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Abstract

The three-way-catalyst (TWC) is an essential part of the exhaust
aftertreatment system in spark-ignited powertrains, converting nearly
all toxic emissions to harmless gasses. The TWC’s conversion
efficiency is significantly temperature-dependent, and cold-starts can
be the dominating source of emissions for vehicles with frequent
start/stops (e.g. hybrid vehicles). In this paper we develop a thermal
TWC model and calibrate it with experimental data. Due to the few
number of state variables the model is well suited for fast offline
simulation as well as subsequent on-line control, for instance using
non-linear state-feedback or explicit MPC. Using the model could
allow an on-line controller to more optimally adjust the engine
ignition timing, the power in an electric catalyst pre-heater, and/or the
power split ratio in a hybrid vehicle when the catalyst is not
completely hot. The model uses a physics-based approach and
resolves both axial and radial temperature gradients, allowing for the
thermal transients seen during heat-up to be represented far more
accurately than conventional scalar (i.e. lumped-temperature)
real-time models. Furthermore, we also use a physics-based chemical
kinetics reaction model for computing the exothermic heat of reaction
and emission conversion rate which is temperature and
residence-time-dependent. We have performed an experimental
campaign with a standard spark-ignited engine and a commercial
TWC, where we measured steady-state operation and cold-start
transient behavior. This experimental data allowed us to tune the
model, where we found excellent matching between the measured and
modeled tailpipe emissions. Modeling the radial temperature gradient
improved the relative accuracy of the conversion efficiency by 15%,
and simulations indicate the potential for an absolute improvement by
15 percentage points for some cases. Furthermore, the modeled TWC
temperature evolution for a cold-start was typically within ±10°C of
the measured temperature (with a maximal deviation of 20°C). The
proposed model thus bridges a gap between heuristic models suited
for on-line control and accurate models for slower off-line simulation.

Introduction

The three way catalyst (TWC) is an essential part of the powertrain in
virtually all spark-ignited (SI) automotive vehicles, significantly
reducing the level of harmful emissions and keeping them below
legislated limits. These emissions are generated by combustion
processes in the engine, primarily consisting of carbon monoxide
(CO), nitrogen oxides (NOx), and residual unburnt hydrocarbons
(THC). In normal operation virtually all of the generated emissions
are converted to non-toxic carbon dioxide (CO2), nitrogen gas (N2)
and water (H2O) [1, 2]. In order to reach a high conversion ratio the
TWC must be sufficiently warmed up by the engine exhaust, typically

to at least 250–350°C. However, when a cold vehicle is started there is
a short period, on the order of 10–30 seconds, where the TWC is not
sufficiently warm to convert the exhaust emissions. This gives rise to
a high level of tailpipe emissions, and for many regulatory test
procedures these cold-start emissions are responsible for 60–80% of
the emissions generated from an entire test (which are for comparison
on the order of 30 minutes) [2].

Methods for reducing cold-start emissions have been studied
extensively from several different perspectives, including TWC design
methods that reduce the cold-start time [3], additional hardware that
can pre-heat the TWC before starting the engine [4], and control
schemes that control the engine’s operation to reduce the generated
emissions and/or heat the TWC more quickly [2, 5, 6, 7, 8]. One
shared requirement for making a good design choice for all these
tasks is a sufficiently accurate cold-start thermal model of the TWC.
Ideally, a model should be able to predict both the spatially varying
thermal dynamics and the conversion efficiency of the TWC to a
sufficiently accurate degree. Naturally, more complex models allow
for a higher degree of accuracy (for instance, a full 3D model), while
simpler models are computationally faster.

In this paper we introduce and experimentally study a physics-based
thermal TWC model that is both computationally fast enough to be
used for on-line control methods, while simultaneously using a kinetic
reaction model for emission species conversion and resolving both
axial and radial temperature gradients. This is a significant
improvement over many other numerically fast methods, which use
simpler heuristics for emission conversion and/or assume a constant
temperature profile in the TWC. Furthermore, the model allows for
adjusting the number of axial and radial segments in order to tune the
computational complexity to the available processing power.
Ultimately, the model allows for more accurately simulating the
behavior of the TWC, both for off-line applications that must be
numerically fast as well as on-line control methods with limited
computational capacity. For instance, an on-line controller could use
the presented TWC model in combination with a model-based control
method to balance emissions and fuel consumption by controlling the
engine’s ignition timing, an auxiliary catalyst heater, gear selection,
and/or power split in the case of a hybrid vehicle. Similarly, off-line
tuning of heuristic cold-start strategies is typically time-consuming
when done by experimental test-bench studies or numerically slow
simulations. The time needed to tune a heuristic controller could thus
be reduced by instead simulating the TWC behavior with the
presented model.

In this paper we will first give a brief overview of existing models and
highlight their strengths, weaknesses, and possible applications.
Following this we introduce and define the model, after which we
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describe the experimental setup used to tune it. Finally, we compare
the experimental data and the predictions from the model.

Literature survey

Many authors have considered the problem of modeling a TWC in a
manner that is amenable to on-line control or very fast simulation.
These models can generally be categorized by how they trade off
accuracy and computational demand as well as which sources of
dynamics the models choose to include.

The computationally fastest models typically assume one (scalar)
TWC temperature that is influenced by the exhaust emissions and use
a suitable function for determining the temperature-dependent
conversion efficiency. One example of this is [9], which assumes a
scalar TWC temperature whose state evolution is linearly influenced
by the engine exhaust gas temperature, ambient temperature, and
converted emission species. They further use the arctan function to
approximate the temperature-dependence of the reactions occurring in
the TWC. Finally, they use a dynamic programming (DP) method to
solve an optimal control problem, which could be implemented as an
on-line controller. See also [5, 6, 10] for similar (scalar TWC
temperature) approaches.

Some authors chose to improve the accuracy of the TWC model by
also modeling a TWC phenomenon wherein oxygen is absorbed and
released from the TWC. The stored oxygen content influences the
TWC’s ability to remove emissions, where CO and THC are more
efficiently oxidized when there is an overabundance of stored oxygen
in the TWC, while NOx is more efficiently converted when the
oxygen content is low. For instance, [11] uses two state variables, one
to store the TWC temperature similarly to the previous authors, and
one to store the total stored oxygen in the TWC. This addition results
in a model that more accurately captures the behavior of the TWC
during phases where the air-fuel-ratio, often referred to as lambda,
deviates from a stoichiometric condition. This occurs most
prominently during fuel-cut operation, where the engine motors
without any fuel injection, but also occurs during a short interval
when the engine speed and load is changed [12, p. 69], as well as to a
lesser extent during normal operation where lambda is periodically
switched between slightly-rich and slightly-lean in order to improve
the net TWC conversion efficiency [13]. A significant excursion from
stoichiometric operation (i.e. beyond the ordinary rich/lean switching
scheme) is typically handled by running the TWC at slightly rich or
lean in order to bring the average lambda back to stoichiometry, and is
crucial in order to maintain a high conversion efficiency.

One common approach of further improving model accuracy is by
using a heterogeneous TWC model. Most commonly this is done by
using a model that can represent varying TWC temperatures and/or
stored oxygen. As the TWC is typically constructed with hundreds of
identical parallel channels [1, p. 650], one might choose to assume
that the gas flow, composition, and temperature is identical for all
channels. By using this single-channel approximation our modeling
focus can be directed to studying the behavior in one channel in
isolation, after which we can compute the total TWC behavior via
scaling by the number of channels. As each single channel is long and
narrow one obvious method is to divide each channel into separate
axial slices and then allow each slice to take on its own temperature
and/or stored oxygen (e.g. [14, 15, 16], where temperature is axially
resolved). Ultimately this allows for capturing transient behavior in
the TWC, such as a cold-start, where the front of the TWC is typically
several hundreds of degrees warmer than the rear.

The most practically significant drawback with more complex models
is their increased computational demand. In particular, on-line control
systems intended for native vehicle implementation are typically
highly computationally limited, and any controller must be of low
numerical complexity. There are several different approaches that can
be used, ranging from using optimal control strategies as an

inspiration for heuristic controllers [14], to more computationally
expensive methods, for instance based on Pontryagin’s Maximum
Principle [15], while others primarily target simulation using
hardware much more powerful than that found in vehicles [16].

Several powerful on-line control methods, e.g. nonlinear state
feedback and some explicit MPC variants, can be implemented for
nearly any practically relevant model complexity (nonlinear,
non-convex, and non-differentiable) while being very computationally
inexpensive to run on-line. These methods are computationally
inexpensive as the model is never evaluated in the real-time controller.
Instead, the control signal is generated by referring to a pre-computed
look-up-table [17, 18], i.e. the optimal control can be computed by an
interpolation operation (taking on the order of 5–10 CPU instructions)
in the case of nonlinear state feedback, and a region identification and
function evaluation step in the case of explicit MPC. However, these
methods are limited by a computational complexity that scales very
poorly (exponentially) with the number of state variables. This applies
both to the off-line phase with respect to the computational demand of
generating the model-derived look-up-table, as well as during the
on-line phase with respect to memory requirements (as well as
computational demand in some explicit MPC cases). This motivates a
model that has a limited number of state variables, but may otherwise
(within reasonable limits) be complex and nonlinear. Note that there
exist on-line control methods that do not place as large demands on
the number of state variables (e.g. linear programming methods,
which scale polynomially with the number of state variables).
However, these methods instead limit the complexity of the model
dynamics, and can require them to be e.g. linear, convex in cost, and
so on. In this paper we take the approach of limiting the number of
state variables while allowing the dynamics to be nonlinear, which in
turn makes for instance DP-based methods an attractive choice for
subsequent simulation or controller generation.

Our goal with this paper is to develop an efficient TWC model suited
for cold-starts, whose temperature evolution is driven by the
time-evolution of the combustion engine’s exhaust gas composition,
temperature, and mass-flow. Our model primarily captures axial
temperature variations as well as to some extent radial temperature
variations, which we can view as using the axially-sliced
single-channel approximation while also allowing the temperature of
each channel to vary based on its radial position in the TWC. Given
this goal and the limit on the number of state variables, it is natural to
use a nested controller structure. For instance, an inner control loop to
regulate the engine’s lambda with a goal to maintain the correct stored
oxygen, in concert with an outer control loop to regulate the engine’s
operating point (e.g. ignition timing, speed, and torque) with a goal to
regulate the TWC temperature. Our model is therefore primarily
designed for use as a supervisory controller, and assumes a lambda
controller is already implemented. Note that since the behavior of the
physical TWC depends on the lambda-controller, then a tuned thermal
TWC model is also only valid for a given lambda-controller (i.e. it
must be re-tuned if the lambda-controller is modified).

The presented model is to our knowledge novel in the sense that it
uses a first-principles approach for both thermal conduction and
chemical kinetics in a control-oriented context, meaning that we can
avoid the use of heuristics to describe the thermal and chemical
behavior. Furthermore, the model is configurable in the axial and
radial resolution, allowing for balancing the model’s accuracy and
computational demand to the target application.

TWC model

In this section we will present the TWC model, which resolves both
axial and radial temperature dynamics, uses a first-principles model
for thermal conduction and exhaust gas species conversion reactions,
and is easy to tune to experimental data.

In principle, the model is a nonlinear ordinary differential equation,

2



Figure 1: Axially and radially discretized TWC with state variable
T̄ = [T1, T2, . . . , TN ,∆T ].

Figure 2: Fully thermally resolved TWC, here shown for M = 4, N = 3.
Arrows show the exhaust gas flow through the different cells in the model.

where the temperature derivative depends on the current temperature
and incoming gas properties. For ease of understanding we will
introduce the model in a constructive manner, similar to an
algorithmic implementation, divided into the following parts:

1. For given state variable values (which inherently only encode
the TWC temperature at a few positions) a densely-sampled
representation of the TWC’s temperature distribution is
generated where the radial resolution is significantly increased.

2. Once the dense temperature distribution is known, the properties
of the gas entering the TWC are used to determine the outgoing
gas properties and thermal flux in the TWC.

3. For a given thermal flux, the densely-sampled representation is
converted to the time-derivative of the low-dimensional state
variables.

Each of the above phases are defined in the following sections.

Generating the full temperature distribution

Figure 1 illustrates a typical cylindrical TWC monolith, which we
have axially divided into N equally long slices. Each slice, n, has an
associated state variable Tn that corresponds to the radially central
temperature. A final state variable, ∆T , represents the difference in
temperature between the radial center of each slice and its associated
periphery, giving the total state vector

T̄ = [T1, T2, . . . , TN ,∆T ]. (1)

Note that ∆T is not axially resolved, i.e. the difference in temperature
between the radial center and periphery of each slice is assumed
constant throughout the entire TWC. This assumption is made in
order to reduce the number of state variables.

In the first model step, we construct the full representation of the
TWC temperature by increasing the radial resolution. An illustration
of the full TWC model is shown in Figure 2, which consists of the
same equally long N axial slices represented in the state vector, but is
also extended radially with M evenly spaced elements. This gives a
total of N ·M cells, where each cell can be viewed as a small reactor
with homogeneous temperature. Cells (1, n) correspond to the
radially centermost parts of the TWC, while cells (M,n) correspond
to the radially outermost parts of the TWC. We naturally assume that

Short time

Long time

Figure 3: Representative solutions to the transient heat equation for varying
times t. The shown solution’s temperatures have been normalized to the range
[0, 1]. With this normalization, the solution at radii [0, 1) starts off at unit
relative temperature, and as time progresses gradually approaches the closer-to
linear distribution.

gas flows from one given axial position to its successor, without any
radial transport between cells (as indicated by the arrows in Figure 2),
i.e. we assume there is no gas diffusion between neighboring channels
in the TWC. Cells ([1 . . .M ], 1) are fed with engine exhaust, cell
(m,n+ 1) is fed with the output of cell (m,n), and the output from
cells ([1 . . .M ], N) are combined to form the total tailpipe exhaust.
Note that as the TWC is circular, cells nearer the periphery have a
larger associated open frontal area. We compensate for this by
assuming a constant gas flow-rate, and weight the incoming massflow
relative to each cell’s relative area. Letting ṁeng ex be the total
massflow from the engine, the flow into each cell is then

ṁm,1 =
m2 − (m− 1)2

M2
· ṁeng ex (2)

ṁm,n+1 = ṁm,n. (3)

In essence, we can view the full TWC model as consisting of M
parallel single-channel models, each of which consists of N sections
with different temperatures, and whose incoming massflow is
proportional to its associated frontal area.

Each cell is assigned a temperature as follows:

• cells (1, 1) through (1, N) are assigned temperatures T1 through
TN respectively (i.e. the radially centermost temperature),

• cells (M, 1) through (M,N) are assigned temperatures
T1 + ∆T through TN + ∆T respectively, (i.e. the radially
outermost temperature), and

• the remaining cells, (2, 1) through (M − 1, N), are assigned
temperatures following a physics-based interpolation scheme
described below.

Radial temperature profile

The radial temperature distribution (i.e. the temperature profile
between the radial center and periphery) in the physical TWC varies
depending on the properties of the incoming gas, and by extension the
operating point of the combustion engine.

We have chosen to model the true radial temperature profile as a
solution to the heat equation. More specifically, we solve the transient
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Figure 4: Each axial slice is assigned a radial temperature distribution that de-
pends on the properties of the incoming exhaust gas. The radially centermost
temperature (Tn) and radially outermost temperature (Tn + ∆T ) in combina-
tion with the operating point is used to construct the radially-varying tempera-
ture distribution.

heat equation in a flat circular plate with radius R and homogeneous
initial temperature T̂ (r) = 0, r = [0, R] (note that despite the similar
notation, T̂ has no direct relation to the model state vector T̄ or the
axial slices Tn). Furthermore, we apply the boundary condition
T̂ (R) = 0 at the periphery (i.e. a Dirichlet boundary condition), and
assume the bulk of the plate develops a constant and homogeneous
power (analogous to the energy delivered by the incoming gas to a
given axial TWC slice). This is a textbook problem (e.g. [19, p. 148])
with a well-known solution that can be expressed as a Fourier-Bessel
series. We can easily numerically solve this problem over time and
along the plate’s radius (for instance using MATLAB’s pdepe
function), generating the radially-varying time-evolution of the plate’s
temperature. We show normalized solutions, i.e. where T̂ is offset and
scaled so that T̂ (0) = 1 and T̂ (R) = 0, for some representative time
instances in Figure 3 for R = 1.

In this paper we select the modeled TWC temperature profile at any
given time (i.e. which profile we select from Figure 3) based on the
engine’s current operating point, as indicated in Figure 4, and we will
return to the specific method for choosing a profile in the
experimental results section. Ultimately, this gives an easily
implemented interpolation method for cells (2, 1) through
(M − 1, N) that matches the temperatures at the radial center and
periphery, represented by T1, . . . , TN and T1 + ∆T , . . . , TN + ∆T

respectively. The scheme is physically motivated, capturing the
essence of the radial thermal conduction and incoming power from
gas convection and exothermic heat of reaction.

Chemical kinetic model

Though the total set of reactions occurring in the TWC are highly
complex and involve many different compounds, there are fewer
components that contribute to the legislated emissions and significant
heat generation. We therefore are only interested in the following net
reactions (adapted from [11, 20])

2 CO + O2 −−→ 2 CO2 (4)
2 NO + 2 CO −−→ N2 + 2 CO2 (5)

2 NO2 −−→ N2 + 2 O2 (6)
2 C3H6 + 9 O2 −−→ 6 CO2 + 6 H2O (7)

C3H8 + 5 O2 −−→ 3 CO2 + 4 H2O. (8)

Typically, engine-out nitrogen oxides and hydrocarbon emissions are
lumped together [1, pp. 572, 597], and we thus categorize the the
emission species as carbon monoxide (CO), nitrogen oxides (NO and
NO2), and hydrocarbons (C3H6 and C3H8). By [1, p. 578] we
assume a constant molar ratio of 99:1 for NO to NO2 (a similar ratio
was found in our experimental tests). Similarly, by [21] and [22] we
choose to assume a a 3:1 ratio for C3H6 to C3H8. For convenience,
we will refer to these lumped emissions as NOx and THC
respectively.

We use an Arrhenius expression to model the reaction rate ksn,m of a
given emission species s (i.e. CO, NOx, and THC) in any given cell
n,m as

ksn,m = Ase
−Es

a
RTn,m (9)

where R is the ideal gas constant, Tn,m is the temperature of cell
n,m, Es

a is the activation energy of emission species s, and As is the
apparent pre-exponential factor for species s (which is dependent on
the cell’s volume). Using the notation ysn,m to indicate the mole
fraction of emission species s, we model the evolution of the mole
fraction as

dysn,m

dt
= −ksn,my

s
n,m. (10)

For a typical TWC, the gas residence time in each slice is short
enough for the temperature to be close-to constant, which we will now
motivate. In [6, p. 64], the authors find that the gas residence time in
the entire TWC is typically in the range of 0.05–0.1 s, e.g. with 4 axial
slices the residence time in each slice is typically 12.5–25 ms.
Furthermore, [6, p. 66] also finds that the typical temperature
time-derivative in the TWC during a cold-start is on the order of
10°C/s (this is similar to our findings, which we will see later).
Ultimately this implies that the temperature in a given axial slice
changes by approximately 0.1–0.25°C during the time the gas is in
each slice, which we view as insignificant.

Using the constant-temperature approximation, (10) has the explicit
solution

ysn,m(tr) = ysn,m(0) · e−ks
n,mtr (11)

for a residence time tr . We will assume a simple plug flow reactor
model (i.e. no axial mixing), which gives

tr =
Vslice

ν
(12)

where Vslice is the volume of each axial slice and ν is the volumetric
gas flow rate. We generate the slice volume as

Vslice =
VTWC

N
, (13)

where VTWC is the gas volume of the entire TWC. We further estimate
ν as

ν =
ṁeng ex

P/(RspecificTn,m)
(14)

where P is the absolute pressure in the TWC (typically close to
ambient pressure) and Rspecific is the specific gas constant for the
post-TWC ratio of N2, CO2, O2, and H2O we measured in our
experimental trials during stoichiometric operation. We have chosen
to use this specific gas constant as it is easily determined and the
remaining gasses contribute minimally to Rspecific.

Ultimately, using (9) through (14) gives a simple, but physics-based,
model for the reactions occurring in the TWC that takes temperature,
gas composition, and residence time into account. This implies that
the model is suited for quasi-stationary combustion engine operation,
where the engine-out exhaust temperature, emission species mole
fraction, and massflow varies slowly with respect to the residence
time. Though the model will not accurately capture the true behavior
during engine transients, as gas at different positions in the TWC will
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Figure 5: Representative conversion efficiency for a given emission species and
cell, with maximal efficiency at low massflow (i.e. longer residence time) and
high temperature.

have originated from the engine operated at different regimes, we
hypothesize (but were not able to verify with the available
measurement equipment) that the predicted TWC performance
converges to the measured performance on a time scale that is
comparable with the residence time in the TWC.

By (11), the massflow emitted from cell n,m is

ṁs,out
n,m = ṁs,in

n,me
−ks

n,mtr (15)

and, by the conservation of mass, the converted massflow is

ṁs,conv
n,m = ṁs,in

n,m − ṁs,out
n,m. (16)

Furthermore, we define the conversion efficiency of each cell as

ηsn,m = 1−
ṁs,out

n,m

ṁs,in
n,m

. (17)

A qualitative illustration of the conversion efficiency as a function of
massflow and temperature is shown in Figure 5.

Finally, we model the tailpipe emission of species s as the sum of
outputs from each element in the last axial segment, i.e.

ṁs
tp =

M∑
m=1

ṁs
m,N . (18)

In order to determine the exothermic reaction power generated by the
above reactions, we can compute the (temperature-dependent) heat of
reaction for each mole of reactant species as

dHCO = H0,CO2
−H0,CO − 1/2H0,O2

(19)

dHNO = 1/2H0,N2
+H0,CO2

−H0,NO − dHCO (20)

dHNO2 = 1/2H0,N2
+H0,O2

−H0,NO2
(21)

dHC3H6
= 3H0,CO2

+ 3H0,H2O −H0,C3H6
− 9/2H0,O2

(22)

dHC3H8
= 3H0,CO2

+ 4H0,H2O −H0,C3H8
− 5H0,O2

. (23)

Note that we have neglected to indicate the temperature dependence
of these above terms for brevity, but include the temperature
dependence in the model by using the Shomate equation and
reference constants given by the NIST available at
https://webbook.nist.gov/ . The heat of reaction for the lumped
emission terms is then similarly given by the weighted average

dHNOx
= (99dHNO + dHNO2

)/100 (24)

dHTHC = (3dHC3H6
+ dHC3H8

)/4. (25)

Using (19), (24), and (25) the total temperature-dependent heat of
reaction generated in each cell is given as

Pn,m = ṁCO,conv
n,m · dHCO + ṁ

NOx,conv
n,m · dHNOx

+ ṁTHC,conv
n,m · dHTHC. (26)

Generating the state vector derivative

In this stage, we use the previously computed converted massflow and
associated exothermic reaction power per cell to generate the state
vector derivative. Note that the state derivative is of size N + 1,
i.e. the information encoded in the N ·M cells is reduced to N + 1
dimensions. The state derivative is constructed from three different
terms:

dT̄

dt
= T̄cond + T̄exo + T̄convect. (27)

Here, T̄cond, T̄exo, and T̄convect correspond to bulk thermal conduction,
exothermic reaction power, and the convective power from the
incoming gasses. Theses terms are in turn defined as follows.

Thermal conduction

We model thermal conduction in the TWC, T̄cond, both axially and
radially as

T̄cond =
1

τax



T2 − T1

...
Tn−1 + Tn+1 − 2Tn

...
TN−1 − TN

0


(28)

+
1

τra


∆T

...
∆T

−∆T

 (29)

+
1

τamb


0
...
0

Tamb − 1
N

∑N
n=1(Tn + ∆T )

 , (30)

where τax, τra, and τamb are scalar tuning parameters that capture the
net axial, radial, and ambient thermal resistance respectively and Tamb
is a given ambient temperature. Note that T̄cond is given as the sum of
three terms, corresponding to axial conduction (28), radial conduction
(29), and heat transfer to the ambient environment (30) respectively.
Each of these three terms are motivated by the 1-dimensional heat
equation [19]. In particular, note that in (30) d∆T

dt
is given by the

difference in temperature between the ambient and mean peripheral
temperature. This is ultimately due to our choice of assuming a scalar
core/periphery temperature difference, i.e. one that is identical for all
axial slices.

Exothermic terms

We introduce

Pctr,n =

M∑
m=1

Pn,m(1− m− 1

M − 1
) (31)

as the weighted exothermic reaction power associated with the radial
center of the TWC for axial position n. Note that the term m−1

M−1

varies from 0 to 1 for m from 1 to M , i.e. a linear weighting. We have
chosen this specific weighting as it matches our intuition in that
exothermic power near the center of the fully resolved TWC should
be assigned to the state variables corresponding to the axial center,
and vice-versa for the periphery. However, this is only a first
approximation and an optimal weighting might be different.

Similarly, we introduce

Pper,n =
M∑

m=1

Pn,m
m− 1

M − 1
(32)
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as the weighted exothermic reaction power associated with the
periphery of the TWC for axial position n. In essence, Pctr,n and
Pper,n collect the exothermic reaction power developed in each cell,
weighting power near the center to Pctr,n and power near the periphery
to Pper,n.

We can now define the state derivative terms due to the heat of
reaction as

T̄exo = kconv


Pctr,1

...
Pctr,N

1
N

∑N
n=1(Pper,n − Pctr,n)

 , (33)

where kconv is a tuning parameter for the proportionality between heat
of reaction and the temperature derivative, i.e capturing the heat
capacity of the TWC. Note that if Pctr and Pper are expressed in Watts
and T̄exo as K/s then kconv will have units J/K. Finally, note that the last
element of T̄exo can be seen as the average difference in power
between the radially central and peripheral exothermic reaction
powers, which is thus proportional to d∆T

dt
.

Convective terms

We model the temperature derivative from convective terms driven by
the incoming gas as

T̄convect =
ṁeng ex

τconvect



Teng ex − T1

...
Tn−1 − Tn

...
TN−1 − TN

0


(34)

where Teng ex is the temperature of the gas entering the TWC and
τconvect is a tuning parameter proportionality constant, capturing the
the specific heat of the exhaust gas and the heat capacity of the TWC.
Note that (34) implies that the gas leaving each given cell is assumed
to have the same temperature as the cell itself, i.e. each cell can be
viewed as a reactor that is long enough for the moving gas to attain
the same temperature as the cell before leaving (motivated by [6, p.
62] for N ≤ [2, 5]). Also, recall that the final element of T̄convect stores
the difference in temperature between the radially central and
peripheral part, i.e. setting the final element of (34) to 0 implies
radially uniform gas flow through the TWC.

Experimental setup

Engine

The engine setup consisted of a production Volvo Cars two liter
in-line four-cylinder direct injected spark ignited turbocharged engine
rated at 187 kW and 350 Nm, as listed in Table 1. The engine exhaust
was connected to an exhaust aftertreatment system consisting of a
TWC equipped with wide-band lambda sensors, 14 thermocouples,
and five exhaust gas sampling locations, both measuring average and
point source gas compositions. The engine was connected to an
electrical dynamometer that regulated the engine speed and measured
the delivered torque. A prototyping ECU was used to allow sampling
and changing engine parameters.

An auxiliary air valve was added to the exhaust manifold, allowing for
flushing the entire exhaust aftertreatment system with
room-temperature air for the cold-start tests. Cutting all fuel to the
engine (while pumping air through the engine) and flushing with
auxiliary air allowed for rapidly cooling the exhaust aftertreatment
system, taking approximately 5 minutes to cool the entire TWC to

Table 1: Engine properties.

Engine type VEA Gen I, VEP4 MP
Number of cylinders Four, in-line

Displaced volume 1969 cc
Bore/Stroke 82 mm/93.2 mm

Compression ratio 10.8:1
Valve train DOHC, 16 valves

Intake camshaft Variable 0-48° CA advance
Exhaust camshaft Variable 0-30° CA retard
Ignition system DCI, standard J-gap spark plugs

Fuel system/Injection pressure DI/200 bar
Fuel Gasoline RON95 E10

Start of injection 308-340 CAbTDCf
Boosting system Turbocharger

Rated power/Rated torque 187 kW/350 Nm
Stoichiometric air/fuel ratio 14.01:1

Figure 6: Experimental setup, TWC housing highlighted. Above the TWC is
a 90°elbow. The turbocharger exhaust is just visible to the right of the elbow.
Below the TWC is a GPF (not used in this experiment) and a flexible bellows.

under 100°C. The auxiliary airflow was kept small enough to avoid
the turbo spooling up, which might cause an undesirable transient
when resuming normal operation. During all normal engine operation
the auxiliary air valve was kept closed in order to not alter the
composition and temperature of the engine exhaust.

A photograph of the aftertreatment system is shown in Figure 6, with
a schematic representation is shown in Figure 7 and a detailed view of
the TWC in Figure 8. The schematic shows the engine exhaust and
auxiliary cool-down air feed entering the turbo, which then proceeds
through a 90°elbow, enters the TWC, and then is finally exhausted.
Gas composition measurement points are located before and after the
TWC which sample the average gas composition. An additional three
sample points are located at the left, center, and right of the TWC,
which allow sampling the local gas composition leaving a few TWC
channels.

Data Acquisition

Data was sampled using two data acquisition systems. Emissions
signals from instruments, fuel, and the dynamometer were sampled
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Figure 7: Schematic diagram of experimental setup.
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Figure 8: TWC instrumentation as seen from rear (outlet) side. Thermocouple
locations indicated with orange, local gas sample points indicated with blue.
See Table 2 for detailed thermocouple positioning.

Table 2: Thermocouple positioning. Depth indicates position of thermocouple
relative to rear (outlet) of monolith. TWC length, diameter, and radius/azimuth
reference as shown in Figure 8.

THERMOCOUPLE RADIUS r [MM] AZIMUTH θ [°] DEPTH [MM]

Ts10a 61 180 -100
Ts10b 61 180 -60
Ts10c 61 180 -20
Ts11b 30 180 -60
Ts12a 0 0 -100
Ts12b 0 0 -60
Ts12c 0 0 -20
Ts13a 61 0 -100
Ts13c 61 0 -20
Ts14b 30 270 -60
Ts15b 61 270 -60

Table 3: Steady-state operating points. The load point at 3000 rpm, 8 bar BMEP,
1.05λ was not measured due to time constraints.

SPEED [RPM] BMEP [BAR] LAMBDA [-]

1000 2 0.95/1.00/1.05
1500 5 0.95/1.00/1.05
2000 15 0.95/1.00/1.05
3000 8 0.95/1.00

with a National Instruments DAQ and an associated LabVIEW
program. Engine parameters such as temperatures, pressures, and
target lambda were sampled using acquisition units connected via
CAN to an ETAS-module. All temperatures were measured using
type K thermocouples. Fuel flow mass was measured with a Coriolis
meter. All parameters were sampled at a rate of 10 Hz.

Exhaust samples were extracted from five different locations (as
indicated in Figure 7). Regardless of sample location, all were
extracted via a heated hose (180°C), followed by a heated
conditioning unit (190°C) with a heated filter and pump. Emissions
concentrations were then analyzed by separate instruments. Total
hydrocarbon concentration (THC) was measured using a flame
ionization detector, NOx concentrations using a chemiluminescence
analyzer, and CO using a non-dispersive infrared detector. The
propagation delay and axial dispersion in hoses and instruments was
identified by generating a step in emissions (by disabling the fuel-cut
signal as will be described in the cold-start experimental procedure).
From this data we could compensate for the propagation delay as well
as apply a first-order high-pass filter to mitigate some of the axial
dispersion in the measured pre-catalyst emission data. This
compensation was then applied to all other emission sampling
locations, allowing for studying transient gas composition changes
fairly well using an instrument rack primarily intended for
steady-state analysis. Ultimately however, our experimental set-up
only allowed for measuring emissions at any one given location at a
time. We therefore chose to keep the engine in stationary operation in
order to maximize the repeatability of the engine-out emissions,
which was critical for generating an accurate estimate of the TWC’s
conversion efficiency.

Measurement procedure

The emission measurement equipment was calibrated before
measurements using calibration gasses, and the engine was heated to
its working temperature by running at a moderate load until the
coolant temperature remained constant. Afterwards, we performed
two different tests.

Steady-state analysis

The goal of this test was to identify the steady-state engine-out
emissions and associated steady-state radial temperature distribution
in the TWC for the engine operating points that can plausibly occur
during a low- to medium-load cold-start. This was performed by
statically running the engine and storing the steady-state values of all
measured signals. The target lambda value was set swept between
slightly rich, stoichiometric, and slightly lean in order to characterize
the steady-state engine-out emissions1. This was then repeated for the
operating points listed in Table 3.

1The conventional cold-start lambda-switching routine was not altered dur-
ing this test, i.e. the instantaneous lambda value was automatically switched to
slightly above and slightly below the target lambda. We only discuss the target
(average) lambda here.
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Cold-start thermal evolution

This goal of this test was to characterize the thermal evolution of the
catalyst during a cold start. We performed this experiment for each
emission sampling point by:

• bringing the engine to a moderate speed and torque (1500 RPM
and 5 bar BMEP, giving a suitably long warm-up phase),

• disabling fuel injection (i.e. pumping air only) and opening the
auxiliary air valve until the thermocouples in the TWC reported
a temperature of under 100°C,

• first closing the auxiliary air valve and then enabling ordinary
fuel injection until the TWC reached near-equilibrium
temperature.

To capture the ordinary behavior of the engine during a cold-start, we
ensured that the lambda control was run in open-loop, i.e. the
narrowband lambda sensor after the TWC was not used to fine-tune
the engine’s air-fuel ratio. Instead, the ECU’s conventional open-loop
scheme was kept active during all tests, which periodically switches
between lean and rich phases with λ ≈ {0.98, 1.02}. This switching
period is reduced as engine speed and torque increases, leading to
poor lambda control at moderate loads and above. Due to this we kept
the engine load fairly low during tests, at 1500 RPM and 5 bar BMEP.

Experimental results

Steady-state

The results from the steady-state experiment are listed in Table 4,
showing the measured engine-out temperature, massflow, and
emission concentration. The relative midway temperature

tmid =
Ts11b− Ts10b
Ts12b− Ts10b

,

indicates the relative temperature of thermocouple Ts11b (the axial
and radial midpoint of the catalyst), where 0 corresponds to the
temperature of the radial periphery (i.e. Ts10b) and 1 corresponds to
the temperature of the radial center (i.e. Ts12b).

Cold-start thermal evolution

An illustration of the temperature evolution in the TWC is shown in
Figure 9. It shows the radial and azimuth temperature evolution
(Figure 9a) and the radially central and radially peripheral axial
thermal evolution (Figure 9b) for the tested load step. Notably,
Figure 9a indicates that there are no significant azimuth thermal
variations (as Ts11b and Ts14b exhibit virtually identical trajectories),
in turn indicating that the gas flow through the TWC is fairly evenly
distributed azimuthally and that the radius of the 90°elbow after the
turbocharger is sufficiently large for near-uniform flow. Furthermore,
some radial variations are visible, as the radially outermost
thermocouples (Ts10b, Ts15b) show a lower temperature after
≈ 100 s. Figure 9b shows a very significant axial thermal variation,
with a clearly visible thermal front progressing over time from the
incoming gas (Te9), to the front of the TWC (Ts10a/Ts12a), followed
by the middle (Ts10b/Ts12b) and the rear (Ts10c/Ts12c) of the TWC,
and finally the gas exiting the TWC (Ts23). Furthermore, the radial
peripheral temperature is bears a close resemblance to the radially
central temperature of each given axial slice. This motivates our
choice of modeling the radially peripheral temperature as Tn + ∆T

(i.e. the peripheral temperature varies axially), in contrast to assuming
a constant peripheral (canning) temperature. These results thus lend
weight to our approach of modeling primarily axial, and to some
extent radial, thermal variations.

An illustration of the net conversion efficiency of the TWC, defined as
the ratio of the total converted mass to total incoming mass, is
illustrated with dashed lines in the upper part of Figure 10. This figure
was generated by using time-resolved emission data from two
different sampling points, one before the TWC (i.e. measuring the
total generated emissions) and one after the TWC (i.e. measuring the
total remaining emissions). The figure illustrates that CO and NOx

reach light-off more quickly than THC, which is to be expected [1, p.
652]. Furthermore, we can reach a more fundamentally important
conclusion; any attempt to characterize the entire TWC’s conversion
efficiency as a function of a single temperature during a thermal
transient is bound to be limited in its accuracy. As Figure 9b shows, at
for instance t = 75 s, the front of the catalyst is ≈ 375°C, while the
rear is ≈ 125°C. We see a similar, albeit smaller, radial thermal
difference in Figure 9a. Ultimately, this again motivates our modeling
choice of a thermally resolved axi-radial model.

Model tuning

We utilized the experimental data in the previous section to tune the
model constants. The tuning phase was divided into three different
stages:

Radial temperature profile

By using the relative mid temperature, as found in the steady-state
experiment and listed in Table 4, we uniquely determined the radial
temperature profile associated with a given engine operating point.
We followed the method described in the TWC model section, where
we solved and normalized the heat equation solution over time.
Afterwards, we selected the solution associated at a given time where
the half-radius relative temperature was equal to the measured relative
mid temperature tmid.

Reaction rate parameters

The parameters Ea and A, as used in (9), were estimated using the
cold-start experimental results. First, we assigned the time-evolution
of the model’s states to the measured thermal evolution (as shown in
Figure 9). With our experimental data using three axial slices is most
convenient, as we can generate T̄ = [T1, T2, T3,∆T ] directly by
Ts12a, Ts12b, Ts12c, and Ts10b− Ts12b respectively. This explicitly
gives the sample-evolution of the state vector T̄ (k), where
k = 0, 1, 2, . . . indicates the time-sample of the state vector, sampled
at rate of 10 Hz. The radial temperature profile was estimated using
M = 15 independent radial channels. We chose to use 15 radial
channels as this is sufficiently large to resolve the most significant
radial temperature distribution, as will be shown later.

For given Es
a and As we computed the modeled tailpipe output

emissions ṁs
tp(k) using (9) through (18). Finally, we tuned Es

a and
As by solving the numerical optimization problem

min
∑
k

|ṁs
tp(k)− ṁs

tp,meas(k)|2 (35)

for all measured samples (as shown in Figure 9), and where ṁs
tp,meas(k)

was the measured tailpipe emissions of each emission species.

We solved (35) using the patternsearch optimization tool in
MATLAB (a gradient-free direct-search method bearing some
similarity to the Nelder-Mead method), which gave good matching
between the measured and simulated output emissions, as shown in
Figure 10. Note that the first 5 – 10 seconds of experimental data is of
lower accuracy, particularly for THC, as the sharpening filter used
could not completely compensate for the axial dispersion in the
sampling lines and pump leading to the measurement equipment. This
otherwise very good match indicates our choice of using a Arrhenius
expression (9) and a first-order rate equation (10) can accurately
approximate the true reactions in the TWC. The numerically
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Table 4: Steady-state engine-out temperature, massflow, relative gas composition, and TWC midway temperature.

SPEED [RPM] BMEP [BAR] LAMBDA [-] TEMPERATURE [°C] MASSFLOW [G/S] CO [PPM] NOX [PPM] THC [PPM] tMID [-]

1000 2
0.95 356 5.81 14500 151 586 0.723
1.00 368 5.95 4660 183 470 0.787
1.05 361 6.13 1370 325 405 0.757

2000 15
0.95 755 56.9 16000 1660 319 0.797
1.00 755 55.6 3920 2720 204 0.815
1.05 744 57.1 1270 3070 117 0.816

3000 8
0.95 812 50.0 15600 1050 293 0.912
1.00 860 53.3 2140 1530 11.3 0.858

1500 5
0.95 583 16.3 14900 357 384 0.919
1.00 623 17.6 4130 529 225 0.940
1.05 642 19.7 943 782 59.7 0.983

Te9_TWCIn_Exh

Ts10b

Ts11b

Ts12b

Ts14b

Ts15b

Ts23

(a) Radial and azimuthal temperature evolution of axially central slice. The
radially central portions of the TWC heats earlier (Ts11b-Ts14b) than the
radially outer parts (Ts10b, Ts15b). No noticeable azimuth variation.

Te9_TWCIn_Exh

Ts10a

Ts12a

Ts10b

Ts12b

Ts10c

Ts12c

Ts23

(b) Axial temperature variation of radially central and radially peripheral sec-
tions. The sensors closest to the engine exhaust (Ts10a, Ts12a) heat up first,
while sensors successively further back (Ts10b/Ts12b, and Ts10c/Ts12c) heat
up after each other. Sensors of the same axial position (Ts12a and Ts10a,
Ts12b and Ts10b, Ts12c and Ts10c) show a strong interdependence, moti-
vating our modelling approximation of ∆T being constant axially along the
TWC.

Figure 9: Temperature evolution of TWC. Sensor locations as shown in Figure 7 and Figure 8.
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Figure 10: Simulated and measured output emissions. The core temperature of
each axial slice T1, T2, T3 as well as ∆T is shown.

estimated parameters are shown in Table 5, and our estimated values
of Ea are on the same order of magnitude (±50–100%) as those found
in earlier studies, e.g. [23]. Note that we can not practically expect a
more precise match as we do not model mass transport limitations,
stored oxygen in the catalyst, and lambda-switching, all of which
influence the apparent reaction kinetics.

Thermal dynamics parameters

The thermal dynamics tuning parameters τax, τra, τamb, kconv, and
τconvect were also estimated using the cold-start thermal evolution.
First, we set the initial state vector T̄ (0) = [T1, T2, T3,∆T ] to the
temperatures measured by Ts12a, Ts12b, Ts12c, and Ts10b− Ts12b
respectively. Then, for given tuning parameter values we computed
the modeled thermal evolution T̄ (k), using an explicit 4’th order
Runge-Kutta method. As the tuning parameter’s influence on T̄ (k)
involves non-linear dynamics, conventional optimization methods
tend to behave poorly. Here, we have used MATLAB’s genetic
algorithm (ga) tool, with the fitness function

min
∑
k

|T̄ (k)− T̄meas(k)|2, (36)

where T̄meas is the measured temperature evolution at the sampled
times (i.e. Ts12a, Ts12b, Ts12c, Ts10b − Ts12b), and otherwise
using the default ga solver settings. Though other optimization
methods tend to converge more quickly, the genetic algorithm is
convenient in that it searches a wide range of initial values and the
presented model evaluates quickly enough for the slow rate of
convergence to not be problematic. Here, generating a solution
required approximately 4 hours on a standard desktop PC (AMD
Ryzen 2700x with 16 gb 3200 MHz RAM), where each model call
required approximately 30 ms of compute time and generated
modeled data corresponding to 425 seconds at sample rate of 50 ms
(i.e. ≈ 280 000 model calls per second, or ≈ 15 000 times faster than
realtime). The results gave good matching between the measured and
simulated thermal trajectories, as shown in Figure 11. We re-ran the
algorithm 10 times, and received virtually identical results each time.

T
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T
2
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T
3
 sim

T
 sim

T
1
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T
2
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T
3
 meas

T
 meas

Figure 11: Simulated and measured thermal evolution of the TWC.

Table 5: Estimated reaction rate parameters.

SPECIES EA [J/MOL] A

CO 40.7 · 103 161 · 103

NOx 37.5 · 103 86.0 · 103

THC 44.6 · 103 215 · 103

Table 6: Estimated thermal parameters.

PARAMETER VALUE

τax 88.2 · 103

τra 385

τamb 2.18 · 103

kconv 34.5 · 10−6

τconvect 171

The estimated parameters are listed in Table 6.

The difference between the measured and simulated temperatures in
Figure 11 are typically within ±10°C, with a maximal deviation of
20°C. We hypothesize that the deviation between the simulated and
measured T1 at 20–60 seconds is caused by exhaust species that were
adsorbed on the TWC during the first 20 seconds that start reacting as
the TWC reaches lightoff (≈ 300°C). We have chosen not to model
adsorbed exhaust species as this would require at least one additional
state variable.

We can note that the thermal TWC model captures convective gas
terms (seen during the first 20 seconds, where the entire TWC is
below the light-off temperature) as well as exothermic reaction power
generated in the TWC (seen after the first 80 seconds, where the TWC
is well above the light-off temperature and is hotter than the incoming
gasses). Furthermore, the model captures the characteristic thermal
front that progresses from the front to the rear, as well as a radial
temperature gradient that increases with increasing core temperatures,
motivating our choice of a model that is axially and radially resolved.

Note that unlike many black-box modeling approaches, the tuning
parameters in the model correspond to physical parameters. We
hypothesize that this implies that we can tune the model for a given
axial resolution M , and then easily generate tuning parameters for a
different axial resolution M ′, by scaling the slice-volume-dependent
parameters A and τax by M/M ′, and using the remaining parameters
as-is. However, we have as of yet not conclusively validated this
hypothesis.
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(a)

(b)

Figure 12: Mean absolute deviation between predicted and measured conver-
sion efficiency for varying M . In Figure 12a this is computed over t =

[20, 80] s, while Figure 12b focuses on the region t = [60, 80] s where ∆T

is more significant, as seen in Figure 10.

(a)

(b)

Figure 13: Mean absolute deviation between the simulated emission for M =

50 and the simulated emission for varyingM , with ∆T fixed to -50 and -100°C.
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Radial resolution

One of the primary contributions of this paper is the inclusion of a
radially resolved temperature profile. However, in order for this
addition to be motivated, this should result in a model that more
accurately predicts the TWC behavior. In Figure 12 we illustrate the
mean deviation between the modeled and measured conversion
efficiency (as previously studied in Figure 10) for varying radial
resolutions M . Here, we have swept M = [1, 50] while keeping the
reaction rate parameters fixed at the values found for M = 15 (see
Table 5). Both figures show an improvement in the estimated
conversion efficiency with increasing M , indicating that resolving the
radial temperature profile improves the model performance.
Furthermore, the figures also indicate that the model is not over-fitted,
as the prediction improves when M is increased from the value we
used to tune the model. Finally, we can note that our choice of
M = 15 is plausible, as the majority of the gains are had for M & 7.

More specifically, if we consider Figure 12a, we can state that
resolving the radial temperature profile marginally improves the
average predicted conversion efficiency over t = [20, 80], with a
maximal relative improvement of approximately 15%. However, if we
consult Figure 10 it is clear that |∆T | is very small at times
t = [20, 60]. Limiting the averaging window to times where |∆T | is
larger, e.g. t = [60, 80], gives Figure 12b, where we see a relative
improvement of approximately 350%. Though this is a very large
relative improvement in accuracy, the absolute deviation between the
modeled and measured conversion efficiency is small for all tested M
here, as the conversion efficiency is very close to 1. However, had the
engine been run in a manner that gave a large |∆T | near light-off we
can expect the inclusion of a radially resolved temperature profile to
give a significant absolute accuracy improvement. An illustration of
this is shown in Figure 13, where we simulate the effect of a constant
∆T = {−50,−100}, but otherwise use the same thermal evolution
and engine-out emissions. Though a constant ∆T is not practically
representative, it is plausible for |∆T | to be large during intervals near
light-off. (For example, if a hybrid vehicle starts the combustion
engine when reaching highway speeds the TWC periphery will be
significantly cooled by the passing air.) In these figures we compare
the mean emissions for M = 50 with the emissions for varying M
over the entire cold-start phase. These results show that resolving the
radial temperature distribution can lead to an average absolute
accuracy improvement by 7–15 percentage points over the entire
cold-start cycle, with gains that increase as the magnitude of ∆T

increases.

Conclusion

In this paper we have introduced a physics-based TWC model that
resolves axial and radial thermal dynamics, while simultaneously
keeping the number of state variables low, ultimately allowing for use
as a model for fast off-line simulation or on-line control methods
(e.g. nonlinear state-feedback methods and explicit MPC). The
number of axial slices (and thereby the number of state variables) and
radial resolution is configurable, allowing for balancing the
computational demand and accuracy for a specific application. The
model uses a first-principles approach for chemical kinetics,
exothermic reaction power, gas convection, axial and radial thermal
conduction, and an interpolation method for increasing the radial
resolution.

Resolving the axial and radial temperature profile allows for
implementing more nuanced control schemes, where if for instance
during a cold-start the first axial slice(s) of the TWC are hot, then the
exhaust mass-flow can be kept sufficiently low in order to increase the
residence time in the hot part(s) of the TWC. This awareness of the
TWC’s condition is lost with most conventional on-line models that
only characterize TWC temperature as a scalar value.

We have performed an experimental campaign where we measured

the temperatures and emission massflow in the TWC using a
conventional experimental rig. This experimental campaign required
only a few hours of effective measurements, after which we were able
to identify the model’s tuning parameters. These consist of three
activation energies, three pre-exponential scaling terms, one radial
thermal distribution table, and five thermal parameters.

Subsequent analysis showed that the modeled and experimentally
measured conversion efficiencies very closely match each other, even
with only three axial slices. Furthermore, the modeled temperature
evolution matched the experimentally measured temperature well,
typically deviating no more than ±10°C. The most significant
discrepancies were seen just after lightoff, plausibly due to exhaust
species that adsorbed onto the cold TWC that then exothermically
reacted after lightoff. Resolving the radial temperature profile
improved the relative accuracy of conversion efficiency by
approximately 15%, but would likely be much more significant for
operating regimes with a more prominent radial temperature gradient.
Simulations show the potential for the absolute conversion efficiency
accuracy to improve by 7–15 percentage points when the temperature
of the TWC periphery differs from the center by 100°C.

The fast computational speed of the model (approximately 15000
times faster than realtime on a desktop PC (AMD Ryzen 2700x with
16 gb 3200 MHz RAM) with unoptimized code) and the low number
of state variables open up for several possible use-cases. Examples
include closed-loop on-line control methods suited for
low-dimensional non-linear models (such as nonlinear state-feedback
and explicit MPC) and very numerically fast off-line TWC
simulations. This can ultimately allow for on-line optimal cold-start
strategies, TWC sizing, or more quickly evaluating the performance
of exhaust aftertreatment systems with several different TWC
elements. Relevant future work includes constructing a suitable state
observer for on-line applications that have a limited number of
measured temperatures.
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Nomenclature

TWC Three way catalyst
DP Dynamic programming
SI Spark-ignited
DOHC Dual Over Head Camshaft
CO Carbon monoxide
NOx Nitrogen oxides
THC Total hydrocarbons
T̄ Model state vector
Tn Temperature of axial slice n
∆T Temperature difference between radial center and radial

periphery
N Number of axial elements
M Number of interpolated radial elements
Tn,m Temperature of cell n,m
ṁn,m Total massflow into cell n,m
ksn,m Reaction rate of emission species s in cell n,m
As Apparent pre-exponential scaling factor for Arrhenius

expression for emission species s in any given cell
Es

a Activation energy for emission species s
ysn,m Mole fraction of emission species s in cell n,m
tr Residence time of exhaust gas in a given cell
Vslice Gas volume of each axial slice
VTWC Gas volume of the entire TWC
ν Volumetric flow rate in a given cell
ṁeng ex Total exhaust massflow
P Absolute pressure in the TWC
ṁs,out

n,m Massflow of emission species s leaving cell n,m
ṁs,in

n,m Massflow of emission species s entering cell n,m
ṁs,conv

n,m Massflow of emission species s converted in cell n,m
ηsn,m Conversion efficiency of emission species s in cell n,m
ṁs

tp Tailpipe massflow of emission species s
dHx Molar heat of reaction of x
Pn,m Exothermic reaction power in cell n,m
T̄cond State derivative due to conductive terms
T̄exo State derivative due to exothermic reaction terms
T̄convect State derivative due to convective terms
τax Tuning parameter, axial thermal resistance
τra Tuning parameter, radial thermal resistance
τamb Tuning parameter, ambient thermal resistance
Tamb Ambient temperature
Pctr,n Weighted exothermic reaction power, center of axial slice n
Pper,n Weighted exothermic reaction power, periphery of axial

slice n
kconv Tuning parameter, exothermic reaction power

proportionality constant
τconvect Tuning parameter, gas convection proportionality constant
Teng ex Engine exhaust temperature
T̄meas Experimentally measured temperatures corresponding to

model state vector
tmid Relative radially midway temperature
ṁs

tp,meas Experimentally measured tailpipe massflow of emission
species s
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