
Predicting Test Case Verdicts Using TextualAnalysis of Commited
Code Churns

Downloaded from: https://research.chalmers.se, 2021-12-11 21:20 UTC

Citation for the original published paper (version of record):
Al Sabbagh, K., Staron, M., Hebig, R. et al (2019)
Predicting Test Case Verdicts Using TextualAnalysis of Commited Code Churns
CEUR Workshop Proceedings, 2476: 138-153

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Predicting Test Case Verdicts Using Textual
Analysis of Committed Code Churns

Khaled Walid Al-Sabbagh1[0000−0003−2571−5099], Miroslaw
Staron1[0000−0002−9052−0864], Regina Hebig1[0000−0002−1459−2081], and Wilhelm

Meding2

1 Chalmers | University of Gothenburg, Computer Science and Engineering
Department, Gothenburg, Sweden

2 Ericsson AB
{khaled.al-sabbagh, miroslaw.staron, regina.hebig}@gu.se

wilhelm.meding@ericsson.com

Abstract. Background: Continuous Integration (CI) is an agile soft-
ware development practice that involves producing several clean builds of
the software per day. The creation of these builds involve running exces-
sive executions of automated tests, which is hampered by high hardware
cost and reduced development velocity. Goal: The goal of our research
is to develop a method that reduces the number of executed test cases at
each CI cycle. Method: We adopt a design research approach with an
infrastructure provider company to develop a method that exploits Ma-
chine Learning (ML) to predict test case verdicts for committed source
code. We train five different ML models on two data sets and evaluate
their performance using two simple retrieval measures: precision and re-
call Results: While the results from training the ML models on the first
data-set of test executions revealed low performance, the curated data-
set for training showed an improvement on performance with respect to
precision and recall. Conclusion: Our results indicate that the method
is applicable when training the ML model on churns of small sizes.

Keywords: Machine Learning, Verdicts, Code Churn, Test Case Selec-
tion

1 Introduction

CI is a modern software development practice, which is based on frequent inte-
gration of codes from developers and teams into a product’s main branch [23].
One of the cornerstones of its popularity is the promise of higher quality deliv-
ered by frequent testing and the ability to quickly pinpoint the code that does
not meet quality requirements. To achieve this, CI systems execute tests as part
of the integration [5]. However, excessive execution of automated software tests
is penalized with high hardware cost and reduced development velocity that may
consequently hinder agility and time to market.

In order to address this challenge, a CI system should be able to pinpoint
exactly which test cases should be executed in order to maximize the probability

138Copyright © 2019 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

of finding defects (i.e. to reduce the “empty” test executions). To achieve this,
the CI system needs to be able to predict whether a given test case has a chance
of finding a defect or not, or at least whether it will fail or pass – predict the
verdict of a test case execution.

We set off to address the problem of predicting test case verdicts by training
five ML models on a large data set of historical test cases that were executed
against changes made to a software developed at company A. The term ”code
churn” is defined as a measure that quantifies these changes. Throughout the
remaining sections of this paper, we use this term to refer to committed code
made during different CI cycles.

Our research is inspired from a previous study conducted by Knauss et el.
[13], where the authors explored the relationship between historical code churns
and test case executions using a statistical model. Their method used precision
and recall metrics in predicting an optimal suite of functional regression tests
that would trigger failure. In this paper we expand on that approach by go-
ing one step further – conducting a textual analysis of what is the code that
is actually being integrated. For example, instead of using code location as the
parameter, we use such measures as the number of ’if’ statements or whether
the code contains data definitions. Similarly, our choice of using code churns
is inspired from the work of Nagappan and Ball [14], in which the authors pre-
sented a technique for early faults prediction using code churn measures. In their
publication, the authors identified a positive correlation between the size of code
churns and system defects density. Our method builds on this and uses the Bag of
Words (BOW) approach to extract features from code churns. This enables the
identification of statistical dependency between keywords and test case verdicts.
For example, a churn containing a frequent occurrence of keywords like new or
delete might trigger specific tests to fail. More precisely, we aim at investigating
the following research question:

How to reduce the number of executed test cases by selecting the most
effective minimal test suite when integrating new code churns into the
product’s main branch?

Our study was conducted in collaboration with a large Swedish-based infras-
tructure providing company. We study a software product that has evolved over
a span of a decade by different cross functional teams. As a result of our study,
we present a method that uses ML to predict test case verdicts (MeBoTS).

To address this research question, we conduct a design research study, where
we develop a new method and evaluate it on the company’s data set. Our method
is based on the research by Ochodek et al. [17], which uses textual analyses to
characterize source code. Our MeBoTS method builds on that by using historical
test verdicts as predicted variables and uses Random Forest algorithms to make
the predictions.

The remainder of this paper is organized as follows: Section II provides back-
ground information about two categories of ML. The sections that follow pro-
vide: an overview of the most related studies in this area, a description of the

139

method that we developed in our study as well as the results, validity analysis,
recommendations, and finally, conclusion.

2 Background

2.1 Categories of Machine Learning

Machine learning is a class of Artificial Intelligence that provides systems the
ability to automatically make inferences, given examples relevant to a task [8].
The main advantage of using Machine learning over classical statistical analysis,
is its ability to deal with large and complex data-sets [12]. These systems can be
classified into four categories depending on the type of supervision involved in
training: a) Supervised, b) Unsupervised, c) Semi-supervised, d) Reinforcement
Learning [8]. Since we view the problem of predicting test case verdicts as a
classification problem, we briefly mention the supervised learning category.

In supervised learning the training data-set fed into the ML model contains
the desired solution, called labels. The model tries to find a statistical structure
between these examples and their desired solutions [12]. A typical task for this
kind of learning is classification.

2.2 Tree-based and Deep Learning Models

In Machine learning, a decision tree is an algorithm that belongs to the family
of supervised learning algorithms. The algorithm has an inherent tree-like struc-
ture and is commonly used for solving classification and regression problems
[20]. Starting from the root node, the algorithm uses a binary recursive scheme
to repeatedly split each node into two child nodes, where the root node has the
complete training sample [1]. The resulting child nodes correspond to features
in the training data, whereas the leaf nodes correspond to class labels (binary or
multivariate). Other algorithms, such as Random Forest and Adaptive Boosting,
use Decision trees as a primary component in their structure. These algorithms
build a collection of decision trees, called an ensemble, to increase the overall
learning of the classification or regression task at hand [12].
Deep Learning is a branch of ML that was founded on the premise of using
successive learning ”layers” to achieve more useful representation of the data
[8]. The learning of these successive layers are achieved via models called Neu-
ral Networks (NN) [8]. A multilayer NN is one that consists of at least three
layers: 1) one input layer, 2) at least one hidden layer, 3) and an output layer
of artificial neurons [10]. Similarly, a Convolutional network (CNN) consists of
a set of learning layers [8]. The main difference between the two networks is in
the way they search for patterns in the input space [12]. More precisely, a CNN
works by sweeping a matrix-like window, called filter, over every location in ev-
ery patch to extract patterns from the input data [12]. As opposed to Decision
Trees, ANN have a black box nature, which means that no insight about how
their predictions were made can be easily accessible [12]. Nevertheless, the main
advantage of using deep learning comes from their ability to handle large and
complex data-sets of features.

140

2.3 Code Churns

The amount of changes made to software over time is referred to as code churn
[14]. As new churns are added, new risks of introducing defects into the system
emerge [21]. According to Y. Shin et al. [21], each check-in made into a version
control system includes newly added or deleted code that increase the chances
of triggering failures. At some point in time, an evolving system may be vul-
nerable, on average, to one extra fault for every new additional change [11]. For
example, in C programming, the declaration of ’static’ local and global variables
are among the most confused keywords by developers, as each static local and
global declaration has a different effect on how the data will be retained in the
program’s memory [3].

3 Related Work

In the following we discuss related work on the specific use of machine learning
for test case selection or prioritization.

3.1 ML-based Test-Case Selection

Around 2015/16, we find the first machine learning based approaches for test-
case selection. With only 4 studies included in the systematic mapping study by
Durelli et al. [9], the use of machine learning for test case prioritization seems
to be new.

Busjaeger and Xie [4] present an industrial case study in which a linear model
is trained with the SVMmap algorithm using the features Java code coverage,
text path similarity, text content similarity, failure history, and test age. The
evaluation on the industrial case study, considering 2000 changes and over 45 000
test executions shows an Average Percentage of Faults Detected (APFD) of
around 85%.

Chen et al. [6] prioritize test programs for compilers ”identifies a set of fea-
tures of test programs, trains a capability model to predict the probability of a
new test program for triggering compiler bugs and a time model to predict the
execution time of a test program.”

Spieker et al. [22] introduced Retecs, a reinforcement learning-based approach
to test case selection and prioritization. Retecs considers duration of a test case’s
execution, previous last execution and failure history. Online learning is used to
improve test case selection between continuous integration cycles. The approach
was evaluated on 3 industrial data sets, including together more than 1.2 mil-
lion verdicts, and achieved a normalized Average Percentage of Faults Detected
(APFD) of around 0.4 to 0.8 depending on the data set.

Most recently, Azizi and Do [2] perform test case prioritization by calculating
a ranked list of components considering the access frequency of a component as
well as a fault risk. The fault risk for each component is thereby predicted using
a linear model of change and bug histories. Test cases associated with highly

141

ranked components are prioritized. The approach was evaluated on three web-
based systems and where it could reduce the number of test cases by 20% while
still finding over 80% of the errors.

Palma et al. [18] replicate and extend a work of Noor and Hemmati [16] and
[15], to predict test case failure based on a machine learned model basing on test
quality metrics as well as similarity-based metrics.

However, to the best of our knowledge, no other learning-based method
works for code-churns. The only exception is one of our previous collaboration
with Knauss et al. [13]. The introduced code-churn based test selection method
(CCTS) analyzes correlations between test-case failure and source code change.
The approach was evaluated in several configurations, leading to results rang-
ing from 26% precision up to a 54% with a 97% recall. We deem these results
promising and one of the main motivations for this study.

4 Method using Bag of Words for Test Selection
(MeBoTS)

The following section is a description of the MeBoTS method used in this re-
search, which comprises of three sequential steps, as shown in Figure 1. The
method utilizes two Python programs and an open source textual analyzer pro-
gram, called CCFLEX [17].

Fig. 1. The MeBoTS method.

4.1 Code Churns Extraction (Step 1)

A Python-based code churn extraction program was created to collect and com-
pile code churns committed in the source code repository. The program takes
one input parameter: a time ordered list of historical test case execution results
extracted from a database, where each element in the list represents an instance

142

of a previously run test case and holds information about: the name of the exe-
cuted test case, the baseline code in Git against which the test case was executed,
and the verdict value - as shown in Table 1.

Table 1. An Excerpt of the Historical Test Case Executions List

Baseline Test Case Name Verdict

ca82a6dff817ec66f ST-case 22 FAILED
ca82a6dff817ec66f FT-case 42 PASSED

34bb5e22134200896 FT-case-333 FAILED
34bb5e22134200333 FT-case-3 PASSED

The program first loops through the extracted list of tests and looks at the
change history log maintained by Git and performs a file comparison utility (diff)
on a pair of consecutive baselines in the tests list. Note that each baseline value
is a hash representation of a revision (build), pointing to a specific location in
Git’s history log. The result is a fine-grained string that comprises the committed
code churns, where each LOC in the churn is compiled with its: 1) filename, 2)
physical file path, 3) test case verdict, 4) baseline hash code.

The resulting string is then arranged in a table-like format and written in a
csv file, named as ’Lines of Code’ in Figure 1.

4.2 Textual Analysis and Features Extraction (Step 2)

The result of the extract from Git is saved as an array (code churn, filename,
physical file path, test case verdict and baseline). This file is the input to our tex-
tual analysis and feature extraction. The textual analysis and feature extraction
use each line from the code churn and:

– creates a vocabulary for all lines (using the bag of words technique, with a
specific cut-off parameter),

– for the words that are used seldom (i.e. fall outside of the frequency defined
by the cut-off parameter of the bag of words), a token is created,

– finds a set of predefined keywords in each line,
– check each word in the line whether it is part of the vocabulary, it should be

tokenized or if it is a predefined feature.

An example input is presented in Table 2. The input contains an example
code in C.

For the textual analyses, we can pre-define (arbitrarily for this example)
two features: “if” and “int”. The bag of words analysis also found the word
“printf” as frequent. It has also defined the following tokens:

– “a” – to denote the words (of any length) that contain only lowercase letters
(e.g. “condition”),

143

Table 2. Input to the textual analysis and feature extraction

Filename Path Content Hash

firstFile.c c:/folder if (condition == true) printf(’Hello World’); aa00111
firstFile.c c:/folder printf(’\n’); aa00111
secondFile.c c:/folder int i = 10; aa00111

– “Aa” – to denote the words that start with capital letters and continue with
lowercase letters (e.g. “Hello”),

– “0” – to denote the numbers, i.e. sequence of numbers of any length (e.g.
“10”)

The manual features and the bag of words results are then used as features
in the feature extraction. Table 3, which corresponds to the input from Table 2.

Table 3. Output from the feature extraction algorithm

Filename Path if int a Aa Content

firstFile.c c:/folder 1 0 3 2 if(condition == true) printf("Hello

World");

firstFile.c c:/folder 0 0 2 0 printf("\n");
secondFile.cc:/folder 0 1 1 0 int i = 10;

Table 3 is a large array with the numbers, each representing the number of
times a specific feature presents in the line. This way of extracting information
about the source code is new in our approach, compared to the most common ap-
proaches of analyzing code churns. Compared to the other approaches, MeBoTS
recognizes what is written in the code, without understanding of the syntax or
semantics of the code. This means that we can analyze each line of code sep-
arately, without the need to compile the code or without the need to parse it.
This means, that we can take code churns from different files in the same base-
line and analyze them together. MeBoTS also goes beyond such approaches like
Nagappan et al. [14], which characterizes churns in terms of metrics like number
of churned lines or churn size.

4.3 Training and Applying the Classifier Algorithm (Step 3)

We exploit the set of extracted features provided by the textual analyzer in
step 2 as the independent variables and the verdict of the executed test cases
as the dependant variable, which is a binary representation of the execution
result (passed or failed). The MeBoTS method uses a second Python program
that utilizes and trains an ML model to classify test case verdicts. The program
reads the BOW vector space file in a sequence of chunks, merging the extracted
feature vectors and the verdicts vector into a single data frame that gets split

144

into a training and testing set before it is fed into the models for training. Table
4 shows an excerpt of the generated data frame.

Table 4. Input to the Classifier Model

File Name Line Number F1 F2 F3 F4 F5 .. F500 Verdict

firstFile 1 0 0 6 1 0 .. 0 PASSED
firstFile 2 0 0 5 3 2 .. 0 PASSED

secondFile 1 0 0 6 1 0 .. 0 FAILED

5 Research Design

5.1 Collaborating Company

The study has been conducted at an organization, belonging to a large infrastruc-
ture provider company. The organization develops a mature software-intensive
telecommunication network product. The organization consists of several hun-
dred software developers, organized in several empowered agile teams, spread
over a number of continents. Given that they have been early adopters of lean
and agile software development methodologies, they have become mature in these
areas of work. They have also implemented CI and continuous deliveries.

The organization is also mature with regard to measuring. For instance every
agile team, as well as leading functions/roles, uses one or more monitors to
display status and progress in various development and devops areas. A well-
established and efficient measurement infrastructure, automatically collects and
processes data, and then distributes the information needed by the organization.

5.2 Dataset

The data-set provided by company A contained historical test case execution
results for a mature software product that has evolved for almost a decade. The
analyzed product consisted of over 10k test cases and several million lines of code
written in the C language. We decided to test the MeBoTS on a set of randomly
selected tests that, presumably, reacted to changes in the source code during
different CI cycles. Our selection of test cases was based on the granularity of
test executions whose verdicts changed from one state to another(see Table 1).

The extracted data-set belonged to twelve test cases that were executed 82
times during different CI cycles. The size of the extracted churns was 1.4 million
lines of code, among which 618k lines were labeled as passed and 776k as failed.
To better understand the shape of the data-set, we visually inspected the size of
code churns covered by each test execution. The scatter plot in Figure 2 shows
the distribution of the 82 extracted test executions, belonging to the twelve test
cases. Each mark on the plot represents one test case execution. The x-axis
represents the number of lines in the code churn the test case was executed on.

145

The y-axis represents the overall number of test executions for the executed test
case. Test executions of the same test case are marked with the same symbol.
The visual inspection of the scatter plot suggests that our data-set comprised
of churns of varying sizes (large and small). We interpreted this distribution

Fig. 2. Churn Size per Test Execution Plot.

with uncertainty of whether large churns contain additional noise that would
adversely affect the training of the ML models. As a result, we decided to curate
the original data-set by filtering out tests that were executed on churns whose
total size exceeded 110k lines. The visual inspection of the curated data-set
is represented in Figure 3, comprised of 290k lines of code, containing a fairly
balanced representation of the binary classes (passed and failed), with 110k lines
belonging to the passed class and 180k lines belonging to the failed class.

The two data-sets described above were used for training the ML models.
The first data-set was used in the first phase, whereas the second curated data-
set was used in the second phase of ML training, and ultimately became our
focus due to data size homogeneity.

5.3 Evaluating and Selecting a Classification Model

To select the most suitable model for classifying test verdicts, we selected five
different ML models and trained them sequentially. The five models are: 1)
Decision Tree, 2) Random Forest, 3) AdaBoost, 4) Multilayer NN, 5) CNN

The choice of selecting the three tree-based models was due to their low
computational cost and white box nature, whereas the selection of ANN models
were based on their ability to abstract large and complex number of features.

146

Fig. 3. Churn Size per Test Execution After Curation Plot.

Each of the five classification models for test verdicts uses i) the historical test
case verdicts ii) the feature vectors in the bag of words table as the baseline of
prediction. The evaluation was done in two iterations. In the first iteration, the
five models were trained on the original data-set, which contained a mix of large
and small churns, comprising a total of 1.4m lines of code for 500 feature vectors.
The second iteration involved training the models on the curated data-set, which
almost contained 290k lines for the same 500 features, as in the first iteration.
Both data sets, curated and original, were split as follow: 70% for the training
set and 30% for the test set.

To save the long run time required by automated hyper-parameter tuning
tools such as grid and random search, the configuration of the models was done
manually. Table 5 summarizes the hyper-parameters used for training the mod-
els. We used the implementation of Decision Tree, Random Forest, and Ad-
aBoost algorithms available in the Python scikit-learn library [19] and then used
the Keras library [7] for the implementation of Multilayer NN and CNN.

The hyper-parameters of the three tree-based models were kept in their de-
fault state as found in the scikit-learn library. The only alterations made were in
the ’random state’ value in Decision Trees and the n estimator (number of trees)
in both Adaboost and Random Forest. With respect to the ANN models, the
architecture of the multilayer ANN was represented with three sequential dense
layers that consisted of: one input layer, one hidden layer, and one output layer.
For the CNN, the stack of layers comprised of: a Reshape layer, a Convolution
layer, a Maxpooling layer, and four Dense layers. The learning in both models
was induced over 100 epochs (iterations), as can be seen in table 5

147

Table 5. The Evaluated Models and Their Hyper-Parameters

Classifier Random State Number of Trees Number of Layers Epochs

Decision Tree 123 - - -

Random Forest - 50 - -

AdaBoost - 100 - -

Multilayer NN - - 3 100

CNN - - 8 100

The performance of the classifiers were evaluated using simple retrieval mea-
sure: recall and precision.

These measures are based on the following four categories of errors:

– True positives: correct prediction of test executions that pass
– True negatives: correct prediction of test executions that fail
– False positives: incorrect prediction of test executions that pass
– False negatives: incorrect prediction of test executions that fail

Precision is the number of correctly predicted tests divided by the total number
of predicted tests, calculated as follows:

precision =
|TruePositive|

|TruePositive| + |FalsePositive|

Recall is the number of correctly predicted tests divided by the total number of
tests that should have been positive.

recall =
|TruePositive|

|TruePositive| + |FalseNegative|

While recall and precision measures relate to one another, precision is a mea-
sure of exactness, whereas recall is a measure of completeness indicating the
percentage of all predicted failed tests in our case. Since the goal of this study
is to reduce the amount of test executions without altering the effectiveness of
testing, we needed to minimize the risk of missing tests that will actually fail
and, therefore, accept some false alarms in the prediction of failed tests. Thus,
we believe that the measure of the mode’s precision is more important than its
recall.

6 Results

To answer the research question, we present the results of using MeBoTS for
predicting test case verdicts. We interpret the results of the analysis in light of
the reported rates of precision and recall and the values of the four categories
of errors: true negatives, false positives, false negatives, and true negatives, as
shown in Tables 6 and 7 list the results of training the five models using the
original and curated data sets.

148

6.1 Training the Models on Churns of Varying Sizes

The evaluation of the five models in the first iteration reports a mean preci-
sion of 47% and a mean recall of 17%, suggesting that all models achieved low
performance. The best result was obtained by the Multilayer NN model with a
precision rate of 50.3% and a recall rate of 31%. The precision and recall rates
for the five models can be seen in Figure 4. The interpretation of these values
suggest that out of the 406,948 lines of code that actually triggered a test case
failure, the model correctly predicted test failure for 226,994 lines, whereas it
could correctly predict a passing test verdict for 5,758 out of 11,428 lines. Simi-
larly, the results of the four categories of errors for the other models can be seen
in Table 6 and interpreted in the same fashion.

Table 6. Models Evaluation before Data Curation
Model Precision Recall True Neg False Pos False Neg True Pos

Decision Trees 43.9% 17.2% 191,883 40,781 153,709 32,003

Random Forest 44% 17.7% 190,864 41,800 152,794 32,918

AdaBoost 51.9% 6.5% 221,472 11,192 173,590 12,122

Multilayer NN 50.3% 31% 226,994 5,670 179,954 5 758

CNN 50.7 16.5 202,745 29,919 154,890 30,822

Fig. 4. Precision and Recall of The Models Before Data Curation

6.2 Training the Models on Churns of Small Sizes

The second iteration of analysis involved training the same set of models on the
curated data-set, which excluded tests covering churns with quantities above
110k lines of code. The results, shown in Figure 5, indicate an improvement in
precision and recall when compared to the results in the first iteration for the
same types of models. Table 7 reports the results from the second round of train-
ing, showing a mean precision of 70% and a mean recall of 44.5%. The Multilayer
NN model performed best in prediction, such that, it correctly predicted 48,755

149

lines that actually triggered a test case failure, out of 67,363 lines in the test set.

Table 7. Models Evaluation after Data Curation
Model Precision Recall True Neg False Pos False Neg True Pos

Decision Trees 68% 48.4% 46,445 7,548 17,011 15,981

Random Forest 67.9% 49.5% 46,252 7,741 16,637 16,355

AdaBoost 69% 36% 48,656 5,337 21,075 11,917

Multilayer NN 73.3% 43.6% 48,755 5,238 18,608 14 384

CNN 71.75% 44.9% 48,162 5,831 18,179 14,813

6.3 Implication

The results show that we can predict the verdict of a test case with a precision
of 73.3%. This means that we can use the results to reduce the test suite by
excluding tests that are predicted to pass, but we need to know that there is
26.7% probability that we miss a test case failure. This means that the reduction
of the test suite comes with a cost. This cost can be reduced, for example, if we
collect the test cases which were not executed and execute them with lower
frequency (e.g. during a nightly test suite instead of hourly builds).

Fig. 5. Precision and Recall of The Models After Data Curation

7 Validity analysis

When analyzing the validity of our study, we used the framework recommended
by Wohlin et al. [24]. We discuss the threats to validity in two categories: in-
ternal and external. Typically, a number of internal threats to validity emerge
in studies that involve designing an ANN architecture, namely that the num-
ber of hyper-parameters to tune is large that we cannot cover all combinations
to decide on the best configuration for the network. To minimize this threat,
we used two different multilayer neural networks and trained them during the

150

two iterations of analysis. This provided us with a sanity check on whether the
networks produce similar results. Another threat to internal validity is in the
random selection of test cases. There is a chance that the extracted test exe-
cutions contain one or more test that failed due to factors that do not pertain
to functional deficiencies, but due to, for instance, an environment upgrade or
machinery failure at execution time. Similarly, there is a chance that the ex-
tracted test executions may have failed as a result of defects in the test script
code and not the base code. In order to minimize this threat, we collected data
for multiple test cases, thus minimizing the probability of identifying test cases
which are not representative.

The major threat to external validity for this study comes from the number
of extracted tests that were used for training the classifiers. We only studied one
company and one product and a limited number of test cases. This was a design
choice as we wanted to understand the dynamics of test execution and be able
to use statistical methods alongside the machine learning algorithms. However,
we are aware that the generalization of the results for different types of systems
require further investigations using tests and churns from different systems.

8 Recommendations

In this section, we provide our recommendations for practitioners who would like
to utilize MeBoTS for early prediction of test case verdicts.

– The choice of using deep learning or tree-based models for solving this su-
pervised ML problem does not lead to better prediction performance. For
this reason, we suggest the use of Decision Trees, since they require less com-
putational time and provide knowledge as to how the results of classification
were derived.

– We suggest to only utilize code churns that are homogeneous and small
in size prior to applying features extraction with BOW. Small code churns
introduce less noise and therefore the quality of the predictions is higher.
This can also save practitioners ample time for data curation.

– We recommend that practitioners only extract historical test executions that
have failed due to reasons related to functional defects for training the ML
model. This knowledge can be obtained from testers/developers who are
familiar with the recurrent issues in the source code.

9 Conclusion and Future Work

This paper has presented a method (MeBoTS) for achieving early prediction
of test case verdicts by training a machine learning model on historical test
executions and code churns. We have evaluated the method using two data sets,
one containing a variation of large and small churns, and a second containing only
small churns. The results from training the models on small churns revealed a
precision rate of 73% and a recall of 43.6%, suggesting that the application of the

151

method is promising, yet more investigation is required to validate the findings.
Moreover, contrary to other existing methods that use statistical correlations for
predicting test verdicts, the main advantage of MeBoTS is the ability to predict
verdicts of new code changes as they emerge during development and before they
get integrated into the main branch.

We believe that the results of this study open new directions for studies to
investigate the effectiveness of MeBoTS on different types of systems using larger
set of small churns with more test case executions. Finally, studies that inves-
tigate the impact of using different feature extraction techniques, such as word
embedding are encouraged to identify any changes in the overall performance of
MeBoTS.

Acknowledgment

This research has been partially carried out in the Software Centre, University
of Gothenburg, and Ericsson AB.

References

1. Awad, M., Khanna, R.: Efficient learning machines: theories, concepts, and appli-
cations for engineers and system designers. Apress (2017)

2. Azizi, M., Do, H.: A collaborative filtering recommender system for test
case prioritization in web applications. In: Proceedings of the 33rd An-
nual ACM Symposium on Applied Computing. pp. 1560–1567. SAC ’18,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3167132.3167299,
http://doi.acm.org/10.1145/3167132.3167299

3. Beningo, J.: Using the static keyword in c.
https://community.arm.com/developer/ip-products/system/b/embedded-
blog/posts/using-the-static-keyword-in-c (2014)

4. Busjaeger, B., Xie, T.: Learning for test prioritization: an industrial case study.
In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering. pp. 975–980. ACM (2016)

5. Çalikli, G., Staron, M., Meding, W.: Measure early and decide fast: transforming
quality management and measurement to continuous deployment. In: Proceedings
of the 2018 International Conference on Software and System Process. pp. 51–60.
ACM (2018)

6. Chen, J., Bai, Y., Hao, D., Xiong, Y., Zhang, H., Xie, B.: Learning to prioritize test
programs for compiler testing. In: Proceedings of the 39th International Conference
on Software Engineering. pp. 700–711. IEEE Press (2017)

7. Chollet, F., et al.: Keras. https://keras.io (2015)

8. Chollet, F.: Deep Learning with Python. Manning (2017)

9. Durelli, V.H., Durelli, R.S., Borges, S.S., Endo, A.T., Eler, M.M., Dias, D.R.,
Guimarães, M.P.: Machine learning applied to software testing: A systematic map-
ping study. IEEE Transactions on Reliability (2019)

10. Gondra, I.: Applying machine learning to software fault-proneness prediction. Jour-
nal of Systems and Software 81(2), 186–195 (2008)

152

11. Graves, T.L., Karr, A.F., Marron, J.S., Siy, H.: Predicting fault incidence using
software change history. IEEE Transactions on Software Engineering 26(7), 653–
661 (July 2000). https://doi.org/10.1109/32.859533

12. Gron, A.: Hands-On Machine Learning with Scikit-Learn and TensorFlow. Oreilly
(2015)

13. Knauss, E., Staron, M., Meding, W., Söder, O., Nilsson, A., Castell, M.: Supporting
continuous integration by code-churn based test selection. In: Proceedings of the
Second International Workshop on Rapid Continuous Software Engineering. pp.
19–25. IEEE Press (2015)

14. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: Proceedings of the 27th international conference on Software
engineering. pp. 284–292. ACM (2005)

15. Noor, T.B., Hemmati, H.: A similarity-based approach for test case prioritization
using historical failure data. In: 2015 IEEE 26th International Symposium on Soft-
ware Reliability Engineering (ISSRE). pp. 58–68. IEEE (2015)

16. Noor, T.B., Hemmati, H.: Studying test case failure prediction for test case priori-
tization. In: Proceedings of the 13th International Conference on Predictive Models
and Data Analytics in Software Engineering. pp. 2–11. ACM (2017)

17. Ochodek, M., Staron, M., Bargowski, D., Meding, W., Hebig, R.: Using machine
learning to design a flexible loc counter. In: Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE), IEEE Workshop on. pp. 14–20. IEEE
(2017)

18. Palma, F., Abdou, T., Bener, A., Maidens, J., Liu, S.: An improvement
to test case failure prediction in the context of test case prioritization.
In: Proceedings of the 14th International Conference on Predictive Mod-
els and Data Analytics in Software Engineering. pp. 80–89. PROMISE’18,
ACM, New York, NY, USA (2018). https://doi.org/10.1145/3273934.3273944,
http://doi.acm.org/10.1145/3273934.3273944

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

20. Saxena, R.: Introduction to decision tree algorithm (2017),
https://dataaspirant.com/2017/01/30/how-decision-tree-algorithm-works/

21. Shin, Y., Meneely, A., Williams, L., Osborne, J.A.: Evaluating complexity,
code churn, and developer activity metrics as indicators of software vulnerabil-
ities. IEEE Transactions on Software Engineering 37(6), 772–787 (Nov 2011).
https://doi.org/10.1109/TSE.2010.81

22. Spieker, H., Gotlieb, A., Marijan, D., Mossige, M.: Reinforcement learning for
automatic test case prioritization and selection in continuous integration. In: Pro-
ceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis. pp. 12–22. ACM (2017)

23. St̊ahl, D., Bosch, J.: Experienced benefits of continuous integration in industry
software product development: A case study. In: The 12th IASTED International
Conference on Software Engineering,(Innsbruck, Austria, 2013). pp. 736–743 (2013)

24. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Ex-
perimentation in software engineering. Springer Science & Business Media (2012)

153

