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Turnover numbers (kcat values) quantitatively represent the activity
of enzymes, which are mostly measured in vitro. While a few stud-
ies have reported in vivo catalytic rates (kapp values) in bacteria, a
large-scale estimation of kapp in eukaryotes is lacking. Here, we
estimated kapp of the yeast Saccharomyces cerevisiae under diverse
conditions. By comparing the maximum kapp across conditions with
in vitro kcat we found a weak correlation in log scale of R2 = 0.28,
which is lower than for Escherichia coli (R2 = 0.62). The weak cor-
relation is caused by the fact that many in vitro kcat values were
measured for enzymes obtained through heterologous expression.
Removal of these enzymes improved the correlation to R2 = 0.41 but
still not as good as for E. coli, suggesting considerable deviations
between in vitro and in vivo enzyme activities in yeast. By param-
eterizing an enzyme-constrained metabolic model with our kapp
dataset we observed better performance than the default model
with in vitro kcat in predicting proteomics data, demonstrating the
strength of using the dataset generated here.

Saccharomyces cerevisiae | turnover number | kcat |
proteomics | metabolism

Enzyme turnover numbers, also termed kcat values, are funda-
mental parameters that specify the maximum rates of enzymatic

reactions and hence determine the rates of biological processes
such as metabolism. Determining kcat is therefore essential for
quantitatively understanding, modeling, and engineering cells. Tra-
ditionally, kcat values are measured in vitro, which might differ from
the in vivo situation. In addition, the coverage of measured kcat is
poor even for well-studied organisms (1). To address these issues, an
approach for estimating in vivo enzyme catalytic rates, also termed
kapp values, is to use the equation

v = kapp ·E, [1]

where v is the metabolic flux through the enzyme and E the en-
zyme abundance (2). This approach was used to estimate kapp for
Escherichia coli using absolute proteomics and flux data from var-
ious sources (2, 3), and it was found that the maximum kapp values
across conditions, defined as kmax values, correlate well with in vitro
kcat values in log scale (2).
Here, we generate a kapp dataset for Saccharomyces cerevisiae

under diverse conditions. We analyze our dataset and correlate
in vivo with in vitro enzyme activities in yeast. Finally, we compare
the predictive power of an enzyme-constrained metabolic model
using in vivo and in vitro kinetic data.

Results and Discussion
To generate the yeast kapp dataset we collected absolute proteo-
mics data of S. cerevisiae under diverse conditions (4–7) (Dataset
S1). The absolute protein abundance can be directly adopted as
enzyme abundance in Eq. 1. Note that we did not consider enzyme
complexes composed of multiple distinct subunits due to the diffi-
culty in calculating the abundance of catalytic sites (2). To deter-
mine the metabolic flux in Eq. 1, we performed flux balance analysis
(FBA), as done previously (2), using the latest genome-scale met-
abolic model (GEM) of S. cerevisiae Yeast8 (8) (SI Appendix).

Using the absolute proteomics and flux data, we calculated kapp
for 358 metabolic reactions under 26 conditions (Dataset S2). By
correlating the estimated kapp in log10 scale, we found that yeast
kapp varied between conditions with the lowest R2 being around
0.4 (Dataset S3). This is different from the findings for E. coli, where
log-transformed kapp values correlate strongly across conditions with
the lowest R2 being above 0.9 (9).
By comparing kmax (Dataset S4), i.e., maximum kapp across all

the studied conditions, with the corresponding in vitro kcat (Dataset
S5) we obtained a fairly weak correlation in log scale with R2 = 0.28
for S. cerevisiae (Fig. 1A), which is much lower than that of E. coli
(R2 = 0.62) (2). A weak correlation was also reported for the plant
Arabidopsis thaliana (10). By examining in vitro kcat, we found
that some were estimated using purified enzymes obtained through
heterologous expression in E. coli, with the others being estimated
from yeast extracts. We therefore divided the in vitro kcat dataset
into two groups, i.e., heterologous and homologous expression. We
found that there was no correlation for the heterologous expres-
sion group (Fig. 1B), suggesting that in vitro kcat values obtained
through heterologous expression poorly represent in vivo catalytic
rates of yeast enzymes. This might be due to the lack of natural
posttranslational modifications (PTMs) in the expression organism,
which could regulate enzyme activity. Indeed, we found that 27 out
of the 29 reactions have reported PTMs on the enzymes (Dataset
S6), indicating that these PTMs could functionally affect enzyme
activity (11). In the homologous expression group we observed an
improved correlation of R2 = 0.41 in log scale (Fig. 1C) and thus
identified the data obtained through heterologous expression as
the main source of deviations.
To evaluate how uncertainties in the FBA-based flux may

impact our dataset we first investigated the effect of flux variability
on the estimated kmax (SI Appendix). We found that less than 8%
of kmax values could differ, due to flux variability, by more than
one order of magnitude (Dataset S4), and after removing these
data we found the correlation between in vivo and in vitro values
in log scale to be almost unchanged, i.e., R2 (all data) = 0.27, R2

(heterologous data) = 0.12, and R2 (homologous data) = 0.39.
Second, we provided another set of kmax values (Dataset S7) es-
timated using unbiased flux random sampling (SI Appendix), which
correlate strongly (R2 = 0.97) with the FBA-based kmax values in
log scale. To evaluate the effect of a single high outlier value due
to protein measurement we also correlated in log scale the second
largest kapp across all conditions with in vitro kcat but found similar
R2 values, i.e., R2 (all data) = 0.25, R2 (heterologous data) = 0.1,
and R2 (homologous data) = 0.39. Moreover, by correlating kapp of
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each condition with in vitro kcat we found most correlations to be
poor in log scale (Dataset S8). A recent study, using another pro-
teomic dataset and a different GEM, also showed a poor correla-
tion in log scale of R2 = 0.27 between yeast kapp and in vitro kcat at
one condition (12).
We analyzed the yeast kapp under various conditions based on

the ratio of condition-specific kapp over kmax for each reaction.
By plotting the average ratio for each condition versus the corre-
sponding growth rate (μ), we observed an increasing trend (Fig. 1D),
which is in line with findings for E. coli (13). Furthermore, we
compared the ratio of individual reactions between slow (μ ≤ 0.2/h)
and fast (μ > 0.2/h) growth and found that kapp is significantly
higher in faster-growing cells (Fig. 1E). We therefore conclude
that kapp of yeast enzymes increase with growth rate. This suggests
that proteome is more efficiently used at faster growth (13) and
also indicates that growth could be controlled by efficiency of
specific enzymes independent of conditions.
As turnover numbers are essential parameters in enzyme-

constrained GEMs (ecGEMs) (9), we tested the use of kapp
and in vitro kcat in a yeast ecGEM ecYeast8 (8). We parameter-
ized the model with 1) an assumed same kcat for all enzymes, 2)

default in vitro kcat in the original ecYeast8, 3) general kmax, and
4) μ-dependent kmax. Note that μ-dependent kmax is defined as
the maximum kapp across the conditions under which growth rate
is not greater than the given μ. To compare model performance,
we used the model to predict proteomics data for growth on var-
ious carbon sources (14, 15), and we compared with the data not
used to estimate our kapp dataset. We found that kmax outperforms
the assumed kcat and default in vitro kcat (Fig. 2), confirming our
estimation of kmax to be reliable. Notably, μ-dependent kmax can
further improve the predictions (Fig. 2), meaning that it is more
effective to use μ-dependent kmax values than condition-independent
maximum values, which are adopted in most published ecGEMs
(9). In addition, we found that default in vitro kcat in the original
ecYeast8 outperforms the assumed same kcat for all enzymes
(Fig. 2), meaning that it is still acceptable to use in vitro kcat when
kapp values are unavailable.
Overall, we present a kapp dataset of S. cerevisiae under various

conditions, which can be used by ecGEMs for simulating the cor-
responding conditions. As kapp depends generally on growth rates
rather than conditions (Fig. 1D), we believe that our μ-dependent
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Fig. 1. Analysis of kapp and kmax of S. cerevisiae. Correlation in log scale between kmax and in vitro kcat for all data points (A) and for the data points in which
in vitro kcat were measured using enzymes obtained through heterologous expression (B) and through homologous expression (C). The data points with
deviations more than two orders of magnitude are labeled by the enzyme names. Student’s t test was used to calculate P value for Pearson’s correlation. (D)
Change in average kapp/kmax of each condition with growth rate. (E) Comparison between kapp/kmax of individual reactions in two groups divided by a growth
rate of 0.2/h. A two-sided Wilcoxon rank sum test was used to calculate P value.

Fig. 2. Predictions of proteomics data on various carbon sources by ecYeast8 parameterized with an assumed same kcat, default in vitro kcat, general kmax,
and μ-dependent kmax. Model performance is evaluated by root-mean-square error (RMSE) between predicted and measured protein levels on a log10 scale. N
is the number of proteins with predicted nonzero concentrations by four parameterization strategies.
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kmax can be used to parameterize ecGEMs for predicting other
conditions that are not involved in our dataset.

Materials and Methods
The metabolic fluxes were simulated using Yeast8 constrained by measure-
ments. The absolute proteomics data were processed, i.e., the units of protein
abundances were converted to millimoles per gram cell dry weight (gCDW).
Details of all the materials and methods are provided in SI Appendix.

Data Availability. The data and codes are available at https://github.com/
SysBioChalmers/Yeast_kapp. All other study data are included in the article
and/or supporting information.
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