
modified statements in the new revision.

An alternative to approaches based on source code analy-
sis are methods based on data-flow analysis. Here, variable
assignments are tested by selecting test cases that execute
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sub-paths from the point of definitions to the point of use
(definition-pair use). Gupta et al. [8] proposed a technique
that uses a slicing algorithm to detect definition-pair use in
the modified program. Unlike other approaches that require
data flow history, the proposed method uses two slicing type
algorithms to detect affected and changed definition-pair uses.
After all pairs have been identified, test cases that exercises
these pairs are selected for execution. One limitation of
using data-flow based approaches is that they do not detect
modifications unrelated to data-flow changes.

B. Usage of static code analysis

In the recent years, the usage of continuous integration led
to the popularization of the use of automated static analysis.
In CI flows, static analysis tools provide a quick measure of
internal software quality. However, these tools are known for
their inevitability, reporting large amounts of false positives,
as pointed out in [20] [11] [6]. In this subsection, we highlight
some of the work conducted in this area and report their
evaluation results.

In an empirical study conducted by Wedyan et al. [20] to
evaluate coding concerns, the authors used three SCA tools
on two open source code projects to analyze the precision of
these tools. The evaluation results showed that 96% of the
coding concerns were false positive, whereas less than 3% of
the detected faults corresponded to real coding issues.

Kim et al. [11] observed the prioritization capabilities
of three SCA tools on three programs and measured their
precision scores. The precision of the three tools in producing
real warning prioritization were only 3%, 12%, and 8%.

Another study by Couto et al. [6] examined the relationship
between warnings issued by a bug reporting tool and defects
to analyze the gain of using SCA tools for early detection of
faults. The results showed no static relationship between the
two variables, although a moderate correlation between them
was detected.

The overall conclusion drawn from these studies suggest
that the use of static analysis tools as a standalone solution
is insufficient, since they are expensive to implement and
generate a lot of false positives.

V. DESIGN OF EXPERIMENT

A. Context of the experiment: Collaborating company

The study has been conducted at an organization, belonging
to a large infrastructure provider company. The organization
develops a mature software-intensive telecommunication net-
work product. It consists of several hundred software devel-
opers, organized in several agile teams, spread over a number
of continents. Given that they have been early adopters of
lean and agile software development methodologies, they have
become mature in these areas of work.

B. Code Churns and Test Executions Data Collection

Our data-set comprised of historical test execution results
and code churns for software that has lived and evolved for
over a decade at the collaborating company. The analyzed

software was written in the C language and contained a few
million lines of code and a test pool size of over 10k test
cases. In this experiment, our sample data-set comprised of
150k LOC belonging to 12 test cases, with 46% of the lines
belonging to the ’passed’ class and 54% to the ’failed’ one.

C. Experiment Subjects

The subjects of our study are samples of the original
data-set. The stratified cross-validation technique was used to
partition the data-set into 15 different subsets (k=15), such
that the representation of the binary strata have approximately
an equal representation across the 15 samples. Each subset
consisted of a validation file of 9200k LOC and a training file
of approximately 140k LOC. The representation of the binary
classes in each fold followed the same distribution of classes
in the original base set with 46% of lines belonging to the
’failed’ class and 54% to the ’passed’ class.

D. Features Extraction with BoW

We used an open source tool, ccflex, to carry out the BoW
vectors transformation across the experimental subjects. For
each subset (fold), we ran the BoW vector transformation with
ccflex and saved the resulting vectors locally, in files, so that
we can supply them as inputs to the ML classifier. ccflex relies
on a threshold-based criterion for extracting features from
textual input, such that tokens whose frequency counts exceed
a lower threshold value are selected as candidate features.
In this experiment, we kept the frequency threshold to its
default value (25%) and set the BoW n-gram to 2 to generate
features of two adjacent tokens that are originally separated
by whitespaces. The resulting space of vectors generated by
ccflex at each round of transformation consisted of a total of
2249 feature vectors.

E. Features Extraction with WE

In our study, we used the Continuous Bag-Of-Words
(CBOW) variant of the Word2Vec word embedding algorithm
proposed by Mikolov et al. [14]. We used the implementation
available in the Gensim library [17]. IN CBOW, the word
embeddings are obtained as a side-effect of training a single-
layered neural network to predict a given word based on other
words in its neighborhood, called window. In our study, we use
the window size equal to 5 and generate embedding vectors
of 70 numbers. We trained 15 Word2Vec models on the 15
generated subsets and used these models to preprocess lines
of code in both the validation and training sets, for each subset
respectively. The resulting vectors for each subset were saved
locally so they can be fed as inputs to a neural network
classifier. After training the Word2Vec models, tokens that
share similar semantic orientation are closely placed in the
vector space. Fig 4 illustrates an example of how the tokens
in the original data-set (before partitioning) are placed. 1 The

1Each point in the figure represents a word used in the source code. As the
figure represents the actual code, and due to a non-disclosure agreement with
our industrial partner, words that are not language specific such as variable
and class names are not visualized in the figure

Authorized licensed use limited to: Chalmers University of Technology Sweden. Downloaded on August 21,2021 at 16:45:35 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Semantic orientation of similar tokens in the analyzed software

figure was generated using the t-distributed stochastic neighbor
embedding (t-SNE) visualization algorithm in Python. The
representation of vectors are plotted in two dimension for a set
of positive and negative words. As the words are spread across
the entire diagram, we can expect that it is possible to find
vectors that are unique and therefore are good predictors. The
processing pipeline used in this study is presented in Figure 5.
In the first step, a line of code is tokenized. Then, each token
is replaced by its identifier in the vocabulary. In the following
step, we pad each sequence with zeros so all of them contain
55 numbers. The generated sequences can be provided to a
neural network as an input. In its first layer, the nn replaces
token identifiers with their embedding vectors stored in the
so-called embedding matrix. Therefore, an input sequence of
55 numbers is transformed into a 70x55 matrix.

F. Features Extraction with the new featurizer

Applying the new features extraction algorithm on each
of the experimental subjects (fold) resulted in a sparse high
dimensional feature vectors of size 13,700, where each vector
corresponds to a distinct token in the input source code. To
reduce the high computational cost and error of parameter
estimation, we used a dimensionality reduction technique
(PCA) for projecting the entire dataset (13700 dimensions)
onto a new subspace that is equivalent in size to that pro-
duced by the BoW transformation (2249 dimensions). By
definition, PCA is a statistical technique that aims at finding
patterns in data of high dimension and highlighting important
information by expressing similarities and differences in the
data [16]. However, since the technique uses linear projection
approaches, we designed the experiment with the assumption
that our experimental subjects are linearly separable.

G. Evaluation with Random Forest and Neural Network

The vector files representing the 15 subsets of source code
and their corresponding classes were categorized into three

int a = 10;

int \space a =\space \space 10 ;

Tokenizer, tokens are split using: “([\s\t\(\)\[\]{}!@#$%^&*\/\+\-=;:\\\\|`'\"~,.<>/?\n'])"

Encoding tokens with their identi�ers from the vocabulary 

int
\space
a
=
10
;
…

1
2
3
4
5
6
…

1 2 3 2 4 2 5 6

Padding the sequence with zeros

1 2 3 2 4 2 5 6 …0 0
length = 55

Embedding layer in neural network

0
1
2
3
4
5
6
…
n

0, 1, 2, 3, 4, 5, 6, 7, …, 70

Embedding matrix

The embedding vector
for the token with id = 1 (int)

1 2 3 2 4 … 0

…

… … … … … …

Fig. 5. Preprocessing the lines of code to be used as input for the neural
network.

different groups, one for each FE algorithm with 30 vector
files in each group (15 for training and 15 for validation). We
compared, on 45 subsets, the effectiveness of the three FE
algorithms with classical state-of-the-art measures (precision
and recall) using three predictive models: 2 RF and 1 CNN
models. Since RF is known for performing well with high
dimensional vectors [10], we decided to evaluate the effect of
both BoW and CBF on the performance of a random forest
model. To implement the models, we used the Random Forest
utility available in the scikit-learn library [15]. For the WE
group, we trained and validated a CNN model on each vectors
file using the the implementation of CNN in the Keras library
[5]. Since the WE model results in multidimensional array,
we could not use the combination of WE and random forest
classifier. Our experiments with the CNN architecture and
both the BoW and CBF feature extraction, on the other hand,
provided results that were poor to consider in the paper (BoW
and CBF do not provide the feature set that is rich enough for
CNN). Therefore, we selected a CNN model to evaluate the
effect of WE, rather than forcing the algorithms to work with
the feature extraction technique that is not suitable for them.

The architecture of the CNN is presented in Figure 6. It
accepts input as a sequence of vectors, each containing 55
numbers representing identifiers of tokens in the Word2Vec
vocabulary. In the first layer, these vectors are transformed
into matrices (70x55) using word embeddings (see Figure
5 for details). We use two convolutional layers consisting
of 20 and 16 filters, respectively. The output of each is
subjected to maximum pooling (pooling size = 3) to reduce
the dimensionality of the features maps. The output of the last
maximum pooling layer is flattened to a vector of 96 numbers
and processed in the dense layer to produce a 1x1 output with
the use of the sigmoid activation function. The precision and
recall scores of the two models across the 15 folds as shown
in Table II.
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…

………

…

size = 3

Fig. 6. The Architecture of Convolutional Neural Network.

TABLE I
DESCRIPTIVE STATISTICS FOR THE PRECISION AND RECALL SCORES

Featurizers BoW WE CBF
Mean Precision 0.9 0.64 0.76

Mean Recall 0.93 0.78 0.94
Median Precision 0.91 0.64 0.77

Median Recall 0.94 0.76 0.95

VI. RESULTS

To decide whether to use a parametric or non-parametric
statistical test, we checked if the data sample was normally
distributed. We plotted frequency histograms for the precision
and recall scores of the three models (the two RF and the
CNN) for the 15 folds in each group (BoW, WE, CBF) and
examined the distribution of the points. We decided to run
a Shapiro-Wilk test to further validate the ocular inspection
for normality. The test results were statistically significant
for the performance measures of the RF model when using
BoW (Precision with BoW: Test statistic = 0.484, p-value
= 0.000, Recall with BoW: Test statistic = 0.538, p-value =
0.000), which means that the assumption of normality in the
results of the BoW fed model can be rejected. Conversely,
the normality test for the precision and recall samples for
the WE based model suggests a normal distribution for both
measures (Precision with WE: Test statistic = 0.929, p-value =
0.262, Recall with WE: Test statistic = 0.893, p-value = 0.075).
Finally, the normality test results for the precision and recall
samples of the CBF based model suggest that the samples are
not normal (Precision with CBF: Test statistic= 0.881, p-value
= 0.048, Recall with CBF: Test statistic = 0.870, p-value =
0.034). Since the statistical results of the Shapiro-Wilk test
suggest that we have issues with normality in the precision
and recall samples, we decided to run a non-parametric test
for comparing the difference between the precision and recall
scores across the three models. The Kruskal–Wallis H test was
selected as an appropriate method since it can handle skewed
data in more than two samples without normality presumption.

The results from the Kruskal–Wallis H test showed a
significant difference between the precision and recall scores
of the three models. The comparison results for the precision
scores showed a test statistics of 12.5 and a p-value below

0.001. Similarly, the comparison between the recall scores for
the same models reported a test statistics of 32.5 and a p-
value of less than 0.001, suggesting a significant difference
in both the precision and recall scores. Table I summarizes
the mean and median scores of the 6 performance metrics
(precision with BoW, precision with WE, precision with CBF,
recall with BoW, recall with WE, and recall with CBF). The
results suggest that the BoW-fed RF model outperformed the
other two models with respect to precision (mean=0.9 and
median=0.91), whereas the the CBF-fed RF model reported
the highest recall score (mean= 0.94 and median= 0.95).

While recall indicates the model’s ability to find all relevant
tests that require no execution, precision expresses the propor-
tion of tests that were predicted as passing and had actually
passed. As with most concepts in data science, there is a trade-
off in terms of which of the two metrics to maximize (precision
and recall). In the context of TCS, the decision point should
be based on minimizing the risk of missing tests that will
actually fail. Therefore, we need to weigh more importance to
the model’s precision since we can accept some false alarms
in the prediction of failed tests but not missing tests that
could potentially fail. Based on this, our empirical evaluation
suggests that the BoW based model is better suited for solving
the TCS problem with 0.9 precision. This means that the
model could correctly identify 9 out of 10 test execution results
(recall= 0.93) with a precision of 9 out of 10 cases.

VII. VALIDITY ANALYSIS

In this paper we have only used a single industrial data-set
that belongs to software, while other industrial software writ-
ten in different languages and domains might reveal different
results. This was a design choice as we wanted to understand
the dynamics of test execution and be able to use statistical
methods alongside the machine learning algorithms. However,
we are aware that the generalization of the results for different
types of systems require further investigations using tests and
churns from different systems. Another limitation comes from
the randomness in selecting code churns and test cases without
certainty in the nature of their failures. For example, chances
that one or more tests had failed due to non-functional related
issues can not be rolled out, for instance, a machinery failure
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TABLE II
THE PRECISION AND RECALL SCORES FOR THE RF AND CNN MODELS USING THE THREE FEATURIZERS

Fold CBF Precision Recall Fold CBF Precision Recall Fold CBF Precision Recall
k=1 BoW 0.6 0.61 k=6 BoW 0.9 0.92 k=11 BoW 0.944 0.994

WE 0.6 0.706 WE 0.63 0.75 WE 0.69 0.95
CBF 0.64 0.82 CBF 0.78 0.92 CBF 0.75 0.95

k=2 BoW 0.91 0.96 k=7 BoW 0.949 0.952 k=12 BoW 0.928 0.959
WE 0.68 0.885 WE 0.63 0.71 WE 0.65 0.81
CBF 0.76 0.95 CBF 0.76 0.922 CBF 0.79 0.91

k=3 BoW 0.908 0.919 k=8 BoW 0.937 0.959 k=13 BoW 0.9 0.94
WE 0.64 0.756 WE 0.67 0.82 WE 0.6 0.74
CBF 0.77 0.96 CBF 0.77 0.96 CBF 0.76 0.93

k=4 BoW 0.902 0.927 k=9 BoW 0.907 0.939 k=14 BoW 0.909 0.976
WE 0.61 0.73 WE 0.64 0.76 WE 0.59 0.68
CBF 0.77 0.93 CBF 0.75 0.94 CBF 0.77 0.96

k=5 BoW 0.9 0.94 k=10 BoW 0.956 0.991 k=15 BoW 0.9 0.92
WE 0.64 0.81 WE 0.68 0.96 WE 0.6 0.68
CBF 0.76 0.96 CBF 0.80 0.93 CBF 0.79 0.95

during execution time. Likewise, the possibility of having tests
that failed due to defects in the test script code and not the
base source code exists. To minimize this threat, we collected
data for multiple tests, thus minimizing the probability of
identifying tests which are not representative.

VIII. CONCLUSION AND FUTURE WORK

In this study, we experimented with a set of industrial
source code and test execution results the effectiveness of three
feature extraction algorithms on the predictive performance of
three ML models in predicting test case verdicts. As per the
basis of the empirical evaluation, using the BoW technique is
better suited for solving the TCS problem than WE and CBF,
allowing test orchestrators to predict test execution results
(pass or fail) with 0.9 precision rate. Those results can be used
to reduce the size of test suite at each CI build by excluding
tests that are predicted to pass.

In terms of future work, more empirical studies with larger
industrial data are needed to validate the effectiveness of the
three algorithms in the context of TCS. Additionally, training
a series of word embeddings using different variation of
parameters such as the vector and window sizes is needed
to draw more conclusive results about the usage of WE in this
context.
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