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Abstract

Plug-in hybrid electric vehicles (PHEV) have an electric motor and an internal combustion engine and
can reduce greenhouse gas emissions (GHG) from transport. However, their environmental benefit
strongly depends on the charging behaviour. Several studies have analysed the GHG emissions from
upstream electricity production, yet the impact of individual charging behaviour on PHEV tail-pipe
carbon emissions has not been quantified from empirical data so far. Here, we use daily driving data
from 7,491 Chevrolet Volt PHEV with a total 3.4 million driving days in the US and Canada to fill this
gap. We quantify the effect of daily charging on the electric driving share and the individual fuel
consumption. We find that even a minor deviation from charging every driving day significantly
increases fuel consumption and thus tail-pipe emissions. Our results show that reducing charging
from every day to 9 out of 10 days, increases fuel consumption on average by 1.85 4 0.031/100 km or
42.7 4 0.8 gCO, km ' tail-pipe emissions (& on standard error). Charging more than once per
driving day has less impact in our sample, this must occur during at least 20% of driving days to have a
noteworthy effect. Even then, a 10% increase in frequency only has moderate effect of decreasing fuel
consumption on average by 0.08 4 0.021/100 km or 1.86 + 0.46 gCO, km ™" tail-pipe emissions.
Our results illustrate the importance of providing adequate charging infrastructure and incentives for
PHEV users to charge their vehicles on a regular basis in order to ensure that their environmental
impact is small as even long-range PHEVs can have a noteworthy share of conventional fuel use when
not regularly charged.

1. Introduction

Greenhouse gas (GHG) mitigation is strongly needed in the transport sector to limit global warming as stated in
the Paris agreement. Plug-in hybrid electric vehicles (PHEVs) are plug-in electric vehicles (PEV) that can use
electricity as well as conventional fuel for propulsion (Bradley and Frank 2009). Their potential to reduce local
and global emissions strongly depends on their real-world usage and the share of kilometres driven on
electricity, the so-called utility factor (UF) (Chan 2007, Jacobson 2009, Flath et al 2013). Thus, the actual
environmental benefit of PHEVs strongly depends on usage, in particular charging (Plotz et al 2017a, 2017b,
Plotz et al 2018, Srinivasa Raghavan and Tal 2020).

Currently, PHEV are one third of the global PEV fleet or about 9 million vehicles on the road (by the end of
2020) and still increasing (IEA 2021). PHEV are particularly relevant in Europe where they make up about half of
current PEV sales. Furthermore, 133 PHEV models were offered globally in 2020 compared to 235 BEV models
(IEA 2021) and the number of available models is still increasing. Thus, PHEV are both relevant in the current
global PEV fleet and in terms of market shares in major vehicle markets. However, previous work has indicated
insufficient charging of PHEV as a potential factor limiting the environmental advantage of PHEV.

©2021 The Author(s). Published by IOP Publishing Ltd
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Previous studies in the literature have analysed well-to-wheel GHG emissions but do not systematically
study the effect of charging behaviour on tail pipe emissions. For example, Nordelof et al (2014) as well as
Kamiya et al (2019) focused on a life-cycle assessment of PHEV with fixed assumption on the share of kilometres
driven on electricity. Likewise, IEA (2019) provided an update summary of the GHG intensity of battery
production and electricity generation but did not go into detail about different PHEV charging behaviours (see
section 1.1. for a brief overview of existing studies). Thus, the direct effect of PHEV charging on real-world tail
pipe emissions has not been analysed in detail yet.

Here, we quantify the environmental effect of not charging a PHEV on some nights and the effect of charging
aPHEV twice or more frequently per day, with a focus on the tail-pipe emissions of along-range PHEV. More
specifically, we analyse the change in utility factor (UF) —share of kilometres driven on electricity within total
vehicle kilometres travelled (VKT) — and fuel consumption. While these measures are related, they capture
different aspect of the environmental impact of PHEV. The UF is influenced by the total driving distance, while
fuel consumption is directly related to the tail-pipe emissions of the PHEV.

This work differs from previous studies in several aspects. First, it is to our knowledge the first study that
quantifies the effect of no overnight charging and additional charging empirically with a large sample. Second,
while previous literature has looked at the impact of charging on the UF, the specific effect of charging frequency
on fuel consumption and tail pipe emissions has not been analysed before. Third, our sample of real-world
PHEV usage is quite large with a total of 7,491 PHEV and 3.4 million driving days; this allows us to study the
effect of individual charging behavior that has not previously been addressed in the literature.

The outline of this paper is as follows: section 1.1 gives a brief overview of existing literature, data and
methods are explained in section 2, results are given section 3, discussion in section 4 and we close with
conclusions in section 5.

1.1. Existing literature

Plug-in hybrid electric vehicles can help reduce GHG emissions in the transport sector combined with the
decarbonization of the electricity sector (EPRI 2007, Stephan and Sullivan 2008, Kromer et al 2009, Yang et al
2009, Poullikkas, 2015). Some studies focus on well-to-wheel GHG emission reductions based on fuel use and
exclude GHG implications of vehicle manufacturing and disposal. Axsen et al (2011) use a survey data from new
vehicle buyers in California and simulate the greenhouse gas emissions with one million new PHEVs on the
road, and they conclude that PHEVs can cut marginal greenhouse gas emissions by one third to one fourth
compared to conventional vehicles.

There are also studies that include GHG implications of vehicle manufacturing, battery production, and
disposal that do a partial or full life cycle analysis (LCA). However, as Nordelof et al (2014) points out most LCA
studies regarding PHEVs lack a clearly stated and motivated goal and draw general conclusions without a proper
discussion of the complexities of the outcomes. Shiau et al (2009) construct PHEV simulation models to analyse
the impact of battery weight and charging patterns on GHG emissions; they conclude that as the lifetime
monetary cost of a PHEV increases with battery size, the GHG emissions decrease. Michalek et al (2011) assess
the economic value of PHEV life cycle air emissions and oil displacement benefits, and find that battery and
electricity production emissions are substantial due in large to GHG emissions from coal-fired power plants, and
conclude that PHEVs with small battery packs can reduce externality damages at a lower additional cost over
their life time compared to PHEVs with long ranges. Plotz et al (2017a) analyse real-world fuel consumption data
from 2,005 individual PHEVS of five different models and find that real-world direct CO, emissions decrease by
2% to 3% per every km of the all-electric-range. P16tz et al (2017a) also conclude that PHEV's charged from
renewable electricity can substantially reduce well-to-wheel greenhouse gases, but electric ranges should not
exceed 200 to 300 km because of the CO, intensity of battery production. Kamiya et al (2019) model short term
and long term well-to-wheel effects of plug-in electric vehicles in Canada, and conclude PHEV's substantially
contribute to reducing greenhouse gas emissions in all contexts explored. Plotz et al (2020a) analyze real-world
usage and fuel consumption of approximately 100,000 vehicles in China, Europe and North America and find
that for private vehicles real-world CO, emissions are two to four times higher than test cycle values. Wolfram
and Hertwich (2021) perform a scenario analysis of different fueling behavior of PHEV users in the US—where
they make varying assumptions on the level of mitigation challenges, electric carbon intensity, battery costs and
carbon tax, all of which result in different levels of electric vehicle penetration—and conclude that the fueling
behavior of PHEV users can determine a discharge of 0.7 GtCO, to 1.9 GtCO, over the next 30 years,
emphasizing the importance of PHEV users’ fueling and thereof charging behavior.

Existing studies in the literature focus on well-to-wheel GHG emission reduction but neglect the effect of
charging behaviour on tail pipe emissions. Here, we fill this gap in the literature with the analysis on the effect of
charging on tail-pipe emissions using real-world fuel consumption data with along observation period for a
long-range PHEV model in North America.
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2. Data and methods

2.1.Data

For our analysis, we use publicly available data representing real-world driving behaviour from an online source:
Voltstats.net. Voltstats.net is an online database that collects real-world fuel consumption data of Chevrolet
Volts, a plug-in hybrid electric vehicle, in the United States and Canada. Voltstats.net collects data automatically
from an additional device. Voltstats.net was established as a volunteer effort by a Volt owner and a partnership
with General Motor’s OnStar in-vehicle safety and security system allowed users registered on Volstats.net to
transfer their driving data automatically from OnStar. The data is automatically downloaded from the vehicles
twice per day via OnStar and automatically transferred to the Voltstats website. The identification for the OnStar
service is via the owner name and a vehicle identification number. The data contains daily values. Our sample
consists of 7,491 reported Chevrolet Volt users with a user profile on the website containing daily data on the
electric and gasoline mileage, including the number of gallons burnt per day by driving. Data was pre-processed,
cleaned, and cumulative mileage values were converted to daily driven km. Daily VKT values larger than

1,500 km and observations of higher daily electric VKT than total daily VKT were excluded during the data
cleaning process. Users with less than 28 driving days were also excluded from the analysis.

The dataset includes 3.4 million driving days with user specific performance data from April 2011 to January
2020. The average number of days observed per vehicle is 537 days with a median of 414 and maximum of
2,751 days; and average number of driving days per vehicle is 459 days with a median of 354 and maximum of
2,500 days.

From the cleaned data, the following parameters were calculated: electric VKT (eVKT), gasoline VKT
(gVKT), total VKT, fuel consumption in litres of gasoline per 100 km and fuel consumption in charge sustaining
mode in litres of gasoline per 100 km. The average daily values were extrapolated to annual values. The observed
UF was calculated by dividing all electric km by total km driven during the observation period. The user specific
profiles on Voltstats.net also include a statistic called EV-share, which corresponds to the UF calculated in our
analysis. The EV-share statistic differs from UF per user on average £2%, which we attribute to the automated
calculation of EV-share that ignores anomalies such as unreasonably high daily VKT that we addressed already
during data cleaning. Nevertheless, as a further step of precaution, we only included users with observed
aggregated UF that were within £10% of EV-share as stated on the user profile on Voltstats.net. In addition,
three vehicles have been manually removed from the sample due to their unrealistic fuel consumption
compared to their observed utility factor and daily driven km.

2.2.Methods

The user profiles on Voltstat.net do not provide information on the model year of the vehicle, so we use the base
assumption that the date of the firstlogged trip for a vehicle indicates the model year of that vehicle. Based on this
assumption, the following all-electric-ranges (AER) are used in our analysis: 56 km (35 US miles) for model years
2011-12, 61 km (38 US miles) for model years 2013—-2015 and 85 km (53 US miles) for model years from 2016
onwards.

In order to estimate the frequency of additional charging and the frequency of no overnight charging, we
compare calculated UF (UF_,)) and observed UF (UF,,) for each day and user: UF_,; = AER/daily VKT if daily
VKT > AERand 1 otherwise, and UF,,, = daily eVKT / daily VKT. Please note that UF_,; and UF,,s referred
here are for each day per user and differ from the observed aggregated UF.

The calculation implicitly assumes a full recharge overnight. If the observed daily UF for a user is much
higher than the calculated UF, the vehicle must have had at least one additional charge during the day. For the
occurrence of such an additional charging event, we use the assumption that the observed UF for a vehicle for
that given day is at least 1.5 times higher than the calculated UF. Similarly, for the occurrence of no overnight
charging, we use the assumption that the observed UF for a vehicle for that given day is smaller than half the
calculated UF. These assumptions are based on the observation of individual users which reveal that the ratio of
observed UF to calculated UF for most users peaks at 1.0 (where UF,,s = UF,)), and there is a valley around 0.5
and 1.5 where the ratio reaches low points. The frequency of additional charging is defined as the share of days
with an additional charging event within the total number of driving days for a given user. Similarly, the
frequency of no overnight charging is defined as the share of days with no overnight charging within the total
number of driving days.

Our assumptions regarding additional charging and no overnight charging are rather conservative, which
contributes to the robustness of our estimates. For instance, if a vehicle drives less than the AER on a given day
and charges during the day, this occurrence will not be captured. Accordingly, some additional charging events
during the day cannot be captured by our method and the obtained frequencies of additional charging are
conservative estimates.
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Table 1. Summary statistics of UF, fuel consumption, daily driving, annual VKT and charging behavior.

Allusers (N = 7,491) Min 0.25-quantile Median Mean 0.75-quantile Max
Number of driving days 29 160 354 459.1 643 2500
UF 10.1% 67.5% 79.3% 76.6% 88.4% 100.0%
Fuel Consumption (1/100 km) 0.01 0.84 141 1.59 2.17 6.35
Daily eVKT (km) 2.3 32.1 41.7 43.5 52.9 149.1
Daily VKT (km) 4.5 41.7 54.6 59.0 71.5 289.4
Annual VKT (km) 1,654 15,245 19,949 21,562 26,099 105,701
Frequency of additional charging 0.0% 1.1% 4.1% 9.1% 11.4% 86.1%
Frequency of no overnight charging 0.0% 1.2% 2.7% 4.7% 5.6% 75.4%

Note: UF refers to the observed aggregated UF.

For the calculation of tail-pipe emissions, we use the values published by the U.S. Environmental Protection
Agency, where on average 1 litre of gasoline (corresponds to 1 litre of fuel consumption in our dataset) produces
approximately 2.31 kg of CO, (EPA 2005). After quantifying the effects of additional charging and no overnight
charging on fuel consumption and tail-pipe emissions, we then perform a multivariable regression analysis to
check for the statistical significance of their effect.

3. Results

3.1. Summary statistics

Table 1 shows the summary statistics of our dataset. The average observed aggregated UF is 76.6% with a median
0f 79.3%. Fuel consumption on average is 1.59 litres per 100 km with a median of 1.41 1/100 km and max of
6.351/100 km. We observe that the average share of days with additional charging is 9.1% with a median of
4.1%. The average share of days without overnight charging is 4.7% with a median of 2.7%. On average, users
have a daily eVKT of 43.5 km, daily VKT of 59.0 km and annual VKT of 21,562 km. Please note that the annual
mileage is close to the national average of 21,700 km in the U.S. (FHWA 2020).

3.2. Effect of charging less than once per driving day

We first look at the effect of not charging overnight on average fuel consumption. We find that regularly
charging overnight — low frequencies of no overnight charging — reduces the mean fuel consumption below
one litre per 100 km, see figure 1. Note that in figure 1 through figure 4, small dots represent users grouped and
rounded to percentage values and blue line shows local average. We observe that higher frequencies of no
overnight charging increase the mean fuel consumption and a share of above 60% nights without charging can
push up the mean fuel consumption above 5 litres per 100 km. This significant difference shows that regularly
charging overnight has a substantial effect on mean fuel consumption. The correlation between low charging
frequency and higher vehicle emissions has a clear technical cause: If the battery has been fully recharged before
the trip, then the battery will be fully depleted after the electric range has been exceeded. In that situation the
combustion engine is used for propulsion of the vehicle and the battery can only buffer some energy from
regenerative breaking. If the battery is not fully or only partly recharged before driving, the engine is needed for
propulsion earlier or exclusively. Thus, low charging leads to more frequent use of the combustion engine and
thus higher emissions.

Given inset in figure 1, we control for daily VKT and look at the isolated effect of no overnight charging. This
is done by looking at the difference between observed mean fuel consumption and calculated mean fuel
consumption, where the calculated mean fuel consumption refers to 1- UF,; multiplied by the fuel
consumption in charge sustaining mode. From the inset in figure 1, we observe that regularly charging once
overnight can result in a reduced observed mean fuel consumption of 1 litres per 100 km compared to a
calculated mean fuel consumption, whereas not charging overnight 70% of the time can increase the observed
mean fuel consumption by 3 litres per 100 km.

In figure 1, we observe that mean fuel consumption tends to increase in a steeper slope below 10% frequency
of no overnight charging. We observe a different trend from 10% frequency of no overnight charging to 20%
where the slope is less steep, and another trend with even a less steep slope when the frequency of no overnight
charging is above 20%. We have run a piecewise linear regression for these three different trends and we find that
the frequency of no overnight charging is statistically significant at the 0.1% level for all three trends. Here we
provide the estimates and the standard error as added uncertainty (4): we find that fuel consumption and tail-
pipe emissions increase by 1.85 =+ 0.031/100 km or 42.7 4 0.8 gCO, km ™" tail-pipe emissions from 0% to 10%
driving days without overnight charging (going from charging overnight everyday to only 9 out of 10 driving

4
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Figure 1. Mean fuel consumption versus frequency of no overnight charging, change in mean fuel consumption (observed-calculated)
versus frequency of no overnight charging given inset.

days). Around the mean frequency of no overnight charging (4.7%), mean fuel consumption is close to 2 litres
per 100 km. We find that fuel consumption and tail-pipe emissions increase by 0.94 4+ 0.121/100 km or

21.6 + 2.87 gtail-pipe CO, per km from 10% to 20% driving days without overnight charging. Above 20%
driving days without overnight charging, fuel consumption and tail-pipe emissions increase by approximately
0.42 &+ 0.051/100 km or 9.73 + 1.25 g tail-pipe CO, per km every 10% driving days without overnight
charging.

The effect of regularly charging overnight on UF can be observed in figure 2. Looking at the difference
between observed and calculated UF (main figure), we find that high shares of not charging overnight have a
substantial effect on UF and not charging overnight 60% of the time can reduce the UF as much as 50 percentage
points compared to the calculated UF that presumes charging every night.

3.3. Effect of charging more than once per driving day

From figure 3, we observe that the effect of an additional charging event is less substantial compared to overnight
charging, yet higher shares of additional charging results in lower mean fuel consumption. In figure 3, we
observe that the mean fuel consumption is level around 1.6 1/100 km or 37 g tail-pipe CO, per km below 20%
driving days with additional charging. A piecewise linear regression reveals that there is no statistically significant
relationship between additional charging and fuel consumption when additional charging frequency is below
20%. Above 20% driving days with additional charging, regression analysis reveals a statistically significant
relationship at the 0.1% level between additional charging and fuel consumption; and mean fuel consumption
and tail pipe emissions decrease, on average by 0.08 4 0.021/100 km or 1.86 & 0.46 gCO, km ' tail-pipe CO,
per km every 10% driving days with additional charging.

Given inset in figure 3, if we control for daily VKT and look at the isolated effect of additional charging, we
observe more clearly that an increase from 0% to 10% driving days with additional charging can resultin a
reduced observed mean fuel consumption of approximately 1 %1/100 km or 29 g tail-pipe CO, per km. Above
10% driving days with additional charging, we find a reduced observed mean fuel consumption of
approximately 0.3 1/100 km or 6.9 g tail-pipe CO, per km every 10% driving days with additional charging; e.g.
80% of driving days with additional charging can reduce observed mean fuel consumption by 31/100 km or 69 g
tail-pipe CO, per km.

The effect of additional charging on UF can be observed in figure 4. Frequency of additional charging, as
given in the inset of figure 4, has a smaller effect on observed UF compared to no overnight charging. However, if
we control for daily VKT and look at the difference between observed UF and calculated UF, we see that
additional charging around 80% of the time has the potential to increase the observed UF around 50 percentage
points compared to the calculated UF.
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Figure 3. Mean fuel consumption (observed) versus frequency of additional charging, change in mean fuel consumption (observed-
calculated) versus frequency of additional charging given inset.

3.4. Regression analysis

We use a multivariable regression analysis for a quantitative assessment of the effect of charging on fuel
consumption. We distinguish between the frequencies of additional charging and the frequency of no overnight
charging. Furthermore, we control for two additional variables with noteworthy impact on the UF and fuel
consumption: the user’s average daily VKT and the standard deviation (SD) of the daily VKT. The former
indicates the typical daily driving distance while the latter also captures the variation in daily VKT where high SD
is indicative of more frequent long-distance driving which additionally lowers the UF and increases fuel
consumption at fixed mean daily VKT (Pl6tz et al 2018).

6
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Figure 4. Change in UF (observed-calculated) versus frequency of additional charging, UF (observed) versus frequency of additional
charging given inset.

Table 2. Regression results for dependent variable fuel consumption.
Shown are coefficient estimates with standard errors in parentheses.

Dependent variable Fuel consumption (1/100 km)
Intercept 1.79""* (0.06)
(Log of) frequency of no over- 0.427"*(0.01)
night charging
(Log of) frequency of additional —0.05"**(0.01)
charging
Mean daily VKT 0.0009 (0.0004)
SD of mean daily VKT 0.01%**(0.0003)
Sample Size N 6245
Multiple R-squared 0.669
Adjusted R-squared 0.669
F-statistic 3158 (p-value: < 0.0001)

Confidence levels: *** %99.9, **%99, *%95

Our regression model is the following:

FC = ﬂO + /81 log(fadditional charging) + ﬁz IOg(an charging)
+sMean daily VKT + (3,SD daily VKT + ¢ (1)

Where FC denotes fuel consumption in litres per 100 km, f,dditional charging iS the frequency of additional charging
(in %), fro charging iS the frequency of no overnight charging (in %) and the last two variables denote the mean and
SD of daily VKT (both measured in km). We use the log of the charging frequencies as this reduces the likelihood
of heteroscedasticity. See the appendix for the detailed discussion and robustness checks on heteroscedasticity
and normality assumption in our model. The inclusion of the mean and SD of daily VKT reduces potential
omitted variable bias.

The results of the regression analysis are given in table 2. Note that the number of users in the regression
analysis is slightly less than what is presented in table 1 due to omission of users with 0% frequency of no
overnight charging or additional charging.

The model itself and all variables are significant (mean daily VKT at 5% level and all others at 0.1% level) and
have the expected sign. The simple model explains about 67% of the variance in fuel consumption, which is
acceptable for the low number of variables included. An increase in no overnight charging, i.e. a decrease in
charging leads to higher fuel consumption. Likewise, an increase in additional charging reduces fuel

7
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consumption and increases the UF. Higher mean daily VKT leads to a higher fuel consumption as a fewer share
of km is driven on electricity. Finally, a higher SD of daily VKT indicates more frequent long-distance driving
and thus lower UF coupled to higher fuel consumption.

We observe that both the log of frequency of no overnight charging and additional charging are statistically
significant. For every relative 10% increase in the frequency of no overnight charging (e.g. from 10% to 11%),
fuel consumption increases by 0.017 1/100 km (calculated by log(1.1)*0.42) and tail-pipe emissions increase by
0.40 gCO, km ™. For every relative doubling of the frequency of no overnight charging (e.g. from 10% to 20%),
fuel consumption increases by 0.13 1/100 km (calculated by log(2)*0.42) and tail-pipe emissions increase by
2.92gCO, km™". On the other hand, for every relative 10% increase in the frequency of additional charging, (e.g.
from 10% to 11%), fuel consumption decreases by 0.002 1/100 km and tail-pipe emissions decrease by 0.05
gCO, km ™. Similarly, for every relative doubling of the frequency of additional charging, fuel consumption
decreases by 0.015 1/100 km and tail-pipe emissions by 0.35 gCO, km . For a concrete comparison, any
relative doubling of the frequency of no overnight charging, for instance going from charging overnight 9 out of
10 nights (10%) to 8 out of 10 nights (20%) has almost ten times more impact on fuel consumption and tail-pipe
emissions compared to a relative doubling in additional charging freqeuncy, for instance going from additional
charging 4 out of 10 driving days to 8 out of 10 driving days. The regression analysis further establishesin a
statistically significant way that no overnight charging has more impact on fuel consumption and tail-pipe
emissions compared to additional charging.

Checking for multicollineratiy, the variance inflation factors for all variables in the regression model were
low and less than 2.2. We tested the regression model with different treshold choices for the calculation of no
overnight charging and additional charging frequencies. For the occurrence of additional charging, our
assumption was that observed UF for a vehicle for that given day was at least 1.5 times higher than the calculated
UF; we also tested for a threshold of 1.3 and 1.7. Similarly, for the occurrence of no overnight charging, our
assumption was that observed UF is smaller than half (0.5) the calculated UF; we also tested for a threshold of 0.3
and 0.7. We only varied one threshold at a time, keeping the other same as in our base assumption. All cases of
varying the threshold resulted in the same statistical significance for all variables and only slight differences in the
estimation of the coefficients. We also tested the regression without the additional controls of mean and
standard deviation of daily VKT and using the actual values for no overnight charging and additional charging
frequency instead of the log of those frequencies. The results of these robustness checks on the regression
analysis, including varying the thresholds, are given in table A1 in the appendix. We observe that the effect of
frequency of no overnight charging is robust and significant in all cases, however the effect of frequency of
additional charging is small and coefficient sign not robust without additional controls included in the
regression. This is in line with our findings in sections 3.2 and 3.3. where we observe the significantly large
impact of overnight charging on fuel consumption in figure 1, and that fuel consumption starts to decrease only
after 20% of driving days with additional charging in figure 3. In our regression model, users with more than
20% additional charging frequency makes up approximately 14% of total users (886 users out of 6245). This
shows that having high shares of days with additional charging (having more than 20% additional charging
frequency) is limited to only a small percentage of all users and is not a common behavior; thus for the majority
of users, additional charging has little impact on fuel consumption due to its low frequency.
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4. Discussion

Our analysis is based on a large sample with a long observation period making it unique. While being ample in
time and number it only covers one PHEV model with longer range and a low power internal combustion
engine. This can partly explain the high UF in our sample compared to other samples as low system power
correlates with higher UF, see e.g. (P16tz et al 2020b). A shorter range might e.g. reduce the propensity for
charging (Tal eral 2014a, 2014b). It is possible that our high UF creates an upperbound limit on the effect of
additional charging given that the starting fuel consumption is already pretty low (1.6 1/100 km).

The vehicles are driven mainly by private users who are likely to be early adopters. Still, average annual
driving distance in our sample is similar to the average in the US (21,562 km annual driving distance for our
sample compared to 21,700 km US average) (FHWA 2020) implying that the overall driving distances are not
that different. Home charging availability may also be affected by the fact that the users are from North America.
Other countries, such as Japan and the Netherlands might have very different charging conditions (Funke et al
2019). Our sample contains a very large number of users. Yet, the specific authentification and connection to the
OnStar system requires some technical knowledge that could lead to some sampling bias. However, taking into
account that early PHEV adopters are generally interested in new technologies and well-educated (P16tz et al
2014), any potential samplnig bias via Voltstats as source should be limited. Furthermore, our results are likely
unbiased with respect to some months that Voltstats.net was running without the partnership of OnStar as the
partnership with OnStar came shortly after the site was established and the site had relatively low users at that
point (~1000 users compared to the ~7,500 users we have in our dataset).

One limitation of the extracted raw data from the website is the missing model year. The extracted raw data
does not have the serial number information, with which the users register themselves within the groups,
therefore making it impossible to check the connection between the user and the model year group. However,
we compared the indication in some of the sites user groups about the vehicle model year to the first trip.
Generally, the year of the first trip provides a useful indication to the model year but there are cases where the
first trip happens in a year much later than the model year. Accordingly, the year of the first trip in the datais a
good proxy for the model year and has thus been used but is not always correct.

Even given the limitations mentioned above, the observed change in UF in our study by less charging
overnight is consistent with simulations for overnight charging for German passenger cars in P16tz et al (2020Db).
To some extent, low UF can be due to long-distance travel without a charging option at the start point. Yet, we
control for the effect of daily km travelled by studying both the UF as observed and by comparing the actual UF
to the calculated UF if the vehicle had fully recharged before departure (e.g. inset in figure 2). In both cases, the
impact of additional charging or no charging on fuel consumption and UF are highly similar. We see thisas a
strong indication that the actual change in fuel consumption is from differences in charging behaviour and not
from differences in daily km travelled.

In this paper, we choose to focus only on tail-pipe emissions and do not include in our analysis emisssions
from the grid that might also vary depending on charging time.While the overall emissions of the PHEV are
important, we find that less attention has been given to the tail-pipe emission and fuel consumption of PHEVs.
These are important not only for climate mitigation purposes but also because fuel consumption has an affect on
local air quality as well and is more directly affected by user behaviour.

We base our analysis on an estimate of charging events and not actual charging behavior. The merit of this is
that our method can be used for a wider range of data sets since daily eVKT and daily driving distance is much
easier to access than the actual charging behaviour. This however implies that we might have missed some
charging events, e.g. additional charging events during the day if the daily eVKT was below the range. Still, such
uncaptured charging events would have further lessened the impact of additional charging on the overall fuel
consumption and thus would not change our results.

A potential extension of the present work could include the effect of auxilliaries such as heating and AC. This
could be done by adding ambient temperature to the regression model shown above based on the registered
location of the vehicle. However, this would require at least the daily mean temperature for every location and
every driving date in the sample (several million driving days in several thousand locations). This data is not
readily available and such an inclusion is beyond the scope of the present paper. Yet, Plotz et al (2020b) estimated
the effect of mean ambient temperature on UF and find the UF is reduced by about 1 percentage point per degree
Celsius below 10 °C. Adding ambient temperature to our analysis would be interesting but is not likely to have a
large effect on our findings as temperature can be expected to be uncorrelated with daily driving distances and
the availability of home or workplace charging. Thus, our results are likely unbiased with respect to outside
temperature although temperature alone clearly has an effect on UF.
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5. Conclusions

Using data from 7,491 Chevrolet Volts with a total 3.4 million driving days in the US and Canada we quantify the
effect of daily charging on the utility factor, fuel consumption and consequently tail-pipe CO, emissions. We
find that overnight charging (or charging the battery fully once per day) is important for the environmental
performance of PHEVSs. From 0% to 10% of nights without overnight charging (from charging overnight every
dayto 9 out of 10 driving days), fuel consumption can increase by 1.85 £ 0.031/100 km and tail-pipe emissions
canincrease by 42.7 4 0.81 gCO, km . For any relative doubling in the freqeuncy of no overnight charging,
fuel consumption increases 0.131/100 km and tail-pipe emissions increase by 2.92 gCO, km ™.

For users with an additional charging frequency of at least 20%, increasing the frequency with 10 percentage
points can result in a reduction of fuel consumption 0of 0.08 £ 0.021/100 km and tail-pipe emissions of
1.86 4 0.46 gCO, km ™ '. Any relative doubling in the frequency of additional day charging decreases the fuel
consumption by 0.015 1/100 km and tail-pipe emissions by 0.35 gCO, km ™. The difference between the effect
of not charging on one out of 10 nights and the effect of additional charging demonstrate the importance of daily
charging.

Our results have several policy implications. First, charging can reduce fuel use and GHG emissions of
PHEVs. Accordingly, a roll-out of charging infrastructure and strong incentives to charge as frequently as
possible can reduce PHEV emissions. Second, charging every day is most important and users without home
charging option need particular attention as a few nights without charging clearly reduce the emissions benefit.
This implies that home charging should be made widely available and easily possible, for example also in multi-
family dwellings. Work place charging is the second most relevant option, as it is the second most frequent travel
destination. Workplace charging would then serve as primary charging locations for users without home
charging and as an important location for additional charging for users with home charging options. With
regard to policy considerations, workplace charging could be exempted from fringe benefit taxation (i.e. the
financial benefit for an employee to get free charging at the workplace should be exempted from income
taxation) and the installation of workplace chargers incentivised. Third, incentives for PHEV's should be revised
based on national monitoring of actual fuel consumption and tail-pipe emissions. Policy makers should be
prepared to reduce these incentives if utility factors are low and there is evidence that PHEVs are not being
regularly charged. Specific user groups, e.g. those lacking home charging, might need special consideration
either by providing better charging opportunities or through limited incentives.
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Appendix

Al. Robustness checks on the regression analysis

In table A1, we provide the results of the robustness checks we performed on the regression analysis. Notice that
the sample size varies under different assumptions regarding the threshold for the occurrence of charging events.
This is due to the slight change in number of users with 0% frequency of no overnight charging or additional
charging under each assumption, which are omitted from the regression analysis.

In table A2, we provide the robustness checks on heteroscedasticity. Our regression model uses the ordinary
least squares (OLS) method which assumes that the error terms all have the same variance (homoscedasticity).
We ran the Breusch—Pagan test to check for heteroscedasticity. Using the log of frequency variables reduces the
Breush-Pagan test statistic from 523.9 to 349.2; however, the p-value is still less than 0.0001 which suggests that
our model has heteroscedasticity. This shows that using the log of dependent variables reduces the likelihood of
heteroscedasticity and makes our model more appropriate for OLS but it does not remove it completely. To
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Table Al. Regression results for dependent variable fuel consumption under different assumptions. Shown are coefficient estimates with

standard errors in parentheses. VIF stand for variance inflation factor.

Fuel consumption

Dependent variable (1/100 km) VIF
Base model Intercept 1.79°"*(0.06) —
(Log of) frequency of no 0.42"7(0.01) 1.27
overnight charging
(Log of) frequency ofaddi-  —0.05"""(0.01) 1.53
tional charging
Mean daily VKT 0.0009" (0.0004) 2.17
SD of mean daily VKT 0.01"**(0.0003) 1.65
Sample Size N 6245
Multiple R-squared 0.669
Adjusted R-squared 0.669
F-statistic 3158 (p-
value: < 0.0001)
Lowering the additional charging occurrence threshold (UF s/ UFy > 1.3) Intercept 1.80"%(0.05) —
(Log of) frequency of no 0.42°7(0.01)  1.29
overnight charging
(Log of) frequency ofaddi-  —0.06"%(0.01) 1.62
tional charging
Mean daily VKT 0.001%%(0.0004) 2.27
SD of mean daily VKT 0.01"*"(0.0003) 1.66
Sample Size N 6645
Multiple R-squared 0.669
Adjusted R-squared 0.669
F-statistic 3362 (p-
value: < 0.0001)
Increasing the additional charging occurrence threshold (UF,p,,/UFcy > 1.7) Intercept 1.787%(0.06) —
(Log of) frequency of no 0.42°7(0.01) 1.27
overnight charging
(Logof) frequency ofaddi-  —0.05""%(0.01) 1.49
tional charging
Mean daily VKT 0.001"(0.0004) 2.11
SD of mean daily VKT 0.01"7%(0.0003) 1.63
Sample Size N 5624
Multiple R-squared 0.665
Adjusted R-squared 0.665
F-statistic 2792 (p-
value: < 0.0001)
Lowering the no overnight charging occurrence threshold (UF s/ UF , < 0.3) Intercept 1.50""%(0.06) —
(Log of) frequency of no 0.36"(0.01)  1.19
overnight charging
(Logof) frequency ofaddi- ~ —0.09""%(0.01) 1.45
tional charging
Mean daily VKT 0.003***(0.0004) 2.10
SD of mean daily VKT 0.01"**(0.0003) 1.66
Sample Size N 5864
Multiple R-squared 0.637
Adjusted R-squared 0.637
F-statistic 2577 (p-
value: < 0.0001)
Increasing the no overnight charging occurrence threshold (UF,,s/UF, < 0.7) Intercept 1.78"%(0.05) —
(Log of) frequency of no 0.46"(0.01)  1.32
overnight charging
(Log of) frequency ofaddi-  —0.03""%(0.01) 1.60
tional charging
Mean daily VKT 0.0008%(0.0003) 2.25
SD of mean daily VKT 0.01"""(0.0003) 1.62
Sample Size N 6487
Multiple R-squared 0.687
Adjusted R-squared 0.687
F-statistic 3566 (p-
value: < 0.0001)
Intercept 0.07°°(0.02) —
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Table Al. (Continued.)

Fuel consumption
Dependent variable (1/100 km) VIF

Using actual values for the frequencies of no overnight charging and additional char-
ging instead of using log of those frequencies
Frequency of no overnight 7.48"7(0.14)  1.22

charging (0to 1)
Frequency of additional —1.04"7(0.07) 1.61
charging (0 to 1)
Mean daily VKT 0.002"7%(0.0004) 2.32
SD of mean daily VKT 0.01"*(0.0003) 1.62
Sample Size N 6245
Multiple R-squared 0.680
Adjusted R-squared 0.680
F-statistic 3317 (p-
value: < 0.0001)
Excluding additional controls of mean and standard deviation of daily VKT Intercept 4.0177(0.04) —

(Log of) frequency of no 0.62°"(0.01)  1.01
overnight charging
(Log of) frequency of addi- 0.04"*(0.01)  1.01

tional charging
Sample Size N 6245
Multiple R-squared 0.436
Adjusted R-squared 0.436
F-statistic 2411 (p-

value: < 0.0001)

Confidence levels: *** %99.9, **%99, %95

estimate the severity of heteroscedasticity and whether it has a significant impact on our estimates and the
significance of those estimates, we applied appropriate methods to deal with heteroscedasticity and compared it
to our base model. The two most common ways to deal with heteroscedasticity is (1) to use heteroscedasticity-
consistent standard errors and (2) to use the weighted least squares method (WLS). We provide the regressions
results with both of these methods in table A2. Using heteroscedasticity-consistent standard errors does not
change the coefficient estimates but aims to improve the standard errors by addressing the problem of errors not
being independent and identically distributed. As shown in table A2, using heteroscedasticity-consistent
standard errors produce the same result as our base model. Standard errors are slightly improved only in the 6th
and 7th decimal places, which is not shown in the table due to rounding. All dependent variables also have the
same level of significance. When we use the WLS method, we observe no visible changes in standard errors
except for the intercept where it goes down from 0.06 to 0.05; there are slight improvements in the standard
errors of our dependent variables but only in the 6th and 7th decimal places, therefore not visible in table A2. The
coefficient estimates change slightly only for the intercept (from 1.79 to 1.60) and the log of frequency of no
overnight charging (from 0.42 to 0.38). We also observe that the mean daily VKT loses its significance. Multiple
and adjusted R-squared values are lower compared to our base model (from 0.669 to 0.650). Overall, WLS
method does not provide any significant improvements, and it ends up resulting in a lower multiple and
adjusted R-squared. In conclusion, these two methods (heteroscedasticity-consistent standard errors and WLS)
provide no significant improvements on our model. This shows that the heteroscedasticity in our model is not
severe and does not affect our coefficient estimates and standard errors in any significant way. Therefore, we kept
our base model with OLS estimators.

We also test the normality assumption in OLS which assumes that the residuals are normally distributed. It
should be noted that with larger sample sizes, the assumption of normality becomes less essential. This is due to
Central Limit Theorem (CLT) which assures that the sampling distribution of the estimates will converge toward
anormal distribution as N increases (Pek et al 2018). Statistical tests that are used to check for the normality
assumption, such as the Anderson-Darling test and Shapiro-Wilks test, also become more difficult to interpret
as the sample size increases. With large sample sizes, the power of the test increases such that it can find non-
normal distributions with very small deviations. Given our large sample size, we used the graphical method of
residual histogram and then checked for two statistical measures of shape, skewness and kurtosis to test for
normality. The residual distribution of our regression model has a skewness of 0.29 and a kurtosis of 3.98. A
skewness between —0.5 and 0.5 suggests that the distribution is approximately symmetric. Kurtosis for a normal
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Table A2. Regression results for dependent variable fuel consumption using heteroscedasticity-consistent standard errors (robust standard
errors) and weighted least squares (WLS) method. Shown are coefficient estimates with standard errors in parentheses.

Dependent variable Fuel consumption (1/100 km)
Heteroscedasticity-consistent standard errors Intercept 1.79*%(0.06)

(Log of) frequency of no overnight charging 0.42"7"(0.01)

(Log of) frequency of additional charging —0.05""7(0.01)

Mean daily VKT 0.0009* (0.0004)

SD of mean daily VKT 0.01%**(0.0003)

Sample Size N 6245

Multiple R-squared 0.669

Adjusted R-squared 0.669

F-statistic 2407 (p-value: < 0.0001)
Weighted least squares (WLS) Intercept 1.60***(0.05)

(Log of) frequency of no overnight charging 0.38"7%(0.01)

(Log of) frequency of additional charging —0.05""(0.01)

Mean daily VKT 0.0004 (0.0004)

SD of mean daily VKT 0.01***(0.0003)

Sample Size N 6245

Multiple R-squared 0.650

Adjusted R-squared 0.650

F-statistic 2898

Confidence levels: *** %99.9, **%99, *%95

distribution is 3; therefore, a kurtosis of 3.98 suggests that our residual distribution has a slightly higher central
peak. The residual histogram is given below in figure 5. We observe no violation of the normality assumption.
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