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a b s t r a c t 

Alkylated cycloalkanes are vital components in gasoline, aviation, and diesel fuels; however, their com- 

bustion chemistry has been less investigated compared to other hydrocarbon classes. In this work, the 

combustion kinetics of n-p ropylcyclohexane ( n- Pch) was studied across a range of experiments including 

pressurized flow reactor (PFR), jet stirred reactor (JSR), shock tube (ST), and rapid compression machine 

(RCM). These experiments cover a wide range of conditions spanning low to intermediate to high tem- 

peratures, low to high pressures at lean to rich equivalence ratios. Stable intermediate species were mea- 

sured in PFR over a temperature range of 550–850 K, pressure of 8.0 bar, equivalence ratio ( ϕ) of 0.27, 

and constant residence time of 120 ms. The JSR was utilized to measure the speciation during oxidation 

of n- Pch at ϕ of 0.5–2.0, at atmospheric pressure, and across temperature range of 550–800 K. Ignition 

delay times (IDTs) for n- Pch were measured in the RCM and ST at temperatures ranging from 650 to 

1200 K, at pressures of 20 and 40 bar, at ϕ = 0 . 5 , 1 . 0 . In addition, a comprehensive detailed chemical 

kinetic model was developed and validated against the measured experimental data. The new kinetic 

model, coupled with the breadth of data from various experiments, provides an improved understanding 

of n- Pch combustion. 

© 2021 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

.1. Background 

The aviation industry consumes a substantial quantity of 

ydrocarbon - based jet fuel every year, which adds significantly to 

lobal carbon emissions, and since 2013 alone emissions from avia- 

ion operations have risen by 26% [1] . Reduction of these emissions 

s an ongoing exercise, and it relies on the refinement of exist- 

ng propulsion technologies involving combustion engines and fuel 

lends. 

Several measures are adopted to improve aviation engines’ per- 

ormance and fuel efficiency, such as enhancements in the design 

f the compressor, combustor, and fuel injection systems, valves 
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tc. [2–4] . On the fuel side, blending of biofuels to jet fuels [ 3 , 5 , 6 ]

nd enhancing the understanding of jet fuel’s base component 

ombustion characteristics which is also the focus area of this 

ork. Typical jet fuels are a complex mixture of hydrocarbons and 

ontains ~21% alkylated cycloalkanes, by mass, by global average 

urvey estimates [7] . These alkylated cycloalkanes include methyl- 

yclohexane (MCH), ethylcyclohexane (ECH), n- propylcyclohexane 

 n- Pch), n- butylcyclohexane ( n- Bch) etc. Studies focussing on MCH, 

CH, and n- Bch are available in significant detail in literature eluci- 

ating their combustion properties and detailed kinetic model de- 

elopment. However, studies detailing n- Pch combustion are lim- 

ted in number and scope, and they do not present comprehen- 

ive investigations as typically available in the literature for other 

ycloalkanes. In the next section, a detailed review of combustion 

tudies of alkylated cycloalkanes is provided. 
Institute. This is an open access article under the CC BY license 
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.2. Literature survey 

.2.1. Methylcyclohexane (MCH) 

Han et al. [8] measured ignition delay of MCH and n-hexane 

lends in a constant volume reactor similar to an ignition quality 

ester at 20 bar and 820–920 K. Also, the effect of fuel injection 

arameters on heat release rate and ignition delay time were in- 

estigated. In another study Hong et al. [9] measured ignition de- 

ay times of MCH and ECH in a shock tube at low pressures of 

.5 and 3.0 atm, temperatures of 1280–1480 K, and ϕ = 0.5, 1.0. 

itz and coworkers [10] reported ignition delay measurements of 

CH in a rapid compression machine (RCM) at 10–20 bar, 650–

100 K for stoichiometric mixtures and also proposed a kinetic 

echanism. Vanderover et al. [11] conducted ignition delay mea- 

urements for MCH in a shock tube at pressure range of 10.8-69.5 

tm, temperature range of 881–1319 K, and ϕ = 0.25, 0.5, 1.0. Sim- 

larly, Vasu et al. [12] also measured ignition delay time of MCH 

n shock tube over a wide pressure range in a shock tube from 1 

o 50 atm, 795–1560 K, ϕ = 0.5–2.0. Weber et al. [13] performed 

gnition delay measurements in an RCM at 50 bar, 690–900 K, ϕ = 

.5–1.5. Humer et al. [14] measured flame extinction and autoigni- 

ion of MCH and other fuels in a laminar non-premixed flow in 

he counterflow configuration. In addition, a reduced kinetic mech- 

nism was proposed which adequately predicted the experimental 

ata. In 2019, Bissoonauth et al. [15] conducted an oxidation and 

yrolysis study in jet stirred reactor across an extensive range of 

ressures (1–50 bar) and temperatures (50 0–110 0 K) at three dif- 

erent experimental facilities and measured the concentrations of 

ntermediates and end products. Narayanaswamy et al. [16] devel- 

ped a detailed kinetic mechanism in the low to high-temperature 

egion and improved the model using experimental data from the 

iterature. MCH has also been studied in a Cooperative Fuels Re- 

earch (CFR) engine by Yang and coworkers [17] by varying the 

ompression ratio from 4 to 15. These investigations were con- 

ucted at ϕ = 0.25 and two inlet temperatures 120 and 200 °C 

nd exhaust gasses were analyzed and various conjugated alkenes 

nd cyclic oxygenates were measured. Wang et al. [18] studied 

CH pyrolysis using synchrotron vacuum ultraviolet photoioniza- 

ion mass spectrometry at the National Synchrotron Radiation Lab- 

ratory (NSRL), Hefei, China. Molecular-beam sampling was used 

o analyze the species formed during pyrolysis in a flow reactor. 

he authors also studied oxidation of MCH in premixed flames and 

everal pyrolysis and flame intermediates were quantified. Orme 

t al. [19] studied oxidation and pyrolysis of MCH in a shock tube 

t experimental conditions of 1–4 bar, 120 0–210 0 K and ϕ = 0.5, 

.0, 2.0, and proposed a detailed kinetic model. In another work, a 

echanism describing high temperature combustion of a range of 

-alkanes up to n-dodecane and cyclohexane, and methyl-, ethyl- 

 n-propyl and n–butyl–cyclohexane was developed by Wang and 

oworkers as JetsurF 2.0 [20] . Wu et al. [21] measured laminar 

ame speeds of MCH at high pressure of 10 atm and temperature 

f 353 K and at range of equivalence ratios ϕ = 0.7–1.7. 

.2.2. Ethylcyclohexane (ECH) 

Husson et al. [22] conducted a jet stirred reactor study at 1 atm, 

0 0–110 0 K, and ϕ = 0.25, 1, 2 measuring speciation during oxi- 

ation of ECH. More recently, a shock tube was used to measure 

gnition delay times for ECH and n-Pch at atmospheric pressure, 

 = 0.5, 1.0, and 2.0, temperatures of 1110–1650 K, and with a 

xed fuel concentration of 0.5% [23] . Ignition simulations were per- 

ormed using three previously developed and published chemical 

inetic mechanisms which yielded acceptable agreement with the 

hock tube measurements at the studied equivalence ratios. Tian 

t al. [24] studied the ignition of ECH in a shock tube at 1.1–

0 atm, 10 0 0–170 0 K, and ϕ = 0.5–2.0. Wang et al. [25] studied

yrolysis of ECH in a flow reactor at atmospheric pressure across 
2 
emperature range of 90 0–110 0 K and quantified the products us- 

ng gas chromatography and synchrotron vacuum ultraviolet pho- 

oionization mass spectrometry. Wang et al. [26] then further ex- 

anded their investigation by measuring species for both oxidation 

nd pyrolysis of ECH at low pressures of 30, 150 and 760 Torr. 

.2.3. Propylcyclohexane (n-Pch) 

Ignition of n-Pch has been studied in an RCM at lean conditions 

t 620-930 K, 4.5–13.4 bar, and ϕ = 0.3, 0.4, 0.5 by Crochet [27] .

ubois et al. [28] studied the ignition characteristics of n -Pch in 

 shock tube at 10–20 bar, at higher temperature range of 1250–

800 K, ϕ = 0.2–1.5, and flame speeds in constant volume spheri- 

al bomb at 1 bar, 403 K, ϕ = 0.6–1.75. In addition, they also as-

embled a kinetic mechanism. Guo et al. [29] formulated a high- 

emperature n -Pch mechanism using their inhouse code ReaxGen 

nd compared it with data from shock tubes, laminar flames, jet 

tirred reactors from literature. Ristori et al. [30] measured spe- 

iation during oxidation of n -Pch in JSR at atmospheric pressure, 

50–1250 K, ϕ = 0.5–1.5 and also developed a kinetic model. Farid 

31] and Corrubia [ 32 , 33 ] at Drexel university measured n -Pch in-

ermediate species in a Pressurized Flow Reactor (PFR) at 8 atm 

nd a range of temperatures from 550 to 850 K. Pousse et al. 

34] studied flame structures of methane flames doped with n -PCH 

nd also proposed a kinetic model for n -Pch combustion. 

.2.4. Butylcyclohexane (n-Bch) 

Oxidation of blends of n-Bch and heptane has been studied in 

oth a shock tube and rapid compression machine by Conroy [35] . 

he ignition delay time measurements were made at 1–50 atm, 

80–1550 K, and ϕ = 0.3, 0.5, 1.0 and 2.0. In another study, Mao 

t al. [36] conducted an extensive RCM investigation of n -Bch igni- 

ion characteristics at 10, 15, 20 bar; 612–1374 K and ϕ = 0.5, 1.0, 

.5. The oxidation of n -Bch was studied in PFR [37, 38] with an ini-

ial fuel molar fraction of 1082 ppm ( ϕ = 0.38), the temperature 

f 600–820 K, pressure of 8 atm, and residence time of 120 ms. 

etailed intermediate speciation with a GC / MS revealed straight- 

hain species (i.e. alkenes and aldehydes) and various cyclic com- 

ounds (i.e., cycloalkenes, ketone-substituted cycloalkanes and sev- 

ral two ring cyclic structures). The work from Drexel also devel- 

ped a semi-detailed n -Bch low-temperature oxidation mechanism 

hat captured the measured PFR reactivity trends which were char- 

cterized by low temperature increasing reactivity and NTC behav- 

or decreasing overall reactivity. 

An experimental and modelling study using shock tubes and 

 rapid compression machine was performed with n -Bch by Pitz 

nd coworkers [39] at temperatures of 630–1420 K, pressures of 

0, 30, 50 atm and ϕ = 0.3, 0.5, 1.0, 2.0. In addition, a detailed n -

ch chemical kinetic model was developed to simulate its ignition 

t both low and high temperatures. The experimental ignition de- 

ay times were used to improve the chemical kinetic model. The 

uthors concluded that rate constant parameters developed from 

ecent ab initio calculations provided better predictions of exper- 

mental ignition delay time data than the estimated rate constant 

arameters based on analogies to other molecules [40] . Recently, 

hang and coworkers [41] conducted experimental ignition delay 

easurement of n -Bch in shock tube at 2, 5, 15 atm; 707–1458 K; 

 = 0.5, 1.0, 2.0. Mao and coworkers [ 36 , 42 ] conducted studies on

 -Bch using rapid compression machine and shock tube measuring 

gnition delay at 10–20 bar, 612–1374 K, ϕ = 1.0, 1.5 and specia- 

ion during oxidation in flow reactor 1 bar, 650–1075 K, ϕ = 1.0, 

.5. In addition, they also proposed a detailed kinetic mechanism. 

ong et al. [9] compared ignition delay of cyclohexane, MCH, and 

 -Bch at 1.5, 3 bar, 1280–1480 K, ϕ = 0.5, 1.0. Ali et al. [43] stud-

ed thermal decomposition of n -Bch at 0.01–1 atm, 80 0–210 0 K. 

iu et al. [44] studied ignition of various cyclohexanes including 

-Bch in counterflow burner at 1 bar and 373 K. 
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Fig. 1. Unimolecular reactions of n-propylcyclohexane. 

Fig. 2. n-propylcyclohexane radicals produced after H-atom abstraction from vari- 

ous sites. 
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It is evident from the literature review that n- Pch warrants fur- 

her combustion investigation, especially at low to intermediate 

emperatures and higher pressures. Besides, previous studies have 

ot proposed a detailed chemical kinetic model for n- Pch combus- 

ion for wide range of pressures, temperature and equivalence ra- 

ios elucidating ignition and speciation characteristics. 

To this end, this work presents a detailed examination of com- 

ustion chemistry of n- Pch wherein ignition delay time (IDT) mea- 

urements have been made at low to high pressures in RCM and 

hock tube (ST). Intermediate speciation studies were conducted in 

 jet stirred reactor (JSR) and pressurized flow reactor (PFR) exper- 

ments. Further, a detailed chemical kinetic model has been pro- 

osed and validated against the acquired experimental dataset. 

The experimental measurements in the JSR, ST, and RCM were 

onducted at King Abdullah University of Science and Technology 

KAUST). The JSR facility at KAUST was utilized to measure speci- 

tion during oxidation of n- Pch at ϕ = 0.5, 1.0, 2.0, atmospheric 

ressure, and in the temperature range of 550–800 K. IDT’s of n- 

ch mixtures were measured in an RCM and ST for low to high 

emperatures ranging from 650-1200 K, at higher pressures of 20 

nd 40 bar, and ϕ = 0 . 5 , 1 . 0 . Speciation measurements were con-

ucted in PFR facility at Drexel University in the temperature range 

f 550–850 K and pressure of 8.0 atm. A detailed chemical kinetic 

odel for n- Pch was developed to describe ignition characteristics, 

uel consumption pathways and product species formation. Com- 

arisons between results computed with the developed model and 

he measured experimental data are presented, and the kinetics of 

- Pch combustion are discussed. 

. Chemical kinetic modeling 

This section discusses the chemical kinetic model of n- Pch pro- 

osed in this work which is consistent with earlier works of Wang 

t al. investigating flame and pyrolysis kinetics of MCH [18] and 

CH [26] . The developed mechanism has 1442 species and 6397 re- 

ctions, and the base C 0 –C 4 chemistry is described by Aramcomech 

.0 [45] . 

In the following section, details of important reaction classes 

n the low-temperature and high-temperature mechanism and the 

stimation of thermochemistry and kinetic rate parameters are dis- 

ussed. 

.1. High-Temperature reactions 

.1.1. Unimolecular reactions of n- Pch 

The uni-molecular reactions of n- Pch include three dissocia- 

ion and seven isomerization pathways, as shown in Fig. 1 . As in 

ang’s ethylcyclohexane mechanism [26] , H elimination reactions 

re not included due to their higher activation energies than com- 

eting decomposition and isomerization channels [26] . The rates 

or these reactions were assigned based on analogous pathways 

rom the ethylcyclohexane mechanism [26] , which in turn, were 

alculated by Zhang et al. [46] using RRKM/master equations. The 

ni-molecular decomposition leads to the formation of ethylcy- 

lohexyl, methylcyclohexyl and cyclohexyl radicals which further 

ndergo β-scission to produce alkenyl and alkyl species. Specifi- 

ally the rates of pathways leading to methyl- and ethylcyclohexyl 

adicals were adopted from analogous pathways of n-butane com- 

ustion from Oehlschlaeger et al. [47] . The isomerization channels 

ead to the formation of various straight and branched C-9 alkenes, 

hich are subsequently consumed through H-atom abstraction and 

-scission channels to smaller species. 
3 
.2. Hydrogen abstraction reactions 

Hydrogen abstraction from the fuel molecule is an essen- 

ial class of reactions responsible for fuel consumption. In the 

echanism, n- Pch undergoes initial H-atom abstraction by various 

pecies (e.g., O 2 , O, OH, HO 2 , H, CH 3 ), leading to the production

f seven distinct fuel radicals as shown in Fig. 2 . The majority of 

-atom abstraction rates by different species leading to fuel rad- 

cals R1, R2 and R3 were adopted from JetsurF 2.0 [20] . In addi-

ion, some rates from literature were also used at these sites (R1, 

2, R3) to improve the performance of the model. Specifically, ab- 

traction by OH radical at sites R2 and R3 were adopted from ex- 

erimentally measured rates from Badra et al. [48] and abstrac- 

ion by H radical at site R2 was adopted from Liu et al. [49] . The

ates from Badra et al. [48] were tuned within 60% of published 

ates while the rate from Liu et al. [49] was increased by a fac- 

or of 2. The rate of H atom abstractions by radicals O, H, CH 3 , O 2 ,

O 2 from the sites on the ring (R4, R5, R6, R7) were adopted from 

ang’s ECH work [26] where the rates of abstraction by H radi- 

al were increased by a factor of 2. Rate of attack by OH on the

econdary sites of the ring (R5, R6, R7) were adopted from Weber 

t al. [13] and were also tuned within a factor of 2, while the rate

or site R4 was adopted from Wang et al.[ 18 , 26 ]. 

There is still lack of reliable theoretical and experimental reac- 

ion rate data for n -Pch combustion and hence modifications are 

eeded before rates from analogous compounds could be adopted. 

n this case, reaction rates were tuned to improve ignition predic- 

ion of the mechanism in the intermediate and high temperature 
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Fig. 3. Consumption of alkenes produced via unimolecular reactions of n-propylcyclohexane. 
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Fig. 4. Alkenyl radical decomposition of n-propylcyclohexyl radical. 
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egion and the tuned reactions were identified by conducting sen- 

itivity analysis. 

The alkyl radicals produced were consumed through β-scission 

eactions leading to the formation of alkenes and alkenyl species. 

.3. Consumption of alkanes and alkenes 

Unimolecular reactions of n- Pch leads to formation of seven 

inear and branched alkenes ( Fig. 1 ). These alkenes are then con- 

umed through allylic H-atom abstraction reactions followed by β- 

cission leading to formation of miscellaneous species and di-enes. 

hese di-enes are further consumed by H-atom abstraction reac- 

ions and β-scission reactions to produce smaller species already 

resent in the base mechanism or the mechanism of ECH [26] . The 

eaction rates of allylic H-atom abstraction and β-scission reac- 

ions were adopted from Wang et al. [ 18 , 50 ]. These consumption

athways are exhibited in Fig. 3 for various H-atom abstraction 

nd β-scission pathways. Due to relatively higher activation energy 

arrier of these reactions, these species are expected to be formed 

n minor quantities hence a simplified consumption scheme by al- 

ylic H-atom abstraction is considered, however this simplification 

ould be revisited when more accurate rates are available for pro- 

uction of these species. 

Another set of alkenyl and alkyl species along with alkenes are 

roduced via β-scission of fuel radicals which include ring-opening 

athways. They undergo β-scission to smaller alkenes, as shown in 

ig. 4 . The rates for these β-scission reactions were adopted from 

ifferent alkanes and alkene species with the analogous position 

f the double bond, chain length and radical sites from Wang et al. 

26] . 

.4. Low-Temperature mechanism 

The first step in low-temperature oxidation chemistry is the ad- 

ition of the oxygen molecule (O 2 ) to the fuel radicals (R1-R7) 

eading to the formation of seven alkylperoxy radicals (RO 2 ), as 

hown in Fig. 5 for R6. The reaction rates for these steps have been
4 
dopted based on Curran et al. [51] , which are originally based on 

orks of Lenhardt et al. [52] and Atkinson et al. [53] for the propyl

ranch while the rates on the ring are from Fernandes et al. [54] .

he next major step in the low-temperature chain branching step 

s the isomerization of alkylperoxy radicals (RO ) to hydroperoxy 
2 
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Fig. 5. Low-Temperature branching pathways for n-Pch. 

a

a

F

t

a

t  

f

s

r

e  

w

i

c

a

i  

p

w

a

a

t

a  

t

d

r

a

o

c

a

i

c

i

2

t

0

s  

t

[

p

t

c

g

n

t

o

t

u

r

r

i

i

t

m

g

p

3

3

t

t

s

t

s

t

e

l

e

t

q

s

m

r

w

a

t

<

[

p

q

p

t

m

t

d

m

w

t

f

o

o

n

2

t

r

m

s

p

w

w

d

lkyl radicals (QOOH). These reactions proceed via an internal H- 

tom transfer via 5, 6, 7 and 8 membered transition state rings. 

ig. 5 depicts this pathway with a five, six and seven-membered 

ransition state. The rates for this class of reactions were based on 

nalogies for alkanes by Sarathy et al. [40] , which are based ini- 

ially on the work of Curran et al. [51] . The internal H-atom trans-

er leads to creating a carbon centered radical, which undergoes 

econd O 2 molecule addition, leading to hydroperoxy alkylperoxy 

adicals (O 2 QOOH). These reaction rates are adopted from Lenhardt 

t al. [52] and Curran et al. [51] . There are other competing path-

ays leading to the formation of alkenes and cyclic ethers lead- 

ng to accumulation of relatively stable species hence making the 

hemical system less reactive. The rates for these reactions were 

dopted from Curran et al. [51] . 

Recently some studies have also demonstrated pathways lead- 

ng to addition of third O 2 [ 55 , 56 ] molecule to P(OOH) 2 which is

roduced by intramolecular isomerization of O 2 QOOH. These path- 

ays are shown to have significant impact on low temperature re- 

ctivity of long chain alkanes but at present we do not have reli- 

ble rate constants to include such pathways in the mechanism. 

The hydroperoxy alkylperoxy radicals isomerizes to form ke- 

ohydroperoxides (carbonyl hydroperoxide), and the rates are 

dopted from Curran et al. [ 51 , 57 ]. The last step in the low-

emperature branching pathway is the decomposition of ketohy- 

roperoxide producing sets of radicals and stable species. These 

eactions are assigned as irreversible and forward rates have been 

dopted from Sarathy et al. [40] . There are multiple other classes 

f reactions in the low-temperature oxidation scheme involving 

hain propagation and termination steps, and the rates have been 

dopted by analogous sites and structures from Sarathy et al. [40] . 

In addition to a detailed description of the chemistry of n- Pch 

n the low and high-temperature region, this mechanism also in- 

ludes the oxidation pathways leading up to n- propylbenzene and 

ts consumption as proposed by Darcy et al. [58] . 

.5. Thermochemistry 

The thermochemistry for multi-ring species was calculated in 

his work using quantum chemical methods with the Gaussian 

9 [59] suite of programs. During these calculations, merged ring 

tructures are optimized with B3LYP/6–31 + G (d,p) [ 60 , 61 ] level of

heory, and then the total energies are determined with CBS-QB3 

62] . Entropy and heat capacity contributions as a function of tem- 

erature are then determined using moments of inertia, vibra- 
5 
ion frequencies, symmetry, electron degeneracy, number of opti- 

al isomers and the known mass of each species. SMCPS [63] pro- 

ram is applied to calculate the contributions of translation, exter- 

al rotation, and vibrations by using standard formulas from sta- 

istical mechanics. Vibrational frequencies are scaled by a factor 

f 0.964 [64] to calculate standard entropy and heat capacity at 

he B3LYP/6–31 + G (d,p) level of calculation. Rotator [65] program is 

sed to calculate the contribution from the corresponding internal 

otor torsion frequencies. In this work, a te n- parameter Fourier se- 

ies function is used as a torsional potential curve to estimate free 

nternal rotation contribution. The species for which thermochem- 

stry has been calculated are shown in Fig. 6 , and detailed func- 

ion and parameters are shown in the supporting material. Ther- 

ochemistry for simpler species has been calculated with Benson’s 

roup additivity approach [66] using THERM software [67] as im- 

lemented on CloudFlame [68] . 

. Experimental measurements and methodology 

.1. Pressurized Flow Reactor(PFR) 

The Drexel University Pressurized Flow Reactor (PFR) used in 

his study is a turbulent flow reactor designed to study the low 

o intermediate temperature oxidation of hydrocarbons, shown 

chematically in Fig. 7 . The design achieves reduced gradients in 

emperature and the flow field to allow the use of plug flow as- 

umptions [ 69 , 70 ] for data analysis and modelling. The PFR con- 

ains a 22.5 mm ID, 40 cm long quartz reactor tube to provide an 

nvironment where surface reactions are negligible within a stain- 

ess steel pressure vessel rated to a maximum of 20 bar; how- 

ver, 8 bar was selected for this study to allow comparison to 

he work of Natelson et al. [38] . The annular volume between the 

uartz reactor tube and the pressure vessel is at the same pres- 

ure as the reaction chamber. During a typical oxidation experi- 

ent, the oxidizer stream (composed of high purity nitrogen (pu- 

ity = 99.9%) and high purity oxygen (purity = 99.994%)) is mixed 

ith high-pressure pre-vaporized fuel/nitrogen in an opposed jet 

nnular mixing nozzle at the inlet to the quartz reactor tube. For 

he maximum as designed PFR operating conditions ( < 10 0 0 K, 

 20 bar), a nominal mixing time was calculated to be 1.25 ms 

69] A water-cooled, borosilicate glass-lined stainless-steel sample 

robe extracts and quenches samples from the centerline of the 

uartz reactor tube. 

A direct transfer controlled cool down (DT-CCD) operational 

rocedure was used to minimize the time between sample collec- 

ion and analysis of stable intermediate species in the gas chro- 

atograph (GC) / mass spectrometer (MS) / flame ionization detec- 

or (FID). The DT-CCD method developed by Kurman et al. [71] pro- 

uced a carbon balance of 90% at 550–850 K. 

During an oxidation experiment, the PFR was heated to the 

aximum desired reaction temperature of approximately 850 K 

hen a syringe pump injected fuel into a 300 °C nitrogen stream 

hat ensured complete fuel vaporization. The fully vaporized 

uel/nitrogen mixture rapidly mixed with the oxidizer stream in an 

pposed jet annular mixing nozzle, with a nominal mixing time 

f 1.25 ms. The PFR experiment flow rates were: 0.750 ml/min 

- Pch, 8.40 slpm O 2 , 161.2 slpm N 2 for the oxidizer stream, plus 

0.00 slpm N 2 for n- Pch fuel vaporization. The relatively large ni- 

rogen bulk flow rate acted as a diluent to limit the temperature 

ise due to heat release to a maximum of approximately 10 K at 

aximum reactivity as measured from the mixing nozzle to the 

ample probe. After the system stabilized, the sample probe was 

ositioned for a reaction time of 120 ms, and the first sample was 

ithdrawn for analysis. Stable intermediate species in the sample 

ere identified and quantified with the GC/MS/FID and CO/CO 2 /O 2 

etector. During the analysis time for the first sample, the PFR 
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Fig. 6. List of species for which thermochemistry data has been calculated in this work using quantum chemistry approach. 

Fig. 7. Schematic of the Drexel Pressurized Flow Reactor facility. 
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emperature was gradually reduced to the next selected sample 

emperature. The probe was repositioned to maintain the constant 

eaction time of 120 ms. This procedure was repeated for all col- 

ected samples. 

.2. Jet Stirred Reactor(JSR) 

The oxidation of n- Pch was studied in a jet stirred reactor (JSR) 

t KAUST. Species profiles for n- Pch and intermediates (CO, C 2 H 4 , 

 3 H 6 ) were analyzed at atmospheric pressure at a range of tem- 

eratures (50 0–80 0 K) and equivalence ratios ( ϕ = 0.5, 1.0, 2.0). 

he JSR experimental setup consists of a 76 cm 

3 spherical quartz 

eactor with four nozzles of 0.3 mm diameter to attain homogene- 

ty of species and temperature distribution. The JSR is connected to 

pstream and downstream quartz tubes of diameter 25.4 mm. n- 

ch was stored in a 10 ml syringe and was injected using a syringe

ump at a constant flow rate. After vaporization, fuel was diluted 

ith N 2 and mixed with O 2 at the JSR entrance, and the flow rate

as regulated with a multi-gas controller (MKS) mass flow me- 

er. The reactor and part of the upstream and downstream quartz 

ubes were symmetrically placed in an electrical heating furnace to 

romote oxidation reactions. The furnace temperature was moni- 

ored via a K-type thermocouple inserted into a quartz shield [72] . 

he quartz tubes (upstream and downstream) located outside the 

urnace were heated with electrical heating tape and maintained at 

93 K using stainless-steel K-type thermocouples and temperature 

ontrollers. 

Stable intermediates and fuel and oxidizer species were sam- 

led by a sonic probe connected to the vacuum suction pump to 

revent further reactions. All downstream tubing was heated to 
6 
73 K to avoid condensation. Gas composition was analyzed us- 

ng a refinery gas analyzer (RGA), a uniquely designed gas chro- 

atography system, coupling a flame ionization detector (FID) and 

 thermal conductivity detector (TCD) where helium was used 

s carrier gas. Capillary columns (Molecular Sieve 5A, 2 ft and 

 ft Unibeads 1S, HP-Al/S and DB-1) were used for species quan- 

ification including n- Pch, ethene, oxygen, carbon monoxide, car- 

on dioxide, and propene. The uncertainty in the measurement 

f fuel/oxygen concentration and intermediates is 10% and 20%, 

espectively. The uncertainty in temperature measurement is + /- 

5 K. O 2 and N 2 gasses used during the experiments had purity 

ver 99.99%. The JSR residence time was set to two seconds at at- 

ospheric pressure. Further details about measurement methods 

nd the apparatus are provided in [73] 

.3. Shock tube and rapid compression machine 

High-pressure ignition delay time measurements of n- Pch were 

onducted using the shock tube and rapid compression machine 

acilities at KAUST. IDT measurements were performed over a wide 

ange of experimental conditions, spanning the temperature range 

f 625 to 1100 K at two pressures, 20 and 40 bar and two equiva-

ence ratios, 0.5 and 1. The shock tube (ST) and rapid compression 

achine (RCM) facilities at KAUST have been extensively reported 

n the literature [74, 75] and hence only a brief description is pro- 

ided here. 

The ST employed in this study consists of double diaphragm 

id-section configuration, which allows improved control of the 

iaphragm burst pressure and higher control of the thermody- 

amic conditions behind the reflected shock wave. The shock tube 

s constructed with stainless steel and consists of two sections, 

amely driver and driven sections of similar length (6.6 m) and 

iameter (10 cm). The shock tube and mixing tank, along-with the 

ixing manifold, were heated to 100 °C to avoid any condensa- 

ion of fuel on the inner walls. Near the end-wall of the driven 

ection, six dynamic pressure transducers were installed to mea- 

ure the incident shock speed. The measured shock speed and the 

- Pch/oxidizer mixture’s thermodynamic properties were utilized 

o calculate reflected shock temperature and pressure using one- 

imensional shock jump equations. During the measurements, ig- 

ition delay time was computed using pressure signal and OH 

∗

hemiluminescence measurements through the sidewall and end- 

all ports. Estimated uncertainty in the reflected shock temper- 

ture/pressure is < 1% and the estimated uncertainty in the igni- 

ion delay times is ~ 20%. Gradual pressure rise behind the re- 

ected shock wave, dp/dt , was measured to be 3% / ms; there- 
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Table 1 

Experimental conditions for n-Pch oxidation studies in Pressurized Flow Reactor. 

Parameter Exp 1 Exp 2 Average Uncertainty 

n- Pch (ppm) 830 821 826 ±20 

O 2 (ppm) 42,100 42,100 42,100 ± 1250 

N 2 (ppm) Balance Balance Balance –

Equivalence Ratio, φ 0.27 0.27 0.27 ± 0.05 

Temperature (K) 550–850 550–850 550–850 ± 5.0 

Pressure (atm) 8.000 8.000 8.000 ± 0.025 

Residence Time (ms) 120 120 120 ± 1.0 
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Fig. 8. Pressurized flow reactor simulations: Species profile from experiment and 

Chemkin pro simulations for n-Pch, O2, CO, CO2. 
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ore, a 3% dp/dt was imposed on zero-dimensional kinetic simu- 

ations [26]. 

The RCM facility at KAUST is equipped with a twin - opposed pis- 

on design that facilitates a higher degree of mechanical balance 

nd shorter compression time than a single-piston configuration. 

he reaction chamber is 50.8 mm in diameter and stroke length 

f 169 mm per piston, allowing a compression ratio of 16.8:1. The 

istons are equipped with a fast pneumatic compression system 

hat helps achieve compression times (final 50% of compression 

troke) of ~ 3 ms. The compressed gasses pressure was moni- 

ored using a pressure transducer (Kistler 6045) mounted on the 

ombustion chamber during the compression and ignition process. 

o avoid forming roll-up vortices inside the core of the reaction 

hamber, creviced pistons with ~ 10% of the post-compression vol- 

me were employed [27]. Post compression heat loss from the 

CM was accounted for by using no n- reactive volume profiles [28] 

uring chemical kinetic simulations. Estimated uncertainty in the 

CM ignition delay measurements is ~ 15%. The purity of gasses 

sed during these measurements are CO 2 : 99.995%, N2: 99.995%, 

2:99.995% with traces of Ar ( < 1 ppm), N2 ( < 1 ppm), Moisture

 < 2 ppm). No n- reactive RCM volume profiles required for simula- 

ions and mixture fractions are provided as Supplementary Mate- 

ial. 

. Results and discussion 

.1. Pressurized Flow Reactor(PFR): experimental and modelling 

Oxidation of n- Pch was studied in the Drexel PFR at two nearly 

dentical experimental conditions, as shown in Table 1 . The results 

re the average of both experiments with the uncertainties be- 

ng ±1 standard deviation for stable intermediates measured with 

he GC/MS/FID, and equal to the equipment uncertainty for carbon 

onoxide, carbon dioxide, and oxygen. 

During the PFR study (i.e., < 850 K), carbon monoxide forma- 

ion is an indicator of low-temperature oxidation reactivity as 

here is little conversion of CO to CO 2 [76] at low temperatures. 

ig. 8 presents a reactivity map with the molar fractions of carbon 

onoxide, carbon dioxide, molecular oxygen, and n- Pch plotted 

oncerning temperature. The oxidation behavior of n- Pch exhibits 

lassical NTC behavior. The start of NTC for n- Pch, as indicated by 

he temperature at which the molar fraction of CO peaks and be- 

ins to decrease, occurs at approximately 700 K with CO produc- 

ion of roughly 770 ppm. Also, carbon dioxide levels at NTC start is 

bout 180 ppm, which is similar to previous PFR experiments per- 

ormed on straight-chain alkanes such as n- decane and n- dodecane 

 70 , 77 ], as well as the previously studied methyl-alkylated alkane, 

,7-DMO [31] . Namely, the carbon dioxide profile tracks the carbon 

onoxide profile over the low to intermediate temperature regime, 

ut at lower levels on the order of 25% −35% of the CO molar frac-

ion. Lastly, at NTC start where maximum reactivity exists corre- 

ponds to a minimum in the n- Pch and molecular oxygen molar 

raction profile. At NTC start, the n- Pch molar fraction is approx- 

mately 115 ppm which translates to 86% fuel conversion. The O 
2 

7 
olar fraction is about 40,0 0 0 ppm which corresponds to approxi- 

ately 5% of the reactant O 2 being consumed suggesting that C 

–H 

emains in fuel fragments. 

These trends are like those observed in the related n- Bch ox- 

dation study [38] as shown in Fig. 3 in [38] . Both n- Pch and n-

ch studies were for 8 bar pressure, 550–850 K, 120 ms residence 

ime, but different fuel loading as discussed below. The NTC start 

emperature for n- Pch shifted approximately 20 °C higher than n- 

ch. The trend follows results observed by Kurman et al. [77] , in 

hich NTC start occurred at 675 K for n- dodecane, and NTC start 

ccurred at 695 K n- decane. This illustrates the general observation 

hat NTC start for smaller and simpler chemical structures (e.g., n- 

ch, and n- decane) occurs at higher temperatures as compared to 

arger and more complex chemical structures (e.g., n- bch, and n- 

odecane) for low to intermediate temperature regime oxidation. 

lso, the peak CO level for n- Pch was roughly 800 ppm at approxi- 

ately 690 K and around 1600 ppm at approximately 670 K for n- 

ch. This translates to about 11% of the n- Pch fuel carbon convert- 

ng to produce CO at approximately 690 K (i.e., NTC start tempera- 

ure for n- Pch) and about 14% of the n- Bch fuel carbon converting 

o produce CO at around 670 K (i.e., NTC start temperature for n- 

ch). This indicates peak CO levels are highly dependent on initial 

uel loading since n- Pch was initially 826 ppm and n- Bch was ini- 

ially 1082 ppm. For comparing different fuels’ reactivity at other 

uel loading conditions, the NTC start temperature is suggested as 

 fuel reactivity indicator since it is strongly dependent on the ox- 

dation chemistry of a particular fuel rather than fuel loading. 

During these experiments seventy-seven stable intermediate 

pecies were identified and quantified using the GC/MS/FID system 

nd CO/CO 2 /O 2 detector during both n- Pch experiments. The car- 

on balances for all sample temperatures were greater than 90%. 

he minimum occurring at 700 K. Supplementary material lists 

he sixty-two stable intermediate species measured at molar frac- 

ions greater than approximately one ppm and their corresponding 

ncertainties. The fifteen stable intermediate species measured at 

olar fractions less than approximately 1 ppm included: 1-hexene; 

- butylcyclohexane; 1,3-pentadiene; 2-butene; 2-methylcyclohexyl 

ropionate; cyclohexene, 4–butyl; cyclohexene, 1–butyl; cyclohex- 

nol, 3-methyl-2-(1-methylethyl)- (1a,2a,3a); cis-7-dece n- 1-al; cy- 

lohexanone, 2-(2-butynyl)-; 1,3-isobenzofurandione, hexahydro- 

 trans-; 2,2-bifuran, octahydro-; cyclohexanone, 2–butyl; 2-(4- 

ethylcyclohexylidene) −1-propanol; 9-Ethylbicyclo(3.3.1)nona n- 9- 

l. The entire list of species quantified during these experiments 

s included in the supplementary material. 

Another observation in PFR measurements is mismatch of fuel 

oncentrations between 550 K and 850 K. The Pressurized Flow Re- 
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Fig. 9. Pressurized flow reactor simulations: Species profile from experiment and 

Chemkin pro simulations for ethene propene, 1-butene. 

Fig. 10. Pressurized flow reactor simulations: Species profile from experiment and 

Chemkin pro simulations for aldehydes: propanal and 2-propenal. 
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Fig. 11. Pressurized flow reactor simulations: species profiles from experiment and 

simulations for aromatics: benzene. 

Fig. 12. Pressurized flow reactor simulations: Species profile from experiment and 

Chemkin pro simulations for cyclic alkenes: cyclopentene and cyclohexene. 

Fig. 13. Jet stirred reactor simulations: species profiles from experiment and sim- 

ulations for n-Pch, O2, C2H4, C3H6, CO, CO2 at ϕ = 0.5. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
ctor (PFR) experiment begins at the higher temperature of 850 K 

nd is reduced to the lower temperature of 550 K over time at 

pproximately 50 K increments. The reason for less fuel recov- 

red at the lower temperatures is likely due to the gas chromato- 

raph/mass spectrometer (GC/MS) drift over time. 

Chemical kinetic simulations for PFR oxidation were carried out 

ith the kinetic model developed in this study using Chemkin 

ro-ver. 19.2 [78] . The energy equation was solved for the plug 

ow reactor model with single inlet and outlet stream under adi- 

batic conditions using the reactor geometry, experimental con- 

itions and initial species concentration to simulate the experi- 

ents accurately. In Fig. 8 , we compare experimental and simula- 

ion species profiles for n- Pch, O 2 , CO and CO 2 . The simulated re-

ctivity profile of n- Pch simulations closely predicts the consump- 

ion of n- Pch across the entire measurement range except for over 

rediction of fuel consumption in the NTC region. Consistent with 

igher predicted fuel consumption in the NTC region, the O 2 pro- 

le also shows higher consumption in the NTC region. The model 

redicts higher CO before, and in the NTC region, however, the pre- 

icted concentration of CO is lower at the start of NTC. 

In Fig. 9 , experiment and simulation results of various alkene 

ntermediates produced during oxidation of n- PCH are presented. 

uring the oxidation process, short chain alkenes observed are i.e. 

thene, propene and 1-butene and no larger alkene concentrations 

ere measured. 
8 
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Fig. 14. Jet stirred reactor simulations: species profiles from experiment and sim- 

ulations for n-Pch, O2, C2H4, C3H6, CO, CO2 at ϕ = 1.0. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 15. Jet stirred reactor simulations: species profiles from experiment and sim- 

ulations for n-Pch, O2, C2H4, C3H6, CO, CO2 at ϕ = 2.0. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 

Fig. 16. Comparison of ignition delay experiments and simulations in shock tube 

and rapid compression machine at 20 bar. 

Fig. 17. Comparison of ignition delay experiments and simulations in the shock 

tube and rapid compression machine at 40 bar. 

Fig. 18. Comparison of experimental data from Dubois et al. [28] and the ignition 

delay predictions using the n-Pch kinetic model proposed in this study. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 

m

e

p

t

1

d

i

T

t

e

t

p

c

P

p

n

a

c

l

a

9 
The computed species profile of propene captures the experi- 

ental trend and the overall peak concentration produced; how- 

ver, it shows a shift towards high temperature, resulting in lower 

roduction rates before the NTC region. Also, towards the high 

emperature end, the concentration of propene is overpredicted. 

-Butene was observed in low concentrations which is well pre- 

icted by the model except at 650 K. The concentration of ethene 

s largely over predicted in the intermediate temperature regime. 

he concentrations of these alkenes produced is minor compared 

o significant intermediates and products (i.e., CO, CO 2 ) and are not 

xpected to have any significant effect on combustion characteris- 

ics of n- Pch, so the kinetic model was not tuned further to im- 

rove their prediction. 

The developed kinetic scheme also considers production and 

onsumption of smaller aldehydes during the oxidation of n- 

ch. Several aldehydes were measured, including acetaldehyde, 

ropanal, 2-propenal, butanal, and 1,3,5-trioxane. However, the ki- 

etic model only includes propanal and 2-propenal production 

nd consumption pathways. As shown in Fig. 10 , the computed 

oncentrations of propanal overpredict PFR measurements in the 

ow-temperature regime and underpredict the PFR measurements 

t NTC start. The computed species profile of 2-propenal cap- 
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Fig. 19. Dominant fuel consumption pathways of n-Pch at 20 bar, 40 bar at ϕ = 0.5, 1.0 and 650 K, 850 K and 1050 K. 

10 
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Table 2 

Composition of test mixtures in mole percentages used in JSR measurements. 

Species Equivalence ratios, ϕ

0.5 1.0 2.0 

n- Pch 0.005 0.005 0.005 

O 2 0.135 0.068 0.034 

N 2 0.86 0.928 0.961 
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Fig. 20. Sensitivity analysis of n-Pch/air mixture ignition in a shock tube at 20 and 

40 bar at ϕ = 0.5 and 850 K. 
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ures the trend but over predicts the concentrations by a factor 

f 5. 

During n- Pch oxidation, three different aromatic species were 

easured in minor quantities: benzene, phenol, and ethoxy ben- 

ene. A comparison of benzene’s computed and experimental val- 

es is presented in Fig. 11 . Although benzene is produced is in- 

ignificant quantities, the proposed kinetic model captures the ex- 

erimental values. 

Lastly, comparisons between computed and experimental val- 

es for cyclic alkenes are presented in Fig. 12 . Cyclopentene is pro- 

uced in minor concentrations and is accurately captured by the 

inetic model. Similar comparisons for another cycloalkene, cyclo- 

exene, is also presented, and the computed values are slightly 

igher than the measurements but accurately reproduces the 

rend. 

.2. Jet stirred reactor: experimental and modelling 

The oxidation of n- Pch was studied in a JSR at three equiv- 

lence ratios, ϕ = 0.5, 1.0, 2.0; at atmospheric pressure, and a 

ange of temperatures covering low temperature and NTC region 

500–770 K). The initial concentration of the species during the 

xidation experiments is provided in Table 2 . The concentration 

rofiles of fuel-oxidizer, along with intermediates, is presented in 

igs. 13 , 14 and 15 for ϕ = 0.5, 1.0 and 2.0 respectively. The

pecies measured are carbon monoxide (CO), carbon dioxide (CO 2 ), 

thene (C 2 H 4 ), propene (C 3 H 6 ), n- Pch and Oxygen (O 2 ). At the start

f measurement (at 500 K), n- Pch is non - reactive at all equiva-

ence ratios. However, with a rise in reactivity increases with in- 

rement in equivalence ratio with the mixture being most reactive 

t ϕ = 2.0. At 560 K, CO and CO 2 are first detected and peaks at

20 K coinciding with the start of NTC region. This behavior is con- 

istent with PFR experiments; nevertheless, the start of NTC in PFR 

s observed at 700 K, resulting from the PFR’s leaner equivalence 

atio and higher reactor pressure during the experiments. In gen- 

ral, with an increase in pressure the onset of NTC shifts towards 

igher temperature (i.e., PFR–8 bar and NTC start at 700 K; JSR - 

 bar and NTC start at 620 K) due to the influence of pressure on

he chemical equilibrium of molecular oxygen addition to the alkyl 

nd hydroperoxy-alkyl radicals. 

The perfectly stirred reactor (PSR) model on Chemkin Pro-ver. 

9.2 [78] was used to simulate jet stirred reactor (JSR) experiments 

onducted in this work. These PSR simulations utilize various ex- 

erimental details such as species concentrations, reactor geome- 

ry, residence time, pressure, and temperature to represent JSR ex- 

eriments accurately. In line with JSR measurements, computations 

ere conducted at three different equivalence ratios, ϕ = 0.5, 1.0, 

.0. Consumption profiles of n- Pch, O 2 , and evolution profiles for 

 2 H 4 , C 3 H 6 , CO, CO 2 are compared against experiments and are

lso presented in Figs. 13 , 14 and 15 for ϕ = 0.5, 1.0, 2.0, respec-

ively. The kinetic model accurately captures the consumption of 

- Pch in the low-temperature branch until 650 K, however, the 

odel predicts higher reactivity for fuel in the NTC region by ∼
5% at all three equivalence ratios. The evolution of CO is under- 

redicted at the fuel-lean condition in the low-temperature region 

y a factor of ∼1.5. However, the prediction in the NTC region is 
11 
lose to the experimental values. The predicted species profile of 

O and CO 2 are closely within the experimental error range. Both 

he alkenes, ethene and propene were produced in minor quanti- 

ies during experiments and hence were multiplied by a factor of 

0 both in experiments and simulation to improve their visibility. 

he concentration of ethene was overpredicted while propene was 

nderpredicted by the model. 

.3. Shock tube and rapid compression machine: experimental and 

odelling 

Ignition delay measurements have been made in a tempera- 

ure range of ∼ 60 0-110 0 K, at pressures of 20 and 40 bar, and

wo different equivalence ratios ϕ = 0.5, 1.0. The measurements 

t relatively higher temperatures where the ignition delay times 

re lower than ∼ 10 ms are made with the shock tube. The RCM 

as used at comparatively lower temperatures with longer ignition 

elay times ( �
−

10 ms ). These ignition delay data and experimental 

etails, including mixture information, are provided in the supple- 

entary material. 

Ignition delay data from the shock tube and RCM are presented 

n Fig. 16 and 17 . At both the pressures, ignition delay data shows

 weak dependence on equivalence ratio at high and low tempera- 

ures. The effect of equivalence ratio was only observed in the NTC 

egion (740–900 K) and the ignition delay times in low and high 

emperature regions are roughly the same. 

Ignition delay simulations for the shock tube (ST) and rapid 

ompression machine (RCM) experiments were carried out using 

 homogenous batch reactor model in Chemkin Pro-ver. 19.2 [78] . 

uring ST ignition measurements, a pressure rise was observed 

nd was implemented in the ST simulations using an increasing 

ressure profile at the rate of 3%/ms. Similarly, post-compression 

eat loss in RCM experiments is represented using inert RCM 

ressure profiles during these simulations. The comparison of ex- 

erimental and computed ignition delays is also presented in 

ig. 16 and 17 for 20 and 40 bar, respectively. In Fig. 16 , the kinetic

odel captures the RCM experimental ignition delay in the low- 

emperature range at ϕ = 1 . 0 within a close agreement. However 

t ϕ = 0 . 5 , the RCM measurements span low temperature and the

TC region, and the entire range is very well predicted by the ki- 

etic model with slight over-prediction at 770 K. Shock tube mea- 

urements at ϕ = 0 . 5 and 1 . 0 were slightly overpredicted by the ki-

etic model. 

Shock tube and RCM simulations were also conducted at 40 bar 

t two equivalence ratios, ϕ = 0 . 5 and 1.0 and were compared to
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Fig. 21. Species glossary for sensitivity analysis shown in Fig. 20 . 
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he experiment in Fig. 17 . The kinetic model well represents the 

xperimental data at low temperature, high temperature and part 

f the NTC region. The kinetic model to some extent overpredicts 

he shock tube ignition delay in the high temperature range. 

In addition to the data acquired in this study, the developed ki- 

etic model is also compared to ignition delay measurements con- 

ucted at 10 bar from Dubois et al. [28] the comparison is pre- 

ented in Fig. 18 . The comparison between the experimental data 

nd the model predictions highlights that the ignition delay pre- 

icted by the model is a factor of 2.5 higher over the temperature 

a

12 
ange at all equivalence ratios. These comparisons also point to- 

ards lack of reliable kinetic data for n- Pch combustion especially 

n the high temperature region. 

.4. Chemical kinetic analysis 

Flux analysis has been conducted at 20 bar for 650 K, 850 K, 

050 K and ϕ = 0 . 5 , 1 . 0 to identify the crucial reactions involved

n determining the ignition characteristics of n- Pch. These exper- 

mental conditions covered the entire range of low, intermediate 

nd high-temperature ignition at two different equivalence ratios. 
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n addition to the flux analysis, ignition delay sensitivity analysis 

as also conducted at 20 and 40 bar at ϕ = 0 . 5 and 850 K, where

he definition of sensitivity coefficient (S i ) is: 

 i = 

(
τign ( 2 ki ) − τign ( ki/ 2 ) 

)

( 2 k i − k i / 2 ) 

k i 
τign ( ki ) 

 i = 

(
τign ( 2 ki ) − τign ( ki/ 2 ) 

)

1 . 5 τign ( ki ) 

(1) 

here, 

ign ( 2 ki ) = ignition delay prediction when ith reaction with 

rate constant ki is mul tipl ied by 2 

ign ( ki/ 2 ) = ignition delay prediction when ith reaction with 

rate constant ki is d i v id ed by 2 

In Fig. 19 , the flux analysis of n- Pch has been presented at 15%

uel consumption, 20 bar and 650 K, 850 K, 1050 K. At all three

emperatures, fuel molecule is predominantly consumed through 

-atom abstractions leading to the production of seven fuel radi- 

als. At 650 K, the fuel radicals are further consumed by first O 2 

ddition, leading to hydroperoxyalkyl radical via internal H atom 

bstraction from the site adjacent to the ring. Thus, another O 2 

olecule is added to the radical site, eventually leading to ketohy- 

roperoxide formation and its eventual decomposition. At 650 K, 

nly pathways are presented for one dominant fuel radical; how- 

ver, at 650 K being consumed through low-temperature oxidation 

athways. Another observation is that the dependence of these 

athways on equivalence ratio is minimal as earlier highlighted in 

ig. 16 and 17 . At 850 K, the fuel molecule undergoes O 2 addition

t radical sites to produce RO 2 radicals which further exhibits low- 

emperature chain branching to eventual production and consump- 

ion of ketohydroperoxides. At this temperature RO 2 also exhibits 

ompeting pathways to produce cyclic alkenes via QOOH decom- 

osition due to the increase in temperature from 650 K to 850 K. 

Eventually, at 1050 K, the low-temperature branching is re- 

laced by β-scission, fuel radical isomerization, cyclic alkene and 

yclic ether formation. The fuel radicals thus produced are con- 

umed by β-scission producing cyclic alkenes and alkenyl radicals 

urther consumed by H-atom abstraction and β-scission. The H- 

tom abstraction reaction’s dominant products are R5, R6 and R7 

in Fig. 2 ), which are also the most significant pathway as iden- 

ified in the sensitivity analysis in Fig. 20 . The sensitivity analy- 

is identifies reactions playing a significant role in determining ig- 

ition delay time or reactivity of the system at these conditions. 

s per Eqn. (1) and an increase in the magnitude of the A-factor 

f the reactions with sensitivity coefficient in positive directions 

ill inhibit the reactivity of the system by increasing the igni- 

ion delay; while increasing the A-factor of reactions with nega- 

ive sensitivity coefficients will promote reactivity, thus decreasing 

he ignition delay time. In Fig. 20 , apart from G69, there are some

ther notable reactions such as decomposition of hydroperoxide 

H 2 O 2 ) to two hydroxyl radicals (OH) (G3879) and formation of 

etohydroperoxide from peroxyhydroperoxyalkyl radical (G3651). 

hile decomposition of H 2 O 2 is a significant source of hydroxyl 

adicals controlling the ignition process, the formation and even- 

ual decomposition of ketohydroperoxides also promotes ignition 

y releasing hydroxyl radicals. At 40 bar, higher yield of fuel rad- 

cal C 3 H 7 S 2 XcC 6 H 10 is observed as shown in Fig. 20 which fur-

her leads to the production of higher concentrations of interme- 

iates in the low-temperature chain branching process including 

roduction and decomposition of ketohydroperoxides. This higher 

ranching ratio leads to increased reactivity at 40 bar, which re- 

ults in lower ignition delay and suppressed NTC behavior. An- 

ther explanation of this shift in NTC behavior could be derived 
13 
rom the method of experimental measurements. The structure of 

pecies discussed in the sensitivity analysis in Fig. 20 is depicted in 

ig. 21 . 

. Summary and conclusion 

This work presents a detailed experimental, kinetic modelling 

nd quantum chemistry study of n- propylcyclohexane, a crucial 

omponent of jet fuels. The oxidation of n- propylcyclohexane was 

tudied experimentally using several experiments including jet 

tirred reactor (JSR), pressurized flow reactor (PFR), shock tube 

ST) and rapid compression machine (RCM) covering a wide range 

f pressure, temperature and equivalence ratios. Further, a de- 

ailed chemical kinetic model comprising of low, intermediate and 

igh-temperature kinetics was developed. The reaction rates for 

-propylcyclohexane consumption were estimated based on analo- 

ies with existing and analogous species mechanisms. The ther- 

ochemistry for several new species was also estimated by quan- 

um chemistry methods and group additivity approach. The ki- 

etic model predictions were compared against the experimental 

ata with satisfactory agreements for speciation data from the JSR 

nd PFR measurements for several major species. There is room 

or improving the kinetic model for several minor intermediates 

easured in these experiments. Experimental and simulated igni- 

ion delays were also compared. The model satisfactorily describes 

he ignition characteristics of n- propylcyclohexane in the entire 

egion with exception of longer predicted ignition delay time in 

igh-temperature and in the NTC region. The model was also com- 

ared with experimental ignition delay data at 10 bar from Dubois 

t al. [28] . and the model was found to over predict the ignition

elay times at all equivalence ratios, highlighting the need for cal- 

ulations and measurements of reliable reaction rates describing 

-p ropylcyclohexane kinetics. 

This work provides a comprehensive investigation of n- 

ropylcyclohexane combustion chemistry and will prove instru- 

ental in studies of analogous alkylated cyclic alkanes. 
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