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ABSTRACT Healthcare sectors face multiple threats, and the hospital emergency department (ED) is one
of the most crucial hospital areas. ED plays a key role in promoting hospitals’ goals of enhancing service
efficiency. ED is a complex system due to the stochastic behavior of patient arrivals, the unpredictability
of the care required by patients, and the department’s complex nature. Simulations are effective tools
for analyzing and optimizing complex ED operations. Although existing ED simulation models have
substantially improved ED performance in terms of ensuring patient satisfaction and effective treatment
services, many deficiencies continue to exist in addressing the key challenge in ED, namely, long patient
throughput time. The patient throughput time issue is affected by causative factors, such as waiting time,
length of stay, and decision-making. This research aims to develop a new simulationmodel of patient flow for
ED (SIM-PFED) to address the reported key challenge of the patient throughput time. SIM-PFED introduces
a new process for patient flow in ED on the basis of the newly proposed operational patient flow by combining
discrete event simulation and agent-based simulation and applying amulti-attribute decision-makingmethod,
namely, the technique for order preference by similarity to the ideal solution. Experiments were performed
on three actual hospital ED datasets to assess the effectiveness of SIM-PFED. Experimental results revealed
the superiority of SIM-PFED over other alternative models in reducing patient throughput time in ED by
consuming less patient waiting time and having a shorter length of stay. The findings also demonstrated the
effectiveness of SIM-PFED in helping ED decision-makers select the best scenarios to be implemented in
ED for ensuring minimal throughput time while being cost effective.

INDEX TERMS Emergency department, patient flow, simulation modelling, throughput time, decision
making.

I. INTRODUCTION
The healthcare sector of every country has a sensitive setting
and plays an important role in national politics [4]. Any
deviation from the optimal health service places additional
pressure on healthcare professionals [5]. The emergency
department (ED) plays a central role in the furtherance of
the objectives of a hospital to improve the quality of hos-
pital services [6]. ED provides health services 24 hours a
day for seven days a week to injured and sick patients, and
medical tests are conducted in ED until the health conditions
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of patients stabilize [7]. Notably, the function of ED is to
treat patients in a critical or life-threatening situation and
not to deal with patients that present low-acuity injuries or
illnesses [8]. Thus, ED is the most challenging element of
the healthcare system [9]. Patients expect well-organized ser-
vices from a customer perspective. ED managers encounter
difficulties in controlling problems related to process flow
(patients and information), and these difficulties result in long
patient time in ED [10]. Simulation models are effective tools
for process modeling and improving healthcare processes and
complex systems, such as ED [11], [12]. Simulation mod-
els are thus suitable for addressing problems in ED, where
resources are scarce and patients arrive at irregular times [11].
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Several ED simulations models have been proposed to
continuously improve ED services, maximize ED resources,
and eventually ensure patient satisfaction and provide effec-
tive treatment services [9], [13], [14]. However, only a
few ED models examine the operational patient flow pro-
cess in ED with respect to reducing patient throughput
time [15], [16]. These models include integrated safety sim-
ulation [1], agent-based simulation (ABS) [2], and interac-
tive simulation-based decision support framework [3]. Patient
throughput time is the total amount of time spent to serve a
patient (from the patient’s time of arrival to the time of exit
from ED). The issue of patient throughput time relates to
the long patient throughput time in ED. Patient throughput
time is essential in obtaining patient satisfaction; provid-
ing quality treatment while reducing the throughput time
of patients enhances ED performance in terms of achieving
patient satisfaction and providing effective treatment ser-
vices [1], [17]–[20].

Throughput time is also one of the essential aspects
that exert significant effects on ED operations (e.g., patient
flow) [21], [22] Although the usefulness of existing models
that were developed to address the patient throughput time
issue has been established, a close examination reveals that
these models cannot sufficiently address the issue of patient
throughput time. The issue of patient throughput time is
affected by several causative factors, including waiting time,
length of stay (LoS), and decision-making [9], [22], but exist-
ing models have failed to sufficiently handle these causative
factors [9] because these models do not sufficiently consider
all causative factors that affect the issue of throughput time in
ED [18]. Thus, patient throughput time must be improved by
minimizing patients’ waiting time and LoS and considering
decision-making factors [23].

Waiting time refers to the total time that a patient waited
before being served in ED; overcrowding in ED increases
patient waiting time [24], [25]. LoS is related to the total
time that a patient spent in ED, and it starts from the time
when the patient entered ED (arrival time) to the time the
patient physically left ED (departure time) [1]. The relation-
ship of patient waiting time and LoS with patient throughput
time is directly incremental. An increase in patient waiting
time and LoS leads to an increase in patient throughput time
in ED, which induces the issue of throughput time [26].
Management decision-making in any domain is challenging.
However, decision-making in EDs is particularly sensitive
because of its impact on the quality of care given, the risk of
mortality, and the number of patients that leave ED without
being treated [8]. The decision-making factor is related to the
process and decisions implemented by ED top management
to ensure high-efficiency ED services in terms of patient
throughput time and cost [27]. However, despite the crucial
impact of the decision-making factor on the issue of patient
throughput time in ED, existing models do not sufficiently
consider the decision-making factor in relation to patient
throughput time and cost [21]. The decisions made by the
top management are related to certain key aspects that are

associated with redesigning the operational flow of ED and
hiring staff (i.e., number of nurses and doctors) [8]. Making
incorrect or improper decisions on the reported key aspects
negatively affects patient throughput time [28]. For instance,
decision-making on hiring or implementing an ineffective
operational patient flow with a small number of ED staff can
increase the throughput time of patients due to the inability
to treat patients within a short time [18]. Meanwhile, cost
refers to the budget cost of the LoS of patients in ED, and it
can be measured based on the treatments given to patients; it
reflects the cost of implementing the scenarios of patient flow
and is related to increasing the capacity of physicians, nurses,
staff, and equipment [2], [3], [29], [7]. Making incorrect or
improper decisions regarding the operation flow that patients
should take during their stay in ED adversely affects the total
budget cost by increasing the treatment cost [2].

To address the issue of patient throughput time in ED and
the decision-making factor for enhancing ED performance in
terms of reducing patient throughput time while being cost
effective, this research aims to develop a new simulation of
patient flow for ED model called SIM-PFED. The model
aims to reduce patient throughput time in ED by examin-
ing the reported causative factors of the throughput time
issue. The contribution of this work can be summarized as
follows:
• Newly proposed operational patient flow. The proposed
operational patient flow incorporates a new low-level
description of the operational patient flow in ED. This
new operational flow varies from conventional models
in terms of the use of ED triage and acuity scale, which
are used to define the emergency severity index (ESI).
It also differs in the way it deals with the specified ESI
patient for improving patient throughput time in ED.

• A new simulation-based decision-making model for
patient flow called ‘SIM-PFED’ is proposed. The
proposed model provides a new process for patient
flow in ED based on the newly proposed opera-
tional patient flow. It combines discrete event simula-
tion DES and ABS, thereby applying a multi-attribute
decision-making (MADM) technique. This is known
as the technique for order preference by similarity to
the ideal solution (TOPSIS). The DES is a popular
and frequently used technique by researchers to model
patient emergency waiting time. In contrast, ABS is one
of the most convenient techniques for simulating agent
behavior. Hence, the integration of ABS and DES mod-
els is the newest and most powerful approach that has
been introduced [15]. Additionally, the proposed model
uses TOPSIS to select the best scenarios for reducing
throughput time in ED.

• The empirical assessment of the proposed SIM-PFED
in terms of reducing patient throughput time is based
on actual ED datasets from four hospitals, namely,
Shahid Rajaei Hospital (SRH) [1], Santa Casa de São
Paulo Hospital [2], hospital in North Dublin, Ireland [3],
Urgent Care Center(UCC) [20]. These datasets are
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considered to be under the context of the proposedmodel
(simulation of patient flow in ED).

The rest of this paper is structured into six main sec-
tions, as follows. Section II illustrates the related works.
Section III discusses the proposed SIM-PFEDmodel in detail
with respect to its proposed steps. Section IV elaborates on
the evaluation of the proposed SIM-PFED model. Section V
discusses the results evaluation and performance analysis of
the proposed SIM-PFED model, Section VI discusses the
basis for the suggested SIM-PFED and the experiments trends
detected during the comparison and experimental analysis,
and SectionVI concludes this studywith discussing the future
sets.

II. RELATED WORK
The healthcare sector of every country has a sensitive setting
and plays an important role in national politics. Any deviation
from the optimal health service places additional pressure
on healthcare professionals [9]. The main concern regard-
ing healthcare services is the issue of overcrowding in ED,
which has been thoroughly studied [30], [31]. In developed
nations, overcrowding demands urgent attention as rapidly
aging societies intensify the use of ED [32], [33], which exerts
a significant effect on patient safety and could reduce the
chances of survival of critical patients in certain situations
due to the long waiting time and LoS. Long waiting time and
LoS lead to long patient throughput time. Consequently, long
patient throughput time negatively affects the entire national
healthcare system and its potential to provide minimum ser-
vice in any country [31], [34]. Urgent care centers have been
identified as one of the remedies for reducing the impact of
long patient throughput time in hospital ED. Patient through-
put time in ED is associated with increased LoS, waiting
time, and cost and incorrect or improper decision-making
for patients in ED. Patient dissatisfaction often increases
with increased patient throughput time, which is considered
a serious issue in ED [7].

Simulation modeling in the healthcare context covers ED
healthcare management. Although ED simulation models
have been extensively developed for various contexts, only
a few studies have concentrated on operational patient flow
with respect to patient throughput time in ED [35]–[37].
Abo-Hamad and Arisha [3] proposed a DES model to
improve patient flow in ED [9], [18]. They found that
unblocking ED outflows through in-patient bed management
is more effective than simply increasing the physical capacity
or workforce of ED. However, this model encounters a major
challenge related to the increase in patients’ waiting time,
does not use new decision-support tools, and focuses on ED
operation and cost.

Yousefi and Ferreira [2] proposed an ABS model to
improve the performance of ED. The total waiting time
and number of patients decreased by 12.7% and 14.4%,
respectively. The limitation of this model is that it insuf-
ficiently addresses patient throughput time in terms of
decision-making and cost factors. Fitzgerald, et al. [23]

proposed an integrated DES and queueing theory model to
support decision-making for a fast-tracked ED process. The
proposed model informs hospital decision-makers about the
effect of fast tracking or similar program implementation on
patient waiting times and acuity-based demand for nursing
services. Despite the effectiveness of this model in supporting
decision-making for ED fast tracking, the model does not
consider the decision-making in terms of patient throughput
time and cost, leading to the issue of long patient throughput
time in ED [38]. Sbayou, et al. [39] proposed the integration
of business process model and notation (BPMN) and ABM
to manage resources in ED and deliver high-quality services
for addressing the congestion problem and long waiting time.
The evaluation results of the model revealed its effective-
ness; the model reduces the cost of ED and waiting time by
5%. However, the model does not efficiently address patient
throughput time in terms of LoS and staff satisfaction to
increase ED performance [40].

Huang et al. [28] proposed a recent model in which
chart review is used to measure LoS for trauma patients
in ED. The results of the model revealed the efficiency of
the model with respect to supporting direct communica-
tion with trauma service by the ED provider and reserva-
tion of two temporary beds, resulting in reduced LoS for
trauma patients [40]. However, this model does not consider
the patient in different acuity case scales and does not
address the decision-making factor, resulting in the inability
to reduce waiting time and increased patient throughput time
in ED [41]. Hajjarsaraei et al. [1] proposed a DES model
integrated with system dynamics (ISS) to reduce patient wait-
ing time, LoS, and number of patients who leave without
being seen (LWBS). The ISSmodel assesses the optimization
of the fast track strategy [42] and the impact of sensitive
policy parameters on the safety performance of ED. Simi-
larly, Yousefi et al. [22] proposed an ABM to simulate the
LWBS behavior of patients in a public hospital ED. The
design of the ABM model included increasing the number
of triage nurses, fast-tracked treatment, increasing the wait-
ing room capacity, and reducing the treatment time. The
ABM model succeeded in reducing the rate of LWBS by
applying fast-track treatment. Despite the usefulness of ISS
and ABM models, these models do not efficiently address
patient throughput time [1]. The ISS model does not examine
the effect of decision-making factors on LoS, waiting time,
number of deaths, number of wrongly discharged patients,
and total number of discharged patients [1]. Meanwhile,
the ABM model does not consider the decision-making of
the patient in terms of throughput time and the cost factor in
ED [1].

On the basis of the limitations of existing models, the cur-
rent work presents a new model called SIM-PFED that can
reduce patient throughput time by addressing the causative
factors of the throughput time issue with respect to waiting
time, LoS, and decision-making. SIM-PFED can identify the
scenario that has the least patient throughput time from all
scenarios to be implemented in ED. The following section
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FIGURE 1. Process of the proposed SIM-PFED model.

provides a detailed explanation of the proposed model and its
performance.

III. PROPOSED SIM-PFED MODEL
Figure 1 presents the process of the proposed SIM-PFED
model. The SIM-PFED process comprises three main phases,
namely, input, processing, and output. Unlike the ED simula-
tion models, our proposed model introduces certain number
of contributions in the processing phase. These contributions
can be summarized as follow:
• We present a newly proposed operational patient flow.
The proposed operational patient flow incorporates a
new low-level description of the individual operational
flow in ED. The significant difference between our
model and conventional model is that our model utilizes
ED triage and acuity level to define the emergency sever-
ity index (ESI). Likewise, this model differs in the way
it copes with the specified ESI patient to enhance patient
throughput time in ED.

• Simulation Process: Unlike most of the existing models,
we adopt the combination of ABS and DES techniques
for simulating the newly proposed operational patient
flow. The ABS technique is utilized with the aim of sim-
ulating the behavior of agents. Meanwhile, the DES is
used in the proposed SIM-PFED to simulate the process
of the proposed operational patient flow. This is because
DES is considered as a common technique to simulate
the sequential process of components.

• Considering decision-making factor on the issue of
patient throughput time in ED: we have employed
the TOPSIS technique to address the decision-making
factor of patient throughput time. Specifically, it will
help to specify the best scenario to be implemented in
ED to ensure minimal throughput time at a reduced
cost. The application of the TOPSIS is conducted
based on the simulation results. These simulation results
include the average patient waiting time, cost, and the

LoS for each scenario implemented using our newly
proposed operational patient flow.

A detailed description of each phase of our proposedmodel
is presented in the following subsections.

A. INPUT PHASE
This phase aims to provide a precise explanation of the
associated agents and their input details that are needed to
implement SIM-PFED. We include the standard agents to be
involved in the ED operational Patient Flow of ED depart-
ment. These agents are nurse, doctor, and laboratory (referred
to as ‘‘lab’’ hereafter) [43] The input details of the patient
should include personal information (ID, name, age, and
phone number), arrival type, arrival time, waiting time, LoS,
service time, and cost. Table 1 presents the agents involved
in SIM-PFED and their input details. The input details of
nurses include ID, section name of the department, and years
of experience. The total number of hired nurses in ED should
also be specified. For doctors, ID, the total number of doctors,
and the section name of the department should be specified.
Patient samples should be collected with regard to the lab
agent, and the number of beds should be determined for the
bed agent. A detailed explanation of processing these input
data is presented in the following section.

B. PROCESSING PHASE
The collected data in the input phase are used as an input to
implement the processing phase. The implementation flow
of the processing phase is executed based on three steps:
proposed operational flow, simulation process, and MADM
method. The following subsection presents the implementa-
tion details of each step.

1) PROPOSED OPERATIONAL PATIENT FLOW
The operational flow refers to the procedure flow that a
patient should follow starting from his/her the arrival to
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TABLE 1. Input details.

TABLE 2. Emergency severity index that depends on patient status description.

his/her departure from ED. Figure 2 shows the proposed
operational patient flow in ED of the SIM-PFED model. The
proposed operational patient flow introduces a new low-level
detail of operational patient flow in ED that is different
from the flow in existing models with respect to the use of
emergency department triage and acuity scale for identifying
the emergency severity index (ESI) and the manner of dealing
with the specified ESI patient. The proposed operational
patient flow is discussed in terms of the order of patient arrival
in ED as follows: register, triage, and diagnose. With regard
to patient arrival, a patient can arrive in ED through two
possible arrival types: walk-in or ambulance arrival. In the
case of walk-in arrival, patients need to register at the ED reg-
istration desk upon arrival, and the registration staff collects
the required personal information (patient ID, name, age, and
phone number).

Then, the patients are directed to the triage room, where
an ESI is assigned to each patient accurately. Unlike most
of the existing models, in the SIM-PEFD model, the world-
wide Canadian emergency department triage and acuity scale
(Table 2) is used in the identification of patient ESI; it replaces

the Manchester triage system used in most existing ED mod-
els. The worldwide Canadian emergency department triage
and acuity scale is considered the standard ESI to be followed
in ED. This scale consists of five levels, with 1 being the most
critical and 5 being the least critical. When the arrival type of
a patient is via ambulance arrival, the process of registration
and triage have to be completed in the ambulance car. The
triage process determines the order and priority under which
patients must be treated.

Figure 3 depicts the pseudocode of the triage process
of the proposed operational patient flow in ED. The triage
result allows to transfer the patient for the specific area of
treatment by using the object of select output in the sim-
ulation model. Registration and triage services are imple-
mented on a first-come-first-served basis for all patients, and
diagnosis and treatment are implemented according to the
ESI scale. Unlike existing models that require patients of
all ESI (including patients under critical urgent status) to
be located in the waiting room after finishing triage service,
in the proposed SIM-PFED model, the patient is not required
to wait. The patient is served immediately according to the
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FIGURE 2. Proposed operational patient flow of the SIM-PFED model.

FIGURE 3. Triage process pseudo code of the proposed operational patient flow.

obtained patient ESI. A patient with ESI = 1 has a critically
urgent status; thus, the patient is directly transferred to the
Cardiopulmonary Resuscitation (CRP) room to be checked
by the doctors of the CRP department. Meanwhile, a patient

with ESI = 2 is categorized as having a highly urgent status;
hence, the patient is led directly to the normal treatment area.
Patients with ESI = 3 and 4 are assigned with the status of
urgent and less urgent, respectively; they are directed to the
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fast-track treatment area, where they are served immediately
by a doctor and nurse without spending much time in the
waiting room. Meanwhile, a patient with ESI= 5 is assigned
with a not urgent status. Unlike in existing models, the patient
with ESI = 5 is not sent to a polyclinic that is not under the
ED department. The patient is located in the waiting room for
obtaining treatment in the ED department to ensure that the
patient will be served with less time consumption compared
with the situation in the polyclinic, where the patient’s time
is wasted due to the long busy scheduling. Occasionally,
the doctor transfers the patient to the lab for a medical test to
complete a diagnosis. Therefore, the treatment and diagnosis
of patients involve four cases

2) SIMULATION PROCESS
The proposed operational patient flow is simulated in
this phase. Unlike in existing models, the simulation of
SIM-PFED’s operational patient flow is conducted using
ABS and DES techniques in the Anylogic platform. The ABS
technique is used to simulate the behavior of agents because
ABS is the only available simulation model that can simu-
late agents’ behavior, as discussed in [44], [45]. Meanwhile,
DES is a common technique that can simulate the sequential
process of components [46]. Thus, DES is employed in the
proposed SIM-PFED to simulate the process of the proposed
operational patient flow.

The combination of the two techniques is executed in Any-
logic simulation software, which have capability combination
of simulation techniques (DES and ABS) [43], [47], [48].
Compared with other simulation platforms, such as Netlog,
Anylogic provides a user-friendly integrated-development
environment with an efficient simulation engine that allows
modelers to create and simulate high-validity models of com-
plex systems in a straightforward manner [44], [46], [49].
Anylogic modeling is also the most accurate procedure to
determine the probability of a difficult behavior; rather than
relying on total randomization, it considers historical data
and current behavior types to produce a single outcome for
understanding the process thoroughly [15], [50].

Additionally, Figure 4 presents the ABS simulation design
of patient flow in Anylogic. The simulated ABS and DES
designs are based on the proposed operational patient flow to
reflect the defined steps of the proposed operational patient
flow, as described in Section III, B.1. The rate of patient
arrival by walk-in is set to 0.14 per minute, and the rate
of patient arrival by ambulance is set to 0.05 per minute,
in line with prior studies [51]. A detailed explanation of the
simulation model documentation is presented in Appendix A.

The output of the simulation process of the proposed oper-
ation flow specifies the waiting time, LoS, and cost for each
simulation scenario that will be defined in the experimental
studies.

TOPSIS is adopted in the next step of the process phase
to assist in decision-making and in specifying and selecting
the best scenario in terms of reducing patient throughput time
and cost.

FIGURE 4. ABS simulation design of patient flow of the SIM-PFED model
in Anylogic.

3) EMPLOYING THE MADM METHOD: TOPSIS
One of the prevalent MADM methods that [52], [53] pro-
posed is TOPSIS. It emphasizes that the most suitable pref-
erence must be closer to the perfect resolution and at the
same time must be very far from the so called negative
ideal solution [54], [55]. The ranking of all the scenarios is
done, leaving the most appropriate of the scenarios which is
then placed at the top of the arranged list. A very relevant
technique that can be used to rank and select alternatives that
are determined externally with reference to specific features
is TOPSIS [56]–[60].

The presentation of TOPSIS was initially done by Yoon
and Hwang [52]. Simplicity and promptness are its features.
The most appropriate substitutions are displayed within a
very brief period through a simplified computational process
when likened to other methods, such as the analytic hierarchy
process (AHP) It has a simplified output which is not difficult
to understand. The implementation of TOPSIS is done in
a number of steps that do not change irrespective of the
different size and quantity of attributes [56], [61]. Its level of
performance is almost like that of simple additive weighting
and it is more enhanced than AHP [62].

The simplicity of TOPSIS necessitates inputs that are
seriously regulated by decision-makers, thereby making the
output to be easily understood [62], [63]. For this reason,
TOPSIS is employed for the specification of efficient sce-
narios created in the process of the simulation phase so as to
categorize them. The evaluation of the different scenarios was
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TABLE 3. Decision matrix V.

done by considering the waiting time, LoS, and cost features.
The exact reason for adopting TOPSIS is to identify and cate-
gorize the topmost scenario having the smallest waiting time,
LoS, and cost. It is believed that the most suitable preference
of TOPSIS must be closer to the perfect resolution and at the
same time must be very far from the so called negative ideal
solution [64]. The TOPSIS technique is performed using the
standard seven steps, which we have implemented as follows:

Step 1: Construct the Decision matrix V
TOPSIS make a conversion of the problem into a decision

matrix V with m scenarios (rows) and n attributes (columns).
Table 3 depicts the constructed decision matrix V, the infor-
mation of which is explained as follows
• S is a set that represents the scenarios where S= {Sj|j =
1, . . . ,m} where m is the total number of scenarios.

• at is a set that represents the attributes (waiting time,
LoS, and cost) where at = {ati|i = 1, . . . , n}, where
n denotes the number of attributes.

• V is a set of values where V = {vji|j = 1, . . . ,m; i =
1, . . . , n}, where vji is the value of the jth scenario with
respect to the ith attribute.

• W represents a set of weights where W = {Wi, |i =
1, . . . , n}, where Wi is the weight of the ith attribute.
Decision matrix V that contains m scenarios combined
with n attributes is shown in Table 3.

Step 2: Construct the normalized decision matrix
The decision matrix is then formed by normalizing the

achieved decision matrix from Step 1. This task is con-
ducted to transform the several attribute proportions into
non-dimensional attributes to enable for a comparison across
the given attributes.

The normalized normalization which involves the division
of the values by the summed square root of each squared
scenario in a column is a way of carrying out normalization.
Thus, the value uji of normalized decision matrix U can be
computed using Equation 1.

uji =
vji√∑m
j=1 v

2
ji

, j = 1, . . . ,m . . . and, i = 1, . . . , n (1)

where,
uji is the normalized score of the scenario; and

vji is the value of the jth scenario relating to the jth scenario
in relation to the ith attribute, as explained in preceding deci-
sion matrix in Table 4.

The results of the application of the method of distributive
normalization Equation on matrix V is presented matrix U ,
which is shown in Table 4.

Step 3: Construct the weighted normalized decision
matrix

The weighted normalized decision matrix Z achieved by
the application of Equation 2 is shown in Table 5. The weight
values of the waiting time, LoS, and cost were set to 0.35, 0.3,
and 0.1, respectively, in line with prior studies [7].

zii = uii∗wi (2)

where,
zii is the obtained weighted normalized score of the

scenario;
uii is the normalized score of the scenario obtained from

Step 1; and
wi is the s the weight of the specified SIM-PFED attributes.
Step 4: Determine the positive and negative ideal

solutions
The positive and negative scores of the scenarios are

measured based on each attribute of normalized decision
matrix Z . In this work, all SIM-PFED attributes (wait-
ing time, LoS, and cost) are negative attributes. Thus,
positive-ideal solutions (A∗) is a | compound of the mini-
mum weighted normalized values of any scenario for each
SIM-PFED attribute. While, negative-ideal solutions (A′) is
a compound of the maximum weighted normalized values of
any scenario for each SIM-PFED attribute. The positive and
negative ideal solutions can be defined as follows:

Positive-ideal solution:

A∗ =
{
z∗1, z

∗

2, . . . , z
∗
n
}
, where z∗ = {(mini (zii) if i ∈ l1)}

Negative-ideal solution:

A′ =
{
z′1, z

′

2, . . . , z
′
n
}
, where z′ = {(max i (zii) if i ∈ l2)}

where,
A∗ is set of the positive-ideal solutions;
A′ is set of the negative-ideal solutions;
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TABLE 4. Normalized decision matrix U.

TABLE 5. Weighted normalized decision matrix Z.

L1 represents a set of positive attributes (the more, the bet-
ter); and
L2 represents a set of negative attributes (the fewer, the

better).
Step 5: Calculate the separation measure
The distance of each option (scenario) to the ideal and

negative-ideal solutions for all scenarios can be computed
using Euclidean distance measurement. The distance of each
scenario from the ideal solution can be computed with
Equation 3. Similarly, the distance of each scenario from the
negative-ideal one is given by Equation 4.

Y ∗j =

 n∑
j=1

(
zij − z∗j

)21/2

, j = 1, . . . ,m (3)

Y ′j =

 n∑
j=1

(
zji − z′j

)21/2

, j = 1, . . . ,m (4)

where,
Y ∗ and Y ′ represent the distance of each scenario from the

ideal solution and negative-ideal, respectively.
Step 6: Calculate the relative closeness to the ideal

solution

For each scenario, the degree of closeness with respect to
ideal solution A∗ can be calculated with Equation 5.

At∗j =
Y ′j(

Y ∗j + Y
′
j

)
0 < At∗j < 1, j = 1, 2, . . . ,m (5)

where,
Atj∗ is the relative closeness value (SEV) of the jth sce-

nario, which is between 0 and 1.
The relative closeness value (Atj∗) is a number between

0 and 1, with 0 being the worst possible scenario and 1 being
the best scenario. Relative closeness is related to the effi-
ciency value of implementing the scenario (SEV) in ED for
securing improved performance in terms of cost and patient
throughput time.

Step 7: Rank the scenarios
The set of scenarios is ranked according to the descending

order of their obtained (SEVj). The highest SEV value refers
the scenario with the highest efficiency (the best one) to be
implemented in ED, and it can help the top management
of the hospital improve ED operations and throughput time
performance.
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TABLE 6. Overview of the experimentation’s design.

IV. EXPERIMENTAL STUDIES
Accurate explanation regarding the experiments’ definition
and design with reference to the guidelines on reporting and
documentation of experiments that [65] proposed is done in
this section. The summary of experimental design and the
major elements in the experiments is shown in Table 6. The
major elements are discussed as follows:

A. EXPERIMENT DEFINITION
The intention of the experiments was to evaluate how
effective SIM-PFED is in comparison with other models
such as Safety Simulation Model [1], ABS Model [2],
Interactive Simulation-based Decision Support model
IS-BDSF [3], and Simulation EDOvercrowding-Urgent Care
Center(SEDO-UCC)[20]. The ability of the ED simulation
model to take charge of the throughput time issue through
the reduction of patient flow in time ED shows that it is
very effective [1], [17]–[19]. This therefore necessitates the
evaluation of the ED simulation model in order to properly
measure the waiting time and LoS. The experimental research
questions are as follows:
• ResearchQuestion 1 (RQ1): IS the SIM-PFED less wait-
ing time than Safety Simulation Model, ABS Model,
IS-BDSF and UCC?

• Research Question 2 (RQ2): Are the LoS results
produced by SIM-PFED better than the LoS results
produced by Safety Simulation Model, ABS Model,
IS-BDSF and SEDO-UCC models?

B. HYPOTHESIS FORMULATION
Corresponding to the specified research questions, the fol-
lowing null hypotheses are suggested:
• H10waitingtime The waiting time of the SIM-PFED and a
specific model (Safety Simulation Model, ABS Model,
IS-BDSF and SEDO-UCC) are the same.

• H10LoS : The LoS of the SIM-PFED and a specificmodel
(Safety Simulation Model, ABS Model, ISBDSF and
UCC) are the same.

If there is a decline of the null hypothesis to a reasonable
extent, then there will be a formulation of another hypotheses
as follows:
• H11waitingtime: The time of the SIM-PFED and a par-
ticular model (Safety Simulation Model, ABS Model,
IS-BDSF and SEDO-UCC) are not the same.

• H21Los: The LoS of the SIM-PFED and a particular
model (Safety SimulationModel, ABSModel, IS-BDSF
and SEDO-UCC) are not the same.

C. VARIABLES AND MEASURES
The experimental independent variables are SIM-PFED
while the other models are as follows: Safety Simulation
Model [1], ABS Model [2], IS-BDSF [3], and UCC [20].
In order to properly minimise ED patient throughput time,
as intended by this study, the aforementioned models were
deemed appropriate to SIM-PFED. The reason is that an
evaluation of those models was done bymaking use of dataset
as well as the equivalent waiting time and LoS technique of
measurement for performance evaluation in the current study.
Based on the researcher’s level of awareness, the models
that are specified here for the purpose of comparison are the
commonly used models having the ability of achieving the
best results through the use of the selected datasets.

There was a consideration of two additional dependent
variables in the experiments: waiting time and LoS. The addi-
tional variables were regularly used in order to evaluate how
effective the ED patient throughput time is. The reason is that
the application of an ED operational patient flow in reality is
supposed to be able to improve patients’ throughput time in
the ED department. This can be achieved through the reduc-
tion of patients’ waiting time so that ED performance can be
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TABLE 7. Details of each conducted experiment.

improved with a view to obtaining patients’ satisfaction as
quality treatment is being given and at the same time patients’
throughput time is being reduced in ED [21], [22]. The total
time spent by a patient while waiting for health services in
the ED patient flow process is the waiting time consumption.
Related to the total time spent by the patient in the ED is
the LoS factor which is the patient’s first time of arrival
at ED (arrival time) to the time that the patient physically
departs from the ED (departure time). Regarding the waiting
time and LoS of the dependent variables, the measurement
of SIM-PFED was done for the verification of how it can
reduce the waiting time and LoS bymaking reference to other
designated methods (i.e. Safety Simulation Model [1], ABS
Model [2], IS-BDSF [3]and SEDO-UCC [20].

D. OBJECTS
To conduct the experimentations, four real benchmark
datasets from the ED of the Shahid Rajaei Hospital (SRH)
benchmark dataset were used (SRH-ED) [1], Acute Phys-
iology Chronic Health Evaluation II (APACHE II) [2],
North Dublin, Ireland emergency department (NDI-ED) [3],
and Urgent Care Center(UCC) [20]. Regarding SRH-ED,
the gathering of data from the health centre was between
March and April 2017 [1]. The collected data was from the
SRH-ED emergency department which is able to treat at least
40,000 patients per year [14]. SRH-ED comprised six ED
scenarios and the APACHE II full detail is accessible in [1].

The collection of the Acute Physiology Chronic Health
Evaluation II (APACHE II) benchmark dataset was from the
Santa Casa de São Paulo Hospital’s ED department [2]. The
described data spanned through the working ED duration,
which was between 1998 and June 1999. SRH-ED was made
up of six ED scenarios and the detailed APACHE II is accessi-
ble in [2]. The confirmation of the North Dublin Ireland emer-
gency department (NDI-ED) benchmark dataset was done
in North Dublin, Ireland national emergency departments
in2006 [3]. There have been various reports nationwide high-
lighting the serious need for emergency care (with 1.2 million
patients attending EDs). A report of the seven implemented
NDI-ED scenarios in ED can be seen fully accessed in [3].

Ultimately, the release of UCC [20] dataset was done by
an international modelling competition. The purpose of the

dataset was to identify the quality of the healthcare providers
and be able to measure the number of techniques and the
required examination rooms.

There were three well established UCC ED scenarios as
described in [20]. As stated in the existing body of knowl-
edge [1], [15], [16], [20], all the datasets were in perfect state
and were current datasets in the ED domain. The datasets
were being employed to evaluate current ED models, such
as the safety simulation model, ABS model, and interac-
tive simulation-based decision support model (IS-BDSF),
and SEDO-UCC [20]. For this reason, the datasets are very
appropriate for the evaluation of the suggested model, and the
results can be compared with those of existing ED models.

E. EXPERIMENT EXECUTION
As shown in Table 7 the detailed information of each con-
ducted case study in terms of the used dataset, simulation
scenarios of the dataset used, and number of simulation exper-
iments are presented. Each scenario is constructed by specify-
ing the numbers of nurses in the triage department, nurses in
the treatment department, doctors, and labs. These scenarios
are considered an essential input in evaluating the proposed
SIM-PFED to achieve a fair evaluation with other alternative
models that use the same datasets with the defined scenarios.
The experiment on the proposed SIM-PFED was carried out
in line with the phases of the suggested model (input, process,
and output) which is explained in Section III. The use of
Anylogic simulation software in designing the SIM-PFED
simulation was intended to implement the input and process
phases so that it would be in line with the simulation aimed
at, regarding the suggested operational patient flow in ED of
SIM-PFED.

In relation to the process phase, Figure 6 presents a sample
of the conducted simulation experiment in DES simulated
logical design form in support of the marked-out scenarios in
accordance to the suggested operational patient flow in ED of
SIM-PFED.

A presentation of the comprehensive information about
each experiment that was carried out is in Table 8. Experiment
1(CS1) was aimed at making evaluation of the SIM-PFED’s
performance and then compare it with that of Safety Sim-
ulation Model [1]. Therefore, in order to confirm that the

VOLUME 9, 2021 103429



N. Hamza et al.: SIM-PFED: Simulation-Based Decision Making Model of Patient Flow

FIGURE 5. Sample of the conducted simulation experiment in DES simulated logical design form on the basis of the proposed operational patient
flow.

comparisonwas reasonable, the necessary procedure required
in [1] was carried out on CS1. The employed SRH-ED dataset
comprised similar six scenarios utilized in the evaluation
results of the Safety Simulation Model that were reported
in [1]. The purpose of experiment 2 (CS2) was to evaluate the
SIM-PFED’s performance and then make a comparison of it
with the ABS model’s performance. Therefore, to achieve a
fair assessment, the experimental procedure in [2] was strictly
followed so that the result will be a reasonable comparison of
the CS2 assessment with the already published result of the
ABS model. In view of this, the designated six ED scenarios
of APACHE II dataset were employed.

On the other hand, the carrying out of Experiment 3 (CS3)
was aimed at evaluating SIM-PFED’s performance so as to

make a comparison of its waiting time and LoS results with
IS-BDSF model. Hence, in order to confirm that the compar-
ison was a reasonable one, the CS3 was done in accordance
with the experimental procedure in [3], thus employing the
similar six scenarios of APACHE II as those in CS3 for
SIM-PFED.

Finally, the carrying out of experiment 4 (CS4) was
done. The purpose was to make an assessment of the wait-
ing time and LoS effectiveness of SIM-PFED and then
make a comparison with that of IS-BDSF. The experiment
on CS4 was done by strictly following the experimental
procedure in [20] to confirm that the comparison corrob-
orates the reported results of the SEDO-UCC. This was
achieved through the use of similarly established three
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FIGURE 6. Overall improvement percentage in terms of waiting time.

TABLE 8. Details of the scenarios used in the conducted experiments.

scenarios of the NDI-ED dataset that were utilised in CS3 for
SIM-PFED.

The simulation results of each conducted experiment
include average patient waiting time, cost and LoS for each
scenario of each conducted case study are presented. The
results of SIM-PFED for waiting time and LoS will be pre-
sented in the experimental results section. These obtained
simulation results are then used as an input for TOPSIS,
which is executed to determine the best scenario that can
decrease patient throughput time in ED and help the top
management of the hospital improve ED operational per-
formance. The details of implementing TOPSIS have been
described in Section III.B.3. Table 9 shows the ranked list

of scenarios for each conducted case study (CS1, CS2, CS3,
and CS4). It includes the scenario name, scenario rank, and
the obtained SEV for each scenario, which ranges 0 to 1 after
normalizing the TOPSIS steps. The highest SEV of the sce-
nario rank in the SIM-PFED results indicates the scenario
with the highest efficiency (the best one) to be considered for
implementation by ED decision-makers in real hospitals and
clinics; this scenario ensures minimal throughput time and
high cost effectiveness for ED patients.

As illustrated in Table 9, SN6, SN1, SN3, and SN2 are the
utmost proficient (the best) scenarios to be executed in ED
for CS1, CS2, CS3, and CS4, respectively. In CS1, the SEV of
SN6 is 1 (supreme competence), which possess the maximum
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TABLE 9. The ranked list of scenarios for each conducted case study.

SEV among all scenarios. Hence, the five others are labelled
to be unproductive and which requires a substitution. In ref-
erence to CS2, SN1 is the superlative scenario with an SEV
worth of 0.98 (extreme productivity) when set in comparison
with the five other scenarios that are labelled unproductive
and not endorsed for execution. In CS3, SN3 is acknowledged
as the superlative scenario with an SEV of 0.997779, which
is the extreme SPV value amongst the scenarios of CS3; the
other scenarios are labelled unproductive. In CS4, the SEV of
SN2 is 1 (supreme proficiency), the high ranked SEV of all
scenarios of CS4.

V. EXPERIMENTAL RESULTS
This section contains the summary and analysis of the find-
ings of the experiment carried out to address the research
questions identified in Section IV

The statistical analysis using SPSS was carried out to
examine the identified hypotheses. A two-tailed one-sample
t-test was adopted to examine the identified hypotheses. This
has been identified as the most recommended significance
stage by researchers and scientists [12], [53], and 5% (0.05)
statistical significance level (P) was set for hypothesis testing.
The conditions of choosing of 5% (0.05) significance level are
represented in Table 10.

A. RQ1: IS THE SIM-PFED LESS WAITING TIME THAN
SAFETY SIMULATION MODEL, ABS MODEL, IS-BDSF
AND SEDO-UCC?
Table 11 shows a comparative analysis of SIM-PFED and
the four alternative models (Safety Simulation Model, ABS
Model, IS-BDSF and SEDO-UCC). This was performed
based on the waiting time (per minute) for the experiment
that was carried out. As inferred from Table 11, SIM-PFED
has better overall time performance in relation to the waiting
time. Specifically, SIM-PFED consumes fewer waiting time
for the scenario carried out in each experiment (CS1, CS2,
CS3, and CS4) compared to other models.

In addition, Table 12 shows the t-test statistical outcomes of
the SIM-PFEDwhen compared with each specific alternative
model based on the experimental outcomes of the waiting
time as depicted in Table 11. It is inferred in Table 12 that the
attained P standards of the specific models and SIM-PFED
are not up to the 0.05 significance level. Therefore, the first
null hypothesis (H10waitingtime) is prohibited at a significance
level of 0.05, and the waiting time efficiency of SIM-PFED
is significantly improved than that of the Safety Simulation
Model, ABS Model, IS-BDSF and SEDO-UCC.

Furthermore, Figure 6 indicates the improvement per-
centage in regard to the waiting time of the proposed
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TABLE 10. Selection criteria.

TABLE 11. Waiting time results (per minutes) of the SIM-PFED, safety simulation model, ABS Model, IS-BDSF and SEDO-UCC.

TABLE 12. T-tests results for waiting time.

SIM-PFED in relation to that of the current models that were
chosen (Safety Simulation Model, ABS Model, IS-BDSF
and SEDO-UCC). The improvement percentage is regulated
based on the waiting time and of each scenario in each model
in Table 11.

Additionally, Equations 6 was used to determine the
upgrading percentage with respect to the waiting time. This
equation is basic and it is a well-known equation for eval-
uating the upgrading percentage of performance testing for
models [54], [66]–[70].

PWIMj =
WSIMi −WSEMij

WSEMij
× 100 (6)

where,
PWIMj is the percentage upgrading of waiting time for the

SIM-PFED model against the jth existing model.
WSIMi is the waiting time for the ith scenario of the

SIM-PFED model; and WSEMij is the waiting time for the
ith scenario of the jth current model.

In the illustration in Figure 6, the waiting time efficiency
of SIM-PFED is 35.45%, 89.21%, 87.64% and 86.00%
higher than the efficiency recorded for Safety Simulation
Model, ABSModel, IS-BDSF and SEDO-UCC, respectively.
In addition, the overall average waiting time performance of
SIM-PFED compared to the fourmodels show that the perfor-
mance of SIM-PFED largely improves than that of the Safety
Simulation Model, ABS Model, IS-BDSF and SEDO-UCC
in regard to the waiting time at a percentage of 74.58%.

B. RQ2: ARE THE LoS RESULTS PRODUCED BY SIM-PFED
BETTER THAN THE LoS RESULTS PRODUCED BY SAFETY
SIMULATION MODEL, ABS MODEL, IS-BDSF AND
SEDO-UCC MODELS?
As presented in Table 13, the LoS experimental out-
comes of the SIM-PFED is compared with each spe-
cific model (the Safety Simulation Model, ABS Model,
IS-BDSF and SEDO-UCC) for the experiments that were
conducted. The experimental outcomes reveal the superiority
of the SIM- PFED over the other four alternative models,

VOLUME 9, 2021 103433



N. Hamza et al.: SIM-PFED: Simulation-Based Decision Making Model of Patient Flow

TABLE 13. LoS results (per minutes) of the SIM-PFED, safety simulation model, ABS Model, IS-BDSF and SEDO-UCC.

TABLE 14. T-tests results for LoS.

in achieving improved LoS outcomes. This is evident through
the decreasing LoS for each scenario of experiment carried
out.

Furthermore, the t-test was adopted to examine the second
null hypothesis (H20LoS ).

Table 14 shows the statistical outcomes of the t-test cen-
tred on the LoS outcomes of the experiments carried out
in Table13. The outcomes of the t-test in Table 14 suggests
that the second hypothesis (H20LoS ) ought to be prohibited
at a 0.05 significance level. This is because the obtained
P-values are not up to a 0.05 significance level. Also, the
results reveal that on the average, SIM-PFED performs better
at decreasing the LoS compared to the Safety Simulation
Model, ABS Model, IS-BDSF and SEDO-UCC.

Meanwhile Figure 7 reveals the improvement percentage
of LoS achieved by SIM-PFED, in comparison to the conven-
tional models that were selected (Safety Simulation Model,
ABS Model, IS-BDSF and SEDO-UCC). The enhancement
in upgrading percentage of the LoS and each scenario in

the models is presented in Table 12. The LoS enhancement
percentage is calculated based on the LoS outcomes of the
experiments that were carried out with the use of the identical
method used for quantifying the upgrading percentage, based
on the waiting time Based on the illustration in Figure 7,
the LoS effectiveness SIM-PFED is 74.4%, 85%, 91.6% and
87.4% higher than Safety Simulation Model, ABS Model,
IS-BDSF and SEDO-UCC, respectively. In addition, the gen-
eral average LoS performance values indicate that the value
for SIM-PFED is largely improved compared to the other four
models based on the waiting time, at a percentage of 85.6%.

VI. DISCUSSION
Explanation regarding the basis for the suggested SIM-PFED
and the probable occurrence that that could convey the trends
accomplished in the experiments’ analysis is clearly clarified.

The statistical analyses clearly show that the SIM-PFED
model is more beneficial in the handling of the patient
throughput time than the other four models.
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FIGURE 7. LoS overall improvement percentage.

TABLE 15. Comparative analysis of SIM-PFED and existing models.

The SIM-PFED’s ability to bring about reduction in
the patient throughput time in ED, in relation to waiting
time and LoS, is so distinct from the other four models.
SIM-PFED is able to create a ranked list of scenarios with lit-
tle involvement of experts through the implementation of the
recently suggested operational patient flow, ABS, DES, and
TOPSIS.

A substantial quantity of patient throughput time in relation
to waiting time and LoS is consumed by the specified mod-
els. The reason is that the adopted operational patient flows
leading to an increase in the patient throughput time does not
have what it takes to handle decision-making and the cost fac-
tors that reduce patient throughput time in ED. By adopting
SIM-PFED, the major problem of the other current models
regarding the participation of top manager in the selection of
the most appropriate scenario to be carried out in ED so as
to ensure that there is reduction in patient throughput time
and cost is tackled. The utilization of TOPSIS is intended to
ascertain the scenario with the maximum efficiency which is
created through a ranked list of scenarios.

Table 15 presents a comparative analysis of the proposed
SIM-PFED model and the specific existing models on the
basis of the key measurements of the throughput time issue
with respect to catering to the key causative factors of this

issue in ED as follows: reducing or catering to waiting time,
LoS, cost, and addressing decision-making for identifying the
most efficient scenario to be implemented in ED by produc-
ing a ranked list of scenarios. The comparative analysis is
revealed that the SIM-PFED model has better ability to deal
with the major factors causing the patient throughput time
problem while the other current models are deficient. They
are unable to handle the various factors causing long patient
throughput time in ED, which brought about the throughput
time problem. The major assessment regarding the through-
put time problem reveals that SIM-PFED is greater in strength
than the other models, thus making it to be more beneficial to
the actual ED practices than other models.

VII. CONCLUSION AND FUTURE SETS
The key contributions of this research are related to the devel-
opment and evaluation of the SIM-PEED model. SIM-PEFD
was designed with the capability to address patient through-
put time challenges with respect to causative factors, namely,
waiting time, LoS, and decision-making. SIM-PFED intro-
duces a new patient flow in ED to decrease patient throughput
time on the basis of the proposed operational patient flow,
the combination of ABS and DES by Anylogic simulation
software, and the application of TOPSIS.
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The proposed operational patient flow was used to deter-
mine the flow that each patient has to follow in ED with aim
of reducing patient waiting time and LoS. Existing simula-
tion methods use a single simulation technique, which cre-
ates difficulties in simulating complex systems, such as ED.
Unlike these approaches, the proposed SIM-PFED adopts
the combination of ABS and DES to simulate the proposed
operational patient flow, including the behavior and flow
of patients in ED, and calculate patient waiting time, LoS,
and cost. Thereafter, TOPSIS is applied to help hospital
decision-makers identify the best scenario (in terms of reduc-
ing patient throughput time and cost) to be implemented in
ED. The cost of treatment depends on LoS but is not fully
determined by it; three types of cost are considered: cost
of stay per day, cost of medical procedures, and cost of all
requirements in the hospital (including staff and all facilities
needed) [71]. The effectiveness of the proposed SIM-PFED
was also assessed to determine the capability of the proposed
model in reducing patient throughput time. The findings show
that SIM-PFED can decrease the patient throughput time
in ED and help hospital decision-makers identify the best
scenario to be implemented in ED.

During the experiments and thorough literature exploration
in this study, several potential developments in the proposed
SIM-PFED were identified to expand this work. Further
research can be conducted to improve the performance of
ED with respect to catering to the staff utilization factor.
SIM-PFED establishes a clear view of the daily operation
flow for patients in ED and provides decision-makers with
insights into the performance of patient flow with respect
to throughput time in ED. The integration of TOPSIS and
simulation operation flow significantly contributes to the
decision-making process by specifically revealing the best
scenario to be implemented in ED for securing enhanced per-
formance in terms of two attributes: cost and patient through-
put time. However, the performance of the proposed model
in terms of decision-making can be enhanced by adding
other attributes that can affect decision-making, such as staff
utilization. Staff utilization refers to the experience, knowl-
edge, and hiring cost of staff. Inadequate involvement of staff
utilization in ED increases throughput time. Inadequate staff
involvement also increases the likelihood ofmaking improper
decisions for patients or incorrect diagnoses, which lead to an
improper treatment manner and low cost effectiveness with
respect to time consumption [72].

In the SIM-PFED, the multi-attribute decision making
method TOPSIS has been applied to obtain the optimal alter-
native. Further research can dig deeper into improving the
performance of selecting optimal alternative (scenario) by
applying an aggregation operator in multiple attribute deci-
sion making, such as Pythagorean fuzzy interaction power,
and Bonferroni means aggregation operators [73].

Further research can be conducted with various project
datasets to expand the proposed SIM-PFED. In this study,
SIM-PFED was applied to three datasets of real hospitals
to assess the model’s performance. However, due to limited

resources and other limitations in accessing other datasets
that can be used in ED simulation, the proposed SIM-PFED
could not be applied to other projects datasets. Additionally,
there is a limitation to the performance compared with other
existing models. Within ED operational patient flow, there
are various techniques to be compared with. Nevertheless,
we were unable to equate our model with all these models
due to several reasons that are beyond our control, such as the
ambiguity and complexity associated with simulation imple-
mentation, and the unavailability of the source code of these
models for public use. To minimize this limitation, we com-
pared the performance of the proposed SIM-PFED model
with those models considered to be the most relevant to SIM-
PFED, as these selected models were evaluated using SRH-
EDA, PACHE II and NDI-ED datasets with the same size
of scenarios of a dataset measured data as the present study.
To the best of our awareness, the above-mentioned models
and benchmarks for comparison are the best results reported
so far using the selected datasets for the related ED simulation
models. Hence, further research could be performed with
different project datasets to extend the scope of the pro-
posed SIM-PFED. The SIM-PFED configuration can also be
implemented in real hospitals and clinics that have different
departments and compared with others existing models.

APPENDIX A
SIMULATION MODEL DOCUMENTATION
A. AIM OF MODEL
This research presents a hybrid simulation model of DES and
ABS with MADM (TOSIS) simulation model of patient flow
to improve ED performance, to reduce the patient throughput
time in ED.

1) MODEL OUTPUT
There are three key performance indicators for this research:

1- Average of LoS
2- Average of waiting time
3- Average of cost

B. LOGIC
1) BASE MODEL LOGIC DES LOGIC MODEL
The logic of SIM-PEFD: First, patients arrive at the ED. Then,
patients are triaged and an ESI is accurately assigned to each
patient. The operational patient flow of SIM-PEFD model is
based on the worldwide Canadian triage system in ED.

2) ABS LOGIC
The model consists of the agents, resources, and ED real sys-
tem which interacts with the resources based on the scenario.
The ABS model is defined to use a statechart representing a
general safe plan of patient behavior inside ED. The transi-
tions among the ED entities for those transitions are visual-
ized by the statechart in Figure 4.

3) SCENARIO LOGIC
This research focus is on patients who are in the process of
treatment in ED. Several scenarios are considered. When dif-
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ferent number of resources are added, each scenario exhibits
different patient waiting time, LoS, and cost of operational
patient flow

4) COMPONENT
a: DES ENTITIES
The main entities of the SIM-PEFD model are patients that
arrive within the ED through the community. Each of them
will be assigned attributes like a triage classification which
leads to the flow of patient to the special path related to his
triage level, based on Table 2.
List of activities
• Registration: Patient registered
• Triage: Canadian emergency by nurses in triage section
• CPR: The assessment the patient who have ESI 1
• Normal treatment Area: The assessment the patient who
have ESI 2 and ESI 5

• Fast track: The assessment the patient who have ESI
3 and ESI 4

• Medical test: The lab process
• Diagnosis: Assessment the doctor and nurse
List of resources
Nurses in triage department, number of nurses in treatment

department, number of doctors, and number of labs.
List of queues
• Patients arrive walk in or in an ambulance.
• Registration: First come first serve
• Triage: By the priority in Table 2
• CPR: Urgent serve
• Normal treatment Area: First come first serve 2
• Fast track: First come first serve
• Medical test: First come first serve
• Diagnosis End: Exit point

b: ABS
• Statechart: Entry point default State
• Transition: Registered with message type object
• Transition: Triaged with message type object
• Transition: CPR with message type object
• Transition: ECRoom with message type object
• Transition: QECRoom with message type object
• Transition: Exit with message type object

C. DATA
1) DATA SOURCES
Table 16 shown the list equations of the model accounting
section III.A provides the details of the elements of data
sources.

Input parameters for DES model summarized in the
Table 17.
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