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Abstract – A time domain approach based on the least mean square (LMS) algorithm is applied to reconstruct
the source amplitude and source distribution on a plate. For this a numerical experiment is established.
A boundary element model is used to calculate the required impulse response functions describing the pressure
in near- and far-field for a given volume flow at individual patches on the plate. Three different cases are con-
sidered. Firstly, a volume flow is given to a single patch. The LMS algorithm is used to reconstruct the source
signal by means of receiving positions in the far-field. Secondly, the approach is used to identify the vibration
pattern and source signal on a line of patches. Thirdly, a vibration pattern was given to the plate as the whole.
For the reconstruction an assumption was made about the underlying vibration patterns (e.g. expansion in
vibrational modes). Such an approach proved to be very time efficient and powerful. It also showed the need
to place the receiving positions in the near-field to be able to obtain correct results over the whole frequency
range. However, this is not a problem of the approach based on the LMS algorithm, but just due to the under-
lying physics. It is not possible to deduce the near-field from far-field observations, and therefore the vibrations
mainly leading to a near-field are simply not visible in the far-field.

Keywords: Source identification, Inverse problem, Time domain

1 Introduction

For the successful design of sound and vibration
properties of products and environments, experimental
work will be indispensable even in the foreseeable future.
One of the main tools in this context is the so-called transfer
path analysis (TPA). Classical TPA dates back to the early
eighties when Verheij measured indirectly the forces at the
interface between vibration isolators, engine and ship hull
(see e.g. [1]). Since the early eighties different approaches
have been made to develop the TPA towards a tool appli-
cable in industry. A multitude of different methods have
emerged whose similarities, but also differences can easily
be perceived as confusing. In [2] an attempt is made to
classify the existing methods as “classical TPA”, “compo-
nent-based TPA” and “transmissibility-based TPA” where
the latter also includes the operational transfer path
analysis. The authors in [2] conclude that the three families
are highly interrelated and that little has been suggested
about the methods’ relative success for typical industrial
cases and sensitivity to various sources of error. Further
research, in both numerical simulation and experimental
validation, would substantiate this TPA framework in that
respect.

In the special case of airborne sound source characterisa-
tion (i.e. reconstructing the velocity distribution on radiat-
ing surfaces) different methods have been developed over
the recent years. Methods such as the near-field acoustic
holograpy (NAH) [3, 4], the inverse boundary element
method (IBEM) (e.g. [5] and the least squared methods
(LSM) (see e.g. [6, 7]) are used in this context. The NAH
demands special geometries to allow the application of the
Fourier transform. The IBEM is more general in geometry
but is sensitive to similar errors as the TPA since an inver-
sion has to be carried out.

Typical sources of errors are:

� Insufficient signal to noise ratio which might lead to
erroneous observation of field quantities (e.g. mea-
sured vibrations or sound pressures) or frequency
response functions (FRFs). Measurement noise in
some elements of e.g. a transfer matrix is distributed
over all elements after inverting the matrix.

� Non-accurate FRFs due to e.g. small misplacement of
transducers or the inherent difficulties to measure certain
degrees of freedom (DoF) such as rotational degrees.

� Not correct or not complete description of the inter-
faces as part of the transfer paths between compo-
nents. Neglecting transfer paths can result in an
erroneous result for the transfer paths considered.*Corresponding author: Wolfgang.Kropp@chalmers.se
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� Neglecting the presence of correlated multiple sources.
Multiple correlated sources might lead to “crosstalk-
ing” at interfaces. Neglecting some of the sources will
give erroneous results for those sources taken into
account.

� Performing the operational test in an environment dif-
ferent from the targeted assembly. This only leads to
correct results when the mounting condition does not
influence the source itself. E.g. the blocked-force [8]
and free-velocity [9] methods provide two extreme
boundary conditions for the description of an active
component. The boundary condition in the case of
the hybrid interface method [10] depends on the
dynamic stiffness of the test rig. The different bound-
ary conditions will influence the active component
differently.

� And finally just the limitation by lack of information
due to the physics of the problem might not allow
for identifying sources or transferpaths from measure-
ments in the far-field accurately.

The scope of this paper is to demonstrate the capability
of the LMS algorithm to identify the surface velocity respon-
sible for the radiated sound pressure and to investigate the
influence of different parameters such as background noise
or accuracy of transfer function as well as limitations by
physics on the quality of the results. In practical applications
typically measurements of sound pressure signals in a multi-
tude of receiving positions are carried out. At the same time
a set of transfer functions from the anticipated source
positions to the receiver positions is measured. In this way
an inverse problem is established which has to be solved.
Among the solving methods discussed in literature the
overwhelming majority is formulated in the frequency
domain and involve matrix inversion of different types.
The inverse problem is well known to be ill-posed and has
been shown to be sensitive to measurement noise and to
suffer from numerical ill-conditioning at frequencies
associated with the natural frequencies of the components
[11]. Usually, the robustness of such solutions has to be
improved by applying some form of regularization [12].
One usual attempt to cure problems is to create an over-
determined equation system and use truncated singular
value decomposition [13].

In the following a different approach is utilised based on
work originally presented in [14]. There two of the authors
presented an approach based on the LMS algorithm in the
time domain. They demonstrated the approach which is
explained in more detail in Section 1.2 for a single input
multiple output system (SIMO) where a force is exciting
a structure in a known excitation position. The approach
showed to be very robust when reconstructing forces acting
on a beam. Although not included in the paper [14] but pre-
sented at the conference they also extended the approach to
a multiple input multiple output system (MIMO system),
i.e. excitation with several forces in known excitation posi-
tions. This extension was later published in [15] and applied
in [16] for the indirect measurement of walking forces on
wooden floors.

1.1 The setup

To investigate the possibilities to reconstruct the
velocity distribution on a surface a numerical experiment
is set up consisting of a 4 cm thick plate with the length
of 0.78 m and the width of 0.3 m as shown in Figure 1.

The plate is situated at a height of 30 cm over an infinite
and rigid ground. The plate surfaces are divided into
quadratic shaped elements of the size of 3 cm times 3 cm.
At the nodes of each element a velocity in normal direction
of the surface is prescribed which determines the volume
flow created by each element.

To calculate the radiation from the source distribution
on the plate a half space BEM formulation is used based
on the work by Brick presented in [17]. The sound pressure
is evaluated at 321 receiving positions on a half sphere with
a radius of 1 m around the origin and 260 positions situated
directly 6 cm in front of each of the elements on the top
surface of the plate (see Fig. 2).

From the radiated pressure transfer functions between
each element on the top surface and all receiving positions
are calculated by normalising the calculated pressure values
by the volume flow at the surface. Typical results for the
transfer functions are shown in Figure 3.

The transfer functions to the positions close to the plate
are relatively smooth over frequency and differ mainly in
level. For positions on the sphere interference effects with
strong dips in the FRF can be observed. From these FRFs
the impulse response functions (IRFs) are calculated by
inverse Fourier transform. In the following a maximum fre-
quency range of 1500 Hz (i.e. a sampling rate of 3000 Hz)
is considered. With 200 frequency lines the frequency
resolution is 7.5 Hz.

1.2 The LMS algorithm applied to source identification

Today the LMS algorithm is a standard tool in filter
design. It has been invented by Widrow and Hoff [18] and
was the basis for their work with neural networks and
machine learning. By means of the LMS algorithm a desired
filter is approximated by determining a limited number of
coefficients of a new filter that results in the least mean
square of the error signal, i.e. the difference between a
desired and the actual signal observed. At each time step
the LMS algorithm follows the steepest gradient in order
to minimise this error. The result converges to the optimal
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Figure 1. Geometry of the plate used in the numerical
experiments.
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filter, the so-called Wiener–Hopf filter. Figure 4 shows a
typical situation where the output ad(n) of a system
described by the IRF ho should be reconstructed by a filter
h with I coefficients.

By comparing the output ad(n) of the system with the
output from the filter h the error e(n) at each time sample
n can be calculated as,

e nð Þ ¼ ad nð Þ � hx nð Þ; ð1Þ
where x is the observed input into the system (x = [x(n),
x(n � 1), . . . , x(n – I + 1)]T) with T indicating the trans-
posed form of x and h the unknown filter (h = [h(0), h(1),
. . . , h(I � 1)]).

The expectation value of the squared error is then,

E½eðnÞ2� ¼ E½ ad nð Þ � hx nð ÞÞ2� �
: ð2Þ

The main idea of the LMS algorithm is to minimise the
mean value of the quadratic error. As this is a quadratic
equation the minimum is found by following the gradient
of Equation (2) with respect to the filter coefficients hi,

oE½eðnÞ2�
ohi

¼ 2E e nð Þ oe nð Þ
ohi

� �
¼ �2E e nð Þx n� ið Þ½ �: ð3Þ

Starting from this Widrow and Hoff showed that instead of
calculating the expectation value at each time step the gra-
dient can be calculated as e(i) x(n �i) which leads to an
adaptive process where,

h nþ 1ð Þ ¼ h nð Þ þ 2ae nð ÞxT nð Þ; ð4Þ
and that this iterative process converges towards the
results obtained by (3). a is the step size following the
gradient in the adaptive process for calculating the filter
coefficients. To ensure stability Widrow suggested in
[19] as a “rule of thumb” that the step size has to obey
the condition,

a <
1

IE½xðnÞ2� ; ð5Þ

where E[x(n)2] is the mean square value of the reference
signal.

The frequent use of the LMS algorithm for filter design
in e.g. active noise control is based on the fact,

� That it does not demand a matrix inversion and,
therefore the solution becomes more robust in the case
of low SNR and ill-conditioned systems.

� That the gradient is determined by the absolute error
e(n). This means that the error due to strong compo-
nents in the signals (e.g. due to resonances) governs
the gradient rather than weak components (e.g. anti
resonances). This circumstance makes the algorithm
very robust with respect to background noise.

� And that the algorithm is extremely simple to
implement.

These properties make the LMS algorithm also an inter-
esting approach for the reconstruction of input signals into
systems described by impulse response functions. As the
convolution is a commutative operation the only minor
modification is the exchange of x(n) and h, i.e. make h to
the input and x(n) to the function to be updated as shown
in Figure 5.

The equation corresponding to Equation (4) is
therefore,

x nþ 1ð Þ ¼ x nð Þ þ 2ae nð ÞhT nð Þ: ð6Þ
The main difference is that h(n) is of finite length and
always used completely. This has two consequences.
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Figure 2. The plate above the ground in combination and two
sets of receiving positions. One set directly above the plate and
one set distributed on a sphere.

0 500 1000 1500

frequency in Hz

0

20

40

60

80

100

20
 lo

g 
|H

| i
n 

dB

Figure 3. Example for transfer functions for the radiation of
one patch on the plate to a position directly above the plate
(solid line) and on the half sphere (dashed line).

Figure 4. Typical task for filter design with x as input signal, ho
the desired impulse response function of the filter, h the designed
filter and e the error between desired signal ad and the signal
created by the filter h.
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Firstly, the reconstructed signal x(n) is erroneous as
long as n is smaller than the length of h. Consequently,
the length of the desired/observed signal ad(n) has to be
at least twice the number of coefficients of h to capture
the response to an excitation completely at least once.

Secondly, the time iterative process described by Equa-
tion (6) might be too short to converge to a sufficient accu-
rate result. Therefore the process is repeated several times
using the result of x of the previous run as start values.

The formulation in (4) is for a single input single output
system (SISO). It easily can be extended for a single input
multiple output (SIMO) system which would be the case in
an overdetermined system. For a system with R output
signals, Equation (1) yields the error at each receiving
position as,

er nð Þ ¼ ad;r nð Þ � hrx nð Þ: ð7Þ
ad,r is the measured signal at each receiving position r and
hr the IRF from the excitation position to the receiving
positions r. The gradient can be determined in analogy to
(4) and the iterative updating procedure yields,

x nþ 1ð Þ ¼ x nð Þ þ 2
1
R

XR
r¼1

arer nð Þhr nð Þ: ð8Þ

By this the mean gradient is calculated. From the equation
it is obvious that always the strongest absolute error will
determine the gradient most. Extending the problem from
a SIMO system to a MIMO system (i.e. multiple input
and multiple output system) is a further but straight
forward step. The error in this case is calculated as before
as the deviation between the measured signal ad,r and the
predicted signal. However, as several sources are acting
the predicted system at each receiving position is a superpo-
sition of the responses due to all sources, i.e.,

er nð Þ ¼ ad;r nð Þ �
XI

i¼1

hi;rxi nð Þ: ð9Þ

The iterative updating is done for each source separately,

xi nþ 1ð Þ ¼ xi nð Þ þ 2
1
R

XR
r¼1

arer nð Þhr;i nð Þ: ð10Þ

The implementation of Equations (6)–(10) is rather simple
resulting in just a few lines of code which also is a strength
of the LMS algorithm.

2 Numerical experiments

Numerical experiments allow under controlled condi-
tions to investigate the potential to reconstruct a given

source distribution on an object by means of the approach
based on the LMS algorithm as described in the previous
section. Based on the numerical experiments for the plate
presented in Section 1.1 a systematic study is presented in
the following starting from a single point source and
extended to more complex source distributions. To limit
the complexity for the beginning only patches along a line
as indicated in Figure 6 are considered. The patches are
numbered from 1 to 24. When prescribing a velocity to a
patch it is defined in the four nodes around the patch.
The velocity in the normal direction to the surface in the
centre of the patch is calculated as average of the velocity
at the four nodes. As a consequence even neighbour patches
will have a velocity as they share nodes with the patch
where the velocity is prescribed.

2.1 A single source

In order to demonstrate the functioning of the LMS
algorithm the most simple case of only one source (at patch
14) and one receiver is studied first (a SISO system). The
source signal consists of white noise, but any other signal
could have been chosen. As receiving position one of the
positions on the half sphere is selected. It is assumed that
the source position is known. For this case a reconstruction
of the source signal is carried out. The results of the original
time signal of the source and the reconstructed time signal
after 800 repetitions of the updating process are shown in
Figure 7. The iteration process could be interrupted when
the error e becomes smaller than a certain limit or when
the change in the error between two subsequent iteration
steps is smaller than a given value. In this paper a limit
of 800 iteration steps was used for all cases.

As the length of the IRFs is 400 samples the recon-
structed values for the sources signal for the first 400 samples
are erroneous. After 400 samples the agreement between
original and reconstructed signal seems to be fine, although
such judgements are very difficult to make by means of
inspecting the time records. Instead the autospectra of both
signals (only for valid samples, i.e. higher than 400) are
shown in Figure 8.

From the figure the good agreement is visible over a
wide frequency range which is not too surprising as the data
used in the simulation are free from noise and the source

Figure 5. Adaptive process to determine the unknown
excitation x(n).

Figure 6. Position of possible sources in front of the plate.
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position is known. However, at very low frequencies there is
a substantial deviation. The reason is the low response in
the FRF (see Fig. 3). As the gradient is determined by
the absolute error small values in the FRF will lead to small
values in the pressure signals. As weak pressure signals
hardly influence the adaptive process such frequency ranges
are not updated properly. This can be cured as usual when
applying the LMS algorithm by only focusing on the fre-
quency range where a good adaptation is needed. Figure 9
shows the resulting error when applying a low pass filter
with a cutoff frequency of 200 Hz to the input signal, i.e.
the IRFs.

Now the signal below 200 Hz controls the adaptive
process. Consequently the results are improved at low

frequencies but are erroneous above 200 Hz. The low
response of the FRFs at low frequencies is based on the
underlying physics as the sound pressure radiated from
volume sources is proportional to the volume acceleration,
i.e. the time derivative of the volume flow _Q. Carrying
out a time integration of the IRFs compresses the dynamics
and the FRFs become more flat. Applying the integrated
IRFs leads to that the reconstruction will be successful over
more or less the whole frequency range as shown in Figure 9.
Derivation with respect to time applied to the reconstructed
source signals will correct such a choice of IRFs.

In the following the integrated IRFs are used through-
out the paper.

2.1.1 The influence of measurement noise

A usual problem when using the TPA approach is that
the observations (i.e. the measured pressure signals) are dis-
turbed by measurement noise. Therefore, the effect of mea-
surement noise on the performance of the LMS algorithm is
investigated in the following.

In typical TPA approaches the influence of measure-
ment noise is reduced by formulating an overdetermined
system (SIMO), i.e. more receiving positions than sources
are used for the reconstruction of the source properties. In
the case here the pressure signals in several receiving
positions on the half sphere are used. To demonstrate the
functioning of the LMS algorithm in connection with an
overdetermined system, noise is added to the simulated
pressure signals at the receiving positions. The amplitude
of the noise sequences is chosen so that for each receiving
position a prescribed signal to noise ratio (SNR) is obtained.
The number of receiving positions (Nr) in the half sphere is
chosen as Nr = 2n with n = 0, 1, . . . , 8. Figure 10 shows
the results from this study in the form of the error
calculated from the ratio between the energy in the recon-
structed source signal Qr and the energy in the original
source signal Qo,

�L ¼ 10 log
Q2

r;rms

Q2
o;rms

: ð11Þ

Figure 7. Original source signal (dashed line) and reconstructed
source signal (solid line).

Figure 8. The upper curve shows the comparison of the original
source spectrum (dashed line) and reconstructed source spec-
trum (solid line). The lower curve shows the difference between
original source spectrum and reconstructed source spectrum.
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Figure 9. Error in the reconstructed source spectrum for the
original IRFs (dotted line), after applying a lowpass filter to the
IRFs with a cut off frequency of 200 Hz (dashed line) and after
integrating the IRFs (solid line).
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The error will depend on the SNR, the number Nr of receiv-
ing positions, but also on the selection of the receiving posi-
tions. Therefore it is necessary to calculate the error for a
number of realisations with different receiving positions.
64 realisations are used for each combination of SNR and
Nr and the results for each combination are represented
as boxplot in Figure 10. The median is indicated by a notch
and the edges of the box represent the 25th and 75th per-
centiles respectively. The whiskers are extended to the most
extreme data points the algorithm considers to be not out-
liers, and the outliers (light grey) are plotted individually.

From the figure it is visible that the increase of receiving
positions in the reconstruction process is able to suppress
the negative impact of measurement noise. For a SIMO
system the gradient in the adaptive process is calculated
as the average over the error in all receiving positions. As
the added noise is uncorrelated, averaging will suppress
the influence of measurement noise on the gradient. In addi-
tion, in the time iterative procedure errors in the gradient
will lead that the algorithm will march into a somewhat
erroneous direction. However, in the next time step the
error in the gradient will be different and therefore also
the error in the direction. Therefore as long as the error is
random, uncorrelated to the input signal and not too big
the adaptive process will in any case converge on a random
path towards the correct value. However, it will never reach
the correct value exactly. How close the value will come to
the true value is depending on the SNR and the degree of
overdetermination.

The results show that already for Nr = 16 receiving
positions the error DL can be kept below 0.5 dB in the case
of an SNR = 0 dB. In Figure 10 analytical results are
plotted describing the influence of averaging on the error
DL as function of the SNR,

�L ¼ 10 log 1þ 10
�0:1SNR

Nr

� �
: ð12Þ

There is a good agreement between the simulation
results and Equation (12), indicating that the use of the
LMS algorithm in connection with an overdetermined
system is actually equivalent to averaging out the noise
contribution and that the number of receiving positions is
equivalent to the number of ensembles averaged over in
Equation (12).

These results concern the overall energy in the
spectrum. In the case of individual frequency components,
however, there can be considerable deviations. To evaluate
the similarity between the original and reconstructed
source spectrum, an approach similar to the Modal
Assurance Criterion (MAC) [20] is applied. The MAC value
is widely used in modal analysis and is a metric that calcu-
lates the degree of linear similarity between two mode
shapes. Using the same mathematical definition of the
MAC we define here the Spectral Cross Correlation
(SCC), which describes the similarity between two complex
spectra. This enables a very robust similarity estimate
including the spectrum shape and its energy content. The
SCC value varies between 0 and 1 and it is defined as the

normalized cross-correlation of the two spectra. It is defined
in Equation (13) (where (�)H is the Hermitian-transpose
operator),

SCC So;Srð Þ ¼ jSH
o Srj2

SH
o So

� � � SH
r Sr

� � : ð13Þ

In Figure 11 a similar tendency for the MAC can be seen, in
which the more similar the spectra are in shape, the higher
the number of receiver positions and the SNR.

2.1.2 Wrongly anticipated source location

The application of the LMS algorithm demands a correct
assumption of the position of the source in order to establish
the appropriate IRFs. In typical real case applications the
source positions might often not be known exactly. The con-
sequence might be an erroneous reconstruction of the source
strengths. This is investigated in the following. Therefore, it
is assumed that patch 14 (see Fig. 6) is the source while in
reality the source is placed on different positions. The posi-
tion was varied between patch 13 to patch 9, which corre-
sponds to a misplacement by 3 cm to 15 cm. As expected
with increasing distance the reconstruction of the source
strength became increasingly erroneous over a wide range
of the frequency spectrum. However, below about 500 Hz
the error stayed rather small. Only one receiving position
was chosen. To investigate the influence of more receiving
positions the biggest distance (i.e. 15 cm misalignment)
was chosen and the number of receiving positions for the
reconstruction was gradually increased (Fig. 12). As the
number of considered receiving positions increased the error
decreases clearly.

However, even for the case of evaluating two receiving
positions only, similar good results have been obtained as
for eight positions in Figure 12 for frequencies below
800Hz, depending on the selected receiving positions utilised
for the reconstruction. Closer investigations showed that it is
more important to select proper positions rather than many.

Figure 10. Error according to Equation (11) in the prediction
as function of receiving positions and signal to noise ratio shown
as boxplots. The results are compared with the error predicted
by Equation (12) (solid lines). The upper curve corresponds to 1
receiving position. The consequent curves correspond to 2, 4, 8,
16, 32, 64, 128 and 256 (lowest curve) receiving points.
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However, having many positions increases the chance that
among these there are sufficient many relevant positions
for reconstructing the source strength correctly, even if the
source position is assumed 15 cm apart from the correct posi-
tion which corresponds to a positioning error of more than
60% of the wavelength at the highest frequency considered
here. Figure 13 shows that the spread is rather small for dif-
ferent randomly selected sets of receiving positions as long as
there are sufficient (in this case eight) positions.

From the results we can conclude that even with assum-
ing wrong source positions it is possible to reconstruct the
source signal rather accurately. However, these are also
bad news as it might implicate that it could be difficult to
reconstruct the spatial source distributions correctly as
the space information does not seem to play a sufficiently
important role at lower frequencies. This will be investi-
gated in the next section.

2.2 Identification of vibration patterns

Up to now only a SISO or a SIMO system has been
investigated. In the following this is extended to a MIMO
system by including all patches indicated in Figure 6
(i.e. marked with a red line) as sources. Two cases are inves-
tigated. In the first case the patches are treated as individ-
ual sources as part of a line array. For each individual
source the strength is identified by the LMS algorithm.

In the second case the individual sources are collected to
global vibration patterns along the line array. The source
strength of each of these patterns is then determined by
the LMS algorithm. This method is shown to be faster.
However, it demands some pre-knowledge about the source
distribution to chose these patterns in an appropriate way.

2.2.1 A line array of correlated pistons

The prescribed source signals at each patch are corre-
lated but different in amplitude. As time signal a white
noise sequence is used. The velocity vm at each patch m is
described as,

vm Np

� � ¼ A sin
Nppm
23

	 

; ð14Þ

where A is the amplitude of the pattern and Np the
number of half wavelength fitting to the whole length of
the strip. Np is varied between 1 and 5. In this way (14)
might represent the modal pattern for e.g. a simply sup-
ported beam.

For the reconstruction of the velocity fields 40 receiving
positions on the half sphere are utilised. Figures 14 and 15
show typical results for Np = 3 and Np = 5. The simulations
show good agreement above a certain frequency. Below this
frequency the results are erroneous. With increasing Np this
frequency is increasing as shown in Figure 16. There the
spatial averaged squared velocity for the prescribed velocity
pattern and the reconstructed pattern are compared. The
results are expressed as relative error in decibel for
Np = 1 to Np =5. In the figure also the so-called critical
frequencies fc in accordance to Table 1 are indicated as

Figure 11. SCC between the original spectrum and the
reconstructed spectrum of the source patch according to
Equation (13) in the prediction as function of receiving positions
and signal to noise ratio shown as boxplots. The curve indicates
the median values. The lowest curve corresponds to 1 receiving
position. The consequent curves correspond to 2, 4, 8, 16, 32, 64,
128 and 256 (highest curve) receiving points.
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Figure 12. Level difference between prescribed pressure signals
and pressure signal which is obtained for the reconstructed
source signal assumed at erroneous position. The calculations are
carried out for 1 (—), 2 (. . .), 4 (–), and 8 (-.-)receiving positions.
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Figure 13. Level difference between prescribed pressure signals
and the pressure signal which is obtained for the reconstructed
source signal assumed at an erroneous position. The results are
presented for seven simulation runs with different eight randomly
selected receiving positions.
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small circles. The critical frequency fc as used here is defined
as the frequency where the wavelength in the surrounding
fluid (i.e. air) is identical with the prescribed wavelength
on the plate.

Inspecting Figures 14 and 15 one can argue that below fc
only the part of the prescribed velocity field can be observed
in the far-field which is responsible for the radiated sound
field. The part of the vibration resulting in a near-field
mainly cannot be observed in the far-field positions. The
reconstructed source distribution show strong contributions
at both ends of the strips where the actual velocity is close
to zero. However, we know from theory that for instance for
a radiator in a rigid baffle the radiation takes place at the
edges/ends of the radiator (see e.g. [21]) at frequencies far
below the critical frequency. In this way the results might
correctly describe a possible source distribution explaining
the radiated field although is not identical with the pre-
scribed velocity. This is further discussed in Section 3.

If these considerations are correct it should be possible
to identify the prescribed velocity exactly by using receiving
positions in the near-field directly above the plate as shown
in Figure 2 and indeed the so reconstructed field is more or
less identical with the prescribed velocity distribution (see
Figs. 17 and 18).

The only bigger deviations are in the nodal lines where
the velocity values are very small and therefore the LMS
approach might have difficulties to converge to the correct
values. However, this is hardly visible in the figures and
does not play an important role for the sound radiation

as the values are very small. In any case one can conclude
that the vibration distribution on the plate can be correctly
reconstructed when using near-field receiver positions, but
this might not be possible at frequencies below the critical
frequencies of the underlying vibration patterns when using
far-field positions.

2.2.2 Identification of predefined source configurations

The alternative to the identification of the source distri-
bution for individual patches is to assume certain patterns
from the very beginning. Often the vibration distribution

Figure 14. Comparison of the original source distribution
along the 24 patches (upper) and the reconstructed source
distribution (lower) as function of frequency for Np = 3.
Reconstruction based on far-field receiving positions.

Figure 15. Comparison of the original source distribution
along the 24 patches (upper) and the reconstructed source
distribution (lower) as function of frequency for Np = 5.
Reconstruction based on far-field receiving positions.
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Figure 16. Error in the averaged velocity between original and
reconstructed source distribution. Circles indicate the critical
frequencies as described in Table 1. The numbering of the curves
corresponds to Np.
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is given by modes on the structure. Having knowledge
about the modes, one could directly identify the contribu-
tion of each mode to the vibration of the structure and to
the radiated sound. Instead of structural modes of course
any pattern can be used. In the case here the pattern
given by (14) is utilised. For this Np = 1 to Np = 10 are
considered. The impulse response functions for each of these
patterns are calculated as,

hNp ;r ¼
X24
m¼0

vm Np

� �
hmr; ð15Þ

where vm is the prescribed velocity for a modal pattern
according to (14) and hm,r the impulse reaponse function
between patch m and receiving position r.

The reconstruction of a prescribed vibration pattern is
based on two different sets of 36 receiving positions (one
set in the near-field 10 cm above the plate and one set in
the far-field on the half sphere). In the following the pre-
scribed vibration consists of a combination of pattern
according to (14) and the velocity at each patch can be
written as,

vm ¼
XNp;max

Np¼1

A Np

� �
sin

Nppm
23

	 

; ð16Þ

where A(Np) is the amplitude for each pattern.
The reconstruction by means of far-field positions shows

the same phenomena as in the previous section. Below the
critical frequency given by the wavelength of the pattern
Np the velocity distribution cannot be reconstructed
correctly as only the part of the source distribution can
be observed which is responsible for the radiated sound.
Consequently, a possible source distribution is recon-
structed which explains the radiated sound at the far-field
receiving positions. Below fc the area in the middle of the
radiating strip is contributing much less than the borders.
However, due to the choice of the assumed base functions
for the vibration pattern (i.e. sinusoidal functions), the
patches at both ends always show zero velocity after
reconstruction as shown in Figure 19. This also might indi-
cate that the choice of the base of vibration patterns is not
well adapted to the radiation problem although it certainly
is the most appropriate to explain the vibrations on the
plate.

In Figure 19 the amplitudes A(Np) are set to zero for all
Np besides for Np = 5 which has unit amplitude. This is
identical with the prescribed vibration patterns used in
Figure 15. However, the results differ from the results
shown there. This demonstrates the importance to use for
the radiation relevant base functions and does not depend
on the procedure of reconstructing the patterns. In the case
considered here the sinusoidal function are not adequate.

Table 1. Critical frequencies for the first five vibration patterns
according to Equation (14).

Np 1 2 3 4 5

fc (Hz) 236 472 708 944 1180

Figure 17. Comparison of the original source distribution
along the 24 patches (upper) and the reconstructed source
distribution (lower) as function of frequency for Np = 3.
Reconstruction based on near-field receiving positions.

Figure 18. Comparison of the original source distribution
along the 24 patches (upper) and the reconstructed source
distribution (lower) as function of frequency for Np = 5.
Reconstruction based on near-field receiving positions.
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Similar problems might be observed when using modal
patterns as base functions. The approach in 2.2.1 might
be in this context clearly superior as it does not assume
any pattern in advance.

The situation is again different when using near-field
receiving positions for the reconstruction process. Results
show that in the absence of measurement noise at the
receiving positions the amplitudes A(Np) of the underlying
patterns can be determined perfectly. This is true if the time
signals for all patterns are correlated or uncorrelated and if
their amplitudes are in the same order. Even if one single
pattern is very small in amplitude in comparison to all other

prescribed amplitudes the reconstruction works well over a
wide frequency range as shown in Figure 20.

Figure 20 shows the level difference between original
source strength and reconstructed source strength for the
pattern Np = 3. The amplitude A(3) is varied between
10�4 and 10�6 while the amplitudes for the pattern
Np = 1, 2, 4, 5 are set to one.

In these calculations all patterns have the same underly-
ing time signal, i.e. all patterns are correlated but different
in amplitude. In the presence of measurement noise the
potential to reconstruct such weak source signals will
strongly depend on the SNR. For decreasing SNR the
possibility to reconstruct low amplitudes gets successively
lost as expected. Similar results are obtained when assum-
ing uncorrelated signals for all individual patterns.

3 Application of the LMS algorithm to
reconstruct a complex vibration pattern

As final demonstration of the functioning of the LMS
algorithm in the context of source identification the whole
plate has a prescribed velocity pattern. This pattern is
assumed to consist of sinusoidal functions similar to
Equation (16) as,

vx;y ¼
X4

n¼1

X3

l¼1

A n; lð Þ sin npx
Lx

	 

sin

lpy
Ly

	 

; ð17Þ

where x and y are the coordinates of the patch centre and
n and l the number of half wavelengths fitting to the
length and width respectively.

As amplitudes A(n, l) the values were chosen randomly
with the same order of magnitude (see Table 2 below).

Using near-field receiving positions allows to reconstruct
the pattern on the plate rather well. However, to ensure a
good agreement at low frequencies a high number of receiv-
ing positions is needed (see Fig. 21).

The differences mainly occur in nodal lines where the
amplitudes are small which is typical for the LMS algorithm
as it is controlled by the absolute error. However, looking at
the averaged squared sound pressure level on the sphere
which is proportional to the radiated sound power, the
agreement between original values and the values obtained
from the reconstructed source distribution are very close
even if the reconstruction is based only on 12 receiving
positions (see Fig. 22).

Using the far-field receiving positions for the reconstruc-
tion the results are very similar to the results in Section 2.2.

Figure 23 shows the results for the reconstruction based
on 128 receiving positions for different frequencies. At low
frequencies the pattern differs strongly from the original
pattern shown in Figure 21. With increasing frequencies
the differences decrease and at high frequencies the agree-
ment is very good. However, looking at the averaged squared
pressure on the sphere, the agreement is perfect over the
whole frequency range. One can again conclude that the
problem suffers from the fact that the same far-field pressure
fields can be created by different source compositions.
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Figure 19. Comparison of the original source distribution
along the 24 patches (upper) given by (16) and the reconstructed
source distribution (lower) as function of frequency for Np = 5.
Reconstruction based on far-field receiving positions.
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Figure 20. Level difference between original source strength
and reconstructed source strength for pattern Np = 3 for three
different amplitudes: .-. 10�4, - - 10�5, —10�6 and the ampli-
tudes for the pattern Np = 1, 2, 4, 5 set to one.
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The problem is not the applied reconstruction method, but
the underlying physics which makes it difficult to observe
the required near-field information when the far-field is
dominating.

4 Conclusions

A time domain approach for identifying the source
distribution on a plate based on the LMS algorithm has
been used. The approach has been demonstrated for SISO,
SIMO and MIMO systems. A numerical experiment has
been created as test case. FRFs have been calculated by
means of a BE model describing the pressure at receiving
positions normalised by the volume flow at discrete patches
on the plate. Two sets of receiving positions were used, one
in the far-field in the form of a half sphere around the centre
of the plate and one in the near-field close to the surface of
the plate. From the FRFs the IRFs were calculated as input
to the LMS algorithm.

For the case of a single monopole represented by one of
the patches on the plate the LMS algorithm demonstrated
to be very robust. As for frequency domain approaches an
overdetermined system (SIMO) can be formulated to
suppress efficiently measurement noise as long as the noise
is not correlated at the different receiving positions. A miss-
positioning of the source (i.e. the assumption of the wrong
source position) showed to result in correct source signals
as long as relevant receiving positions are utilised for the
identification. This can be achieved by just choosing enough
receiving positions. In the case considered here for a miss-
positioning of 15 cm the resulting error was still smaller
than 1 dB. Two different sets of receiving positions were
utilised for the reconstruction of the vibration pattern on
the plate.

Table 2. Amplitudes A(n, l) for the different patterns applied in
Equation (17).

l/n 1 2 3 4

1 1 0.2 �0.5 1.2
2 �2 �0.1 1.3 2
3 1.5 �1.1 �0.7 0.65
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Figure 21. Comparison of the original pattern at 100 Hz (left
upper corner) with the reconstructed pattern for 12 receiving
position (right upper corner), 48 receiving position (left lower
corner) and 64 receiving positions (right lower corner).
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Figure 22. Averaged squared pressure on the half sphere for
the original vibration pattern (solid gray line) and the recon-
structed vibration pattern (dashed black line).
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Figure 23. Results of the reconstructed vibration pattern at
100 Hz (left upper corner), 250 Hz (right upper corner), 500 Hz
(left lower corner) and 1000 Hz (right lower corner).
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The first set consisted of receiving positions in the near-
field of the source on the plate. The examples in this paper
showed that in this case accurate reconstruction is achiev-
able as long as sufficient many observation positions are
utilised. It was shown that the so reconstructed source
distribution creates the same far-field sound field as the
original distribution.

The second set consisted of receiving positions in the
far-field of the sources on the plate. In this case the recon-
struction leads to source distributions which at lower
frequencies clearly differ from the original source distribu-
tions. This is due to the fact that in the far-field only the
part of the source pattern can be observed that is responsi-
ble for the radiated sound. At the end it is not a failure of
the approach, but a consequence of the underlying physics
which determines the limits of the reconstruction as the
required near-field information is hardly to be extracted
when the far-field is dominating.

Referring back to the list of typical sources of errors as
mentioned in the introduction of this paper one can con-
clude the following for the topics considered in this paper:

� Insufficient signal to noise ratio which might lead to
erroneous observation of field quantities (e.g. mea-
sured vibrations or sound pressures) or frequency
response functions (FRFs) can be improved by an
overdetermined system. The LMS algorithm is extre-
mely robust with respect to measurement noise due
to the fact that it is controlled by the strongest signals
which has the highest SNR. In addition as long as the
measurement noise is not correlated to the signals to
be reconstructed, even erroneous gradients in the
updating process are random and averaged out over
the iteration process.

� Non-accurate FRFs due to e.g. small misplacement of
transducers or the inherent difficulties to measure cer-
tain degrees of freedom (DoF) such as rotational
degrees of freedom. The LMS algorithm showed to
be capable even for this case to find correct source sig-
nals as long as sufficiently relevant receiving position
are used.

� Neglecting the presence of correlated multiple sources.
Multiple correlated sources might lead to crosstalking
at interfaces. Neglecting some of the source will give
erroneous results for those sources taken into account.
This has turned out not to be a problem in the case
considered here. Assuming several correlated sources
did not create any problems for the identification pro-
cess. Even correlated sources with substantially low
amplitudes could be detected as long as the back-
ground noise is not too high and therefore masking
the contribution of low amplitude sources.

In practical applications it will be required either to
calculate or to measure a complete set of impulse response
functions between the expected sources patches and or
vibration pattern (e.g. modes) and observation positions.
Calculation using e.g. the boundary element method will
be very efficient but often demand simple situations (e.g.
anechoic conditions) to keep the computational effort

acceptable. Measurement in contrary can include the
complexity of the sound field. It can be expected that the
complexity of a sound field in a room will improve the effi-
ciency of the method as it will increase the difference
between individual impulse response functions as long as
the reverberation will not become too high.

In some way the presented approach is similarto NAH
or IBEM as it uses pre-knowledge about the sound field
to reconstruct the source distribution. The big advantage
of the approach, however, is that does not demand certain
geometries and no inversion is required and therefore
typical problems of inverse methods are avoided. In addi-
tion the time domain formulation is perfectly for transient
signals and time varying source distributions.

Finally, there is the limitation by lack of information
due to the physics of the problem might not allow for
identifying sources or transfer paths accurately. In the case
considered here, it has been demonstrated that the observa-
tion of the sound field in the far-field is not sufficient for
reconstructing the source distribution if the sources mainly
create a near-field. In this case it is essential to place obser-
vation positions in the near-field to be able to “see” the
correct source distribution.
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