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Abstract. Continuous integration and testing produce a large amount
of data about defects in code revisions, which can be utilized for train-
ing a predictive learner to effectively select a subset of test suites. One
challenge in using predictive learners lies in the noise that comes in the
training data, which often leads to a decrease in classification perfor-
mances. This study examines the impact of one type of noise, called
class noise, on a learner’s ability for selecting test cases. Understanding
the impact of class noise on the performance of a learner for test case
selection would assist testers decide on the appropriateness of different
noise handling strategies. For this purpose, we design and implement a
controlled experiment using an industrial data-set to measure the impact
of class noise at six different levels on the predictive performance of a
learner. We measure the learning performance using the Precision, Re-
call, F-score, and Mathew Correlation Coefficient (MCC) metrics. The
results show a statistically significant relationship between class noise
and the learner’s performance for test case selection. Particularly, a sig-
nificant difference between the three performance measures (Precision,
F-score, and MCC) under all the six noise levels and at 0% level was
found, whereas a similar relationship between recall and class noise was
found at a level above 30%. We conclude that higher class noise ratios
lead to missing out more tests in the predicted subset of test suite and
increases the rate of false alarms when the class noise ratio exceeds 30%.

Keywords: controlled experiment, class noise, test case selection, con-
tinuous integration

1 Introduction

In testing large systems, regression testing is performed to ensure that recent
changes in a software program do not interfere with the functionality of the un-
changed parts. Such type of testing is central for achieving continuous integration
(CI), since it advocates for frequent testing and faster release of products to the
end users’ community. In the context of CI, the number of test cases increases
dramatically as commits get integrated and tested several times every hour. A
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testing system is therefore deployed to reduce the size of suites by selecting a
subset of test cases that are relevant to the committed code. Over the recent
years, a surge of interest among practitioners has evolved to utilize machine
learning (ML) to support continuous test case selection (TCS) and to automate
testing activities [2][8][10]. Those interests materialized in approaches that use
data-sets of historical defects for training ML models to classify source code as
defective or not (i.e. in need for testing) or to predict test case verdicts [8][3][2].

One challenge in using such learning models for TCS lies in the quality of
the training data, which often comes with noise. The ML literature categorized
noise into two types: attribute and class noise [9][20][6]. Attribute noise refers to
corruptions in the feature values of instances in a data-set. Examples include:
missing and incomplete feature values [16]. Class noise, on the other hand, occurs
as a result of either contradictory examples (the same entry appears more than
once and is labeled with a different class value) or misclassification (instances
labeled with different classes) [21]. This type of noise is self-evident when, for
example, analyzing the impact of code changes on test execution results. It can
occur that identical lines are labeled with different test outcomes for the same
test. These identical lines become noise when fed as input to a learning model.

To deal with the problem of class noise, testers can employ a number of
strategies. These can be exemplified by eliminating contradictory entries or re-
labeling such entries with one of the binary classes. These strategies have an
impact on the performance of a learner and the quality of recommendations of
test cases. For example, eliminating contradictory entries results in reducing the
amount of training instances, which might lead to a decrease in a learner’s ability
to capture defective patterns in the feature vectors and therefore decreases the
performance of a learner for TCS. Similarly, adopting a relabeling strategy might
lead to training a learner that is biased toward one of the classes and therefore
either include or exclude more tests from the suite. Excluding more tests in CI
implies higher risks that defects remain undetected, whereas including more tests
implies higher cost of testing. As a result, it is important for test orchestrators to
understand how much noise there is in a training data set and how much impact
it has on a learner’s performance to choose the right noise handling strategy.

Our research study examines the effect of different levels of class noise on
continuous testing. The aim is to provide test orchestrators with actionable in-
sights into choosing the right noise handling strategy for effective TCS. For this
purpose, we design and implement a controlled experiment using historical code
and test execution results which belong to an industrial software. The specific
contributions of this paper are:

– providing a script for creating a free-of-noise data-set which can facilitate
the replication of this experiment on different software programs.

– presenting an empirical evaluation of the impact of class noise under different
levels on TCS.

– providing a formula for measuring class noise in source code data-sets.

By seeding six variations of class noise levels (independent variable) into the
subjects and measuring the learning performance of an ML model (dependent
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variables), we examine the impact of each level of class noise on the learning
performance of a TCS predictor. We address the following research question:

RQ: Is there a statistical difference in predictive performance for a test
case selection ML model in the presence and absence of class noise?

2 Definition and Example of class Noise in Source Code

In this study, we define noise as the ratio of contradictory entries (mislabelled)
found in each class to the total number of points in the data-set at hand. The
ratio of noise can be calculated using the formula:

Noise ratio =
Number of Contradictory Entries

Total Number of Entries

Since the contradictory entry can only be among two (or more) entries, the
number of all entries for which a duplicate entry exists with a different class label.
A duplicate entry is an entry that has the same line vector, but can have different
labels. For example, a data-set containing ten duplicate vectors with nine that
are labeled true and one labeled false has ten contradictory entries. It is not
trivial to define a general rule to identify which class label is correct based on
the number of entries. For example, noise sources might systematically tend to
introduce false ”false” labels. Since we do not know exactly which class should be
used in this context, we cannot simply re-label any instance, as suggested by the
currently used solutions (e.g. using majority voting [7] or entropy measurements
[17]) and therefore we count all such entries as contradictory. As an illustration of
the problem, in the domain of TCS, Figure 1 shows how a program is transformed
into a line vector and assigned a class label. It illustrates how a data-set is created
for a classification task to predict whether lines of a C++ program trigger a test
case failure (class 0) or a test case pass (class 1). The class label for each line
vector is determined by the outcome of executing a single test case that was
run against the committed code fragment in CI. In this study, a class value
of ’0’ annotates a test failure, whereas a class value of ’1’ annotates a passed
test. The Figure shows the actual code fragment and its equivalent line vector
representation achieved via a statistical count approach (bag-of-words). The line
vectors in this example correspond to source code tokens found in the code
fragment. Note how lines 5 and 11 are included in the vector representations,
since brackets are associated with loop blocks and function declarations, which
can be important predictors to capture defective patterns. All shaded vectors in
the sparse matrix (lines 7 to 10) are class noise since pairs (7,9) and (8,10) have
the same line vectors, but different label class – 1 and 0. The green shaded vectors
are ’true labeled instances’ whereas the gray shaded vectors are ’false labeled
instances’. Note that the Table in Figure 1 shows an excerpt of the entries for
this example. Since there are 11 lines of code, the total number of entries is 11.
The formula for calculating the noise ratio for this example is thus:

Noise ratio =
4

11
= 0.36
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Fig. 1. Class Noise in Code Base.

If lines 7 to 10 are fed as input into a learning model for training, it is difficult
to predict the learner’s behavior. It depends on the learner. We also do not know
which case is correct – which lines should be re-labelled or whether we should
remove these lines. The behavior of the learner, thus, depends on the noise
removal strategy, which also impacts the test selection process. If we choose to
re-label lines 7 and 8 with class 0 (test case failure), this means that the learner
is biased towards suggesting to include the test in the test suite. If we re-label
lines 9 and 10 with class 1 (test case pass), then the learner is biased towards
predicting that a test case should not be included in a test suite. Finally, if we
remove all contradictory entries (7, 8, 9, and 10), then we reduce the learner’s
ability to capture the patterns in the feature vectors for these lines – we have
fewer training cases (11 − 4 = 7 cases).

3 Related Work

Several studies have been made to identify the effect of class noise on the learning
of ML models in several domains[12][19][1]. To our knowledge, no study addresses
the effect of class noise on the performance of ML models in a software engi-
neering context. Therefore, understanding the impact of class noise in a software
engineering context, such as testing, is important to utilize its application and
improve its reliability. This section presents studies that highlight the impact of
class noise on performances of learners in a variety of domains. It also mentions
studies that use text mining and ML for TCS and defect prediction.

3.1 The Impact of Noise on Classification Performances

The issue of class noise in large data-sets has gained much attention in the ML
community. The most widely reported problem is the negative impact that class
noise has on classification performance.
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Nettletonet et al.[12] examined the impact of class noise on classification of
four types of classifiers: naive Bayes, decision trees, k-Nearest Neighbors, and
support vector machines. The mean precision of the four models were compared
under two levels of noise: 10% and 50%. The results of the comparison showed
a minor impact on precision at 10% noise ratio and a larger impact at 50%. In
particular, the precision obtained by the Naive Bayes classifier was 67.59% under
50% noise ratio compared with 17.42% precision for the SVM classifier. Similarly,
Zhang and Yang [19] examined the performance of three linear classification
methods on text categorization, under 1%, 3%, 5%, 10%, 15%, 20% and 30%
class noise ratios. The results showed a dramatic, yet identical, decrease in the
classification performances of the three learners after noise ratio exceeded 3%.
Specifically the f-score measures for the three models ranged from 60% to 60%
under 5% noise ratio and from 40% to 43% under 30% noise ratio. Pechenizkiy
et al. [14] experimented on 8 data-sets the effect of class noise on supervised
learning in medical domains. The kNN, Näıve Bayes and C4.5 decision tree
learning algorithms were trained on the noisy datasets to evaluate the impact
of class noise on accuracy. The classification accuracy for each classifier was
compared under eleven class noise levels 0%, 2%, 4%, 6%, 8%, 10%, 12%, 14%,
16%, 18%, and 20%. The results showed that when the level of noise increases,
all classifiers trained on noisy training sets suffer from decreasing classification
accuracy. Abellan and Masegosa [1] conducted an experiment to compare the
performance of Bagging Credal decision trees (BCDT) and Bagging C4.5 in the
presence of class noise under 0%,5%,10%,20% and 30% ratios. Both bagging
approaches were negatively impacted by class noise, although BCDT was more
robust to the presence of noise at a ratio above 20%. The accuracy of BCDT
model dropped from 86.9% to 78.7% under a noise level of 30% whereas the
Bagging C4.5 accuracy dropped from 87.5% to 77.2% under the same level.

3.2 Text Mining for Test Case Selection and Defect Prediction

A multitude of early approaches have used text mining techniques for leveraging
early prediction of defects and test verdicts using ML algorithms. However, these
studies omit to discuss the effect of class noise on the quality of the learning
predictors. In this paper, we highlight the results of some of these work and
validate the impact of class noise on the predictive performance of a model for
TCS using the method proposed in [2].

A previous work on TCS [2] utilized text mining from source code changes for
training various learning classifiers on predicting test case verdicts. The method
uses test execution results for labelling code lines in the relevant tested commits.
The maximum precision and recall achieved was 73% and 48% using a tree-based
ensemble. Hata et al. [8] used text mining and spam filtering algorithms to
classify software modules into either fault-prone or non-fault-prone. To identify
faulty modules, the authors used bug reports in bug tracking systems. Using the
’id’ of each bug in a given report, the authors tracked files that were reported
as defective, and consequently performed a ‘diff’ command on the same files
between a fixed revision and a preceding revision. The evaluation of the model
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on a set of five open source projects reported a maximum precision and recall
values of 40% and 80% respectively. Similarly, Mizuno el al. [11] mined text
from the ArgoUML and Eclipse BIRT open source systems, and trained spam
filtering algorithms for fault-prone detection using an open source spam filtering
software. The results reported precision values of 72-75% and recall values of 70-
72%. Kim et al. [10] collected source code changes, change metadata, complexity
metrics, and log metrics to train an SVM model on predicting defects on file-
level software changes. The identification of buggy commits was performed by
mining specific keywords in change log messages. The predictor’s quality on 12
open source projects reported an average accuracy of 78% and 60% respectively.

4 Experiment Design

To answer the research question, we worked with historical test execution data
including results and their respective code changes for a system developed using
the C language in a large network infrastructure company. This section describes
the data-set and the hypotheses to be answered.

4.1 Data Collection Method

We worked with 82 test execution results (passed or failed) that belonged to 12
test cases and their respective tested code (overall 246,850 lines of code)1. First,
we used the formula presented in section 2 to measure the level of class noise in
the data-set - this would help us understand the actual level of class noise found
in real-world data-sets. Applying the formula indicated a class noise level of
80.5%, with 198,778 points identified as contradictory. For the remainder of this
paper, we will use the term ’code changes data-set’ to refer to this data-set. Our
first preparation task for this experiment was to convert the code changes data-
set into line vectors. In this study, we utilized a bi-gram BoW model provided in
an open source measurement tool [13] to carry out the vector transformation. The
resulting output was a sparse matrix with a total of 2251 features and 246,850
vectors. To eliminate as many confounding factors as possible, we used the same
vector transformation tool and learning model across all experimental trials, and
fixed the hyper-parameter configurations in both the vector transformation tool
and the learning model (see section 5.3)

4.2 Independent Variable and Experimental Subjects

In this study, class noise is the only independent variable (treatment) examined
for an effect on classification performance. Seven variations of class noise (treat-
ment levels) were selected to support the investigation of the research question.
Namely, 0%, 10%, 20%, 30%, 40%, 50%, 60%. To apply the treatment, we used
15-fold stratified cross validation on the control group (see section 5.1) to gen-
erate fifteen experimental subjects. Each subject is treated as a hold out group
for validating a learner which gets trained on the remaining fourteen subjects. A

1 Due to non-disclosure agreements with our industrial partner, our data-set can un-
fortunately not be made public for replication.
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total of 105 trials derived from the 15-folds were conducted. Each fifteen trials
was used to evaluate the performances of a learner under one treatment level.

4.3 Dependent Variables
The dependent variables are four evaluation measures used for the performance
of an ML classifier – Precision, Recall, F-score, and Matthews Correlation Co-
efficient (MCC)[4]. The four evaluation measures are defined as follows:

– Precision is the number of correctly predicted tests divided by the total
number of predicted tests.

– Recall is the number of correctly predicted tests divided by the total number
of tests that should have been positive.

– The F-score is the harmonic mean of precision and recall.
– The MCC takes the four categories of errors and treats both the true and the

predicted classes as two variables. In this context, the metric calculates the
correlation coefficient of the actual and predicted test cases for both classes.

4.4 Experimental Hypotheses

Four hypotheses are defined according to the goals of this study and tested for
statistical significance in section 6. The hypotheses were based on the assumption
that data-sets with class noise rate have a significantly negative impact on the
classification performance of an ML model for TCS compared to a data-set with
no class noise. The hypotheses are as follow:

– H0p: The mean Precision is the same for a model with and without noise
– H0r: The mean Recall is the same for a model with and without noise
– H0f: The mean F-score is the same for a model with and without noise
– H0mcc: The mean MCC is the same for a model with and without noise

For example, the first hypothesis can be interpreted as: a data-set with a higher
rate of class noise will result in significantly lower Precision rate, as indicated
by the mean Precision score across the experimental subjects. After evaluating
the hypotheses, we compare the evaluation measures under each treatment level
with those at 0% level.

4.5 Data Analysis Methods

The experimental data were analyzed using the scikit learn library with Python
[15]. To begin, a normality test was carried out using the Shapiro-Wilk test to
decide whether to use a parametric or a non-parametric test for analysis. The
results showed that the distribution of the four dependent variables did not
deviate significantly from a normal distribution (see section 6.2 for details). As
such, we decided to use two non-parametric tests, namely: Kruskal-Wallis and
Mann-Whitney. To evaluate the hypotheses, the Kruskal-Wallis was selected for
comparing the median scores between the four evaluation measures under the
treatment levels. The Mann–Whitney U test was selected to carry out a pairwise
comparison between the evaluation measures under each treatment level and the
same measures at a 0% noise level.
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5 Experiment Operations

This section describes the operations that were carried out during this experi-
ment for creating the control group and seeding class noise.

5.1 Creation of The Control Group

To support the investigation of the hypotheses, a control group was needed
to establish a baseline for comparing the evaluation measures under the six
treatment levels. This control group needs to have a 0% ratio of class noise,
i.e. without contradictory entries. To have control over the noise ratio in the
treatment groups, these will then be created by seeding noise into copies of the
control group data-set (see Section 5.2). The classification performance in the
treatment groups will then be compared to that in the control group (see Section
5.3). In addition, the distribution of data points in the control group is expected
to strongly influence the outcome of the experiment. To control for that we aim to
create optimal conditions for the algorithm. ML algorithms can most effectively
fit decision boundary hyper-planes when the data entries are similar and linearly
separable [5]. Therefore, we decided to start from our industrial code changes
data-set (See Section 4.1) and extract a subset of the data, by detecting similar
vectors in the ”Bag of Words” sparse matrix. In this study, we decided to identify
similarity between vectors based on their relative orientation to each other. What
follows is a detailed description of the algorithm used for constructing the control
group. The algorithm starts by loading the feature vectors from our industrial
code changes data-set and their corresponding label values (passed or failed)
into a data frame object. To establish similarity between two vectors we use the
cosine similarity function provided in the scikit learn library [15] working with
a threshold of 95%. For each of the two classes (passed or failed), one sample
feature vector is randomly picked and used as a baseline vector to compare its
orientation against the remaining vectors within its class. The selection criterion
of the two baseline vectors is that they are not similar. This is important to
guarantee that the derived control group has no contradictory entries (noise
ratio = 0). Each of the two baseline vectors is then compared with the remaining
vectors (non-baseline) for similarity. The only condition for selecting the vectors
is based on their similarity ratio. If the baseline and the non-baseline vectors are
similar more than the predefined ratio of 95%, then the non-baseline vector is
added to a data frame object. Table 1 shows the two baseline entries before being
converted into line vectors. Due to non-disclosure agreement with our industrial
partner, words that are not language specific such as variable and class names
are replaced with other random names.

Table 1. The Two Baseline Entries Before Coversion

Line of Code Class

measureThreshold(DEFAULT MEASURE) 1

if (!Session.isAvailable()) 0
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The script for generating the datasets is found at the link in the footnote2.
The similarity ratio of 95% was chosen by running the above algorithm a mul-
tiple times using five ratios of the predefined similarity ratio. The criterion for
selecting the optimal threshold was based on the evaluation measures of a ran-
dom forest model, trained and tested on the derived control data-set. That is,
if the model’s Precision and Recall reached 100%, i.e. made neither false posi-
tive nor false negative predictions, then we know that control group has reached
sufficient similarity for the ML algorithm to work as efficient as possible. The
following threshold values of similarity were experimented using the above al-
gorithm: 75%, 80%, 85%, 90%, and 95%. Experimenting on these ratios with a
random forest model showed that a ratio of 95% cosine similarity between the
baseline vector and the rest yield a 100% of Precision, Recall, f-score, and MCC.
As a result, we used a ratio of 95% to generate the control group. The resulting
group contained 9,330 line vectors with zero contradictory entries between the
two classes. The distribution of these entries per class was as follow:

– Entries that have at least one duplicate within the same class: 3679 entries
labeled as failed and 4280 entries as pass.

– Entries with no duplicates in the data-set: 1 entry labeled as failed and 1370
entries as passed.

5.2 Class Noise Generation

To generate class noise into the experimental subjects, we followed the definition
of noise introduced in section 2 by carrying out the following two-steps procedure:

1. Given a noise ratio Nr, we randomly pick a portion of Nr from the population
of duplicate vectors within each class in the training and validation subjects.

2. We re-label half of the label values of duplicate entries selected in step 1 to
the opposite class to generate Nr noise ratio. In situations where the number
of duplicate entries in Nr are uneven, we re-label half of the selected Nr

portion minus one entry.

In this experiment, a design choice was made to seed each treatment level (10%,
20%, 30%, 40%, 50%, and 60%) into both the training and validation subjects.
This is because we wanted to reflect a real-world scenario where the data in
both the training and test sets comes with class noise. The above procedure was
repeated 15 times for each level, making a total of 90 trials.

A common issue in supervised ML is that the arithmetic classification accu-
racy becomes biased toward the majority class in the training data-set, which
might lead to the extraction of poor conclusions. This effect might be magnified
if noise was added without checking the balance of classes after generating noise.
In this experiment, due to the large computational cost required to check the
distribution of classes across 90 trials, we only checked the distribution under
10% noise ratio. Figure 2 shows how the classes in the training and validation
subjects were distributed across 15 trials for a 10% noise ratio. The x-axis cor-
responds to the binary classes and the y-axis represents the number of entries in

2 https://github.com/khaledwalidsabbagh/noise free set.git
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Fig. 2. The Distribution of The Binary Classes After Generating Noise at 10% Ratio.

the training and validation sets. The Figure shows a fairly balanced distribution
in the training subjects with an average of 3421 entries in the passed class and
3993 entries in the failed class.

5.3 Performance Evaluation Using Random Forest
We evaluate the effect of each noise level on learning by training a random
forest model. The choice of using a random forest model was due to its low
computational cost compared to deep learning models. The hyper-parameters of
the model were kept to their default state as found in the scikit-learn library
(version 0.20.4). The only configuration was made on the n estimator parameters
(changed from 10 to 100), which corresponds to the number of trees in the forest.
We tuned this parameter to minimize chances of over-fitting the model.

6 Results

This section discusses the results of the statistical tests conducted to evaluate
hypotheses H0p, H0r, H0f, and H0mcc and to answer the research question.

6.1 Descriptive Statistics
The descriptive statistics are presented in Tables 2, 3, 4, and 5 individually for
each dependent variable. The values for Precision (Table 2), Recall (Table 3),
F-score (Table 4), and MCC (Table 5) are shown for each of the noise ratio (0%,
10%, 20%, 30%, 40%, 50%, and 60%). A first evident observation from the tables
is that there is a statistically significant relationship between the mean values of
the four dependent variables and the noise ratio, where a lower value of a given
dependent variable indicates higher noise ratio. Three general observations can
be made by examining the data shown in the four tables:

– There is an inverse trend between noise ratio and learning precision, f-score,
and MCC. That is, when the noise level increases, the classifier trained on
noisy instances suffers a small decrease in the four evaluation measures.
Figure 3 shows this relationship where the x-axis indicates the noise ratio
and the y-axis represents the evaluation measures.
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– There exists a higher dispersion in the evaluation scores when the noise level
increases (i.e. higher standard deviation [SD]).

– The mean difference between the recall values under each noise ratio is rel-
atively smaller than those with the other three dependent variables.

Table 2. Descriptive Stats For Precision.

Noise N Mean SD SE 95% Conf

0% 15 0.997 0.000 0.000 0.997

10% 15 0.966 0.009 0.002 0.961

20% 15 0.933 0.019 0.005 0.923

30% 15 0.900 0.029 0.007 0.884

40% 15 0.867 0.039 0.010 0.846

50% 15 0.834 0.048 0.012 0.808

60% 15 0.801 0.059 0.015 0.770

Table 3. Descriptive Stats For Recall.

Noise N Mean SD SE 95% Conf.

0% 15 1.000 0.000 0.000 1.000

10% 15 0.984 0.032 0.008 0.967

20% 15 0.970 0.061 0.015 0.937

30% 15 0.955 0.086 0.022 0.910

40% 15 0.940 0.109 0.028 0.883

50% 15 0.931 0.134 0.034 0.860

60% 15 0.897 0.144 0.037 0.821

Table 4. Descriptive Stats For F-Score.

Noise N Mean SD SE 95% Conf

0% 15 0.998 0.000 0.000 0.998

10% 15 0.974 0.013 0.003 0.967

20% 15 0.949 0.025 0.006 0.936

30% 15 0.923 0.034 0.008 0.905

40% 15 0.897 0.044 0.011 0.873

50% 15 0.871 0.055 0.014 0.842

60% 15 0.836 0.059 0.015 0.805

Table 5. Descriptive Stats For MCC.

Noise N Mean SD SE 95% Conf.

0% 15 0.996 0.000 0.000 0.996

10% 15 0.946 0.030 0.007 0.930

20% 15 0.894 0.060 0.015 0.863

30% 15 0.841 0.088 0.022 0.795

40% 15 0.790 0.119 0.030 0.727

50% 15 0.742 0.156 0.040 0.660

60% 15 0.674 0.181 0.046 0.579

Fig. 3. Mean Distribution of the Evaluation Measures.

6.2 Hypotheses Testing

We begin the evaluation of the hypotheses by checking whether the distribution
of the dependent variables deviates from a normal distribution. The Shapiro-
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Wilk test results were statistically significant for all the evaluation measures in
the majority of the noise ratios. Table 6 shows the statistical results of normality
for the dependent variables on all noise ratios. These results indicate that the
assumption of normality in the majority of the samples can be rejected, as indi-
cated by the p-value (p <0.05) in Table 6. Since we have issues with normality in
the majority of samples, we decided to run a non-parametric test for comparing
the difference between the performance scores under the six noise ratios.

To examine the impact of class noise on the four dependent variables, the
Kruskal-Wallis test was conducted. Table 7 summarizes the statistical compar-
ison results, indicating a significant difference in Precision, F-score, and MCC.
Specifically, the results of the comparison for precision showed a test statistics
of 56.8 and a p-value below 0.001. Likewise, a significant difference in the com-
parisons between the evaluation measures of F-score and MCC (F-score Results:
Test Statistics = 54.172, p-value <0.005, MCC Results: Test Statistics = 53.398,
p-value <0.005) groups was found. In contrast, no significant difference between
the Recall measures was identified.

Table 6. Statistical Results For Normality.

0% 10% 20% 30% 40% 50% 60%

Precision
Stat=0.59
p<0.005

Stat=0.82
p=0.02

Stat=0.87
p=0.11

Stat=0.91
p=0.28

Stat=0.91
p=0.32

Stat=0.88
p=0.13

Stat=0.92
p=0.40

Recall
Stat=1.00

p=1.00
Stat=0.36
p<0.005

Stat=0.50
p<0.005

Stat=0.50
p<0.005

Stat=0.54
p<0.005

Stat=0.56
p<0.005

Stat=0.53
p<0.005

F-Score
Stat=0.59
p<0.005

Stat=0.78
p=0.009

Stat=0.67
p<0.005

Stat=0.74
p=0.003

Stat=0.83
p=0.037

Stat=0.69
p=0.001

Stat=0.8
p=0.02

MCC
Stat=0.68
p=0.001

Stat=0.77
p=0.01

Stat=0.65
p<0.005

Stat=0.69
p=0.001

Stat=0.77
p=0.01

Stat=0.63
p<0.005

Stat=0.69
p=0.001

Table 7. Statistical Comparison Between the Evaluation Measures at All Noise Levels.

p-value statistics

precision p<0.005 Statistics=56.858

recall p=0.164 Statistics=9.180

f-score p<0.005 Statistics=54.172

mcc p<0.005 Statistics=53.398

The Mann–Whitney U test with Precision, F-score, and MCC as the depen-
dent variables and noise ratio as the independent variable revealed a significant
difference (p-value below 0.005) under each of the six levels when compared with
the same measures in the no-treatment sample. However, the statistical results
for recall only showed a significant difference when the noise level exceeded 30%.
Table 8 summarizes the statistical results from the Mann–Whitney test under
the six treatment levels. The analysis results from this experiment indicate that
there is a statistical significant difference in predictive performance for a test
case selection model in the presence and absence of class noise. The results from
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the Kruskal-Wallis test were in line with the expectations for hypotheses H0p,
H0f, H0mcc, which confirm that we can reject the null hypotheses for H0p, H0f,
H0mcc, whereas no similar conclusion can be drawn for hypothesis H0r. While
no significant difference between the recall values was drawn from the Kruskal-
Wallis test, the Mann-Whitney test indicates that there is a significant inverse
causality between class noise and recall when noise exceeds 30%. In the domain
of TCS, the practical implications can be summarized as follow:

– Higher class noise slightly increases the predictor’s bias toward the pass class
(lower precision rate), and therefore leads to missing out tests that should
be included in the test suite.

– A class noise level above 30% has a significant effect on the learner’s Recall.
Therefore, the rate of false alarms (failed tests) in TCS increases significantly
above 30% noise ratio.

Table 8. The Comparison Results From Mann-Whitney Test

10% 20% 30% 40% 50% 60%

Precision
Stat=7.5,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Recall
Stat=45,
p=0.184

Stat=40.000,
p=0.084

Stat=40.000,
p=0.084

Stat=35.000,
p<0.005

Stat=30.000,
p=0.017

Stat=25,
p=0.007

F-Score
Stat=7.5,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

MCC
Stat=7.5,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

Stat=0.000,
p<0.005

7 Threats to Validity

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [18]. We discuss the threats to validity in four categories: ex-
ternal, internal, construct, and conclusion.

External Validity: External validity refers to the degree to which the results
can be generalized to applied software engineering practice.

Test cases. Since our experimental subjects belong to twelve test cases only,
it is difficult to decide whether the sample is representative. However, to increase
the likelihood of drawing a representative sample and to control as many con-
founding factors, we randomly selected a small sample of 12 test cases. Also,
the random selection of tests has the potential of increasing the probability of
drawing a representative sample.

Control group. The study employed a similarity based mechanism to derive
the control group, which resulted in eliminating many entries from the original
sample. This might affect the representativeness of the sample. However, our
control group contained points that belong to an industrial program, which is
arguably more representative than studying points that we construct ourselves.
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This was a trade-off decision between external and internal validity, since we
wanted to study the impact of class noise on TCS in an industrial setting and
therefore maximize the external validity.

Nature of test failure. There is a probability of mis-labelling code changes
if test failures were due to factors external to defects in the source code (e.g.,
machinery malfunctions or environment upgrades). To minimize this threat, we
collected data for multiple test executions that belong to several test cases, thus
minimizing the probability of identifying tests that are not representative.

Internal Validity Internal validity refers to the degree to which conclusions
can be drawn about the causal effect of independent on dependent variables.

Instrumentation. A potential internal threat is the presence of undetected
defects in the tool used for vector transformation, data-collection, and noise
injection. This threat was controlled by carrying out a careful inspection of the
scripts and testing them on different subsets of data of varying sizes.

Use of a single ML model. This study employed a random forest model to
examine the effect of class noise on classification performances. However, the
analysis results might differ when other learning models are used. This was a
design choice since we wanted to study the effect of a single treatment and to
control as many confounding factors as possible.

Construct Validity Construct validity refers to the degree to which experi-
mental variables accurately measure the concepts they purport to measure.

Noise ratio algorithm. Our noise injection algorithm modifies label values
without tracking which entries that are being modified. This might lead to re-
labeling the same duplicate line multiple times during noise generation. Con-
sequently, the injected noise level might be below the desired level. Thus, our
study likely underestimates the effects of noise. However, the results still allowed
us to identify a significant statistical difference in the predictive performance of
TCS model, thereby to answer the research question.

Majority class problem. Due to the large computational cost required to check
the balance of the binary classes under the six treatment levels, we only checked
for the class distributions for one noise level - 10%. Hence, there is a chance
that the remaining unchecked trials are imbalanced. Nevertheless, the downward
trend in the predictive performances as noise ratio increases indicates that the
predictor was not biased toward a majority class.

Conclusion Validity Conclusion validity focuses on how sure we can be that
the treatment we use really is related to the actual outcome we observe.

Differences among subjects. The descriptive statistics indicated that we have
a few outliers in the sample. Therefore, we ran the analysis twice (with and
without outliers) to examine if they had any impact on the results. Based on the
analysis, we found that dropping the outliers had no effect on the results, thus
we decided to keep them in the analysis.

8 Conclusion and Future Work

This research study examined the effect of different levels of class noise on the
predictive performance of a model for TCS using an industrial data-set. A for-
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mula for measuring the level of class noise was provided to assist testers gain
actionable insights into the impact of class noise on the quality of recommenda-
tions of test cases. Further, quantifying the level of noise in training data enables
testers make informed decisions about which noise handling strategy to use to
improve continuous TCS if necessary. The results from our research provide em-
pirical evidence for a causal relationship between six levels of class noise and
Precision, F-score, and MCC, whereas a similar causality between class noise
and recall was found at a noise ratio above 30%. In the domain of the inves-
tigated problem, this means that higher class noise yields to an increased bias
towards predicting test case passes and therefore including more of those tests
in the suite. This is penalized with an increased hardware cost for executing the
passing tests. Similarly, as class noise exceeds 30%, the prediction of false alarms
with the negative class (failed tests) increases.

There are still several questions that need to be answered before concluding
that class noise handling strategies can be used in an industrial setting. A first
question is about finding the best method to handle class noise with respect to
efficiency and effectiveness. Future research that study the impact of attribute
noise on the learning of a classifier and how that compares with the impact of
class noise are needed. Other directions for future research include evaluating
the level of class noise at which ML can be deemed useful by companies in
predicting test case failures, evaluate the relative drop of performance from a
random sample of industrial code changes and compare the performance of the
learner with the observations drawn from this experiment, study and compare
the effect of different code formatting on capturing noisy instances in the data
and the performance of a classifier for TCS. Finally, we aim at comparatively
exploring the sensitivity of other learning models to class and attribute noise.
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