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Abstract
Context Software engineering is a human activity. Despite this, human aspects are under-
represented in technical debt research, perhaps because they are challenging to evaluate.

Objective This study’s objective was to investigate the relationship between technical debt
and affective states (feelings, emotions, and moods) from software practitioners.

Method Forty participants (N = 40) from twelve companies took part in a mixed-methods
approach, consisting of a repeated-measures (r = 5) experiment (n = 200), a survey, and
semi-structured interviews. From the qualitative data, it is clear that technical debt activates
a substantial portion of the emotional spectrum and is psychologically taxing. Further, the
practitioners’ reactions to technical debt appear to fall in different levels of maturity.

Results The statistical analysis shows that different design smells (strong indicators of
technical debt) negatively or positively impact affective states.

Conclusions We argue that human aspects in technical debt are important factors to
consider, as they may result in, e.g., procrastination, apprehension, and burnout.

Keywords Technical Debt · Affective States · Software Development · Psychoempirical
Software Engineering · Empirical Study · Bayesian statistical analysis

1 Introduction

Software engineering is very much a human activity, but this is sometimes forgotten. When
proposing hypotheses, analyzing results, and discussing implications for the industry, we
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researchers sometimes neglect to factor in human aspects (Lenberg et al. 2015). So, too, is
the case for technical debt research (except for a handful of studies on morale, e.g., (Besker
et al. 2020)). This paper intends to amend this deficit and provide evidence showing that
technical debt has noticeable adverse effects on software practitioners’ feelings.

Technical Debt (TD) is a financial metaphor (Cunningham 1992), typically used within
software engineering to explain long-term costs of short-term benefits (Ampatzoglou
et al. 2015). It is a communicative aid for bridging the knowledge gap between software
practitioners and business decision makers. Hence, if the metaphor was to miscount (or
not account for) pivotal cost-benefit factors, the effect could be detrimental to software
companies.

The current definition of TD was agreed upon during the 16162 Dagstuhl seminar (Avge-
riou et al. 2016): “In software-intensive systems, technical debt is a collection of design or
implementation constructs that are expedient in the short term, but set up a technical con-
text that can make future changes more costly or impossible. Technical debt presents an
actual or contingent liability whose impact is limited to internal system qualities, primarily
maintainability and evolvability.”

The definition is nuanced, incorporates decades of research, and offers a shared under-
standing of TD. Among many other things, it emphasizes that TD is a software development
artifact in its own right and that TD acquisition is not necessarily intentional nor visible. A
list of various consequences was also synthesized, but it fell short in recognizing the effects
of TD on the human aspects of software engineering.

This paper aims to fill that gap by assessing five different design smells (proxies for
design TD) to understand if, how, and why these smells impact participants’ affective states
during their development work.

In this study, we address this gap by employing a mixed-methods approach (including
an experiment) and following guidelines for psychoempirical software engineering research
(“research in software engineering with proper theory and measurement from psychol-
ogy” (Graziotin et al. 2015c)). The study collected empirical data (n = 200 data points from
N = 40 participants) on how design TD influences the so-called affective state of software
practitioners. Applying Bayesian multi-level models revealed, among other findings, strong
evidence that certain design smells (notably cyclic-dependencies) caused the subjects dis-
pleasure. The qualitative analysis suggests that many practitioners experience anxiety from
high amounts of TD, and their responses vary along a maturity scale.

In more concrete terms, the research objective of this study is to investigate the rela-
tionship between TD and affective state from the point of view of software practitioners.
This objective is supported by three research questions, which are listed below and further
elaborated on in Section 3.

RQ1: How do software practitioners’ affective state change in the presence of de-
sign smells?

RQ2:How do changes in affective state align with professional characteristics (e.g.,
formal education, work experience, or work context)?

RQ3:How do software practitioners reason about the relationship between affective
states and technical debt?
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The results of this study provide important insights and show that psychological factors
also need to be acknowledged as a consequence of TD. The results show, for instance,
that different kinds of design smells impact participants’ affective states differently. When
assessing how the affective state aligns with the practitioners’ professional characteristics,
the results show that work experience correlates with submissiveness. Lastly, practitioners
reason, e.g., that negative affects often coincide with TD, but can be viewed as opportunities
for improving the code base.

The sections of this paper are laid out as follows. The following section presents related
work in the research areas of TD and human aspects of software engineering, individ-
ually and jointly. Section 3 describes the research design and methods employed. Next,
Sections 4–5 present the quantitative and qualitative analyses, respectively. The study is dis-
cussed in Section 6, limitations and threats to validity are presented in Section 7, and the
paper is concluded in Section 8.

2 RelatedWork

Much of the current literature on Technical Debt (TD) pays particular attention to technical
or financial perspectives. This study breaks with such traditions to observe TD through
the lens of human aspects of software engineering. Hence, for full appreciation, the reader
should be familiar with the background of the two research fields.

Recounted firstly is previous research on TD in general. Appropriate nomenclature and
central findings are outlined before introducing the specific type of TD investigated in this
study. Secondly, we describe software engineering research on human behavior, emphasiz-
ing recent studies on the topic of feelings, emotions, and moods, and the recommendations
concerning measurement instruments from psychology. One of those instruments, the
Self-Assessment Manikin (SAM), was employed in this study and is explained in detail.

Once these two branches (i.e., the research area to be broadened, and the facet used to do
so) have been covered, related work is listed. That is, existing research items that have used
similar lenses and investigated challenges encountered in the TD literature. Those items are
briefly reviewed to clarify how this study fits into the current body of knowledge.

2.1 Previous Research on Technical Debt

Technical Debt (TD) was conceptualized a few decades ago by Cunningham (1992)
as a financial metaphor for how early misunderstandings of a problem domain might
hamper future development unless the software is refactored to incorporate knowledge
gained. Since then, the term has received much attention in both academia and industry.
Today, the metaphor is widely used as a communicative aid for explaining internal soft-
ware quality problems to non-technical stakeholders by emphasizing the extent to which
the software must compromise its ability to meet the needs of the future to meet the
needs of the present (Cunningham 1992; Avgeriou et al. 2016; Ampatzoglou et al. 2015;
Fernȧndez-Sȧnchez et al. 2017; Ernst et al. 2015).

One of the main strengths of TD is that much of its terminology originates from finance.
As noted by Ampatzoglou et al. (2015), the two most commonly used terms in TD research
are principal and interest, i.e., the cornerstones of financial debt. In software engineering,
the former expresses the effort required to turn the current quality of some development
artifact into its optimal level—the latter concerns how this sub-optimal level of quality leads
to extra effort in later development iterations.
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Several studies have shown that TD has significant negative consequences that can be
detrimental to software companies (Tom et al. 2013; Li et al. 2015; Besker et al. 2018a;
Ampatzoglou et al. 2015; Fernȧndez-Sȧnchez et al. 2017). The interest does away with
a substantial portion of development time (Besker et al. 2017; 2019), and may grow
non-linearly if left unattended (Martini and Bosch 2017). Further, TD tracking and TD man-
agement are uncommon in the software industry, and when encountered, the processes are
typically immature (Guo et al. 2011; Ernst et al. 2015; Martini et al. 2018a).

Despite its severity, TD is difficult or impossible to measure directly, and assessments
typically rely on measurement proxies known as software smells, i.e., indicators of (internal)
software quality issues (Fontana et al. 2017; Ganesh et al. 2013; Garcia et al. 2009; Sharma
and Spinellis 2018). Naturally, empirical studies, such as this one, face the same issue when
they need to exemplify TD items.

So far, we have outlined the previous research on TD in general, by giving an account of
its history, terminology, and critical findings. The next paragraphs will focus on a type of
TD known as Design TD (DTD), which our investigation is based on.

True to its name, DTD is TD found in software design, i.e., sub-optimal constructs in
the software system’s structure and behavior. As such, its boundary to, e.g., architectural
TD (ATD), is disputed. Some researchers merge the two (Tom et al. 2013). Others separate
them (Li et al. 2015; Alves et al. 2016) according to definitions that typically are too vague
or subjective to form disjunct sets (Alves et al. 2014; Alves et al. 2016).

Such disagreements propagate to the categorization of software smells (Garcia et al.
2009), which results in some smells, e.g., cyclic dependencies and hub-like dependencies
being considered either design smells (Ganesh et al. 2013) or architectural smells (Fontana
et al. 2017).

To reduce the risk of misinterpretation, this study will not merge the two categories.
The investigation is concerned with small, local problems, in isolated parts of the software
system that can be comprehended easily. The findings should not be confused with the
large concerns highlighted in recent ATD research, e.g., Ernst et al. (2015) and Besker et al.
(2018a).

2.2 Previous Research on Human Aspects of Software Engineering

A growing body of literature recognizes the importance of interdisciplinary research
between software engineering and psychology (Cruz et al. 2015). Both academia and
the industry acknowledge that software engineering tasks are human activities and, thus,
impacted by human aspects (Boehm and Papaccio 1988; Feldt et al. 2010; Colomo et al.
2010; Tamburri et al. 2013; Fagerholm et al. 2015).

For many years, such studies were dispersed, but in 2015 Behavioral Software Engineer-
ing (BSE) was proposed as a common platform for research concerned with “the study of
cognitive, behavioral, and social aspects of software engineering performed by individuals,
groups, or organizations” (Lenberg et al. 2015).

Out of the many tracks in this research area, one concerns affective states (or affects,
for short), i.e., feelings, emotions, and moods. Previous studies have linked affects to, e.g.,
debugging performance (Khan et al. 2011), analytical ability (Graziotin et al. 2014), and
productivity (Graziotin et al. 2015b).

This study is placed firmly within this track and is part of a sub-field called psychoem-
pirical software engineering (PSE), i.e., software engineering studies that use theory and
measurements from psychology (Graziotin et al. 2015c). This article follows the Graziotin
et al. (2015c) guidelines for conducting PSE research.
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According to these guidelines, this study’s objective is best met by subscribing to the
dimensional framework and employing the Self-Assessment Manikin (SAM) instrument for
measuring affective states (Graziotin et al. 2015c). Within the dimensional framework,
affects are expressed through several distinctive dimensions, e.g., the models represent
affective states along three continua: pleasure–displeasure (valence), arousal–nonarousal
(arousal), and dominance–submissiveness (dominance) (Graziotin et al. 2015c; Russell and
Mehrabian 1977).

In more concrete terms, according to Graziotin et al. (2015b), these dimensions can be
understood as follows. Valence is the attractiveness (or adverseness) of an event, object, or
situation, while arousal is the intensity of emotional activation or the sensation of being
mentally awake and reactive to stimuli. Finally, dominance is the sensation of control of the
situation; one’s skills are perceived to be higher than the challenge level for the task.

The recommended instrument, the SAM, measures affects through pictorial representa-
tions (Fig. 1) of the three dimensions of the models (Graziotin et al. 2015c; Lang 1980;
Bradley and Lang 1994; Morris et al. 2002). Developed by Lang (1980), the instrument has,
over the decades, been subjected to extensive validation research (Morris 1995) and seen
used in numerous studies, see (Morris 1995; Betella and Verschure 2016).

According to Bradley and Lang (1994), the graphic design of the SAM has many bene-
fits. The lack of verbal components means that the SAM can be administered to a broader
population range, including individuals with a non-English mother tongue or language dis-
orders, and children. Additionally, the SAM can measure direct affective reactions, as it
can be filled out in a short amount of time and eliminates cognitive processing (Morris
et al. 2002). Further, Morris (1995) argues that the use of stylized characters, as opposed to
photographs of humans, makes the SAM less susceptible to many types of biases.

However, because SAM relies on self-reporting, the scores are not standardized accord-
ing to objective reference points. Although individuals are consistent with themselves
(within measurement), the ratings cannot be assumed to be consistent between individuals
(between measurement) (Graziotin et al. 2015c). In other words, two individuals could rate

Fig. 1 The SAM measurement instrument. SELF ASSESSMENT MANIKIN ©Peter J. Lang 1994
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the same affective state in two different ways. Consequently, investigations administrating
the SAM should follow a within-subject (or repeated measures) design (Graziotin et al.
2015c), which also follows the latest recommendations in general (see Gelman 2018).

Additionally, it is important to recognize that the SAM is not suited for all types of
affective state research; Graziotin et al. (2015c) emphasize that the instrument is designed
to measure affective reactions in response to a stimulus (in our case, design smells). For
example, the SAM would be unfit for studies aiming to investigate how happy software
practitioners are, generally (Graziotin et al. 2015c).

The SAM is protected by copyright law, but the instrument and instructions for proper
administration (Lang et al. 1997) are available for non-profit academic research.1

2.3 Interdisciplinary Research on TD and Human Aspects

Data from several secondary studies reveal that few TD studies have investigated the rela-
tionship between TD and human aspects (Tom et al. 2013; Li et al. 2015; Ampatzoglou
et al. 2015; Alves et al. 2016; Fernȧndez-Sȧnchez et al. 2017; Besker et al. 2018a). Rather,
the predominant concerns have been technical and financial aspects, e.g., software quality
or cost of future changes.

When human aspects are addressed in TD research, the most frequently investigated topic
is morale. A negative correlation was proposed early by Tom et al. (2013) based on anecdo-
tal evidence found in web blogs. Since then, empirical investigations have corroborated the
connection, including previous articles of our own, see (Besker et al. 2020).

Spı́nola et al. (2013) performed a survey on TD folklore and found medium to high
consensus among software practitioners that TD is related to their morale. In conjunction
with interviews, a survey was also carried out by Besker et al. (2020) to determine how
occurrence and management of TD affect developers’ morale. Their findings show that the
existence of TD negatively impacts morale, but also that morale is increased by proper TD
management.

Although a common misconception, morale is not the same thing as affective state
(Graziotin et al. 2015a; Peterson et al. 2008). Hence, to the best of our knowledge, there
are no previous TD studies investigating affects and even fewer that directly measure how
software practitioners respond to TD items.

In addition to morale, some empirical studies have offered evidence for TD harming
the software practitioner’s psychology. Lim et al. (2012) found that developers are more
reluctant to incur TD because its consequences become a part of their daily work. Similarly,
such reluctance may arise due to developers predicting that the sub-optimal construct needs
to be corrected sooner or later, and that task would fall on them (Yli-Huumo et al. 2014).
However, these findings were somewhat opportunistic and limited, as neither study set out
with the research objective of investigating such questions.

TD research has thus far shown lukewarm interest in the relationship between TD and
human aspects. However, the topic has also been approached from the PSE direction, and
those studies present interesting empirical findings. Graziotin et al. (2017) surveyed soft-
ware practitioners concerning causes for unhappiness, and established that low code quality
and coding practices, and being stuck in problem-solving, were among the most significant
factors. Additionally, in a later study, Graziotin et al. (2018) investigated the adverse effects

1Information about how to obtain the SAM can be found at https://csea.phhp.ufl.edu/Media.html

https://csea.phhp.ufl.edu/Media.html
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of developer displeasure and found, among many other types of consequences, lower code
quality and discharging code (extreme cases of productivity and quality drop, in the form
of deleting parts of the code base).

Not only are these factors intimately connected with TD, but they pose the threat of
vicious cycles: Low code quality causes unhappy developers, and unhappy developers pro-
duce low-quality code. Unfortunately, the studies did not drill down into this problem, which
could answer questions such as its probability and severity. Nor was the issue approached
specifically from the TD perspective. Clearly, our study differs from the previous PSE
studies, as it seeks to investigate affects regarding specific TD items.

In conclusion, prior research shows that investigating human aspects concerning TD is a
promising prospect. To manage TD more effectively, we need to understand how software
practitioners, as human beings, can be factored into the trade-offs between short-term and
long-term benefits. However, the current body of knowledge is limited, and both academia
and the software industry would likely benefit from further clarification.

3 Methodology

As suggested in the previous section, our research topic has received little attention despite
interesting initial findings. Consequently, the study design must acknowledge the limitations
posed by such research gaps, e.g., validation against previous findings may be impossible.

One of the countermeasures implemented in our design is choosing a mixed-methods
approach, i.e., collecting both quantitative and qualitative data. This decision is appropriate
because it enables the study to improve validity, e.g., the results from one analysis could
corroborate or rebut findings from the other. In this study, data were gathered from three
sources: A repeated-measures experiment (quantitative), a questionnaire (quantitative), and
a semi-structured interview (qualitative).

Another central countermeasure is the high transparency achieved by providing a repli-
cation package for this publication.2 It contains complementary information and all material
needed for reproducing the study, as it is infeasible to present all details within the scope of
this article.

To demonstrate this study’s overall study design, we have constructed a holistic research
design model as illustrated in Fig. 2. As shown, this study was conducted in three different
phases: a design, an execution, and a synthesis phase. The figure also illustrates the different
performed activities within each phase and references the sections describing these activi-
ties. If more information exists in the replication package, this is also pointed out (using the
tag repl pkg).

3.1 Goals

This study seeks to examine the relationship between design smells and software practi-
tioners’ affective states. Thus, it tries to understand the importance of human aspects as a
factor in TD. Among other things, we hope that the answers to our research questions will
spark further interest in considering software practitioners when making trade-offs between

2http://doi.org/10.5281/zenodo.4537801

http://doi.org/10.5281/zenodo.4537801
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Fig. 2 The design of the study

short-term and long-term benefits. This goal begs for persuasive evidence, which can be
provided through empirical research.

RQ1 (see Section 1) will be answered by conducting a within-subjects experiment. The
data are analyzed via (Bayesian) statistical analysis: We employ dynamic Hamiltonian
Monte Carlo to sample multi-level models. This research question aims to investigate the
actual relationship between affects and DTD, without being colored by the participants’
(nor the researchers’) preconceived notions. As for delimitations, this RQ will examine a
handful of design smells and consider affects from the presented models’ perspective alone.

The motivation behind RQ2 is to see what role individual differences play. Because the
study examines affects, the experimental units must be human participants, which opens
up many exciting characteristics that could be studied. However, while data for various
factors could be collected with ease, there are trade-offs to consider, e.g., transparency and
confidentiality. Since the data are open (see the replication package), many characteristics
that could easily identify an individual (e.g., gender or ethnicity) were not recorded.

Finally, RQ3 was included to understand the topic’s appearance in the software industry.
Hence, this research question is broader than the other two and of a more exploratory nature.
Giving voice to the practitioners’ reflections on affects and TD can increase understanding
in a broader context and reveal peripheral issues.
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3.2 Session Design

As this study collected three sets of data, its design is a substantial part of this article. Since
there are many constructs to keep track of and clarify, we will use a few different viewpoints.
The first viewpoint is that of sessions and is modeled in Fig. 3.

From this perspective, the study was designed as 90-minute sessions, one for each partici-
pant. At the start of their session, the participant received instructions (pre-task instructions)
outlining the study and the session. The participant obtained these in three steps:

1) reading, understanding, and signing a document describing the treatment of, and their
rights regarding, collected data (confidentiality assurance);

2) listening to instructions for, and seeing examples of, how to use the measurement
instrument—which relies on self-reporting (SAM instructions); and

3) hearing a description of what activities they will perform during the experiment (task
description).

Next, during the second part of the session (measurement sitting), quantitative data were
collected from a repeated-measures experiment. For this part, as well, the participant went
through three steps (please note that being of a repeated-measures design, the second and
third steps were conducted five times):

1) using the measurement instrument on a practice task (anchor point);
2) pausing briefly (deacclimatization period); and
3) using the measurement instrument on a task (scenario).

In the last part (post-task interview), the two remaining data sets were gathered: quantita-
tive data from a questionnaire and qualitative data from a semi-structured interview. These
were presented to the participant in one step each:

Fig. 3 The session view of the study: 90-minutes sessions, conceptually comprising three parts with eight steps
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1) filling out answers to questions about their professional experience with software
(profile questionnaire) and;

2) talking and answering questions about how they perceived the study and their view of
code maintainability and feelings (interview).

Thus, the session perspective is concluded. This description has given an overview of
what the participants did, between being greeted by the researchers to saying goodbye. It
also introduced concepts that are key to understanding the study design but did so on a high
abstraction level. Further details on these concepts can be found in the replication package.

Next, we consider the study from the perspective of data collection. Three sources of
empirical data (experiment, questionnaire, and interview) were gathered from the partici-
pants. As shown in Fig. 4, each of these data sets was designed around one of the RQs, i.e.,
the experiment for RQ1, the questionnaire for RQ2, and the interview for RQ3. Similarly,
the experiment data and the questionnaire were modeled in the same statistical analysis,
while the interview data underwent thematic analysis.

First, the experiment set out to understand the relationship between affects and DTD.
From this goal, it followed that, ideally, all factors except for the amount of design debt
(explanatory variable), should remain constant. Then, what was measured was the partici-
pants’ affective state in terms of valence, arousal, and dominance (response variables).

However, since the experiment was of the repeated-measures variety, its design was more
complicated. While the explanatory variable still represented the amount of design debt,
there was not one but five such variables (one for each repetition or scenario). In other
words, as the participant progressed through the experiment, they would encounter five
different scenarios: ScA, ScB, ScC, ScD, and ScE. Within each scenario, the participant
received one treatment and then reported their affective state.

Fig. 4 The relationships between the RQs, methods, and analyses



Empir Software Eng          (2021) 26:105 Page 11 of 40  105 

Because design debt is difficult to measure, each response variable had two levels and
represented whether its design smell (see Table 1) was present or had been refactored away.
That is, the scenario variant where the smell had been removed had a lower (L) amount of
technical debt than its partner variant (H ).

The scenarios were derived from Suryanarayana et al. (2014), which in turn is based
on Ganesh et al. (2013). Because smells are not necessarily indicative of definite quality
problems (Sharma and Spinellis 2018), smell catalogs such as Garcia et al. (2009) were
considered inappropriate for the experiment.

Moving on to the second method, the questionnaire aimed to investigate how professional
characteristics factor into the participants’ responses. The questions are listed in Table 2.

The third method, the interview, was designed to answer RQ3 and explore the topic
of TD and human aspects beyond the delimitation of this study. Because the quantity of
previous studies is limited, the study gains extra benefits from validating and contextualizing
its findings. Hence, caution should be exercised when limiting the participants’ divergent
thinking and, thus, the data’s richness. Therefore, the participants were not constrained to
talk merely about DTD.

Instead, the participants were allowed to speak more or less freely about their percep-
tion of affects and software maintainability. The questions listed in Table 3 were asked at
opportune times during the interview to light-handedly steer it. These were complemented
by probing questions, i.e., follow-up questions to the participants’ reasoning.

Because the interviews had a broader scope than this study, the thematic analysis used to
answer RQ3 considered a subset (highlighted in green) of the interview questions, namely
IQ4.1, IQ4.2, and IQ5.

Thus, the data perspective is concluded. It presented how the research questions can be
traced to the selected methods and analyses. Further, the general structure of the methods
was explained, including the questions asked of the participants.

The third and final perspective is the materials perspective, which is illustrated in Fig. 5.
Their description is deferred to the replication package, where the experimental protocol
also is included.

3.3 Sample

Forty software practitioners from 12 companies participated in this study. The participants
were obtained through convenience sampling, but covered a diverse set of professional
characteristics, e.g., their experience came from many different business domains (such as
automotive, finance, and renewable energy) and ranged from 1 to 35 years. All participation
was voluntary and based on informed consent and anonymity.

Table 1 The scenarios used in
the experiment and the smells
they embody

ID Smell Smell category

ScA Missing Encapsulation Encapsulation smell

ScB Missing Hierarchy Hierarchy smell

ScC Broken Modularization Modularization smell

ScD Cyclically-Dependent Modularization smell

Modularization

ScE Rebellious Hierarchy Hierarchy smell
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Table 2 The questionnaire

ID Type Description

Q1 Closed My highest level of completed academic education is

Q2 Closed My education major (e.g., computer science, electrical engineering, software
engineering, . . . ) was

Q3 Closed I have working experience with software for years.

Q4 Closed My current role (e.g., architect, developer, tester, . . . ) is

Q5 Closed The programming language I am most experienced in is

Q6 Closed My currently preferred programming language is

Q7 Closed Most of my working experience comes from the following domain (e.g.,
telecom, healthcare, finance, . . . )

Q8 Open Do you have any additional comments concerning this questionnaire?

3.4 Analysis Procedure

Two different analyses were performed in this mixed-methods study. For the quantitative
part, a Bayesian statistical model was implemented and executed in R (R Core Team 2020).
The procedure is available in the replication package.3

The qualitative data was analyzed by following the guidelines for thematic analysis
by Braun and Clarke (2006). Thematic analysis is frequently applied in both psychol-
ogy (Braun and Clarke 2006) and software engineering (Cruzes and Dybå 2011).

The flexibility of thematic analyses stems from several choices that the researchers must
make when deciding how to conduct the analysis (for a discussion about each choice’s
advantages and disadvantages, see (Braun and Clarke 2006)). For this study, the analysis
was inductive, searched for semantic themes and theorized essentialistically. In other words,
we coded the interview transcripts in a data-driven fashion without trying to fit them into a
pre-existing coding frame. Themes were then identified and interpreted based on what was
explicitly articulated within the data set.

The primary reason for these decisions is the small amount of previous research on the
relationship between TD and the human aspects of software engineering. For example, the
inductive approach does not rely on existing theory to the same extent as the theoretical.
Similarly, it seemed more prudent to identify the themes at the semantic level, given the
exploratory nature of this investigation. Otherwise, the likelihood of projecting personal
beliefs onto latent themes could be excessive. The same reasoning underpinned the choice of
performing an essentialist analysis. In particular, previous research on human aspects of TD
did not seem to lend sufficient support for theorizing socio-cultural contexts and structural
conditions (beyond little more than pure speculation), as is sought with the constructionist
perspective.

Since the qualitative analysis aimed to discover the most central ideas and themes (rather
than most, or all of them), the analysis’s size was determined by salience rather than (the-
matic) saturation (Weller et al. 2018). This decision is somewhat uncommon in software
engineering research, so a short motivation is in order.

Salience is the idea of analyzing qualitative data regarding the most prominent items, and
can be contrasted with saturation, i.e., until the set of all unique items is believed to have

3http://doi.org/10.5281/zenodo.4537801

http://doi.org/10.5281/zenodo.4537801
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Table 3 The common questions of the semi-structured interview. The thematic analysis used to answer RQ3
is considered a subset (highlighted in green) of the interview questions

ID Type Description

IQ1.1 Open Could you please tell us more about your daily work. What type of tasks
do you normally encounter?

IQ1.2 Open How do those tasks make you feel?

IQ1.3 Closed Do you face challenges in those tasks?

IQ1.4 Open How do those challenges make you feel?

IQ1.5 Closed Are those feelings frequent?

IQ2 Open In contrast to challenging tasks, what sorts of feelings would you say
you get from routine tasks?

IQ3 Closed Do you think that anything outside of this experiment did impact your
responses today?

IQ4.1 Open Would you please tell us how you experienced the code examples?

IQ4.2 Open What about the software design in the examples?

IQ5 Open What would you say are the differences between the scenarios we
provided and software one encounters in industry?

IQ6 Closed Did you find SAM difficult to use or understand?

IQ7 Open That was all of the questions that we had for you. Is there anything you would like to add?

been exhausted. For a broad range of research objectives, saturation would be superfluous,
as salient items are, unsurprisingly, more prevalent and more culturally significant than non-
salient items (Weller et al. 2018). In other words, many research questions can be answered
with smaller sample sizes than what would be required to claim saturation.

Fig. 5 The experimental materials used in the different parts of the session
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The point at which thematic saturation is reached depends not only on the domain size,
but also on the number of responses per person (Weller et al. 2018). Consequently, salience
may be the more appropriate alternative when it is difficult to know the size of the domain
or the set of ideas (Weller et al. 2018) (as is the case in this study).

At the same time, the importance of probing questions should not be overlooked: When
the investigation aims to obtain most of the most important ideas and themes in a domain
(as is frequently the case in qualitative research and particularly in open-ended interviews),
a smaller sample with extensive probing is commonly more productive than a large sample
with casual or no probing (Weller et al. 2018). Thus, salience should be used with caution,
unless the data collection is designed with this in mind.

Because 10 interviews are sufficient to reliably capture up to 95 % of the most salient
ideas (Weller et al. 2018), that number of data items was randomly selected for the data set
(out of the 39 items in the interview data corpus).4 Indeed, this study’s necessary sample
size might be even lower, as we used probing techniques during the interviews, e.g., repeat-
ing phrases the interviewee uttered when working with the scenarios and asking for more
information.

4 Quantitative Analysis and Results

Forty subjects participated in the experiment, and each subject contributed with five mea-
surements to estimate our outcomes. Also, the following data were collected: Educational
level (e.g., bachelor), the example used (the ten experimental artifacts, i.e., five artifacts in
L and H setting), academic major (e.g., computer science), role (e.g., designer), language
experience (e.g., Java), entities (i.e., level of complexity of the artifact), and years of work
experience. The latter was scaled in order to improve sampling (i.e., (xi − x̄)/xσ ).

Given the three outcomes valence, arousal, and dominance {V,A,D}, and the predictors
listed above, the data consists of a matrix with 200 observations (rows) and 11 variables
(columns), with no missing data.5

In this analysis, we employed Bayesian ordinal regression, using a cumulative model (for
an introduction to Bayesian analysis, see Furia et al. (2019)). One could imagine two other
potential models, i.e., the sequential model or the adjacent category model. However, since
Likert (1–9) scales were used for the outcome, cumulative models are more suitable, i.e.,
the sequential model would be suitable if we want to analyze the number of correct designs
predicted from experience. In contrast, the adjacent category model would be appropriate
if we want to predict the number of correctly solved sub-items of a complex task—none of
this was of interest to us (Bürkner and Vuorre 2019).

Several models were designed, and their relative out-of-sample prediction capabilities
were evaluated iteratively. The final model, below, includes all relevant predictors and has
the same out-of-sample capabilities as other comparable models. For model comparison,
we used state-of-the-art model evaluation (Vehtari et al. 2017).6

Next, follows the design of the final model and the corresponding priors. If we want to
make a comparison with a frequentist approach, then one could claim that we have fixed and

4A single participant asked not to be recorded during the interview and could thus not be included.
5The dataset, with analysis scripts and a Docker image, can be found at http://doi.org/10.5281/zenodo.
4537801. R 4.0.2, rstan 2.21.2, and brms 2.13.9 was used for the analysis (R Core Team 2020; Bürkner
2017; 2018; Stan Development Team 2020)
6Pareto k < 0.5 and LOOIC = 2406.0.

http://doi.org/10.5281/zenodo.4537801
http://doi.org/10.5281/zenodo.4537801
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random effects in our model (i.e., a mixed-effects model); however, in a Bayesian setting,
we use the term multilevel model, since that allows us also to employ hyperparameters with
corresponding priors.

Vi, Ai,Di ∼ Cumulative(φi, κ) (1)

φi ∼ β1EDUCATIONi + β2EXAMPLEi + β3MAJORi + β4ROLEi (2)

+ β5LANGUAGEi + β6ENTITIESi + β7EXPERIENCEi (3)

+ βSUBJECT[i] (4)

β1 ∼ Dirichlet(2, 2, 2, 2, 2) (5)

βSUBJECT ∼ Half-Cauchy(0, 2) (6)

β2, . . . , β7 ∼ Normal(0, 0.5) (7)

κ ∼ Normal(0, 5) (8)

In the first line we model each outcome, {V,A, D}, using a cumulative likelihood. The
parameters φ and κ are the linear regression and the intercepts, respectively, which we
model for each outcome (i.e., we have eight intercepts for each outcome since the outcome
was Likert scale 1–9).

In the next three lines, we have the linear regression. We have eight parameters we want
to estimate, one for each of our predictors. The parameters β1 and βSUBJECT[i] are special
as we will see next.

On Line 5, we assign β1 a Dirichlet prior. The Dirichlet prior is the multivariate gen-
eralization of the Beta distribution (a distribution commonly used to model a probability
[0, 1]). Using Dirichlet, we can model an array of probabilities; i.e., in this case, we model
five probabilities and use a very weak prior (the 2s), indicating that we do not have any
prior knowledge. The reason we use a Dirichlet here is monotonicity, i.e., the predictor
EDUCATION is an ordered categorical variable indicating the level of education. We, thus,
want to model the probability separately for each of the categories in education.

Continuing on Line 6 we assign βSUBJECT a Half-Cauchy(0, 2) prior. This prior is com-
mon when modeling standard deviations and allows only positive real numbers (R+). To
analyze variability in this way goes by many names, e.g., random effects or varying inter-
cepts. The reason we use it is due to our following the latest recommendations by designing
the experiment to collect within-person measurements (Leek et al. 2017), i.e., each subject
has been randomly allocated several tasks and, thus, we model the variability of each subject
to partially pool the estimates, to avoid overfitting.

Proceeding to Line 7, we assign the priors Normal(0, 0.5) for the remaining parameters
while, on the last line, we assign the prior Normal(0, 5) to all intercepts for each outcome.
(It is common to assign a broader prior for intercepts.)

The careful reader would react to what could be perceived as tight priors for several
parameters, i.e., Normal(0, 0.5). However, first, using Normal(0, 0.5) on six parameters still
makes an impressive standard deviation, (6 ∗ 0.5)2 = 9, and, second, the combination of
all priors established a nearly uniform prior on the probability scale, i.e., prior predictive
checks and a sensitivity analysis were conducted.

Since we used dynamic Hamiltonian Monte Carlo to sample, we also have several diag-
nostics. In our case, the model showed no indications of a biased posterior, and diagnostics
(̂R, effective sample size, and trace plots) indicated that the chains had converged. Poste-
rior predictive checks showed that the data swamped the priors (see Fig. 6a and b for a
visualization of the prior predictive checks and posterior predictive checks).
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Fig. 6 Prior and posterior predictive checks (y is the empirical data, and yrep are 100 draws from the prior
(a) and posterior (b) probability distributions). The left plot shows the prior predictive checks (where no
empirical data was used). The uncertainty is considerable (the lines), and the median values (the dots) are
approximately the same for all items on the Likert scale, like it should be since only the priors are used.
Compare this to the right plot, where we have drawn samples from the posterior probability distribution, i.e.,
we have fitted our model with data, the data has provided evidence, and thus the priors have been what is
commonly referred to as ‘swamped’, since the uncertainty has decreased

Continuing this section, we will next look at the output from the model. First, we will
present the standard deviations for each outcome’s random effects and any interesting
population-level effects. Then, we will predict outcomes while fixating specific parameters.
The final part will present the results of the hypothesis testing (Bayes factor).

Analyzing the variance, there is not much difference in the uncertainty of the estimates
concerning σ for our three outcomes, as the standard deviations’ credible interval mass vary
from 0.88 (σV ) to 1.1 (σA). In short, the uncertainty for each outcome, {V,A,D}, is very
much the same, but, notably, valence (V ), has the lowest standard deviation σ = 0.39, while
arousal (A) has the largest standard deviation, σ = 0.87, indicating more uncertainty in
between-subjects variability. This can be interpreted as that the within-subject design and
analysis we employed was beneficial (it was important to model different dispersions).

Analyzing the estimates, and their corresponding 95% credible intervals, led to 5 esti-
mates being singled out as interesting (Table 4). Four were significant on the arbitrary
95%-level (i.e., not crossing zero), while one is strongly positive, albeit not significant on
the 95%-level.

Since Experience has much probability mass on one side of zero ([−0.05; 0.56]), we will
analyze it further to understand its predictive ability better. Before we analyze Experience
further, let us look at the role Entities (i.e., the complexity of each task) has on the outcome.
If it is not positive, then one could argue that they have had the wrong effect.

Table 4 Parameters of interest

Outcome Parameter Est. Est. Error l-95% CI u-95% CI

Dominance (D) EXAMPLE (BL) −0.78 0.34 −1.43 −0.12

Valence (V ) EXAMPLE (BH) 0.73 0.34 0.07 1.39

Valence (V ) EXAMPLE (DL) −0.83 0.35 −1.52 −0.14

Valence (V ) EXAMPLE (CL) 0.72 0.36 0.02 1.42

Valence (V ) EXPERIENCE 0.25 0.16 −0.05 0.56
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To investigate Entities we need to determine what covariate values to use. One possible
way to do this is to set all values to their mean for continuous variables, while the reference
category is used for factors, and then examine the conditional probabilities our posterior
probability distribution provides us with. In Fig. 7, we see a positive trend, which indicates
that the model has been able to capture the role that complexity plays correctly.

Finally, we would like to see the role Experience plays by analyzing it more carefully.
If we turn our attention to Fig. 8a–c, we see that the role it plays differs, depending on our
outcome. For Valence (V ), we have a positive effect, i.e., the more experienced the subject,
the higher the response on the Likert scale, while the opposite holds for Arousal (A) and
Dominance (D). Here, it is crucial to keep in mind the direction of the SAM, i.e., an increase
in V score means more displeasure; arousal increases as A decreases; low D scores denote
submissiveness.

Having analyzed the conditional effects, we now turn our attention to measuring the
strength of the evidence we have gathered. Our tests will not examine the significant
population-level effects, which we list in Table 4; after all, we know that they are signifi-
cant on the traditional 95%-level. Instead, we will focus on the contrasts between Low (L)
and High (H ) settings for our predictor Example. This means that we can present the results
as several hypothesis tests (5 artifacts times 3 outcomes equals 15 tests in total). Since we
have a posterior probability distribution, we do not have to, generally speaking, worry about
multiple tests, which is often the case in a frequentist setting (Gelman and Tuerlinckx 2000;
Gelman et al. 2012).

For hypothesis testing, we will use Bayes factor to avoid the usage of p-values and,
thus, to receive verdicts both in favor of and against a given hypothesis (Goodman 1999a;
1999b). For our accept/ reject decisions, we follow recommended practices as presented in
Table 5 (Kruschke 2010).

Fig. 7 Conditional effect of
Entities in the model. The more
complex an entity (i.e., the more
to the right we move on the
x-axis), the higher the outcome
on the Likert scale (y-axis). In
this case, we looked at the
outcome A (arousal), but the
same trend is visible in all three
outcomes. The x-axis has been
scaled, with 0 corresponding to
median complexity. (The line is
the median outcome, while the
gray area is the 95% uncertainty
around the median)
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Fig. 8 An overview of the conditional effects on Experience, given our three outcomes {V,A,D}. Lines
correspond to the median, while the gray area is the 95% credible interval. For valence (V ), we have a positive
effect, i.e., the more experienced the subject, the higher the response on the Likert scale, while the opposite
holds for Arousal (A) and Dominance (D)

Our hypothesis tests were unidirectional and, thus, tested that Low < High, e.g.,

H0 : ExampleAL < ExampleAH,

which is to be interpreted as Example A Low is less than Example A High (and we analyze
this inequality for each of our outcomes {V,A,D}).
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If we plot the posterior probability distributions for each hypothesis test (15 in total), one
can perhaps better see what a ‘significant’ effect means in the context (Fig. 9a and c).

4.1 Effect Sizes

Looking at Fig. 9a–c one sees three hypotheses that indicate strong evidence, i.e., Examples
D, A, C in outcome V (valence). In the two former cases, we have evidence for H1, while
in the latter case we have evidence for H0. Analyzing the effect sizes for these results is
wanted. However, we also see two more results that could potentially also be of interest.

In Fig. 9c, one can see that there are some probability distributions classified as providing
moderate evidence for H1 or H0, respectively (but they are still fairly close to a quantile).
These are Examples B, C, and D. Even though we do not have strong evidence speaking
in favor (or not) of a hypothesis, it could be of interest to see what this entails concerning
effect size.

In short, we want to see, on average, how large an effect size it would be to move from
H to L for each of the six Examples. By drawing samples from our posterior probability
distribution, we can easily compare the difference between levels. We leave all variables
according to what we have in the sample (e.g., the distribution concerning Experience is the
same) and vary only the Example level to see what this means on the outcome scale. Table 6
provides us with an overview of the six effect sizes.

One can conclude this section by claiming that we have some interesting effects, some even
based on substantial evidence. These are summarized in the box below as findings F1–F11.

Findings for RQ1:

F1 Cyclically-dependent modularization (ScD-H) is less pleasant than its refac-

tored (ScD-L) counterpart (strong evidence).

F2 Missing encapsulation (ScA-H) is less pleasant than its refactored (ScA-L)

counterpart (strong evidence).

F3 Broken modularization (ScC-H) is more pleasant than its refactored (ScC-L)

counterpart (strong evidence).

F4 Missing Hierarchy (ScB-H) is, likely, less dominating than its refactored (ScB-

L) counterpart (moderate evidence).

F5 Broken modularization (ScC-H) is, likely, less dominating than its refactored

(ScC-L) counterpart (moderate evidence).

F6 Cyclically-dependent modularization (ScD-H) is, likely, more dominating than

its refactored (ScD-L) counterpart (moderate evidence).

Findings for RQ2:

F7 Work experience, likely, correlates with submissiveness (moderate evidence).

Additional findings:

F8 Refactored Missing Hierarchy (ScB-L) yielded particularly submissive re-

sponses.

F9 Missing Hierarchy (ScB-H) yielded particularly displeasing responses.

F10 Refactored Cyclically-Dependent Modularization (ScD-L) yielded particularly

pleasing responses.

F11 Refactored Broken Modularization (ScC-L) yielded particularly displeasing re-

sponses.
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Table 5 Decision thresholds for
hypothesis testing using Bayes
factor, according to Kruschke
(2010)

Symbol Evidence ratio Description

** > 10 Strong evidence for H1

* 3–10 Moderate evidence for H1

? 1–3 Anecdotal evidence for H1

? 1/3–1 Anecdotal evidence for H0

* 1/30–1/10 Moderate evidence for H0

** < 1/10 Strong evidence for H0

Strong for H1

Strong for H1

Anecdotal for H1

Anecdotal for H0

Strong for H0C

E

B

A

D

−2 0 2

(a)

Anecdotal for H0

Anecdotal for H1

Anecdotal for H0

Anecdotal for H1
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Fig. 9 A visual overview of all hypothesis tests, given our three outcomes {V,A,D} (x-axis is the contrast).
On the y-axis, Examples (A–D) are ordered according to the direction of evidence starting with the most neg-
ative direction. Next to each distribution, a short note clarifies the results of the tests (according to Table 5).
Finally, the distributions have 2.5% and 97.5% quantiles drawn in the tails. As an example, artifacts D, A,
and C, in outcome V (valence) indicate strong evidence. In the two former cases we have strong evidence
for H1, while in the latter case we have strong evidence for H0
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Table 6 Raw effect sizes from posterior samples (10,000 draws) of the posterior predictive distribution.
These samples have higher variance than samples of the means of the posterior predictive distribution since
residual error is incorporated. The first three rows present raw effect sizes where the hypothesis test found
strong evidence, while the last three rows show where there was moderate evidence. The median column is
the size of the effect (on the outcome scale) for the contrasts L–H . If we look at the first row we see an effect
size of −1.0, i.e., the difference between Low–High, for Outcome V and Example D, is −1.0 on the Likert
scale with the quantiles [−1.5, 1.8]. This should not be confused with the hypothesis tests we conducted
(Fig. 9a and c), which tested if Low<High

Outcome Example Min. 1st quant. Median 3rd quant. Max.

Valence (V ) D −3.6 −1.5 −1.0 1.8 3.9

Valence (V ) A −3.0 −1.0 −0.5 0.0 2.0

Valence (V ) C −1.6 0.2 0.8 1.3 3.8

Dominance (D) B −3.2 −1.0 −0.4 0.1 2.7

Dominance (D) C −3.1 −0.9 −0.3 0.2 2.6

Dominance (D) D −2.5 0.2 0.78 1.3 3.8

5 Qualitative Analysis and Results

Analyzing the data set (which predominantly concerned the participants’ general experience
of TD, rather than the experiment scenarios) revealed that the participants have strong and
negative affects toward TD and are inclined to talk about their reactions. Their argumenta-
tion was clearly of the stimulus-response variety, i.e., they viewed TD as an action they are
exposed to, leading to counteractions. The participants’ discussions centered around what
one might think of as defense or coping mechanisms for said stimulus.7

The thematic map (including two themes and five sub-themes) constructed during the
analysis is included in Fig. 10. The first theme (three sub-themes) describes the participants’
reflections (with regard to affective state) on undergoing TD intense areas (Undergoing TD),
e.g., encountering TD, when working with some other task.

Among its sub-themes, we first consider Procrastination. At its core, this sub-theme
is about instances where practitioners try to delay or avoid dealing with the debt or its
consequences. Often, this is related to the sense of feeling overwhelmed when facing TD.

Procrastination may surface in several different forms. For example, one interviewee
reported that TD could cause task abandonment. “the more, like, bad code I see [in the same
place], the more, like, bored and [indifference] [. . . ] It’s like, ‘[vocable of quitting], I give
up’. It’s like, ‘it’s too much now, I give up.”’

This feeling of resignation was echoed by another practitioner, who also suggests that
tightly coupled code is cognitively taxing. “it had this instanceof bit that implies that it
knows about something else, so then you have to start knowing about two places at once, in
parallel, and that usually gets super messy. [vocable of distaste] Yeah, so it’s, sort of, being
in control and being able to fix it.”

At the same time, Procrastination is not constrained to low levels of arousal. Quite the
opposite, in some instances, it can lead to an impulsive and risky overhaul of parts of the
codebase: “I would throw away and rewrite it”.

7These are established terms within psychology, and the surrounding theory could not be delved into for the
scope of this study. In this article, we will instead use the term psychological rebound to avoid overloading
the terms.
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Fig. 10 Thematic map of how software practitioners reason about TD in tandem with affects

From these examples, it is clear that TD can cause psychological rebound effects that are
harmful to the software project in ways that go far beyond the human aspects perspective.
For example, abandoning tasks because of TD can upset backlog prioritization or result in
project slippage. Similarly, the urge to overhaul the code base could, e.g., invalidate prior
trade-off analyses.

Unsurprisingly, the participants were aware of the consequences and severity of Pro-
crastination. One interviewee said, “I think the detrimental part is when you feel like you
don’t wanna touch it [. . . ] even if I do touch it in the end, it will take a longer time before I
actually dare.”

Next, the second sub-theme is Elitism. It encompasses reactions to TD, violating some
expectations that one holds oneself, one’s colleagues, or the code base to. In the case of
Elitism, these expectations typically do not represent a shared set of values and beliefs
among the parties. Hence, the discourse in this sub-theme was notably flavored by negative
interpersonal dynamics.

Elitism is reflected in several different affects that appear to fall on a wide scale of blam-
ing the author of the code. One example of a low amount of blame was one participant
who expressed disappointment. “if you have a great design, a great architecture, following
the SOLID principles. That are loosely coupled. [Then,] they [code problems] are easy to
fix. The problems. Easy to change. That is the most important, to me. So there are some—
they are fundamentals of how I think when I design a program. So [code] violating those
principles make me feel very sad.”

As can be seen, this suggests that the code base itself influenced the participant’s affects,
i.e., more or less decoupled from its author. On the other hand, another interviewee, who
experienced distrust, accentuates the author’s (perceived) skill and does not separate it from
the quality of the code: “I’ve seen things where people mix really bad indentation, combined
with not having, like, opening and closing brackets for for”-loops, for example. Using, like,
short notation. We can have, like, one-liners after if-statements, for example. I mean, those
things are just terrible, ’cause you don’t know what belongs where. It’s messy and there are,
like, no, like, blank lines between—additional spacing between things or anything. It’s just
a bunch of code, with wrong indentation. Sometimes indented, sometimes not. And unclear
what belongs to which statements. [. . . ] it’s easier to spot it [than architecture]. And it’s so,
like, something I really think people should know how to do. It’s so basic, in programming.
So, yeah, I think so. It makes me a bit more worried, so to say, when I see that stuff. ‘Cause
it’s very much easier to do correctly.”

Continuing on this blame scale, examples arise where the code is de-empathized in favor
of focusing on its author. For instance, one interviewee expressed scorn and a notion of
coding style reflecting one’s personality. “I get a bit annoyed with people that try to be
too smart with the programming language. They know, like, a short way of writing things,
and they know exactly what happens. [. . . ] So I’m more for, like, writing simple, easy to
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understand code. So that everyone that follows, can easily make changes to it. So yeah, that
annoys me a bit: when people try to be too clever. They wanna show off that they are smart,
by using, like, weird functions of a language.”

Viewed together, these examples suggest that Elitism may arise from the misalignment
of quality expectations. However, this is perhaps not obvious to the practitioners, as the
focus is not on addressing these alignment problems. Clearly, Elitism threatens to cause
conflict among employees, but can also rationalize TD by acknowledging the debt as a
result of business constraints: “However, I also feel that when I read someone else’s code,
that’s really bad—or shit, or something—I also realize that this might have been done under
pressure, depending on the project and stuff. So I accept these technical debts better. Unless
it’s just plain bad and not time-saving at all.”

Elitism can be dangerous also when it does not result in (external) conflict. One intervie-
wee highlights the risk of it causing high levels of stress. “Yeah, this was people that were
sort of in the more, like, architect roles, usually. Then they put on too much work on their
shoulders. They were the guys that always wanted to do everything by themselves. And, sort
of, tended to burn out after a while, ’cause they just had too much to do. You could see that
they were stressed about it [soft deadlines].”

The final sub-theme of the first theme is Compensation,8 which concerns constructively
addressing TD. Often, the TD items are viewed as opportunities for improvement. As one
interviewee put it, “So, there definitely is this scope for improvement, but I would not call
anybody else’s code as poor. [. . . ] I generally do not get any negative feelings about it [code
clones]. But I do look at it as an opportunity to improve the code myself.”

Compensation is not limited to correcting an instance of TD, but it can encourage pre-
ventive actions, e.g., informing the code author about their mistake: “Personally, I would
use git blame to see who wrote the code and then, if I can contact them, I say ‘okay, next
time, you should do it better. Because this, like, it may take a lot of time for others to trace
their issues.”’

One interviewee even suggested that affects can be leveraged to improve the code base,
as they can act as software quality proxies: “emotions aren’t bad or good. If a team member
is that mad about something, I just use that as an indicator that something is bad in the
code. So that person is right to be angry, and we can use that to either fix it, or use that as
an argument for—like, in the future—like, let’s refactor this in the next sprint, or whatever.”

Together, these extracts show that Compensation is related to TD management and, more
specifically, tactics for addressing TD maturely or constructively. Please note how these
tactics are concerned with the practitioners’ dominance concerning the code base. As one
participant said, “I want to rewrite it [code with inheritance issues]. [. . . ] to improve it and
to just, yeah, maybe so I don’t feel stressed about it. So I have control.”

So far, we have presented the components of the first theme. Before continuing with the
next theme, the interactions between these components should be analyzed. Note how all
three sub-themes appear to be psychological rebounds for TD, albeit as different manifes-
tations. Procrastination looks like an impulsive and naive, almost childish reaction to TD,
where the practitioner does not acknowledge the consequences of their actions. These traits
can also be seen in Elitism, but with regard to collaboration and teamwork rather than how
the debt itself is approached. On the other hand, Compensation appears to be a manifestation
of thoughtful consideration of how to manage the TD.

8In the behavioral (not the financial) sense of the word.
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The second theme (two sub-themes) describes the participants’ reasoning (with regard to
affective state) when forecasting the consequences of TD (Forecasting TD), e.g., the effects
of leaving TD unaddressed.

Its first sub-theme is Apprehension, which includes the anxiety of expecting future main-
tainability issues. A significant part of this sub-theme constitutes the participants’ concerns
about the extra psychological toll caused by TD. This toll can emerge when the practitioner
believes there is a risk of the code leading to system failure. As one participant said, “The
spontaneous feeling was a bit stress about too much stuff going on. Too many components,
and some strange dependencies. And too much inheritance. [. . . ] Why [do I feel stressed]?
’Cause I can see myself maintaining that code. And I can see that code breaking in the long
term. [. . . ] ’Cause I don’t want the system to break.”

This kind of uncertainty was echoed by another interviewee, who emphasized the toll of
unforeseen consequences (ripple effects): “for me, it comes back to, like, the control. I know
that if I’m gonna touch this, I’m gonna pull a string, and then there’s gonna come, like, a
spider web with a spider in it. [. . . ] You know that when you do something here, it’s gonna
affect something else.”

However, Apprehension is not limited to the technical considerations, as the psychologi-
cal toll can also appear in the presence of tight schedules. As one practitioner put it, “If you
have time pressure to do something, and then you also know that you’re in—I mean, “this is
gonna be hard to test. And to deliver it in time is gonna be tough.” Then it’s super stressful.
But if you don’t have that pressure again, then it’s easier again.”

Clearly, Apprehension is found in situations where the practitioner’s dominance is on
the submissive part of the scale, where they have low confidence in the code. Further, the
extracts suggest that work tasks and business considerations are difficult to separate from
their affective states. As one participant said, “I mean, they [the technical and emotional
viewpoints] are connected somehow. But through my years—my experience—I see a lot of
problems with code violating these [SOLID design] principles. And that causes frustration
when you try to fix bugs, improving the code, extend the code. So, it’s more from a technical
perspective, but they cause negative emotions.”

The last sub-theme is Indeterminable, which encompasses the difficulty of decoding TD.
That is, understanding or sharing one’s understanding of the TD in the system appears to be
a non-trivial matter, which could play a key role in assigning value to TD items.

In industry, TD items are sometimes so opaque that professionals may not recognize
them until they have paid a significant amount of interest. As one interviewee said, “one
time I was just gonna write some test for a thing we did. Then I realized the whole thing
was such a debt-cluster that I just had to throw it away. I spent like three, four hours trying
to help my team out. I didn’t realize I did zero value [laughs] with that time.”

At the same time, TD might be widespread in the system, becoming a sort of background
noise challenging to pinpoint. As one participant put it, “sometimes you actually encounter
some area that makes you really unhappy to be in. But then you also have these overarching
stuff, that isn’t really bothering you that much. But you always know it. You know it’s always
there. So it’s way—it’s less tangible. I would say it’s, like, hard to identify. Hard to measure.”

Further, practitioners may recall areas with a high amount of TD but are sometimes
unable or unwilling to articulate the problem constructively: “I hear about ‘[vocable of
complaint] this shitty part of the system.”’

These extracts tell us that software practitioners have trouble estimating and communi-
cating the consequences of existing TD items. However, as suggested by one interviewee,
they may hold strong intuitions. “ In industry, it’s more ‘I know something is wrong. It feels
like things are spread out like this. I just can’t put my finger on it.” [. . . ] The feeling I have
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in industry is more like, ‘I know I’m gonna work in this area. I know it’s gonna be horrible.
I don’t know what’s gonna happen, exactly. Something is gonna show up. It’s gonna take
longer time. I can’t give you a real estimate for how much it is to fix all of it, and I can’t
give you a real business value, because I just know it’s gonna be hell.”

In conclusion, the analysis reveals that affects are very much a key aspect of TD. They
provide an insight into the underlying mechanics for how software practitioners respond to
TD items. These psychological rebounds may be a necessary consequence of TD and should
not be ignored. The findings are further summarized in the following data extract and the
box below (as findings F12–F24). “if it’s [the debt is] manageable or if I feel I can fix it,
then it feels a bit okay. It’s like, ‘oh, this is a crappy thing someone did, but—whatever, it’s
fixable” in contrast to, like, ‘this is just a nest of—we just need to re-engineer.’ That makes
you just angry inside. [. . . ] you can definitely feel when it’s ‘[vocable of excitement], I can
refactor this’ or [. . . ][vocable of quitting], this is such a mess. I hate going into this code.
I can’t fix a bug here, ’cause there’s just going to pop up things in other places. So, it’s a
mix. Depends on how much impact you can have on it, I think. Because it can be really fun
to actually fix stuff. But when you can’t, then it’s like ‘[vocable of annoyance], angry.”

Findings for RQ3:

F12 Software practitioners experience (strong) affects from TD along all three di-

mensions.

F13 When faced with high (overwhelming) levels of TD, practitioners will be reluc-

tant to perform their work tasks.

F14 Time pressure is sometimes a catalyst for negative affects.

F15 Viewing TD items as opportunities for improvement appears to correlate with

dominance toward the code base.

F16 TD anxiety relates to code dependencies, ripple effects, and (the risk of) defect

introduction.

F17 TD anxiety appears to be correlated with submissiveness toward the code base.

F18 Displeasure plays an important role in recognizing the presence and severity of

TD.

F19 Software practitioners sometimes get positive affects from amortizing TD.

F20 Profanity frequently emerges in TD discussions.

Additional findings:

F21 Quality processes sometimes get disrupted by software practitioners’ affects.

F22 Misalignment of quality expectations may result in interpersonal conflicts or

burnout.

F23 TD is challenging to decode (recognize, estimate, and communicate).

F24 Violations of something the software practitioner considers fundamental ap-

pears to result in stronger affects.
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6 Discussion

In this section, we tie together the results from the quantitative and qualitative analyses. We
will continuously refer to the main findings (F1–F11 and F12–F24) at the end of Sections 4–
5. First, we discuss the quantitative results related to the various scenarios and smells; to
better explain the results, we then explore the quotes from the qualitative data occurring in
correspondence with the analyzed smells. This allows us to explain how our results answer
RQ1, or else how the smells influence the participants’ affects. We compile a ranked list of
which smells seem to have more impact.

We also discuss how changes in affective state align with professional characteristics
(RQ2). We then take a broader scope and reason on the exploratory results from the quali-
tative analysis and what relationships we have found between affective states and technical
debt (RQ3).

6.1 Case A: Missing Encapsulation

The quantitative analysis strongly suggests (F2) that the presence of the smell related to
missing encapsulation in the code (ScA-H) causes the software practitioners to feel less
pleasure (valence). This entails that practitioners consider the presence of this smell with
disapproval rather than with indifference.

We do not seem to find other significant evidence related to the other two dimensions
(arousal and dominance), which could imply that the practitioners do not consider this smell
exceedingly threatening. This is also mentioned in the qualitative data, as one of the partic-
ipants mentioned: “Like, some of them were quite [vocable of annoyance] as solutions, but
didn’t really impact me that much. Like, the rectangle whatever—PNG-things [reference to
ScA-H]. Like, yeah, I can refactor this in an afternoon.”

On the other hand, such a lack of strong feelings could be caused by the limited size
and localization of the example and how easy it is to estimate the practitioner’s refactoring.
One of the interviewees mentioned “So, it’s—this, like, rectangle-PNG-thing [reference to
ScA-H]—it’s, like, I can really point to it. Show it. I can give an estimate for how much time
is left and how much impact it is. The feeling I have in industry is more like, ‘I know I’m
gonna work in this area, I know it’s gonna be horrible. I don’t know what’s gonna happen,
exactly.”’

In conclusion, the smell is recognized as a problem, but not as a high-priority one. Sup-
pose we consider the strength of the resulting feelings and the participants’ insights for this
smell. In that case, we can conclude that the presence of this smell, although frowned upon,
is perhaps not considered detrimental by the software practitioners.

6.2 Case B: Missing Hierarchy

We did not find evidence to support the hypothesis that this smell generates any negative
feeling in the software practitioners. Surprisingly, on the contrary, we found (moderate)
evidence (F4) that practitioners felt more dominant (dominance) in working with the code
containing the smell (ScB-H).

On the other hand, this scenario was mentioned a lot in the qualitative analysis in rather
negative terms. However, those comments often referred to the whole code and not to the
specific smell. Although, at the same time, some participants explicitly mentioned the smell
and suggested the correct refactoring. “Yeah, one example, that had the private class there
[referring to ScB-H], and that one I didn’t like [. . . ] Yeah, overall the checking of types in
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code like that: I think it’s a sign of bad architecture, most of the time, when you have to
check the type of objects coming in. Then you can probably—yeah, like I said—interface it
out. And an interface coming in and you have the method on the interface and, yeah.”

The scenario itself could explain these seemingly contradictory results: debt-intense
areas could bias the practitioner to distrust suitable constructs. After all, understanding and
implementing a correct hierarchy involves a greater ability of abstraction. In other words,
given that the original developers fell short in performing more straightforward tasks, con-
fidence would be low to succeed in more demanding activities. As one of the interviewees
said, in a different context, “it’s so, like, something I really think people should know how
to do. It’s so basic, in programming. So, yeah, I think so. It makes me a bit more worried,
so to say, when I see that stuff. ’Cause it’s very much easier to do correctly.”

Another, less plausible, explanation would be that practitioners feel submissive (intim-
idated) because of the necessary abstraction skills, i.e., are not comfortable with such
constructs. Here, it is essential to note the gap between recognizing a suspicious program-
ming language construct (instanceof) and intimately understanding which abstraction
would be suitable. The former is a low-level pattern detected by static code analysis (or even
text search), while the latter often requires domain knowledge and experience. However,
this seems unlikely, as most participants were experienced in object-oriented programming
languages.

Finally, a third explanation could be that abstractions (by definition) remove details from
the context. In other words, while beneficial for the system’s maintainability, abstractions
might, locally, result in less insight and, hence, less control.

In conclusion, the findings suggest that the smell is considered a problem despite its pos-
itive impact on dominance. The surrounding code’s quality appears to confound individual
TD items, but this effect needs to be verified in future studies.

6.3 Case C: BrokenModularization

Similar to Case B, we did not find evidence to support the hypothesis that this smell gener-
ates any negative feelings in the practitioners. However, we did find (strong evidence, F3)
that they felt more pleasure (valence) and (moderate evidence) more in-control (dominance)
when working with the code containing the smell (ScC-H).

This can be explained by the fact that the broken modularization smell consists of a
widely recognized correct approach (modularization) applied in the wrong way (broken).
In particular, the code that was modularized did not need to be (it consists of just variable
declarations), and it should have been contained in the same abstraction (ScC-L). However,
the participants’ feelings might have been triggered by the presence of a better visual struc-
ture in ScC-H. The lack of a counter-effect for the displacement of the modularized code
(ScC-H) could have different implications:

1) The positive feelings in the presence of modularized code far outperforms the negative
feelings related to the sub-optimal use of such mechanism. This is also supported by
one of the participants: “It’s, like, I could sort of see what had happened, I think. Like,
the last one [reference to ScC-L] with the weird device. It looked like a container of
data and someone plonked helper methods in it, maybe, I don’t know. It’s, like, I can
see how that happened. I can move them without changing anything, so there won’t be
any ripple effects and I can still improve the code, for instance.”

2) The practitioners could have overlooked the specific code that was modularized in
an additional class, focusing more on the structure rather than on the code itself.
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Alternatively, the participants might have thought that the additional class, the results
of the modularization (which contains only variable declarations in our example), could
have contained additional methods that were not displayed in our snippet.

3) While modularization is a well-known good practice, broken modularization is a less
well-known bad practice among the practitioners. This can also be related to the lan-
guage used by the participants and their familiarity with object-oriented programming.
However, we did not find any evidence in the quantitative analysis supporting such an
explanation.

In conclusion, we could not find evidence that this smell generates negative feelings in
software practitioners. On the contrary, it seems as though the code with the smell was liked
more, probably because the participants did not recognize (consciously or unconsciously)
the misuse of modularization as significantly impacting.

6.4 Case D: Cyclic Dependencies

This is the smell for which we have quite strong evidence (F1) supporting hypotheses from
literature (Martini et al. 2018b; Al-Mutawa et al. 2014). We can see how, for valence, the
software practitioners reported extra-pleasure in the presence of code that is refactored
(ScD-L), while at the same time, we register strong evidence that such code is much better
liked than the one with the smell (ScD-H). Our analysis also reports moderate evidence for
dominance (F6), where practitioners feel much more in control of refactored code (ScD-L)
than the code containing the smell (ScD-H).

Despite such strong results, the smell was not often or explicitly mentioned in the qual-
itative answers of the practitioners dealing with ScD-H, if not for the two quotes below,
which can be related to this specific smell: “The spontaneous feeling was a bit stress about
too much stuff going on. Too many components. And some strange dependencies.” and “the
code doesn’t have to be perfect, or there could be some problems with the code. But if you
have a great design, a great architecture, following the SOLID principles. That are loosely
coupled. They are easy to fix.” This could have happened because other smells or scenarios
were more interesting to discuss, either because this example was not considered too chal-
lenging (perhaps because of the limited size of the example) or, possibly but perhaps less
likely, because it was more noticeable and therefore less interesting.

In conclusion, we can consider this as evidence that the presence of cyclic dependencies
generates stronger negative feelings in practitioners along at least two dimensions (valence
and dominance).

Although this can be somewhat expected (cyclic dependencies is a well-known smell,
probably more than the other smells), it is interesting to note how the degree of negative
feelings for this smell far exceeds other smells. We find this plausible: Cyclic dependencies
is the smell that tends to involve multiple entities (usually classes), which can generate
ripple effects across the code. Also, the example that we propose here consists of just one
dependency. In contrast, dependencies, especially if involving several entities, can become
less noticeable and not so visible if they are not explicitly investigated, as shown in other
publications, see Martini et al. (2018b) and Al-Mutawa et al. (2014).

6.5 Case E: Rebellious Hierarchy

We did not find even moderate evidence that this smell would generate either positive
or negative feelings in the participants concerning any of the dimensions. Therefore, it is
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difficult to draw conclusions on this smell and its impact on the practitioners’ affects. In
general, it seems as if the participants would be quite indifferent to one of the other proposed
solutions. For example, even when encountering ScE-L, one of the practitioners mentioned:
“you had the Document [reference to ScE-L], yeah that was the wrong structure of the
abstract class, I think, because you had all those methods, but only some of the implemen-
tation used. They didn’t represent the same object. If you looked in the implementation, they
had different actions or abilities. I think the public part of the implementations should be
the same.”

The lack of evidence in itself combined with the quotation could point to three possible
conclusions:

1) This smell is not considered a problem by practitioners, and it does not affect them.
2) Our example was not a good representation of the actual issue. Unfortunately, we did

not find an existing implementation that would suit our experiment, so we had to adapt
our snippet from Suryanarayana et al. (2014), removing any domain-specific refer-
ence that our participants would not understand. This process might have excessively
simplified the smell.

3) The smell consisted of one short method out of ten, distributed in four (ScE-H) and
five (ScE-L) classes, respectively. This could mean that the participants might have
overlooked it in the time allowed for the task, perhaps focusing their attention on other
code features, such as its structure (as mentioned in the previous quotation from a
participant).

In conclusion, we cannot draw many conclusions from these results, although we can
speculate that the participants have not recognized this as an issue affecting their feelings.

6.6 Comparison Across the Smells

We have so far reported our reflections, based on available evidence, on how and why the
different smells have impacted the participants’ affects. However, can we say something
more about how the different smells compare to each other?

We report a summary (see Table 7), in which we compile a prioritized list of the smells
based on the reported evidence. The smells are ordered by their negative impact on the
software practitioners’ affects. We also report if other impacts have been found on the refac-
tored solution. To clarify the results, we have arranged the relationship positive/ negative
concerning the quantitative analysis, i.e., we do not consider the direction of the SAM. For
example, in Table 7, ‘negative impact on valence’ means displeasure. We also highlight the
strength and type of evidence supporting our conclusions.

6.7 Suggestions for Practitioners

Based on Table 7, we can undoubtedly suggest practitioners pay attention, especially to
cyclic dependencies and missing encapsulations. As for the latter one, the practitioners men-
tion that its refactoring would not be costly, which could make it a good candidate for a
mandatory cleanup of the code before release.

Less vigorously, we also suggest that practitioners keep their eyes out for missing hier-
archies. While the presence of this smell increased dominance that could be indicative of
other problems, e.g., a need for domain knowledge acquisition, practitioners should con-
sider taking action if developers start introducing this smell despite them recognizing it as
bad practice.
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Table 7 Prioritized smells according to our findings

Smell Impact on affects Dimensions Other considerations

D—Cyclic
dependencies

Negative
Negative (likely)

Valence
Dominance

Not explicitly discussed
qualitatively

A—Missing
encapsulation

Negative Valence Easy to estimate a refactoring

B—Missing
hierarchy

Positive (likely) Dominance Recognized as bad practice, but
overshadowed by the scenario code

E—Rebellious
hierarchy

- - Seems to not have been recognized
as an issue

C—Broken
modularization

Positive
Positive (likely)

Valence
Dominance

Modularization seems to give
positive feelings even if misused

As for the rebellious hierarchy, the study results do not allow us to draw firm conclusions,
maybe because such smells might not be considered so upsetting by the participants. Finally,
and probably surprising, it seems that a modularization that is not entirely correct is not
considered problematic. At the same time, developers might tend to consider the pleasure
of modularized code (even if containing a smell) better than smell-free code, which might
be less modularized.

However, we need to notice that, for rebellious hierarchy and parts of broken modulariza-
tion, the conclusions cannot be considered very strong, as our evidence is moderate. These
results are also related to the influence of the smells on the participants’ affects and do not
consider other negative or positive effects. However, we consider our findings important to
report, as developer unhappiness has been linked to harmful consequences (see Section 2.3).
Further, the results should not be confused with the actual extra-maintenance effect these
smells have in practice, although the two variables are most probably correlated.

6.8 The Effect of Experience

Our quantitative results do not point to correlations between the participants’ professional
characteristics and how the affective states changed. The most striking results are related to
the experience of the respondents.

Experience has shown (moderate evidence, F7) to have a negative impact on Dominance.
In other words, the more work experience the subject had, the more submissiveness they
report.

A possible explanation for the increased submissiveness is that more experienced practi-
tioners have dealt with the technical debt related to the smells for a longer time than junior
ones. This may be caused by the fact that they have witnessed more of the technical debt’s
long-term negative impact, which may trigger additional caution for the smells.

These results also seem in line with our qualitative findings, primarily related to the
maturity (see next section) with which practitioners undergo TD: we could argue that, with
less experience (and, probably, less maturity), practitioners seem to want to ignore TD and
avoid to worry about it (as highlighted by the Procrastination theme), hence the presence of
lower submissiveness. Then, moving to a more elitist and compensating attitude toward TD
as they gain more experience, they become additionally worried when encountering TD (as
shown in the feeling of lacking control, mentioned in relation to the Apprehension theme).
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Also, these results are in line with what is reported concerning how startup teams are
composed and their inclination to incur TD. Besker et al. (2018b) report on interviewees
from startups mentioning how it can be considered better to include a large part of junior
developers in the initial team to make sure that TD is accrued (saving resources in the face of
an initial high risk of failure). Experienced practitioners (apart from a small initial fraction)
would be more suited for the growth and mature phase of a startup when TD needs to be
removed before it becomes disruptive.

6.9 The Overall Effect of TD on Affects

Participants report that TD items activate a substantial portion of the emotional spectrum
(three dimensions, F12), including vivid ones (e.g., profanity occurred, F20). Still, our
experiment showed nothing concerning the arousal dimension. A plausible explanation is
that participating in the experiment represents a different situation than encountering techni-
cal debt in real projects. The technical debt encountered during the experiment is not directly
and negatively impacting the practitioners with, for example, extra-effort or additional bugs.
This means that the arousal dimension could be triggered in a different context.

Many participants receive satisfaction from improving code (F15, F19). Mainly, being
able to perceive their work as impactful causes pleasure. On the contrary, the uncertainty
caused by code affected by TD and the consequent distrust in the code base are sources
of negative feelings (F13). Architectural TD is considered a common source of negative
feelings, especially for problems related to ripple effects (as, for example, in case D for
cycling dependencies, F16).

Then the question is: why is TD so present in the software industry, and why is, e.g.,
code not continuously refactored?

First, as practitioners reported, stress is prevalent in the software industry. Several par-
ticipants see deadlines as negatively affecting themselves and the product (F14). Avoiding
TD requires more time, which would increase the stress in the presence of a deadline. This
might mean that practitioners, to avoid stress, prefer to incur TD. Second, the participants
mentioned that TD problems encountered in their daily lives are more extensive and more
obscured than those in the experiment.

Another point of consideration was raised in the qualitative analysis, namely, that each
sub-theme for undergoing TD is a psychological rebound. Further, there seems to be a sort
of progression to them, which we will refer to as maturity, as we can draw parallels to our
previous experience with group development models (Gren et al. 2017).

First, Procrastination (“Forming”) can be interpreted as a mechanism with little inter-
est in improving the situation. Consequently, the practitioner will not attempt to share the
team’s burden or attempt to shield its members from the harmful stimulus. Second, Elitism
(“Storming”) involves questioning the code base and the modus operandi, which can be
destructive and socially taxing unless adequately managed. Finally (note the absence of
“Norming”) Compensation (“Performing”) illustrates a successful transition from defensive
reactions to coping ones, with the participants focusing on facing up to the TD item and
resolving it constructively.

6.10 Comparison to RelatedWork

In reviewing the literature, very little was found on the relationship between DTD and affec-
tive states, but several studies that investigated adjacent topics have found intriguing results.
Many of the consequences of developer unhappiness demonstrated by Graziotin et al. (2018)
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were echoed in our qualitative findings, e.g., mental unease or disorder (F13, F16, F17,
F22). Perhaps most importantly, the quantitative analysis found a counterpart to lower code
quality: Some design smells elicited an unhappier response among the participants than did
other such smells (F1, F2). This could indicate a vicious cycle where TD leads to more
unhappiness, which in turn leads to more TD.

Our previous paper on the relationship between TD and morale, Besker et al. (2020),
found that TD negatively impacts morale, but also that morale is increased by proper TD
management. These results are corroborated by F13, F16, F17, and F22; and F15 and F19,
respectively. Hence, we provide further evidence in favor of the long-held belief that morale
and TD are intertwined (Tom et al. 2013; Spı́nola et al. 2013).

The findings in this paper also corroborate several of those of Lim et al. (2012), e.g.,
developers fearing certain parts of the code base (F12, F13, F16, F17) and TD being difficult
to communicate (F20, F22, F23, F24).

6.11 Implication for Research and Industry

In this study, we conducted an empirical investigation that joined the fields of TD and PSE.
As demonstrated by Graziotin et al. (2018), affective states have important consequences for
software engineering activities, and our findings provide solid evidence that design smells
interlink with affective states. Accordingly, we present the argument that TD management
should start factoring the human psyche into the decision-making processes.

Our findings, by themselves, constitute a compelling case, but do not stand alone.
Although the human aspect is still a deficit area in the TD research, the combined results
of Besker et al. (2020), Spı́nola et al. (2013), Lim et al. (2012), Yli-Huumo et al. (2014),
and Tom et al. (2013)—many of which are corroborated by this paper—provide convincing
grounds for our argument. Hence, we call for the research community to expand on the con-
ceptual model of TD (Avgeriou et al. 2016). Figure 11 contains our proposition for how this
part of the body of knowledge should be incorporated in our shared understanding of TD:
The psychological factor would be explicitly acknowledged as a consequence of TD items.

The reason for expanding the model is to nuance how the research community and the
industry view TD. The fact that software engineering is a human activity is often overlooked
in investigations. While we recognize the challenge in putting a value on such aspects, that
does not mean that we can turn a blind eye to their actual costs and benefits. Recognizing
the psychological factors in TD will serve as the starting point for discussions and help the
community converge on key concepts.

In particular, we encourage software engineers in the industry to engage in introspection,
especially concerning stress and burnout. As surfaced in the qualitative data, many profes-
sionals face a psychologically taxing work environment, and until the consequences of their
experiences are better understood, we advise caution. From our own experiences, the dig-
ital work environment, partly constituent of the code base, is seldom (if at all) regarded in
analyses of occupational safety, health, and welfare.

Another crucial goal of TD management is to prioritize the removal of debt items that
generate the worst current and future negative effects (or else, to use the metaphor, they have
high interest attached). As repeatedly reported in the literature, this is a very difficult task, as
measuring such interest is challenging and evidence is scarce. Measuring the affective states
of practitioners in relation to different TD issues can be used as a proxy for such interest, or
can at least provide additional insights on which items are perceived as the most “danger-
ous.” In Table 7, we provide a concrete example of how different smells (representing TD)
impacted the participants’ affective states differently, which suggests a ranking across the
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Fig. 11 Partial view of a conceptual model of technical debt, adopted from Avgeriou et al. (2016). The model
has been extended to include the psychological impact in consequences

smells. In conclusion, a comprehensive catalog of smells and their impact on practitioners’
affects could highly benefit the software engineering community.

Finally, we would like to address the psychological perspective in the context of edu-
cation. Software engineering is difficult work and perhaps especially so because of the
flexibility of the medium. Unlike other constructs, a code base is largely unconstrained by
natural forces and can thus be perpetuated to unfathomable complexity. Unsurprisingly, res-
ignation, frustration and even hate ensue. Many universities may want to consider explicitly
educating their students about this reality and train them in how to engineer under such con-
ditions.9 We argue that not imparting this knowledge would be an important oversight and
urge the institutes to reflect on how our society is affected by the practitioner’s emotional
intelligence.

7 Limitations and Threats to Validity

Conducting empirical studies with human subjects is often a complex issue (Miller 2008), as
it is often the case that the context is noisy and investigated effects are small (Gelman 2018).
As such, the potential threats to validity are often numerous, and it would be infeasible to

9Project courses might not be the optimal choice as the work situation likely differs from that in the industry,
but more research is needed to determine this.
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discuss them all fully. This section presents what we consider the most significant validity
threats to this study and the measures taken to mitigate them. The threats are categorized
according to the aspects suggested by Wohlin et al. (2012) and Runeson and Höst (2009).

7.1 Construct Validity

This study set out with the aim of determining how DTD relates to the affects of software
practitioners. One of the methods used was a repeated-measures experiment, where the
participants were presented with five software design smells and their respective refactored
versions. However, those smells were instantiated in code examples that originated from
the same source, namely (Suryanarayana et al. 2014), which is not a scientific publication
(although a derivative of one). Also, the source’s purpose differs from ours in that the smells
and the refactored versions are intended to be contrasted with each other. As previously
stated, the rationale of this choice was a perceived deficit of suitable DTD representations
in the research literature (for our purposes, at least).

These characteristics introduce threats to validity, but because they were identified before
the data collection, countermeasures could be introduced. Since we were unable to find a
way to eliminate these threats, we chose to monitor them and investigate the issue post hoc.
This was done by introducing validity-checking questions (see Table 3, questions IQ4.1,
IQ4.2, and IQ5) to the interview questions and analyzing the answers. (Further, IQ3, IQ6,
and IQ7 checked other types of validity.)

In response to IQ5, the participants reported that the scenarios were representative of
industry code, albeit atypically small and isolated examples of TD encountered in prac-
tice. Additionally, they confirmed that industry code would have impacted their affects to a
greater extent. This suggests that the treatment was suitable, but also that the resulting data
is an underestimation of the software industry’s situation.

7.2 Internal Validity

The laboratory experiment part of this study was a repeated-measures design. While this
approach lowers the threat of confounders because each subject’s peculiarities are accounted
for, it is more susceptible to learning effects.

Several countermeasures10 were taken to reduce learning effects. First, the participants
were acquainted with the situation during the first phase of the session (pre-task instruc-
tions), and each received the same instructions for how to use the measurement instrument
and their task. Second, the participants obtained practical experience with the procedure
before the measurements (anchor point). Third, intermissions were used between mea-
surements (deacclimatization periods) to lower the probability of any affects induced by
previous scenarios carried over to later ones. Fourth, each participant was randomly allo-
cated to one of two complementary treatment patterns designed to minimize bias. Fifth, and
perhaps most importantly, the order of the scenarios was randomized for each participant.

7.3 External Validity

For this study, it is worth noting that the field of psychology is experiencing a replication
crisis. Unfortunately, we have been unable to find consensus on concrete best practices for
ensuring replicability and have instead chosen to adopt some propositions.

10Detailed in the replication package.
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We have made our work as transparent as possible (see the replication package), under
the constraints set by confidentiality, anonymity, and copyright. This includes the statistical
analysis, the data, the procedure, and the experiment material.

Another issue concerned with external validity is the sampling strategy. In this study, we
employed convenience sampling (further detailed in the replication package). The approach
meant that the sample was limited in several ways. First, all participants were industry
professionals, which is a subset of all software practitioners and might not be representative.
Second, the participants were selected by managers, who might have their agenda in what
employees to select. Third, the companies belonged to the subset of companies that were
both sufficiently interested in this study and could allocate resources (i.e., subjects).

However, our results show that the effects of different professional characteristics, such
as programming language and role, were limited. This could indicate that the study is less
susceptible to convenience sampling than otherwise. Further, the 40 participants had a wide
variety of professional backgrounds and were employed at twelve different companies and
one government agency.

Along the same line, the generalizability of the results of the study is threatened by demo-
graphic factors. Due to various constraints (including financial), all partaking entities had
offices in Sweden. While the study was conducted in several parts of the country, Sweden
is culturally distinguished in terms of secular-rational and self-expression values (Inglehart
and Welzel 2010). That said, there was diversity in, e.g., ethnicity among the participants,
but such data was not collected to protect confidentiality. For the same reason, many aspects
of the participants’ demographic profiles were not investigated.

Finally, it is important to recognize that this study was an exploratory one, and not
comprehensive. Hence, the quantitative findings should not be understood as applying to
all design smells nor all instances of the selected design smells. What the data demon-
strates is that—even in the context of small, isolated code examples—software practitioners’
affective states can change in the presence of certain design smells.

7.4 Conclusion Validity

As far as we can tell, no previous studies have investigated how DTD relates to affects. Con-
sequently, the findings of this study cannot be compared and contrasted with the findings of
others. Instead, they must be evaluated in isolation and are, therefore, more susceptible to
incorrect inferences and conclusions.

Three triangulation techniques (Miller 2008) were adopted to combat these threats. First,
the data were triangulated in the sense that the sessions were spread out over four weeks,
and the participants were employed at different entities. Second, researcher triangulation
was achieved as two researchers took part in all data gathering and interpretation. Third,
methodological triangulation was used, as data were collected through an experiment, a
questionnaire, and interviews.

8 Conclusion

Fully understanding the impact of technical debt (TD) in the code base is a crucial chal-
lenge for researchers and practitioners alike. Although previous research has highlighted
how TD can impact developers’ morale, there is scarce evidence on how specific technical
debt issues impact practitioners’ affective states. Even more challenging is finding evidence
related to design and architectural debt.
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With our study, encompassing a quantitative data collection and analysis supported by
additional qualitative insights from the participants, we offer a first detailed look into how
the presence of design debt issues affect software practitioners’ affective state.

The results show that five different smells have different impacts. Even when present in
a small example, cyclic dependencies clearly and negatively affect software practitioners’
affects. Simultaneously, missing encapsulation seems to be a more straightforward issue
to deal with (although mildly affecting the practitioners’ affects). Two issues related to
hierarchy (missing hierarchy and rebellious hierarchy) seem to have a conflicting or no
evident effect on the participants’ affective state. In contrast, surprisingly, the presence of
the broken modularization issue seems to have a positive impact on practitioners’ affects.

These results imply that these different TDs need to be treated differently and that study-
ing their impact on the practitioners’ affective states helps to understand their overall impact
(interest) and consequently how to prioritize them in practice. More studies with addi-
tional TD should be studied in a similar way as it was done in this study, so to provide a
comprehensive catalog of the smells and their impact.

From our qualitative findings, it seems that practitioners undergo different levels of matu-
rity in how they deal with TD. First, they might naively tend to avoid it (Procrastination),
then they tend to build a quality-heavy mindset (mostly, however, by blaming others for the
presence of TD, i.e., Elitism). Finally, they reach a higher level of maturity when a con-
structive mindset promotes high-quality code (Compensation). Also, practitioners seem to
be affected negatively when they forecast TD, especially with Apprehension related to the
future negative impact generated by TD, and by the inherent difficulty in identifying TD
and predicting its consequences (TD as Indeterminable items).

Finally, we investigated whether participants’ background covariates played a role, and
we found partly how experience seems to act as a sort of amplifier for the participants’
feelings, probably due to repeated encounters with TD and to the different maturity, acquired
with more experience, in dealing with TD.

In summary, only some of the known issues highlighted in the literature seem to affect
practitioners’ feelings. At the same time, we find that dealing with TD is stressful and might
require a fair amount of experience in the team to be handled constructively.

This topic remains mostly uncharted, and presents many opportunities for future work. A
singular study is insufficient to build a solid theory, but we encourage others to replicate our
experiment under similar or different settings, e.g., design smells, TD type, or cultures. Two
particularly interesting investigations would be using industry code examples and situations
that simulate time pressure.
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Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2012) Experimentation in software
engineering. Springer Science & Business Media, Berlin

https://doi.org/10.1016/j.tics.2010.05.001
https://doi.org/10.1038/d41586-017-07522-z
https://doi.org/10.1016/j.jss.2015.04.084
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1109/MS.2012.130
https://doi.org/10.1002/smr.1877
https://doi.org/10.1016/j.scico.2018.03.007
https://doi.org/10.1016/j.scico.2018.03.007
https://doi.org/10.1007/978-3-030-00761-4_21
https://doi.org/10.1007/s10664-008-9063-y
https://doi.org/10.2501/JAR-42-3-7-17
https://www.R-project.org/
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1016/0092-6566(77)90037-X
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1016/j.jss.2017.12.034
https://doi.org/10.1109/MTD.2013.6608671
http://mc-stan.org/
https://doi.org/10.1109/CHASE.2013.6614739
https://doi.org/10.1016/j.jss.2012.12.052
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1371/journal.pone.0198606
https://doi.org/10.1371/journal.pone.0198606


  105 Page 40 of 40 Empir Software Eng          (2021) 26:105 

Yli-Huumo J, Maglyas A, Smolander K (2014) The sources and approaches to management of technical
debt: A case study of two product lines in a middle-size finnish software company. In: Jedlitschka A,
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