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Abstract

We prove the global asymptotic stability of the Minkowski space for the mass-
less Einstein–Vlasov system in wave coordinates. In contrast with previous work
on the subject, no compact support assumptions on the initial data of the Vlasov
field in space or the momentum variables are required. In fact, the initial decay in
v is optimal. The present proof is based on vector field and weighted vector field
techniques for Vlasov fields, as developed in previous work of Fajman, Joudioux,
and Smulevici, and heavily relies on several structural properties of the massless
Vlasov equation, similar to the null and weak null conditions. To deal with the weak
decay rate of the metric, we propagate well-chosen hierarchized weighted energy
norms which reflect the strong decay properties satisfied by the particle density far
from the light cone. A particular analytical difficulty arises at the top order, when
we do not have access to improved pointwise decay estimates for certain metric
components. This difficulty is resolved using a novel hierarchy in the massless
Einstein–Vlasov system, which exploits the propagation of different growth rates
for the energy norms of different metric components.
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1. Introduction

1.1. Stability of the Minkowski Space for Einstein-Matter Systems

The nonlinear stability of the Minkowski space, first established in the funda-
mental work of Christodoulou andKlainerman [12], is one of the most impor-
tant results in mathematical relativity. There are by now several well-established
strategies to address this problem, such as the original approach of [12] or the one by
Lindblad andRodnianski [30] based on the formulation of the Einstein equations
in wave coordinates. These pioneering works were generalized in different ways
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to more general sets of initial perturbations as well as to various Einstein-matter
models [5,17,22–24,27,31,42,45].

On the other hand, not all Einstein-matter systems have Minkowski space as an
attractor. The Einstein-dust system leads to the well known Oppenheimer-Snyder
collapse for initial data arbitrarily close to Minkowski space, while the Euler equa-
tions will generally lead to the formation of shocks even in the absence of coupling
with gravity.1

A realistic matter model which is widely used in general relativity and avoids
shock formation on any fixed background spacetime is that of collisionless mat-
ter considered in Kinetic theory, which, when coupled to gravity, constitutes the
Einstein–Vlasov system (EVS). In the case when the individual particles in the
ensemble are massive, this system models distributions of stars, galaxies or galaxy
clusters and constitutes an accurate model for the large scale structure of space-
time; it admits a large variety of nontrivial static solutions [3,4,25,34,35] which
are potential attractors other than Minkowski space.

The study of the nonlinear stability problem for Minkowski space for the
EVS was initiated by Rein and Rendall in the spherically symmetric setting [33]
and recently established without symmetry restrictions for certain complementary
regimes of initial perturbations [17,31]. Other stability results for the massive EVS
were established in the cosmological setting [1,14,15,36].

1.2. The Massless Einstein–Vlasov System

The EVS is also used to model ensembles of self-gravitating photons or other
massless particles, when the corresponding mass parameter m is set to zero. The
system then takes the form

Rμν(x) − 1

2
Rgμν(x) =

∫

π−1(x)

f vμvνdμπ−1(x), ∀x ∈ M,

Tg( f )(x, v) = 0, ∀(x, v) ∈ P
(1.1)

for (M, g) a Lorentzian manifold and f a massless Vlasov field. Here, Tg denotes
the Liouville vector field and P ⊂ T �M is the fiber bundle consisting of all the
future light cones of the spacetime. We refer to P as the co-mass shell.2 The fibre
ofP over x ∈ M is denoted by π−1(x) and dμπ−1(x) is the natural volume form on
π−1(x) arising from the metric g. For a comprehensive geometric introduction to
relativistic Vlasov fields, see for example [38]. While the massless system formally
differs from the massive system only by changing the support of f from timelike
to null vectors, the behaviour of its solutions differs substantially in several key
points.

The first stability result of Minkowski space for the massless EVS in spherical
symmetry was established by Dafermos [13] and later generalised to the case

1 On the other hand, shock formation can be avoided in the presence of expansion [19,21,
37,40,41].
2 This is a small abuse of language, since the particles have no mass here.
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without any symmetry assumptions by Taylor [44]. In both cases, initial data are
restricted to distributions of particles with compact support in momentum variables
and space. This implies in particular that the particles stay in the wave zone, while
the spacetime remains vacuum in interior and exterior regions. For a global existence
result in spherical symmetry without necessarily small (but strongly outgoing)
initial data cf. [20]. Note that, for initial data with generic momenta, a smallness
assumption is nevertheless necessarily required since the massless system does
possess steady states for sufficiently large data [2].

In the present paper we consider the nonlinear stability problem of Minkowski
spacetime for the Einstein–Vlasov systemwith massless particleswithout any com-
pact support assumptions, neither for the distribution function nor for themetric per-
turbation. This removes any restrictions related to the semi-global features observed
in [13,44] and allows for arbitrary initial particle distributions including standard
Maxwellians, which are excluded by compact momentum support assumptions.
Moreover, metric perturbations and matter field are coupled initially in all regions
and the propagation of these general initial conditions is captured by the solutions
we consider. For the metric, the spatial decay rates of the initial perturbations we
consider coincide with those of [30].

1.3. The Main Result

The precise statement is given in Subsection 2.3, and can be summarized as
follows:

Theorem 1.1. (Main theorem, rough version) Consider smooth and asymptotically
flat initial data (�0, g̊, k̊, f̊ ), where �0 ≈ R

3, to the massless Einstein–Vlasov
system which are sufficiently close to the ones of Minkowski spacetime (R3, δ, 0, 0).
Then, the unique maximal Cauchy development (M, g, f ) arising from such data
is geodesically complete and asymptotically approaches Minkowski spacetime.

In the massive case, metric perturbations and particles travel at different speeds,
in particular in a uniform sense when velocities are bounded away strictly from the
speed of light. In contrast, for the massless system this decoupling does not occur,
which creates substantial new difficulties in comparison with the massive system.
3 We resolve these problems by a number of new techniques in the realm of the
vector field method for relativistic transport equations [18] discussed in the next
section.

1.4. The Vector Field Method for Transport Equations and Technical Aspects

The vector field method for relativistic transport equations was developed
recently to provide a robust technique which yields sharp estimates on velocity

3 Note that, in return, the massive case also contains independent difficulties, in particular,
the components of the energy-momentum tensor do not decay arbitrarily fast in the interior
region, contrary to the massless case.
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averages of kineticmatter in spacetimeswith geometries close toMinkowski space-
time [18]. It is based on the commutation properties of complete lifts of Killing
fields of Minkowski spacetime with the transport operator. The method has the
additional feature to be compatible with the corresponding method for the wave
equation introduced by Klainerman, which constitutes the foundation of most sta-
bility results of Minkowski spacetime. For a classical version cf. [42]. The vector
field method for transport equations has in the meantime been applied successfully
to the Vlasov–Nordström system [16] and the massive Einstein–Vlasov system in
[17]. In a series of papers, [6–9], the method has also been extended to the Vlasov–
Maxwell system in various contexts, in particular, without the need of any compact
support assumptions.

In the present paper, we apply the method to the massless Einstein–Vlasov
system. In particular, we introduce fundamental improvements, which are tailored
to the structure of the system in the massless case, which we will lay out in the
following.

1.4.1. Null Structures. The vector field method is based on the commutation
properties of the transport operator Tg with the complete lifts of Killing fields of
Minkowski spacetime. The perturbation of the transport operator, defined loosely by
the difference between the transport operator in curved space and that ofMinkowski
spacetime,Tg −Tη, creates an error term in the commutator with the complete lifts
and in turn obstructing terms in the resulting energy estimates.

The first crucial structure in the transport part of the massless system is the null
structure of the perturbation terms. There are roughly three distinct sources of null
structures. Two of them arise from the decomposition of the metric components
and the momentum variables with respect to a null frame. The third arises from the
identification of null forms for products involving (t, x)-derivatives of the metric
components and v-derivatives of the Vlasov field. These null structures are all
discussed in Subsection 2.4.2.

It can be shown, as for the Vlasov–Maxwell system [9], that this structure is
conserved under commutation with complete lifts. What is crucial in a subsequent
step is to assure that this null structure can be exploited at all levels of regularity,
which is not straightforward to validate. A particular difficulty occurs when well-
behaved components of the metric perturbation need to be estimated in energy. In
that case the bulk energies of Lindblad and Rodnianski are insufficient to close the
estimates. We return to this issue below.

1.4.2. A Null Structure in the Energy-MomentumTensor and its Consequence
for Propagation of the Metric Perturbation. The energy momentum tensor for
massless particles is trace-free. As a consequence of that, the 4-Ricci tensor is
proportional to the energy-momentum tensor. From the aforementioned null struc-
ture in the momentum components, after decomposition on a standard null frame,
we obtain a system of wave equations where certain matter source terms enjoy
improved decay in comparison with a generic energy-momentum tensor term. This
structure is another characteristic feature of themassless system. To our knowledge,
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in the massive case, matter source terms are usually taken of the generic type and
an underlying hierarchy was never exploited.

To derive suitable energy estimates for the frame components of the metric,
we consider additional energy norms for the metric components. The resulting
estimates are better than the generic ones due to the fast decaying matter source
terms and improved null properties satisfied by the semi-linear terms of the Einstein
equations. It is those energy norms that in turn can be used to estimate the good
frame components of the metric perturbation when the source terms in the Vlasov
equation are analysed at top order. Moreover, compared to the proof of Lindblad–
Rodnianski [30], thanks to these norms, we do not need Hörmander’s L1 − L∞-
estimate.

1.4.3. Strong (t − r)(t − r)(t − r)-Decay for Velocity Averages. In order to close the energy
estimates for the particle density, we have to deal with the weak decay rate of the
perturbation part of the metric in the interior of the light cone. In the case of Vlasov
fields with compact support, massless particles will follow straight lines parallel to
the light cone, so that the support of the Vlasov field is located close to the light
cone.We capture this effect in the non-compactly supported case using hierarchized
weighted-energy norms for the Vlasov field, similar to those considered in [7]. The
extraweights allows us to prove strong decay away from thewave zone, that is when
t − r is large.

1.4.4. The Lie Derivative. As in [31], we commute the Einstein equations with
Lie derivatives. Following a strategy initially developed for the Vlasov–Maxwell
system in [6], we also write the error terms arising in the commutation of the
Vlasov equation in terms of Lie derivatives of the metric components. Compared
to [17], this reduces the complexity of the error terms, and fully conserves the
null structure of the system after commutation, which appears to be crucial in our
proof. Moreover, it also allows to avoid many hierarchies considered in [30] in the
commuted Einstein equations and in [17] in the commuted Vlasov equation.

1.4.5. Decay Loss and v-Derivatives. At the linear level, derivatives in v do not
commutewellwith themassless transport operator, so that one should expect that the
presence of terms of the form ∂vi ̂Z I f in the source term of theVlasov equation to be
problematic. In themassive case [17,31], the introduction of improved commutators
seemed necessary to deal with the similar issue. Here, this issue can be resolved
essentially by using the null structure of the system, the strong decay in t − r of
the Vlasov field and a hierarchy of growth in t at the top order.

1.4.6. The Morawetz Weight. The Morawetz vector field, which has been used
extensively as a multiplier in the study of wave equations (cf. [26,32]) gives rise
to a momentum weight m (defined in (3.19)), which is in the kernel of the flat
transport operator and in turn yields a conserved quantity in Minkowski spacetime.
Its potential use in stability problems has been pointed out in [10]. In the present
paper we provide the first application for this weight by utilising it to construct
auxiliary energies, which allow for an absorption of |t − r | growth in the primary
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energy estimates for the distribution. It constitutes an essential ingredient to the
hierarchized energy scheme, which we use to close the estimates.

2. Strategy of the Proof and Outline of the Paper

2.1. The Cauchy Problem in Wave Coordinates and Initial Data

It is well-known that the Einstein equations can be formulated as a Cauchy
problem and in the case of the Einstein–Vlasov system, the well-posedness is guar-
anteed by a theorem ofChoquet-Bruhat [11]. See also [43] for themassless case.
A detailed formulation of the Cauchy problem for the Einstein–Vlasov system can
be found in [36].

Consider a smooth 3-dimensional manifold � with a Riemannian metric g̊, a
symmetric covariant 2-tensor k̊ and a function f̊ defined on T � (or equivalently
on T ��), with all data assumed to be smooth and such that the constraint equations
(see [36] for details) are satisfied. TheCauchy problem then consists in constructing
a 4-dimensional manifold M with Lorentz metric g, a smooth function f defined
on P , satisfying the Einstein–Vlasov system (1.1), and an embedding i : � → M
such that i∗g = g̊, i∗k = k̊, f ◦pr−1

� = f̊ , where k is the second fundamental form
of i(�) in (M, g) and the function pr−1

� : T �� → P is defined as follows. Let π :
P ⊂ T �M → M the canonical projection. Given p ∈ T ��, there exists a unique
q⊥(p) ∈ T �i(�) such that p = i�q⊥(p) and then a unique q || proportional to the
normal to i(�) at π(q⊥(p)) such that q⊥(p) + q ||(p) =: pr−1

� (p) ∈ π−1(i(�)).
Analogous to [29,30], we consider here wave coordinates, that is we choose

coordinates (t = x0, x1, x2, x3), onM which satisfy

∀ 0 � μ � 3, �gxμ = 0, (2.1)

where�g = gαβ Dα Dβ is the wave operator associated to the metric g. An element
v ∈ T �M can then be written as v = vμ dxμ and this gives rise to coordinates
(xμ, vν), μ, ν = 0, . . . , 3 on T �M.

The class of initial data which is considered in the following is asymptotically
flat and small in the following sense. Let M > 0 be a constant.4 Following [30],
we make the ansatz

g = η + h0 + h1, (2.2)

where η denotes the Minkowski metric while the perturbation h0 + h1 consists of
the Schwarzschild part h0

αβ = χ( r
1+t )

M
r δαβ , and the perturbation h1. The function

χ is smooth and chosen such that χ(s) = 0 if s � 1
4 and χ(s) = 1 if s � 1

2 .
In wave coordinates, the evolution equations can be written as a system of

quasilinear wave equations, the reduced equations, taking the form

4 With our convention, M is twice the ADM mass of the initial data.
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˜�ggμν = Fμν(g)(∇g,∇g) − 2T [ f ]μν, 0 � μ, ν � 3, ˜�g := gαβ∂xα ∂xβ ,

(2.3)

where ∇ denotes the covariant derivative of the flat Minkowski space-time. An
initial data set (�0, g̊, k̊, f̊ )gives rise to initial data of the reduced equations coupled
to the Vlasov equation via

f |t=0 = f̊ , gi j |t=0 = g̊i j , g0i |t=0 = 0,

g00|t=0 = −a2, a(x)2 = 1 − χ(r)
M

r
, (2.4)

and

∂t gi j |t=0 = −2ak̊i j , ∂t g00|t=0 = 2a3g̊i j k̊i j , (2.5)

∂t g0i |t=0 = a2 g̊ jk∂ j g̊ik − a2

2
g̊ jk∂i g̊ jk − a∂i a. (2.6)

One can show that, with the choice (2.5)–(2.6) the wave coordinate condition (2.1)
is satisfied by (gμν, ∂t gμν)|t=0, see, for example, [29, Section 4].

In view of the decomposition (2.2), the equations (2.3) can be rewritten as a
system for the components of h1, with extra source terms depending on h0. Thus,
the unknowns of the reduced Einstein–Vlasov system are h1 and the distribution
function f . The initial data will be chosen small in the sense that themass parameter
M and certain energy norms of h1 and f are bounded by a small constant ε > 0.

2.2. Vector Fields

Let

K := {∂t , ∂x1 , ∂x2 , ∂x3 ,
12,
13,
23,
01,
02,
03, S},
be an ordered set of conformal Killing vector fields ofMinkowski spacetime, where


i j = xi∂ j − x j∂i , 
0k = xk∂t + t∂k, S = xμ∂μ, ∂μ := ∂xμ.

We consider an ordering on K = {Z1, · · · , Z11} and for any multi-index I =
(I1, . . . , I|I |) of length |I | we denote the high order Lie derivative LI1

Z . . .LI|I |
Z by

LI
Z . Also let

̂P0 := {∂t , ∂x1 , ∂x2 , ∂x3 ,
̂
12,̂
13,̂
23,̂
01,̂
02,̂
03, S} = {̂Z1, . . .̂Z11},

where

̂
i j = xi∂ j − x j∂i + vi∂v j − v j∂vi , (2.7)

̂
0k = xk∂t + t∂k + |v|∂vk , |v| =
√

|v1|2 + |v2|2 + |v3|2 (2.8)

and we denote ̂Z I1 . . . Z I|I | by ̂Z I . Moreover, we work with the null frame U =
{L , L, e1, e2}, where L = ∂t + ∂r , L = ∂t − ∂r , and (e1, e2) form an orthonormal
basis of the tangent space to the 2-spheres of constant t and r . We define T =
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{L , e1, e2} as the set of the basis vectors which are tangent to the light cone and we
denote L = {L}.

Let k be a symmetric covariant 2-tensor field and V,W ∈ {U , T ,L}. At any
point (t, x), we define

|∇k|VW (t, x) :=
∑

U∈U ,V ∈V,W∈W
|∇U (k)(V, W )|(t, x)

=
∑

U∈U ,V ∈V,W∈W

∣

∣∂xα kβλ(t, x)UαV β W λ
∣

∣,

|∇k|VW (t, x) =
∑

T ∈T ,V ∈V,W∈W
|∇T (k)(V, W )|(t, x)

=
∑

T ∈T ,V ∈V,W∈W

∣

∣∂xα kβλ(t, x)T αV β W λ
∣

∣.

Finally, we denote by �t the hypersurface of constant t , that is

�t := {(τ, x) ∈ R
1+3 / τ = t},

and we introduce, for any (a, b) ∈ R
2, the weight function

ωb
a = ωb

a(t, r) :=
{ 1

(1+|t−r |)a , t � r,
(1 + |t − r |)b, t < r.

(2.9)

2.3. Detailed Statement of the Main Theorem

Our main result can then be formulated as follows:

Theorem 2.1. (Main theorem, complete version) Let N � 13, 0 < γ < 1
20

and (�0, g̊i j , k̊i j , f̊ ) be an initial data set to the massless Einstein–Vlasov sys-
tem such that �0 ≈ R

3, where M > 0 and giving rise to initial data
(h1

μν |t=0, ∂t h1
μν |t=0, f |t=0) of the reduced Einstein–Vlasov system through (2.4)–

(2.6). Consider ε > 0 and assume that the following smallness assumptions are
satisfied

M2 +
∑

|I |�N+2

(

∥

∥

∥(1 + r)
1
2 +γ+|I |∇∇ I h̊1

∥

∥

∥

2

L2(R3
x )

+
∥

∥

∥(1 + r)
1
2 +γ+|I |∇ I k̊

∥

∥

∥

2

L2(R3
x )

)

� ε,

∑

|I |+|J |�N+3

∥

∥

∥(1 + r)
2
3 N+10+|I |(1 + |v|)1+|J |∂ I

x ∂ J
v f̊

∥

∥

∥

L1(R3
x ×R3

v)
� ε.

There exists a constant ε0 > 0 such that if ε � ε0, then the maximal Cauchy
development (g, f ) arising from such data is geodesically complete and asymptotes
to the Minkowski space-time.

Moreover, there exists a global system of wave coordinates (t, x1, x2, x3), and
a constant 0 < δ(ε) <

γ
20 , with δ(ε) →ε→0 0, in which the following energy

bounds hold:
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For the Vlasov field, ∀ t ∈ R+,

∑

|I |�N−1

∫

�t

∫

R3
v

∣

∣

∣

̂Z I f
∣

∣

∣ |v| dv dx � ε (1 + t)
δ
2 ,

∑

|I |=N

∫

�t

∫

R3
v

∣

∣

∣

̂Z I f
∣

∣

∣ |v| dv dx � ε (1 + t)
1
2+δ.

For the metric perturbation h1, ∀ t ∈ R+,

∑

|J |�N−1

∫

�t

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2
ω
1+2γ
0 dx � ε (1 + t)2δ,

∑

|J |�N−1

∫

�t

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2

T U
ω
1+γ
2γ dx � ε (1 + t)δ,

∑

|J |=N

∫

�t

∣

∣∇LJ
Z (h1)

∣

∣

2

1 + t + r
ω2+2γ

γ dx � ε (1 + t)2δ,

∑

|J |�N

∫

�t

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2

LL
ω1
1+2γ dx � ε (1 + t)δ.

Remark 2.2. On top of the above energy bounds, we also prove pointwise decay
estimates on h1 and its derivatives, see Propositions 10.1 and 10.6 .We note that the
decay rates we state on certain null components of∇h1 (see (10.6)) are weaker near
the light cone than those obtained by Lindblad–Rodnianski [30]. This is because
we can close our main estimates without using the L1 − L∞-decay estimate of
Hörmander. Of course, a posteriori, one can upgrade these rates to those of [30,
Subsection 10.2] to obtain that for any |J | � N − 5 and for all (t, x) ∈ R+ × R

3

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

T U
(t, x) �

√
ε

1 + t + r
,

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣(t, x) �
√

ε log(3 + t)

1 + t + r
.

Remark 2.3. At the top order, the strong growth of the energy norm of f leads to
a strong growth of the L2-norm of the perturbation of the metric. For a technical
reason and in order to avoid a much stronger decay hypothesis on h1(0, ·), we, in
some sense, include this strong growth through the weight (1+ t +r)−1 into the top
order energy norm of h1. Not all top order norms actually need to grow: the small
growth on the LL-top energy norm for h1 can in fact be removed at the expense of
a more carefull analysis of the error terms.

The proof of the main theorem is based on vector field methods and a continuity
argument so that it essentially consists in improving bootstrap assumptions onwell-
chosen energy norms of h1 and f . The global-in-time existence then follows by
standard arguments. As we use a vector field method, we then need to

• commute the equations by high order derivatives composed by elements of K
for the Einstein equations and̂P0 for the Vlasov equations,
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• perform energy estimates to propagate weighted L2-norms of h1 and weighted
L1-norms of f ,

• obtain pointwise decay estimates for the solutions throughKlainerman–Sobolev
type inequalities and

• estimate all the error terms arising from the energy estimates using the decay
estimates.

As is usual for these type of problems, the main sources of difficulty arise from

• the bad behaviour near the light cone and the weak decay rate of h1 in the
interior region t > r ,

• the bad commutation properties of theVlasov equation, in particular, generating
error terms containing ∂v derivatives of f ,

• the top order estimates, where some of the structural properties of the equations
cannot be used anymore.

We present below some key technical ingredients of the proof that address in par-
ticular the issues above.

2.4. L1-Estimates for the Vlasov Field

2.4.1. Naive Estimate As ̂Z , the complete lift of a Killing vector field Z , com-
mutes with the flat relativistic transport operator Tη := |v|∂t + vi∂vi and since
|g − η| is expected to be small, commuting Tg( f ) = 0 with ̂Z should create
controllable error terms.5 However, a naive estimate leads to

∣

∣Tg
(

̂Z f
)∣

∣ �
∑

0�μ,ν�3

∣

∣Z(hμν)
∣

∣ |∂t,x f ||v|

+ ∣

∣∂t,x Z(hμν)
∣

∣ |∂v f ||v| + ∣

∣∂t,x (hμν)
∣

∣ |∂v f ||v|
and, during the proof, we will have

∣

∣Z(hμν)
∣

∣ �
√

ε
(1+|t−r |) 1

2

(1+t+r)1−δ
,

∣

∣∂t,x Z(hμν)
∣

∣ + ∣

∣∂t,x (hμν)
∣

∣ �
√

ε

(1+t+r)1−δ(1+|t−r |) 1
2

,

so that, since |∂v f | � (t + r)|∂t,x f | + ∑

̂Z∈̂P0 |̂Z f |,
∫ t

0

∫

�τ

∫

R3
v

∣

∣Tg
(

̂Z f
)∣

∣ dv dx dτ

�
∫ t

0

∫

�τ

∫

R3
v

√
ε(1 + τ + r)δ√
1 + |τ − r | |∂t,x f ||v|dvdxdτ + better terms. (2.10)

5 The case of S, which is merely a conformal Killing vector field, is slightly different but
does not create more complicated error terms.
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Controlling the left-hand side is necessary to close the energy estimates for f using
a Grönwall type inequality. However, with the above naive estimate, there are two
obstacles preventing us to do so.

(1) The decay rate degenerates near the light cone t = r . As mentioned earlier,
we will deal with this issue by taking advantage of the null structure of the
equations.

(2) The decay rate is not integrable (and not even almost integrable). Even if we
could transform the t − r decay into a t + r one, the overall t decay is too
weak to derive an estimate such as ‖̂Z f ‖L1

x,v
� ε(1 + t)η for any ̂Z ∈ ̂P0,

with η � 1.

2.4.2. The Null Structure of the Vlasov Equation. Let us denote g−1 −η−1 by
H and v0 + |v| by �v. Then, the deviation of Tg from the flat relativistic transport
operator is

Tg − Tη = −�v∂t + vα Hαβ∂xβ − 1

2
∇i (H)αβvαvβ · ∂vi . (2.11)

Now, recall

• that the derivatives of H tangential to the light cone can be compared to those
of h and have a better behavior than the others. More precisely,

|∇L H |(t, x) + |∇e1 H |(t, x) + |∇e2 H |(t, x) �
√

ε
(1 + |t − r |) 1

2

(1 + t + r)2−δ
.

It will be important to notice that a similar property holds for |L f |.
• from [30, Section 8] and the wave gauge condition that the LT components of

H enjoy improved decay estimates near the light cone,

|H |LT(t, x) �
√

ε
(1 + |t − r |) 1

2+δ

1 + t + r
, |∇H |LT(t, x) �

√
ε
(1 + |t − r |) 1

2+δ

(1 + t + r)2−2δ .

Wewill prove that∇eA(H)L L decays even faster near the light cone, which will
be crucial in our proof.

• from [6, Proposition 2.9], that certain null components of v behave better than
others. In particular, in the flat case where v0 = −|v|, one can control

∫ t

0

∫

�τ

∫

R3
v

|̂Z f |
(1 + |t − r |) 9

8

|vL | dv dx dτ

by the initial energy of |̂Z f |, so that, in the presence of vL , we can exploit the
decay in t − r in order to close the energy estimates.6 Moreover, the angular
components satisfy, still in the flat case, |vA| �

√|v||vL |, so that angular
components also behave better than generic ones.

6 The exponent 98 appearing in the denominator could be replaced by any number a > 1.
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• from [6, Lemma 4.2], that xi

r ∂vi f behaves better than ∂vk f near the light cone

since | xi

r ∂vi f | � |t − r ||∂t,x f | + ∑

̂Z∈̂P0 |̂Z f |.
• from [17, Subsection 4.2], that�v satisfies a kind of null condition. In our case,
we have

|�v| = |H(v, v)| � |H |LT |v| + |H ||vL |.
Now note that a naive estimate of (2.11) gives us

|Tg( f ) − Tη( f )| �
√

ε
(1 + t + r)δ√
1 + |t − r | |∂t,x f |

+
√

ε

(1 + t + r)1−δ
√
1 + |t − r |

∑

̂Z∈̂P0
|̂Z f |

whereas, expanding all the error terms according to a null frame and taking advan-
tage of the improved properties satisfied by the good null components of the solu-
tions, we obtain

|Tg( f ) − Tη( f )|

�
√

ε
(1 + |t − r |) 1

2

1 + t + r

(

(1 + |t − r |)δ|v||∂t,x f |+(1+t+r)2δ
√|v||vL ||∂t,x f |

)

+
√

ε

(1+t+r)
√
1+|t−r |

∑

̂Z∈̂P0

(

(1+|t−r |)δ|v||̂Z f | + (1 + t + r)2δ|vL ||̂Z f |
)

.

This last estimate is much better since either the decay rate is almost integrable for
t ≈ r or the Vlasov field is multiplied by

√|v||vL |, which allows to use part of the
decay in t − r . This indicates how important the structure of the non-linearities is
and how important it is to conserve them by commutation. By differentiating the
metric by Lie derivatives, we will obtain that

Tg(̂
i j f ) = −̂
i j (�v)g0β∂xβ f −vαL
i j (H)αβ∂xβ f

+1

2
∇i

(

L
i j (H)
)αβ

vαvβ∂vi f, (2.12)

Tg(∂xμ f ) = −∂xμ(�v)g0β∂xβ f −vαL∂xμ (H)αβ∂xβ f

+1

2
∇i

(

L∂xμ (H)
)αβ

vαvβ∂vi f, (2.13)

which improves the commutation formula obtained in [17], where the quantities
controlled, Z(hμν), are not geometric, and where the full structure of the non-
linearities were not preserved.7 This will allow us to improve our naive estimate
(2.10) in the following way:

7 The commutation formulas for the scaling and the Lorentz boosts contain more terms
which can be handled in a similar way as those of (2.12) and (2.13).
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∫ t

0

∫

�τ

∫

R3
v

∣

∣Tg
(

̂Z f
)∣

∣ dv dxdτ �
∫ t

0

∫

�τ

√
ε(1 + |τ − r |) 1

2+δ

1 + τ + r
|∂t,x f ||v| dv dx dτ

+
∫ t

0

∫

�τ

√
ε(1 + |τ − r |) 1

2

(1 + τ + r)1−4δ |∂t,x f ||vL | dv dx dτ

+ better terms, (2.14)

so that we can expect to propagate the bound ‖̂Z f (t, ·)‖L1
x,v

� ε(1 + t)η, with
η � 1 independent of δ, provided that we can improve the decay in t − r of the
velocity averages of f and its derivatives. Note that we will take η = δ

2 during the
proof.

2.4.3. Dealing with the Non Integrable Decay Rate. Even after exploiting the
null structure as explained above, we are still left with error terms which are not
time-integrable and therefore with energy norms a priori growing in time. We
will circumvent this difficulty by following the strategy of [7] and we will then
consider hierarchized weighted L1-norms. It essentially relies on the following
two properties:

(1) The translations ∂μ, when applied to solutions of a wave equation, provide an
extra decay far from the light cone compared to the other commutation vector
fields. In view of (2.12) and (2.13), we can expect the following improved
behavior for Tg(∂xμ f ),

|Tg(∂xμ f )| ∼ (1 + |t − r |)−1|Tg(̂
i j f )|,

which would considerably improve the estimate (2.14) for ̂Z = ∂xμ . Since
the worst source terms of Tg(̂Z f ), for any ̂Z ∈ ̂P0, contain only standard
derivatives ∂t,x f of the particle density, the system composed by the commuted
Vlasov equations is in some sense triangular.

(2) The weight m := ∣

∣1 +
(

(t2 + r2) − 2tr xi

r
vi|v|
)2 ∣

∣

1
4 can be used in order to

obtain stronger decay on f . This essentially arises from the contraction of the
Morawetz conformal Killing vector field K = (t2 + r2)∂t + 2tr∂r with the
flat velocity current, and it satisfies, in particular, that

Tη(m) = 0, 1 + |t − r | � m

so that one can expect Tg(mn f ) to be small and then propagate L1-norms of
f weighted by mn .8

As a consequence of these two observations, we will then be able to prove an

estimate such as ‖m 2
3 ∂t,x f (t, ·)‖L1

x,v
� ε(1 + t)η. This will then allow us to

improve the estimate (2.14) by

8 The overall exponent 1/4 is here only for homogeneity, so thatm ∼ t , for t � r .
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∫ t

0

∫

�τ

∫

R3
v

∣

∣Tg
(

̂Z f
)∣

∣ dv dxdτ �
∫ t

0

∫

�τ

√
ε m

2
3 |∂t,x f ||v|

(1 + τ + r)(1 + |τ − r |) 1
6−δ

dv dx dτ

+
∫ t

0

∫

�τ

√
ε m

2
3 |∂t,x f ||vL |

(1 + τ + r)1−4δ(1 + |τ − r |) 1
6

dvdxdτ

+ better terms,

and then prove ‖̂Z f (t, ·)‖L1
x,v

� ε(1 + t)η. Since we will have to consider higher
order derivatives, in order to apply this strategy, we will rather consider energy

norms of the form ‖mQ− 2
3 I P

̂Z I f (t, ·)‖L1
x,v
, with Q > 0 sufficiently large and

where I P is the number of homogeneous vector fields composing ̂Z I .

2.5. Study of the Metric Perturbation h1

As already observed byLindblad [28], differentiating themetric by Lie deriva-
tives considerably simplifies the study of the Einstein equations. The two main
arguments for using the Lie derivative are presented in this section.

2.5.1. The Wave Gauge Condition is Preserved by Commutation with LJ
Z ,

where Z J ∈ K
|J |. More precisely, the wave gauge condition �gxν = 0 leads to

∇μ

(

h − 1

2
tr(h)η + O(|h|2)

)

μν

= 0

and one can prove (see Subsection 4.2) that this property is preserved by differen-
tiation by the Lie derivative, that is

∀|J | � N , ∇μ

(

LJ
Z (h) − 1

2
tr(LJ

Z h)η + LJ
Z

(

O(|h|2)
)

)

μν

= 0.

This implies in particular,with∇ := (∇L ,∇e1 ,∇e2) containing the good derivatives
of the null frame (those tangential to the light cone), that for any |J | � N ,

|∇LJ
Z (h)|LT � |∇LJ

Z (h)| +
∑

|K1|+|K2|�|J |
|LK1

Z (h)||∇LK2
Z (h)|.

In [30] (and in [17]), this property was obtained for ∇h but could not be directly
obtained for its derivatives, since the quantities controlled, Z I (hμν), were not geo-
metric. For the purpose of this article, it is crucial to derive improved estimated on
the null components of the higher order derivatives of h in order to close the energy
estimates. Otherwise, certain error terms of the commuted Vlasov equations would
lack too much t + r decay.

Remark 2.4. In [30], a lack of (t + r)δ-decay in the error terms of the commuted
Einstein equations was circumvented by considering several hierarchies so that
‖∇Z I h1

μν(t, ·)‖L2 � ε(1 + t)δ|I | , with δ|I | � 1 growing with |I |. In our case the
lack of decay seems to be much worse (recall the naive estimate (2.11)) and this
prevents us to consider such hierarchies between the energy norms at top order.
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Remark 2.5. Several analogies exist between the Einstein equations and the
Maxwell equations

∇μFμν = Jν, ∇μ∗Fμν = 0,

where the electromagnetic field F is a 2-form, ∗F is its Hodge dual and the source
term J is a current. In particular, studying theEinstein equations inwave coordinates
has to be compared to considering theMaxwell equations in the Lorenz gauge. This
means that we work with a potential A satisfying dA = F and the Lorenz gauge
condition∇μ Aμ = 0, which has to be compared to the wave gauge condition since
it gives |∇(A)L | � |∇ A|. Moreover, we noticed in [6] that ∀ Z ∈ K,

(

dA = F and ∇μ Aμ = 0
) ⇒

(

dLZ (A) = LZ (F) and ∇μLZ (A)μ = 0
)

,

so that commuting with LZ conserves the Maxwell equations as well as the Lorenz
gauge condition.

2.5.2. The Null Structure of the Einstein Equations. For the study of the Ein-
stein equations (2.3), all the error terms arising after commutation will have suffi-
cient decay outside the wave zone. To control the error terms near the wave zone,
one of course, needs to exploit the null structure and the weak null structure of the
equations.

Indeed, one cannot propagate L2-estimate on h1 by performing naive estimates.
It was shown in [30] that Fμν(h)(∇h,∇h) is composed of cubic terms which
decay strongly, of quadratic terms Qμν(∇h,∇h), which are a linear combination
of standard null forms, and other quadratic terms P(∇μh,∇νh) which contain
semi-linear terms satisfying

|P(∇μh,∇νh)| � |∇h|2T U + |∇h|LL|∇h| + |∇h||∇h|LL.

Since the wave gauge condition holds, the problem arises from the term |∇h|2T U .
To deal with it, the proof of [30] used the L1 − L∞-estimate of Hörmander which
yields |∇h|T U � ε(1 + t)−1. We provide in this paper an alternative way for
treating this issue, which seems in fact necessary in order to deal with the top order
energy estimates for the Vlasov field (see Subsection 2.6). The L2 bound that we
will have on h1 is

Eγ,1+2γ [h1](t) :=
∫

�t

|∇h1|2ω1+2γ
0 dx +

∫ t

0

∫

�t

|∇h1|2
1 + |τ − r |ω

1+2γ
γ dxdτ

� ε (1 + t)2δ, δ < γ,

where

ωb
a(t, r) � (1 + |t − r |)−a1r�t + (1 + |t − r |)b1r>t , (a, b) ∈ R

2+.

We then observe that for any (T, U ) ∈ T × U , P(∇T h,∇U h) satisfies the null
condition and that T [ f ]T U , due to the presence of the good component vT in the
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integrand, decays much faster near the light cone than |T [ f ]|. As a consequence,
we will be able to prove that

E2γ,1+γ

T U [h1](t) :=
∫

�t

|∇h1|2T Uω
1+γ
2γ dx +

∫ t

0

∫

�t

|∇h1|2T U
1 + |τ − r |ω

1+γ
2γ dxdτ

� ε (1 + t)κ ,

where κ � 1 can be chosen independently of δ, allowing us to control sufficiently
well the error term |∇h|2T U . During the proof, we will take κ = δ.

Remark 2.6. These estimates reflect that, even estimated in L2, |∇h1|T U has a
better behavior than ∇h1 for t ≈ r . As no improvement can be obtained far from
the light cone, this property can only be captured if the L2-norm of |∇h1|T U carries
a weaker weight in t − r than the one of ∇h1.

Again, it is then important to prove that the structure of the source terms of the
Einstein equations are conserved by commutation with LJ

Z . As noticed in [28], we
have for a Killing vector field Z ,9

LZ
(

P(∇μh,∇νk)
) = P(∇μLZ h,∇νk) + P(∇μh,∇νLZ k),

LZ
(

Qμν(∇h,∇k)
) = Qμν(∇LZ h,∇k) + Qμν(∇h,∇LZ k).

Moreover, the structure of the commutator

[˜�g,LZ ](hμν) = LZ (H)αβ∇α∇βhμν

is also preserved by the action of LJ
Z and the cubic terms as well as ˜�gh0

μν can be
easily handled. Similarly, one can prove that

LZ (T [ f ])μν = T [̂Z f ]μν + good terms,

so that LZ (T [ f ]) enjoys the same improved properties as T [ f ] in the good null
directions.

2.6. The Top Order Estimates

After commuting the Vlasov equation by ̂Z I , with |I | = N and where N is
the maximal number of commutations, a specific difficulty appears with the error
terms of the form

(t + r)|v||∇LI
Z (h1)|LL|∂t,x f |,

where all the null structure is contained in the h1-factor. Since |I | = N , one cannot
gain t + r decay by expressing the good derivatives ∇ in terms of the commutation
vector fields anymore. Since the estimate

∫

R3
v

|∂t,x f ||v|dv � ε

(1 + t + r)2− δ
2 (1 + |t − r |)3

,

9 The case of the scaling vector field leads to additional non problematic terms.
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holds, we have
∫ t

0

∫

�τ

∫

R3
v

(t + r)|v||∇LI
Z (h1)|LL|∂t,x f | dv dx dτ

�
∣

∣

∣

∣

∣

∫ t

0

∫

�τ

|∇LI
Z (h1)|2LL

(1 + |τ − r |)4 dxdτ

∣

∣

∣

∣

∣

1
2

ε(1 + t)
1+δ
2 .

Then, even the energy bound E2γ,1+γ

T U [LI
Z h1](t) � ε(1+ t)κ would not allow us to

close the energy estimates at top order. Indeed, we would obtain ‖̂Z I f (t, ·)‖L1
x,v

�
ε(1 + t)

1+δ+κ
2 , leading to Eγ,1+2γ [LI

Z h1](t) � ε(1 + t)1+δ+κ . Even though
|T [̂Z I f ]|T U has a good behavior, this would prevent us to prove a better esti-
mate than E2γ,1+γ

T U [LI
Z h1](t) � Cε(1 + t)κ+δ . Since δ > 0, we would then fail

to improve all the bootstrap assumptions. The idea to resolve this problem is then
to notice that ˜�g(LI

Z h1)L L strongly decays near the light cone, so that one can
propagate the bound
∫

�t

|∇LI
Z (h1)|LLω1

1+2γ dx +
∫ t

0

∫

�t

|∇LI
Z (h1)|LL

1 + |τ − r | ω1
1+2γ dxdτ � ε (1 + t)η0 ,

where η0 � 1 can be chosen independently of all the other bootstrap assumptions.
As mentioned in Remark 2.3, we could prove that the previous estimate holds for
η0 = 0.

2.7. Organization of the Paper

In Section 3, we introduce the notations used in this article. Useful results for the
analysis of the null structure of the equations concerning the commutation vector
fields, the velocity current v and theweights preserved by the free transport operator
are presented. We also introduce the energy norms used to study the solutions. In
Section 4, we study the consequences of the wave gauge condition and the source
terms of the commuted Einstein equations. Section 5 is devoted to the commutation
formula of the Vlasov equation, as well as its analysis and in Section 6, we compute
the derivatives of the energy momentum tensor T [ f ]. The energy estimates used
for the metric perturbation are proved in Section 7 and the one for the particle
density is derived in Section 8. We set-up the bootstrap assumptions in Section 9.
In Section 10, we prove pointwise decay estimates for the null components of h1

and its derivatives and we use them to bound all the source terms of the Einstein
equations but for the contribution of T [ f ] in Section 11. In Section 12 (respectively
Section 13), we improve the bootstrap assumptions on h1 (respectively f ). Finally,
in Section 14, we prove the required estimates on the L2-norm of T [ f ] in order to
close the energy estimates.

3. Preliminaries

In this section, we set-up the problem and introduce basic mathematical tools
and notations.
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3.1. Basic Notations

We will use two sets of coordinates on R
1+3, the Cartesian (t, x1, x2, x3), in

which the metric η of Minkowski spacetime satisfies η = diag(−1, 1, 1, 1), and
null coordinates (u, u, ω1, ω2), where

u = t + r, u = t − r

and (ω1, ω2) are spherical variables, which are spherical coordinates on the spheres
(t, r) = constant . These coordinates are defined globally on R

1+3 apart from the
usual degeneration of spherical coordinates and at r = 0. We will use the notation
∇ for the covariant differentiation in Minkowski spacetime. We denote by /∇ the
intrinsic covariant differentiation on the spheres (t, r) = constant and by (e1, e2)
an orthonormal basis of their tangent spaces. Capital Roman indices such as A or
B will always correspond to spherical variables. The null derivatives are defined
by

L = ∂t + ∂r and L = ∂t − ∂r ,

so that

L(u) = 2, L(u) = 0, L(u) = 0, L(u) = 2.

With respect to the null frame {L , L, e1, e2}, the Minkowski metric has the follow-
ing components

η(L , L) = η(L, L) = η(L , eA) = η(L, eA) = 0,

η(L , L) = η(L, L) = −2, η(eA, eB) = δAB .

We define further ∇ = (∇L ,∇e1 ,∇e2), the derivatives tangential to the light cone,
as well as U = {L , L, e1, e2}, T = {L , e1, e2} and L = {L}, which will be useful
in order to study the behavior of certain tensor fields in null directions. For that
purpose, we introduce for a symmetric (0, 2)-tensor field of Cartesian components
kαβ ,

|k|VW :=
∑

V ∈V,W∈W
|k(V, W )| =

∑

V ∈V,W∈W

∣

∣kαβ V αW β
∣

∣ ,

|∇k|VW :=
∑

U∈U ,V ∈V,W∈W
|∇U (k)(V, W )| =

∑

U∈U ,V ∈V,W∈W

∣

∣∂μ(kαβ)UμV αW β
∣

∣ ,

|∇k|VW :=
∑

T ∈T ,V ∈V,W∈W
|∇T (k)(V, W )| =

∑

T ∈T ,V ∈V,W∈W

∣

∣∂μ(kαβ)T μV αW β
∣

∣ .

If V = W = U , we will drop the subscript UU . For instance, |k| := |k|UU .
As we study massless particles, the distribution functions considered in this

paper will not be defined for v = 0 so we introduce R3
v := R

3 \ {0}.
We will use the notation D1 � D2 for an inequality such as D1 � C D2, where

C > 0 is a positive constant independent of the solutions but which could depend on
N ∈ N, the maximal order of commutation, and fixed parameters (δ, γ ,...). We will
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raise and lower indices using the Minkowski metric η. For instance, xμ = xνη
νμ

and, for a current p,

pL = −2pL , pL = −2pL , pA = pA.

The only exception is made for the metric g, where in this case, gμν will denote
the (μ, ν) component of g−1.

Finally, we extend the Kronecker symbol to vector fields, that is if X and Y are
two vector fields, δY

X = 0 if X �= Y and δY
X = 1 otherwise.

3.2. Vlasov Fields in the Cotangent Bundle Formulation

Our framework for the study of the Vlasov equation and the Vlasov field is
adapted from the one developed in [17] and is thus based on the co-tangent formu-
lation of the Vlasov equation. The presentation below follows closely that of [17],
but takes into account the fact that we consider here massless particles only.

Let (M, g) be a smooth time-oriented, oriented, 4-dimensional Lorentzian
manifold. We denote by P the following subset of the cotangent bundle T �M

P :=
{

(x, v) ∈ T �M : g−1
x (v, v) = 0 and v future oriented

}

.

Note in particular that for v to be a future oriented covector, necessarily v �= 0.
P is a smooth 7-dimensional manifold, as the level set of a smooth function with
non-vanishing gradient.

In the massive case, P is often referred to as the co − massshell. By an abuse
of language, we will keep calling P the co-massshell, even in the present massless
case. We will denote by π the canonical projection π : P → M.

Given a coordinate system on M, (U, xα) with U ⊂ M , we obtain a local
coordinate system on T �M, by considering the coordinates vα conjugate to the xα

such that for any x ∈ U ⊂ M, any v ∈ T �
x M

v = vαdxα.

We now assume that there exist local coordinates (xα) such that x0 = t is a
smooth time function, that is its gradient is past directed and timelike. In that case,
the algebraic equation

vαvβgαβ = 0 and vα future directed

can be solved for v0 by

v0 = −(g00)−1
(

g0 jv j −
√

(g0 jv j )2 + (−g00)gi jviv j

)

< 0.

It follows that (xα, vi ), 1 � i � 3 are smooth coordinates on P and for
any x ∈ M, (vi ), 1 � i � 3 are smooth coordinates on π−1(x). Note that the
requirement that v �= 0, implies that vi ∈ R

3 \ {0}. We thus define R3
v := R

3 \ {0}.
All integrations in v can be performed using the (vi ) coordinates in which case, the
domain of integration will always be R3

v .
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With respect to these coordinates, we introduce a volume form dμπ−1(x) on
π−1(x) defined by

dμπ−1(x) =
√− det g−1

vβgβ0 dv1 ∧ dv2 ∧ dv3.

For any sufficiently regular distribution function f : P → R, we define its
energy-momentum tensor as the tensor field

Tαβ [ f ](x) =
∫

π−1(x)

vαvβ f dμπ−1(x). (3.1)

For the above integral to be well-defined, one needs f (x, ·) to be locally integrable
in v, to decay sufficiently fast in v as |v| → +∞, as well as |v| f to be integrable
near 0, in view of the fact that the volume form dμπ−1(x) becomes singular near
v = 0. All distribution functions considered in this paper will always be such
that these properties hold. Moreover, we will also require f to possess additional
decay in x and v, so that we can perform the various integration by parts needed.
In any case, one can assume for simplicity for the computations to hold that all
distribution functions are smooth, compactly supported, with a support away from
v = 0, and then use the standard approximation arguments to obtain the results in
the non-compactly supported case.

The Vlasov field f is required to solve the Vlasov equation, which can be
written in the (xα, vi ) coordinate system as

Tg( f ) := gαβvα∂xβ f − 1

2
vαvβ∂xi gαβ∂vi f = 0. (3.2)

It follows from the Vlasov equation that the energy-momentum tensor is diver-
gence free and more generally, for any sufficiently regular distribution function
k : P → R,

gαγ Dγ Tαβ [k] =
∫

v

Tg(k)vβdμπ−1(x),

where D is the covariant differentiation in (R1+3, g).

3.3. The System of Equations

We decompose the metric as

gμν = ημν + hμν = ημν + h0
μν + h1

μν,

where

h0
αβ = χ

(

r

1 + t

)

M

r
δαβ
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is the Schwarzschild part, and χ : R → R is a smooth cutoff function such that
χ(s) = 0 if s � 1

4 and χ(s) = 1 if s � 1
2 . For the inverse metric we will use the

decomposition

gμν = ημν + Hμν, Hμν = χ

(

r

1 + t

)

M

r
δμν + Hμν

1 = (h0)μν + Hμν
1 .

The relation between h1 and H1 is made precise in Section 4.1. Define the reduced
wave operator

˜�g = gαβ∂α∂β.

In wave coordinates (x0, x1, x2, x3), we have �gxν = 0 by definition, so that (see
[29, Section 3])

∀ ν ∈ �0, 3�, ∂μ

(

gμν
√| det g|

)

= 0. (3.3)

The massless Einstein–Vlasov system then reads

˜�gh1
μν = Fμν(h)(∇h,∇h) − ˜�gh0

μν − 2T [ f ]μν, (3.4a)

Tg( f ) = 0, (3.4b)

where

Tg = gαβvα∂β − 1

2
∂xi gαβvαvβ∂vi ,

T [ f ]μν =
∫

R3
v

f vμvν

√| det g−1|
g0αvα

dv1 dv2 dv3.

Moreover, according to [29, Lemma 3.2] the semi-linear terms can be divided
in three parts

Fμν(h)(∇h,∇h) = P(∇μh,∇νh) + Qμν(∇h,∇h) + Gμν(h)(∇h,∇h),

where P(∇μh,∇νh), Qμν(∇h,∇h) and Gμν(h)(∇h,∇h) are (0, 2)-tensor fields,
the indices (μ, ν) refers to their components in the wave coordinates system (t, x),
and P, Q, G are defined as follows.

• P contains the source terms which do not satisfy the null condition and is given
by

P(∇μh,∇νk) := 1

4
ηαα′

∂μhαα′ηββ ′
∂νkββ ′ − 1

2
ηαα′

ηββ ′
∂μhαβ∂νkα′β ′ . (3.5)

• Q is a combination of the standard null forms and is given by

Qμν(∇h,∇k) := ηα′αηββ ′
∂αhβμ∂α′ kβ ′ν − ηα′αηββ ′ (

∂αhβμ∂β ′ kα′ν − ∂β ′ hβμ∂αkα′ν
)

+ ηα′αηββ ′ (
∂μhα′β ′∂αkβν − ∂αhα′β ′∂μkβν

)

+ ηα′αηββ ′ (
∂νhα′β ′∂αkβμ − ∂αhα′β ′∂νkβμ

)

+ 1

2
ηα′αηββ ′ (

∂β ′ hαα′∂μkβν − ∂μhαα′∂β ′ kβν

)

+ 1

2
ηα′αηββ ′ (

∂β ′ hαα′∂νkβμ − ∂νhαα′∂β ′ kβμ

)

. (3.6)
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• Finally, Gμν(h)(∇h,∇h) contains cubic and quartic terms and can be written
as a linear combination of

Hαβ∂ξ hμν∂σ hλκ , Hα0β0 Hαβ∂ξ hμν∂σ hλκ , (3.7)

where all the indices are taken in �0, 3�.

The null structure of the quadratic terms is of fundamental importance and is
described in the following result:

Lemma 3.1. Let k and q be (0, 2)-tensor fields. Then

|P (∇k,∇q)| � |∇k|T U |∇q|T U + |∇k|LL|∇q| + |∇k||∇q|LL,

|P(∇k,∇q)|T U + |Q (∇k,∇q)| �
∣

∣∇k
∣

∣ |∇q| + |∇k| ∣∣∇q
∣

∣ ,

|P(∇k,∇q)|LL + |Q(∇k,∇q)|LL � |∇k||∇q|T U + |∇k|T U |∇q|.

Proof. According to (3.5) and since ηL L = ηL A = 0, we have for any (V, W ) ∈
U2,

|P(∇V k,∇W q)| � |∇V k|T U |∇W q|T U + |∇V (k)L L ||∇W q| + |∇V k||∇W (q)L L |.
This implies all the inequalities which concern P(∇k,∇q). Note now that, for any
Cartesian component (μ, ν), Qμν (∇k,∇q) can be written as linear combination
of

N0(hλ1λ2 , hλ3λ4), Nαβ(hλ1λ2 , hλ3λ4),

0 � α < β � 3, (λ1, λ2, λ3, λ4) ∈ �0, 3�4,

where at least one of the λi is equal to μ or to ν and

N0(φ,ψ) = −∂tφ∂tψ + ∂1φ∂1ψ + ∂2φ∂2ψ + ∂3φ∂3ψ,

Nαβ(φ,ψ) = ∂αφ∂βψ − ∂βφ∂αψ

are the standard null forms. They satisfy (see [39, Chapter 2] for a proof), for any
α < β,

|N0(φ,ψ)| + |Nαβ(φ,ψ)| � |∇φ||∇ψ | + |∇φ||∇ψ |.
��

3.4. Commutation Vector Fields for Wave Equations

Let P be the generators of the Poincaré algebra, that is the set containing

• the translations ∂μ, 0 � μ � 3,

• the rotations 
i j = xi∂ j − x j∂i , 1 � i < j � 3,

• the hyperbolic rotations 
0k = t∂k + xk∂t , 1 � k � 3,
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which are Killing vector fields of Minkowski spacetime.10 We also consider K :=
P ∪ {S}, where S = xμ∂μ is the scaling vector field which is merely a conformal
Killing vector field. The elements of P are well known to commute with the flat
wave operator �η = −∂2t + ∂21 + ∂22 + ∂23 and we also have [�η, S] = 2�η.

We consider an ordering on K = {Z1, . . . , Z11} such that Z11 = S and we
define, for any multi-index J ∈ �1, 11�n of length n ∈ N

∗, Z J = Z J1 . . . Z Jn . By
convention, if |J | = 0, Z J φ = φ. Similarly, ∇ J

Z will denote ∇Z J1 . . . ∇Z Jn .
When commuting the system (3.4a) and (3.4b), we will use the Lie derivative

to differentiate the metric g in order to preserve the structure of the equations. In
coordinates, the Lie derivative LX (k) of a tensor field kα1···αn

β1···βm
with respect to a

vector field X is given by

LX kα1···αn
β1···βm

= X
(

kα1···αn
β1···βm

)

− kμα2···αn
β1···βm

∂μ Xα1 − · · · − kα1···αn−1μ

β1···βm
∂μ Xαn

+ kα1···αn
μβ2···βm

∂β1 Xμ + · · · + kα1···αn
β1···βm−1μ

∂βm Xμ. (3.8)

For Z J ∈ K
|J |, we define LJ

Z (k) = LZ J1 . . .LZ Jn (k). Note that that for n ∈ N, we
have

∑

|J |�n

∣

∣

∣∇ J
Z (k)

∣

∣

∣ �
∑

|J |�n

∣

∣

∣LJ
Z (k)

∣

∣

∣ �
∑

|J |�n

∣

∣

∣∇ J
Z (k)

∣

∣

∣ . (3.9)

The standard lemma can be obtained using

(t − r)L = S − xi

r

0i , (t + r)L = S + xi

r

0i , eA = 1

r
Ci j

A · 
i j , (3.10)

where Ci j
A are bounded smooth functions of (ω1, ω2), and

(t − r)∂t = t

t + r
S − xi

t + r

0i , ∂i = − xi

t + r
S + t

t + r

0i − x j

t + r

i j .

Lemma 3.2. For any sufficiently regular function φ : [0, T [×R
3 → R, it holds

that

∀ (t, x) ∈ [0, T [×R
3, (1 + |t − r |)|∇φ| + (1 + t + r)|∇φ| �

∑

Z∈K
|Zφ| .

The purpose of the following result is to generalize Lemma 3.2 to tensor fields.

Lemma 3.3. Let kμν be a sufficiently regular symmetric tensor field defined on
[0, T [×R

3. Then, the following estimates hold, where Z J ∈ K
|J |. For all (t, x) ∈

[0, T [×R
3:

|∇k| �
∑

|J |�1

∣

∣LJ
Z k
∣

∣

1 + |t − r | ,
∣

∣∇k
∣

∣ �
∑

|J |�1

∣

∣LJ
Z k
∣

∣

1 + t + r
. (3.11)

10 In this article, we will denote ∂xi , for 1 � i � 3, by ∂i and sometimes ∂t by ∂0.
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For all (t, x) ∈ [0, T [×R
3 such that r � t+1

2 ,

|∇k|T U � |k|
1 + t + r

+
∑

|J |�1

∣

∣LJ
Z k
∣

∣

T U
1 + |t − r | , (3.12)

|∇k|LT � |k|T U
1 + t + r

+
∑

|J |�1

∣

∣LJ
Z k
∣

∣

LT
1 + |t − r | ,

∣

∣∇k
∣

∣

LT �
∑

|J |�1

∣

∣LJ
Z k
∣

∣

T U
1 + t + r

(3.13)

|∇k|LL � |k|LT
1 + t + r

+
∑

|J |�1

∣

∣LJ
Z k
∣

∣

LL
1 + |t − r | ,

∣

∣∇k
∣

∣

LL �
∑

|J |�1

∣

∣LJ
Z k
∣

∣

LT
1 + t + r

. (3.14)

This implies in particular the following weaker but more convenient estimates,
which hold for any (V,W) ∈ {(U ,U), (T ,U), (L, T ), (L,L)} and for all (t, x) ∈
[0, T [×R

3,

|∇k|VW �
∑

|J |�1

∣

∣LJ
Z k
∣

∣

1 + t + r
+

∣

∣LJ
Z k
∣

∣

VW
1 + |t − r | ,

∣

∣∇k
∣

∣

VW �
∑

|J |�1

∣

∣LJ
Z k
∣

∣

1 + t + r
(3.15)

Proof. By Lemma 3.2 and since, for any Z ∈ K, |∇Z k| � |LZ k| + |k|, we have

(1 + |t − r |) |∇k| + (1 + t + r)
∣

∣∇k
∣

∣ �
∑

Z∈K
|∇Z k| � |k| +

∑

Z∈K
|LZ k| ,

which implies (3.11). Suppose now that r � 1+t
2 . Define the operation “−”, by

L− := T , T − := U , U− := U .

With this notation, we claim that for V ∈ {L, T ,U} and V ∈ V ,

∀U ∈ U , ∇U V =
∑

X∈V−
aX X, |aX | � 1

r
, (3.16)

∀Z ∈ K, [Z , V ] =
∑

W∈V
bW W +

∑

X∈V−
dX X, |bW | � t + r

r
, |dX | � |t − r |

r
.

(3.17)

Indeed, the first inequality comes from ∇L W = ∇L W = 0 for any W ∈ U and

∇eA L = −∇eA L = eA
r as well as ∇eA eB = /�

D
B AeD − 1

2r δB
A (L − L), where /�

D
AB

are the connection coefficients in the eA basis of the sphere of radius r . The second
one follows from

[∂t , L] = [∂t , L] = 0, [∂t , eA] = 0, [S, L] = −L , [S, L] = −L, [S, eA] = −eA,

[
i j , L] = [
i j , L] = 0, [
i j , eA] = −eA(
B
i j )eB − 
B

i j [eA, eB ]DeD, 
B
i j = 〈
i j , eB〉,

[
0i , L] = t − r

r
〈∂i , eB〉δABeA − xi

r
L , [
0i , L] = t + r

r
〈∂i , eB〉δABeA + xi

r
L,

[
0i , eA] = −〈∂i , eA〉
2r

((t + r)L − (t − r)L) + t〈∂i , eC 〉δBC /�
D
B AeD,
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[∂i , L] = −[∂i , L] = 1

r
(∂i − xi

r
∂r ) = 1

r

(

x j

r

i j

)

and the fact that [∂i , eA] = C j
A

∂ j
r , where C j

A are bounded functions of x .
For U, V, W ∈ U we have

∇U (k)V W = ∇U (kV W ) − k(∇U V, W ) − k(V,∇U W ).

Using (3.16), we obtain, as 1 + t + r � r on {r � 1+t
2 },

∑

V ∈V,W∈W
|∇(k)V W | �

∑

V ∈V,W∈W
|∇(kV W )| + |k|V−W + |k|VW−

1 + t + r
,

∑

V ∈V,W∈W

∣

∣∇(k)V W
∣

∣ �
∑

V ∈V,W∈W

∣

∣∇(kV W )
∣

∣ + |k|V−W + |k|VW−

1 + t + r
,

where V,W ∈ {U , T ,L}. It then only remains to bound |∇(kV W )| and ∣∣∇(kV W )
∣

∣.
Start by noticing that, by Lemma 3.2,

(1 + |t − r |) |∇(kV W )| + (1 + t + r)
∣

∣∇(kV W )
∣

∣ �
∑

Z∈K
|∇Z (kV W )| .

Now, for Z ∈ K, we have

Z(kV W ) = LZ (k)(V, W ) + k ([Z , V ], W ) + k (V, [Z , W ]) ,

so that, using (3.17) and that 1 + t + r � r on {r � 1+t
2 },

∑

V ∈V,W∈W
|∇Z (kV W )| � |LZ k|VW + |k|VW + 1 + |t − r |

1 + t + r
(|k|V−W + |k|VW−) .

��
The following two results will be useful in order to commute the Einstein equations
geometrically.

Lemma 3.4. Let k be a (0, 2) tensor fields, so that ∇k and ∇∇k are respectively
(0, 3) and (0, 4) tensor fields of cartesian components

(∇k)λμν = ∂λkμν, (∇∇k)ξλμν = ∂ξ ∂λkμν.

For all Z ∈ K, we have

LZ (∇k) = ∇ (LZ k) and LZ (∇∇k) = ∇∇ (LZ k) .

Proof. Both relations follow from (3.8) and the fact that ∂α Zβ is constant for any
(α, β) ∈ �0, 3�2 and Z ∈ K. Let us give more details for the first one. For cartesian
components (α, μ, ν), we have

LZ (∇k)αμν = Z
(

∂αkμν

) + ∂α(Zλ)∂λkμν + ∂μ(Zλ)∂αkλν + ∂ν(Zλ)∂αkμλ
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and, since (∇LZ k)αμν = ∂α

(

LZ (k)μν

)

,

(∇LZ k)αμν = ∂α(Zλ)∂λ(kμν) + Z∂α(kμν) + ∂α(∂μZλ)kλν + ∂μ(Zλ)∂α(kλν)

+ ∂α(∂ν Zλ)kμλ + ∂ν(Zλ)∂α(kμλ).

To derive the equality ∇LZ k = LZ∇k, it only remains to remark that ∂σ ∂ρ Zλ = 0
for all 0 � σ, ρ, λ � 3. ��
Lemma 3.5. Let k and q be two sufficiently regular (0, 2)-tensor fields. For any
permutation σ ∈ S6, the (0, 2)-tensor field Rσ (∇k,∇q) defined by

Rσ
α1α2

(∇k,∇q) := ηα3α4ηα5α6∇ασ(1)kασ(2)ασ(3)∇ασ(4)qασ(5)ασ(6)

satisfies

∀ Z ∈ K, LZ
(

Rσ (∇k,∇q)
) = Rσ (∇LZ k, ∇q) + Rσ (∇k,∇LZ q) − 4δS

Z Rσ (∇k, ∇q).

Proof. Let Z ∈ K. Using that the Lie derivative commute with contractions, we
get

LZ
(

Rσ (∇k,∇q)
) = LZ (η−1)α3α4ηα5α6∇ασ(1)kασ(2)ασ(3)∇ασ(4)qασ(5)ασ(6)

+ ηα3α4LZ (η−1)α5α6∇ασ(1)kασ(2)ασ(3)∇ασ(4)qασ(5)ασ(6)

+ ηα3α4ηα5α6LZ (∇k)ασ(1)ασ(2)ασ(3)
∇ασ(4)qασ(5)ασ(6)

+ ηα3α4ηα5α6∇ασ(1)kασ(2)ασ(3)LZ (∇q)ασ(4)ασ(5)ασ(6)
.

The result then ensues from LZ (η−1) = −2δS
Zη−1 as well as LZ (∇k) = ∇(LZ k)

and LZ (∇q) = ∇(LZ q), which comes from Lemma 3.4. ��

3.5. Analysis on the Co-tangent Bundle

As in [18], we will commute the Vlasov equation using the complete lift ̂Z of
the Killing vector fields Z ∈ P of Minkowski spacetime. They are given by

̂∂μ = ∂μ, 0 � μ � 3,

̂
i j = xi∂ j − x j∂i + vi∂v j − v j∂vi , 1 � i < j � 3,

̂
0k = t∂k + xk∂t + |v|∂vk , 1 � k � 3

and they commutewith the flatmassless relativistic transport operatorTη := |v|∂t +
v1∂1 + v2∂2 + v3∂3 (see [18, Section 2.7] for more details). Even if the complete
lift ̂S of S satisfies [Tη,̂S] = 0, we will rather commute the Vlasov equation with
S, which verifies [Tη, S] = Tη, for technical reason (see Lemma 3.9 below). We
then introduce the ordered set

̂P0 := {̂Z/Z ∈ P} ∪ {S} = {̂Z1, . . . ,̂Z11},
wherêZ11 = S and̂Zi = ̂Zi if i ∈ �1, 10�, so that for anymulti-index J ∈ �1, 11�n ,
̂Z J := ̂Z J1 . . .̂Z Jn . For simplicity, we will denote by ̂Z an arbitrary element of̂P0,
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even if the scaling vector field S is not the complete lift of a vector field Xμ∂xμ of
the tangent bundle of Minkowski spacetime. Similarly, we will use the following
convention, mostly to write concisely the commutation formula: for any ̂Z ∈ ̂P0,
if ̂Z �= S, then Z will stand for the Killing vector field which has ̂Z as complete
lift and if ̂Z = S, then we will take Z = S. The sets

{
12,
13,
23,
01,
02,
03, S}, {̂
12,̂
13,̂
23,̂
01,̂
02,̂
03, S}
contain all the homogeneous vector fields ofK and̂P0. As suggested by Lemma 3.2,
∂μφ has a better behavior than Zφ for Z an arbitrary element of K. It will then be
important, in order to exploit several hierarchies in the commuted Vlasov equation,
to count the number of homogeneous vector fieldswhich hit the particle density f in
the error terms. Given a multi-index J so that Z J ∈ K

|J | and ̂Z J ∈̂P
|J |
0 , we denote

by J P (respectively J T ) the number of homogeneous vector fields (respectively
translations) composing Z J and ̂Z J . For instance, if

̂Z J = ∂t̂
12S∂2∂1, J T = 3 and J P = 2.

The following technical lemma will be in particular useful for commuting the
energy momentum tensor T [ f ] and then the Einstein equations (it illustrates the
compatibility between the commutation vector fields of thewave equation and those
of the relativistic transport equation):

Lemma 3.6. Let ψ : [0, T [×R
3
x × R

3
v → R be a sufficiently regular function and

Z ∈ P. Then,

Z

(

∫

R3
v

ψ
dv

|v|

)

=
∫

R3
v

̂Zψ
dv

|v| , S

(

∫

R3
v

ψ
dv

|v|

)

=
∫

R3
v

Sψ
dv

|v| .

Proof. Let, for any Killing vector field Z ∈ P, Zw := ̂Z − Z . We have,

Z

(

∫

R3
v

ψ
dv

|v|

)

=
∫

R3
v

̂Z

(

ψ

|v|
)

dv −
∫

R3
v

Zw

(

ψ

|v|
)

dv, S

(

∫

R3
v

ψ
dv

|v|

)

=
∫

R3
v

Sψ
dv

|v| .

It then remains to note that,

∂μ

(

ψ

|v|
)

= ∂μψ

|v| , ̂
i j

(

ψ

|v|
)

= ̂
i jψ

|v| , ̂
0k

(

ψ

|v|
)

= ̂
0kψ

|v| − vk

|v|2ψ.

and, by integration by parts in v,
∫

R3
v

(

vi∂v j − v j∂vi

)

(

ψ

|v|
)

dv = 0,
∫

R3
v

|v|∂vk

(

ψ

|v|
)

dv = −
∫

R3
v

vk

|v|2ψdv.

��
In order to treat the curved part of the metric as pure perturbation, we define

the one form

w = −|v| dx0 + v1 dx
1 + v2 dx

2 + v3 dx
3, |v| =

√

|v1|2 + |v2|2 + |v3|2.
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Using that wU = wμUμ = η(w, U ) for any vector field U , we directly obtain

w0 = −|v|, wL = w0 + xi

r
wi , wL = w0 − xi

r
wi , | /w| :=

√

wAwA.

(3.18)

As [18], we introduce the set of weights

k0 = {wμ / 0 � μ � 3} ∪ {xλwλ} ∪ {xiw j − x jwi / 1 � i < j � 3}
∪{twk + xkw0 / 1 � k � 3}

and we consider, as suggested by [10, Remark 2.3],

m := (t2 + r2)w0 + 2t xiwi = (t + r)2

2
wL + (t − r)2

2
wL . (3.19)

All the above weights are obtained by contracting the currentw with the conformal
Killing vector fields of Minkowski spacetime. They are preserved along the flow
of Tη and will be used in order to obtain strong improved decay estimates for the
distribution function. In particular,m has to be compared with theMorawetz vector

field (t+r)2

2 L + (t−r)2

2 L when used as a multiplier for the wave equation. Note that
m � 0, so that we often work with |m|.

We now define z as an overall positive weight, by

z :=
⎛

⎝

∑

z∈k0

z4

|v|4 + m2

|v|2

⎞

⎠

1
4

, (3.20)

so that

∀z ∈ k0,
|z|
|v| � z and

|m|
|v| � z2. (3.21)

Note also that Tη(z) = 0 and moreover, since |w0||v| = 1,
∑

z∈k0 |z| � |v|(1+ t + r)

and |m| � |v|(1 + t + r)2, we have

1 � z � 1 + t + r. (3.22)

The following lemma illustrates how the null components of w and the weight z
interact.

Lemma 3.7. The following estimates hold:

|wL |
w0 � z2

(1 + |t − r |)2 ,
|wL |
w0 � z2

(1 + t + r)2
,

| /w| �
√

w0|wL |.
From which it follows that

| /w|
w0 � z

1 + t + r
and 1 � z

1 + |t − r | .
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Proof. Since wL � 0 and wL � 0, we have

1 + |t + r |2
2

|wL | + 1 + |t − r |2
2

|wL | = w0 − (t + r)2

2
wL − (t − r)2

2
wL

= w0 − m � w0z2,

which proves the first two inequalities.
For the third inequality, we use the mass shell relation for the flat spacetime

0 = ημνwμwν = −wLwL + ηABwAwB,

from which it follows that

| /w|2 =
∣

∣

∣η
ABwAwB

∣

∣

∣ � |wL ||wL | = |wL |
∣

∣

∣

∣

w0 − xi

r
wi

∣

∣

∣

∣

� |wL |w0.

The fourth estimate then ensues from the third and the second one. For the last
inequality, we use w0 � |wL | + |wL | �

√

|wL |w0 +√|wL |w0 and then apply the
first two inequalities. ��

The following Lemma illustrates the good interactions between the weights
z ∈ k0, m and the vector fields ̂Z ∈ ̂K:

Lemma 3.8. For all μ ∈ �0, 3�, 1 � i < j � 3 and k ∈ �1, 3�, we have

|∂μ(z)| � 1, |S(z)| � z,
∣

∣̂
i j (z)
∣

∣ � z,
∣

∣̂
0k(z)
∣

∣ � z.

Proof. Consider a vector field ̂Y = Y μ
x ∂xμ + Y i

v∂vi and use (3.21) in order to get

∣

∣̂Y (z)
∣

∣ = 1

z3

∣

∣

∣

∣

∣

∣

̂Y

(

m
|v|

)

m
2|v| +

∑

z∈k0
̂Y

(

z

|v|
)

z3

|v|3

∣

∣

∣

∣

∣

∣

�

∣

∣

∣

̂Y
(

m
|v|
)∣

∣

∣

z
+

∑

z∈k0

∣

∣

∣

∣

̂Y

(

z

|v|
)∣

∣

∣

∣

.

(3.23)

A straightforward computation reveals that for all z ∈ k0, ̂Z ∈ ̂P0, there holds
̂Z(z) ∈ span{k0}, and consequently,

∣

∣

∣

∣

̂Z

(

z

|v|
)∣

∣

∣

∣

� z. (3.24)

For the weight m, one can check that

∂t (m) = 2xμwμ, ∂i (m) = −2(xiw0 − twi ), S(m) = 2m, ̂
i j (m) = 0.

(3.25)

We then obtain the first three inequalities of the lemma by takinĝY = ∂μ, S and̂
i j

in (3.23) and using (3.24)–(3.25). For the Lorentz boosts, we use the decomposition

̂
0k = xk

r

xq

r
̂
0q + x j

r

( x j

r
̂
0k − xk

r
̂
0 j

)

. (3.26)
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Now, note that for 1 � k � 3,

̂
0k(m) = 2t xkw0 + 2xk xiwi + (t2 − r2)wk, ̂
0k

(

1

|v|
)

= − wk

|v|2 .

(3.27)

We then deduce

xq

r
̂
0q (m) = 2trw0 + 2r xiwi + (t2 − r2)

xq

r
wq = 2trw0 + (t2 + r2)

xk

r
wk

= m − m + 2trw0 + (t2 + r2)
xq

r
wq = m − (t − r)2w0 + (t − r)2

xq

r
wq ,

so that, takinĝY = xq

r
̂
0q in (3.23) and using (3.21), (3.24) aswell as (1+|t−r |) �

z (see Lemma 3.7), we obtain

∣

∣

∣

∣

xq

r
̂
0q(z)

∣

∣

∣

∣

� |m|
|v|z + (t − r)2

z
+ z � z. (3.28)

We also obtain from (3.27) that

x j

r
̂
0k(m) − xk

r
̂
0 j (m) = t2 − r2

r
(x jwk − xkw j ),

= t2 − r2

t

(

x j

r
(twk − xkw0) − xk

r
(tw j − x jw0)

)

.

(3.29)

Since |t − r | � z and using that (x jwk − xkw j ) ∈ k0 and (twi − xiw0) ∈ k0, we
obtain from the last two equalities

∣

∣

∣

∣

x j

r
̂
0k(m) − xk

r
̂
0 j (m)

∣

∣

∣

∣

� |t − r | t + r

max(t, r)

∑

z∈k0
|z| � |v|z2.

Combining this last inequality with (3.23), applied with ̂Y = x j

r
̂
0k − xk

r
̂
0 j , and

(3.24), we get

∣

∣

∣

∣

x j

r
̂
0k(z) − xk

r
̂
0 j (z)

∣

∣

∣

∣

� z. (3.30)

The estimate |̂
0k(z)| � z then directly ensues from (3.26), (3.28) and (3.30). ��
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3.6. Decomposition of ∂v

In this subsection, we state the decompositions and estimates that will allow
us to deal with error terms of the form ∂xi φ∂vi ψ which appear in the commuted
Vlasov equation (see Section 5), where φ is a function on M and ψ is a function
on P . We start by introducing the notation

∇vψ := ∂v1ψ∂x1 + ∂v2ψ∂x2 + ∂v3ψ∂x3 .

The v derivatives are not part of the commutation vector fields and will be trans-
formed using

∂vi = ̂
0i

|v| − 1

|v|
(

xi∂t + t∂xi

)

, (3.31)

so that, forψ a sufficiently regular solution to the free relativistic massless transport
equationwμ∂μψ = 0, |∇vψ | essentially behaves as (t +r)|∇t,xψ |. In the following
lemma, we prove that the radial component

(∇vψ)r = xi

r
∂vi ψ

has a better behavior near the light cone.

Lemma 3.9. For the radial component of ∇v the following estimates hold:

∣

∣(∇vψ)r
∣

∣ � 1

|v|
∑

̂Z∈̂P0

∣

∣̂Zψ
∣

∣ + |t − r |
|v|

∣

∣∇t,xψ
∣

∣ ,
∣

∣(∇vz)r
∣

∣ � z

|v| . (3.32)

Let A denote a spherical frame field index. The angular part verifies the weaker
estimates

∣

∣

∣(∇vψ)A
∣

∣

∣ � 1

|v|
∑

̂Z∈̂P0

∣

∣̂Zψ
∣

∣ + t

|v|
∣

∣∇t,xψ
∣

∣ ,

∣

∣

∣(∇vz)A
∣

∣

∣ � z + t

|v| . (3.33)

Proof. Since

xi

r
∂vi = xi

r |v|̂
0i − 1

|v| (r∂t + t∂r ) = xi

r |v|̂
0i − 1

|v| S + t − r

|v| L,

the assertion (3.32) follows by Lemma 3.8. For the first inequality of (3.33), recall

that the vector field eA can be written as eA = C A
i j

(

xi

r ∂x j − x j

r ∂xi

)

, where C A
i j are

bounded functions of x , so that, using (3.31),

∣

∣

∣(∇vψ)A
∣

∣

∣ �
∑

i< j

∣

∣

∣

∣

xi

r
∂v j ψ − x j

r
∂vi ψ

∣

∣

∣

∣

� 1

|v|
∑

̂Z∈̂P0

∣

∣̂Zψ
∣

∣ + t

|v|
∣

∣∇t,xψ
∣

∣ .

The second inequality of (3.33) is obtained by applying the last estimate to ψ = z
and using Lemma 3.8 again. ��
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Similar to the case of the wave equation, we can then deduce that Lψ enjoys
improved decay near the light cone. More precisely,

|Lψ | � |t − r |
1 + t + r

|∇t,xψ | + 1

1 + t + r

∑

̂Z∈̂P0
|̂Zψ |. (3.34)

This can be obtained by combining the previous Lemma with the relation

(t + r)L = S + xi

r

0i = S + xi

r
̂
0i − |v| (∇vψ)r .

3.7. The Energy Norms

We define here the energy norms both for the distribution function f and the
metric perturbation h1. First, recall the definition (2.9) of the weight function ωb

a .
Then, define, for all sufficiently regular function ψ : [0, T [×R

3
x × R3

v → R and
symmetric (0, 2)-tensor field k,

E
a,b[ψ](t) :=

∫

�t

∫

R3
v

|ψ | |v| dv ωb
a dx +

∫ t

0

∫

�τ

∫

R3
v

|ψ |
1 + |u| |wL | dv ωb

a dx dτ,

Ea,b
VW [k](t) :=

∫

�t

|∇k|2VW ωb
a dx +

∫ t

0

∫

�τ

∣

∣∇k
∣

∣

2
VW

ωb
a

1 + |u| dx dτ,

E̊a,b[k](t) :=
∫

�t

|∇k|2
1 + t + r

ωb
a dx +

∫ t

0

∫

�τ

∣

∣∇k
∣

∣

2

1 + τ + r

ωb
a

1 + |u| dx dτ, (3.35)

where V ,W ∈ {U , T ,L}. If V = W are equal to U , we omit the subscript UU . For
a, b ∈ R

∗+, an integer n � 0 and a real number � � 2
3n, we define the energies

E
�
n[ψ](t) :=

∑

|I |�n

E
1
8 , 18

[

z�− 2
3 I P

̂Z I ψ
]

(t),

Ea,b
n [k](t) :=

∑

|J |�n

(

Ea,b
[

LJ
Z k
]

(t) +
∫

�t

|∇LJ
Z (k)|2 dx

)

,

E̊a,b
n [k](t) :=

∑

|J |�n

E̊a,b
[

LJ
Z k
]

(t),

Ea,b
n,T U [k](t) :=

∑

|J |�n

Ea,b
T U

[

LJ
Z k
]

(t),

Ea,b
n,LL[k](t) :=

∑

|J |�n

Ea,b
LL

[

LJ
Z k
]

(t). (3.36)

Remark 3.10. During the proof of Theorem 2.1, as we will take � � 1
8 and since

1 + |t − r | � z according to Lemma 3.7, the energy norm E
�
n[ f ] will control

∫

�t

∫

R3
v

∣

∣̂Z I f
∣

∣dvdx for any |I | � n.
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3.8. Functional Inequalities

We end this section with some functional inequalities, starting with the follow-
ing Hardy type inequality, which essentially follows from a similar one of [30].

Lemma 3.11. Let k be a sufficiently regular symmetric (0, 2) tensor field defined
on [0, T [×R

3. Consider 0 � α � 2, b > 1, a > −1, and V,W ∈ {L, T ,U}. Then
for all t ∈ [0, T [ it holds that

∫ +∞

r=0

|k|2VW
(1 + t + r)α(1 + |t − r |)2ωb

ar2dr �
∫ +∞

r=0

|∇k|2VW
(1 + t + r)α

ωb
ar2dr.

Proof. Let V,W ∈ {L, T ,U} and (V, W ) ∈ V × W . Then, applying the Hardy
type inequality proved in [30, Appendix B, Lemma 13.1], we obtain

∫ +∞

r=0

|kV W |2
(1 + t + r)α(1 + |t − r |)2ωb

ar2 dr �
∫ +∞

r=0

|∂r (kV W )|2
(1 + t + r)α

ωb
ar2dr.

Since∇∂r V = ∇∂r W = 0, we have |∂r (kV W )| = |∇∂r (k)V W | and the result follows
from the definition of |∇k|VW . ��

The following technical result will be useful to prove boundedness for energy
norm:

Lemma 3.12. Let C > 0, κ > 0, κ > 0 such that κ �= κ and g : [0, T [×R
3 → R+

be a sufficiently regular function satisfying

∀ t ∈ [0, T [,
∫ t

0

∫

�τ

gdx dτ � C(1 + t)κ .

Then, there exists Cκ
κ � C such that

∀ t ∈ [0, T [,
∫ t

0

∫

�τ

g(τ, x)

(1 + τ)κ
dx dτ � Cκ

κ (1 + t)max(0,κ−κ).

Proof. This follows from a integration by parts in the variable τ ,

∫ t

0

∫

�τ

g(τ, x)

(1 + τ)κ
dx dτ =

[∫ τ

0

∫

�s
g(s, x) dx ds

(1 + τ)κ

]t

0

−
∫ t

0

−κ

(1 + τ)κ+1

∫ τ

0

∫

�s

g(s, x) dx ds dτ

� C(1 + t)κ−κ + C · κ

∫ τ

0
(1 + τ)κ−κ−1 dτ

�
(

C + C · κ

|κ − κ|
)

(1 + t)max(0,κ−κ).

��
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Recall the decomposition (2.2), where χ is a smooth cutoff function such that
χ = 0 on ] − ∞, 1

4 ] and χ = 1 on [ 12 ,+∞[. It will be useful to control the

derivatives of the cut-off χ
(

r
t+1

)

which is the content of the next lemma.

Lemma 3.13. For any Z J ∈ K
|J | with |J | � 1, there exists a constant CJ > 0

such that
∣

∣

∣

∣

Z J
(

χ

(

r

t + 1

))∣

∣

∣

∣

� CJ

(1 + t + r)J T 1 1+t
4 �r� 1+t

2
.

Proof. For any μ ∈ �0, 3�, we have ∂xα (xμ) = δα
μ and for any homogeneous

vector field Z ∈ K, Z(xμ) = 0 or there exists 0 � ν � 3 such that Z(xμ) = ±xν .
Hence, in view of support considerations, there exist two polynomials Pn1(t, x)

and Pn2(1 + t, r) of degree n1 and n2, such that
∣

∣

∣

∣

Z J
(

χ

(

r

t + 1

))∣

∣

∣

∣

� |Pn1(t, x)|
|Pn2(1 + t, r)|1

{

1
4� r

t+1� 1
2

}, n1 − n2 = −J T .

since 1 + t + r � r and 1 + t + r � t if 1
4 � r

t+1 � 1
2 , the result follows. ��

We will need the following, weighted version, of the Klainerman–Sobolev
inequality.

Proposition 3.14. Let k be a sufficiently regular tensor field defined on [0, T [×R
3.

Then, for all (t, x) ∈ [0, T [×R
3,

|k|(t, x) � 1

(1 + t + r)(1 + |t − r |) 1
2 |ωb

a | 12
∑

|J |�2

∥

∥

∥

∥

∣

∣

∣LJ
Z (k)

∣

∣

∣

√

ωb
a

∥

∥

∥

∥

L2(�t )

.

Proof. It is sufficient to prove the proposition for scalar functions φ since we can
apply the inequality to each cartesian component of k and then use that

∑

|J |�2

∣

∣

∣∇ J
Z (k)

∣

∣

∣ �
∑

|J |�2

∣

∣

∣LJ
Z (k)

∣

∣

∣ .

Recall the classical Klainerman–Sobolev inequality

|ψ(t, x)| � (1 + t + r)−1(1 + |t − r |)− 1
2
∑

|J |�2

∥

∥

∥Z J ψ

∥

∥

∥

L2(�t )
(3.37)

and that χ is a smooth cutoff function such that χ = 0 on ] − ∞, 1
4 ] and χ = 1

on [ 12 ,+∞[. Consider first (t, x) ∈ [0, T [×R
3 such that |x | � 1+t

4 . Applying

(3.37) to ψ(t, y) = φ(t, y) ·
(

1 − χ
( |y|
1+t

))

gives, using the Leibniz formula and

Lemma 3.13,

|φ|(t, x) � (1 + t)a/2

(1 + t + r)(1 + |t − r |) 1
2

∑

|J |�2

∥

∥

∥Z J (φ) (t, y) · (1 + t)−a/2
∥

∥

∥

L2
(

|y|� 1+t
2

).
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As (1 + t)−a � ωb
a(t, y) � (1 + t)−a for all |y| � 1+t

2 , we obtain the result
for the region considered. Consider now (t, x) ∈ [0, T [×R

3 such that |x | � 1+t
4

and let us introduce τ− := (1 + |t − r |2) 1
2 for regularity issues. Applying the

classical Klainerman–Sobolev inequality (3.37) to χ(r − t)τ
b
2−φ and χ(t − r +

2)χ
(

2r
1+t

)

τ
− a

2− φ, we obtain, for all (t, x) ∈ [0, T [×R
3,

|ωb
a | 12 |φ|(t, x) � τ

− a
2− χ(t − |x | + 2)χ

(

2|x |
1 + t

)

|φ|(t, x) + τ
b
2− χ(|x | − t)|φ|(t, x)

� 1

(1 + t + r)(1 + |t − r |) 1
2

∑

|J |�2

∣

∣

∣

∣

∣

∫

�t

∣

∣

∣

∣

Z J
(

χ(t − r + 2)χ

(

2r

1 + t

)

τ
− a

2− φ

)∣

∣

∣

∣

2

dx

∣

∣

∣

∣

∣

1
2

+ 1

(1 + t + r)(1 + |t − r |) 1
2

∑

|J |�2

∣

∣

∣

∣

∣

∫

�t

∣

∣

∣

∣

Z J
(

χ(r − t)τ
b
2− φ

)∣

∣

∣

∣

2

dx

∣

∣

∣

∣

∣

1
2

.

Note that

• for K ≥ 1,
∣

∣

∣Z K
(

χ
(

2r
1+t

))∣

∣

∣ � 1 1+t
8 �r� 1+t

4
,which canbeobtainedby following

the proof of Lemma 3.13. In particular, we have r−1 � (1 + t + r)−1 on the
support of the two integrands on the right-hand side of the previous inequality.

• ∂t (t − r) = 1, ∂i (t − r) = − xi

r , 
i j (t − r) = 0, 
0k(t − r) = − xk

r (t − r) and
S(t − r) = t − r , so that

∀ |K | � 2,
∣

∣

∣Z K (t − r)

∣

∣

∣ �
(

1 + 1

r
+ t

r

)

|t − r |.

• |χ ′(r − t)| + |χ ′(t − r + 2)| � 2‖χ ′‖L∞1 1
4�r−t� 7

4
, so that t − r is bounded

on the support of χ ′(r − t) and χ ′(t − r + 2),

• χ(r − t)τ
b
2− + χ(t − r + 2)τ

− a
2− � 2

√

ωb
a ,.

We then obtain
∫

�t

∣

∣

∣

∣

Z J
(

χ(t − r + 2)χ

(

2r

1 + t

)

τ
− a

2− φ

)∣

∣

∣

∣

2

+
∣

∣

∣

∣

Z J
(

χ(r − t)τ
b
2−φ

)∣

∣

∣

∣

2

dx

�
∑

|I |�2

∫

�t

∣

∣

∣Z I φ

∣

∣

∣

2
ωb

adx,

which implies the result. ��
Furthermore, we will need a slight improvement of the Klainerman–Sobolev

inequality for massless Vlasov fields originally proved in [18].

Proposition 3.15. Let (a, b, c) ∈ R
3 and f : [0, T [×R

3×R
3
v → Rbe a sufficiently

regular function. Then, for all (t, x) ∈ [0, T [×R
3,

∫

R3
v

zc| f |(t, x, v) |v| dv � 1

(1 + t + r)2(1 + |t − r |)ωb
a

∑

|I |�3

∫

�t

∫

R3
v

zc
∣

∣

∣

̂Z I f
∣

∣

∣ |v| dv ωb
a dx.

We point out that the constant hidden by � depends linearly on (|a|+|b|+|c|+1)3.
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Proof. As we do not have the inequality |̂Z I (z)| � z at our disposal if |I | � 2
and since ωb

a is not C3 class, one cannot apply a standard L1 Klainerman–Sobolev
inequality for velocity averages to zc f ωb

a and derive the result. In fact, one just
have to slightly modify one step of its proof.

Remark that |̂Z(ωb
a)| � ωb

a for all ̂Z ∈ ̂P0 (this follows from |̂Z(t − r)| �
1 + |t − r |). Hence, since |̂Z(zc)| � zc according to Lemma 3.8, we obtain,
applying Lemma 3.6,

∀̂Z ∈̂P0, Z

(

∫

R3
v

zc| f ||v|ωb
adv

)

�
∫

R3
v

zc| f ||v|ωb
adv +

∫

R3
v

zc|̂Z f ||v|ωb
adv.

(3.38)

Following the proof of [9, Proposition 3.6], with f formally replaced by zc|v| f ωb
a ,

and using (3.38) instead of Lemma 3.6, each time where this lemma is applied in
[9, Proposition 3.6], we get the result. ��

4. Preliminary Analysis for the Study of the Metric Coefficients

In this section, we recall standard analytical properties of themetric coefficients
in wave coordinates, independently of the Vlasov field. Most of the material of this
section can be found in either [30] or [31]. In order to be self-contained, we present
here not only the statements but also detailed proofs.

We fix, for all Sections 4, 5 and 6, a sufficiently regular metric g and its decom-
position as

g = η + h = η + h0 + h1, where h0
μν = χ

(

r

1 + t

)

M

r
δμν, g−1 = η−1 + H.

(4.1)

We assume that g is defined on [0, T [×R
3, satisfies the wave gauge condition

(3.3) and verifies the following regularity conditions. For an integer N � 6 and
0 < ε � 1

4 small enough, M � √
ε and

∀t ∈ [0, T [,∀|J | � N , LJ
Z (h) ∈ L2(�t ), ∀|J | � N − 3,

∥

∥

∥LJ
Z (h)

∥

∥

∥

L∞
t,x

�
√

ε.

(4.2)

These conditions, which will be verified during the proof of Theorem 2.1 for N � 6
(see the bootstrap assumption (9.5) and the decay estimates of Propositions 10.1
and 10.2) and ε > 0, ensure that all the quantities considered in the next three
sections are well-defined. In particular, the series of functions appearing below will
be convergent in L2(�t ).

Let us start by estimating pointwise the Schwarzschild part and its derivatives.

Proposition 4.1. For all Z J ∈ K
|J |, there exists CJ > 0 such that for all (t, x) ∈

R+ × R
3,

∣

∣LJ
Z (h0)

∣

∣(t, x) � CJ
M

1 + t + r
and

∣

∣∇LJ
Z (h0)

∣

∣(t, x) � CJ
M

(1 + t + r)2
.

(4.3)
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Proof. Let Z J0 ∈ K
|J0| and recall that h0

μν = χ( r
t+1 )

M
r δμν . Recall also that J T

0

(respectively J P
0 ) is the number of translations (respectively homogeneous vector

fields) composing Z J0 . By the Leibniz rule we have,
∣

∣

∣LJ0
Z (h0)

∣

∣

∣ �
∑

0�μ,ν�3

∑

|I |�|J0|
I T =J T

0

|Z I h0
μν |

� M
∑

|Q|+|K |�|J0|
QT +K T =J T

0

∣

∣

∣

∣

Z Q
(

χ

(

r

t + 1

))

Z K
(

1

r

)∣

∣

∣

∣

. (4.4)

By Lemma 3.13 and a straightforward computation, we have

∣

∣

∣

∣

Z Q
(

χ

(

r

t + 1

))∣

∣

∣

∣

� CQ

1{ 1
4� r

t+1� 1
2

}

(1 + t + r)QT ,

∣

∣

∣

∣

Z K
(

1

r

)∣

∣

∣

∣

�
|PK P (t, r, x

r )|
r |K |+1 ,

(4.5)

where PK P (t, r, x
r ) is a certain polynomial in (t, r, x

r ) which has degree K P in
(t, r). Applying this to Z J0 = Z J and using that 1 + t + r � r on the support of
h0 as well as 1 + t + r � t + 1 if 1

4 � r
t+1 � 1

2 , we obtain the first estimate. For
the second one, note that

∣

∣

∣∇LJ
Z (h0)

∣

∣

∣ �
∑

0�μ�3

∣

∣

∣L∂μLJ
Z (h0)

∣

∣

∣

and apply (4.4) and (4.5) to Z J0 = ∂μZ J for all μ ∈ �0, 3�. ��

4.1. Difference Between H and h

In this subsection, we study the difference between Hμν := gμν − ημν and
hμν := hαβηαμηβν .

For this, let us define

Hμν
1 := gμν − ημν + (h0)μν,

so that

gμν = (ημν + h0
μν + h1

μν)
−1ημν − (h0)μν + Hμν

1 .

Using the expansion in Taylor series of the inverse matrix function, we then
obtain

Hμν = − ημαhαβηβν + Oμν(|h|2) = −hμν + Oμν(|h|2),
Hμν
1 = − ημαh1

αβηβν + Oμν(|h|2) = −(h1)μν + Oμν(|h|2), where

Oμν(|h|2) =
+∞
∑

n=2

(−1)nημαhαβ1

n
∏

i=2

(ηβi−1αhαβi )η
βnν =

+∞
∑

n=2

(−1)nhμ
β1

n
∏

i=2

(hβi−1
βi )η

βnν .
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The goal now is to compare H with h and H1 with h1. In order to unify the
treatment of these two cases, we consider (H, h) ∈ {(H1, h1), (H, h)}. Recall now,
as the elements ofK\{S} are Killing vector fields and since S is a conformal Killing
vector field of factor 2, that, when acting on the contravariant tensor ημν ,

∀Z ∈ K, LZ (η−1)μν = −2δS
Zημν. (4.6)

As the Lie derivative commutes with contraction, this implies

∀Z ∈ K, LZ (h)μν = ημαLZ (h)αβηβν − 4δS
Zημαhαβηβν, h

μν := ημαhαβηβν.

Iterating the previous arguments, we then obtain

∀Z J ∈ K
|J |, ∃C J

M ∈ Z, LJ
Z (h)μν = LJ

Z (h)μν +
∑

|M|<|J |
C J

MLM
Z (h)μν, (4.7)

∇LJ
Z (h)μν = ∇LJ

Z (h)μν +
∑

|M|<|J |
C J

M∇LM
Z (h)μν, (4.8)

∇LJ
Z (h)μν = ∇LJ

Z (h)μν +
∑

|M|<|J |
C J

M∇LM
Z (h)μν . (4.9)

Moreover, using (4.6), we also obtain that

LJ
Z (O(|h|2))

=
+∞
∑

n=2

(−1)n
∑

|J1|+...+|Jn |�|J |
C J

J1,...,Jn
ημαLJ1

Z (h)αβ1

n
∏

i=2

(ηβi−1αLJ1
Z (h)αβi )η

βnν,

(4.10)

whereC J
J1,...,Jn

∈ Z. Consequently, since we have |LK
Z (h)| � 1

2 for all |K | � N −3
by the condition (4.2), it holds that

∀|J | � N ,

∣

∣

∣LJ
Z (O(|h|2))

∣

∣

∣ �
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣LJ2
Z (h)

∣

∣

∣ .

Similarly, one can prove that

∀|J | � N ,

∣

∣

∣∇LJ
Z (O(|h|2))

∣

∣

∣ �
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ ,

∣

∣

∣∇LJ
Z (O(|h|2))

∣

∣

∣ �
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ .

We then immediately obtain

Proposition 4.2. Let N � 6, assume that (4.2) holds and consider (H, h) ∈
{(H1, h1), (H, h)}. Then, for all |J | � N and (U, V ) ∈ U2, we have

∣

∣

∣LJ
Z (H)U V − LJ

Z (h)U V

∣

∣

∣ �
∑

|M|<|J |

∣

∣

∣LM
Z (h)U V

∣

∣

∣ +
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣LJ2
Z (h)

∣

∣

∣ ,
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∣

∣

∣∇LJ
Z (H)U V − ∇LJ

Z (h)U V

∣

∣

∣ �
∑

|M|<|J |

∣

∣

∣∇LM
Z (h)U V

∣

∣

∣ +
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ ,

∣

∣

∣∇LJ
Z (H)U V − ∇LJ

Z (h)U V

∣

∣

∣ �
∑

|M|<|J |

∣

∣

∣∇LM
Z (h)U V

∣

∣

∣ +
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ .

Here LJ
Z (H)U V = LJ

Z (H)αβηαγ ηβρU γ V ρ .

Remark 4.3. More precise inequalities will be required during the proof of Propo-
sition 5.14 in the case where Z J contains at least one translation, that is J T � 1.
Since MT = J T in the sums on the right-hand sides of (4.7)–(4.9) and that
∑

1�i�n J T
i = J T in the one of (4.10), we have

∣

∣

∣LJ
Z (H)U V − LJ

Z (h)U V

∣

∣

∣ �
∑

|M |<|J |
MT =J T

∣

∣

∣LM
Z (h)U V

∣

∣

∣ +
∑

|J1|+|J2|�|J |
J T
1 +J T

2 �min(1,J T )

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣LJ2
Z (h)

∣

∣

∣ ,

∣

∣

∣∇LJ
Z (H)U V − ∇LJ

Z (h)U V

∣

∣

∣ �
∑

|M |<|J |
MT =J T

∣

∣

∣∇LM
Z (h)U V

∣

∣

∣ +
∑

|J1|+|J2|�|J |
J T
1 +J T

2 �min(1,J T )

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣

+
∑

|J0|+|J1|+|J2|�|J |

∣

∣

∣LJ0
Z (h)

∣

∣

∣

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ ,

∣

∣

∣∇LJ
Z (H)U V − ∇LJ

Z (h)U V

∣

∣

∣ �
∑

|M |<|J |
MT =J T

∣

∣

∣∇LM
Z (h)U V

∣

∣

∣

+
∑

|J1|+|J2|�|J |
J T
1 +J T

2 �min(1,J T )

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣

+
∑

|J0|+|J1|+|J2|�|J |

∣

∣

∣LJ0
Z (h)

∣

∣

∣

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ .

4.2. Wave Gauge Condition

Using the wave gauge condition, one can estimate the bad derivative L of
good components LT of the metric by good derivatives of the metric and cubic
terms. We emphasize that the result also holds for LJ

Z (H) since, crucially, we are
differentiating the metric geometrically.

Proposition 4.4. Let N � 6 be such that (4.2) holds and assume that the wave
gauge condition is satisfied. Then, for all |I | � N, we have
∣

∣

∣∇LI
Z (h)

∣

∣

∣

LT
�
∣

∣

∣∇LI
Z (h)

∣

∣

∣

T U
+

∑

|J |+|K |�|I |

∣

∣

∣LJ
Z h

∣

∣

∣

∣

∣

∣∇LK
Z h

∣

∣

∣ , (4.11)

∣

∣

∣∇LI
Z (h1)

∣

∣

∣

LT
�
∣

∣

∣∇LI
Z (h1)

∣

∣

∣

T U
+

∑

|J |+|K |�|I |

∣

∣

∣LJ
Z h

∣

∣

∣

∣

∣

∣∇LK
Z h

∣

∣

∣ + M
1 1+t

4 �r� 1+t
2

(1 + t + r)2
.

(4.12)
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Remark 4.5. From the wave gauge condition, one can also derive
∣

∣

∣∇LI
Z (H)

∣

∣

∣

LT
�
∣

∣

∣∇LI
Z (H)

∣

∣

∣

T U
+

∑

|J |+|K |�|I |

∣

∣

∣LJ
Z H

∣

∣

∣

∣

∣

∣∇LK
Z H

∣

∣

∣ .

It can be obtained by expressing (4.14) in terms of H instead of h and by following
the rest of the upcoming proof. Note that a slightly weaker estimate could be
obtained by combining Propositions 4.2 and 4.4 .

Proof. Remark first that we only need to prove these inequalities for
∣

∣∇LLI
Z (h)

∣

∣

LT
and

∣

∣∇LLI
Z (h1)

∣

∣

LT since ∇ = (∇L ,∇e1 ,∇e2). In order to lighten the notations,
we will use Oμν(|h|2) in order to denote a tensor field of the form

Oμν(|h|2) =
+∞
∑

n=2

Pn(h)μν,

where

• Pn(h)μν is a polynomial in the variables (hαβ)0�α,β�3 of degree n.

• For all |J | � N ,
∑+∞

n=2 LJ
Z (Pn(h)) and

∑+∞
n=2 ∇LJ

Z (Pn(h)) are absolutely
convergent in L2(�t ) and we have

∀|J | � N ,

∣

∣

∣∇LJ
Z

(

O(|h|2)
)∣

∣

∣ �
∑

|J1|+|J2|�|J |

∣

∣

∣LJ1
Z (h)

∣

∣

∣

∣

∣

∣∇LJ2
Z (h)

∣

∣

∣ . (4.13)

This will be implied by the fact that g satisfies the condition (4.2).
• The tensor field Oμν(|h|2) can be different from one line to another.

Recall from (3.3) that the wave gauge condition implies

∂μ

(

gμν
√| det g|

)

= 0, ν ∈ �0, 3�.

Expanding the determinant of g (the first order term is the trace), we have

det g = −1 − tr(h) + P(|h|2),
where P(|h|2) is a polynomial in the variables (hαβ)0�α,β�3 of degree at most

4 and of valuation at least 2. Hence, using Hμν = −hμν + Oμν(|h|2) and the
expansion in Taylor series of the square root function, we get11

∇μ

(

h − 1

2
tr(h)η + O(|h|2)

)

μν

= 0, ν ∈ �0, 3�. (4.14)

Now, observe by a straightforward calculation that for a general tensor field Fμν ,
we have

LZ (∇μ(F)μν dx
ν) = ∇μ(LZ F)μν dx

ν − 2δS
Z∇μ(F)μν dx

ν, (4.15)

11 Recall that the covariant derivative ∇ is the one of the flat Minkowski spacetime.
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AsLZ (η) = 2δS
Zη,LZ (η−1) = −2δS

Zη−1 for all Z ∈ K and since the Lie derivative
commutes with contractions,

∀Z ∈ K, LZ (tr(h)η) = LZ
(

ηαβhαβη
) = tr (LZ h) η. (4.16)

The identities (4.14), (4.15) and (4.16) yield, by an easy induction, to

∀|I | � N , ∇μ

(

LI
Z (h) − 1

2
tr(LI

Z h)η + LI
Z

(

O(|h|2)
)

)

μν

= 0. (4.17)

For a vector field U and a tensor field Fμν , there holds the formula

˜�g
(

LZ h1
) − LZ

(

˜�gh1
)

(4.18)

= −LZ (H)αβ∇α∇βh1 − 2δS
Z Hαβ∇α∇βh1 + 2δS

Z
˜�g(h1). (4.19)

Applying this identity to U = T ∈ T , F = LI
Z (h) and then F = tr(LI

Z h)η, one
has, since ηLT = 0,

∇μ(LI
Z h)μT = −1

2
∇L

(

LI
Z h

)

LT
− 1

2
∇L

(

LI
Z h

)

LT
+ ∇ A

(

LI
Z h

)

AT
,

(4.20)

∇μ(tr(LI
Z h)η)μT = −1

2
∇L

(

tr(LI
Z h)

)

ηLT + ∇ A
(

tr(LI
Z h)

)

ηAT . (4.21)

Combining (4.17) with (4.13), (4.20) and (4.21), we obtain
∣

∣

∣∇LLI
Z (h)

∣

∣

∣

LT
�
∣

∣

∣∇LI
Z h

∣

∣

∣

T U
+
∣

∣

∣∇tr(LI
Z h)

∣

∣

∣ +
∑

|J |+|K |�|I |

∣

∣

∣∇LJ
Z h

∣

∣

∣

∣

∣

∣LK
Z h

∣

∣

∣ .

(4.22)

The first estimate (4.11) then follows from

∇ tr(LI
Z h) = tr(∇LI

Z h) = ημν∇LI
Z (h)μν

= −∇LI
Z (h)L L + ∇LI

Z (h)AA + ∇LI
Z (h)B B .

We now turn to the second one.
Note first that

(h0)μν − 1

2
tr(h0)ημν = χ

(

r

1 + t

)

M

r
(δμν − ημν),

since

h0
μν = χ

(

r

1 + t

)

M

r
δμν.

As h = h0 + h1 and δμν − ημν = 2δ0μδ0ν , the condition (4.14) leads to

∇μ

(

h1 − 1

2
tr(h1)η + O(|h|2)

)

μν

+ 2M

(1 + t)2
χ ′

(

r

1 + t

)

δ0ν = 0, ν ∈ �0, 3�.
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As the support of χ ′ is included in [ 14 , 1
2 ], we obtain, since Z J is a combination of

translations and homogeneous vector fields,12

∀|J | � N ,

∣

∣

∣

∣

LJ
Z

(

2M

(1 + t)2
χ ′

(

r

1 + t

)

dt

)∣

∣

∣

∣

� M
1 1+t

4 �r� 1+t
2

(1 + t + r)2
.

Using (4.15) and (4.16), we then get for all |J | � N and ν ∈ �0, 3�,
∣

∣

∣

∣

∣

∇μ

(

LJ
Z h1 − 1

2
tr(LJ

Z h1)η + LJ
Z

(

O(|h|2)
)

)

μν

∣

∣

∣

∣

∣

� M
1 1+t

4 �r� 1+t
2

(1 + t + r)2
. (4.23)

Since (4.20) and (4.21) also hold if h is replaced by h1, the inequality (4.12) ensues
from (4.13) and (4.23). ��

4.3. Commutation Formula for the Einstein Equations

In this section, we compute the source terms of the wave equation satisfied by
the cartesian components ofLJ

Z (h1). In order to do it in a geometric way, we define,
for any sufficiently regular (0, 2)-tensor field k, the (0, 2)-tensor field˜�g(k)whose
components in wave coordinates satisfy

˜�g(k)μν := ˜�g(kμν) = gαβ∂α∂β(kμν) = gαβ∇α∇β(kμν) = (

gαβ∇α∇βk
)

μν
,

since ∇ is the covariant differentiation of Minkowski spacetime whose Christoffel
symbols vanish in the coordinates system (t, x). Our goal now is to compute, for
any Z J ∈ K

|J |, ˜�g(LJ
Z h1). The first step consist in determining the commutator

˜�g(LJ
Z h1) − LJ

Z (˜�gh1) and then we will describe LJ
Z (˜�gh1). We start by the

following technical result.

Lemma 4.6. Let K be a (2, 0)-tensor field and k a (0, 2)-tensor field, both suffi-
ciently regular. Then, for all Z ∈ K, we have

LZ
(

K αβ∇α∇βk
) = LZ (K )αβ ∇α∇βk + K αβ∇α∇βLZ (k).

Proof. We will use here that K αβ∇α∇βk is obtained by contracting K with the
(0, 4)-tensor field ∇∇k. Since the Lie derivative commute with contraction, we
have for any 0 � μ, ν � 3 and for all Z ∈ K,

LZ
(

K αβ∇α∇βk
)

μν
= LZ (K )αβ (∇∇k)αβμν + K αβ (LZ∇∇k)αβμν .

It then remains to applyLemma3.4,whichgives (LZ∇∇k)αβμν = (∇∇LZ k)αβμν =
∇α∇βLZ (k)μν . ��
We are now able to compute the commutator.

12 We refer to the proof of Lemma 3.13 for a more detailed estimate of a similar quantity.
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Corollary 4.7. For all Z ∈ K, we have

˜�g

(

LZ h1
)

− LZ

(

˜�gh1
)

= −LZ (H)αβ∇α∇βh1 − 2δS
Z Hαβ∇α∇βh1 + 2δS

Z
˜�g(h

1).

For all multi-index |I | � N, there exist integers ˜C I
K , C I

J,K ∈ Z such that

˜�g

(

LI
Z h1

)

− LI
Z

(

˜�gh1
)

=
∑

|J |+|K |�|I |
|K |<|I |

C I
J,KLJ

Z (H)αβ∇α∇βLK
Z (h1) + ˜C I

K
˜�g

(

LK
Z h1

)

.

Proof. Let Z ∈ K and recall that ˜�g(h1) = gαβ∇β∇αh1. Then, applying
Lemma 4.6, we get

LZ

(

˜�gh1
)

= LZ (g−1)αβ∇α∇βh1 + gαβ∇α∇βLZ (h1)

= LZ (g−1)αβ∇α∇βh1 + ˜�g

(

LZ h1
)

.

It only remains to use g−1 = η−1 + H and LZ (η−1) = −2δS
Zη−1, so that

LZ (g−1)αβ∇α∇βh1 = −2δS
Zηαβ∇α∇βh1 + LZ (H)αβ∇α∇βh1

= −2δS
Z
˜�g(h

1) + 2δS
Z Hαβ∇α∇βh1 + LZ (H)αβ∇α∇βh1.

For the higher order commutation formula, we proceed by induction on |I | (note
that the result is straightforward if |I | = 0). Let n ∈ N and assume that the result
holds for all multi-indices |I0| = n. We then consider a multi-index I of length
n + 1 and we introduce Z ∈ K and |I0| = n such that Z I = Z Z I0 . Then,

˜�g

(

LI
Z h1

)

− LI
Z

(

˜�gh1
)

= ˜�g

(

LZ

(

LI0
Z h1

))

− LZ

(

˜�g

(

LI0
Z h1

))

+ LZ

(

˜�g

(

LI0
Z h1

)

− LI0
Z

(

˜�gh1
))

.

According to the first order commutation formula applied to LI0
Z h1,

˜�g

(

LZ

(

LI0
Z h1

))

− LZ

(

˜�g

(

LI0
Z h1

))

= −LZ (H)αβ∇α∇βLI0
Z (h1) − 2δS

Z Hαβ∇α∇βLI0
Z (h1)

+ 2δS
Z
˜�g

(

LI0
Z h1

)

.

All the terms on the right-hand side of this equality have the required form since

|I0| < |I |. Using the induction hypothesis, we can write LZ

(

˜�g

(

LI0
Z h1

)

−
LI0

Z

(

˜�gh1
)

)

as linear combination of terms of the form

LZ

(

LJ
Z (H)αβ∇α∇βLK

Z (h1)
)

, |J | + |K | � |I0|,
LZ

(

˜�g

(

LK
Z h1

))

, |K | < |I0|.
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It remains to apply Lemma 4.6 in order to deal with the first ones and the first order
commutation formula for the last ones (note that |J | + |K | + 1 � |I0| + 1 = |I |
and |K | + 1 < |I |). ��
We now focus on LJ

Z

(

˜�gh1
)

.

Lemma 4.8. Let k and q be two sufficiently regular (0, 2)-tensor fields. Then, for
all Z ∈ K,

LZ (P(∇k,∇q))μν = P(∇μLZ k,∇νq) + P(∇μk,∇νLZ q) − 4δS
Z P(∇μk,∇νq),

LZ (Q(∇k,∇q))μν = Qμν(∇LZ k,∇q) + Qμν(∇k,∇LZ q) − 4δS
Z Qμν(∇k,∇q).

Iterating these relations, we obtain that for all |I | � N, there exist integers ̂C I
J,K

such that

LJ
Z (P(∇k,∇q))μν =

∑

|J |+|K |�|I |
̂C I

J,K P(∇μLJ
Z k,∇νLK

Z q),

LJ
Z (Q(∇k,∇q))μν =

∑

|J |+|K |�|I |
̂C I

J,K Qμν(∇LJ
Z k,∇LK

Z q).

Proof. This directly follows from the definition of P(∇k,∇q) and Q(∇k,∇q)

(3.5) and (3.6) as well as Lemma 3.5. ��
We then deduce the commutation formula for the Einstein equations (3.4a).

Proposition 4.9. Let Z I ∈ K
|I | with |I | � N. Then, there exists integers C I

J,K and

C
I
J,K such that, for any (μ, ν) ∈ �0, 3�2,

˜�g

(

LI
Z (h1)μν

)

=
∑

|J |+|K |�|I |
|K |<|I |

C I
J,K LJ

Z (H)αβ∇α∇βLK
Z (h1)

+
∑

|J |+|K |�|I |
C

I
J,K P(∇μLJ

Z k,∇νLK
Z q) + C

I
J,K Qμν(∇LJ

Z k,∇LK
Z q)

+
∑

|J |�|I |
LJ

Z (G(h)(∇h,∇h))μν − LJ
Z

(

˜�gh0)

μν
− 2LJ

Z (T [ f ])μν .

The derivatives of T [ f ] and ˜�gh0 will be computed in Section 6 and Proposi-
tion 11.2. For the cubic terms, we have under the assumption (4.2),

∣

∣

∣LI
Z (G(h)(∇h,∇h))

∣

∣

∣ �
∑

|J1|+|J2|+|J3|�|I |

∣

∣

∣LJ1
Z h

∣

∣

∣

∣

∣

∣∇LJ2
Z h

∣

∣

∣

∣

∣

∣∇LJ3
Z h

∣

∣

∣ .

Proof. The commutation formula for the Einstein equations (3.4a) follows from
an induction on |I | relying on Corollary 4.7 and Lemma 4.8. For the estimate for
the cubic terms, we obtain from (3.7) and the definition of the Lie derivative (3.8)
thatLI

Z (G(h)(∇h,∇h))μν can be bounded by a linear combination of terms of the
form

(

1 +
∣

∣

∣Z J0 Hα0β0

∣

∣

∣

) ∣

∣

∣Z J1 Hα1β1

∣

∣

∣

∣

∣

∣Z J2∂ξ2hλ2κ2

∣

∣

∣

∣

∣

∣Z J3∂ξ3hλ3κ3

∣

∣

∣ ,
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where all the multi-indices are in �0, 3� and |J0| + |J1| + |J2| + |J3| � |I |. Note
now, using (3.9) and Lemma 3.4 that

∣

∣

∣Z Ji Hαi βi

∣

∣

∣ �
∣

∣

∣∇ Ji
Z H

∣

∣

∣ �
∑

|Ki |�|Ji |

∣

∣

∣LKi
Z H

∣

∣

∣ ,

∣

∣

∣Z Jj ∂ξ j hλ j κ j

∣

∣

∣ �
∣

∣

∣∇ J j
Z ∇h

∣

∣

∣ �
∑

|K j |�|J j |

∣

∣

∣LK j
Z ∇h

∣

∣

∣ =
∑

|K j |�|J j |

∣

∣

∣∇LK j
Z h

∣

∣

∣ .

Finally, without loss of generality, we can assume that |J0| � N − 3, so that, using
Proposition 4.2 and the assumption (4.2),

∣

∣Z J0 Hα0β0
∣

∣ � 1. This concludes the
proof. ��

5. Commutation of the Vlasov Equation

The purpose of this section is to compute the commutator [Tg,̂Z I ], for ̂Z I ∈
̂P

|I |
0 . The commutation formula obtained here ismore geometric than the one used in

[17]. In the spirit of [9] for theVlasov–Maxwell system (see in particular Subsection
2.5), we express the error terms using Lie derivatives of the metric instead of
derivatives of its Cartesian components. We recall the notations

(w0, w1, w2, w3) = (−|v|, v1, v2, v3), |v| =
√

v21 + v22 + v23

�v := v0 − w0 = v0 + |v|,
Tg := vμgμν∂ν − 1

2
vαvβ∂i g

αβ∂vi ,

and we consider for all this section a sufficiently regular symmetric tensor field
Hμν and a sufficiently regular function ψ : [0, T [×R

3
x × R

3
v → R. We define

the vertical parts Sw and Zw, for Z ∈ P a Killing, respectively conformal Killing,
vector field, by

Sw := 0 and Zw := ̂Z − Z .

For instance, 
w
01 = −w0∂v1 . Recall also that, in order to simplify the presentation

of the commutation formula, we use the following convention. For any ̂Z ∈ ̂P0, if
̂Z �= S, then we denote by Z the Killing vector field which has ̂Z as its complete
lift and if ̂Z = S, then we set Z = S. Finally, we extend the Kronecker symbol to
vector fields (X, Y ), that is δY

X = 1 if X = Y and δY
X = 0 otherwise.

5.1. Geometric Notations

In order to clearly identify the structure of the error terms in the commuted
equations, let us rewrite the two parts composing the operator Tg . For this, we
will denote the differential in the spacetime variables (t, x) of ψ by dψ and we
recall that∇H denotes the covariant derivative ofHwith respect to the Minkowski
metric. We then have

dψ := ∂μψdxμ, v = vμdxμ, ∇H = ∂xλHμν dxλ ⊗ ∂xμ ⊗ ∂xν .
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With these notations,

vμHμν∂νψ = H(v, dψ), (5.1)

vαvβ∂iHαβ∂vi ψ = ∇i (H)(v, v) · ∂vi ψ, (5.2)

vαvβ∂μHαβ vμ

v0
= ∇μ(H)(v, v) · vμ

v0
. (5.3)

Similar identities hold if v is replaced by w = wμ dxμ. Note that the transport
operator can then be rewritten as

Tg(ψ) = ˜Tg(ψ) − 1

2
∇i (H)(v, v) · ∂vi ψ, (5.4)

with

˜Tg(ψ) := g−1(v, dψ) = Tη(ψ) − �v∂tψ + H(v, dψ) (5.5)

and where Tη = |v|∂t + vi∂iψ = wμ∂μ is the massless relativistic transport
operator with respect to the Minkowski metric. Let us mention that the quantity
(5.3) will appear as an error term in the commutator [Tg,̂
0k]. We now prove a
technical lemma which contains useful identities.

Lemma 5.1. Let θ = θμdxμ and θ = θμdxμ be two 1-forms and ̂Z ∈̂P0. Then,

H(LZ (w), θ) + H(Zw(w), θ) = δS
̂Z
H(w, θ), (5.6)

LZ (∇iH)(θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ̂Z∂vi ψ

= ∇i (LZ (H)) (θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ∂vi
̂Zψ

− δS
̂Z
∇i (H)(θ, θ) · ∂vi ψ + δ

̂
0k
̂Z

∇μ(H)(θ, θ) · wμ

w0
∂vk ψ, (5.7)

LZ (∇μH)(θ, θ) · wμ

w0
+ ∇μ(H)(θ, θ) · ̂Z

(

wμ

w0

)

= ∇μ (LZ (H)) (θ, θ) · wμ

w0
− δS

̂Z
∇μ(H)(θ, θ) · wμ

w0

+ δ
̂
0k
̂Z

wk

w0
∇μ(H)(θ, θ) · wμ

w0
. (5.8)

Proof. As the Cartesian components of w do not depend on (t, x), we have
LZ (w) = wμ∂ν Zμ dxν . We then deduce

L∂ν (w) = 0, ∂w
ν (w) = 0, (5.9)

LS(w) = w, Sw(w) = 0, (5.10)

L
i j (w) = −wi dx
j + w j dx

i , 
w
i j (w) = wi dx

j − w j dx
i , (5.11)

L
0k (w) = w0 dx
k + wk dt, 
w

0k(w) = −wk dt − w0 dx
k, (5.12)

and then that

H(LZ (w), θ) + H(Zw(w), θ) = δS
̂Z
H(w, θ).
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In order to compute (5.7) and (5.8), let us introduce

RZ := LZ (∇iH)(θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ̂Z∂vi ψ,

QZ := LZ (∇μH)(θ, θ) · wμ

w0
+ ∇μ(H)(θ, θ) · ̂Z

(

wμ

w0

)

and remark, since ∇i = L∂i and ∇μ = ημλL∂λ , that

[LZ ,∇i ] = ∇[Z ,∂i ] and [LZ ,∇μ] = ημλ∇[Z ,∂λ].

Note now that [∂ν, ∂λ] = [∂ν, ∂vi ] = 0 and ∂ν

(

wμ

w0

)

= 0 implies

R∂ν = ∇i
(

L∂ν (H)
)

(θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ∂vi ∂νψ,

Q∂ν = ∇μ
(

L∂ν (H)
)

(θ, θ) · wμ

w0
.

Since [S, ∂λ] = −∂λ, [S, ∂vi ] = 0 and Sw
(

wμ

w0

)

= 0, we have

RS = ∇i (LS(H)) (θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ∂vi Sψ − ∇i (H)(θ, θ) · ∂vi ψ,

QS = ∇μ (LS(H)) (θ, θ) · wμ

w0
− ∇μ(H)(θ, θ) · wμ

w0
.

As [
kl , ∂λ] = −δk
λ∂l + δl

λ∂k , [̂
kl , ∂vi ] = −δk
i ∂vl + δl

i ∂vk and ̂
kl

(

wμ

w0

)

=
δl
μ

wk
w0

− δk
μ

wl
w0

, one gets

R
kl = ∇i
(

L
kl (H)
)

(θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ∂vi
̂
klψ,

Q
kl = ∇μ
(

L
kl (H)
)

(θ, θ) · wμ

w0
.

Using [
0k, ∂λ] = −δk
λ∂t − δ0λ∂k , [̂
0k, ∂vi ] = wi

w0
∂vk , ̂
0k

(

w0
w0

)

= 0 and

̂
0k

(

w j
w0

)

= −δk
j + w j wk

(w0)2
, we obtain

R
0k = ∇i
(

L
0k (H)
)

(θ, θ) · ∂vi ψ + ∇i (H)(θ, θ) · ∂vi
̂
0kψ

+∇μ(H)(θ, θ) · wμ

w0
∂vk ψ,

Q
0k = ∇μ
(

L
0k (H)
)

(θ, θ) · wμ

w0
+ wk

w0
∇μ(H)(θ, θ) · wμ

w0
.

��
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5.2. Commutation Formula for ˜Tg

We start by deriving a commutation formula for the first part˜Tg of the transport
operator. To this end, we first decompose it as

˜Tg(ψ) = Tη(ψ) + �vg−1(dt, dψ) + H(w, dψ).

The following lemma is a prerequisite for Lemma 5.3.

Lemma 5.2. Let ̂Z ∈̂P0 and 0 � μ � 3. Then,

̂Z (H(w, dψ)) = H(w, d̂Zψ) + LZ (H)(w, dψ) + δS
̂Z
H(w, dψ),

̂Z
(

H(dxμ, dψ)
) = H(dxμ, d̂Zψ) + LZ (H)(dxμ, dψ) + ∂ν(Zμ)H(dxν, dψ).

Proof. We have, as Zw := ̂Z − Z ,

̂Z (H(w, dψ)) = LZ (H)(w, dψ) + H(LZ (w), dψ) + H(w,LZ (dψ))

+H(Zw(w), dψ) + H(w, Zw(dψ)).

Applying the identity (5.6) of Lemma 5.1, we get

H(LZ (w), dψ) + H(Zw(w), dψ) = δS
̂Z
H(w, dψ).

We also have, since LZ (dψ) = dLZ (ψ), that

L∂ν (dψ) + ∂w
ν (dψ) = d(∂νψ), (5.13)

LS(dψ) + Sw(dψ) = d(Sψ), (5.14)

L
i j (dψ) + 
w
i j (dψ) = d(̂
i jψ), (5.15)

L
0k (dψ) + 
w
0k(dψ) = d(̂
0kψ), (5.16)

which leads in particular to

H(w,LZ (dψ)) + H(w, Zw(dψ)) = H(w, d̂Zψ)

and then concludes the first part of the proof. The second formula follows from

̂Z
(

H(dxμ, dψ)
) = LZ (H)(dxμ, dψ) + H(LZ (dxμ), dψ)

+H(dxμ,LZ (dψ)) + H(dxμ, Zw(dψ)),

the equalities (5.13)–(5.16) and LZ (dxμ) = ∂ν Zμdxν . ��
We then derive the commutation formula for the operator˜Tg .

Lemma 5.3. Let ̂Z ∈̂P0. Then,

[˜Tg,̂Z ](ψ) = −LZ (H)(w, dψ) − �vLZ (g−1)(dt, dψ) − ̂Z(�v)g−1(dt, dψ)

+δS
̂Z
˜Tg(ψ) − 2δS

̂Z
H(w, dψ) − 2δS

̂Z
�vg−1(dt, dψ)

−δ
̂Z
̂
0k

�vg−1(dxk, dψ).
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If ̂Z I ∈̂P
|I |
0 , there exists integers C I

Q, C I
J,K and C I

μ,J1,J2,K
such that

[˜Tg,̂Z I ](ψ) =
∑

|Q|�|I |−1
Q P �I P

C I
Q
̂Z Q (

˜Tg(ψ)
) +

∑

|J |+|K |�|I |
|K |�|I |−1

C I
J,KLJ

Z (H)(w, d̂Z K ψ)

+
∑

|J1|+|J2 |+|K |�|I |
|K |�|I |−1

C I
μ,J1,J2,K

̂Z J1 (�v)LJ2
Z (g−1)(dxμ, d̂Z K ψ),

where the multi-indices J , J1, J2 and K in the last two sums satisfy one of the
following two conditions,

(1) either K P < I P ,
(2) or K P = I P and J T � 1, J T

1 + J T
2 � 1.

Remark 5.4. Combining the first order commutation formula with the identity
(5.20), written below, one can check that ̂Z K and ̂Z Q (respectively Z J , Z J2 and
̂Z J1 ) is built by atmost |I |−1 (respectively atmost |J |, at most |J2| and atmost |J1|)
of the vector fields composing ̂Z I , so that K P � I P and Q P � I P . If K P = I P ,
this means that there is at least one translation in ̂Z I which is part of Z J and either
Z J2 or ̂Z J1 , that is J T � 1 and J T

1 + J T
2 � 1.

Proof. Let ̂Z ∈ P0 and recall from Subsection 3.5 that

[Tη,̂Z ] = δS
̂Z
Tη. (5.17)

Applying the first equality of Lemma 5.2 toH = H and the second one toH = g−1

and μ = 0, we get

̂Z (H(w, dψ)) = H(w, d̂Zψ) + LZ (H)(w, dψ) + δS
̂Z

H(w, dψ),

̂Z
(

�vg−1(dt, dψ)
)

= �vg−1(dt, d̂Zψ) + ̂Z (�v) g−1(dt, dψ)

+ �vLZ (g−1)(dt, dψ) (5.18)

+ �vδS
̂Z

g−1(dt, dψ) + �vδ
̂Z
̂
0k

g−1(dxk, dψ). (5.19)

The first order commutation formula directly follows from (5.17), (5.18) and (5.19).
The higher order formula can be proved similarly by performing an induction on
|I |, using

[˜Tg,̂ẐZ
I ] = [˜Tg,̂Z ]̂Z I + ̂Z [˜Tg,̂Z

I ] (5.20)

and applying the first equality (respectively the second equality) of Lemma 5.2
to ̂Z K ψ and H = LJ

Z (H) (respectively H = LJ2
Z (g−1) ), for well-chosen multi-

indices J , J2 and K . ��
Remark 5.5. Expressing the error terms in the commutation formula using v

instead of w, we find, since LZ (η−1) = −2δZ
S η−1,

[˜Tg,̂Z ](ψ) = δS
̂Z
˜Tg(ψ) − LZ (H)(v, dψ) − ̂Z(�v)g−1(dt, dψ)

− 2δS
̂Z

H(v, dψ) − δ
̂Z
̂
0k

�vg−1(dxk, dψ).
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5.3. Commutation Formula for the Transport Operator

In view of Lemma 5.3 it remains to study the action of ̂Z I on the term

− 1

2
∇i (H)(v, v) · ∂vi ψ

= −1

2
∇i (H)(w,w) · ∂vi ψ − 1

2
|�v|2∇i (H)00 · ∂vi ψ − �v∇i (H)(dt, w) · ∂vi ψ.

The following identities will then be useful in order to determine [Tg,̂Z I ]:
Lemma 5.6. Let ̂Z ∈̂P0 and (μ, ν) ∈ �0, 3�2. We have,

̂Z
(∇i (H)(w,w) · ∂vi ψ

) = ∇i (H)(w,w) · ∂vi
̂Zψ + ∇i (LZ (H)) (w,w) · ∂vi ψ

+ δS
̂Z
∇i (H)(w,w) · ∂vi ψ + δ

̂
0k
̂Z

∇λ(H)(w,w) · wλ

w0
∂vk ψ,

(5.21)
̂Z
(∇i (H)μν · ∂vi ψ

) = ∇i (H)(dxμ, dxν) · ∂vi
̂Zψ + ∇i (LZ (H)) (dxμ, dxν) · ∂vi ψ

+ ∂λ Zμ∇i (H)(dxλ, dxν) · ∂vi ψ + ∂λ Zν∇i (H)(dxμ, dxλ) · ∂vi ψ

− δS
̂Z
∇i (H)(dxμ, dxν) · ∂vi ψ + δ

̂
0k
̂Z

∇λ(H)(dxμ, dxν) · wλ

w0
∂vk ψ,

(5.22)
̂Z
(∇i (H)(dxμ,w) · ∂vi ψ

) = ∇i (LZ (H)) (dxμ,w) · ∂vi ψ + ∇i (H)(dxμ,w) · ∂vi
̂Zψ

+ ∂λ Zμ∇i (H)(dxλ, w) · ∂vi ψ + δ
̂
0k
̂Z

∇λ(H)(dxμ,w) · wλ

w0
∂vk ψ.

(5.23)

Proof. We have, using again the notation Zw = ̂Z − Z ,

̂Z
(∇i (H)(w,w) · ∂vi ψ

) = LZ (∇iH)(w,w) · ∂vi ψ + 2∇i (H)(LZ (w),w) · ∂vi ψ

+2∇i (H)(Zw(w),w) · ∂vi ψ + ∇i (H)(w,w) · ̂Z∂vi ψ.

The first equality (5.21) then follows from identities (5.6) and (5.7) of Lemma 5.1.
In order to get the second formula (5.22), notice, as ∇i (H)μν∂vi ψ = ∇i (H)(dxμ,

dxν)∂vi ψ , that

̂Z
(∇i (H)μν∂vi ψ

) = ∇i (H)(dxμ, dxν)̂Z∂vi ψ + LZ (∇iH)(dxμ, dxν)∂vi ψ

+∇i (H)(LZ (dxμ), dxν)∂vi ψ + ∇i (H)(dxμ,LZ (dxν))∂vi ψ.

It then remains to use LZ (dxα) = ∂λZα dxλ and apply (5.7). Similarly, we have

̂Z
(∇i (H)(dxμ,w)∂vi ψ

) = ∇i (H)(dxμ,w)̂Z∂vi ψ + LZ (∇iH)(dxμ,w)∂vi ψ

+∇i (H)(LZ (dxμ),w)∂vi ψ + ∇i (H)(dxμ,LZ (w))∂vi ψ

+∇i (H)(dxμ, Zw(w))∂vi ψ

and the third identity (5.23) then ensues from (5.6) and (5.7). ��
We are now able to compute the first order commutation formula. In fact we

will state it in two different ways. The second one has the advantage of being more
concise whereas the first one will be more adapted to the problem studied in this
paper and for the purpose of deriving the higher order formula.
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Proposition 5.7. Let ̂Z ∈̂P0. Then,

[Tg,̂Z ](ψ) = −LZ (H)(w, dψ) − �vLZ (g−1)(dt, dψ) − ̂Z(�v)g−1(dt, dψ)

+ 1

2
∇i (LZ (H)) (w,w) · ∂vi ψ + |�v|2

2
∇i (LZ (H))00 · ∂vi ψ

+ �v∇i (LZ (H)) (dt, w) · ∂vi ψ + �v̂Z(�v)∇i (LZ (H))00 · ∂vi ψ

+̂Z(�v)∇i (H)(dt, w) · ∂vi ψ + δS
̂Z

(

Tg(ψ) − 2H(w, dψ)
)

+ δS
̂Z

(

∇i (H)(w,w) · ∂vi ψ − 2�vg−1(dt, dψ)
)

+ δS
̂Z

(

|�v|2∇i (H)00 · ∂vi ψ + 2�v∇i (H)(dt, w) · ∂vi ψ
)

+ δ
̂
0k
̂Z

(

−�vg−1(dxk , dψ) + 1

2
∇μ (H) (w,w) · wμ

w0
∂vk ψ

)

+ δ
̂
0k
̂Z

�v
(

∇i (H) (dxk , w) · ∂vi ψ + �v∇i (H)k0 · ∂vi ψ
)

+ δ
̂
0k
̂Z

�v

(

∇μ (H) (dt, w) · wμ

w0
∂vk ψ + �v

2
∇μ (H)00 · wμ

w0
∂vk ψ

)

.

Alternatively, expressing the error terms using v instead of w, we get

[Tg,̂Z ](ψ) = −LZ (H)(v, dψ) + 1

2
∇i (LZ (H)) (v, v) · ∂vi ψ − ̂Z(�v)g−1(dt, dψ)

+̂Z(�v)∇i (H)(dt, v) · ∂vi ψ + 1

2
δ
̂
0k
̂Z

∇μ (H) (v, v) · vμ

v0
∂vk ψ

+ δS
̂Z

(

Tg(ψ) − 2H(v, dψ) + ∇i (H)(v, v) · ∂vi ψ
)

− δ
̂
0k
̂Z

�v
(

g(dxk , dψ) − ∇i (H) (dxk , v) · ∂vi ψ
)

− δ
̂
0k
̂Z

�v

2|v|∇
i (H)(v, v) · vi

v0
∂vk ψ.

Proof. The first commutation formula follows from Lemma 5.3 and Lemma 5.6
applied to H = H and (μ, ν) = (0, 0). The second formula can be obtained from
the first one using that v = w + �vdt and

∇μ H(v, v) · wμ

w0
= ∇μH(v, v) · vμ

v0
−
(

1

v0
− 1

w0

)

∇ i H(v, v) · vi

= ∇μH(v, v) · vμ

v0
− �v

|v| ∇ i H(v, v) · vi

v0
,

since w0 = −|v| and �v = v0 − w0. ��
Remark 5.8. Even if the second commutation formula might seem to be more
convenient, we will work with the first one for two reasons.

• The second and higher order formulas are not more concise when expressed in
terms of v instead of w.

• Working with w instead of v is more adapted to our method since no inequality
analogous to |wL |

w0 � z2

(1+t+r)2
holds for the component vL . Indeed, according
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to Lemma 5.12 proved below and | /w| �
√|v||wL | (see Lemma 3.7), we have,

if g satisfies (4.2) and for ε small enough,

|vL − wL | = |�v| � 1

|v| |H(w,w)| � |wL ||H | + √|v||wL ||H |LT + |v||HL L |.

Although we will have, during the proof of Theorem 2.1, |wL ||H | +√|v||wL ||H |LT � |v| z2

(1+t+r)2
, the term |v||HL L | will not behave sufficiently

well near the light cone. Because of the Schwarzschild part, |HL L | cannot decay
faster than (1 + t + r)−1 and no decay can be extracted from the weight z if
t ≈ r without a good component of the flat velocity vector wL or /w.

Due to the new error terms generated by the Lorentz boosts, the following additional
identities are required in order to compute the higher order commutation formula.

Lemma 5.9. Let ̂Z ∈̂P0, (λ, ν) ∈ �0, 3�2 and q ∈ �1, 3�. Then,

̂Z

(

∇μ(H)(w,w) · wμ

w0
∂vq ψ

)

= ∇μ(H)(w,w) · wμ

w0
∂vq

̂Zψ

+ ∇μ (LZ (H)) (w,w) · wμ

w0
∂vq ψ

+ Cq
̂Z ,k

(w)∇μ(H)(w,w) · wμ

w0
∂vk ψ,

̂Z

(

∇μ(H)λν · wμ

w0
∂vq ψ

)

= ∇μ(H)λν · wμ

w0
∂vq

̂Zψ + ∇μ (LZ (H))λν · wμ

w0
∂vq ψ

+ Cq,λ,ν
̂Z ,k,α,β

(w)∇μ(H)αβ · wμ

w0
∂vk ψ,

̂Z

(

∇μ(H)(dxλ,w) · wμ

w0
∂vq ψ

)

= ∇μ(H)(dxλ,w) · wμ

w0
∂vq

̂Zψ

+ ∇μ (LZ (H)) (dxλ,w) · wμ

w0
∂vq ψ

+ Cq,λ
̂Z ,k,α

(w)∇μ(H)(dxα,w) · wμ

w0
∂vk ψ,

where the functions Cq
̂Z ,k

(w), Cq,λ,ν
̂Z ,k,α,β

(w) and Cq,λ
̂Z ,k,α

(w) are linear combinations

of elements of {wμ

w0
/ 0 � μ � 3}.

Proof. Note first that

̂Z

(

∇μ(H)(w,w) · wμ

w0

)

= LZ (∇μH)(w,w) · wμ

w0
+ 2∇μ(H)(LZ (w),w) · wμ

w0

+ ∇μ(H)(w,w) · Zw

(

wμ

w0

)

+ 2∇μ(H)(Zw(w),w) · wμ

w0
,

̂Z

(

∇μ(H)λν · wμ

w0

)

= ∇μ(H)λν · Zw

(

wμ

w0

)

+ LZ (∇μH)(dxλ, dxν) · wμ

w0

+ ∇μ(H)(LZ (dxλ), dxν) · wμ

w0
+ ∇μ(H)(dxλ,LZ (dxν)) · wμ

w0
,

̂Z

(

∇μ(H)(dxλ, w) · wμ

w0

)

= ∇μ(H)(dxλ, w) · Zw

(

wμ

w0

)

+ LZ (∇μH)(dxλ, w) · wμ

w0

+ ∇μ(H)(LZ (dxλ), w) · wμ

w0
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+ ∇μ(H)
(

dxλ,LZ (w) + Zw(w)
) · wμ

w0
.

Then use the identities (5.6) and (5.8) of Lemma 5.1, LZ (dxλ) = ∂α Zλdxα and,
in order to deal with ̂Z∂vq f ,

[∂ν, ∂vq ] = [S, ∂vq ] = 0, [̂
kl , ∂vq ] = −δk
q∂vl + δl

q∂vk , [̂
0k, ∂vq ] = wq

w0
∂vk f.

��
We are now ready to describe the error terms of the higher order commutator

[Tg,̂Z I ] in full detail.

Proposition 5.10. Let ̂Z I ∈ ̂P
|I |
0 . Then, [Tg,̂Z I ](ψ) can be written as a linear

combination with polynomial coefficients in wξ

w0
, 0 � ξ � 3, of the following

terms,

• ̂Z I0
(

Tg(ψ)
)

, |I0| � |I | − 1, I P
0 � I P − 1, (5.24)

• LJ
Z (H)(w, d̂Z K ψ), (5.25)

• ∇i

(

LJ
Z H

)

(w,w) · ∂vi
̂Z K ψ, (5.26)

• ∇λ
(

LJ
Z H

)

(w,w) · wλ

w0
∂vq

̂Z K ψ, (5.27)

• ̂Z M1(�v)LQ
Z (g−1)(dxμ, d̂Z K ψ), (5.28)

• ̂Z M1(�v)∇i

(

LQ
Z H

)

(dxμ,w) · ∂vi
̂Z K ψ, (5.29)

• ̂Z M1(�v)̂Z M2(�v)∇i

(

LQ
Z H

)μν · ∂vi
̂Z K ψ, (5.30)

• ̂Z M1(�v)∇λ
(

LQ
Z H

)

(dxμ,w) · wλ

w0
∂vq

̂Z K ψ, (5.31)

• ̂Z M1(�v)̂Z M2(�v)∇λ
(

LQ
Z H

)μν · wλ

w0
∂vq

̂Z K ψ, (5.32)

where,

q ∈ �1, 3�, (μ, ν) ∈ �0, 3�2, |K | � |I | − 1,

|J | + |K | � |I |, |M1| + |M2| + |Q| + |K | � |I |.

Moreover K , J , Q and M1 satisfy the following condition

(1) either K P < I P ,
(2) or K P = I P and then J T � 1, QT + MT

1 � 1.

For the term (5.27), J and K satisfy the improved condition

|J | + |K | � |I | − 1 and K P < I P .
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Proof. The result follows from an induction on |I |, relying on
[Tg,̂ẐZ

I ] = [˜Tg,̂ẐZ
I ] + [Tg −˜Tg,̂Z ]̂Z I + ̂Z [Tg −˜Tg,̂Z

I ],
Lemma 5.3 as well as several applications of Lemmas 5.6 and 5.9 .

The conditions on the multi-indices are easy to check when |I | = 1 (see Propo-
sition 5.7). In that case there holds |K | = K P = 0. So, if ̂Z I = ̂Z is a homo-
geneous vector field, we have K P < I P = 1. Otherwise, ̂Z I is a translation ∂xμ

and each source term contains either the factor L∂xμ (H) or ∂xμ(�v). Moreover,
K P < I P always holds for the terms of the form (5.27) since they do not appear
when ̂Z I = ∂xμ . One can check during the induction, and more precisely when
we apply Lemmas 5.6 and 5.9 , that these conditions hold for all I (the general
principle is explained in Remark 5.4). ��
Remark 5.11. Asmentioned in Subsection 2.4.3, we would not be able to close the
energy estimates for the Vlasov field without taking advantage on the conditions
on K P and I P given in Proposition 5.10.

We also point out that the condition K P < I P for the terms (5.27) is of funda-
mental importance.Wewould not be able to handle such terms if the case K P = I P

was possible, even if we had at the same time J T � 1.

5.4. Null Structure of the Error Terms in the Commuted Vlasov Equation

The aim of this subsection is to describe the null structure of the terms given
by Proposition 5.10. We start by estimating ̂Z M (�v), which will be useful in order
to deal with (5.28)–(5.32).

Lemma 5.12. Let N � 6, ̂Z M ∈ ̂P
|M|
0 with |M | � N and assume that the metric

g satisfies the wave gauge condition and (4.2). Then, if ε is sufficiently small, we
have

∣

∣

∣

̂Z M (�v)

∣

∣

∣ �
∑

|J |+|K |�|M|
J T �min(1,MT )

|wL ||LJ
Z (H)|

+|v||LJ
Z (H)|LT + |v||LJ

Z (H)||LK
Z (H)|.

(5.33)

Proof. According to Proposition 4.2 and (4.2), we have

∀|J | � N − 3, ∀(t, x) ∈ [0, T [×R
3,

∣

∣

∣LJ
Z (H)

∣

∣

∣ (t, x) �
√

ε. (5.34)

Hence, as g−1(v, v) = gαβvαvβ = 0, we get
∣

∣

∣v
2
0 − |v|2

∣

∣

∣ = |H(v, v)| �
√

ε|v|2 + √
εv20,

which implies, since w0 = −|v| and if ε is sufficiently small,

− 2|v| � v0 � −1

2
|v| and |�v| � 3|v|. (5.35)
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Consequently,

(v0 − |v|)�v = v20 − |v|2 = Hμνvμvν = H(v, v),

so that, as |v0 − |v|| � |v| and v = w + �vdt ,

|�v| � |H(v, v)|
|v| � |H(w,w)|

|v| + |�v||H |.

As |H | � √
ε, we obtain, if ε is sufficiently small, that |�v| � 2 |H(w,w)|

|v| . Now,

recall from Lemma 3.7 that wAwA � |v||wL |, which implies

|�v| � |H(w,w)|
|v| � |H |LT |v| + 1

|v| |H
ABwAwB | + |H ||wL |

� |H |LT |v| + |H ||wL | (5.36)

and the result holds for |M | = 0. The next step consists in proving an inequality
which will allow us to prove the result by induction in |M |. The starting point is
the decomposition

0 = g−1(v, v) = g−1(w,w) + |�v|2g00 + 2�vg−1(dt, w).

Now, using LZ (dt) = δS
̂Z
dt + δ

̂Z
̂
0k

dxk and (5.6), we get

̂Z
(

g−1(w,w)
)

= LZ (g−1)(w,w) + 2g−1(LZ (w) + Zw(w),w)

= LZ (g−1)(w,w) + 2δS
̂Z

g−1(w,w),

̂Z
(

|�v|2g00
)

= 2̂Z (�v)�vg00 + |�v|2LZ (g−1)00

+2δS
̂Z
|�v|2g00 + 2δ

̂Z
̂
0k

|�v|2gk0,

̂Z
(

�vg−1(dt, w)
)

= ̂Z (�v) g−1(dt, w) + �vLZ (g−1)(dt, w)

+2δS
̂Z
�vg−1(dt, w) + δ

̂Z
̂
0k

�vg−1(dxk, w).

It then follows that

2̂Z(�v)g−1(dt, v) = −LZ (g−1)(v, v) − 2δ
̂Z
S g−1(v, v) − 2δ

̂Z
̂
0k

�vg−1(dxk, v).

Iterating the process, one can prove that, for all ̂Z M ∈ P
|M|
0 ,

∣

∣

∣

̂Z M (�v)g−1(dt, v)

∣

∣

∣ �
∑

|J |�|M|
J T =MT

|LJ
Z (g−1)(v, v)|

+
∑

0�μ�3

∑

|I |+|J |�|M|
I T +J T =MT

|I |<|M|

∣

∣

∣

̂Z I (�v)LJ
Z (g−1)(dxμ, v)

∣

∣

∣
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+
∑

|I |+|J |+|K |�|M|
I T +J T +K T =MT

|I |,|K |<|M|

∣

∣

∣

̂Z I (�v)̂Z K (�v)

∣

∣

∣

∣

∣

∣LJ
Z (g−1)

∣

∣

∣ .

Using both (5.34) and (5.35) we get |v| � 3|g−1(dt, v)| � 9|v|. Hence, as v =
w + �vdt , we obtain

∣

∣

∣

̂Z M (�v)

∣

∣

∣ �
∑

|J | � |M|
J T = MT

|LJ
Z (g−1)(w,w)|

|v|

+
∑

|I | + |J | + |K | � |M|
I T + J T � min(1, MT )

|I |, |K | < |M|

∣

∣̂Z I (�v)
∣

∣

|v|
∣

∣

∣LJ
Z (g−1)

∣

∣

∣ (|v| + |̂Z K (�v)|).

(5.37)

Consider now N0 � N −1 and suppose that (5.33) holds for all |I | � N0. Then, let
M be a multi-index satisfying |M | = N0 + 1. As LZ (η−1) = −2δS

Zη−1, we have

|LJ
Z (g−1)(w,w)| � |LJ

Z (H)(w,w)| + |η−1(w,w)| = |LJ
Z (H)(w,w)|.

Following the computations made in (5.36), we then get

1

|v| |L
J
Z (g−1)(w,w)| � |LJ

Z (H)|LT |v| + |LJ
Z (H)||wL |. (5.38)

In order to bound the second sum on the right-hand side of (5.37), start by noticing
that, since LZ (η−1) = −2δS

Zη−1,

∣

∣

∣LJ
Z (g−1)

∣

∣

∣ �
{ |LJ

Z (H)| if J T � 1
|LJ

Z (H)| + |η−1| if J T = 0
.

Now, by the induction hypothesis,

∀|I | < |M |,
∣

∣

∣

̂Z I (�v)

∣

∣

∣ �
∑

|I1| + |I2| � |I |
I T
1 � min(1, I T )

|v|
∣

∣

∣LI1
Z (H)

∣

∣

∣

(

1 +
∣

∣

∣LI2
Z (H)

∣

∣

∣

)

,

so that, using |LI0
Z (H)| � 1 if |I0| � N − 3,

∑

|I | + |J | + |K | � |M|
I T + J T � min(1, MT )
|I |, |K | < |M|

∣

∣̂Z I (�v)
∣

∣

|v|
∣

∣

∣LJ
Z (H)

∣

∣

∣ (|v| + |̂Z K (�v)|)

�
∑

|I | + |J | � |M|
I T � min(1, MT )

|v|
∣

∣

∣LI
Z (H)

∣

∣

∣

∣

∣

∣LJ
Z (H)

∣

∣

∣ ,
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∑

|I | + |K | � |M|
I T � min(1, MT )

|I |, |K | < |M|

∣

∣̂Z I (�v)
∣

∣

|v|
∣

∣

∣η
−1
∣

∣

∣ |̂Z K (�v)|

�
∑

|I | + |J | � |M|
I T � min(1, MT )

|v|
∣

∣

∣LI
Z (H)

∣

∣

∣

∣

∣

∣LJ
Z (H)

∣

∣

∣ .

The claim then follows from (5.37), (5.38), the last two inequalities and
∑

|I | < |M|
I T � min(1, MT )

|̂Z I (�v)||η−1| �
∑

|J | + |K | < |M|
J T � min(1, MT )

|wL ||LJ
Z (H)|

+|v||LJ
Z (H)|LT + |v||LJ

Z (H)||LK
Z (H)|,

which is a direct consequence of the induction hypothesis. ��
In the next lemma, we deal with the remaining error terms given by (5.25),

(5.26) and (5.27) by expanding them with respect to the null frame (L , L, e1, e2).

Lemma 5.13. The following estimates hold:

|H(w, dψ)| � |v| |H|
1 + t + r

⎛

⎝|t − r ||∇ψ | +
∑

̂Z∈̂P0
|̂Zψ |

⎞

⎠ + |v||H|LT |∇ψ |

+ √|v||wL ||H|T U |∇ψ |,
∣

∣∇i (H)(w, w) · ∂vi ψ
∣

∣ � (|wL ||∇H| + |v||∇H|LT )

⎛

⎝|t − r ||∇ψ | +
∑

̂Z∈̂P0
|̂Zψ |

⎞

⎠

+
(

√|v||wL ||∇H| + |v||∇H|LL
)

⎛

⎝t |∇ψ | +
∑

̂Z∈̂P0
|̂Zψ |

⎞

⎠,

∣

∣

∣

∣

∇μ(H)(w, w) · wμ

|v| ∂vq ψ

∣

∣

∣

∣

�
( |wL |2

|v| |∇H| + |wL ||∇H|LT

)

⎛

⎝(t + r)|∇ψ | +
∑

̂Z∈̂P0
|̂Zψ |

⎞

⎠

+
(

√|v||wL ||∇H| + |v||∇H|LL
)

⎛

⎝(t + r)|∇ψ | +
∑

̂Z∈̂P0
|̂Zψ |

⎞

⎠.

Proof. The first inequality follows from

H(w, dψ) = HL LwL Lψ + HL L(wL Lψ + wL Lψ) + HL A(wLeA(ψ) + wA Lψ)

+HL LwL Lψ + HL A(wLeA(ψ) + wA Lψ) + HABwAeB(ψ)

and from Lemma 3.7, as well as (3.34), which give

|wA| �
√|v||wL | and |Lψ | � |t − r |

1 + t + r
|∇ψ | + 1

1 + t + r

∑

̂Z∈P0
|̂Zψ |.

Remark now that for a symmetric tensor Gμν ,
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G(w,w) = GL Lw2
L + GL Lw2

L + GABwAwB

+2GL LwLwL + 2GL AwLwA + 2GL AwLwA.

Consequently, using again that |wA| �
√|v||wL |, we get

|G(w,w)| � |v||wL ||G| + |v|2|G|LT , (5.39)

|G(w,w)| � |v|√|v||wL ||G| + |v|2|G|LL. (5.40)

Recall from Lemma 3.9 that

∣

∣(∇vψ)r
∣

∣ � |t − r |
|v| |∇ψ | + 1

|v|
∑

̂Z∈P0
|̂Zψ |,

∣

∣

∣(∇vψ)A
∣

∣

∣ � t

|v| |∇ψ | + 1

|v|
∑

̂Z∈P0
|̂Zψ |. (5.41)

The last two estimates then result from (5.39), (5.40), (5.41) and

∇i (H)(w,w) · ∂vi ψ = ∇∂r (H)(w,w) (∇vψ)r + ∇A(H)(w,w) (∇vψ)A ,

∇μ(H)(w,w) · wμ

|v| = −1

2
∇L(H)(w,w)

wL

|v| − 1

2
∇L(H)(w,w)

wL

|v|
+ ∇ A(H)(w,w)

wA

|v| . ��

5.5. Final Classification of the Error Terms

In this section, we list all the error terms that appear in the commuted equations
in such a way that we will able to easily estimate them when we try to improve all
the bootstrap assumptions on the energy norms of the Vlasov field.

Proposition 5.14. Let N � 6 be such that the metric g satisfies (4.2), assume

that the wave gauge condition holds and consider ̂Z I ∈ ̂P
|I |
0 with |I | � N. Then,

[Tg,̂Z I ](ψ) can be bounded by a linear combination of terms taken in the following
families:
The terms arising from the source terms

∣

∣̂Z I0
(

Tg(ψ)
) ∣

∣, |I0| � |I | − 1, I P
0 � I P − 1. (5.42)

The terms arising from the Schwarzschild part,

̂SK
I,0 := M

|v|
(1 + t + r)2

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.43)

SK
I,00 := M

|v|
1 + t + r

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.44)

̂SJ,K
I,1 := M

|v|
(1 + t + r)2

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.45)

̂SJ,K
I,2 := M

|v|
1 + t + r

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.46)
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SJ,K
I,3 := M

|v|
1 + t + r

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.47)

SJ,K
I,4 := M |v| |t − r |

1 + t + r

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.48)

SJ,K
I,5 := M |v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.49)

S
Q,J,K
I,6 := M |v||LQ

Z (h1)|
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.50)

where, ̂Z ∈̂P0,

• |Q| + |J | + |K | � |I |, |K | � |I | − 1, K P � I P .

The quadratic terms,

̂EJ,K
I,1 := |wL |

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.51)

̂EJ,K
I,2 := |v|

(∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT
+
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

) ∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.52)

̂EJ,K
I,3 := |v|

1 + t + r

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.53)

EJ,K
I,4 := |v| |t − r |

1 + t + r

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.54)

EJ,K
I,5 := |v|

∣

∣

∣LJ
Z (h1)

∣

∣

∣

LT

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.55)

EJ,K
I,6 := √|v||wL |

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.56)

EJ,K
I,7 := |t − r ||wL |

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.57)

EJ,K
I,8 := |t − r ||v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.58)

EJ,K
I,9 := (t + r)

√|v||wL |
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.59)

EJ,K
I,10 := (t + r)|v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.60)

where, ̂Z ∈̂P0,

• |J | + |K | � |I |, |K | � |I | − 1.
• K and J satisfy one of the following conditions.

(1) Either K P < I P ,
(2) or K P = I P and J T � 1.

EJ,K
I,11 := (t + r)

|wL |2
|v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.61)

where

• |J | + |K | � |I |, |K | � |I | − 1, K P < I P .
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The cubic terms,

̂EM,J,K
I,12 := |v|

1 + t + r

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.62)

̂EM,J,K
I,13 := |v|

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K ψ

∣

∣

∣ , (5.63)

where, ̂Z ∈̂P0,

• |M | + |J | + |K | � |I |, |K | � |I | − 1, K P � I P .

EM,J,K
I,14 := |v|

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.64)

EM,J,K
I,15 := |t − r ||v|

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.65)

EM,J,K
I,16 := (t + r)|wL |

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.66)

EM,J,K
I,17 := (t + r)|v|

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , (5.67)

where

• |M | + |J | + |K | � |I |, |K | � |I | − 1.
• K , M and J satisfy one of the following conditions.

(1) Either K P < I P ,
(2) or K P = I P and MT + J T � 1.

The quartic terms,

E
Q,M,J,K
I,18 := (t + r)|v||LQ

Z (h1)||LM
Z (h1)||∇LJ

Z (h1)||∇̂Z K ψ |, (5.68)

where

• |Q| + |M | + |J | + |K | � |I |, |K | � |I | − 1, K P � I P .

Remark 5.15. To clarify the analysis, we have denoted by ̂S or̂E, the error terms
that contain factors of the form

∣

∣̂ẐZ K ψ
∣

∣, and by S or E, error terms containing
∣

∣∇̂Z K ψ
∣

∣, so that we know that the last derivative hitting ψ is a translation.

Proof. Since g verifies (4.2) and in view of Proposition 4.2, we will use throughout
this proof that

∀ |Q| � N − 3,
∣

∣

∣LQ
Z (H)

∣

∣

∣ +
∣

∣

∣LQ
Z (h)

∣

∣

∣ �
√

ε. (5.69)

Consider a multi-index I such that |I | � N . In order to clarify the analysis, let
us introduce a notation. Fix q ∈ �4, 11� and multi-indices (J, K ) satisfying the
conditions presented in the proposition which are associated to EJ,K

I,q . Then, for a

sufficiently regular tensor field k, denote by EJ,K
I,q [k] the quantity corresponding to

EJ,K
I,q , but where h1 is replaced by k. For instance,

EJ,K
I,5 [k] = |v|

∣

∣

∣LJ
Z (k)

∣

∣

∣

LT

∣

∣

∣∇̂Z K ψ

∣

∣

∣ .

We define similarly ̂EJ,K
I,q [k], EM,J,K

I,q [k], ̂EM,J,K
I,q [k] and E

Q,M,J,K
I,18 [k]. Then we

make two important observations.
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(1) For all q ∈ �4, 11�, EJ,K
I,q [H ] is a linear combination of EJ0,K

I,q [h] and lower

order terms EM0,J0,K
I,p [h] and EQ0,M0,J0,K

I,18 [h], where p ∈ �14, 17� and (J0, K ),
(M0, J0, K ) as well as (Q0, M0, J0, K ) satisfy the conditions presented in the
proposition. This follows from Remark 4.3, so that, for instance,

|v|
∣

∣

∣LJ
Z (H)

∣

∣

∣

LT
|∇̂Z K ψ | �

∑

|J0|�|J |
J T
0 =J T

E
J0,K
I,5 [h] +

∑

|M0|+|J0|�|J |
MT

0 +J T
0 �min(1,J T )

E
M0,J0,K
I,14 [h].

Similar relations can be obtained, using also (5.69), for̂EJ,K
I,q [H ], EM,J,K

I,q [H ],
̂EM,J,K

I,q [H ] and E
Q,M,J,K
I,18 [H ].

(2) For all n ∈ �1, 3� and q ∈ �4, 11�, we have

̂EJ,K
I,n [h] � ̂EJ,K

I,n [h1] + ̂SK
I,0 = ̂EJ,K

I,n + ̂SK
I,0, EJ,K

I,q [h] � EJ,K
I,q + SK

I,00.

This ensues from the decomposition h = h1 + h0 and Proposition 4.1, which
gives that, for all |J |,

|LJ
Z (h0)| � M

1 + t + r
, |∇LJ

Z (h0)| � M

(1 + t + r)2
.

Similar inequalities hold for EM,J,K
I,q [h], ̂EM,J,K

I,q [h] and E
Q,M,J,K
I,18 [h]. For

instance,

̂EM,J,K
I,13 [h] � ̂EM,J,K

I,13 [h1] + ̂SJ,K
I,2 [h1] + ̂SM,K

I,1 + ̂SK
I,0,

EM,J,K
I,17 [h] � EM,J,K

I,17 [h1] + SJ,K
I,5 + SM,K

I,3 + SK
I,00,

E
Q,M,J,K
I,18 [h] � E

Q,M,J,K
I,18 [h1] + SM,J,K

I,6 [h] + S
Q,J,K
I,6

+ SM,K
I,3 + S

Q,K
I,3 + SJ,K

I,4 + SK
I,00.

For the quartic terms, we have sometimes estimated one of the two factor of
the form |LI0(h1)| by √

ε and (1 + τ + r)−1 by 1. We specify that two cases
need to be considered for EM,J,K

I,16 [h]. Indeed,

EM,J,K
I,16 [h] � EM,J,K

I,16 [h1] + SM,K
I,3 + SK

I,00

+(t + r)|wL ||LM
Z (h0)||∇LJ

Z (h1)||∇̂Z K f |. (5.70)

Then, the last term is bounded bŷEJ,K
I,1 if K P < I P . Otherwise K P = I P and

MT + J T � 1, so that it can be bounded by ̂EJ,K
I,3 if MT � 1 and by ̂EJ,K

I,1 if

J T � 1.

The remainder of the proof then consists in bounding the terms written in Propo-
sition 5.10 by (5.42) and those of (5.51)–(5.68), with h1 replaced by H . For that
purpose, we will use several times Lemmas 5.12 and 5.13 . Until the end of this
section, each time that we will refer to one of the terms (5.51)–(5.68), h1 has to be
replaced by H .
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• The terms (5.24) can be controlled by those of the form (5.42).
• The terms (5.25) can be estimated, using the first inequality of Lemma 5.13, by
a linear combination of terms of the form (5.53)–(5.56).

• The terms (5.26) can be bounded, according to the second estimate of
Lemma 5.13, by terms of the form (5.51) and (5.52) and (5.57)–(5.60).

• Using the third inequality of Lemma 5.13, one can bound the terms (5.27) by a
linear combination of terms of the form (5.51) and (5.52), (5.57)–(5.61) and

Aux
Q,K
I [H ] := (t + r)|wL |

∣

∣

∣∇LQ
Z (H)

∣

∣

∣

LT

∣

∣

∣∇̂Z K ψ

∣

∣

∣ , K P < I P ,

|Q| + |K | � |I |, |K | � |I | − 1. Applying Proposition 4.2, we obtain

Aux
Q,K
I [H ] �

∑

|J |�|Q|
AuxJ,K

I [h] +
∑

|M|+|J |�|Q|
EM,J,K

I,16 [h],

so that, using the wave gauge condition (see Proposition 4.4),

AuxJ,K
I [H ] �

∑

|J |�|Q|
(t + r)|wL |

∣

∣

∣∇LQ
Z (h)

∣

∣

∣

∣

∣

∣∇̂Z K ψ

∣

∣

∣ +
∑

|M|+|J |�|Q|
EM,J,K

I,16 [h].

Use |wL | �
√|v||wL | as well as the decomposition h = h0 + h1 and the

pointwise decay estimates on h0 given by Proposition 4.1 in order to get, since
K P < I P ,

AuxJ,K
I [H ] � SK

I,00 +
∑

|J |�|Q|
EJ,K

I,9 +
∑

|M|+|J |�|Q|
EM,J,K

I,16 [h].

Finally, it remains to estimate EM,J,K
I,16 [h] through the inequality (5.70).

• Applying Lemma 5.12, one can control the terms (5.28) by a linear combination
of

(

|wL ||LM
Z (H)| + |v||LM

Z (H)|LT + |v||LM
Z (H)||LQ

Z (H)|
)

|LJ
Z (g−1)||∇̂Z K ψ |,

with |M | + |Q| + |J | + |K | � |I |, |K | � |I | − 1 and K P < I P or K P = I P

and J T + MT � 1. Recall the relation LZ (η−1) = −2δS
Zη−1, so that

• if Z J �= S|J |, then LJ
Z (g−1) = LJ

Z (H) and we obtain terms of the form
(5.64). For this, we use that |LR

Z (H)| � 1 for all |R| � N − 3 in order to
deal with the quartic terms.

• Otherwise |LJ
Z (g−1)| � |LJ

Z (H)|+ |η−1| and we still get terms of the form
(5.64) as well as, since |η−1| � 1, (5.55) and (5.56).

• According to Lemma 5.12, one can estimate (5.30) and (5.32) by terms of the
form

|v|2|LQ1
Z (H)||LQ2

Z (H)||∇LJ
Z (H)||∇v

̂Z K ψ |,
with |Q1| + |Q2| + |J | + |K | � |I |, |K | � |I | − 1 and K P � I P . Using that

|v||∇v
̂Z K ψ | � (t + r)|∇̂Z K ψ | +

∑

̂Z∈P0
|̂ẐZ K ψ |,

which comes from (3.31), we finally get quartic terms of the form (5.68) and,
using (5.69), cubic terms (5.63).
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• Finally, since for two functions φ and ψ , there holds

∇iφ · ∂vi φ = ∇∂r φ (∇vψ)r + ∇Aφ (∇vψ)A ,

∇μφ · wμ = −1

2
∇LφwL − 1

2
∇LφwL + ∇ AφwA,

we can bound, using (5.41), the terms (5.29) and (5.31) by

|̂Z M1(�v)||∇LJ
Z (H)||̂ẐZ K ψ | + |t − r ||∇LJ

Z (H)||̂Z M1(�v)||∇̂Z K ψ |
+
(

(t + r)|∇LJ
Z (H)| + (t + r)

|wL |
|v| |∇LJ

Z (H)|
)

|̂Z M1(�v)||∇̂Z K ψ |,

with |M1| + |J | + |K | � |I |, |K | � |I | − 1 and K P < I P or K P = I P and
MT

1 + J T � 1. The estimate

|̂Z M1(�v)| �
∑

|M| + |Q| � |M1|
MT � min(1, MT

1 )

|v||LM
Z H |

(

1 + |LQ
Z (H)|

)

,

which follows from Lemma 5.12, leads to terms of the form (5.63) and (5.65)–
(5.68). ��

It will be convenient to introduce the following notations:

Definition 5.16. Given one of the error terms EJ,K
I,i , i ∈ �4, 11�, listed in Proposi-

tion 5.14, we define AJ,K
I,i as the quantity which contains everything of EJ,K

I,i but

the ψ-part |∇̂Z K ψ |. We define similarly, for n ∈ �1, 3� and p ∈ �14, 17�, ̂AJ,K
I,n ,

AM,J,K
I,p , ̂AM,J,K

I,12 , ̂AM,J,K
I,13 and A

Q,M,J,K
I,18 . For instance

̂AJ,K
I,2 = |v||

(

∇LJ
Z (h1)|LT +

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

)

,

AM,J,K
I,16 = (t + r)|wL |

∣

∣

∣LM
Z (h)

∣

∣

∣

∣

∣

∣∇LJ
Z (h)

∣

∣

∣ ,

and the multi-indices I , J and K (respectively I , J , K and M) satisfy the same
conditions as those of the term EJ,K

I,2 (5.55) (respectively EM,J,K
I,16 (5.66)).

We also define in a similar way the quantities ̂BK
I,0, B

K
I,00, ̂B

J,K
I,i , BJ,K

I, j and

B
Q,J,K
I,6 from the error terms ̂SK

I,0, S
K
I,00, ̂S

J,K
I,i SJ,K

I, j and S
Q,J,K
I,6 , so that

BK
I,00 = M |v|

1 + t + r
, ̂BJ,K

I,1 = M |v|
(1 + t + r)2

|LJ
Z (h1)|,

BJ,K
I,5 = M |v||∇LJ

Z (h1)|.
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6. Commutation of the Vlasov Energy Momentum Tensor

To evaluate the commuted Einstein equations (see Proposition 4.9), we will
require the null components of the tensor field LI

Z (T [ f ]). In order to simplify the
presentation of the following results as well as their proofs, we denote by ˜T [ψ] the
energy-momentum tensor of the Vlasov field in the flat case, that is

˜T [ψ]μν :=
∫

R3
v

ψ
wμwν

w0 dv.

This field is considered in the following:

Lemma 6.1. Let ψ : [0, T [×R
3
x × R

3
v → R be a sufficiently regular function. We

have,

∀Z ∈ P, LZ (˜T [ψ]) = ˜T [̂Zψ] and LS(˜T [ψ]) = ˜T [Sψ] + 2˜T [ψ].
Proof. The result for theKilling vector fields Z ∈ P holds in amore general setting.
More precisely, if X is Killing for a metric h and T [ψ] is the energy-momentum
tensor of a Vlasov field ψ for the metric h, then LX T [ψ] = T [̂Xψ], with ̂X the
complete lift of X . It can easily be verified by choosing a local coordinate system
such that X coincides with one of the coordinate derivatives. For the scaling vector
field, S = xμ∂μ we have

LS
(

˜T [ψ])
μν

= S
(

˜T [ψ]μν

) + ∂μSλ
˜T [ψ]λν + ∂ν Sλ

˜T [ψ]μλ

=
∫

R3
v

S(ψ)
wμwν

w0 dv + 2˜T [ψ]λν.

��
We now turn on the real energy momentum tensor T [ψ].13

Proposition 6.2. Let I be a multi-index and Z I ∈ K
|I |. Then, there exist integers

C I
J,K , C I,λ

J,K ,M;μν
and C I

J,K ,L ,M;μν
such that

LI
Z (T [ψ])μν =

∑

|J |+|K |�|I |
C I

J,K
˜T

[

̂Z K (ψ)̂Z J

(

|v|√| det g−1|
g0αvα

)]

μν

+
∑

0�λ�3
|J |+|K |+|M|�|I |

C I,λ
J,K ,M;μν

∫

R3
v

wλ
̂Z M (�v)̂Z K (ψ)̂Z J

(

|v|√| det g−1|
g0αvα

)

dv

|v|

+
∑

|J |+|K |+|L|+|M|�|I |
C I

J,K ,L ,M;μν

∫

R3
v

̂Z M (�v)̂Z L (�v)̂Z K (ψ)̂Z J

(

|v|√| det g−1|
g0αvα

)

dv

|v| .

13 The types of formula can be in fact generalized to any conformal Killing fields on a
general Lorentzian manifold.
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Proof. The formula is satisfied for |I | = 0 since w0 = |v| and

vμvν

√| det g−1|
g0αvα

= 1

w0

(

wμwν + δ0μwν�v + δ0νwμ�v + δ0μδ0ν |�v|2) w0
√| det g−1|
g0αvα

.

The result for arbitrary multi-indices I follows by induction, applying several times
Lemmas 3.6 and 6.1. ��

Recall that themetric g satisfies the decomposition (4.1) and the condition (4.2).

Proposition 6.3. Let N � 6 and g be a metric such that (4.2) holds. Then, for all
Z I ∈ K

|I | such that |I | � N and V, W ∈ U , we have, if ε small enough,

∣

∣

∣LI
Z (T [ψ])V W

∣

∣

∣ �
∑

|K |�|I |

∫

R3
v

|̂Z K (ψ)| |wV wW |
|v| dv

+
∑

|J |+|K |�|I |

(

1

1 + t + r
+ |LJ

Z (h1)|
)∫

R3
v

|̂Z K (ψ)||v|dv.

(6.1)

Proof. Note first that according to Proposition 4.2 and the assumptions (4.2),

∀|J | � N , |LJ
Z (H)| �

∑

|Q|�|J |
|LQ

Z (h)|, ∀|J | � N − 3, |LJ
Z (h)| �

√
ε. (6.2)

Hence, using Lemma 5.12, we have

∀|M | � N ,

∣

∣

∣

̂Z M (�v)

∣

∣

∣ �
∑

|Q|�|M|
|LQ

Z (h)|. (6.3)

Suppose that

∀ |J | � N ,

∣

∣

∣

∣

∣

̂Z J

(

w0
√| det g−1|
g0αvα

)∣

∣

∣

∣

∣

� 1 +
∑

|Q|�|J |
|LQ

Z (h)| (6.4)

holds. Then, from Proposition 6.2 and (6.3) and (6.4), it holds that

∣

∣

∣LI
Z (T [ f ])V W

∣

∣

∣ �
∑

|K |�|I |
˜T
[

|̂Z K (ψ)|
]

V W
+

∑

|J |+|K |�|I |
|LJ

Z (h)|
∫

R3
v

|̂Z K (ψ)||v|dv

+
∑

|J |+|Q|+|K |�|I |
|LJ

Z (h)|
(

1 + |LQ
Z (h)|

)

∫

R3
v

|̂Z K (ψ)||v|dv.

The result then follows from

|LJ
Z (h)| � |LJ

Z (h0)| + |LJ
Z (h1)| �

√
ε

1 + t + r
+ |LJ

Z (h1)|,
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which holds for any |J | � N and follows from the decomposition h = h0 +h1 and
Proposition 4.1. It then only remains to prove (6.4). For this, note first that, using
v = w + �vdt , g−1 = η−1 + H , (6.3) and (6.2),

∣

∣

∣

̂Z Q
(

g0αvα

)∣

∣

∣ �
∑

|Q1|+|Q2|�|Q|
|LQ1

Z (g−1)|(|v| + |̂Z Q2(�v)|)

� |v| +
∑

|J |�|Q|
|v||LJ

Z (h)|.

Similarly, using that det(g−1) is a polynomial of degree 4 in gμν , 0 � μ, ν � 3,
we get

∣

∣

∣

̂Z K (det g−1)

∣

∣

∣ � 1 +
∑

|J |�|K |
|LJ

Z (h)|.

Using |H | � √
ε, |�v| � √

ε, v = w + �vdt , (6.3), and that the determinant is a
multilinear mapping, we obtain, for ε small enough,

|g0αvα| � |v| − (1 + |H00|)|�v| − |H0αwα| � |v| − C
√

ε|v| � 1

2
|v|,

√

| det g−1| = |det η + O(|H |)| 12 � 1

2
. (6.5)

The inequality (6.4) then follows from the Leibniz rule, |̂Z Q(w0)| � CQ |v| and
the last four estimates. ��
Remark 6.4. Note that a better estimate could be obtained for the good components
of LI

Z (T [ f ]) in Propositions 6.2 and 6.3 but the result stated in this section will be
sufficient in order to close the energy estimates.

7. Energy Estimates for the Wave Equation

The aim of this section is to prove energy inequalities for solutions to wave
equations in a curved background whose metric g is close and converges to the
Minkowski metric η. These results can be found in Section 6 of [30] and we give
here, for completeness, an slightly different proof. More precisely, the goal is to
control, for some (a, b) ∈ R

2+ and a sufficiently regular function φ, energy norms

Ea,b[φ](t) :=
∫

�t

|∇t,xφ|2ωb
a dx +

∫ t

0

∫

�τ

(

|Lφ|2 + | /∇φ|2
) ωb

a

1 + |u| dx dτ,

Ea,b[φ](t) :=
∫

�t

|∇t,xφ|2 dx + Ea,b[φ](t),

E̊a,b[φ](t) :=
∫

�t

|∇t,xφ|2
1 + t + r

ωb
a dx +

∫ t

0

∫

�τ

|Lφ|2 + | /∇φ|2
1 + τ + r

· ωb
a

1 + |u| dx dτ,
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Remark 7.1. The bulk integral

K :=
∫ t

0

∫

�τ

(

|Lφ|2 + | /∇φ|2
) ωb

a

1 + |u|dx dτ

will allow us to take advantage of the decay in t − r . Without an a priori good
estimate on it, we would merely obtain that

K � (1 + t) sup
τ∈[0,t]

∫

�τ

|∇t,xφ|2ωb
a dx � (1 + t) sup

τ∈[0,t]
Ea,b[φ](τ ).

Note however that the bulk integral provides only a control on the derivatives
tangential to the light cone, that is L and /∇, and constitutes an important tool in
order to exploit the null structure of the massless Einstein–Vlasov system. The
problem when a = 0 or b = 0 is that the energy estimate derived below (see
Proposition 7.5) will not allow us to control K. Moreover, if a > 0, the norm
∫

r�t |∇t,xφ|2ωb
a dx is strictly weaker than

∫

r�t |∇t,xφ|2 dx, which explains why

we introduce Ea,b[φ].
We introduce the energy norm E̊a,b[φ] in order to avoid a strong growth at the

top order which would force us to assume more decay on the initial data in order
to close the energy estimates.

We fix, for the remaining of this section, T > 0 as well as a function φ and a
metric g, both defined on [0, T [×R

3 and sufficiently regular. We also introduce
H := g−1 − η−1. In order to derive energy inequalities, we introduce the (1, 1)-
tensor field

T [φ]μν := gμξ ∂ξφ∂νφ − 1

2
ημ

νgθσ ∂θφ∂σ φ.

Remark 7.2. The tensor field T [φ] is the energy momentum tensor of φ, written
as a (1, 1) tensor. However, we point out that since we lower indices with respect
to the Minkowski metric, T [φ]μν �= ∂μφ∂νφ − 1

2gμνgαβ∂αφ∂βφ. The (1, 1) tensor
field T [φ] appears to be well adapted to prove energy estimates for the norms that
we are interested in.

Let us now compute the divergence of T [φ]. For this, it will be convenient to
use the notation

ωb
a := −1 + |u|

2
L(ωb

a) = (1 + |u|)∂rω
b
a =

{ a
(1+|u|)a , t � r,
b(1 + |u|)b, t < r.

Lemma 7.3. We have, for all a, b ∈ R+,

∂μT [φ]μν = ˜�gφ · ∂νφ + ∂μ(Hμξ )∂ξφ · ∂νφ − 1

2
∂ν(H θσ )∂θφ · ∂σ φ,

∂μ

(

T [φ]μ0ω
b
a

)

=
(

˜�gφ · ∂tφ + ∂μ(Hμξ )∂ξφ · ∂tφ − 1

2
∂t (H θσ )∂θφ · ∂σ φ

)

ωb
a

+
(

1

2
|Lφ|2 + 1

2
| /∇φ|2 − 2H Lξ ∂ξ φ · ∂tφ + 1

2
H θσ ∂θφ · ∂σ φ

)
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ωb
a

1 + |u| ,

∂μ

(

T [φ]μ0ω
b
a

1 + t + r

)

= ∂μ

(

T [φ]μ0ω
b
a

)

1 + t + r

+
(

1

2
|Lφ|2+ 1

2
| /∇φ|2−2H Lξ ∂ξ φ · ∂tφ + 1

2
H θσ ∂θφ · ∂σ φ

)

ωb
a

(1 + t + r)2
.

Remark 7.4. In general, Tμν[φ] is not symmetric.

Proof. The first identity follows from straightforward computations,

∂μT [φ]μν = ∂μ(gμξ )∂ξφ∂νφ + gμξ ∂μ∂ξφ∂νφ + gμξ ∂ξφ∂μ∂νφ

−1

2
∂ν(g

θσ )∂θφ∂σ φ − gθσ ∂ν∂θφ∂σ φ

= ˜�gφ · ∂νφ + ∂μ(Hμξ )∂ξφ∂νφ − 1

2
∂ν(H θσ )∂θφ∂σ φ.

For the second one, start by noticing, as L(ωb
a) = 0 and /∇(ωb

a) = 0, that

T [φ]μ0∂μωb
a = T [φ]L

0L(ωb
a) = −2

ωb
a

1 + |u|
(

gLξ ∂ξφ∂tφ − 1

2
ηL

0gθσ ∂θφ∂σ φ

)

.

Then, using the first identity and ηL
0 = 1

2 , one gets,

∂μ

(

T [φ]μ0ω
b
a

)

= ∂μ

(

T [φ]μ0
)

ωb
a + T [φ]μ0∂μωb

a

= ˜�gφ · ∂tφωb
a + ∂μ(Hμξ )∂ξφ∂tφωb

a − 1

2
∂t (H θσ )∂θφ∂σ φωb

a

−2

(

gLξ ∂ξφ∂tφ − 1

4
gθσ ∂θφ∂σ φ

)

ωb
a

1 + |u| .

It remains to write g−1 = η−1 + H and to note that

2

(

ηLξ ∂ξφ∂tφ − 1

4
ηθσ ∂θφ∂σ φ

)

= ηL L Lφ(Lφ + Lφ) − ηL L LφLφ − 1

2
| /∇φ|2

= −1

2
|Lφ|2 − 1

2
| /∇φ|2.

Finally, as L(1 + t + r) = 2 and L(1 + t + r) = /∇(1 + t + r) = 0, we have

∂μ

(

T [φ]μ0
ωb

a

1 + t + r

)

= ∂μ

(

T [φ]μ0ω
b
a

)

1 + t + r
− 2T [φ]L

0
ωb

a

(1 + t + r)2
.

Then, writing again g−1 = η−1 + H and since ηL
0 = 1

2 , we obtain

−2T [φ]L
0 = 1

2
|Lφ|2 + 1

2
| /∇φ|2 − 2H Lξ ∂ξφ · ∂tφ + 1

2
H θσ ∂θφ · ∂σ φ,

which gives the result. ��
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We are now ready to provide an alternative proof of Proposition 6.2 of [30].

Proposition 7.5. Let a, b ∈ R
∗+, CH > 0 and suppose that H satisfies

|H |
1 + |u| + |∇H | � CH

√
ε

(1 + t + r)
1
2 (1 + |u|) 1+a

2

,

|HL L |
1 + |u| + |∇H |LL + |∇H | � CH

√
ε

1 + t + r
.

Then, there exists a constant C := C0
1+a+b

min(1,a,b)
, where C0 > 0 is an absolute

constant, such that, if ε is sufficiently small 14, we have for all t ∈ [0, T [,

Ea,b[φ](t) � CEa,b[φ](0) + CCH
√

ε

∫ t

0

Ea,b[φ](τ )

1 + τ
dτ

+ C
∫ t

0

∫

�τ

∣

∣˜�gφ · ∂tφ
∣

∣ωb
a dx dτ, (7.1)

Ea,b[φ](t) � CEa,b[φ](0) + CCH
√

ε

∫ t

0

Ea,b[φ](τ )

1 + τ
dτ

+ C
∫ t

0

∫

�τ

∣

∣˜�gφ · ∂tφ
∣

∣ωb
0 dx dτ. (7.2)

Finally, it also holds that

E̊a,b[φ](t) � C E̊a,b[φ](0) + CCH
√

ε

∫ t

0

E̊a,b[φ](τ )

1 + τ
dτ

+C
∫ t

0

∫

�τ

∣

∣˜�gφ · ∂tφ
∣

∣

1 + τ + r
ωb

a dxdτ. (7.3)

Proof. In order to lighten the proof, we will not keep track of the constant CH ,
which appears merely when

√
ε does. The (Euclidean) divergence theorem yields

∫

�t

−T [φ]00ωb
a dx =

∫

�0

−T [φ]00ωb
a dx −

∫ t

0

∫

�s

∂μ

(

T [φ]μ0ω
b
a

)

dxds.

Now, note that, for t ∈ [0, T [,

−T [φ]00 = −g0ξ ∂ξφ∂tφ + 1

2
η00gθσ ∂θφ∂σ φ

= 1

2
|∇t,xφ|2 − H0ξ ∂ξφ∂tφ + 1

2
H θσ ∂θφ∂σ φ.

14 One can check that ε needs to satisfy a condition of the form C1CH
√

ε(1 + a + b) �
1
4 min(1, a, b), for a certain constant C1 > 0.
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As |H | � √
ε, we have, if ε is sufficiently small,

1

4
|∇t,xφ|2 � −T [u]00 � 3

4
|∇t,xφ|2. (7.4)

The first inequality (7.1) then follows, if ε is sufficiently small15, from the second
equality of Lemma 7.3 as well as

∫ t

0

∫

�τ

(

1

2
|Lφ|2 + 1

2
| /∇φ|2

)

ωb
a

1 + |u|dxdτ

� min(a, b)

2

∫ t

0

∫

�τ

(

|Lφ|2 + | /∇φ|2
) ωb

a

1 + |u|dxdτ, (7.5)

∫ t

0

∫

�τ

∣

∣

∣

∣

H Lξ ∂ξφ · ∂tφ − 1

4
H θσ ∂θφ · ∂σ φ

∣

∣

∣

∣

ωb
a

1 + |u|dxdτ

�
√

ε(a + b)Ea,b[φ](t) + √
ε(a + b)

∫ t

0

Ea,b[φ](τ )

1 + τ
dτ, (7.6)

∫ t

0

∫

�τ

∣

∣

∣

∣

∂μ(Hμξ )∂ξφ · ∂tφ − 1

2
∂t (H θσ )∂θφ · ∂σ φ

∣

∣

∣

∣

ωb
adxdτ

�
√

εEa,b[φ](t) + √
ε

∫ t

0

Ea,b[φ](τ )

1 + τ
dτ. (7.7)

In order to prove (7.6), start by noticing that

2H Lξ ∂ξφ · ∂tφ = H L L Lφ · (Lφ + Lφ) + H L L Lφ · (Lφ + Lφ)

+H L AeAφ · (Lφ + Lφ),

1

2
H θσ ∂θφ · ∂σ φ = 1

2
H ABeAφeBφ + 1

2
H L L |Lφ|2 + 1

2
H L L |Lφ|2 + H L L LφLφ

+H L A LφeAφ + H L A LφeAφ,

which implies
∣

∣

∣

∣

H Lξ ∂ξφ · ∂tφ − 1

4
H θσ ∂θφ · ∂σ φ

∣

∣

∣

∣

� |HL L ||∇φ|2 + |H ||∇φ|2

�
√

ε
1 + |u|
1 + t + r

|∇φ|2 + √
ε|∇φ|2.

This, together with
∫ t
0

∫

�τ
|∇φ|2 ωb

a
1+|u|dx dτ � (a + b)Ea,b[φ](t) and

∫ t

0

∫

�τ

1 + |u|
1 + τ + r

|∇φ|2 ωb
a

1 + |u| dx dτ �
∫ t

0

a + b

1 + τ

∫

�τ

|∇φ|2ωb
adx dτ

� (a + b)

∫ t

0

Ea,b[φ](s)
1 + τ

dτ

15 This condition allows us to absorb the terms of the form ̂C
√

εEa,b[φ](t) in the left-hand
side of the energy inequality.
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finally gives us (7.6). Now, remark that

|∂μ(Hμξ )∂ξφ∂tφ| � (|∇H |LL + |∇H |)|∇φ|2 + |∇H ||∇φ||∂tφ|
�

√
ε|∇φ|2

1 + t + r
+

√
ε|∇φ|2

(1 + |u|)1+a
, (7.8)

∣

∣∂t (H θσ )∂θφ · ∂σ φ
∣

∣ � |∇H |LL|Lφ|2 + |∇H ||∇φ||∇φ|

�
√

ε|∇φ|2
1 + t + r

+
√

ε|∇φ|2
(1 + |u|)1+a

. (7.9)

The estimate (7.6) is then implied by
∫ t

0

∫

�τ

√
ε

1 + t + r
|∇φ|2ωb

a dx dτ �
∫ t

0

√
ε

1 + τ

∫

�τ

|∇φ|2ωb
a dx dτ

�
√

ε

∫ t

0

Ea,b[φ](τ )

1 + τ
dτ, (7.10)

and
∫ t

0

∫

�τ

√
ε

(1 + |u|)1+a
|∇φ|2ωb

a dx dτ �
√

ε

∫ t

0

∫

�τ

|∇φ|2 ωb
a

1 + |u| dx dτ �
√

εEa,b[φ](t).

We now turn on the second inequality (7.2), which can be obtained by taking the
sum of (7.1) and16

E0,0[φ](t) � 3E0,0[φ](0) + C
√

εEa,b[φ](t) + C
√

ε

∫ t

0

E0,0[φ](τ )

1 + τ
dτ

+4
∫ t

0

∫

�τ

∣

∣˜�gφ · ∂tφ
∣

∣ dx dτ.

To prove this estimate, apply the Euclidean divergence theorem to T [φ]μ0 and
follow the proof of (7.1). The identity (7.4) does not depend of (a, b) and (7.5)–
(7.6) are trivial for (a, b) = (0, 0) as ω0

0 = 0. It then remains to bound sufficiently
well the left-hand side of (7.6) when (a, b) = (0, 0). For this note that (7.8), (7.9)
and (7.10) still hold in that context and that

∫ t

0

∫

�τ

√
ε

(1 + |u|)1+a
|∇φ|2dx dτ �

√
ε

∫ t

0

∫

�τ

|∇φ|2 ω0
a

1 + |u| dx dτ �
√

εEa,b[φ](t).

Finally, (7.3) can be proved similarly as (7.1) by applying the divergence theorem

to T [φ]μ0
ωb

a
1+t+r (see Lemma 7.3). Apart from the fact that each integral contains

an extra |1 + t + r |−1 (or |1 + τ + r |−1) weight, the only significant difference is
that we need to control

−
∫ t

0

∫

�τ

(

1

2
|Lφ|2+ 1

2
| /∇φ|2−2H Lξ ∂ξ φ · ∂tφ + 1

2
H θσ ∂θφ · ∂σ φ

)

ωb
a

(1 + τ + r)2
dxdτ.

16 One can verify that the constant C depends only on CH .
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In view of sign considerations and since |H | � √
ε, we can bound it by

∫ t

0

√
ε

1 + τ

∫

�τ

|∇φ|2 ωb
a

1 + τ + r
dxdτ �

√
ε

∫ t

0

E̊a,b[φ](τ )

1 + τ
dτ,

which concludes the proof. ��

8. L1-Energy Estimates for Vlasov Fields

Let ψ be a sufficiently regular function defined on the co-mass shell P and
recall the Vlasov L1-energy

E
a,b[ψ](t) =

∫

R3
x

∫

R3
v

|ψ(t, x, v)| |v| dv ωb
a dx

+
∫ t

0

∫

R3
x

∫

R3
v

|ψ(τ, x, v)| |wL | dv ωb
a

1 + |u| dx dτ. (8.1)

In this section, we prove the following L1-energy estimate for Vlasov fields:

Proposition 8.1. Assume the bounds

|∇H |LT �
√

ε

1 + t + r
, |∇H | �

√
ε

1 + |u| ,

|H |LT �
√

ε(1 + |u|)
1 + t + r

, |H | �
√

ε(1 + |u|) 1
2

(1 + t + r)
1
2

.

For any parameters a, b > 0 and 0 � t1 � t2 < ∞ and any sufficiently regular
function ψ : P ∩ {t1 � t � t2} → R, we have, if ε is small enough,

E
a,b[ψ](t2) � C E

a,b[ψ](t1) + C
√

ε

∫ t2

t1

E
a,b[ψ](τ )

1 + τ
dτ

+C
∫ t2

t1

∫

R3
x

∫

R3
v

∣

∣Tg(ψ)
∣

∣ dv ωb
a dx dτ,

where C and C are two constants such that C depends only on (a, b).

Proof. We denote by D the covariant differentiation in (R1+3, g). Let ψ be a
solution to Tg(ψ) = G(ψ). Then, |ψ | solves Tg(|ψ |) = F(ψ), with F(ψ) =
ψ
|ψ | G(ψ) verifying |F(ψ)| � |G(ψ)|. Then, by considering the energy momentum
tensor of |ψ | as in (3.1), a computation shows (cf Lemma 4.11 in [17]), that

gαβ Dβ (T0α[|ψ |]) =
∫

π−1(x)

v0F(ψ)dμπ−1(x) +
∫

π−1(x)

|ψ |vα∂xα (v0)dμπ−1(x)

+ 1

2

∫

π−1(x)

|ψ |vαvβ∂xi (gαβ)
vγ gγ i

vβgβ0 dμπ−1(x).
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This leads to

gαβ Dβ

(

ωb
a T0α[|ψ |]

)

=
∫

π−1(x)

v0F[ψ]dμπ−1(x) +
∫

π−1(x)

|ψ |vα∂xα (v0)dμπ−1(x)

+1

2

∫

π−1(x)

|ψ |vαvβ∂xi (gαβ)
vγ gγ i

vβ gβ0 dμπ−1(x)

+gαβ∂β(ωb
a)Tα0[|ψ |]. (8.2)

We apply the divergence theorem between the two hypersurfaces {t = t2} and
{t = t1}

−
∫

{t=t2}
T0αgα0[|ψ |]ωb

a

√| det g|dx = −
∫

{t=t1}
T0αgα0[|ψ |]ωb

a

√| det g|dx

−
∫

t1�t�t2
gαβ Dβ

(

ωb
a T0α[|ψ |]

)

√| det g| dx dt

and analyse the resulting terms. To this end, we note that it holds for ε small enough

1

2
�
√| det g| � 2, (8.3)

|�v| � |wL ||H | + |v||H |LT , (8.4)

1

2
|v| � (v0)

2

√| det g−1|
vαgα0 � 2|v|, (8.5)

where we used (5.36) for (8.4) and the assumptions on H for (8.3) and (8.5).
The boundary terms at t = ti are given by

∫

{t=ti }
T0αg0α[|ψ |]ωb

a

√| det g|dx =
∫

{t=ti }

∫

R3
v

|ψ |v0vαg0α

√| det g−1|
vαgα0 dvωb

a

√| det g|dx

=
∫

{t=ti }

∫

R3
v

|ψ |v0dvωb
adx

Thus, using (8.4) and the assumptions on H ,
∫

R3
x

∫

R3
v

|ψ(ti , x, v)| |v| dv ωb
a dx � −

∫

t=ti
T0αg0α[|ψ |]ωb

a

√| det g|dx

�
∫

R3
x

∫

R3
v

|ψ(ti , x, v)| |v| dv ωb
a dx.

Consider now the last term on the right-hand side of (8.2), for which we have

gαβ∂β(ωb
a)Tα0[|ψ |] = gαL L(ωb

a)Tα0[|ψ |] = −2
ωb

a

1 + |u|
∫

R3
v

|ψ |vαgαLv0dμπ−1(x).

Note that

vαgαL = vαηαL + vα HαL

= (vL − wL)ηL L + wLηL L + vL H L L + vL H L L + vA H AL

= −1

2
�v − 1

2
wL + wL H L L + �vH L L + vL H L L + vA H AL ,
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which we rewrite as
1

2
|wL | = vαgαL + 1

2
�v − wL H L L − �vH L L − vL H L L − vA H AL .

In view of the bounds on H , it follows that

|wL | � vαgαL + |v|√ε(1 + |u|)
1 + t + r

+ |�v|,
so that, using (8.4), we have

|wL | � vαgαL + |v|√ε(1 + |u|)
1 + t + r

.

It follows that the contribution of the last term on the right-hand side of (8.2),
∫

{t1�t�t2} gαβ∂β(ωb
a)T [|ψ |]α0√| det g| dx dt can be estimated from below as

∫

{t1�t�t2}
2ωb

a

1 + |u|
∫

R3
v

|ψ |
(

|wL | − C |v|
√

ε(1 + |u|)
1 + t + r

)

(−v0)dμπ−1(x)

√| det g|dxdt

�
∫

{t1�t�t2}
gαβ∂β(ωb

a)T [|ψ |]α0
√| det g| dx dt

for some constant C > 0, and, using (8.3)–(8.5), that
∫

{t1≤t≤t2}

∫

R3
v

|ψ ||wL | ωb
a

1 + |u|dxdt

�
∫

{t1≤t≤t2}
gαβ∂β(ωb

a)T [|ψ |]α0
√| det g|dxdt + √

ε

∫ t2

t1

Ea,b[ψ](t)
1 + τ

dt.

The left-hand side of this last inequality will provide the spacetime term of
E

a,b[ψ](t2) when we sum all the terms at the end of the analysis. Note that it
will arise with the same sign as the boundary term at t = t2.

Finally, we consider the contribution of the terms

1

2

∫

v

|ψ |vαvβ∂xi (gαβ)
vγ gγ i

vβgβ0 dμπ−1(x),

∫

v

|ψ |vα∂xα (v0)dμπ−1(x)

To this end, we decompose vαvβ∂xi (gαβ) on the null frame

vαvβ∂i gαβ = vLvL (∂i H)L L + vLvL∂i (H)L L + 2vAvL∂i (H)AL

+2vAvL∂i (H)AL + vAvB∂i (H)AB

and we use Lemma 5.12 in order to get

|∂xi (v0)| = |∂xi (v0 − w0)| � |wL ||∇H | + |v||∇H |LT + |v||H ||∇H |.
Using the assumptions on H , we derive, since |vAvB | � |v||wL | by Lemma 3.7,

|vαvβ∂xi gαβ | + |vα∂xα (v0)| �
√

ε|wL ||v|
1 + |u| +

√
ε|v|2

1 + t + r
,

where we note that the contribution of the first term on the right-hand side can
be absorbed if ε is small enough into the spacetime positive term containing |wL |
obtained above, while the contribution of the second term can be simply estimated
in terms of the energy. ��
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9. Bootstrap Assumptions

We consider the following bootstrap assumptions on certain energy norms
which have been defined in Subsection 3.7. Let N � 13, � = 2

3 N + 6 and consider
the parameters 0 < 20δ < γ < 1

20 . We have

• bootstrap assumptions for the Vlasov field: For all t ∈ [0, T [,
E

�+3
N−5[ f ](t) � C f ε(1 + t)

δ
2 , (9.1)

E
�
N−1[ f ](t) � C f ε(1 + t)

δ
2 , (9.2)

E
�
N [ f ](t) � C f ε(1 + t)

1
2+δ, (9.3)

• bootstrap assumptions for the metric perturbations: For all t ∈ [0, T [,
Eγ,1+2γ

N−1 [h1](t) � Cε(1 + t)2δ, (9.4)

E̊γ,2+2γ
N [h1](t) � Cε(1 + t)2δ, (9.5)

E2γ,1+γ

N−1,T U [h1](t) � CT Uε(1 + t)δ, (9.6)

E1+γ,1+γ

N ,T U [h1](t) � CT Uε(1 + t)2δ, (9.7)

E1+2γ,1
N ,LL [h1](t) � CLLε(1 + t)δ, (9.8)

where C f , C , CT U and CLL are constants larger than 1 which will be fixed during
the proof in Section 12. As is usual for this type of proof, the above bootstrap
assumptions are satisfied with strict inequality for t = 0 by our assumptions on the
initial data and provided that C f , C , CT U and CLL are large enough. By standard
well-posedness theory, it follows that they are satisfied on some non-empty interval
of time [0, T [, with T > 0. Theorem 2.1 then holds provided that we can improve
each of the above bootstrap assumptions.

Remark 9.1. We point out that the (1 + t)2δ growth of the bootstrap assumption
(9.4) (respectively (9.5) and (9.7)) is related to the growth of the energy norm of
the bootstrap assumption (9.2) (respectively (9.3) and (9.3)–(9.5)). Similarly, the
growth on (9.3) is related to the ones of (9.1), (9.7) and (9.8).

The growth on the bootstrap assumptions (9.1), (9.2) and (9.8) are independent
from all the other ones and could be chosen to be of the form (1 + t)η, with η

arbitrary small.

We deduce from the definition (3.36) of E�+3
N−5[ f ], the bootstrap assumption

(9.1) and the Klainerman–Sobolev inequality of Proposition 3.15 that, for any
|K | � N − 8 and for all (t, x) ∈ [0, T [×R

3,

∫

R3
v

z�+1− 2
3 K P |v|

∣

∣

∣

̂Z K f
∣

∣

∣ (t, x, v) dv �
∑

|I |�3

E
1
8 , 18

[

z�+3− 2
3 (K P+3)

̂Z I
̂Z K f

]

(t)

(1 + t + r)2(1 + |t − r |) 7
8

�
E

�+3
N−5[ f ](t)

(1 + t + r)2(1 + |t − r |) 7
8
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� ε (1 + t)
δ
2

(1 + t + r)2(1 + |t − r |) 7
8

. (9.9)

Recall that �−2 = 2
3 N +4. Hence, we obtain similarly, using this time the bootstrap

assumption (9.2), that for any |K | � N − 4 and for all (t, x) ∈ [0, T [×R
3,

∫

R3
v

z4+
2
3 (N−K P )|v|

∣

∣

∣

̂Z K f
∣

∣

∣ (t, x, v) dv � ε (1 + t)
δ
2

(1 + t + r)2(1 + |t − r |) 7
8

. (9.10)

The next result will be useful to improve the bootstrap assumptions (9.6)–(9.8).
The rough idea is that the L2-norm of |∇LJ

Z (h1)(V, W )| and |∇ (

LJ
Z h1(V, W )

) |
are equivalent.

Lemma 9.2. There exists a constant C > 0 independent of C, CT U and CLL such
that, for all t ∈ [0, T [,

∣

∣

∣

∣

∣

∣

E2γ,1+γ

N−1,T U [h1] −
∑

|J |�N−1

∑

(T,U )∈T ×U
E2γ,1+γ

[

χ

(

r

t + 1

)

LJ
Z (h1)T U

]

∣

∣

∣

∣

∣

∣

(t) � CCε,

∣

∣

∣

∣

∣

∣

E1+γ,1+γ

N ,T U [h1] −
∑

|J |�N

∑

(T,U )∈T ×U
E1+γ,1+γ

[

χ

(

r

t + 1

)

LJ
Z (h1)T U

]

∣

∣

∣

∣

∣

∣

(t) � CCε(1 + t)2δ,

∣

∣

∣

∣

∣

∣

E1+2γ,1
N ,LL [h1] −

∑

|J |�N

E1+2γ,1
[

χ

(

r

t + 1

)

LJ
Z (h1)L L

]

∣

∣

∣

∣

∣

∣

(t) � C(C + CT U )ε.

Proof. For the purpose of keeping track of certain quantities, all the constants hid-
den in � will be independent of C , CT U and CLL. This convention will only hold
during this proof. In order to lighten the notations, we introduce k J := LJ

Z (h1) for
any |J | � N . Then, observe that according to the triangle inequality, the lemma
would follow ifwe could prove the first inequality (respectively the last two inequal-
ities) with N − 1 (respectively N ) replaced by 0 and h1 by k J for any |J | � N − 1
(respectively |J | � N ).

We start by an intermediary result. Let us fix (V,W) ∈ {U , T ,L}2, 0 � a �
1 + 2γ and 0 � b � 1 + γ . Since

χ|] 12 ,+∞[ = 1, |χ | � 1 and

∣

∣

∣

∣

∇t,x

(

χ

(

r

1 + t

))∣

∣

∣

∣

�
1{ 1+t

4 �r� 1+t
2 }

1 + t + r
,

one has,
∣

∣

∣

∣

Ea,b
0,VW [k J ] − Ea,b

0,VW

[

χ

(

r

t + 1

)

k J
]∣

∣

∣

∣

(t)

�
∫

{

r� t+1
2

} |∇k J |2ωb
a dx +

∫ t

0

∫

{

r� τ+1
2

} |∇k J |2 ωb
a

1 + |u| dx dτ

+
∫

{

1+t
4 �r� 1+t

2

}

|k J |2
(1 + t + r)2

ωb
adx
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+
∫ t

0

∫

{

1+τ
4 �r� 1+τ

2

}

|k J |2
(1 + τ + r)2

ωb
a

1 + |u| dx dτ. (9.11)

Note that since the domain of integration of the four integrals on the right-hand side
of the previous inequality are located far from the light cone, we do not keep track
of V and W .17 Our goal now is to bound them sufficiently well for well chosen
values of |J | and (a, b) in order to obtain

∀|J | � N − 1,

∣

∣

∣

∣

E2γ,1+γ

0,T U [k J ] − E2γ,1+γ

0,T U

[

χ

(

r

t + 1

)

k J
] ∣

∣

∣

∣

(t) � Cε, (9.12)

∀|J | � N ,

∣

∣

∣

∣

E1+γ,1+γ

0,T U [k J ] − E1+γ,1+γ

0,T U

[

χ

(

r

t + 1

)

k J
] ∣

∣

∣

∣

(t) � Cε(1 + t)2δ,

(9.13)

∀|J | � N ,

∣

∣

∣

∣

E1+2γ,1
0,LL [k J ] − E1+2γ,1

0,LL

[

χ

(

r

t + 1

)

k J
] ∣

∣

∣

∣

(t) � Cε. (9.14)

For the purpose of controlling the four integrals on the right-hand side of (9.11),
we will use many times the inequality 1 + τ + r � 1 + |τ − r | which holds on
their domain of integration. We start by dealing with the case |J | � N − 1 and
(a, b) = (2γ, 1 + γ ):

∫

r� t+1
2

|∇k J |2ω1+γ
2γ dx � 1

(1 + t)γ

∫

r� t+1
2

|∇k J |2ω1+2γ
γ dx �

Eγ,1+2γ
N−1 [h1](t)
(1 + t)γ

,

∫ t

0

∫

r� τ+1
2

|∇k J |2 ω
1+γ
2γ

1 + |u| dx dτ �
∫ t

0

∫

r� τ+1
2

|∇k J |2ω1+γ
γ

(1 + τ)1+γ
dx dτ �

∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)1+γ
dτ.

Applying the Hardy inequality of Lemma 3.11 and making similar computations,
one gets

∫

1+t
4 �r� 1+t

2

|k J |2
(1 + t + r)2

ω
1+γ
2γ dx � 1

(1 + t)γ

∫

1+t
4 �r� 1+t

2

|k J |2
(1 + |u|)2 ω1+2γ

γ dx

� 1

(1 + t)γ

∫

�τ

|∇k J |2ω1+2γ
γ dx �

Eγ,1+2γ
N−1 [h1](t)
(1 + t)γ

and
∫ t

0

∫

1+τ
4 �r� 1+τ

2

|k J |2
(1 + τ + r)2

ω
1+γ
2γ

1 + |u| dx dτ �
∫ t

0

1

(1 + τ)1+γ

∫

r� 1+τ
2

|k J |2
(1 + |u|)2 ω1+2γ

γ dxdτ

�
∫ t

0

1

(1 + τ)1+γ

∫

�τ

|∇k J |2ω1+2γ
γ dx dτ

�
∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)1+γ
dτ � Cε,

in view of bootstrap assumptions (9.4). We now assume that |J | � N and we
introduce η ∈ {0, γ } in order to unify the treatment of the remaining two cases. We
have

17 It is only near the light cone that certain null components of the metric enjoy improved
decay estimates.
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∫

r� t+1
2

|∇k J |2ω1+γ−η
1+γ+ηdx � 1

(1 + t)η

∫

r� t+1
2

|∇k J |2
1 + t + r

ω2+2γ
γ dx

�
E̊γ,2+2γ

N [h1](t)
(1 + t)η

,

∫ t

0

∫

r� τ+1
2

|∇k J |2ω
1+γ−η
1+γ+η

1 + |u| dxdτ �
∫ t

0

1

(1 + τ)1+η

∫

r� τ+1
2

|∇k|2
1 + τ + r

ω2+2γ
γ dx dτ

�
∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)1+η
dτ.

Applying the Hardy inequality of Lemma 3.11, one obtains

∫

1+t
4 �r� 1+t

2

|k J |2
(1 + t + r)2

ω
1+γ−η
1+γ+ηdx � 1

(1 + t)η

∫

1+t
4 �r� 1+t

2

|k J |2
(1 + t + r)(1 + |u|)2 ω2+2γ

γ dx

� 1

(1 + t)η

∫

�τ

|∇k J |2
1 + t + r

ω2+2γ
γ dx �

E̊γ,2+2γ
N [h1](t)

(1 + t)η

and

∫ t

0

∫

1+τ
4 �r� 1+τ

2

|k J |2
(1 + τ + r)2

ω
1+γ−η
1+γ+η

1 + |u| dxdτ �
∫ t

0

1

(1 + τ)1+η

∫

r� 1+τ
2

|k J |2ω2+2γ
γ dx dτ

(1 + τ + r)(1 + |u|)2

�
∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)1+η
dτ.

Now recall from the bootstrap assumptions (9.4) and (9.5) that

∀t ∈ [0, T [, Eγ,1+2γ
N−1 [h1](t) � 2Cε(1 + t)2δ,

∀t ∈ [0, T [, E̊γ,2+2γ
N [h1](t) � 2Cε(1 + t)2δ.

Using also that 2δ < γ , we can deduce (9.12)–(9.14) from the last estimates. We
now turn on the second part of the proof. Note that

• ∇L L = ∇L L = 0 and ∇eA L = eA
r , so that

∣

∣|∇k J |LL − |∇(k J
L L)|∣∣ � 1

r |k J |LT
and

∣

∣|∇k J |LL − |∇(k J
L L)|∣∣ � 1

r |k J |LT .
• χ|[0, 14 [ = 0 and 5r � 1 + t + r if 4r � 1 + t .

Hence,

∣

∣

∣

∣

E1+2γ,1
0,LL

[

χ

(

r

t + 1

)

k J
]

− E1+2γ,1
0

[

χ

(

r

t + 1

)

k J
L L

]∣

∣

∣

∣

(t)

�
∫

{

r� t+1
4

}

|k J |2
(1 + t + r)2

ω1
1+2γ dx +

∫ t

0

∫

{

r� τ+1
4

}

|k J |2LT
(1 + τ + r)2

ω1
1+2γ

1 + |u| dx dτ.

(9.15)
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According to the Hardy type inequality of Lemma 3.11 and the bootstrap assump-
tions (9.5) and (9.7), we have, since 2δ < γ ,18

∫

{

r� t+1
4

}

|k J |2
(1 + t + r)2

ω1
1+2γ dx � 1

(1 + t)γ

∫

r� t+1
4

|k J |2ω2+2γ
γ

(1 + t + r)(1 + |u|)2 dx

� 1

(1 + t)γ

∫

r� t+1
4

|∇k J |2
(1 + t + r)

ω2+2γ
γ dx

�
E̊γ,2+2γ

N [h1](t)
(1 + t)γ

� Cε(1 + t)2δ−γ � Cε,

∫ t

0

∫

{

r� t+1
4

}

|k J |2LT
(1 + τ + r)2

ω1
1+2γ

1 + |u| dx dτ �
∫ t

0

∫

�τ

|∇k J |2LT
(1 + τ + r)2

ω2
2γ dx dτ

�
∫ t

0

1

(1 + τ)1+γ

∫

�τ

|∇k J |2T Uω
1+γ
1+γ dx dτ

�
∫ t

0

E1+γ,1+γ

N ,T U [h1](τ )

(1 + τ)1+γ
dτ � CT U ε.

The third inequality of the Lemma then ensues from (9.14), (9.15) and these last
two estimates.

By similar considerations, one can obtain, for |J | � N − 1,∣

∣

∣

∣

∣

∣

E2γ,1+γ

0,T U

[

χ

(

r

t + 1

)

k J
]

−
∑

(T,U )∈T ×U
E2γ,1+γ
0

[

χ

(

r

t + 1

)

k J
T U

]

∣

∣

∣

∣

∣

∣

(t)

�
∫

{

r� t+1
4

}

|k J |2
(1 + t + r)2

ω
1+γ
2γ dx +

∫ t

0

∫

{

r� τ+1
4

}

|k J |2
(1 + τ + r)2

ω
1+γ
2γ

1 + |u| dx dτ.

(9.16)

and, for |J | � N ,
∣

∣

∣

∣

∣

∣

E1+γ,1+γ

0,T U

[

χ

(

r

t + 1

)

k J
]

−
∑

(T,U )∈T ×U
E1+γ,1+γ
0

[

χ

(

r

t + 1

)

k J
T U

]

∣

∣

∣

∣

∣

∣

(t)

�
∫

{

r� t+1
4

}

|k J |2
(1 + t + r)2

ω
1+γ
1+γ dx +

∫ t

0

∫

{

r� τ+1
4

}

|k J |2
(1 + τ + r)2

ω
1+γ
1+γ

1 + |u| dx dτ.

(9.17)

All these integrals will be estimated using the Hardy inequality of Lemma 3.11.
For those of (9.16), we have

∫

{

r� t+1
4

}

|k J |2
(1 + t + r)2

ω
1+γ
2γ dx �

∫

r� t+1
4

|k J |2
(1 + t)γ

ω
1+2γ
γ

(1 + |u|)2 dx

�
Eγ,1+2γ

N−1 [h1](t)
(1 + t)γ

18 Note that we could avoid the use of the bootstrap assumption (9.7) by taking advantage of
the wave gauge condition. The consequence is that the right-hand side of the third inequality
of Lemma 9.2 could be independent of CT U .
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∫ t

0

∫

{

r� t+1
4

}

|k J |2
(1 + τ + r)2

ω
1+γ
2γ

1 + |u| dx dτ �
∫ t

0

∫

�τ

|∇k J |2
(1 + τ + r)2

ω
2+γ
2γ−1 dx dτ

�
∫ t

0

∫

�τ

|∇k J |2ω1+2γ
γ

(1 + τ)1+γ
dxdτ

�
∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)1+γ
dτ.

Using the bootstrap assumptions (9.4) and 2δ < γ , we have

Eγ,1+2γ
N−1 [h1](t)
(1 + t)γ

+
∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)1+γ
dτ � Cε.

The first inequality of the Lemma follows from these last three estimates, (9.12)
and (9.16). For the integrals on the right-hand side of (9.17), one has, according to
the bootstrap assumption (9.5),

∫

{

r� t+1
4

}

|k J |2
(1 + t + r)2

ω
1+γ
1+γ dx �

∫

r� t+1
4

|k J |2ω2+2γ
γ

(1 + t + r)(1 + |u|)2 dx

� E̊γ,2+2γ
N [h1](t) � Cε(1 + t)2δ,

∫ t

0

∫

{

r� t+1
4

}

|k J |2
(1 + τ + r)2

ω
1+γ
1+γ

1 + |u| dx dτ �
∫ t

0

∫

�τ

|∇k J |2
(1 + τ + r)2

ω2+γ
γ dx dτ

�
∫ t

0

E̊γ,2+2γ
N [h1](τ )

1 + τ
dτ � Cε(1 + t)2δ.

The second inequality of the Lemma then ensues from the last two estimates, (9.13)
and (9.17). ��

10. Pointwise Decay Estimates on the Metric

We prove here pointwise decay estimates on h1 and its (lower order) derivatives
using the bootstrap assumptions (9.4) and (9.6). The Schwarzschild part h0 can
always be estimated pointwise using its explicit form. This will then allow us to
obtain asymptotic properties of h = h1 + h0.

Proposition 10.1. We have, for all (t, x) ∈ [0, T [,
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ (t, x) �
√

ε

{

(1 + t + r)δ−1(1 + |t − r |)− 1
2 , t � r

(1 + t + r)δ−1(1 + |t − r |)−1−γ , t < r
, |J | � N − 3,

(10.1)
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∣

∣

∣LJ
Z (h1)

∣

∣

∣ (t, x) �
√

ε

{

(1 + t + r)δ−1(1 + |t − r |) 1
2 , t � r

(1 + t + r)δ−1(1 + |t − r |)−γ , t < r
, |J | � N − 3,

(10.2)
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ (t, x) �
√

ε

{

(1 + t + r)δ−2(1 + |t − r |) 1
2 , t � r

(1 + t + r)δ−2(1 + |t − r |)−γ , t < r
, |J | � N − 4.

(10.3)

Proof. The first inequality directly follows from the bootstrap assumption (9.4)
and the Klainerman–Sobolev inequality of Proposition 3.14, applied with a = 0
and b = 1 + 2γ . Let |J | � N − 3, θ ∈ S

2, (μ, ν) ∈ �0, 3� and

ϕμν : (u, u) �→ LJ
Z (h1)μν

(

u + u

2
,

u − u

2
θ

)

,

so that LJ
Z (h1)(t, rθ) = ϕ(t + r, t − r). We start by considering the exterior of the

light cone, that is we fix (t, r) ∈ [0, T [×R
∗+ such that r � t . Hence,

|LJ
Z (h1)(t, rθ)| �

3
∑

μ=0

3
∑

ν=0

∣

∣ϕμν(t + r, t − r)
∣

∣

=
3
∑

μ=0

3
∑

ν=0

∣

∣

∣

∣

∫ t−r

u=−t−r
∂uϕμν(t + r, u)du + ϕμν(t + r,−t − r)

∣

∣

∣

∣

�
∫ t−r

u=−t−r

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

(

t + r + u

2
,

t + r − u

2
θ

)

du

+
∣

∣

∣LJ
Z (h1)

∣

∣

∣ (0, (t + r)θ)

�
√

ε

(1 + t + r)1−δ

∫ t−r

u=−t−r

du

(1 + |u|)1+γ
+

√
ε

(1 + t + r)1+γ

�
√

ε

(1 + t + r)1−δ(1 + |r − t |)γ .

We can now treat the remaining region and we then fix (t, r) ∈ [0, T [×R
∗+ such

that r � t . We have

∣

∣

∣LJ
Z (h1)(t, rθ)

∣

∣

∣ =
3
∑

μ=0

3
∑

ν=0

∣

∣

∣

∣

∫ t−r

u=0
∂uϕμν(t + r, u) du + ϕμν(t + r, 0)

∣

∣

∣

∣

�
∫ t−r

u=0

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

(

t + r + u

2
,

t + r − u

2
θ

)

du +
∣

∣

∣LJ
Z (h1)

∣

∣

∣

(

t + r

2
,

t + r

2
θ

)

�
√

ε

(1 + t + r)1−δ

∫ t−r

u=0

du

(1 + |u|) 1
2

+
√

ε

(1 + t + r)1−δ
�

√
ε

(1 + |t − r |) 1
2

(1 + t + r)1−δ
.

For the third estimate, we use the inequality (3.11) of Lemma 3.3 and the estimate
(10.2). ��
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In order to obtain the decay rate ofLJ
Z (h), for |J | � N −3, it remains to study h0

and its derivatives. The following result is a direct consequence of Proposition 4.1
and M � √

ε:

Proposition 10.2. For all Z J ∈ K
|I |, there exists CJ > 0 such that for all (t, x) ∈

R+ × R
3,

∣

∣

∣LJ
Z (h0)

∣

∣

∣ (t, x) � CJ
√

ε

1 + t + r
,

∣

∣

∣∇LJ
Z (h0)

∣

∣

∣ (t, x) � CJ
√

ε

(1 + t + r)2
. (10.4)

Remark 10.3. In the interior of the light cone, the behaviour of LJ
Z (h) is clearly

given by LJ
Z (h1). In the exterior region, note that LJ

Z (h0) has a weaker decay rate
than LJ

Z (h1) when r > 2t but a stronger one when t ∼ r .

We can improve the decay estimates satisfied by certain null components of
h1 through the wave gauge condition. According to Proposition 4.4 as well as
the pointwise decay estimates given by Propositions 10.1 and 10.2 (recall that
h = h0 + h1), we obtain the following results.

Proposition 10.4. For any multi-index |J | � N, there holds for all (t, x) ∈
[0, T [×R

3,
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2

LT
�
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2

T U
+ ε

(1 + t + r)4
1r� 1+t

2
+ ε

(1 + t + r)6

+ ε(1 + |u|)
(1 + t + r)2−2δ

∑

|K |�|J |

(

∣

∣

∣∇LK
Z (h1)

∣

∣

∣

2 +
∣

∣LK
Z (h1)

∣

∣

2

(1 + |u|)2
)

.

(10.5)

Remark 10.5. This inequality will be used several times in this article. Apart from
its application during the proof of Propositions 12.8 and 13.4 below, we will always

bound the term
∣

∣∇LJ
Z h1

∣

∣

2
T U by

∣

∣∇LJ
Z h1

∣

∣

2
.

Proposition 10.6. The following improved decay estimates hold. On the T U com-
ponent, we have for all (t, x) ∈ [0, T [×R

3,
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

T U
�

√
ε

{

(1 + t + r)
δ
2 −1(1 + |t − r |)− 1

2 +γ , t � r

(1 + t + r)
δ
2 −1(1 + |t − r |)−1− γ

2 , t < r
, |J | � N − 3.

(10.6)

On the LT and LL components, we have for all (t, x) ∈ [0, T [×R
3,

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT
�

√
ε

{

(1 + t + r)2δ−2(1 + |t − r |) 1
2 −δ, t � r

(1 + t + r)2δ−2(1 + |t − r |)−γ−δ, t < r
, |J | � N − 4,

(10.7)
∣

∣

∣LJ
Z (h1)

∣

∣

∣

LT
�

√
ε

{

(1 + t + r)−1−γ+δ(1 + |t − r |) 1
2 +γ , t � r

(1 + t + r)−1−γ+δ, t < r
, |J | � N − 4,

(10.8)
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL
�

√
ε

{

(1 + t + r)−2−γ+δ(1 + |t − r |) 1
2 +γ , t � r

(1 + t + r)−2−γ+δ, t < r
, |J | � N − 5.

(10.9)
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Proof. We start by the T U-components. According to Proposition 10.1, the esti-
mate (10.6) holds in the region r � t+1

2 . If |x | � t+1
2 , the Klainerman–Sobolev

inequality of Proposition 3.14 gives, for |J | � N − 3, since χ|] 12 ,+∞] = 1,

(1 + t + r)ω
1+ γ

2

− 1
2+γ

|∇LJ
Z (h1)|T U

�
∑

0 � μ � 3
(T, U ) ∈ T × U

∑

|I |�2

∥

∥

∥

∥

Z I
(

χ

(

r

1 + t

)

∇μLJ
Z (h1)T U

)

ω
1+γ
2

γ

∥

∥

∥

∥

L2(�t )

.

It then remains to bound the right-hand side of the previous inequality. Let us fix
μ ∈ �0, 3� and (T, U ) ∈ T × U . Using Lemma 3.13 we get, for any |I | � 2,

∥

∥

∥

∥

Z I
(

χ

(

r

1 + t

)

∇μLJ
Z (h1)T U

)

ω
1+γ
2

γ

∥

∥

∥

∥

L2(�t )

�
∑

|Q|�2

∥

∥

∥

∥

Z Q
(

∇μLJ
Z (h1)T U

)

ω
1+γ
2

γ

∥

∥

∥

∥

L2
({

r� t+1
4

})
.

We denote by [Z1Z2, X ] the nested commutator [Z1, [Z2, X ]] where Z1, Z2 and
X are arbitrary vector fields. We can bound the right-hand side of the previous
inequality by

D :=
∑

|K |+|L1|+|L2|�2

∥

∥

∥

∥

LK
Z ∇μLI

Z (h1)([Z L1 , T ], [Z L2 , U ])ω
1+γ
2

γ

∥

∥

∥

∥

L2
({

r� t+1
4

})
.

Note now that

• either [LZ ,∇μ] = 0 or there exists ν ∈ �0, 3� such that [LZ ,∇μ] = ±∇ν .
• Following the proof of (3.17) and using

∀Z ∈ K, |Z(r)| + |Z(t + r)| � 1 + t + r, |Z(t − r)| � 1 + |t − r |,
one can prove that for all r � 1+t

4 and |L| � 2,

[Z L , T ] =
∑

W∈T
bW W +

∑

X∈U
dX X, [Z L , U ] =

∑

Y∈U
bY Y,

where |dX | � 1+|t−r |
1+t+r and |bW | + |bY | � 1 since 1 + t + r � r in this region.

We then deduce, since 1+|t−r |
1+t+r � ω

γ
2
− γ

2
(1 + t)−

γ
2 , that

D �
∑

|K |�|J |+2

∥

∥

∥

∥

∣

∣

∣∇LK
Z (h1)

∣

∣

∣

T U
ω

1+γ
2

γ

∥

∥

∥

∥

L2
({

r� t+1
4

})

+
∥

∥

∥

∥

∣

∣

∣∇LK
Z (h1)

∣

∣

∣

1 + |t − r |
1 + t + r

ω
1+γ
2

γ

∥

∥

∥

∥

L2
({

r� t+1
4

})

�
∣

∣

∣E2γ,1+γ

N−1,T U [h1](t)
∣

∣

∣

1
2 +

∣

∣

∣Eγ,1+2γ
N−1 [h1](t)

∣

∣

∣

1
2

(1 + t)
γ
2

.
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The pointwise decay estimate (10.6) then follows from the bootstrap assumptions
(9.4) and (9.6) as well as 2δ < γ .

Now consider the LT components and assume that |J | � N − 4. The first esti-
mate canbe obtained from thewavegauge condition (10.5) and the three inequalities
of Proposition 10.1. For the second one, fix θ ∈ S

2 and consider, for T ∈ T , the
function

ϕ : (u, u) �→ LJ
Z (h1)LT

(

u + u

2
,

u − u

2
θ

)

,

so that LJ
Z (h1)LT (t, rθ) = ϕ(t + r, t − r). Since ∇L L = ∇L T = 0, we have

2∂uϕ(u, u) = L

(

LJ
Z (h1)LT

(

u + u

2
,

u − u

2
θ

))

=
(

∇LLJ
Z h1

)

LT

(

u + u

2
,

u − u

2
θ

)

.

Let now (t, r) ∈ [0, T [×R
∗+ such that r � t . Using the estimate (10.7) and the

good decay properties of the initial data, we obtain

|LJ
Z (h1)LT (t, rθ)| = |ϕ(t + r, t − r)| =

∣

∣

∣

∣

∫ t−r

u=−t−r
∂uϕ(t + r, u)du + ϕ(t + r,−t − r)

∣

∣

∣

∣

�
√

ε

(1 + t + r)2−2δ

∫ t−r

u=−t−r

du

(1 + |u|)γ+δ
+
∣

∣

∣LI
Z (h1)LT

∣

∣

∣ (0, (t + r)θ)

�
√

ε
(1 + | − t − r |)1−γ−δ

(1 + t + r)2−2δ +
√

ε

(1 + t + r)1+γ
�

√
ε

(1 + t + r)1+γ−δ
.

On the other hand, if r � t , we have
∣

∣

∣LJ
Z (h1)LT (t, rθ)

∣

∣

∣ = |ϕ(t + r, t − r)| =
∣

∣

∣

∣

∫ t−r

u=0
∂uϕ(t + r, u)du + ϕ(t + r, 0)

∣

∣

∣

∣

�
√

ε

(1 + t + r)2−2δ

∫ t−r

u=0
(1 + |u|) 1

2 −δdu +
∣

∣

∣LI
Z (h1)LT

∣

∣

∣

(

t + r

2
,

t + r

2
θ

)

�
√

ε
(1 + |t − r |) 3

2 −δ

(1 + t + r)2−2δ +
√

ε

(1 + t + r)1+γ−δ
�

√
ε

(1 + |t − r |) 1
2 +γ

(1 + t + r)1+γ−δ
.

Finally, (10.9) directly ensues from the estimate (3.14) of Lemma 3.3 and (10.8) if
r � 1+t

2 and from Proposition 10.1 otherwise. ��
Remark 10.7. Note that using Proposition 4.2 as well as the pointwise decay esti-
mates given by Propositions 10.1, 10.2 and 10.6 , one can check that

|H |
1 + |u| + |∇H | � CC

1
2
√

ε

(1 + t + r)
1
2 (1 + |u|) 1+γ

2

,

|H |LT
1 + |u| + |∇H |LT + |∇H | � CC

1
2
√

ε

1 + t + r
,

so that we will be able to apply the energy estimates of Propositions 7.5 and 8.1 for
well-chosen parameters a and b.

The estimate |∇ H |LL � √
ε

1+|t−r |
(1+t+r)2

, which can be obtained in a similar way,
will also be useful.
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When h1 is differentiated by at least one translation, we can improve the pointwise
decay estimates given by Propositions 10.1 and 10.6 . Note that certain of the
following decay rates could be improved, in particular in the exterior of the light
cone.

Proposition 10.8. Let J be a multi-index satisfying |J | � N − 5 and J T � 1, that
is Z J contains at least one translation. Then, for all (t, x) ∈ [0, T [×R

3,
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ (t, x) �
√

ε

(1 + t + r)1−δ(1 + |t − r |) 3
2

,

∣

∣

∣LJ
Z (h1)

∣

∣

∣ (t, x) �
√

ε

(1 + t + r)1−δ(1 + |t − r |) 1
2

,

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ (t, x) �
√

ε

(1 + t + r)2−δ(1 + |t − r |) 1
2

,

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT
(t, x) �

√
ε

(1 + t + r)2−2δ(1 + |t − r |) 1
2

,

∣

∣

∣LJ
Z (h1)

∣

∣

∣

LT
(t, x) �

√
ε

(1 + |t − r |) 1
2

(1 + t + r)2−2δ ,

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL
(t, x) �

√
ε

(1 + |t − r |) 1
2

(1 + t + r)3−2δ .

Proof. By assumption, there exists μ ∈ �0, 3� such that the translation ∂μ is one
of the vector fields which compose Z J . Since [Z , ∂μ] ∈ {0} ∪ {±∂ν/ν ∈ �0, 3�}
for all Z ∈ K, there exists integers C J,ν

Q such that

LJ
Z (h1) =

∑

0�ν�3

∑

|Q|�|J |−1

C J,ν
Q L∂νL

Q
Z (h1).

We can then assume, without loss of generality, that LJ
Z (h1) = L∂μL

Q
Z (h1) with

|Q| � N −6 andμ ∈ �0, 3�. Using (3.11) and that [Z , ∂μ] ∈ {0}∪{±∂ν/ν ∈ �0, 3�}
for all Z ∈ K, we obtain

(1 + |t − r |)
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ + (1 + t + r)

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ �
∑

|J1|�1

∣

∣

∣LJ1
Z L∂μLQ

Z (h1)

∣

∣

∣

�
∑

0�ν�3

∑

|J2|�N−5

∣

∣

∣L∂νLJ2
Z (h1)

∣

∣

∣ .

Similarly, using (3.13) and (3.14), we get

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT
�

∣

∣

∣L∂μL
Q
Z (h1)

∣

∣

∣

1 + t + r
+

∑

0�ν�3

∑

|J1|�1

∣

∣

∣L∂νL
J1
Z LQ

Z (h1)

∣

∣

∣

LT
1 + |t − r | ,

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL
�

∑

|J1|�1

∣

∣

∣LJ1
Z L∂μL

Q
Z (h1)

∣

∣

∣

LT
1 + t + r

�
∑

0�ν�3

∑

|J2|�N−5

∣

∣

∣L∂νL
J2
Z (h1)

∣

∣

∣

LT
1 + t + r

.
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All the estimates then ensue from L∂ν = ∇∂ν and Propositions 10.1 and (10.7). ��

11. Bounds on the Source Terms of the Einstein Equations

The aimof this subsection is to bound the source terms of the commutedEinstein
equations which are given in Section 4.3. We will control them sufficiently well
to close the energy estimates but more decay in t − r could be proved for certain
terms. We start by the semi-linear terms

LI
Z (F(h)(∇h,∇h))μν = LI

Z (P(∇h,∇h))μν + LI
Z (Q(∇h,∇h))μν

+LI
Z (G(h)(∇h,∇h))μν .

Proposition 11.1. Let I be a multi-index with |I | � N. Then
∣

∣

∣LI
Z F(h)(∇h,∇h)

∣

∣

∣ � ε

(1 + t + r)4
+

√
ε

(1 + t + r)1− δ
2 (1 + |u|)γ

∑

|J |�|I |
|∇LJ

Z h1|T U

+
√

ε

(1 + t + r)1−δ
√
1 + |u|

∑

|J |�|I |

∣

∣

∣∇LJ
Z h1

∣

∣

∣

+
√

ε(1 + |u|) 1
2

(1 + t + r)2−2δ

∑

|J |�|I |

(

∣

∣

∣∇LJ
Z h1

∣

∣

∣ +
∣

∣LJ
Z h1

∣

∣

1 + |u|

)

,

∣

∣

∣LI
Z F(h)(∇h,∇h)

∣

∣

∣

T U
� ε

(1 + t + r)4
+

√
ε(1 + |u|) 1

2

(1 + t + r)2−2δ

∑

|J |�|I |

(

∣

∣

∣∇LJ
Z h1

∣

∣

∣ +
∣

∣LJ
Z h1

∣

∣

1 + |u|

)

+
√

ε

(1 + t + r)1−δ
√
1 + |u|

∑

|J |�|I |

∣

∣

∣∇LJ
Z h1

∣

∣

∣ ,

∣

∣

∣LI
Z F(h)(∇h,∇h)

∣

∣

∣

LL
� ε

(1 + t + r)4
+

√
ε(1 + |u|) 1

2

(1 + t + r)2−2δ

∑

|J |�|I |

(

∣

∣

∣∇LJ
Z h1

∣

∣

∣ +
∣

∣LJ
Z h1

∣

∣

1 + |u|

)

+
∑

|J |�|I |

√
ε

(1 + t + r)1−δ
√
1 + |u|

∣

∣

∣∇LJ
Z h1

∣

∣

∣

T U
.

Proof. Let |I | � N and recall from Lemma 4.8 that there exist integers ̂C I
J,K such

that

LI
Z (F(h)(∇h,∇h))μν =

∑

|J |+|K |�|I |
̂C I

J,K P(∇μLJ
Z h,∇νLK

Z h)

+
∑

|J |+|K |�|I |
̂C I

J,K Qμν(∇LJ
Z h,∇LK

Z h)

+ LI
Z (G(h)(∇h,∇h))μν .

Moreover, according to Proposition 4.9 and the split h = h0 + h1,
∣

∣

∣LI
Z (G(h)(∇h,∇h))

∣

∣

∣ �
∑

j,k,q∈{0,1}

∑

|J |+|K |+|Q|�|I |

∣

∣

∣LJ
Z h j

∣

∣

∣

∣

∣

∣∇LK
Z hk

∣

∣

∣

∣

∣

∣∇LQ
Z hq

∣

∣

∣ .
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We start by dealing with the cubic terms and we define, for j, k, q ∈ {0, 1} and
multi-indices J, K , Q such that |J | + |K | + |Q| � |I |,

I
j,k,q
J,K ,Q :=

∣

∣

∣LJ
Z h j

∣

∣

∣

∣

∣

∣∇LK
Z hk

∣

∣

∣

∣

∣

∣∇LQ
Z hq

∣

∣

∣ .

Using the pointwise decay estimates given by Proposition 10.2 on h0 and its deriva-
tives, we have

I0,0,0J,K ,Q + I0,0,1J,K ,Q + I0,1,0J,K ,Q + I1,0,0J,K ,Q

� ε
3
2

(1 + t + r)5
+ ε

(1 + t + r)3

∑

|M|�|I |

(

∣

∣

∣∇LM
Z h1

∣

∣

∣ +
∣

∣LM
Z h1

∣

∣

1 + t + r

)

. (11.1)

Finally, using also the pointwise decay estimates given by Proposition 10.1 on h1

and its derivatives (at most one of the multi-indices J , K and Q has a length larger
than N − 3), it follows that

I0,1,1J,K ,Q + I1,0,1J,K ,Q + I1,1,0J,K ,Q � ε

(1 + t + r)2−δ

∑

|M|�|I |

(

∣

∣

∣∇LM
Z h1

∣

∣

∣ +
∣

∣LM
Z h1

∣

∣

1 + t + r

)

,

(11.2)

I1,1,1J,K ,Q � ε

(1 + t + r)2−2δ

∑

|M|�|I |

(

∣

∣

∣∇LM
Z h1

∣

∣

∣ +
∣

∣LM
Z h1

∣

∣

1 + |u|

)

.

(11.3)

The inequalities (11.1)–(11.3) provide a sufficiently good bound on the cubic terms
for the purpose of proving the three estimates of Proposition 11.1. Consider now
the semi-linear terms Q and P . Start by decomposing h into h0 + h1 so that, using
the pointwise decay estimates on h0 given in Proposition 10.2, we get for any null
components (V, W ) ∈ U2,

∣

∣

∣QV W

(

∇LJ
Z h,∇LK

Z h
)∣

∣

∣ � ε

(1 + t + r)4
+

√
ε

(1 + t + r)2

(∣

∣

∣∇LJ
Z h1

∣

∣

∣ +
∣

∣

∣∇LK
Z h1

∣

∣

∣

)

+
∣

∣

∣QV W

(

∇LJ
Z h1,∇LK

Z h1
)∣

∣

∣ ,

∣

∣

∣P
(

∇VLJ
Z h,∇WLK

Z h
)∣

∣

∣ � ε

(1 + t + r)4
+

√
ε

(1 + t + r)2

(∣

∣

∣∇LJ
Z h1

∣

∣

∣ +
∣

∣

∣∇LK
Z h1

∣

∣

∣

)

+
∣

∣

∣P
(

∇VLJ
Z h1,∇WLK

Z h1
)∣

∣

∣ .

It then remains to study the last term of the previous two inequalities for (V, W ) ∈
UU (respectively (V, W ) ∈ T U and (V, W ) = (L , L)) in order to derive the
first (respectively the second and the third) estimate of Proposition 11.1. For the
quadratic terms P , recall from Lemma 3.1 that, if V = W = L , the null condition
is not satisfied. More precisely,
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∣

∣

∣P
(

∇LJ
Z h1,∇LK

Z h1
)∣

∣

∣ �
∣

∣

∣∇LJ
Z h1

∣

∣

∣

T U

∣

∣

∣∇LK
Z h1

∣

∣

∣

T U

+
∣

∣

∣∇LJ
Z h1

∣

∣

∣

LL

∣

∣

∣∇LK
Z h1

∣

∣

∣ +
∣

∣

∣∇LJ
Z h1

∣

∣

∣

∣

∣

∣∇LK
Z h1

∣

∣

∣

LL
.

Hence, using the pointwise decay estimates given by Propositions 10.1, 10.2 and
10.6 aswell as thewave gauge condition (4.12),wefind that for any null components
(V, W ) ∈ U2,

∣

∣

∣P
(

∇V LJ
Z h1,∇WLK

Z h1
)∣

∣

∣ �
√

ε

(1 + t + r)1− δ
2 (1 + |u|) 1

2 −γ

∑

|M|�|I |

∣

∣

∣∇LM
Z h1

∣

∣

∣

T U

+
√

ε

(1 + t + r)1−δ
√
1 + |u|

∑

|M|�|I |

∣

∣

∣∇LM
Z h1

∣

∣

∣

+
√

ε(1 + |u|) 1
2 −δ

(1 + t + r)2−2δ

∑

|M|�|I |

∣

∣

∣∇LM
Z h1

∣

∣

∣ +
∑

|K |+|Q|+|M|�|I |
k,q∈{0,1}

I
q,k,1
Q,K ,M .

Since (1 + |u|)γ � (1 + |u|) 1
2−γ and according to (11.1)–(11.3), this bound is

sufficient to prove the first estimate of the proposition. Now we deal with the T U
components of P and the UU components of Q together. According to Lemma 3.1
and the pointwise decay estimates of Proposition 10.1, we have for any (T, U ) ∈
T × U and (V, W ) ∈ U2,
∣

∣

∣P
(

∇TLJ
Z h,∇ULK

Z h
)∣

∣

∣+
∣

∣

∣QV W

(

∇LJ
Z h,∇LK

Z h
)∣

∣

∣

�
∣

∣

∣∇LJ
Z h1

∣

∣

∣

∣

∣

∣∇LK
Z h1

∣

∣

∣ +
∣

∣

∣∇LJ
Z h1

∣

∣

∣

∣

∣

∣∇LK
Z h1

∣

∣

∣

�
∑

|M|�|I |

√
ε
√
1 + |u|

(1 + t + r)2−δ

∣

∣

∣∇LM
Z h1

∣

∣

∣ +
√

ε
∣

∣∇LM
Z h1

∣

∣

(1 + t + r)1−δ
√
1 + |u| .

Note that this inequality needs to be improved to obtain the third estimate of the
Proposition, that is for the case T = U = V = W = L , but is sufficient for the first
two estimates. Finally, applying again Proposition 10.1 and Lemma 3.1, we obtain

|P(∇LLJ
Z h1,∇LLJ

Z h1)| + |QL L (∇LJ
Z h1,∇LK

Z h1)|
� |∇LJ

Z (h1)||∇LK
Z h1|T U + |∇LJ

Z h1|T U |∇LK
Z h1|

�
√

ε
√
1 + |u|

(1 + t + r)2−δ

∑

|M|�|I |

∣

∣

∣∇LM
Z h1

∣

∣

∣ +
√

ε

(1 + t + r)1−δ
√
1 + |u|

∑

|M|�|I |
|∇LM

Z h1|T U .

This implies the last estimate of the Proposition and concludes the proof. ��
Next we consider the Schwarzschild part h0.

Proposition 11.2. Let I be a multi-index such that |I | � N and (μ, ν) ∈ �0, 3�2.
Then,
∣

∣

∣LI
Z

(

˜�gh0)

μν

∣

∣

∣ �
√

ε

(1 + t + r)3
1{r�t} +

√
ε

(1 + t + r)4
1{r�t} +

√
ε

(1 + t + r)3

∑

|J |�I

∣

∣

∣LJ
Z h1

∣

∣

∣ .
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Proof. Recall from Subsection 4.3 the definition of the tensor field ˜�gh0 and start
by decomposing ˜�g as ˜�η + Hσθ∇σ ∇θ . Then, as �η

1
r = 0, we have, for all

0 � μ, ν � 3,

˜�g(h0)μν = �η

(

χ

(

r

t + 1

))

M

r
δμν − ∂r

(

χ

(

r

t + 1

))

M

r2
δμν + Hσθ ∂σ∂θ

(

χ

(

r

t + 1

)

M

r

)

δμν .

According to (3.9), it holds that
∑

0�μ,ν�3

∣

∣

∣

∣

LI
Z

(

˜�gh0
)

μν

∣

∣

∣

∣

�
∑

0�λ,ξ�3

∑

|Q|�|I |

∣

∣

∣Z I
(

˜�gh0
λξ

)∣

∣

∣ .

Fix then |Q| � |I |. One can easily check, by similar calculations as those made in
the proof of Proposition 4.1 and in view of the support of χ ′, that

∑

|J |+|K |�|Q|

∣

∣

∣

∣

Z J
(

�η

(

χ

(

r

t + 1

)))

Z K
(

M

r

)∣

∣

∣

∣

+
∣

∣

∣

∣

Z J
(

∂r

(

χ

(

r

t + 1

)))

Z K
(

M

r2

)∣

∣

∣

∣

�
√

ε

(1 + t)3
1{

r� t+1
2

}.

Similarly, since 1 + t + r � r on the support of χ( r
t+1 ) and using (3.9), we have

∑

|J |+|K |�|Q|

∣

∣

∣Z J Hσθ
∣

∣

∣

∣

∣

∣

∣

Z K
(

∂σ ∂θ

(

χ

(

r

t + 1

)

M

r

))∣

∣

∣

∣

�
√

ε

(1 + t + r)3

∑

|J |�|Q|

∣

∣

∣LJ
Z H

∣

∣

∣ .

By Proposition 4.2, the split h = h0 + h1 and the pointwise decay estimates of
Propositions 10.1,10.2, we get

∑

|J |�|I |

∣

∣

∣LJ
Z H

∣

∣

∣ � 1

1 + t + r
+

∑

|J |�|I |

∣

∣

∣LJ
Z h1

∣

∣

∣ ,

and the result follows from the combination of all the previous identities. ��
We now estimate the error terms arising from the commutator ˜�g

(

LJ
Z h1

) −
LJ

Z

(

˜�gh1
)

.

Proposition 11.3. Let n � N and J , K be multi-indices such that |J | + |K | � n
and |K | � n − 1. For V,W ∈ {U , T ,L}, it holds that
∣

∣

∣LJ
Z (H)αβ∇α∇βLK

Z (h1)

∣

∣

∣

VW
�

∑

|Q|�n

√
ε
∣

∣∇LQ
Z h1

∣

∣

VW
1 + t + r

+
∑

|Q|�n

√
ε
∣

∣LQ
Z h1

∣

∣

LL
(1 + t + r)1−δ(1 + |u|) 3

2

+ √
ε

(1 + |u|) 1
2

(1 + t + r)2−2δ

∑

|Q|�n

(

∣

∣∇LQ
Z h1

∣

∣ +
∣

∣LQ
Z h1

∣

∣

1 + |u|

)

.

For the L L component, we have the improved estimate

∣

∣

∣LJ
Z (H)αβ∇α∇βLK

Z (h1)

∣

∣

∣

LL
�

∑

|Q|�n

√
ε
∣

∣∇LQ
Z h1

∣

∣

LL
1 + t + r

+
√

ε(1 + |u|) 1
2

(1 + t + r)2−2δ

(

∣

∣∇LQ
Z h1

∣

∣ +
∣

∣LQ
Z h1

∣

∣

1 + |u|

)

.
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Proof. Start by noticing that for V , W ∈ {U , T ,L},
∣

∣

∣LJ
Z (H)αβ∇α∇βLK

Z (h1)

∣

∣

∣

VW
�

∑

0�λ�3

∣

∣

∣LJ
Z H

∣

∣

∣

LL

∣

∣

∣∇L∂λLK
Z h1

∣

∣

∣

VW

+
∣

∣

∣LJ
Z H

∣

∣

∣

∣

∣

∣∇L∂λLK
Z h1

∣

∣

∣

VW
.

Applying Lemma 3.3 and using that [Z , ∂λ] ∈ {0} ∪ {±∂ν / 0 � ν � 3} as well as
L∂ν = ∇∂ν yield

∣

∣

∣LJ
Z (H)αβ∇α∇βLK

Z (h1)

∣

∣

∣

VW
�

∑

|Q|�|K |+1

∣

∣LJ
Z H

∣

∣

LL
1 + |u|

∣

∣

∣∇LQ
Z h1

∣

∣

∣

VW
+

∣

∣LJ
Z H

∣

∣

1 + t + r

∣

∣

∣∇LQ
Z h1

∣

∣

∣ .

Applying Proposition 4.2, which makes the transition from H to h precise, and
then using the split h = h1 + h0 as well as the pointwise decay estimates given by
Propositions 10.2, for the Schwarzschild part h0, and 10.1 , for h1, one obtains

|LJ
Z H | �

√
ε

1 + t + r
+

∑

|M|�|J |
|LM

Z h1|,

|LJ
Z H |LL �

√
ε

1 + t + r
+

∑

|M|�|J |
|LM

Z h1|LL +
√
1 + |u|

(1 + t + r)1−δ

∑

|M|�|J |
|LM

Z h1|.

We then deduce that
∣

∣

∣LJ
Z (H)αβ∇α∇βLK

Z (h1)

∣

∣

∣

VW

�
∑

|M | + |Q| � n + 1
|M |, |Q| � n

√
ε
∣

∣∇LQ
Z h1

∣

∣

VW
(1 + t + r)(1 + |u|) +

∣

∣LM
Z h1

∣

∣

LL
∣

∣∇LQ
Z h1

∣

∣

VW
1 + |u|

+
( √

ε

(1 + t + r)2
+

∣

∣LM
Z h1

∣

∣

1 + t + r
+

∣

∣LM
Z h1

∣

∣

(1 + t + r)1−δ(1 + |u|) 1
2

)

∣

∣∇LQ
Z h1

∣

∣.

Note that one factor of each of the quadratic terms in h1 can be estimated pointwise
since N � n � 13. Hence, using the decay estimates given by Propositions 10.1
and 10.6 , we obtain the following bound:

∣

∣

∣LJ
Z (H)αβ∇α∇βLK

Z (h1)

∣

∣

∣

VW
�

∑

|M|�n

∑

|Q|�N−5

∣

∣LM
Z h1

∣

∣

LL
∣

∣∇LQ
Z h1

∣

∣

VW
1 + |u|

+
( √

ε

(1 + t + r)(1 + |u|) +
√

ε(1 + |u|) 1
2+γ

(1 + t + r)1+γ−δ(1 + |u|)

)

∑

|Q|�n

∣

∣∇LQ
Z h1

∣

∣

VW

+
( √

ε
√
1 + |u|

(1 + t + r)2−δ
+

√
ε

(1 + t + r)2−2δ

)

∑

|M|�n

(

|∇LM
Z h1| + |LM

Z h1|
1 + |u|

)

.



Léo Bigorgne et al.

In order to estimate the first term on the right-hand side of the previous inequality,
we use the pointwise decay estimates of Propositions 10.1 and 10.6 which provide

∣

∣∇LQ
Z h1

∣

∣

VW �
√

ε

(1 + t + r)1−δ(1 + |u|) 1
2

and, if V = W = L,

∣

∣∇LQ
Z h1

∣

∣

VW �
√

ε
(1 + |u|) 1

2

(1 + t + r)2−2δ .

The asserted bounds now follow (note that we use δ � 1
2 and that we do not keep

all the decay given by the last estimates). ��

Finally we bound the error terms coming from the commutation of ˜�g with the
contraction with the frame fields T U or L L and the commutation of ˜�g with the

multiplication by the characteristic function χ
(

r
1+t

)

.

Lemma 11.4. Let kμν be a (2, 0) tensor field and (T, U ) ∈ T × U . Then

∣

∣˜�g(kT U ) − ˜�g(kμν)T
μU ν

∣

∣ � 1

r
|∇k| + 1

r2
|k| +

√
ε
√
1 + |u|

r(1 + t + r)1−δ
|∇k|,

∣

∣

∣�̃g (kL L) − ˜�g
(

kμν

)

LμLν
∣

∣

∣ � 1

r
|∇k|T U + 1

r2
|k| +

√
ε(1 + |u|) 1

2

r(1 + t + r)1−δ
|∇k|.

Proof. We will use, in the upcoming calculations, that

˜�g = −∂2t + ∂2r + 2

r
∂r + ∇ A∇A + Hαβ∂α∂β, ∀U ∈ U , ∇∂r U = 0,

and that, for any U ∈ U , there exist bounded functions aU,V and bU,V such that

∇AU = 1

r

∑

V ∈U
aU,V V, ∇A∇ AU = 1

r2
∑

V ∈U
bU,V V . (11.4)

These last relations can be proved similarly as (3.16). As a consequence, we imme-
diately deduce that for any (T, U ) ∈ T × U ,

−∂2t (kT U ) + ∂2r (kT U ) + 2

r
∂r (kT U ) −

(

−∂2t (kμν) + ∂2r (kμν) + 2

r
∂r (kμν)

)

T μU ν = 0

and, also using Proposition 4.2 combined with the decay estimates of Proposi-
tion 10.1,
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∣

∣Hαβ∂α∂β(kT U ) − Hαβ∂α∂β(kμν)
∣

∣ � 1

r
|H ||∇k| + 1

r2
|H ||k|

�
√

ε(1 + |u|) 1
2

r(1 + t + r)1−δ
|∇k| + 1

r2
|k|.

These two estimates are good enough to prove the two inequalities of the Lemma
(recall that (L , L) ∈ T × U). It then remains us to study the commutation of the
frame fields with ∇A∇ A. If (T, U ) ∈ T × U , one has, since ∇A∇ A(kμν)T μU ν =
∇A∇ A(k)(T, U ),

∇A∇ A(kT U ) − ∇A∇ A(kμν)T
μU ν = ∇A(k)(∇ AT, U ) + ∇A(k)(T,∇ AU )

+ k(∇A∇ AT, U ) + k(T,∇A∇ AU ).

The first inequality of the Lemma can then be obtained using (11.4) and |∇Ak| �
|∇k|. For the second one, we apply the last equality to T = U = L and we remark
that, using again (11.4), |∇A(k)(∇ A L , L)| � 1

r |∇k|T U . This concludes the proof.
��

Lemma 11.5. Let φ be a sufficiently regular scalar function. Then
∣

∣

∣

∣

˜�g

(

χ

(

r

1 + t

)

φ

)

− χ

(

r

1 + t

)

˜�gφ

∣

∣

∣

∣

� 1{ 1+t
4 �r� 1+t

2 }
( |φ|

(1 + t + r)2
+ |∇φ|

1 + t + r

)

.

Proof. Let us denote χ( r
t+1 ) merely by χ . Start by noticing that

˜�g(χφ) = �η(χφ) + Hμν∂μ∂ν(χφ). (11.5)

Using that �ηφ = − 1
r L L(rφ) + /�φ, one gets, as ∇Aχ = 0,

�η (χφ) = χ�η(φ) + �η (χ) φ − L (χ) L(φ) − L (φ) L (χ) . (11.6)

Now, according to Lemma 3.13, we have

∣

∣∇t,xχ
∣

∣ � 1

1 + t + r
1{ 14� r

t+1� 1
2 }, (11.7)

∣

∣

∣∇2
t,xχ

∣

∣

∣ � 1

(1 + t + r)2
1{ 14� r

t+1� 1
2 }. (11.8)

We then deduce that

∣

∣�η (χ) φ − L (χ) L(φ) − L (φ) L (χ)
∣

∣ � |φ|
(1 + t + r)2

1{ 14� r
1+t � 1

2 }

+ |∇φ|
1 + t + r

1{ 14� r
t+1� 1

2 }. (11.9)

We now focus on the second part

Hμν∂μ∂ν(χφ) = χ Hμν∂μ∂νφ + Hμν∂μ∂ν(χ)φ + 2Hμν∂μ(χ)∂ν(φ). (11.10)
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Using again (11.7), we obtain, as |H | � 1,

∣

∣Hμν∂μ∂ν(χ)φ + Hμν∂μ(χ)∂ν(φ)
∣

∣ � |φ|
(1 + t + r)2

1{ 14� r
t+1� 1

2 }

+ |∇φ|
1 + t + r

1{ 14� r
t+1� 1

2 }.

The result then follows from the combination of this last inequality with (11.5),
(11.6), (11.9) and (11.10). ��
Remark 11.6. Note that the error terms given by Lemmas 11.4 and 11.5 are of
size

√
ε whereas the source terms of the Einstein equations are of size ε. For this

reason, we will have to consider a hierarchy between the different energy norms
considered for h1. In particular, when we will improve the bootstrap assumption
on E1+γ,1+γ

N ,T U [h1] (respectively E1+2γ,1
N ,LL [h1]), the terms given by the previous two

lemmas will have to be bounded indenpendantly of CT U and CLL (respectively
CLL).

12. Improved Energy Estimates for the Metric Perturbations

12.1. Improved Energy Estimates for the General Components of h1

The aimof this subsection is to improve the bootstrap assumptions on the energy

norms Eγ,1+2γ
N−1 [h1] and E̊γ,2+2γ

N [h1]. We start by the first one. For this, recall from
Remark 10.7 that we can apply the second energy estimate of Proposition 7.5 to
LJ

Z (h1) for (a, b) = (γ, 1 + 2γ ) and for any |J | � N − 1. Consequently, by the
Cauchy–Schwarz inequality and the bootstrap assumption (9.4), we obtain, for all
t ∈ [0, T [,

Eγ,1+2γ
N−1 [h1](t) � CEγ,1+2γ

N−1 [h1](0) + C
√

ε

∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

1 + τ
dτ

+ C
∑

|J |�N−1

∣

∣

∣

∣

∣

∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

1 + τ
dτ
∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

˜�g

(

LJ
Z h1

)∣

∣

∣

2
ω
1+2γ
0 dx dτ

∣

∣

∣

∣

∣

1
2

� Cε + Cε
3
2 (1 + t)2δ + C√

ε

∑

|J |�N−1

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

˜�g

(

LJ
Z h1

)∣

∣

∣

2
ω
1+2γ
0 dx dτ,

(12.1)

whereC > 0 is an absolute constantwhich does not depend on the boostrap constant
C , while the constant C appearing in the second and third terms on the right-hand
side might depend on the C . We are now ready to prove the following result.

Proposition 12.1. Suppose that the energy momentum tensor T [ f ] of the Vlasov
field satisfies, for all t ∈ [0, T [,

∑

|I |�N−1

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣

2
ω
1+2γ
0 dx dτ � ε2(1 + t)2δ.
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Then, if C is chosen sufficiently large and if ε is small enough, we have

∀t ∈ [0, T [, Eγ,1+2δ
N−1 [h1](t) � 1

2
Cε(1 + t)2δ.

Proof. In view of the commutation formula of Proposition 4.9, the analysis of the
source terms of the wave equation satisfied by LJ

Z (h1)μν , which has been carried
out in Section 11, and the inequality (12.1), we are led to bound sufficiently well
the following integrals, defined for all multi-indices |J | � N − 1:

I0 := ε2
∫ t

0

∫

{r�τ }
1 + τ

(1 + τ + r)6
dx dτ

+ ε2
∫ t

0

∫

{r�τ }
1 + τ

(1 + τ + r)8
(1 + |u|)1+2γ dx dτ,

IJ
1 := ε

∫ t

0

∫

�τ

(1 + τ)
|∇LJ

Z h1|2T U
(1 + τ + r)2−δ(1 + |u|)2γ ω

1+2γ
0 dx dτ,

IJ
2 := ε

∫ t

0

∫

�τ

(1 + τ)

∣

∣∇LJ
Z h1

∣

∣

2

(1 + τ + r)2−2δ(1 + |u|)ω
1+2γ
0 dx dτ,

IJ
3 := ε

∫ t

0

∫

�τ

1 + τ

(1 + τ + r)4−4δ

(

(1 + |u|)
∣

∣

∣∇LJ
Z h1

∣

∣

∣

2 +
∣

∣LJ
Z h1

∣

∣

2

1 + |u|

)

ω
1+2γ
0 dx dτ,

IJ
4 := ε

∫ t

0

∫

�τ

1 + τ

(1 + τ + r)2

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2
ω
1+2γ
0 dx dτ,

IJ
5 := ε

∫ t

0

∫

�τ

1 + τ

(1 + τ + r)2−2δ(1 + |u|)3
∣

∣

∣LJ
Z (h1)

∣

∣

∣

2

LL
ω
1+2γ
0 dx dτ,

IJ
6 :=

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣LJ
Z (T [ f ])

∣

∣

∣

2
ω
1+2γ
0 dx dτ.

Let us precise that

• Proposition 11.2 gives the terms I0 and IJ
3 .

• Proposition 11.1 gives the terms I0, IJ
1 , I

J
2 and IJ

3 .
• Proposition 11.3 gives IJ

3 , I
J
4 and IJ

5 .
• IJ

6 is the source term related to the Vlasov field. It is estimated in Proposi-
tion 14.15.

According to (12.1), the result follows if we prove, for any |J | � N − 1 and all
q ∈ �1, 6�,

I0 � ε2, ∀|J | � N − 1, IJ
q � ε2(1 + t)2δ.

For later use, it will be useful to bound I0 by an auxiliary quantity I0. Since
1 + 2γ � 2, one easily finds that

I0 � I0 := ε2
∫ t

0

∫ +∞

r=0

r2dr

(1 + τ + r)
9
2

dτ � ε2
∫ t

0

dτ

(1 + τ)
3
2

� ε2.
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We fix |J | � N − 1. Using the bootstrap assumption (9.6), we get

IJ
1 �

∫ t

0

ε

(1 + τ)1−δ

∫

�τ

|∇LJ
Z h1|2T Uω

1+γ
2γ dx dτ �

∫ t

0

ε E2γ,1+γ

N−1,T U [h1](τ )

(1 + τ)1−δ
dτ

� ε2
∫ t

0

(1 + τ)δ

(1 + τ)1−δ
dτ � ε2(1 + t)2δ.

By the crude estimate (1+ |u|)γ � (1+ τ + r)1−2δ and the bootstrap assumption
(9.4), one obtains

IJ
2 � ε

∫ t

0

∫

�τ

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2 ω
1+2γ
γ

1 + |u| dxdτ � εEγ,1+2γ
N−1 [h1](t) � ε2(1 + t)2δ.

The Hardy type inequality of Lemma 3.11 yields

IJ
3 �

∫ t

0

ε

(1 + τ)2−4δ

∫

�τ

(

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2 +
∣

∣LI
Z (h1)

∣

∣

2

(1 + |u|)2
)

ω
1+2γ
0 dx dτ,

�
∫ t

0

ε

(1 + τ)2−4δ

∫

�τ

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2
ω
1+2γ
0 dx dτ.

We then deduce, using the bootstrap assumption (9.4) and 6δ � 1
2 , that

IJ
3 � ε

∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)2−4δ dτ � ε2
∫ t

0

(1 + τ)2δ

(1 + τ)2−4δ dτ � ε2. (12.2)

The next term can be estimated easily, using again the bootstrap assumption (9.4),

IJ
4 � ε

∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

1 + τ
dτ � ε2(1 + t)2δ.

For IJ
5 , the first step consists in applying the Hardy inequality of Lemma 3.11. For

this reason, we cannot exploit all the decay in u = t − r in the exterior region (for
simplicity, we do not keep all the decay in t − r that we have at our disposal in the
interior region as well). We have

IJ
5 � ε

∫ t

0

∫

�τ

∣

∣LJ
Z h1

∣

∣

2
LL

(1 + t + r)1−2δ

ω
1+2γ−2δ
γ+2δ

(1 + |u|)2 dx dτ

� ε

∫ t

0

∫

�τ

∣

∣∇LJ
Z h1

∣

∣

2
LL ω

1+2γ
γ

(1 + t + r)1−2δ(1 + |u|)2δ dx dτ.

Now, recall from (10.5) that
∣

∣

∣∇LJ
Z h1

∣

∣

∣

2

LL
�
∣

∣

∣∇LJ
Z h1

∣

∣

∣

2 + ε

(1 + t + r)4
1r� 1+t

2
+ ε

(1 + t + r)6
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+ ε(1 + |u|)
(1 + t + r)2−2δ

∑

|K |�|J |

(

∣

∣

∣∇LK
Z h1

∣

∣

∣

2 +
∣

∣LK
Z h1

∣

∣

2

(1 + |u|)2
)

.

Then, remark that, since 1 + |u| � 1 + τ + r ,

ε

∫ t

0

∫

�τ

∣

∣∇LJ
Z h1

∣

∣

2
ω
1+2γ
γ

(1 + t + r)1−2δ(1 + |u|)2δ dx dτ � εEγ,1+2γ
N−1 [h1](t),

so that, according to the bootstrap assumption (9.4) and the previous calculations,

IJ
5 � εEγ,1+2γ

N−1 [h1](t) + I0 +
∑

|K |�|J |
IK
3 � ε2(1 + t)2δ.

Finally, the required bound on IJ
6 is given by the assumptions of the proposition.

This concludes the proof. ��
In order to improve the bootstrap assumption (9.4), one then only has to combine
the previous result with Proposition 14.15, whichwill be proved in Subsection 14.3.

We now turn on E̊γ,2+2γ
N [h1]. In the same way that we derive (12.1), one can

prove using the third energy estimate of Proposition 7.5, the Cauchy–Schwarz
inequality and the bootstrap assumption (9.5), that, for all t ∈ [0, T [,

E̊γ,2+2γ
N [h1](t) � Cε + Cε

3
2 (1 + t)2δ

+ C√
ε

∑

|J |�N

∫ t

0

∫

�τ

∣

∣

∣

˜�g

(

LJ
Z h1

)∣

∣

∣

2
ω2+2γ

γ dx dτ, (12.3)

whereC > 0 is a constantwhich does not depend onC . This last estimate, combined
with Proposition 14.15 and the following result improve the bootstrap assumption
(9.5) if ε is small enough and provided that C is chosen large enough.

Proposition 12.2. Assume that for all t ∈ [0, T [,
∑

|I |�N

∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣

2
ω2+2γ

γ dx dτ � ε2(1 + t)1+2δ.

Then, if C is chosen sufficiently large and if ε is small enough, we have

∀t ∈ [0, T [, E̊γ,2+2δ
N [h1](t) � Cε(1 + t)2δ.

Proof. The proof is similar to the one of Proposition 12.1. In view of the com-
mutation formula of Proposition 4.9 and the estimates obtained on the error terms
in Propositions 11.1-11.3, the result would follow if we bound by ε2(1 + t)2δ the
following integrals, defined for all multi-indices |J | � N .

I̊0 := ε2
∫ t

0

∫

{r�τ }
1

(1 + τ + r)6(1 + |u|)γ dx dτ + ε2
∫ t

0

∫

{r�τ }
(1 + |u|)2+2γ

(1 + τ + r)8
dx dτ,
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I̊J
1 := ε

∫ t

0

∫

�τ

|∇LJ
Z h1|2T U

(1 + τ + r)2−δ(1 + |u|)2γ ω2+2γ
γ dx dτ,

I̊J
2 := ε

∫ t

0

∫

�τ

∣

∣∇LJ
Z h1

∣

∣

2

(1 + τ + r)2−2δ(1 + |u|)ω2+2γ
γ dx dτ,

I̊J
3 := ε

∫ t

0

∫

�τ

1

(1 + τ + r)4−4δ

(

(1 + |u|)
∣

∣

∣∇LJ
Z h1

∣

∣

∣

2 +
∣

∣LJ
Z h1

∣

∣

2

1 + |u|

)

ω2+2γ
γ dx dτ,

I̊J
4 := ε

∫ t

0

∫

�τ

1

(1 + τ + r)2

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2
ω2+2γ

γ dxdτ,

I̊J
5 := ε

∫ t

0

∫

�τ

1

(1 + τ + r)2−2δ(1 + |u|)3
∣

∣

∣LJ
Z (h1)

∣

∣

∣

2

LL
ω2+2γ

γ dx dτ,

I̊J
6 :=

∫ t

0

∫

�τ

∣

∣

∣LJ
Z (T [ f ])

∣

∣

∣

2
ω2+2γ

γ dx dτ.

Note first that, using (12.2), I̊0 � I0 � ε2. We fix |J | � N for the remainder of
the proof. Using the bootstrap assumption (9.5), we directly obtain

I̊J
4 �

∫ t

0

ε

1 + τ

∫

�τ

∣

∣∇LJ
Z (h1)

∣

∣

2

1 + τ + r
ω2+2γ

γ dx dτ

� ε

∫ t

0

E̊γ,2+2γ
N [h1](τ )

1 + τ
dτ � ε2(1 + t)2δ.

By the bootstrap assumption (9.7) and γ > 3δ, we get

I̊J
1 �

∫ t

0

∫

�τ

ε|∇LJ
Z h1|2T U

(1 + τ)1+γ−δ
ω
1+γ
1+γ dx dτ �

∫ t

0

ε E1+γ,1+γ

N ,T U [h1](τ )

(1 + τ)1+γ−δ
dτ

� ε2
∫ t

0

(1 + τ)2δdτ

(1 + τ)1+γ−δ
� ε2.

Since 1 − 2δ � 0, the bootstrap assumption (9.5) gives

I̊J
2 � ε

∫ t

0

∫

�τ

∣

∣∇LJ
Z (h1)

∣

∣

2

1 + τ + r
· ω

2+2γ
γ

1 + |u| dx dτ � εE̊γ,2+2γ
N [h1](t) � ε2(1 + t)2δ.

Using first the Hardy type inequality of Lemma 3.11 as well as the inequality
1+ |u| � 1+ τ + r and then the bootstrap assumption (9.5) as well as 7δ � 1, we
obtain

I̊J
3 � I

J
3 :=

∫ t

0

ε

(1 + τ)2−4δ

∫

�τ

1

1 + τ + r

(

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2 +
∣

∣LI
Z (h1)

∣

∣

2

(1 + |u|)2
)

ω2+2γ
γ dx dτ,

�
∫ t

0

ε

(1 + τ)2−4δ

∫

�τ

∣

∣∇LJ
Z (h1)

∣

∣

2

1 + τ + r
ω2+2γ

γ dx dτ � ε

∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)2−4δ dτ � ε2.

(12.4)
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Applying the Hardy inequality of Lemma 3.11, we get

I̊J
5 � ε

∫ t

0

∫

�τ

∣

∣LJ
Z h1

∣

∣

2
LL

(1 + t + r)2−2δ

ω
1+2γ
1+γ

(1 + |u|)2 dx dτ

� ε

∫ t

0

∫

�τ

∣

∣∇LJ
Z h1

∣

∣

2
LL

(1 + t + r)2−2δ ω
1+2γ
1+γ dx dτ.

Using (10.5) and ω
1+2γ
1+γ = ω

2+2γ
γ

1+|u| , we obtain by (12.2) and (12.4),

I̊J
5 � I̊J

2 + I0 +
∑

|K |�|J |
I

K
3 � ε2(1 + t)2δ.

Finally, by the assumptions of the Proposition and Lemma 3.12,

I̊6 �
∫ t

0

∫

�τ

1 + τ + r

1 + τ

∣

∣

∣LJ
Z (T [ f ])

∣

∣

∣

2
ω2+2γ

γ dx dτ � ε2(1 + t)2δ.

��
Remark 12.3. The proofs of Propositions 12.1 and 12.2, combined with (12.1) and
(12.3), give the bound

Eγ,1+2γ
N−1 [h1](t) + E̊γ,2+2γ

N [h1](t) � Cε + ̂Cε
3
2 (1 + t)2δ.

As a consequence, the constant C can be chosen independently of CT U and CLL,
provided that ε is small enough.

12.2. TU-Energy

In this subsection we improve the bootstrap assumptions on the energies
E2γ,1+γ

N−1,T U [h1] and E1+γ,1+γ

N ,T U [h1]. More precisely, we prove the following result
which, combined with Proposition 14.15, improves (9.6) and (9.7) provided that ε
is small enough and CT U chosen large enough.

Proposition 12.4. Suppose that the energy momentum tensor T [ f ] of the Vlasov
field fulfils

∀t ∈ [0, T [,
∑

|I |�N

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣LI
Z T [ f ]

∣

∣

∣

2

T U
ω
1+γ
2γ dx dτ �ε2. (12.5)

Then, there exist a constant C0 independent of ε, CT U and CLL and a constant C
independent of ε, such that, for all t ∈ [0, T [,

E2γ,1+γ

N−1,T U [h1](t) � C0C
1
2
T Uε(1 + t)δ + Cε

3
2 (1 + t)δ,

E1+γ,1+γ

N ,T U [h1](t) � C0C
1
2
T Uε(1 + t)2δ + Cε

3
2 (1 + t)2δ.
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Remark 12.5. Note that CT U has to be fixed sufficiently large compared to C but
there is no restriction related to CLL.

All the constants hidden by � will not depend on CT U nor on CLL to simplify the
presentation of the following calculations. This convention will hold in and only in
this subsection. We mention that all the energy norms which will be used here are
defined in Subsection 3.7. We start with the following result:

Proposition 12.6. There exist a constant C0 independent of ε, CT U and CLL such
that, for all t ∈ [0, T [,
E2γ,1+γ

N−1,T U [h1](t) � C0ε + C0CT Uε
3
2 (1 + t)δ

+
∑

|J |�N−1
(T,U )∈T ×U

C0C
1
2
T Uε

1
2 (1 + t)

δ
2

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

∣

˜�g

(

χ

(

r

t + 1

)

LJ
Z (h1)T U

)∣

∣

∣

∣

2

ω
1+γ
2γ dx dτ

∣

∣

∣

∣

∣

1
2

,

E1+γ,1+γ

N ,T U [h1](t) � C0ε(1 + t)2δ + C0CT Uε
3
2 (1 + t)2δ

+
∑

|J |�N
(T,U )∈T ×U

C0C
1
2
T Uε

1
2 (1 + t)δ

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

∣

˜�g

(

χ

(

r

t + 1

)

LJ
Z (h1)T U

)∣

∣

∣

∣

2

ω
1+γ
1+γ dx dτ

∣

∣

∣

∣

∣

1
2

.

Proof. As these two estimates can be obtained in a very similar way, we only
prove the second one. In order to lighten the notations, let us introduce φ J

T U :=
χ( r

t+1 )L
J
Z (h1)T U for any |J | � N and (T, U ) ∈ T × U . We can obtain from the

first energy inequality of Proposition 7.5, Remark 10.7 and the Cauchy–Schwarz
inequality that,

E1+γ,1+γ
[

φ J
T U

]

(t) � E1+γ,1+γ
[

φ J
T U

]

(0) + √
ε

∫ t

0

E1+γ,1+γ [φ J
T U ](τ )

1 + τ
dτ

+
∣

∣

∣

∣

∣

∫ t

0

E1+γ,1+γ
[

φ J
T U

]

(τ )

1 + τ
dτ

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

˜�g

(

φ J
T U

)∣

∣

∣

2
ω
1+γ
1+γ dx dτ

∣

∣

∣

∣

∣

1
2

.

According to Lemma 9.2, the smallness assumption on h1(t = 0) and the bootstrap
assumption (9.7), we obtain, using also CT U � 1,

E1+γ,1+γ
[

φ J
T U

]

(0) � E1+γ,1+γ

N ,T U [h1](0) + ε � E̊γ,2+2γ
N [h1](0) + ε � ε,

∫ t

0

E1+γ,1+γ [φ J
T U ](τ )

1 + τ
dτ �

∫ t

0

E1+γ,1+γ

N ,T U [h1](τ ) + ε(1 + τ)2δ

1 + τ
dτ � CT U ε(1 + t)2δ,

E1+γ,1+γ

N ,T U [h1](t) �
∑

(T,U )∈T ×U

∑

|J |�N

E1+γ,1+γ [φ J
T U ](t) + ε(1 + t)2δ.

It then remains to combine these last four estimates. ��
Proposition 12.4 then ensues from the following two results:

Proposition 12.7. Assume that (12.5) holds. Then, there exist a constant C0 inde-
pendent of ε, CT U and CLL and a constant C independent of ε, such that the
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following estimate holds: for any |J | � N − 1, (T, U ) ∈ T × U and for all
t ∈ [0, T [,
∫ t

0

∫

�τ

(1+τ)

∣

∣

∣

∣

˜�g

(

χ

(

r

t + 1

)

LJ
Z (h1)T U

)∣

∣

∣

∣

2

ω
1+γ
2γ dx dτ �C0ε + Cε2(1+t)δ.

Proof. According to the commutation formula of Proposition 4.9 and the result of
Section 11, the proposition would follow if we could bound sufficiently well the
quantities JJ

k defined below, for any multi-index J satisfying |J | � N − 1 and any
null components (T, U ) ∈ T × U .
Those arising from the commutation of the wave operator with the cut-off function
(see Lemma 11.5),

JJ
1 :=

∫ t

0

∫

{

1
4� r

τ+1� 1
2

}(1 + τ)

(
∣

∣∇ (

LJ
Z (h1)T U

)∣

∣

2

(1 + τ + r)2
+ |LJ

Z (h1)T U |2
(1 + τ + r)4

)

ω
1+γ
2γ dx dτ.

Those coming from the commutation of the contraction with T U and the wave
operator (see Lemma 11.4),

JJ
2 :=

∫ t

0

∫

{

r� τ+1
4

}
(1 + τ)

|LJ
Z (h1)|2

r4
ω
1+γ
2γ dx dτ

JJ
3 :=

∫ t

0

∫

{

r� τ+1
4

}(1 + τ)
1 + |u|

r2(1 + τ + r)2−2δ |∇LJ
Z (h1)|2ω1+γ

2γ dx dτ,

JJ
4 :=

∫ t

0

∫

{

r� τ+1
4

}
(1 + τ)

|∇LJ
Z (h1)|2
r2

ω
1+γ
2γ dx dτ.

Those coming from the contraction of ˜�gLJ
Z (h1)μν with T μU ν ,

J5 := ε2
∫ t

0

∫

{r�τ }
(1 + τ)dx dτ

(1 + τ + r)6(1 + |u|)2γ

+ε2
∫ t

0

∫

{r�τ }
1 + τ

(1 + τ + r)8
(1 + |u|)1+γ dx dτ,

JJ
6 := ε

∫ t

0

∫

�τ

(1 + τ)(1 + |u|)
(1 + τ + r)4−4δ

(

|∇LJ
Z (h1)|2 + |LJ

Z (h1)|2
(1 + |u|)2

)

ω
1+γ
2γ dx dτ,

JJ
7 := ε

∫ t

0

∫

�τ

(1 + τ)

∣

∣∇LJ
Z (h1)

∣

∣

2

(1 + τ + r)2−2δ(1 + |u|)ω
1+γ
2γ dx dτ,

JJ
8 := ε

∫ t

0

∫

�τ

(1 + τ)
|LJ

Z (h1)|2LL
(1 + τ + r)2−2δ(1 + |u|)3ω

1+γ
2γ dx dτ,

JJ
9 := ε

∫ t

0

∫

�τ

(1 + τ)
|∇LJ

Z (h1)|2T U
(1 + τ + r)2

ω
1+γ
2γ dx dτ,

JJ
10 :=

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣LJ
Z (T [ f ])T U

∣

∣

∣

2
ω
1+γ
2γ dx dτ.
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Note that we used that
∣

∣

∣χ
(

r
1+t

)∣

∣

∣ � 1 for these last terms. Moreover,

• Proposition 11.1 gives us the terms J5, JJ
6 and JJ

7 .
• Proposition 11.2 leads us to control J5 and JJ

6 .
• Proposition 11.3 gives the terms JJ

6 , J
J
8 and JJ

9 .
• JJ

10 is the source term related to the Vlasov field, it is estimated in Proposi-
tion 14.15.

We fix |J | � N − 1 and (T, U ) ∈ T × U for all this proof. Let us start by
dealing with JJ

k , k ∈ �5, 10�. Using (12.2), we have J5 � I0 � ε2 and JJ
10 �

ε2 holds by assumption. According to the bootstrap assumption (9.6), we have
E2γ,1+γ

N−1,T U [h1](τ ) � CT Uε(1 + t)δ , so that

JJ
9 � ε

∫ t

0

∫

�τ

|∇LJ
Z (h1)|2T U
1 + τ

ω
1+γ
2γ dxdτ

� ε

∫ t

0

E2γ,1+γ

N−1,T U [h1](τ )

1 + τ
dτ � CT Uε2(1 + t)δ.

For JJ
8 , we start by applying the Hardy inequality of Lemma 3.11. For this reason,

we cannot use all the decay in t − r in the exterior region. We have

JJ
8 � ε

∫ t

0

∫

�τ

|LJ
Z (h1)|2LLω

1+γ
1+2γ

(1 + τ + r)1−2δ(1 + |u|)2 dx dτ

� ε

∫ t

0

∫

�τ

|∇LJ
Z (h1)|2LL

(1 + τ + r)1−2δ ω
1+γ
1+2γ dx dτ.

Using (10.5) yields

JJ
8 � J

J
8 + I0 +

∑

|K |�|J |
JK
6 ,

where I0 is defined and bounded by ε2 in (12.2) and

J
J
8 := ε

∫ t

0

∫

�τ

|∇LJ
Z (h1)|2

(1 + τ + r)1−2δ ω
1+γ
1+2γ dx dτ.

Since JJ
7 � J

J
8 , it only remains to deal with JJ

6 and J
J
8 . As 5δ < γ , we have, using

Lemma 3.12 and the bootstrap assumption (9.4),

J
J
8 � ε

∫ t

0

∫

�τ

|∇LJ
Z (h1)|2

(1 + τ)γ−2δ

ω
1+2γ
γ

1 + |u| dx dτ � ε2.

Finally, we use (12.2) in order to get JJ
6 � IJ

3 � ε2.
Let us focus now on JJ

1 , J
J
2 , J

J
3 and JJ

4 . Since these integrals are of size ε (and
not ε2), we cannot use the bootstrap assumptions (9.6)–(9.8) to control them as it
would give us a bound larger than CT Uε(1 + t)δ . We will use several times the
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inequality 1+ τ + r � 5r , which holds for all r � τ+1
4 (and then on the domain of

integration of all these integrals). Since |∇(LJ
Z (h1)T U )| � |∇LJ

Z (h1)|+ 1
r |LJ

Z (h1)|
and 1 + τ + r � 1 + |τ − r | for all r � τ+1

2 , we have

JJ
1 �

∫ t

0

1

(1 + τ)1+γ

∫

{

1+τ
4 �r� 1+τ

2

}

(

|∇LJ
Z (h1)|2 + |LJ

Z (h1)|2
(1 + |u|)2

)

dx

(1 + |u|)γ dτ.

We also have

JJ
2 �

∫ t

0

1

(1 + τ)1+γ

∫

{

r� 1+τ
4

}

|LJ
Z (h1)|2

(1 + |u|)2ω1+2γ
γ dτ.

Hence, by theHardy type inequality ofLemma3.11 andusing the bootstrap assump-
tion (9.4) as well as γ − 2δ > 0, we obtain

JJ
1 + JJ

2 �
∫ t

0

1

(1 + τ)1+γ

∫

�τ

|∇LJ
Z (h1)|2ω1+2γ

γ dτ �
∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)1+γ
dτ � ε.

Since 1 − 4δ + γ > 0, we get from the bootstrap assumption (9.4) that

JJ
3 �

∫ t

0

1

(1 + τ)2−2δ+γ

∫

{

r� 1+τ
4

} |∇LJ
Z (h1)|2ω1+2γ

γ dx dτ �
∫ t

0

Eγ,1+2γ
N−1 [h1](τ )

(1 + τ)2−2δ+γ
dτ � ε.

Finally, Lemma 3.12, combined with the bootstrap assumption (9.4) and γ � 3δ,
gives

JJ
4 �

∫ t

0

∫

{

r� 1+τ
4

}

|∇LJ
Z (h1)|2

(1 + τ)γ

ω
1+2γ
γ

1 + |u| dx dτ � ε.

��
Proposition 12.8. Assume that (12.5) holds. Then, there exist a constant C0 inde-
pendent of ε, CT U and CLL and a constant C independent of ε, such that the
following estimate holds: for any |J | � N, (T, U ) ∈ T ×U and for all t ∈ [0, T [,

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

∣

˜�g

(

χ

(

r

t + 1

)

LJ
Z (h1)T U

)∣

∣

∣

∣

2

ω
1+γ
1+γ dx dτ � C0ε + Cε2(1 + t)2δ.

Proof. The proof is similar to the one of Proposition 12.7. According to the com-
mutation formula of Proposition 4.9, Propositions 11.1-11.3 and Lemma 11.4-11.5,
it is sufficient to bound by C0ε + Cε2(1+ t)2δ the following integrals, defined for
any |J | � N and (T, U ) ∈ T × U .

J J
1 :=

∫ t

0

∫

{

1
4� r

τ+1� 1
2

}(1 + τ)

(
∣

∣∇ (LJ
Z (h1)T U

)∣

∣

2

(1 + τ + r)2
+ |LJ

Z (h1)T U |2
(1 + τ + r)4

)

ω
1+γ
1+γ dx dτ,

J J
2 :=

∫ t

0

∫

{

r� τ+1
4

}
(1 + τ)

|LJ
Z (h1)|2

r4
ω
1+γ
1+γ dx dτ
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J J
3 :=

∫ t

0

∫

{

r� τ+1
4

}(1 + τ)
1 + |u|

r2(1 + τ + r)2−2δ |∇LJ
Z (h1)|2ω1+γ

1+γ dx dτ,

J J
4 :=

∫ t

0

∫

{

r� τ+1
4

}(1 + τ)
|∇LJ

Z (h1)|2
r2

ω
1+γ
1+γ dx dτ,

J5 := ε2
∫ t

0

∫

{r�τ }
(1 + τ)dx dτ

(1 + τ + r)6(1 + |u|)1+γ
+ ε2

∫ t

0

∫

{r�τ }
(1 + τ)(1 + |u|)1+γ

(1 + τ + r)8
dx dτ,

J J
6 := ε

∫ t

0

∫

�τ

(1 + τ)(1 + |u|)
(1 + τ + r)4−4δ

(

|∇LJ
Z (h1)|2 + |LJ

Z (h1)|2
(1 + |u|)2

)

ω
1+γ
1+γ dxdτ,

J J
7 := ε

∫ t

0

∫

�τ

(1 + τ)

∣

∣∇LJ
Z (h1)

∣

∣

2

(1 + τ + r)2−2δ(1 + |u|)ω
1+γ
1+γ dx dτ,

J J
8 := ε

∫ t

0

∫

�τ

(1 + τ)
|LJ

Z (h1)|2LL
(1 + τ + r)2−2δ(1 + |u|)3 ω

1+γ
1+γ dx dτ,

J J
9 := ε

∫ t

0

∫

�τ

(1 + τ)
|∇LJ

Z (h1)|2T U
(1 + τ + r)2

ω
1+γ
1+γ dx dτ,

J J
10 :=

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣LJ
Z (T [ f ])T U

∣

∣

∣

2
ω
1+γ
1+γ dx dτ.

Wefix, for all this proof, |J | � N and (T, U ) ∈ T ×U . Using (12.2), the hypothesis
(12.5) and the bootstrap assumption (9.7), we have

J5 � I0 � ε2, J J
10 � ε2,

J J
9 � ε

∫ t

0

E2γ,1+γ

N ,T U [h1](τ )

1 + τ
dτ � CT Uε2(1 + t)2δ.

For J J
8 , as previsouly for similar integrals, we cannot keep all the decay in t − r

when we apply the Hardy inequality of Lemma 3.11 (the problem comes from the
exterior region). We have, since 1 � 2δ,

J J
8 � ε

∫ t

0

∫

�τ

|LJ
Z (h1)|2LLω

1+γ−2δ
1+γ+2δ

(1 + τ + r)1−2δ(1 + |u|)2 dx dτ

� ε

∫ t

0

∫

�τ

|∇LJ
Z (h1)|2LL

(1 + τ + r)1−2δ

ω
1+γ
1+γ

(1 + |u|)2δ dx dτ.

Using (10.5) yields

J J
8 � J J

8 + I0 +
∑

|K |�|J |
J K
6 ,

where I0 � ε2 according to (12.2) and, using 1 + τ + r � 1 + |u| as well as the
bootstrap assumption (9.7),

J J
8 := ε

∫ t

0

∫

�τ

|∇LJ
Z (h1)|2T Uω

1+γ
1+γ

(1 + τ + r)1−2δ(1 + |u|)2δ dx dτ � εE1+γ,1+γ

N ,T U [h1](t) � CT U ε2(1 + t)2δ.
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Note now that J J
7 � J J

8 and, using (12.4), J K
6 � I

K
3 � ε2. Consequently,

J J
6 + J J

7 + J J
8 � (1 + CT U )ε2(1 + t)2δ.

We now turn on J J
1 , J J

2 , J J
3 and J J

4 which are of size ε and then cannot
be bounded using the bootstrap assumptions (9.6)–(9.8). Recall that the inequality
1 + τ + r � 5r holds on the domain of integration of all these integrals. Since
|∇(LJ

Z (h1)T U )| � |∇LJ
Z (h1)| + 1

r |LJ
Z (h1)| and 1 + τ + r � 1 + |τ − r | for all

r � τ+1
2 , we have

J J
1 �

∫ t

0

1

1 + τ

∫

{

1+τ
4 �r� 1+τ

2

}

1

1 + τ + r

(

|∇LJ
Z (h1)|2 + |LJ

Z (h1)|2
(1 + |u|)2

)

dx

(1 + |u|)γ dτ.

We also have

J J
2 �

∫ t

0

1

1 + τ

∫

{

r� 1+τ
4

}

|LJ
Z (h1)|2

(1 + τ + r)(1 + |u|)2ω2+γ
γ dτ,

J J
3 �

∫ t

0

1

(1 + τ)2−2δ

∫

{

r� 1+τ
4

}

|∇LJ
Z (h1)|2

1 + τ + r
ω2+γ

γ dx dτ.

Applying theHardy type inequality of Lemma 3.11 and using the bootstrap assump-
tion (9.5), we get

J J
1 + J J

2 + J J
3 �

∫ t

0

1

1 + τ

∫

�τ

|∇LJ
Z (h1)|2

1 + τ + r
ω2+γ

γ dτ

�
∫ t

0

E̊γ,2+2γ
N [h1](τ )

1 + τ
dτ � ε(1 + t)2δ.

Finally, the bootstrap assumption (9.5) gives

J J
4 �

∫ t

0

∫

{

r� 1+τ
4

}

|∇LJ
Z (h1)|2

1 + τ + r

ω
2+γ
γ

1 + |u| dx dτ � E̊γ,2+2γ
N [h1](t) � ε(1 + t)2δ.

��

12.3. LL-Energy

The purpose of this subsection is to prove the following result which, combined
with Proposition 14.15, improves the bootstrap assumption (9.8) provided that ε is
small enough and CLL chosen large enough.

Proposition 12.9. Assume that the following estimate holds

∑

|J |�N

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣LJ
Z (T [ f ])

∣

∣

∣

2

LL
ω1
1+2γ dx dτ � ε2. (12.6)

Then there exist a constant C0 independent of ε and CLL and a constant C inde-
pendent of ε, such that

∀t ∈ [0, T [, E1+2γ,1
N ,LL [h1](t) � C0

(

1 + C
1
2
LL

)

ε(1 + t)δ + Cε
3
2 (1 + t)δ.
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Remark 12.10. For the conclusion of the previous proposition, it was crucial that
C and CT U were fixed independently of CLL (see Remarks 12.3 and 12.5 ).

In order to simplify the presentation of the following computations, all the constants
hidden by � will not depend on CLL. This convention will hold in and only in this
subsection. The following result is the first step of the proof.

Proposition 12.11. There exists a constant C0 independent of ε and CLL, such
that, for all t ∈ [0, T [,

E1+2γ,1
N ,LL [h1](t) � C0ε + C0(1 + CLL)ε

3
2 (1 + t)δ +

∑

|J |�N

C0(1 + C
1
2
LL)ε

1
2 (1 + t)

δ
2

×
∣

∣

∣

∣

∣

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

∣

˜�g

(

χ

(

r

t + 1

)

LJ
Z (h1)L L

)∣

∣

∣

∣

2

ω1
1+2γ dx dτ

∣

∣

∣

∣

∣

1
2

. (12.7)

Proof. In order to lighten the notations, let us introduce φ J := χ( r
t+1 )L

J
Z (h1)L L

for any |J | � N .We canobtain from the second energy inequality of Proposition 7.5
and the Cauchy–Schwarz inequality that

E1+2γ,1
[

φ J
]

(t) � E1+2γ,1
[

φ J
]

(0) + √
ε

∫ t

0

E1+2γ,1[φ J ](τ )

1 + τ
dτ

+
∣

∣

∣

∣

∣

∫ t

0

E1+2γ,1
[

φ J
]

(τ )

1 + τ
dτ

∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

˜�gφ J
∣

∣

∣

2
ω1
1+2γ dx dτ

∣

∣

∣

∣

∣

1
2

.

According to Lemma 9.2, the smallness assumption on h1(t = 0) and the bootstrap
assumption (9.8), we obtain

E1+2γ,1
[

φ J
]

(0) � E1+2γ,1
N ,LL [h1](0) + ε � E̊γ,2+2γ

N [h1](0) + ε � ε,

∫ t

0

E1+2γ,1[φ J ](τ )

1 + τ
dτ �

∫ t

0

E1+2γ,1
N ,LL [h1](τ ) + ε

1 + τ
dτ � (CLL + 1)ε(1 + t)δ,

E1+2γ,1
N ,LL [h1](t) �

∑

|J |�N

E1+2γ,1[φ J ](t) + ε.

It then remains to combine these last four estimates. ��
We are then led to prove the following proposition:

Proposition 12.12. Assume that (12.6) holds. Then, there exist a constant C0 inde-
pendent of ε and CLL and a constant C independent of ε, such that, for all
t ∈ [0, T [,
∫ t

0

∫

�τ

(1 + τ)

∣

∣

∣

∣

˜�g

(

χ

(

r

t + 1

)

LJ
Z (h1)L L

)∣

∣

∣

∣

2

ω1
1+2γ dx dτ � C0ε + Cε2(1 + t)δ.
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Proof. Let us point out that CLL will only appear when we will use the bootstrap
assumption (9.8). In order to prove this result, we are led to bound sufficiently well
the following spacetime integrals where the multi-index J will satisfy |J | � N .
Those coming from the commutation of the wave operator with the cut-off function
(see Lemma 11.5),

LJ
1 :=

∫ t

0

∫

{

1
4� r

τ+1� 1
2

}
(1 + τ)

(
∣

∣∇ (

LJ
Z (h1)L L

)∣

∣

2

(1 + τ + r)2
+ |LJ

Z (h1)L L |2
(1 + τ + r)4

)

ω1
1+2γ dxdτ.

Those coming from the commutation of the contraction with L L and the wave
operator (see Lemma 11.4),

LJ
2 :=

∫ t

0

∫

{

r� τ+1
4

}(1 + τ)
|LJ

Z (h1)|2
r4

ω1
1+2γ dx dτ

LJ
3 :=

∫ t

0

∫

{

r� τ+1
4

}
(1 + τ)

1 + |u|
r2(1 + τ + r)2−2δ |∇LJ

Z (h1)|2ω1
1+2γ dx dτ,

LJ
4 :=

∫ t

0

∫

{

r� τ+1
4

}
(1 + τ)

|∇LJ
Z (h1)|2T U

r2
ω1
1+2γ dx dτ.

Those coming from the contraction of ˜�gLI
Z (h1)μν with LμLν ,

L5 := ε2
∫ t

0

∫

{r�τ }
(1 + τ)dx dτ

(1 + τ + r)6(1 + |u|)1+2γ

+ε2
∫ t

0

∫

{r�τ }
1 + τ

(1 + τ + r)8
(1 + |u|)dx dτ,

LJ
6 := ε

∫ t

0

∫

{

r� τ+1
4

}

(1 + τ)(1 + |u|)
(1 + τ + r)4−4δ

(

|∇LJ
Z (h1)|2 + |LJ

Z (h1)|2
(1 + |u|)2

)

ω1
1+2γ dx dτ,

LJ
7 := ε

∫ t

0

∫

{

r� τ+1
4

}
(1 + τ)

∣

∣∇LJ
Z (h1)

∣

∣

2
T U

(1 + τ + r)2−2δ(1 + |u|)ω
1
1+2γ dxdτ,

LJ
8 := ε

∫ t

0

∫

{

r� τ+1
4

}

1 + τ

(1 + τ + r)2
|∇LJ

Z (h1)|2LLω1
1+2γ dx dτ,

LJ
9 :=

∫ t

0

∫

{

r� τ+1
4

}(1 + τ)

∣

∣

∣LJ
Z (T [ f ])L L

∣

∣

∣

2
ω1
1+2γ dx dτ.

More precisely,

• Proposition 11.1 gives us the terms L5, LJ
6 and LJ

7 .
• Proposition 11.2 leads us to control L5 and LJ

6 .
• Proposition 11.3 gives the terms LJ

6 and LJ
8 .

• LJ
9 is the source term related to the Vlasov field. It is estimated in Proposi-

tion 14.15.
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We start by the easiest ones, L5, LJ
6 , L

J
7 , L

J
8 and LJ

9 . First, according to (12.2), the
hypotheses (12.6) and (12.4),

L5 � I0 � ε2, L9 � ε2, JJ
6 � I3 � ε2.

We obtain from Lemma 3.12, the bootstrap assumption (9.7) and 2δ < 1−2δ, that

LJ
7 �

∫ t

0

ε

(1 + τ)1−2δ

∫

�τ

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

2

T U

ω
1+γ
1+γ

1 + |u|dx dτ � ε2.

According to the bootstrap assumption (9.8), we have

LJ
8 � ε

∫ t

0

1

1 + τ

∫

�τ

|∇LJ
Z (h1)|2LLω1

1+2γ dx dτ � ε

∫ t

0

E1+2γ,1
N ,LL [h1](τ )

1 + τ
dτ

� CLLε2(1 + t)δ.

We now focus on LJ
1 , L

J
2 , L

J
3 and LJ

4 . Since these integrals are of size ε (and
not ε2), we cannot use the bootstrap assumption (9.8) in order to control them as
it would give us a bound larger than CLLε(1 + t)δ . We will use several times the
inequality 1 + τ + r � 5r , which holds for all r � τ+1

4 (and then on the domain
of integration of each of these integrals). Using the inequality |∇(LJ

Z (h1)L L)| �
|∇LJ

Z (h1)| + 1
r |LJ

Z (h1)| and that 1 + τ + r � 1 + |τ − r | for r � τ+1
2 , we have

LJ
1 �

∫ t

0

1

(1 + τ)1+γ

∫

{

1+τ
4 �r� 1+τ

2

}

1

1 + τ + r

(

|∇LJ
Z (h1)|2 + |LJ

Z (h1)|2
(1 + |u|)2

)

dx

(1 + |u|)γ dτ.

Note also that

LJ
2 �

∫ t

0

1

(1 + τ)1+γ

∫

{

r� 1+τ
4

}

|LJ
Z (h1)|2

(1 + τ + r)(1 + |u|)2ω2+γ
γ dτ,

LJ
3 �

∫ t

0

1

(1 + τ)2−2δ

∫

{

r� 1+τ
4

}

|∇LJ
Z (h1)|2

1 + τ + r
ω2
2γ dxdτ.

Consequently, applying the Hardy type inequality of Lemma 3.11 and using the
bootstrap assumption (9.5), we get, since 1 − 2δ � γ and 2δ < γ ,

LJ
1 + LJ

2 + +LJ
3 �

∫ t

0

1

(1 + τ)1+γ

∫

�τ

|∇LJ
Z (h1)|2

1 + τ + r
ω2+γ

γ dτ

�
∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)1+γ
dτ �

∫ t

0

ε(1 + τ)2δ

(1 + τ)1+γ
dτ � ε.

Finally, as (1 + |u|)1−γ � (1 + τ + r)1−γ , we obtain, using Lemma 3.12, the
bootstrap assumption (9.7) and 2δ < γ , that

LJ
4 �

∫ t

0

1

(1 + τ)γ

∫

{

r� 1+τ
4

} |∇LJ
Z (h1)|2T U

ω
1+γ
1+γ

1 + |u| dxdτ � ε.

��
The proof of Proposition 12.9 follows directly from Propositions 12.11 and 12.12,
which concludes this section.
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13. Improvement of the Bootstrap Assumptions on the Particle Density

13.1. General Scheme

In this section we prove the following proposition.

Proposition 13.1. There exist an absolute constant C0 > 0 and a constant C > 0
such that, for all t ∈ [0, T [,19

E
�+3
N−5[ f ](t) � C0ε + Cε

3
2 (1 + t)

δ
2 , (13.1)

E
�
N−1[ f ](t) � C0ε + Cε

3
2 (1 + t)

δ
2 , (13.2)

E
�
N [ f ](t) � C0ε + Cε

3
2 (1 + t)

1
2+δ. (13.3)

This improves in particular the bootstrap assumptions (9.1)–(9.3) if ε is small
enough and provided that C f is chosen large enough.

Remark 13.2. One can check during the upcoming computations that the initial
decay hypotheses on f stated in Theorem 2.1 could be lowered. The choices made
in Theorem 2.1 allow for an easier presentation with energy norms for f weighted
by za , where the exponent a is as simple as possible.

In order to unify the proof of these three inequalities, we introduce for any multi-
index |I | � N the quantity

�|I | :=
{

� + 3 = 2
3 N + 9, |I | � N − 5,

� = 2
3 N + 6, |I | � N − 4.

(13.4)

According to the energy estimate of Proposition 8.1, we have

E
1
8 , 18

[

z�|I |− 2
3 I P

̂Z I f
]

(t) � C E
1
8 , 18

[

z�|I |− 2
3 I P

̂Z I f
]

(0)

+ C
√

ε

∫ t

0

E
1
8 , 18

[

z�|I |− 2
3 I P

̂Z I f
]

(τ )

1 + τ
dτ

+ C
∫ t

0

∫

�τ

∫

R3
v

∣

∣

∣Tg

(

z�|I |− 2
3 I P

̂Z I f
)∣

∣

∣ dv ω
1
8
1
8
dxdτ,

where C is an absolute constant, which in particular does not depend on C f . In
view of

• the definition (3.36) of the energy norms E�+3
N−5[ f ], E�

N−1[ f ] and E
�
N [ f ],

• the smallness assumption on the particle density, giving

E
1
8 , 18

[

z�|I |− 2
3 I P

̂Z I f
]

(0) � E
�|I |
|I | [ f ](0) � ε,

19 Contrary to C , the constant C0 does not depend on C f , C , CT U and CLL.
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• the bootstrap assumptions (9.1)–(9.3), which give

√
ε

∫ t

0

E
1
8 , 18

[

z�|I |− 2
3 I P

̂Z I f
]

(τ )

1 + τ
dτ �

√
ε

∫ t

0

E
�|I |
|I | [ f ](τ )

1 + τ
dτ

�
{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N ,

• the Vlasov equation Tg( f ) = 0, leading to

Tg

(

z�|I |− 2
3 I P

̂Z I f
)

=
(

�|I | − 2

3
I P

)

z�|I |− 2
3 I P−1Tg(z)̂Z

I f

+z�|I |− 2
3 I P

[

Tg,̂Z
I
]

( f ), (13.5)

Proposition 13.1 is implied by the following two results:

Proposition 13.3. Let I be a multi-index of length |I | � N. Then,

ZI :=
∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P−1

∣

∣Tg(z)
∣

∣ |̂Z I f | dv ω
1
8
1
8
dx dτ

�
{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .

Proposition 13.4. Let I be a multi-index of length |I | � N. Then,

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

∣

∣

∣

[

Tg,̂Z
I
]

( f )

∣

∣

∣ dv ω
1
8
1
8
dx dτ �

{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .

13.2. Proof of Proposition 13.3

Since the weight z is preserved by the flat relativistic transport operator Tη, that
is ηαβwα∂β(z) = 0, we have, using the notations introduced in Subsection 5.1,

Tg(z) = �vg−1(dt, dz) + H(w, dz) − 1

2
∇i (H)(v, v) · ∂vi z. (13.6)

Moreover, since, for any 0 � μ, ν � 3,

∇i (H)μν · ∂vi z = ∇∂r (H)μν · (∇vz)r + ∇eA(H)μν · (∇vz)A ,

we get from Lemma 3.9 and |�v| � |v|,
∣

∣∇i (H)(v, v) · ∂vi z
∣

∣ �
∣

∣∇i (H)(w,w) · ∂vi z
∣

∣ + z|�v||∇H | + t |�v||∇H |. (13.7)
By a direct application of Lemmas 3.7 and 3.8, we have

|∇t,x z| + |t − r ||∇t,x (z)| + (t + r)

√|wL |√|v| |∇t,x (z)| +
∑

̂Z∈̂P0
|̂Z(z)| � 1 + z � z



Asymptotic Stability of Minkowski Space-Time

and recall from Remark 10.7 that20

|H | �
√

ε, |H |LT �
√

ε
1 + |t − r |
1 + t + r

, |∇H | �
√

ε

1 + |t − r | ,

|∇H |LT + |∇H | �
√

ε

1 + t + r
, |∇H |LL �

√
ε
1 + |t − r |
(1 + t + r)2

.

We can then bound the first term of the right-hand side of (13.6) using (5.36) and the
second one by applying Lemma 5.13, so that we obtain, since |wL | �

√|v||wL |,
∣

∣

∣�vg−1(dt, dz)
∣

∣

∣ � |�v||η−1 + H ||∇t,x (z)|

� (|H ||wL | + |H |LT |v|)|∇t,x (z)| �
√

ε|v|z
1 + t + r

,

|H(w, dz)| � |v||H |z
1 + t + r

+ |v||H |LT z

1 + |t − r | �
√

ε|v|z
1 + t + r

.

To deal with the last term on the right-hand side of (13.6), we use (13.7). First, by
Lemma 5.13,

|∇i (H)(w,w) · ∂vi z| �
(|wL ||∇H | + |v||∇H |LT + |v||∇H |)

∑

̂Z∈̂P0
|̂Z(z)|

+ |t − r ||∇H ||wL ||∇t,x (z)| + |v||∇H |LT |t − r ||∇t,x (z)|
+ t |∇H |√|v||wL ||∇t,x (z)| + t |v||∇H |LL|∇t,x (z)|

�
√

ε|wL |z
1 + |t − r | +

√
ε|v|z

1 + t + r
.

Finally, using (5.36) and t � t z
1+|t−r | , which comes from Lemma 3.7, we obtain

z|�v||∇H | + t |�v||∇H | � z|∇H |(|H ||wL | + |H |LT |v|)

+ t z|∇H |
1 + |t − r | (|H ||wL | + |H |LT |v|)

�
√

ε|wL |z
1 + |t − r | +

√
ε|v|z

1 + t + r
.

We then deduce that

|Tg(z)| �
√

ε|wL |z
1 + |t − r | +

√
ε|v|z

1 + t + r
. (13.8)

Consequently, for a multi-index |I | � N , we get, according to the definition (3.36)

of the energy norm E
�|I |
|I | [ f ],

ZI �
∫ t

0

∫

�τ

∫

R3
v

( √
ε|v|

1 + τ + r
+

√
ε|wL |

1 + |τ − r |
)

z�|I |− 2
3 I P |̂Z I f | dvω

1
8
1
8
dx dτ

20 Note that all these estimates could be improved.
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�
√

ε

∫ t

0

E
1
8 , 18

[

z�|I |− 2
3 I P |̂Z I f |

]

(τ )

1 + τ
dτ

+ √
ε

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P |̂Z I f | |wL |

1 + |u| dvω
1
8
1
8
dx dτ

�
√

ε

∫ t

0

E
�|I |
|I | [ f ](τ )

1 + τ
dτ + √

εE
�|I |
|I | [ f ](t).

The result ensues from the bootstrap assumptions (9.2) and (9.3).

13.3. Proof of Proposition 13.4

The starting point consists in bounding the commutator
[

Tg,̂Z I
]

( f ) by a linear
combination of the terms listed in Proposition 5.14. Then, in order to close the
energy estimates and to deal with the weak decay rate of the metric, we will have
to pay attention to the hierarchies related to the weights z which have been built
into the Vlasov energy norms E�+3

N−5[ f ], E�
N−1[ f ] and E

�
N [ f ]. Before performing

the proof, let us explain the strategy, which will be illustrated by the treatment in
full details of the integrals arising from the two families of error terms

̂EJ,K
I,1 = |wL |

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

∣

∣

∣

̂ẐZ K f
∣

∣

∣ = ̂AJ,K
I,1

∣

∣

∣

̂ẐZ K f
∣

∣

∣ ,

EJ,K
I,10 = (t + r)|v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL

∣

∣

∣∇̂Z K f
∣

∣

∣ = AJ,K
I,10

∣

∣

∣∇̂Z K f
∣

∣

∣ ,

where ̂Z ∈̂P0, |J | + |K | � |I |, |K | � |I | − 1 and

• either K P < I P

• or K P = I P and J T � 1, so that Z J contains at least one translation ∂μ.21

We will then have to bound sufficiently well, as follows:

I :=
∫ t

0

∫

�τ

∫

R3
v

|wL |
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ z�|I |− 2
3 I P

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dvω
1
8
1
8
dxdτ,

J :=
∫ t

0

∫

�τ

∫

R3
v

(τ + r)|v|
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL
z�|I |− 2

3 I P
∣

∣

∣∇̂Z K f
∣

∣

∣ dvω
1
8
1
8
dxdτ.

Apart for the error terms SK
I,1 and SK

I,2, there are two cases to consider.

Step 1: if all the metric factors22 can be estimated pointwise, example
∣

∣∇LJ
Z (h1)

∣

∣

for̂EJ,K
I,1 and

∣

∣∇LJ
Z (h1)

∣

∣

LL forEJ,K
I,10, i.e if |J | � N −5 in view of Propositions 10.1

and 10.6 . Then, the particle density is estimated in L1 through the following result:

Lemma 13.5. Consider ̂Z ∈ ̂P0 and let I and K be two multi-indices such that
|I | � N, |K | � |I | − 1 and K P � I P . Then,

21 We use below the notation introduced in Definition 5.16.
22 The cubic and quartic terms contain several metric factors.
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• if K P < I P , we have E
1
8 , 18

[

z�|I |− 2
3 I P+ 2

3 ∇̂Z K f
]

� E
�|I |
|I | [ f ] as well as

E
1
8 , 18

[

z�|I |− 2
3 I P

̂ẐZ K f
]

� E
�|I |
|I | [ f ].

• Otherwise K P = I P and we still have E
1
8 , 18

[

z�|I |− 2
3 I P ∇̂Z K f

]

� E
�|I |
|I | [ f ] as

well as E
1
8 , 18

[

z�|I |− 2
3 I P− 2

3 ̂ẐZ K f
]

� E
�|I |
|I | [ f ].

Proof. This directly ensues from the fact that ∇̂Z K (respectively ̂ẐZ K ) contains
K P (respectively at most K P +1) homogeneous vector fields and that �|I | � �|K |+1
since |I | � |K | + 1. ��
We need to consider two subcases for the most problematic terms, the quadratic and
some of the cubic ones (see Proposition 5.14), in order to deal with a non integrable
decay rate.

• If ̂Z K contains less homogeneous vector fields than ̂Z I , that is K P < I P ,
then the terms containing the factor ̂ẐZ K f are good since we control the

energy normof z�|I |− 2
3 I P

̂ẐZ K f and the pointwise decay estimates on themetric
provide an integrable decay rate. For I, we obtain from the pointwise decay
estimates of Proposition 10.1, Lemma13.5 and the bootstrap assumptions (9.1)–
(9.3),

I �
∫ t

0

∫

�τ

∫

R3
v

√
ε

(1 + τ + r)1−δ(1 + |t − r |) 1
2

z�|I |− 2
3 I P

∣

∣

∣

̂ẐZ K f
∣

∣

∣ |wL | dvω
1
8
1
8
dx dτ

�
√

ε

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

∣

∣

∣

̂ẐZ K f
∣

∣

∣

|wL |
1 + |u| dvω

1
8
1
8
dx dτ

�
√

εE
1
8 , 18

[

z�|I |− 2
3 I P

̂ẐZ K
]

(t) �
√

εE
�|I |
|I | [ f ](t) �

{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2 +δ, if |I | = N .

For the remaining quadratic and cubic terms, which contain the factor ∇̂Z K f ,
the pointwise decay estimates on the metric do not provide an integrable decay
rate. The idea is to take advantage of the fact that we control the L1-norm

of z�|I |− 2
3 I P+ 2

3 ∇̂Z K f and then gain decay through the extra weight z− 2
3 and

Lemma3.7. ForJ ,weuseProposition10.6, the inequality z− 2
3 � (1+|t−r |)− 2

3

which comes from Lemma 3.7, that δ � γ < 1
6 , Lemma 13.5 and the bootstrap

assumptions (9.1)–(9.3). We have

J �
∫ t

0

∫

�τ

√
ε(t + r)

|τ − r | 12+γ

(1 + τ + r)2+γ−δ

∫

R3
v

|v| z�|I |− 2
3 I P + 2

3

z
2
3

∣

∣

∣∇̂Z K f
∣

∣

∣ dvω
1
8
1
8
dx dτ

�
∫ t

0

∫

�τ

√
ε

|τ − r | 12+γ− 2
3

(1 + τ + r)1+γ−δ

∫

R3
v

|v|z�|I |− 2
3 I P + 2

3

∣

∣

∣∇̂Z K f
∣

∣

∣ dvω
1
8
1
8
dx dτ

�
√

ε

∫ t

0

E
1
8 , 18

[

z�|I |− 2
3 I P + 2

3 ∇̂Z K f
]

(τ )

1 + τ
dτ �

√
ε

∫ t

0

E
�|I |
|I | [ f ](τ )

1 + τ
dτ

�
{

ε
3
2 (1 + t)

δ
2 , if |I | � N − 1,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .
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In summary, we have proved first that

̂AJ,K
I,1 �

√
ε|wL |

1 + |u| ,
1

z
2
3

AJ,K
I,10 �

√
ε|v|

1 + τ + r

and then we have applied Lemma 13.5.
• Otherwise all the homogeneous vector fields of ̂Z I are contained in ̂Z K , that

is I P = K P . Then at least one of the metric factors is differentiated by a
translation and we can obtain an extra decay in t − r (see Proposition 3.3). For
I and J , this means that Z J contains a translation ∂μ and that we can use the
improved pointwise decay estimates of Proposition 10.8. We then get, using
also Lemma 13.5 and the bootstrap assumptions (9.1)–(9.3),

J �
∫ t

0

∫

�τ

√
ε(t + r)

(1 + |t − r |) 1
2

(1 + t + r)3−2δ

∫

R3
v

|v|z�|I |− 2
3 I P

∣

∣

∣∇̂Z K f
∣

∣

∣ dvω
1
8
1
8
dx dτ

�
√

ε

∫ t

0

E
1
8 , 18

[

z�|I |− 2
3 I P ∇̂Z K f

]

(τ )

(1 + τ)
3
2−2δ

dτ �
√

ε

∫ t

0

E
�|I |
|I | [ f ](τ )

1 + τ
dτ

�
{

ε
3
2 (1 + t)

δ
2 , if |I | � N − 1,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .

For I, as we merely control the energy norm of z�|I |− 2
3 I P− 2

3 ̂ẐZ K f , we use the

estimate z�|I |− 2
3 I P � (1+ t +r)

2
3 z�|I |− 2

3 I P− 2
3 which comes from (3.22), so that

I �
∫ t

0

∫

�τ

∫

R3
v

√
ε

(1 + τ + r)
1
3−δ(1 + |t − r |) 3

2

z�|I |− 2
3 I P − 2

3

∣

∣

∣

̂ẐZ K f
∣

∣

∣ |wL | dvω
1
8
1
8
dx dτ

�
√

ε

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P − 2

3

∣

∣

∣

̂ẐZ K f
∣

∣

∣

|wL |
1 + |u| dvω

1
8
1
8
dx dτ

�
√

εE
1
8 , 18

[

z�|I |− 2
3 I P − 2

3 ̂ẐZ K f
]

(t) �
√

εE
�|I |
|I | [ f ](t) �

{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .

In summary, we have proved first that

(1 + τ + r)
2
3̂AJ,K

I,1 �
√

ε|wL |
1 + |u| , AJ,K

I,10 �
√

ε|v|
1 + τ + r

and then we have applied Lemma 13.5.
Step 2: if one of the metric factors cannot be estimated pointwise. In that case,
the considered error term contains a factor where h1 has been differentiated too
many times so that we cannot apply Propositions 10.1 and 10.6 anymore. For J ,
this means that |J | � N − 4. For I, we could have dealt with the cases |J | ∈
{N − 4, N − 3} during the first step but for simplicity we treat them here. Since
|J | + |K | � |I | � N , we necessarily have |I | � N − 4 and |K | � 4 � N − 9,
so that the Vlasov field can be estimated pointwise. Note also that if |J | = N then
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|I | = N . Moreover, since �|I | + 3 = �|K |+1, we will be able to gain decay through

the weight z and Lemma 3.7 using |wL | � |v|z2
(1+t+r)2

or 1 � z
1+|t−r | . For I, we get,

applying the Cauchy–Schwarz inequality in (τ, x) and since |wL | �
√|wL ||v|,

I �
∫ t

0

∫

�τ

∣

∣∇LJ
Z (h1)

∣

∣

1 + τ + r

∫

R3
v

|v|z1+�|I |− 2
3 I P

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dvω
1
8
1
8
dx dτ

�

∣

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

∣

∣∇LJ
Z (h1)

∣

∣

2

(1 + τ + r)3
ω

1
8
1
8
dx dτ

∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

|v|z1+�|I |− 2
3 I P

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dv

∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx dτ

∣

∣

∣

∣

∣

∣

1
2

.

For J , we have

J �
∫ t

0

∫

�τ

(τ + r)

∣

∣∇LJ
Z (h1)

∣

∣

2
LL

(1 + |τ − r |)2
∫

R3
v

|v|z2+�|I |− 2
3 I P

∣

∣

∣∇̂Z K f
∣

∣

∣ dvω
1
8
1
8
dx dτ

�
∣

∣

∣

∣

∣

∫ t

0

∫

�τ

(τ + r)

∣

∣∇LJ
Z (h1)

∣

∣

2
LL

(1 + |u|)4 ω
1
8
1
8
dx dτ

×
∣

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

(τ + r)

∣

∣

∣

∣

∣

∫

R3
v

|v|z2+�|I |− 2
3 I P

∣

∣

∣∇̂Z K f
∣

∣

∣ dv

∣

∣

∣

∣

∣

2

ω
1
8
1
8
dxdτ

∣

∣

∣

∣

∣

∣

1
2

.

Remark 13.6. We point out that EJ,K
I,10 is the most problematic term and that its

treatment is more complicated than the ones of the other error terms. In particular,

it is this term which prevents us to prove that Eγ,1+2γ
N [h1](t) � ε(1 + t)2δ .

We are then led to prove the following lemma, which will also be useful for all the
other error terms:

Lemma 13.7. Let I and K be two multi-indices satisfying N − 4 � |I | � N,
|K | � 4 and K P � I P . Then, for all ̂Z ∈̂P0, we have

̂AK
I :=

∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

|v|z1+�|I |− 2
3 I P

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dv

∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx dτ � ε2(1 + t)δ,

AK
I :=

∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

|v|z2+�|I |− 2
3 I P

∣

∣

∣∇̂Z K f
∣

∣

∣ dv

∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx dτ � ε2(1 + t)δ.

Proof. For the first integral, note that z1+�|I |− 2
3 I P � z2+�|I |− 2

3 (I P+1). Hence, by
the Cauchy–Schwarz inequality in v, we have

̂AK
I �

∫ t

0

∥

∥

∥

∥

∥

(1 + τ + r)

∫

R3
v

|v|z�|I |+1− 2
3 (I P+1)

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dv

∥

∥

∥

∥

∥

L∞(�τ )

×
∥

∥

∥

∥

∥

∫

R3
v

|v|z�|I |+3− 2
3 (I P+1)

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dvω
1
8
1
8

∥

∥

∥

∥

∥

L1(�τ )

dτ.
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SincêẐZ K contains atmost I P+1homogeneous vector fields, |K |+1 � 5 � N−8
and �|I | + 3 = � + 3 = �|K |+1, we obtain from (9.9) and the bootstrap assumption
(9.1) that

∫

R3
v

|v|z�|I |+1− 2
3 (I P+1)

∣

∣

∣

̂ẐZ K f
∣

∣

∣ (τ, x, v) dv � ε

(1 + τ + r)2− δ
2

,

∥

∥

∥

∥

∥

∫

R3
v

|v|z�|I |+3− 2
3 (I P+1)

∣

∣

∣

̂ẐZ K f
∣

∣

∣ dv ω
1
8
1
8

∥

∥

∥

∥

∥

L1(�τ )

� E
�+3
N−5[ f ](t) � ε(1 + t)

δ
2 ,

which gives us

̂AK
I � ε2

∫ t

0

dτ

(1 + τ)1−δ
� ε2(1 + t)δ.

The bound on AK
I can be obtained in the same way using this time that ∇̂Z K

contains at most I P homogeneous vector fields. ��
We can then bound I using the bootstrap assumptions (9.5). For any |J | � N ,

I �
∣

∣

∣

∣

∣

∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)2
dτ · ̂AK

I

∣

∣

∣

∣

∣

1
2

�
∣

∣

∣

∣

∫ t

0

ε dτ

(1 + τ)2−2δ · ε2(1 + t)δ
∣

∣

∣

∣

1
2

� ε
3
2 � ε

3
2 (1 + t)

δ
2 .

To estimate EJ,K
I,10, and thus J , we will need to treat differently the cases |J | = N

than those for which N − 4 � |J | � N − 1. Nonetheless, in both cases, we will
make use of the energy norms related to special components of h1 in order to close
the energy estimates. Assume first that |J | = N , which implies |I | = N . Then,
using supr∈R+

1+τ+r
1+|τ−r | � 1 + τ , γ � 1

16 and the bootstrap assumption (9.8), we
obtain

J �
∣

∣

∣

∣

∣

∫ t

0
(1 + τ)

∫

�τ

|∇LJ
Z (h1)|2LL

(1 + |u|)3 ω
1
8
1
8
dx dτ · AK

I

∣

∣

∣

∣

∣

1
2

�
∣

∣

∣

∣

∣

(1 + t)
∫ t

0

∫

�τ

|∇LJ
Z (h1)|2LL
1 + |u| ω1

1+2γ dx dτ · AK
I

∣

∣

∣

∣

∣

1
2

� ε(1 + t)
1
2+ δ

2

∣

∣

∣E1+2γ,1
N ,LL [h1](t)

∣

∣

∣

1
2 � ε

3
2 (1 + t)

1
2+δ.

We now turn on the case N − 4 � |J | � N − 1. Apply first the inequality (3.14),
so that

J �
∑

|J0|�N

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

|LJ0
Z (h1)|2LT

(1 + τ + r)(1 + |u|)4ω
1
8
1
8
dx dτ · AK

I

∣

∣

∣

∣

∣

1
2

.
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Then, we bound AK
I using Lemma 13.7 and we apply the Hardy inequality of

Lemma 3.11. Note that once again we need to be careful since we cannot use all
the decay in u = τ − r in the exterior region. We obtain

J � ε(1 + t)
δ
2

∑

|J0|�N

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

|LJ0
Z (h1)|2LT

(1 + τ + r)(1 + |u|)2ω1+δ

2+ 1
8
dx dτ

∣

∣

∣

∣

∣

1
2

� ε(1 + t)
δ
2

∑

|J0|�N

∣

∣

∣

∣

∣

∫ t

0

∫

�τ

|∇LJ0
Z (h1)|2LT

1 + τ + r
ω1+δ

2+ 1
8
dx dτ

∣

∣

∣

∣

∣

1
2

.

Fix now |J0| � N and use the estimate (10.5), which was obtained using the wave
gauge condition, in order to get

∫ t

0

∫

�τ

|∇LJ0
Z (h1)|2LT

1 + τ + r
ω1+δ

2+ 1
8
dx dτ �

∫ t

0

∫

�τ

|∇LJ0
Z (h1)|2T U

1 + τ + r
ω1+δ

2+ 1
8
dx dτ

+
∫ t

0

∫

�τ

ε dx dτ

(1 + τ + r)5
+ I,

where, according to (12.2),
∫ t
0

∫

r�τ
ε dx dτ

(1+τ+r)5
� ε−1I0 � ε and

I :=
∑

|Q|�N

∫ t

0

∫

�τ

1 + |u|
(1 + τ + r)3−2δ

(

|∇LQ
Z (h1)|2 + |LQ

Z (h1)|2
(1 + |u|)2

)

ω1+δ

2+ 1
8
dxdτ.

Using first that 1+ τ � 1+ τ + r , δ � γ , γ � 1+ 1
8 and then the Hardy inequality

of Lemma 3.11, we get

I �
∑

|Q|�N

∫ t

0

1

(1 + τ)2−2δ

∫

�τ

1

1 + τ + r

(

|∇LQ
Z (h1)|2 + |LQ

Z (h1)|2
(1 + |u|)2

)

ω2+2γ
γ dx dτ

�
∑

|Q|�N

∫ t

0

1

(1 + τ)2−2δ

∫

�τ

|∇LQ
Z (h1)|2

1 + τ + r
ω2+2γ

γ dx dτ �
∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)2−2δ dτ.

We then deduce from the bootstrap assumption (9.5) and 4δ < 1 that I � ε. Finally,
as γ � 1

8 , Lemma 3.12 combined with the bootstrap assumption (9.7) and γ > 3δ
give

∫ t

0

∫

�τ

|∇LJ0
Z (h1)|2T U

1 + τ + r
ω1+δ

2+1

8

dx dτ �
∫ t

0

∫

�τ

|∇LJ0
Z (h1)|2T U

(1 + τ)γ−δ

ω
1+γ
1+γ

1 + |u| dx dτ � ε.

We thendeduce from the previous estimates thatJ � ε
3
2 (1+t)

δ
2 for all |J | � N−1.

In summary, we have used the Cauchy–Schwarz inequality, applied Lemma 13.7
and then proved that

∫ t

0

∫

�τ

∥

∥

∥z−1|v|−1
̂AJ,K

I,1

∥

∥

∥

2

L∞
v

+
∥

∥

∥z−2|v|−1AJ,K
I,10

∥

∥

∥

2

L∞
v

1 + τ + r
dxdτ
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�
{

ε
3
2 , if |I | < N ,

ε
3
2 (1 + t)1+δ, if |I | = N .

(13.9)

We now analyse the other error terms.

13.3.1. The Terms Arising from the Source Terms. Since Tg( f ) = 0 we have
̂Z I0

(

Tg( f )
) = 0 for any |I0| < |I | and all the error terms of the form (5.42) are

equal to 0.

13.3.2. The Terms Which Do Not Contain h1. We start by dealing with the

error terms z�|I |− 2
3 I P

̂SK
I,0 and z�|I |− 2

3 I P
SK

I,00 since their treatment is different from
the other ones.

Lemma 13.8. Let K be a multi-index satisfying |K | � |I | − 1 and K P � I P .
Then, for any ̂Z ∈̂P0,

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

(

̂SK
I,0 + SK

I,00

)

dv ω
1
8
1
8
dx dτ �

{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .

Proof. As the Schwarzschild mass satisfies M � √
ε, we have

z�|I |− 2
3 I P

(

̂SK
I,0 + SK

I,00

)

�
√

ε|v|z�|I |− 2
3 I P

1 + τ + r

(

|∇̂Z K f | + |̂ẐZ K f |
1 + τ + r

)

.

Note now that z�|I |− 2
3 I P |̂ẐZ K f | � (1 + τ + r)

2
3 z�|I |− 2

3 (I P+1)|̂ẐZ K f |, so that
Lemma 13.5 gives us

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

(

̂SK
I,0 + SK

I,00

)

dv ω
1
8
1
8
dx dτ �

√
ε

∫ t

0

E
�|I |
|I | [ f ](τ )

1 + τ
dτ.

It remains to use the bootstrap assumption (9.1), (9.2) or (9.3). ��

13.3.3. A Sufficient Condition for Proposition 13.4 toHold. The two examples
treated just before suggest us to prove the following three results, where we use the
notations introduced in Definition 5.16. The first two ones concern the cases where
all the metric factors can be estimated pointwise. In the last result, we deal with
the case where one of the h1 factors has to be estimated in L2. Let us start by the
easiest terms.

Lemma 13.9. Let Q, M, J and K be multi-indices satisfying |Q| + |M | + |J | +
|K | � N − 5, |K | � |I | − 1 and K P � I P . Fix also ̂Z ∈̂P0. If for all (τ, x, v) ∈
[0, t] × R

3
x × R

3
v ,

̂F := (1 + τ + r)
2
3

(

̂BJ,K
I,1 +̂BJ,K

I,2 +̂A
Q,J,K
I,12 +̂A

Q,J,K
I,13

)

�
√

ε|v|
1 + τ

+
√

ε|wL |
1 + |τ − r | ,

F :=BJ,K
I,3 +BJ,K

I,4 +BJ,K
I,5 +B

Q,J,K
I,6 + A

Q,M,J,K
I,18 �

√
ε|v|

1 + τ
+

√
ε|wL |

1 + |τ − r | ,
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then,
∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

(

̂SJ,K
I,1 + ̂SJ,K

I,2 +̂E
Q,J,K
I,12 +̂E

Q,J,K
I,13

)

dvω
1
8
1
8
dx dτ

+
∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

(

SJ,K
I,3 + SJ,K

I,4 + SJ,K
I,5 + S

Q,J,K
I,6 + E

Q,M,J,K
I,18

)

dvω
1
8
1
8
dx dτ

�
{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2 +δ, if |I | = N .

Proof. This follows from the definition of the quantities considered here and from

the inequality z
2
3 � (1 + τ + r)

2
3 , so that

z�|I |− 2
3 I P

(

̂SJ,K
I,1 + ̂SJ,K

I,2 +̂E
Q,J,K
I,12 +̂E

Q,J,K
I,13

)

� ̂F · z�|I |− 2
3 I P − 2

3 |̂ẐZ K f |,
z�|I |− 2

3 I P
(

SJ,K
I,3 + SJ,K

I,4 + SJ,K
I,5 + SM,J,K

I,6 + E
Q,M,J,K
I,18

)

= F · z�|I |− 2
3 I P |∇̂Z K f |.

Recall now the definition (3.35) of the norm E
1
8 , 18 [·], so that, using Lemma 13.5,

the integrals considered in the statement of the lemma can be bounded by

√
ε

∫ t

0

E
�|I |
|I | [ f ](τ )

1 + τ
dτ + √

εE
�|I |
|I | [ f ](t)

and it remains to use the bootstrap assumptions (9.1)–(9.3). ��
We now focus on the more problematic terms, for which we will need to use our
hierarchy related to the weight z and the number of homogeneous vector fields
composing ̂Z I and ̂Z K .

Lemma 13.10. Let Q, M, J and K be multi-indices satisfying |M | + |Q| + |K | �
N − 5, |J | + |K | � N − 5, |K | � |I | − 1, K P � I P and the following condition

• either K P < I P

• or K P = I P and then J T � 1 and QT + MT � 1.

Fix also ̂Z ∈̂P0 and define

̂G := ̂AJ,K
I,1 +̂AJ,K

I,2 +̂AJ,K
I,3 , G :=

10
∑

i=4

AJ,K
I,i +

17
∑

j=14

A
Q,M,K
I, j .

Assume that for all (τ, x, v) ∈ [0, t] × R
3
x × R

3
v ,

̂G + 1

z
2
3

G + 1

z
2
3

AJ,K
I,11 �

√
ε|v|

1 + τ
+

√
ε|wL |

1 + |τ − r | if K P < I P ,

(1 + τ + r)
2
3 ̂G + G �

√
ε|v|

1 + τ
+

√
ε|wL |

1 + |τ − r | if K P = I P .

Then,
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∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

⎛

⎝

3
∑

q=1

̂EJ,K
I,q +

10
∑

i=4

EJ,K
I,i +

17
∑

j=14

EM,J,K
I, j

⎞

⎠ dvω
1
8
1
8
dx dτ

�
{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N

and, if K P < I P ,23

∫ t

0

∫

�τ

∫

R3
v

z�|I |− 2
3 I P

EJ,K
I,11dvω

1
8
1
8
dxdτ �

{

ε
3
2 (1 + t)

δ
2 , if |I | < N ,

ε
3
2 (1 + t)

1
2+δ, if |I | = N .

Proof. We follow the proof of the previous lemma. Note that if K P < I P ,

z�|I |− 2
3 I P

(

̂EJ,K
I,1 +̂EJ,K

I,2 +̂EJ,K
I,3

)

� ̂G · z�|I |− 2
3 I P |̂ẐZ K f |,

z�|I |− 2
3 I P

⎛

⎝EJ,K
I,11 +

10
∑

i=4

EJ,K
I,i +

17
∑

j=14

E
Q,M,K
I, j

⎞

⎠ � 1

z
2
3

(

G + AJ,K
I,11

)

· z�|I |− 2
3 I P + 2

3 |∇̂Z K f |.

Otherwise K P = I P and

z�|I |− 2
3 I P

(

̂EJ,K
I,1 +̂EJ,K

I,2 +̂EJ,K
I,3

)

� (1 + τ + r)
2
3 ̂G · z�|I |− 2

3 I P− 2
3 |̂ẐZ K f |,

z�|I |− 2
3 I P

⎛

⎝

10
∑

i=4

EJ,K
I,i +

17
∑

j=14

E
Q,M,K
I, j

⎞

⎠ � G · z�|I |− 2
3 I P |∇̂Z K f |.

It then remains to use Lemma 13.5 and the bootstrap assumptions (9.1)–(9.3). ��
We now prove a similar result for the error terms containing a high order derivative
of h1.

Lemma 13.11. Let K be a multi-index such that |K | � |I | − 1 and K P � I P .
Consider multi-indices Q, M, J , Q, M and J satisfying

• |J | � N − 4 and |J | + |K | � |I |,
• |Q| + |M | � N − 4 and |Q| + |M | + |K | � |I |,
• |Q| + |M| + |J | � N − 4 and |Q| + |M| + |J | + |K | � |I |.

Assume that for all t ∈ [0, T [,
̂H :=

∑

1�i�3
12�q�13

∫ t

0

∫

�τ

∥

∥

∥

∥

∥

∥

∥

∣

∣

∣

̂AJ,K
I,1

∣

∣

∣

2+
∣

∣

∣

̂AJ,K
I,2

∣

∣

∣

2+
∣

∣

∣

̂AJ,K
I,i

∣

∣

∣

2+
∣

∣

∣

̂AQ,M,K
I,q

∣

∣

∣

2

(1 + τ + r)z2|v|2

∥

∥

∥

∥

∥

∥

∥

L∞
v

ω
1
8
1
8
dxdτ,

H :=
∑

3�i�5
4� j�11
14�p�17

∫ t

0

∫

�τ

∥

∥

∥

∥

∥

∥

∥

∣

∣

∣B
J,K
I,i

∣

∣

∣

2+
∣

∣

∣B
Q,M,K
I,6

∣

∣

∣

2+
∣

∣

∣A
J,K
I, j

∣

∣

∣

2+
∣

∣

∣A
Q,M,K
I,p

∣

∣

∣

2+
∣

∣

∣A
Q,M,J ,K
I,18

∣

∣

∣

2

(1 + τ + r)z4|v|2

∥

∥

∥

∥

∥

∥

∥

L∞
v

ω
1
8
1
8
dxdτ,

23 Recall that we cannot have K P = I P in the error term E
J,K
I,11.
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are bounded by ε if |I | � N − 1 and ε(1 + t)1+δ if |I | � N. Then,
∫ t

0

∫

�τ

z�|I |− 2
3 I P

(

̂SJ,K
I,1 + ̂SJ,K

I,2 +̂EJ,K
I,1 +̂EJ,K

I,2 +̂EJ,K
I,3 +̂E

Q,M,K
I,12 +̂E

Q,M,K
I,13

)

ω
1
8
1
8
dxdτ,

5
∑

i=3

11
∑

j=4

17
∑

p=14

∫ t

0

∫

�τ

z�|I |− 2
3 I P

(

SJ,K
I,i + S

Q,M,K
I,6 + EJ,K

I, j + E
Q,M,K
I,p + E

Q,M,J ,K
I,18

)

ω
1
8
1
8
dxdτ

are bounded by ε
3
2 (1 + t)

δ
2 if |I | � N − 1 and ε

3
2 (1 + t)

1
2+δ if |I | � N.

Proof. Recall the definition of the error terms (see Proposition 5.14 and Defi-
nition 5.16) as well as ̂AK

I and AK
I (see Lemma 13.7). The Cauchy–Schwarz

inequality in (τ, x) give that

2
∑

i=1

3
∑

j=1

13
∑

q=12

∫ t

0

∫

�τ

z�|I |− 2
3 I P

(

̂SJ,K
I,i +̂EJ,K

I, j +̂E
Q,M,K
I,q

)

ω
1
8
1
8
dxdτ �

∣

∣

∣

̂H · ̂AK
I

∣

∣

∣

1
2
.

Similarly, we have that

6
∑

i=4

11
∑

j=4

17
∑

p=14

∫ t

0

∫

�τ

z�|I |− 2
3 I P

(

SJ,K
I,i + S

Q,M,K
I,7 + EJ,K

I, j + E
Q,M,K
I,p + E

Q,M,J ,K
I,18

)

ω
1
8
1
8
dxdτ

is bounded by
∣

∣H · AK
I

∣

∣

1
2 . It then remains to remark that we necessarily have |K | �

4 and to apply Lemma 13.7. ��

13.3.4. The Assumptions of Lemmas 13.9–13.11 Hold. The last part of the
proof consists in proving that we can apply the previous three lemmas.

Proposition 13.12. Let Q, M, J and K be multi-indices satisfying |Q| + |M | +
|J | + |K | � N − 5, |K | � |I | − 1 and K P � I P . Consider also ̂Z ∈ ̂P0. Then,
for all (τ, x, v) ∈ [0, T [×R

3
x × R

3
v ,

(1 + τ + r)
2
3

(

̂BJ,K
I,1 + ̂BJ,K

I,2 +̂A
Q,J,K
I,12 +̂A

Q,J,K
I,13

)

�
√

ε|v|
1 + τ

,

BJ,K
I,3 + BJ,K

I,4 + BJ,K
I,5 + B

Q,J,K
I,6 + A

Q,M,J,K
I,18 �

√
ε|v|

1 + τ
.

Proof. Since |J | + |M | + |Q| � N − 5, one can apply Propositions 10.1 and
10.6 in order to estimate pointwise h1 and its derivatives. We then get, for all
(τ, x, v) ∈ [0, T [×R

3
x × R

3
v ,

̂BJ,K
I,1 + ̂BJ,K

I,2 �
√

ε|v|
1 + τ + r

(
∣

∣LJ
Z (h1)

∣

∣

1 + τ + r
+
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

)

� ε|v|
(1 + τ + r)2−δ

,

̂A
Q,J,K
I,12 +̂A

Q,J,K
I,13 � |v|

∣

∣

∣LQ
Z (h1)

∣

∣

∣

(
∣

∣LJ
Z (h1)

∣

∣

1 + τ + r
+
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

)

� ε|v|
(1 + τ + r)2−2δ ,

BJ,K
I,3 + BJ,K

I,4 �
√

ε|v|
1 + τ + r

(∣

∣

∣LJ
Z (h1)

∣

∣

∣ + |τ − r |
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

)

� ε|v|√1 + |τ − r |
(1 + τ + r)2−δ

,
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BJ,K
I,5 �

√
ε|v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ � ε|v|√1 + |τ − r |
(1 + τ + r)2−δ

,

B
Q,J,K
I,6 �

√
ε|v|

∣

∣

∣LQ
Z (h1)

∣

∣

∣

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ � ε|v|
(1 + τ + r)2−2δ ,

A
Q,M,J,K
I,18 � (t + r)|v|

∣

∣

∣LQ
Z (h1)

∣

∣

∣

∣

∣

∣LM
Z (h1)

∣

∣

∣

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ � ε|v|√1 + |τ − r |
(1 + τ + r)2−3δ .

It then only remains to use (1 + |τ − r |) 1
2 � (1 + τ + r)

1
2 and δ � 1

16 . ��
Proposition 13.13. Let Q, M, J and K be multi-indices satisfying |M | + |Q| +
|K | � N − 5, |J | + |K | � N − 5, |K | � |I | − 1, K P � I P and the following
condition

• either K P < I P

• or K P = I P and then J T � 1 and QT + MT � 1.

Consider also ̂Z ∈̂P0. Then, if K P < I P , we have for all (τ, x, v) ∈ [0, T [×R
3
x ×

R
3
v ,

̂AJ,K
I,1 +̂AJ,K

I,2 +̂AJ,K
I,3 +

11
∑

i=4

AJ,K
I,i

z
2
3

+
17
∑

j=14

A
Q,M,K
I, j

z
2
3

�
√

ε|v|
1 + τ

+
√

ε|wL |
1 + |τ − r | .

Otherwise K P = I P and we have24

(1 + τ + r)
2
3

3
∑

q=1

̂AJ,K
I,1 +

10
∑

i=4

AJ,K
I,i +

17
∑

j=14

A
Q,M,K
I, j �

√
ε|v|

1 + τ
+

√
ε|wL |

1 + |τ − r | .

Proof. Since |J |, |Q|, |M | � N − 5 by assumption, we can estimate pointwise h1

and its derivatives through Propositions 10.1 and 10.6 . We will also use several
times that 20δ < γ < 1

20 and 1 + |τ − r | � 1 + τ + r . Note first that using

the inequality (1 + τ + r)
2
3 |wL | 13 � |v| 13 z

2
3 , which comes from Lemma 3.7, and

|wL | 23 � |v| 23 , we obtain
1

z
2
3

AJ,K
I,11 = (τ + r)

|wL |2
z
2
3 |v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

�
√

ε|wL |
(1 + τ + r)

2
3−δ(1 + |τ − r |) 1

2

�
√

ε|wL |
1 + |τ − r | .

We consider now the first three terms. If K P < I P , we have

̂AJ,K
I,1 = |wL |

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ �
√

ε|wL |
(1 + τ + r)1−δ(1 + |τ − r |) 1

2

,

̂AJ,K
I,2 +̂AJ,K

I,3 = |v|
(
∣

∣LJ
Z (h1)

∣

∣

1 + τ + r
+
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT
+
∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

)

24 Recall that we cannot have K P = I P for the error term E
J,K
I,11.
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�
√

ε|v|
√
1 + |τ − r |

(1 + τ + r)2−2δ ,

which give the required bounds. If K P = I P , then J T � 1 so that we can use the
improved decay estimates given by Proposition 10.8. This leads to

(1 + t + r)
2
3̂AJ,K

I,1 �
√

ε|wL |
(1 + τ + r)

1
3−δ(1 + |τ − r |) 3

2

�
√

ε|wL |
1 + |τ − r | ,

(1 + t + r)
2
3

(

̂AJ,K
I,2 +̂AJ,K

I,3

)

�
√

ε|v|
(1 + τ + r)

4
3−2δ(1 + |t − r |) 1

2

�
√

ε|v|
1 + τ

.

We now treat the remaining terms, using again the pointwise decay estimates of
Propositions 10.1 and 10.6 as well as the ones of Proposition 10.8 when J T � 1.

We have, using the inequality (1+|τ − r |) 2
3 � z

2
3 , which comes from Lemma 3.7,

and then 2ab � a2 + b2,

AJ,K
I,6 + AJ,K

I,9

z
2
3

=
√|v||wL |

z
2
3

(∣

∣

∣LJ
Z (h1)

∣

∣

∣+(τ + r)

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

)

�
√

ε
√|v||wL |

(1 + τ + r)1−δ(1 + |τ − r |) 1
6

�
√

ε|v|
(1 + τ + r)

5
4−2δ

+
√

ε|wL |
(1 + τ + r)

3
4 (1 + |τ − r |) 1

3

.

Otherwise we have J T � 1 so that

AJ,K
I,6 + AJ,K

I,9 �
√

ε
√|v||wL |

(1 + τ + r)1−δ(1 + |τ − r |) 1
2

�
√

ε|v|
(1 + τ + r)

5
4−2δ

+
√

ε|wL |
(1 + τ + r)

3
4 (1 + |τ − r |)

and we have then obtained the expected bounds when K P < I P . Similarly, one
obtains

AJ,K
I,4 = |v||t − r |

(1 + t + r)

∣

∣

∣LJ
Z (h1)

∣

∣

∣ �

⎧

⎪

⎨

⎪

⎩

√
ε|v| (1+|τ−r |) 32

(1+τ+r)2−δ

√
ε|v| (1+|τ−r |) 12

(1+τ+r)2−δ if J T � 1,

AJ,K
I,5 = |v|

∣

∣

∣LJ
Z (h1)

∣

∣

∣

LT
�

⎧

⎪

⎨

⎪

⎩

√
ε|v| (1+|τ−r |) 12+γ

(1+τ+r)1+γ−δ

√
ε|v| (1+|τ−r |) 12

(1+τ+r)2−2δ if J T � 1,

AJ,K
I,7 = |τ − r ||wL |

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣ �

⎧

⎪

⎨

⎪

⎩

√
ε|wL | (1+|τ−r |) 12

(1+τ+r)1−δ√
ε|wL |

(1+τ+r)1−δ(1+|τ−r |) 12
if J T � 1,
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AJ,K
I,8 = |τ − r ||v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LT
�

⎧

⎪

⎨

⎪

⎩

√
ε|v| (1+|τ−r |) 32

(1+τ+r)2−2δ

√
ε|v| (1+|τ−r |) 12

(1+τ+r)2−2δ if J T � 1,

AJ,K
I,10 = (τ + r)|v|

∣

∣

∣∇LJ
Z (h1)

∣

∣

∣

LL
�

⎧

⎪

⎨

⎪

⎩

√
ε|v| (1+|τ−r |) 12+γ

(1+τ+r)1+γ−δ

√
ε|v| (1+|τ−r |) 12

(1+τ+r)2−2δ if J T � 1

and

A
Q,M,K
I,14 = |v|

∣

∣

∣LQ
Z (h1)

∣

∣

∣

∣

∣

∣LM
Z (h1)

∣

∣

∣ �
{√

ε|v| 1+|τ−r |
(1+τ+r)2−2δ√

ε|v|
(1+τ+r)2−2δ if QT + MT � 1,

A
Q,M,K
I,15 = |τ − r ||v|

∣

∣

∣LQ
Z (h1)

∣

∣

∣

∣

∣

∣∇LM
Z (h1)

∣

∣

∣ �
{√

ε|v| 1+|τ−r |
(1+τ+r)2−2δ√

ε|v|
(1+τ+r)2−2δ if QT + MT � 1,

A
Q,M,K
I,16 = (τ + r)|wL |

∣

∣

∣LQ
Z (h1)

∣

∣

∣

∣

∣

∣∇LM
Z (h1)

∣

∣

∣ �

⎧

⎨

⎩

√
ε|wL |

(1+τ+r)1−2δ√
ε|wL |

(1+τ+r)1−2δ (1+|τ−r |) if QT +MT � 1,

A
Q,M,K
I,17 = (τ + r)|v|

∣

∣

∣LQ
Z (h1)

∣

∣

∣

∣

∣

∣∇LM
Z (h1)

∣

∣

∣ �
{√

ε|v| 1+|τ−r |
(1+τ+r)2−2δ√

ε|v|
(1+τ+r)2−2δ if QT + MT � 1.

This leads to the required bounds since z− 2
3 � (1 + |τ − r |)− 2

3 (see Lemma 3.7).
��
It remains to prove that the hypotheses of Lemma 13.11 hold.

Proposition 13.14. Let K be a multi-index such that |K | � |I | − 1 and K P � I P .
Consider multi-indices Q, M, J , Q, M and J satisfying

• |J | � N − 4 and |J | + |K | � |I |,
• |Q| + |M | � N − 4 and |Q| + |M | + |K | � |I |,
• |Q| + |M| + |J | � N − 4 and |Q| + |M| + |J | + |K | � |I |.

Then, for all t ∈ [0, T [, the integrals

13
∑

q=12

∫ t

0

∫

�τ

∥

∥

∥

∥

∥

∥

∥

∣

∣

∣

̂BJ,K
I,1

∣

∣

∣

2+
∣

∣

∣

̂BJ,K
I,2

∣

∣

∣

2+
∣

∣

∣

̂AJ,K
I,1

∣

∣

∣

2+
∣

∣

∣

̂AJ,K
I,2

∣

∣

∣

2+
∣

∣

∣

̂AJ,K
I,3

∣

∣

∣

2+
∣

∣

∣

̂A
Q,M,K
I,q

∣

∣

∣

2

(1 + τ + r)z2|v|2

∥

∥

∥

∥

∥

∥

∥

L∞
v

ω
1
8
1
8
dxdτ,

∑

3�i�5
4� j�11
14�p�17

∫ t

0

∫

�τ

∥

∥

∥

∥

∥

∥

∥

∣

∣

∣B
J,K
I,i

∣

∣

∣

2+
∣

∣

∣B
Q,M,K
I,6

∣

∣

∣

2+
∣

∣

∣A
J,K
I, j

∣

∣

∣

2+
∣

∣

∣A
Q,M,K
I,p

∣

∣

∣

2+
∣

∣

∣A
Q,M,J ,K
I,18

∣

∣

∣

2

(1 + τ + r)z4|v|2

∥

∥

∥

∥

∥

∥

∥

L∞
v

ω
1
8
1
8
dxdτ,

are bounded by ε if |I | � N − 1 and ε(1 + t)1+δ if |I | � N.

Proof. Recall that we already dealt with the term associated toAJ,K
I,10 when we have

bounded J (see (13.9)). We also already treated the integral associated tôAJ,K
I,1 but
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we will repeat the proof here. We will often use that 1 + |u| � 1 + τ + r as well
as the inequalities

1

z2
� 1

(1 + |τ − r |)2 ,
|wL |
|v|z2 � 1

(1 + τ + r)2
, (13.10)

which come Lemma 3.7.We start by the terms of degree 1 in h1, that is the quadratic
terms and some of the terms arising from the Schwarzschild part. We obtain, using
(13.10), that

∣

∣

∣

̂BJ,K
I,1

∣

∣

∣

2+
∣

∣

∣

̂AJ,K
I,3

∣

∣

∣

2

(1 + τ + r)z2|v|2 +
∣

∣

∣B
J,K
I,3

∣

∣

∣

2+
∣

∣

∣A
J,K
I,4

∣

∣

∣

2+
∣

∣

∣A
J,K
I,6

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
∣

∣LJ
Z (h1)

∣

∣

2

(1 + τ + r)3(1 + |τ − r |)2 ,

∣

∣

∣

̂BJ,K
I,2

∣

∣

∣

2 +
∣

∣

∣

̂AJ,K
I,1

∣

∣

∣

2

(1 + τ + r)z2|v|2 +
∣

∣

∣B
J,K
I,4

∣

∣

∣

2 +
∣

∣

∣A
J,K
I,7

∣

∣

∣

2 +
∣

∣

∣A
J,K
I,11

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
∣

∣∇LJ
Z (h1)

∣

∣

2

(1 + τ + r)3
,

∣

∣

∣B
J,K
I,5

∣

∣

∣

2 +
∣

∣

∣A
J,K
I,9

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
∣

∣∇LJ
Z (h1)

∣

∣

2

(1 + τ + r)(1 + |τ − r |)2 .

Similarly, we have

∣

∣

∣A
J,K
I,5

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
∣

∣LJ
Z (h1)

∣

∣

2
LT

(1 + τ + r)(1 + |τ − r |)4 �
∣

∣LJ
Z (h1)

∣

∣

2
LT

(1 + τ + r)1−2δ(1 + |τ − r |)4 .

Finally, using the wave gauge condition (10.5), it holds that

∣

∣

∣

̂AJ,K
I,2

∣

∣

∣

2

(1 + τ + r)z2|v|2 +
∣

∣

∣A
J,K
I,8

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
∣

∣∇LJ
Z (h1)

∣

∣

2

(1 + τ + r)(1 + |τ − r |)2 +
ε 1r� 1+τ

2

(1 + τ + r)5

+ ε

(1 + t + r)7
+ ε

∑

|I0|�|I |

∣

∣∇LI0
Z (h1)

∣

∣

2

(1 + t + r)3−2δ(1 + |τ − r |) +
∣

∣LI0
Z (h1)

∣

∣

2

(1 + t + r)3−2δ(1 + |τ − r |)3 .

We now study the remaining terms. Note that without loss of generality, we can
assume that |M| � N − 5. Since |Q| � N − 5 or |M | � N − 5, we have, using
the pointwise decay estimates of Proposition 10.1 and (13.10),

∣

∣

∣

̂A
Q,M,K
I,12

∣

∣

∣

2

(1 + τ + r)z2|v|2 +
∣

∣

∣A
Q,M,K
I,14

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
∑

|I0|�|I |

∣

∣

∣LI0
Z (h1)

∣

∣

∣

2

(1 + τ + r)3−2δ(1 + |τ − r |)3 .

If |Q| � N − 5 and Q � N − 5, we use again Proposition 10.1 and (13.10) in
order to get
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∣

∣

∣

̂A
Q,M,K
I,13

∣

∣

∣

2

(1 + τ + r)z2|v|2 +
∣

∣

∣B
Q,M,K
I,6

∣

∣

∣

2+
∣

∣

∣A
Q,M,K
I,15

∣

∣

∣

2+
∣

∣

∣A
Q,M,K
I,16

∣

∣

∣

2 +
∣

∣

∣A
Q,M,J ,K
I,18

∣

∣

∣

2

(1 + τ + r)z4|v|2

�
∑

|I0|�|I |

√
ε

∣

∣

∣∇LI0
Z (h1)

∣

∣

∣

2

(1 + τ + r)3−4δ(1 + |τ − r |)

and
∣

∣

∣A
Q,M,K
I,17

∣

∣

∣

2

(1 + τ + r)z4|v|2 �
√

ε

∣

∣∇LM
Z (h1)

∣

∣

2

(1 + τ + r)1−2δ(1 + |τ − r |)3 .

Otherwise we have |M | � N − 5 and |J | � N − 5, so that we obtain
∣

∣

∣

̂A
Q,M,K
I,13

∣

∣

∣

2

(1 + τ + r)z2|v|2 +
∣

∣

∣B
Q,M,K
I,6

∣

∣

∣

2 +
∣

∣

∣A
Q,M,K
I,15

∣

∣

∣

2 +
∣

∣

∣A
Q,M,K
I,16

∣

∣

∣

2 +
∣

∣

∣A
Q,M,K
I,17

∣

∣

∣

2 +
∣

∣

∣A
Q,M,J ,K
I,18

∣

∣

∣

2

(1 + τ + r)z4|v|2

�
∑

|I0|�|I |

√
ε

∣

∣

∣LI0
Z (h1)

∣

∣

∣

2

(1 + τ + r)3−4δ(1 + |τ − r |)3 .

Combining all the previous estimates, we are then led to prove that for all |I0| � N ,

P0 :=
∫ t

0

∫

�τ

ε

(1 + τ + r)5−2δ
dxdτ � ε,

P
I0
1 :=

∫ t

0

∫

�τ

∣

∣LI0
Z (h1)

∣

∣

2
LT

(1 + τ + r)1−2δ(1 + |u|)4 ω
1
8
1
8
dxdτ �

{

ε, if |I0| < N ,

ε(1 + t)1+δ, if |I0| = N ,

P
I0
2 :=

∫ t

0

∫

�τ

∣

∣LI0
Z (h1)

∣

∣

2

(1 + τ + r)3−4δ(1 + |u|)2 ω
1
8
1
8
dxdτ �

{

ε, if |I0| < N ,

ε(1 + t)1+δ, if |I0| = N ,

P
I0
3 :=

∫ t

0

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2

(1 + τ + r)1−2δ(1 + |u|)2 ω
1
8
1
8
dxdτ �

{

ε, if |I0| < N ,

ε(1 + t)1+δ, if |I0| = N ,

P
I0
4 :=

∫ t

0

∫

�τ

1

(1 + τ + r)3−4δ

∣

∣∇LI0
Z (h1)

∣

∣

2
ω

1
8
1
8
dxdτ �

{

ε, if |I0| < N ,

ε(1 + t)1+δ, if |I0| = N .

As before, whenwewill apply theHardy inequality of Lemma 3.11 in the upcoming
computations, wewill not be able to exploit all the decay in u = τ −r in the exterior
region. Using first the Hardy inequality and then the wave gauge condition (10.5),
we have

P
I0
1 �

∫ t

0

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2
LT

(1 + τ + r)1−2δ ω1+δ

2+ 1
8
dxdτ � P

I0
3 + P0 +

∑

|J0|�|I0|
P

J0
2,4,

where,

P
I0
3 :=

∫ t

0

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2

(1 + τ + r)1−2δ ω1+δ

2+ 1
8
dxdτ
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and, as ω1+δ

2+ 1
8

� ω
1+2γ
1+γ ,

P
I0
2,4 :=

∫ t

0

∫

�τ

1 + |u|
(1 + τ + r)3−4δ

(

∣

∣∇LJ0
Z (h1)

∣

∣

2 +
∣

∣LJ0
Z (h1)

∣

∣

2

(1 + |u|)2
)

ω
1+2γ
1+γ dxdτ.

Using (12.2), we haveP0 � ε−1I0 � ε. AsmoreoverPI0
3 � P

I0
3 andPI0

2 +P
I0
4 �

P
I0
2,4, it only remains to deal with the integrals P

I0
3 and P

I0
2,4. Applying the Hardy

type inequality of Lemma 3.11 and using the bootstrap assumption (9.5), we get

P
I0
2,4 �

∫ t

0

∫

�τ

∣

∣∇LJ0
Z (h1)

∣

∣

2

(1 + τ + r)3−4δ ω2+2γ
γ dxdτ �

∫ t

0

E̊γ,2+2γ
N [h1](τ )

(1 + τ)2−4δ dτ � ε.

If |I0| � N −1, we have using 1+|u| � 1+τ +r and then Lemma 3.12 combined
with the bootstrap assumption (9.4) and γ − 3δ > 2δ,

P
I0
3 �

∫ t

0

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2

(1 + τ)γ−3δ

ω
1+γ
γ

1 + |u|dxdτ �
∫ t

0

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2

(1 + τ)γ−3δ

ω
1+2γ
γ

1 + |u|dxdτ � ε.

For the case |I0| = N , use supr∈R+
1+τ+r
1+|τ−r | � 1 + τ and then 3δ � 2γ as well as

1 + 1
8 − 2δ � γ in order to obtain

P
I0
3 �

∫ t

0
(1 + τ)2δ

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2

1 + τ + r
ω1+3δ
2+ 1

8−2δ
dxdτ

� (1 + t)2δ
∫ t

0

∫

�τ

∣

∣∇LI0
Z (h1)

∣

∣

2

1 + τ + r

ω
2+2γ
γ

1 + |u|dxdτ � (1 + t)2δ E̊γ,2+2γ
N [h1](t).

Using the bootstrap assumption (9.5) and that 4δ � 1+δ, we getP
I0
3 � ε(1+t)1+δ .

This concludes the proof. ��

13.3.5. Conclusion. According to Proposition 5.14, Lemmas 13.8-13.11 and
Propositions 13.12-13.14, Proposition 13.4 holds.

14. L2-Estimates on the Velocity Averages of the Vlasov Field

The purpose of this section is to prove that the assumptions of Proposi-
tions 12.1, 12.2, 12.4 and 12.9 on the energy momentum tensor T [ f ] of the
Vlasov hold. More precisely, we will prove L2-estimates on quantities such as
∫

v
|̂Z K f ||v|dv. If |K | � N − 4, this will be done using the pointwise decay esti-

mate (9.10). The main part of this section then consists in deriving such estimates
for |K | � N − 3. For this, we follow an improvement of the strategy used in
[18] (see Subsection 4.5.7), which was used in [9, Section 7] in the context of the
Vlasov–Maxwell system. Contrary to the method of [18], this improvement will
allow us to exploit all the null structures of the system. Let us first rewrite the
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commuted equations of the Einstein–Vlasov system and then we will explain how
we will proceed. Let M and M∞ be the following ordered sets:

M := {Imulti-index/N − 5 � |I | � N } = {I1, . . . , I|M|},
M∞ := {Kmulti-index/|K | � N − 5} = {K1, . . . , K|M∞|}.

Remark 14.1. We put the multi-indices of length N − 5 in these two sets for a
technical reason. Note that M contains all the multi-indices corresponding to the
derivatives on which we do not have any L2-estimate yet.

We also consider two vector valued fields F and W of respective lengths |M| and
|M∞| such that

Fi = F
[

̂Z Ii f
]

= ̂Z Ii f and Wk = ̂Z Kk f.

We will see below that it will be convenient to denote the i th component of F by
F
[

̂Z Ii f
]

. Let us denote byV the module over the ring {ψ/ψ : [0, T [×R
3
x ×R

3
v →

R} generated by (∂xμ)0�μ�3 and (∂v j )1� j�3.We now rewrite the Vlasov equations
satisfied by F and W .

Lemma 14.2. There exist two matrix-valued functions A : [0, T [×R
3
x × R

3
v →

M|M|(V) and B : [0, T [×R
3
x × R

3
v → M|M|,|M∞|(V) such that

Tg(F) + A · F = B · W.

Moreover, if 1 � i � |M| and Ii is the multi-index such that Fi = ̂Z Ii f , then A
and B are such that Tg(Fi ) can be written as a linear combination with polynomial
coefficients in wξ

w0
, 0 � ξ � 3, of the following terms,

LJ
Z (H)(w, dF[̂Z I j f ]), LJ

Z (H)(w, dWk),

∇p

(

LJ
Z H

)

(w,w) · ∂vp F[̂Z Ip f ], ∇p

(

LJ
Z H

)

(w,w) · ∂vp Wk ,

∇λ
(

LJ
Z H

)

(w,w) · wλ

w0
∂vq F[̂Z I j f ], ∇λ

(

LJ
Z H

)

(w,w) · wλ

w0
∂vq Wk ,

̂Z M1 (�v)LQ
Z (g−1)( dxμ, d F[̂Z I j f ]), ̂Z M1 (�v)LJ

Z (g−1)( dxμ, dWk),

̂Z M1 (�v) ∇p

(

LQ
Z H

)

(dxμ,w) · ∂vp F[̂Z I j f ], ̂Z M1 (�v) ∇p

(

LQ
Z H

)

(dxμ,w) · ∂vp Wk ,

̂Z M1 (�v)̂Z M2 (�v) ∇p

(

LQ
Z H

)μν · ∂vp F[̂Z I j f ], ̂Z M1 (�v)̂Z M2 (�v) ∇p

(

LQ
Z H

)μν · ∂vp Wk ,

̂Z M1(�v)∇λ
(

LQ
Z H

)

(dxμ,w) · wλ

w0
∂vq F[̂Z I j f ],

̂Z M1(�v)∇λ
(

LQ
Z H

)

(dxμ,w) · wλ

w0
∂vq Wk,

̂Z M1(�v)̂Z M2(�v)∇λ
(

LQ
Z H

)μν · wλ

w0
∂vq F[̂Z I j f ],

̂Z M1(�v)̂Z M2(�v)∇λ
(

LQ
Z H

)μν · wλ

w0
∂vq Wk,
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where, q ∈ �1, 3�, (μ, ν) ∈ �0, 3�2, |Kk | � N − 6, K P
k � I P

i with Wk = ̂Z Kk f ,

|J | + |Kk | � |Ii |, |M1| + |M2| + |Q| + |Kk | � |Ii |, |Kk | � |Ii | − 1,

|J | + |I j | � |Ii |, |M1| + |M2| + |Q| + |I j | � |Ii |, |I j | � |Ii | − 1.

Moreover I j , J , Q and M1 satisfy the following condition:

(1) either I P
j < I P

i ,

(2) or I P
j = I P

i and then J T � 1, QT + MT
1 � 1.

For the term ∇λ
(

LJ
Z H

)

(w,w) · wλ

w0
∂vq F[̂Z I j f ], J and I j satisfy the improved

condition that

|J | + |I j | � |Ii | − 1 and I P
j < I P

i .

Remark 14.3. Notice that if |Ii | = N − 5, then Aq
i = 0 for all 1 � q � |M|.

Proof. One only has to apply the commutation formula of Proposition 5.10 to
̂Z Ii f and replace each derivatives of the Vlasov field ̂Z K f , for |K | �= N − 5, by
the corresponding component of F or W . If |K | = N − 5, we replace it by the
corresponding component of F for the following reason. In the terms listed in the
Lemma, a derivative is applied to the components Wk . Hence, if |Kk | � N − 6, we
are able to rewrite ∂xμ Wk and ∂vi Wk as a combination of components of W , which
will be important later. ��
The goal is to obtain an L2-estimate on F . For this, let us split F as Fhom + F inh,
where

{

Tg(Fhom) + A · Fhom = 0, Fhom(0, ·, ·) = F(0, ·, ·),
Tg(F inh) + A · F inh = B · W, F inh(0, ·, ·) = 0.

By uniqueness, F = Fhom + F inh and it is thus sufficient to prove L2-estimates for
the velocity average of Fhom and F inh. To this end, schematically, we will establish
that F inh = K W , with K amatrix such thatE[K K W ] does not growth too fast, and
then use the pointwise decay estimates on

∫

v
|W ||v|dv given by (9.10) to obtain the

expected decay rate on ‖ ∫
v
|F inh||v|dv‖L2

x
. For ‖ ∫

v
|Fhom||v|dv‖L2

x
, we will make

crucial use of the Klainerman–Sobolev inequality of Proposition 3.15 so that we
will need to commute the transport equation satisfied by Fhom and prove L1-bounds
similar to the ones of Section 13.

It will be convenient to denote, similar to F , the components Fhom
i and F inh

i of
Fhom and F inh as follows:

Fhom
i = Fhom

[

̂Z Ii f
]

, F inh
i = F inh

[

̂Z Ii f
]

.

Remark 14.4. Contrary to [18], we kept, as in [9], the v-derivatives in the statement
of Lemma 14.2 in order to take advantage of the good behavior of radial component
of∇v F . Ifwe had already transformed the v-derivatives,wewould be leftwith terms
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such as x j

r (t − r)∂x j F from (∇v F)r (see Lemma 3.9). We would then have to deal

with factors such as t3

|x |3 during the treatment of the homogeneous part Fhom (apply

three boost to xk

|x | ) since we will have to commute at least three times the equation

Tg(Fhom) + A · Fhom = 0.
On the other hand, keeping the v-derivatives also creates two new technical dif-

ficulties compared to the strategy of [18]. We will circumvent them following [9].
The first one concerns Fhom and will lead us to consider a new hierarchy (see Sub-
section 14.1). The other one concerns certain source terms of the transport equation
satisfied by F inh, which contain derivatives of F inh. Because of the presence of top
order derivatives of h1, we will not commute this equation and these derivatives
have to be rewritten as a combination of components F inh and controlled terms,
which will be derivatives of Fhom.

14.1. The Homogeneous System

In order to obtain L∞, and then L2, estimates on
∫

v
|Fhom||v|dv, we will have

to commute at least three times the transport equation satisfied by each component
of Fhom. However, if for instance |Ii | = N − 4, we need to control the L1-norm of
̂Z K Fhom[̂Z I j f ], with |K | = 4 and |I j | = N − 5, to bound ‖̂Z I Fhom[̂Z Ii f ]‖L1

x,v
,

with |I | = 3.We then consider the following energy norm (recall that � = 2
3 N +6):

EFhom :=
∑

1�i�|M|

∑

0�k�N−|Ii |
E

�
3+k

[

Fhom
[

̂Z Ii f
]]

=
∑

1�i�|M|

∑

|Ii |+|I |�N+3

E
1
8 , 18

[

z�− 2
3 (I P+I P

i )
̂Z I

(

Fhom
[

̂Z Ii f
])]

. (14.1)

We have the following commutation formula:

Lemma 14.5. Let i ∈ �1, |M|� and I be a multi-index satisfying |Ii |+|I | � N +3.
Then, Tg(̂Z I Fhom[̂Z Ii f ]) can be written as a linear combination with polynomial
coefficients in wξ

w0
, 0 � ξ � 3, of the following terms:

• LJ
Z (H)(w, d̂Z K Fhom[̂Z I j f ]),

• ∇p

(

LJ
Z H

)

(w,w) · ∂vp
̂Z K Fhom[̂Z I j f ],

• ∇λ
(

LJ
Z H

)

(w,w) · wλ

w0
∂vq

̂Z K Fhom[̂Z I j f ],
• ̂Z M1(�v)LQ

Z (g−1)(dxμ, d̂Z K Fhom[̂Z I j f ]),
• ̂Z M1(�v)∇p

(

LQ
Z H

)

(dxμ,w) · ∂vp
̂Z K Fhom[̂Z I j f ],

• ̂Z M1(�v)̂Z M2(�v)∇p

(

LQ
Z H

)μν · ∂vp
̂Z K Fhom[̂Z I j f ],

• ̂Z M1(�v)∇λ
(

LQ
Z H

)

(dxμ,w) · wλ

w0
∂vq

̂Z K Fhom[̂Z I j f ],
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• ̂Z M1(�v)̂Z M2(�v)∇λ
(

LQ
Z H

)μν · wλ

w0
∂vq

̂Z K Fhom[̂Z I j f ], (14.2)

where, q ∈ �1, 3�, (μ, ν) ∈ �0, 3�2, j ∈ �1, |M|�,

|J | � N − 5, |M1| + |M2| + |Q| � N − 5, |K | � |I |, |I j | � |Ii |,
|K | + |I j | � |Ii | + |I | − 1.

Moreover K , J j , J , Q and M1 satisfy the following condition:

(1) either K P + I P
j < I P + I P

i ,

(2) or K P + I P
j = I P + I P

i and then J T � 1, QT + MT
1 � 1.

For the term (14.2), J and K satisfy the improved condition K P + I P
j < I P + I P

i .

Proof. Let i ∈ �1, |M|� and |I | � N + 3 − |Ii |. The starting point is the relation

Tg

(

̂Z I Fhom[̂Z Ii f ]
)

=
[

Tg,̂Z
I
] (

Fhom[̂Z Ii f ]
)

+ ̂Z I
(

Tg(Fhom[̂Z Ii f ])
)

.

According to Proposition 5.10, the error terms arising from the commutator
[

Tg,̂Z I
] (

Fhom[̂Z Ii f ]) are
• such as those listed in the lemma, with I j = Ii . Note that the conditions on |J |

and |M1| + |M2| + |Q| follows from |J | + |K |, |M1| + |M2| + |Q| + |K | �
|I | � N + 3 − |Ii | � 8 and N � 13;

• or such as ̂Z I0
(

Tg(Fhom[̂Z Ii f ])), with |I0| < |I | and I P
0 < I P .

The analysis of the other source terms is similar to the one made in order to derive
the commutation formula of Proposition 5.10. In view of the source terms of
Tg(Fhom[̂Z Ii f ]), listed in Lemma 14.2, and according to Lemmas 5.2, 5.6 and
5.9 , ̂Z I

(

Tg(Fhom[̂Z Ii f ])) and ̂Z I0
(

Tg(Fhom[̂Z Ii f ])) can be written as a linear
combination with polynomial coefficients in wξ

w0
of the terms written in this lemma.

The condition on |J | and |M1| + |M2| + |Q| follows in particular from
|K | + |J | + |I j | � |Ii | + |I | � N + 3,

|K | + |M1| + |M2| + |Q| + |I j | � N + 3,

|I j | � N − 5,

so that |J |, |M1| + |M2| + |Q| � 8 � N − 5. ��
We are now able to prove

Corollary 14.6. Let i ∈ �1, |M|� and I a multi-index satisfying |Ii |+ |I | � N +3.
Then, Tg(̂Z I Fhom[̂Z Ii f ]) can be bounded by a linear combination of terms of the
form
(√

ε|v|
1 + t

+
√

ε|wL |
1 + |t − r |

)

1

z
3
2

∣

∣

∣

̂Z K1 Fhom
[

̂Z I j1 f
]∣

∣

∣ , K P
1 + I P

j1 � I P + I P
i + 1,

(√
ε|v|

1 + t
+

√
ε|wL |

1 + |t − r |
)

∣

∣

∣

̂Z K2 Fhom
[

̂Z I j2 f
]∣

∣

∣ , K P
2 + I P

j2 � I P + I P
i ,
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(√
ε|v|

1 + t
+

√
ε|wL |

1 + |t − r |
)

z
3
2

∣

∣

∣

̂Z K3 Fhom
[

̂Z I j3 f
]∣

∣

∣ , K P
3 + I P

j3 < I P + I P
i ,

where for any 1 � q � 3, jq ∈ �1, 3� and |Kq | + |I jq | � |I | + |Ii | � N + 3. In
particular, in view of the definition (14.1) of EFhom , this implies that

E
1
8 , 18

[

z− 2
3 z�− 2

3 (I P+I P
i )
̂Z K1 Fhom

[

̂Z I j1 f
]]

(t)

+ E
1
8 , 18

[

z�− 2
3 (I P+I P

i )
̂Z K2 Fhom

[

̂Z I j2 f
]]

(t)

+ E
1
8 , 18

[

z
2
3 z�− 2

3 (I P+I P
i )
̂Z K3 Fhom

[

̂Z I j3 f
]]

(t) � EFhom(t).

Proof. Given two multi-indices I and K , we define the multi-index K I such that
̂Z K I = ̂Z K

̂Z I holds. The following intermediary result can be obtained from
Lemma 14.5 similar to the derivation of Proposition 5.14 from Proposition 5.10.
Fix i ∈ �1, |M|� and I such that |Ii | + |I | � N + 3. Then, Tg(̂Z I Fhom[̂Z Ii f ]) can
be bounded by a linear combination of the terms listed below, where ̂Z ∈ ̂P0 and
the multi-indices I j, K , J, M and Q will always satisfy

|K | � |I |, |I j | � |Ii |, |K | + |I j | < |I | + |Ii | � N + 3,

K P + I P
j � I P + I P

i

and |J | + |M | + |Q| � N − 5, so that h1 can be estimated pointwise. The most
problematic terms are

̂Q1 :=
∑

1�q�3

̂A
J,K I j
I Ii ,q

∣

∣

∣

̂ẐZ K Fhom
[

̂Z I j f
]∣

∣

∣ , K P + I P
j < I P + I P

i

Q1 :=
∑

4�p�11

A
J,K I j
I Ii ,p

∣

∣

∣∇̂Z K Fhom
[

̂Z I j f
]∣

∣

∣ , K P + I P
j < I P + I P

i ,

C1 :=
∑

14�n�17

A
Q,J,K I j
I Ii ,n

∣

∣

∣∇̂Z K Fhom
[

̂Z I j f
]∣

∣

∣ , K P + I P
j < I P + I P

i ,

̂Q2 :=
∑

1�q�3

̂A
J,K I j
I Ii ,q

∣

∣

∣

̂ẐZ K Fhom
[

̂Z I j f
]∣

∣

∣ , J T � 1, K P + I P
j = I P + I P

i ,

Q2 :=
∑

4�p�10

A
J,K I j
I Ii ,p

∣

∣

∣∇̂Z K Fhom
[

̂Z I j f
]∣

∣

∣ , J T � 1, K P + I P
j = I P + I P

i ,

C2 :=
∑

14�n�17

A
Q,J,K I j
I Ii ,n

∣

∣

∣∇̂Z K Fhom
[

̂Z I j f
]∣

∣

∣ , QT + J T � 1, K P + I P
j = I P + I P

i .

The other ones are

̂R :=
(

̂B
K I j
I Ii ,0

+ ̂B
J,K I j
I Ii ,1

+ ̂B
J,K I j
I Ii ,2

+̂A
Q,J,K I j
I Ii ,12

+̂A
Q,J,K I j
I Ii ,13

)∣

∣

∣

̂ẐZ K Fhom
[

̂Z I j f
]∣

∣

∣,

R :=
(

B
K I j
I Ii ,00

+ B
J,K I j
I Ii ,3

+ B
J,K I j
I Ii ,4

+ B
J,K I j
I Ii ,5

+ B
Q,J,K I j
I Ii ,6

+ A
Q,M,J,K I j
I Ii ,18

)∣

∣

∣∇̂Z K Fhom
[

̂Z I j f
]∣

∣

∣.

Recall that ̂B
K I j
I Ii ,0

� √
ε|v|(1+ t +r)−2 andB

K I j
I Ii ,00

� √
ε|v|(1+ t +r)−1. Apply

then Propositions 13.12-13.13, as well as z � 1 + t + r for the first inequality, in
order to obtain

z
2
3

z
2
3

(

̂Q2 + ̂R
)

�
(√

ε|v|
1 + t

+
√

ε|wL |
1 + |t − r |

)

1

z
2
3

∣

∣

∣

̂ẐZ K Fhom
[

̂Z I j1 f
]∣

∣

∣ , K P + I P
j � I P + I P

i ,
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Q2 + C2 + R �
(√

ε|v|
1 + t

+
√

ε|wL |
1 + |t − r |

)

∣

∣

∣∇̂Z K Fhom
[

̂Z I j1 f
]∣

∣

∣ , K P + I P
j � I P + I P

i ,

̂Q1 �
(√

ε|v|
1 + t

+
√

ε|wL |
1 + |t − r |

)

∣

∣

∣

̂ẐZ K Fhom
[

̂Z I j1 f
]∣

∣

∣ , K P + I P
j < I P + I P

i ,

z
2
3

z
2
3

(Q1 + C1) �
(√

ε|v|
1 + t

+
√

ε|wL |
1 + |t − r |

)

z
2
3

∣

∣

∣∇̂Z K Fhom
[

̂Z I j1 f
]∣

∣

∣ , K P + I P
j < I P + I P

i .

It remains to notice that ∇̂Z K (respectively ̂ẐZ K ) contains K P (respectively at
most 1 + K P ) homogeneous vector fields. ��
As Fhom(0, ·, ·) = F(0, ·, ·), it then follows from the previous corollary and the
smallness assumptions on f , h1 and the mass M that there exists a constantCF > 0
such that EFhom(0) � CFε.

Proposition 14.7. There exists a constant C F > 0 such that, if ε is small enough,

EFhom(t) � C Fε(1 + t)
δ
2 for all t ∈ [0, T [. Moreover, for any |Ii | + |I | � N and

for all (t, x) ∈ [0, T [×R
3, we have

∫

R3
v

z�−2− 2
3 (I P

i +I P )
∣

∣

∣

̂Z I Fhom
[

̂Z Ii f
]∣

∣

∣ (t, x, v)dv � ε(1 + t)
δ
2

(1 + t + r)2(1 + |t − r |) 7
8

.

Proof. We use again the continuity method. There exists 0 < T0 � T such that

EFhom(t) � C Fε(1 + t)
δ
2 for all t ∈ [0, T0[. Let us improve this estimate, if ε is

small enough and forC F chosen large enough.Theproof follows closelySection13.
According to the energy estimate of Proposition 8.1, the smallness of EFhom(0) and
the bootstrap assumption on EFhom , we have

E
1
8 , 18

[

z�− 2
3 (I P +I P

i )
̂Z I
(

Fhom[̂Z Ii f ]
)]

(t) � C0ε + Cε
3
2 (1 + t)

δ
2 + C

(

ZI,Ii + Z I,Ii
)

,

where C0 is a constant independent of C F ,

ZI,Ii :=
(

� − 2

3
(I P + I P

i )

)∫ t

0

∫

�τ

∫

R3
v

z�− 2
3 (I P +I P

i )−1|Tg(z)|
∣

∣

∣

̂Z I Fhom[̂Z Ii f ]
∣

∣

∣ dv ω
1
8
1
8
dx dτ,

Z I,Ii :=
∫ t

0

∫

�τ

∫

R3
v

z�− 2
3 (I P +I P

i )
∣

∣

∣Tg

(

̂Z I Fhom[̂Z Ii f ]
)∣

∣

∣ dv ω
1
8
1
8
dxdτ.

Using |Tg(z)| �
√

ε|v|z
1+t+r +

√
ε|wL |z

1+|t−r | (see (13.8)) and (3.35), we can bound ZI,Ii by

√
ε

∫ t

0

E
1
8 , 18

[

z�− 2
3 (I P +I P

i )
̂Z I Fhom

[

̂Z Ii f
]

]

(τ )

1 + τ
dτ + √

εE
1
8 , 18

[

z�− 2
3 (I P +I P

i )
̂Z I Fhom

[

̂Z Ii f
]]

(t).

Then, Definition (14.1) of EFhom and the bootstrap assumption on it lead to

ZI,Ii �
√

ε

∫ t

0

EFhom(τ )

1 + τ
dτ + √

εEFhom(t) � ε
3
2 (1 + t)

δ
2 .

The integral Z I,Ii can be bounded similarly using Corollary 14.6 instead of (13.8).
We then deduce from (14.1) and the last estimates that there exists a constant C0
independent of C F such that

EFhom(t) − C0ε � ε
3
2 (1 + t)

δ
2 ,
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which improves the bootstrap assumption if ε is small enough and C F chosen large
enough. This implies that T0 = T . The pointwise decay estimates can then be
obtained from the Klainerman–Sobolev inequality of Proposition 3.15 and the fact

that EFhom controls up to three derivatives of z�−2− 2
3 (I P

i +I P )
̂Z I Fhom

[

̂Z Ii f
]

, for
any |I | + |Ii | � N . ��

14.2. The Inhomogeneous System

To derive an L2-estimate on F inh, we cannot commute the transport equation
because B contains top order derivatives of h1. We then need to rewrite the deriva-
tives of F inh, kept in thematrix A in order to use the full null structure of the system,
in terms of quantities that we can control. To this end, we will use the following
result:

Lemma 14.8. Let i ∈ �1, |M|� such that |Ii | � N − 1 and 0 � μ � 3. Then,

∂xμ Finh
[

̂Z Ii f
]

= Finh
[

∂xμ̂Z Ii f
]

+ Fhom
[

∂xμ̂Z Ii f
]

− ∂xμ Fhom
[

̂Z Ii f
]

,

Moreover,

∣

∣

∣L Finh
[

̂Z Ii f
]∣

∣

∣ � 1 + |t − r |
1 + t + r

3
∑

λ=0

∣

∣

∣Finh
[

∂xλ̂Z Ii f
]∣

∣

∣+
∣

∣

∣Fhom
[

∂xλ̂Z Ii f
]∣

∣

∣+
∣

∣

∣∂xλ Fhom
[

̂Z Ii f
]∣

∣

∣

+ 1

1 + t + r

∑

̂Z∈̂P0

∣

∣

∣Finh
[

̂ẐZ Ii f
]∣

∣

∣ +
∣

∣

∣Fhom
[

̂ẐZ Ii f
]∣

∣

∣ +
∣

∣

∣

̂Z Fhom
[

̂Z Ii f
]∣

∣

∣ .

For the v derivatives, it holds that

∣

∣

∣

∣

(

∇v Finh
[

̂Z Ii f
])A

∣

∣

∣

∣

� t

|v|
3
∑

λ=0

∣

∣

∣Finh
[

∂xλ̂Z Ii f
]∣

∣

∣+
∣

∣

∣Fhom
[

∂xλ̂Z Ii f
]∣

∣

∣+
∣

∣

∣∂xλ Fhom
[

̂Z Ii f
]∣

∣

∣

+ 1

|v|
∑

̂Z∈̂P0

∣

∣

∣Finh
[

̂ẐZ Ii f
]∣

∣

∣ +
∣

∣

∣Fhom
[

̂ẐZ Ii f
]∣

∣

∣ +
∣

∣

∣

̂Z Fhom
[

̂Z Ii f
]∣

∣

∣ ,

∣

∣

∣

(

∇v Finh
[

̂Z Ii f
])r ∣

∣

∣ � |t − r |
|v|

3
∑

λ=0

∣

∣

∣Finh
[

∂xλ̂Z Ii f
]∣

∣

∣+
∣

∣

∣Fhom
[

∂xλ̂Z Ii f
]∣

∣

∣+
∣

∣

∣∂xλ Fhom
[

̂Z Ii f
]∣

∣

∣

+ 1

|v|
∑

̂Z∈̂P0

∣

∣

∣Finh
[

̂ẐZ Ii f
]∣

∣

∣ +
∣

∣

∣Fhom
[

̂ẐZ Ii f
]∣

∣

∣ +
∣

∣

∣

̂Z Fhom
[

̂Z Ii f
]∣

∣

∣ .

Proof. Recall that F = Fhom + F inh and note that for any ̂Z ∈ ̂P0 and N − 5 �
|Ii | � N − 1, we have ̂Z F[̂Z Ii f ] = ̂ẐZ Ii f = F[̂ẐZ Ii f ]. Consequently,

̂Z F inh
[

̂Z Ii f
]

= F inh
[

̂ẐZ Ii f
]

+ Fhom
[

̂ẐZ Ii f
]

− ̂Z Fhom
[

̂Z Ii f
]

. (14.3)

This directly implies the first identity of the lemma. For the second one, combine
(14.3) with (3.34). Finally, for the last two ones, combine (14.3) with Lemma 3.9.

��
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In order to rewrite the transport equation satisfied by F inh, we will then need to
consider a larger vector valued field than W . Moreover, in order to take advantage
of the hierarchies that we identified in the commuted Vlasov equation, wewill work
with a slightly different quantity than F inh.

Definition 14.9. Let F inh
z be the vector valued field of length |M| defined by

F inh
z,i := z

2
3 (N−I P

i )F inh
[

̂Z Ii f
]

.

We define Y as a the vector valued field of length lY containing the following
quantities:

• All z
2
3 (N−K P )

̂Z K f satisfying |K | � N − 5. In other words, z
2
3 (N−K P

k )Wk for
all k ∈ �1, |M∞|�.

• z
2
3 (N−I P−I P

j )
̂Z I Fhom

[

̂Z I j f
]

for all |I | + |I j | � N .

We are now ready to prove the following two results:

Lemma 14.10. There exist two matrix-valued functions A : [0, T [×R
3
x × R

3
v →

M|M|(R), B : [0, T [×R
3
x × R

3
v → M|M|,lY (R) such that

Tg(Finh
z ) + A · Finh

z = B · Y.

Moreover, A and B are such that, if i ∈ �1, |M|�, TF (Finh
z,i ) can be bounded by a

linear combination of terms of the form

( √
ε|v|

1 + t + r
+

√
ε|wL |

1 + |t − r |
)

|Finh
z, j |, |I j | � |Ii |,

and, where |Q| + |M | + |J | � |Ii | (the value of the multi-index K is irrelevant
here),

(

̂BK
I,0+̂BJ,K

I,1 +̂BJ,K
I,2 +̂AJ,K

I,1 +̂AJ,K
I,2 +̂AJ,K

I,3 +̂A
Q,M,K
I,12 +̂A

Q,M,K
I,13

)

z
2
3 |Y |,

∑

4� j�11

∑

14�q�17

(

BK
I,00+BJ,K

I,3 +BJ,K
I,4 +BJ,K

I,5 +B
Q,J,K
I,6 +AJ,K

I, j +A
Q,J,K
I,q +A

Q,M,J,K
I,18

)

|Y |.

Proof. Fix i ∈ �1, |M|� and note that, since Tg(F inh) + A · F inh = B · W ,

Tg(F inh
z,i ) = z

2
3 (N−I P

i )−1Tg(z)F inh
[

̂Z Ii f
]

− Aq
i z

2
3 (N−I P

i ) F inh
[

̂Z Iq f
]

+ Bk
i z

2
3 (N−I P

i )Wk .

Since |z 2
3 (N−I P

i )F inh[̂Z Ii f ]| = |F inh
z,i | � |F inh

z |, we obtain using (13.8) that

∣

∣

∣z
2
3 (N−I P

i )−1Tg(z)F inh
[

̂Z Ii f
]∣

∣

∣ �
∣

∣

∣

∣

Tg(z)

z

∣

∣

∣

∣

∣

∣F inh
z

∣

∣ �
( √

ε|v|
1 + t + r

+
√

ε|wL |
1 + |t − r |

)

|F inh
z |.

One can bound Bk
i z

2
3 (N−I P

i )Wk by applying directly Proposition 5.14 since, accord-
ing to Lemma 14.2, Bk

i Wk is a combination of error terms arising from [Tg,̂Z Ii ].
We can then control it by a linear combination of the error terms
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(

̂BK
I,0+̂BJ,K

I,1 +̂BJ,K
I,2 +̂AJ,K

I,1 +̂AJ,K
I,2 +̂AJ,K

I,3 +̂A
Q,M,K
I,12 +̂A

Q,M,K
I,13

)

z
2
3 (N−I P

i )|̂Z Wq |,
∑

4� j�11
14�q�17

(

BK
I,00+BJ,K

I,3 +BJ,K
I,4 +BJ,K

I,5 +B
Q,J,K
I,6 +AJ,K

I, j +A
Q,J,K
I,q +A

Q,M,J,K
I,18

)

z
2
3 (N−I P

i )|∇Wq |,

where |Kq | � N − 6, K P
q � I P

i , |Q| + |M | + |J | � |Ii | and ̂Z ∈ ̂P0. As
|Kq | � N − 6, there exist, for any 0 � λ � 3, (p, sλ) ∈ �1, lY �2 such that

Yp = z
2
3 (N−K P

q −1)
̂ẐZ Kq f, Ysλ = z

2
3 (N−K P

q )∂λ
̂Z Kq f.

This implies, since K P
q � I P

i , that

z
2
3 (N−I P

i )
∣

∣̂Z Wq
∣

∣ � z
2
3 |Yp|, |z 2

3 (N−I P
i )|∇Wq | �

3
∑

λ=0

|Ysλ |,

and the term B · W can then be rewritten in order to be included in the product
B · Y .

Let us now focus on the terms Aq
i z

2
3 (N−I P

i )F inh
[

̂Z Iq f
]

, which are fully
described by Lemma 14.2. Similar to the way we estimated the terms listed in
Proposition 5.10 during the proof of Proposition 5.14, but using now Lemma 14.8
instead of (3.32), (3.33) and (3.34), these can be estimated by the terms written
below. The multi-indices I j , Q, M and J will satisfy

I P
j � I P

i , |Q| + |M | + |J | + |I j | � |Ii |,
so that

|Q| + |M | + |J | � N − (N − 5) � 5 � N − 5,

and we will have ̂Z ∈ ̂P0, 0 � λ � 3. Moreover, for convenience we define

A
J,I j
Ii ,11

:= 0 when I P
j = I P

i . These terms are

̂Qinh :=
∑

1�q�3

̂A
J,I j
Ii ,q

· z
2
3 (N−I P

i )
∣

∣

∣F inh
[

̂ẐZ I j f
]∣

∣

∣ , I P
j < I P

i or J T � 1,

̂Qhom :=
∑

1�q�3

̂A
J,I j
Ii ,q

· z
2
3 (N−I P

i )
(∣

∣

∣Fhom
[

̂ẐZ I j f
]∣

∣

∣ +
∣

∣

∣

̂Z Fhom
[

̂Z I j f
]∣

∣

∣

)

,

Qinh :=
∑

4�p�11

A
J,I j
Ii ,p · z

2
3 (N−I P

i )
∣

∣

∣F inh
[

∂λ
̂Z I j f

]∣

∣

∣ , I P
j < I P

i or J T � 1,

Cinh :=
∑

14�n�17

A
Q,J,I j
Ii ,n

· z
2
3 (N−I P

i )
∣

∣

∣F inh
[

∂λ
̂Z I j f

]∣

∣

∣ , I P
j < I P

i or QT + J T � 1,

Qhom+ Chom :=
(

∑

4�p�11
14�n�17

A
J,I j
Ii ,p + A

Q,J,I j
Ii ,n

)

z
2
3 (N−I P

i )
(∣

∣

∣Fhom
[

∂λ
̂Z I j f

]∣

∣

∣+
∣

∣

∣∂λ Fhom
[

̂Z I j f
]∣

∣

∣

)

,

and
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̂Rinh :=
(

̂B
I j
Ii ,0

+ ̂B
J,I j
Ii ,1

+ ̂B
J,I j
Ii ,2

+ ̂A
Q,J,I j
Ii ,12

+ ̂A
Q,J,I j
Ii ,13

)

z
2
3 (N−I P

I )
∣

∣

∣Fhom
[

̂ẐZ I j f
]∣

∣

∣,

Rinh :=
(

B
I j
Ii ,00

+B
J,I j
Ii ,3

+B
J,I j
Ii ,4

+ B
J,I j
Ii ,5

+ B
Q,J,I j
Ii ,6

+ A
Q,M,J,I j
Ii ,18

)

z
2
3 (N−I P

I )
∣

∣

∣Fhom
[

∂λ
̂Z I j f

]∣

∣

∣,

̂Rhom :=
(

̂B
I j
Ii ,0

+ ̂B
J,I j
Ii ,1

+ ̂B
J,I j
Ii ,2

+ ̂A
Q,J,I j
Ii ,12

+ ̂A
Q,J,I j
Ii ,13

)

z
2
3 (N−I P

i )
(∣

∣

∣Fhom
[

̂ẐZ I j f
]∣

∣

∣ +
∣

∣

∣

̂Z Fhom
[

̂Z I j f
]∣

∣

∣

)

,

Rhom :=
(

B
I j
Ii ,00

+B
J,I j
Ii ,3

+B
J,I j
Ii ,4

+ B
J,I j
Ii ,5

+ B
Q,J,I j
Ii ,6

+ A
Q,M,J,I j
Ii ,18

)

z
2
3 (N−I P

i )
(∣

∣

∣Fhom
[

∂λ
̂Z I j f

]∣

∣

∣

+
∣

∣

∣∂λ Fhom
[

̂Z I j f
]∣

∣

∣

)

.

Since |I j | � |Ii |−1, there exists, for any 0 � λ � 3, (p1, p2, qλ,1, qλ,2) ∈ �1, lY �4

such that

Yp1 = z
2
3 (N−I P

j −1)Fhom
[

̂ẐZ I j f
]

, Yp2 = z
2
3 (N−I P

j −1)
̂Z Fhom

[

̂Z I j f
]

,

Yqλ,1 = z
2
3 (N−I P

j )Fhom
[

∂λ
̂Z I j f

]

, Yqλ,2 = z
2
3 (N−I P

j )
∂λFhom

[

̂Z I j f
]

.

As I P
j � I P

i , we obtain that ̂Qhom + ̂Rhom can be bounded by
(

̂BK
I,0+̂BJ,K

I,1 +̂BJ,K
I,2 +̂AJ,K

I,1 +̂AJ,K
I,2 +̂AJ,K

I,3 +̂A
Q,M,K
I,12 +̂A

Q,M,K
I,13

)

z
2
3 (|Yp1 | + |Yp2 |)

and Qhom + Chom + Rhom by

∑

0�λ�3

∑

3�n�5
4� j�11
14�q�17

(

BK
I,00+BJ,K

I,n +B
Q,J,K
I,6 +AJ,K

I, j +A
Q,J,K
I,q +A

Q,M,J,K
I,18

)

(|Ypλ,1 | + |Ypλ,2 |).

This concludes the construction of the matrix B. In order to deal with the remaining
terms, note first that since |I j | � |Ii | − 1, there exists k,kλ ∈ �1, |M|� such that

F inh
z,k = z

2
3 (N−I P

j −1)F inh
[

̂ẐZ I j f
]

, F inh
z,kλ

= z
2
3 (N−I P

j )F inh
[

∂λ
̂Z I j f

]

.

Consequently, we have

if I P
j < I P

i , z
2
3 (N−I P

i )
(∣

∣

∣F inh
[

̂ẐZ I j f
]∣

∣

∣+
∣

∣

∣F inh
[

∂λ
̂Z I j f

]∣

∣

∣

)

� |F inh
z,k | + z− 2

3 |F inh
z,kλ

|,
(14.4)

if I P
j = I P

i , z
2
3 (N−I P

i )
(∣

∣

∣F inh
[

̂ẐZ I j f
]∣

∣

∣+
∣

∣

∣F inh
[

∂λ
̂Z I j f

]∣

∣

∣

)

� (1 + t + r)
2
3 |F inh

z,k | + |F inh
z,kλ

|.
(14.5)

Recall that ̂B
I j
Ii ,0

� √
ε(1 + t + r)−2 and B

I j
Ii ,00

� √
ε(1 + t + r)−1. Using that

I P
j � I P

i and Proposition 13.12, we then get

̂Rinh + Rinh �
( √

ε|v|
1 + t + r

+
√

ε|wL |
1 + |t − r |

)

⎛

⎝|F inh
z,k | +

∑

0�λ�3

|F inh
z,kλ

|
⎞

⎠
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If I P
j < I P

i , we obtain from Proposition 13.13 and (14.4) that

̂Qinh + Qinh + Cinh �
( √

ε|v|
1 + t + r

+
√

ε|wL |
1 + |t − r |

)

⎛

⎝|F inh
z,k | +

∑

0�λ�3

|F inh
z,kλ

|
⎞

⎠ .

(14.6)

Finally, if I P
j = I P

i , then we have J T � 1 in the terms ̂Qinh andQinh (recall that in

that case A
J,I j
Ii ,11

= 0) as well as J T + QT � 1 in the term Cinh. Proposition 13.13
and (14.5) then also yield to the estimate (14.6). Since |Ik | = |Ikλ | � |Ii |, this
concludes the construction of the matrix A and then the proof. ��
Lemma 14.11. There exists a matrix valued field D : [0, T [×R

3
x ×R

3
v → MlY (R)

such that Tg(Y ) = D · Y and

∀ i ∈ �1, lY �,
∣

∣Tg(Yi )
∣

∣ �
( √

ε|v|
1 + t + r

+
√

ε|wL |
1 + |t − r |

)

|Y |.

Proof. Let i ∈ �1, lY � and recall that either Yi = z
2
3 (N−K P )

̂Z K f or Yi =
z
2
3 (N−I P−I P

i )
̂Z I Fhom[̂Z Ii f ], where |I | + |Ii | � N . Using (13.8), we obtain

|Tg(Yi )| �
( √

ε|v|
1 + t + r

+
√

ε|wL |
1 + |t − r |

)

|Yi | +
{

z
2
3 (N−K P )

∣

∣Tg
(

̂Z K f
)∣

∣ or

z
2
3 (N−I P −I P

i )
∣

∣Tg
(

̂Z I Fhom[̂Z Ii f ])∣∣.

Then, z
2
3 (N−I P−I P

i )
∣

∣Tg
(

̂Z I Fhom[̂Z Ii f ])∣∣ can be bounded by applying Corol-

lary 14.6. For z
2
3 (N−K P )

∣

∣Tg
(

̂Z K f
)∣

∣, the result ensues from the fact that Tg
(

̂Z K f
)

can be bounded by a linear combination of terms of the form
( √

ε|v|
1 + t + r

+
√

ε|wL |
1 + |t − r |

)

1

z
3
2

∣

∣

∣

̂Z K1 f
∣

∣

∣ , K P
1 � K P + 1,

( √
ε|v|

1 + t + r
+

√
ε|wL |

1 + |t − r |
)

∣

∣

∣

̂Z K2 f
∣

∣

∣ , K P
2 � K P ,

( √
ε|v|

1 + t + r
+

√
ε|wL |

1 + |t − r |
)

z
3
2

∣

∣

∣

̂Z K3 f
∣

∣

∣ , K P
3 < K P .

This can be obtained from Proposition 5.14 exactly as we obtained Corollary 14.6
from Lemma 14.5 since Tg

(

̂Z K f
)

only contains derivatives of h1 of order at most
|K | � N −5. In other word, we combine Proposition 5.14 with Propositions 13.12
and 13.13 . ��
Consider now K satisfyingTg(K )+ A · K + K · D = B and K (0, ·, ·) = 0. Hence,
K · Y = F inh

z since they both initially vanish and Tg(K Y ) + AK Y = BY . Recall
that the Vlasov field and h1 have a bad behavior at top order. In order to derive
better estimates on F inh

z,i for |Ii | < N , we define the following subset of M,

MN−1 := {I ∈ M / |I | � N − 1}
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and we assume for simplicity that the ordering on M is such that MN−1 =
{I1, . . . I|MN−1|}. The goal now is to control the energies

E
N−1
F inh :=

|MN−1|
∑

i=0

lY
∑

j=0

lY
∑

q=0

E
1
8 , 18

[

∣

∣

∣K
j

i

∣

∣

∣

2
Yq

]

, E
N
F inh :=

|M|
∑

i=0

lY
∑

j=0

lY
∑

q=0

E
1
8 , 18

[

∣

∣

∣K
j

i

∣

∣

∣

2
Yq

]

.

We will then be naturally led to use that

TF

(

|K j
i |2Yq

)

= |K j
i |2D

r
qYr − 2

(

A
p
i K j

p + K r
i D

j
r

)

K j
i Yq + 2B

j
i K j

i Yq . (14.7)

Remark 14.12. Lemma 14.10 gives us the following:

• If i ∈ �1, |MN−1|�, then A
p
i = 0 for all p > |MN−1|, that is for all |Ip| = N .

Consequently, in that case, the only components K j
s appearing in the term

A
p
i K j

p satisfy 1 � s � |MN−1|.
• If i ∈ �1, |MN−1|�, then B

j
i contains only derivatives of h1 up to order |Ii | �

N − 1.

Proposition 14.13. If ε is small enough, we have

∀ t ∈ [0, T [, E
N−1
Finh (t) � ε(1 + t)

δ
2 and E

N
Finh(t) � ε(1 + t)1+

3
2 δ.

Proof. Let T0 ∈ [0, T [ the largest time such that EN−1
F inh (t) � ε(1 + t)

δ
2 and

E
N
F inh(t) � ε(1 + t)1+ 3

2 δ for all t ∈ [0, T0[. By continuity, T0 > 0. The remaining
of the proof consists in improving these bootstrap assumptions, which would imply
the result. For convenience, wewill sometime denoteM byMN . Fix n ∈ {N −1, N }
and consider i ∈ �1, |Mn|� and ( j, q) ∈ �1, lY �2. According to the energy estimate
of Proposition 8.1, K (0, ·, ·) = 0 and (14.7), we have

E
1
8 , 18

[∣

∣K j
i

∣

∣

2
Yq
]

(t) �
√

ε

∫ t

0

E
1
8 , 18

[∣

∣K j
i

∣

∣

2
Yq
]

(τ )

1 + τ
dτ + IA,D + IB

�
√

ε

∫ t

0

E
n
F inh(τ )

1 + τ
dτ + IA,D + IB,

where

IA,D :=
∫ t

0

∫

�τ

∫

R3
v

∣

∣

∣|K j
i |2D

r
qYr − 2

(

A
p
i K j

p + K r
i D

j
r

)

K j
i Yq

∣

∣

∣ dvω
1
8
1
8
dxdτ,

IB :=
∫ t

0

∫

�τ

∫

R3
v

∣

∣

∣B
j
i K j

i Yq

∣

∣

∣ dvω
1
8
1
8
dxdτ.

Using Lemmas 14.10-14.11 and Remark 14.12 (for the case n = N −1), we obtain
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IA,D �
|M|
∑

r=1

|Mn |
∑

p=1

∫ t

0

∫

�τ

∫

R3
v

( √
ε|v|

1 + t + r
+

√
ε|wL |

1 + |t − r |
)(

∣

∣K j
i

∣

∣

2+∣

∣K r
i

∣

∣

2+
∣

∣

∣K
j
p

∣

∣

∣

2
)

|Y |dvω
1
8
1
8
dxdτ

�
√

ε

∫ t

0

E
n
F inh (τ )

1 + τ
dτ + √

εEn
F inh (t).

The bootstrap assumptions on E
N−1
F inh and E

N
F inh then give us

IA,D + √
ε

∫ t

0

E
n
F inh(τ )

1 + τ
dτ �

{

ε
3
2 (1 + t)

δ
2 , if n = N − 1,

ε
3
2 (1 + t)1+ 3

2 δ, if n = N .

We now focus on IB . Recall from Lemma 13.11 the definition of ̂H and H and

from Lemma 14.10 the form of B j
i . By the Cauchy–Schwarz inequality in (t, x),

IB can be bounded by the terms

I0 :=
∫ t

0

∫

�τ

∫

R3
v

(

z
2
3 ̂BK

Ii ,0 + BK
Ii ,00

)

∣

∣K j
i Yq

∣

∣dvω
1
8
1
8
dxdτ,

̂I :=
∣

∣

∣

∣

∣

∣

̂H ·
∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

z
5
3
∣

∣K j
i

∣

∣|Y ||v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dxdτ

∣

∣

∣

∣

∣

∣

1
2

,

I :=
∣

∣

∣

∣

∣

∣

H ·
∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

z2
∣

∣K j
i

∣

∣|Y ||v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dxdτ

∣

∣

∣

∣

∣

∣

1
2

,

where the multi-indices J , M , Q, J , M and Q, which are hidden in ̂H and H,
satisfy25

|J | � |Ii | � n, |Q| + |M | � n, |Q| + |M| + |J | � n.

Now, recall from Proposition 13.14 that

̂H + H �
{

ε, if n = N − 1,
ε(1 + t)1+δ, if n = N .

To deal with the second factor of I and̂I, we follow the computations made dur-
ing the proof of Lemma 13.7. Recall first that for any k ∈ �1, ly�, there exists

|K | � N − 5 or |I | + |I j | � N such that Yk = z
2
3 (N−K P )

̂Z K f or Yk =
z
2
3 (N−I P−I P

j )
̂Z I Fhom[̂Z I j f ]. Hence, using (9.10) and Proposition 14.7, we have

25 As in the statement of Lemma 14.10, the multi-index K has no meaning here.
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∀ (τ, x) ∈ [0, T [×R
3,

∫

R3
v

|v|z4|Y |(τ, x, v)dv � ε(1 + τ)
δ
2

(1 + τ + r)2(1 + |τ − r |) 7
8

. (14.8)

Using the Cauchy–Schwarz inequality in v, we then obtain, as i � |Mn|, that
∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

z2
∣

∣K j
i

∣

∣|Y ||v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dxdτ

�
∫ t

0

∫

�τ

(1 + τ + r)

∫

R3
v

z4|Y ||v|dv
∫

R3
v

∣

∣K j
i

∣

∣

2|Y ||v|dvω
1
8
1
8
dxdτ

�
∫ t

0

ε

(1 + τ)1− δ
2

∫

�τ

∫

R3
v

∣

∣K j
i

∣

∣

2|Y ||v|dvω
1
8
1
8
dxdτ

�
∫ t

0

ε E
n
F inh(τ )

(1 + τ)1− δ
2

�
{

ε2(1 + t)δ, if n = N − 1,
ε2(1 + t)1+2δ, if n = N .

As z
5
3 � z2, we obtain that I +̂I � ε

3
2 (1 + t)

δ
2 if n = N − 1 and I +̂I �

ε
3
2 (1 + t)1+ 3

2 δ if n = N . Finally, since 1 + |t − r | � z (see Lemma 3.7) and
̂BK

Ii ,0
� √

ε|v|(1+ t +r)−2,B
I j
Ii ,00

� √
ε|v|(1+ t +r)−1, we get, by the Cauchy–

Schwarz inequality in x , that

I0 �
∫ t

0

∣

∣

∣

∣

∣

∫ +∞

r=0

ε(1 + |τ − r |) 1
8 r2dr

(1 + τ + r)2(1 + |τ − r |)4
∣

∣

∣

∣

∣

1
2
∣

∣

∣

∣

∣

∣

∫

�τ

∣

∣

∣

∣

∣

∫

R3
v

z2
∣

∣K j
i

∣

∣|Y ||v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx

∣

∣

∣

∣

∣

∣

1
2

dτ.

Since
∫ +∞

r=0

ε(1 + |τ − r |) 1
8 r2dr

(1 + τ + r)2(1 + |τ − r |)4 � ε

∫ +∞

r=0

dr

(1 + |τ − r |) 7
2

� ε,

∫

�τ

∣

∣

∣

∣

∣

∫

R3
v

z2
∣

∣K j
i

∣

∣|Y ||v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx �

∫

�τ

∫

R3
v

z4|Y ||v|dv
∫

R3
v

∣

∣K j
i

∣

∣

2|Y ||v|dvω
1
8
1
8
dx,

we obtain from the pointwise decay estimate on
∫

v
z4|Y ||v|dv and the bootstrap

assumption on E
n
F inh that

I0 �
∫ t

0

√
ε

(1 + τ)1− δ
4

∣

∣E
n
F inh(τ )

∣

∣

1
2 dτ �

{

ε
3
2 (1 + t)

δ
2 , if n = N − 1,

ε
3
2 (1 + t)1+δ, if n = N .

We then deduce that IB � ε
3
2 (1 + t)

δ
2 if i � |Mn| and IB � ε

3
2 (1 + t)1+ 3

2 δ

otherwise, so that

E
n
F inh(t) =

|Mn |
∑

i=0

lY
∑

j=0

lY
∑

q=0

E
1
8 , 18

[

∣

∣

∣K
j

i

∣

∣

∣

2
Yq

]

(t) �
{

ε
3
2 (1 + t)

δ
2 , if n = N − 1,

ε
3
2 (1 + t)1+ 3

2 δ, if n = N .

If ε is small enough, this improves the bootstrap assumptions on E
N−1
F inh and E

N
F inh .

��
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14.3. The L2-Estimates

We start by estimating the L2-norm of
∫

R3
v

z|̂Z K f |dv.
Lemma 14.14. For any |I | � N, it holds, for all t ∈ [0, T [, that

K :=
∫

�t

(1 + t + r)

∣

∣

∣

∣

∣

∫

R3
v

z|̂Z I ( f )||v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx �

{

ε2(1 + t)−1+δ, if |I | � N − 1,
ε2(1 + t)2δ, if |I | = N .

Proof. Assume first that |I | � N −4. Then, using the Cauchy–Schwarz inequality
in v and then the pointwise decay estimate (9.10) aswell as the bootstrap assumption
(9.2), we get

K �
∥

∥

∥

∥

∥

(1 + t + r)

∫

R3
v

z2|̂Z I ( f )||v|dv
∥

∥

∥

∥

∥

L∞(�t )

∫

�t

∫

R3
v

|̂Z I ( f )||v|dvω
1
8
1
8
dx

�
∥

∥

∥ε (1 + t + r)−1+ δ
2

∥

∥

∥

L∞(�t )
E

�
N−1[ f ](t) � ε2

(1 + t)1−δ
.

Otherwise |I | � N − 3 and there exists i ∈ M such that

̂Z I ( f ) = ̂Z Ii f = F
[

̂Z Ii f
]

= Fhom
[

̂Z Ii f
]

+ F inh
[

̂Z Ii f
]

.

We deduce that K � Khom + Kinh, where, using Proposition 14.7,

Khom :=
∫

�t

(1 + t + r)

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣Fhom
[

̂Z Ii f
]∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx

�
∥

∥

∥

∥

∥

(1 + t + r)

∫

R3
v

z2
∣

∣

∣Fhom
[

̂Z Ii f
]∣

∣

∣ |v|dv
∥

∥

∥

∥

∥

L∞(�t )

∫

�t

∫

R3
v

∣

∣

∣Fhom
[

̂Z Ii f
]∣

∣

∣ |v|dvω
1
8
1
8
dx

�
∥

∥

∥ε (1 + t + r)−1+ δ
2

∥

∥

∥

L∞(�t )
EFhom (t) � ε2

(1 + t)1−δ

and

Kinh :=
∫

�t

(1 + t + r)

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣F inh
[

̂Z Ii f
]∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx .

Recall Definition 14.9 and that K · Y = F inh
z . Hence,

∣

∣

∣F inh
[

̂Z Ii f
]∣

∣

∣ �
∣

∣

∣F inh
z

[

̂Z Ii f
]∣

∣

∣ =
∣

∣

∣K
j

i Y j

∣

∣

∣ .

Using first the Cauchy–Schwarz inequality in v and then the pointwise decay esti-
mate (14.8), Ii = I as well as Proposition 14.13, we obtain

Kinh �
∥

∥

∥

∥

∥

(1 + t + r)

∫

R3
v

z2|Y ||v|dv
∥

∥

∥

∥

∥

L∞(�t )

∫

�t

∫

R3
v

∣

∣

∣K
j

i

∣

∣

∣

2 |Y j |2|v|dvω
1
8
1
8
dx

�
∥

∥

∥ε (1 + t + r)−1+ δ
2

∥

∥

∥

L∞(�t )
E

|I |
F inh(t) �

{

ε2(1 + t)−1+δ, if |I | � N − 1,
ε(1 + t)2δ, if |I | = N .

��
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We are now able to prove the following result:

Proposition 14.15. The energy momentum tensor T [ f ] of the particle density sat-
isfies the following estimates. For all t ∈ [0, T [ and for any |I | � N,
∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣

2
ω
1+2γ
0 dx dτ � ε2(1 + t)δ, if |I | � N − 1,

∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣

2
ω2+2γ

γ dx dτ � ε2(1 + t)1+2δ, if |I | = N ,

∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣

2

T U
ω
1+γ
2γ dx dτ � ε2.

Proof. According to Proposition 6.3 and Lemma 3.7, giving |wT | � |v|z
1+t+r for any

T ∈ T and 1 � z
1+|t−r | , we have

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣ �
∑

|J |+|K |�|I |

1 + ∣

∣LJ
Z (h1)

∣

∣

1 + |t − r |
∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv, (14.9)

∣

∣

∣LI
Z (T [ f ])

∣

∣

∣

T U
�

∑

|J |+|K |�|I |

(

1

1 + t + r
+

∣

∣LJ
Z (h1)

∣

∣

1 + |t − r |

)

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv.

(14.10)

We are then led to bound the following three integrals, where |J | + |K | � |I |,

J1 :=
∫ t

0

∫

�τ

1 + τ + r

(1 + |τ − r |)2
∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
2+2γ
0 dx dτ,

J2 :=
∫ t

0

∫

�τ

1 + τ + r

(1 + τ + r)2

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
1+γ
2γ dx dτ,

J3 :=
∫ t

0

∫

�τ

(1 + τ + r)

∣

∣LJ
Z (h1)

∣

∣

2

(1 + |τ − r |)2
∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
2+2γ
0 dx dτ.

Applying Lemma 14.14, we have, since 2γ < 1
8 , that

J1 �
∫ t

0

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx dτ �

{

ε2(1 + t)δ, if |K | < N ,

ε2(1 + t)1+2δ, if |K | = N .

Using
ω
1+γ
2γ

(1+τ+r)2
� 1

(1+τ+r)
9
8−γ

ω
1
8
1
8
and then γ + 2δ < 1

8 ,

J2 �
∫ t

0

1

(1 + τ)
9
8−γ

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
1
8
1
8
dx dτ

�
∫ t

0

ε2 dτ

(1 + τ)
9
8−γ−2δ

� ε2.
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For J3, assume first that |J | � N − 3. Using the pointwise decay estimates of
Proposition 10.1 and then Lemma 14.14, we obtain

J3 �
∫ t

0

∫

�τ

(1 + τ + r)
ε

(1 + τ + r)2−2δω
2γ
1 (1 + |τ − r |)2

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω
2+2γ
0 dx dτ,

�
∫ t

0

ε

(1 + τ)2−2δ

∫

�τ

(1 + τ + r)

∣

∣

∣

∣

∣

∫

R3
v

z
∣

∣

∣

̂Z K f
∣

∣

∣ |v|dv
∣

∣

∣

∣

∣

2

ω0
1 dx dτ �

∫ t

0

ε3 dτ

(1 + τ)2−4δ � ε3.

Otherwise |J | � N −2 and we necessarily have |K | � N −4. Then, using succes-
sively the pointwise decay estimates (9.10), the Hardy inequality of Lemma 3.11
and the bootstrap assumption (9.5), we obtain

J3 � ε2
∫ t

0

∫

�τ

|LJ
Z (h1)|2

(1 + τ + r)3−δ(1 + |τ − r |)2+ 7
4

ω
2+2γ
0 dxdτ,

�
∫ t

0

ε2

(1 + τ)2−δ

∫

�τ

|LJ
Z (h1)|2

1 + τ + r

ω
2+2γ
γ

(1 + |τ − r |)2 dxdτ

�
∫ t

0

ε2

(1 + τ)2−δ

∫

�τ

|∇LJ
Z (h1)|2

1 + τ + r
ω2+2γ

γ dxdτ �
∫ t

0

ε2 E̊γ,2+2γ
N [h1](τ )

(1 + τ)2−δ
dτ � ε3.

The proof follows from (14.9) and (14.10) and the estimates obtained on J1, J2
and J3. ��
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