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Abstract

We prove the global asymptotic stability of the Minkowski space for the mass-
less Einstein—Vlasov system in wave coordinates. In contrast with previous work
on the subject, no compact support assumptions on the initial data of the Vlasov
field in space or the momentum variables are required. In fact, the initial decay in
v is optimal. The present proof is based on vector field and weighted vector field
techniques for Vlasov fields, as developed in previous work of Fajman, Joudioux,
and Smulevici, and heavily relies on several structural properties of the massless
Vlasov equation, similar to the null and weak null conditions. To deal with the weak
decay rate of the metric, we propagate well-chosen hierarchized weighted energy
norms which reflect the strong decay properties satisfied by the particle density far
from the light cone. A particular analytical difficulty arises at the top order, when
we do not have access to improved pointwise decay estimates for certain metric
components. This difficulty is resolved using a novel hierarchy in the massless
Einstein—Vlasov system, which exploits the propagation of different growth rates
for the energy norms of different metric components.
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1. Introduction

1.1. Stability of the Minkowski Space for Einstein-Matter Systems

The nonlinear stability of the Minkowski space, first established in the funda-
mental work of CHRISTODOULOU and KLAINERMAN [12], is one of the most impor-
tant results in mathematical relativity. There are by now several well-established
strategies to address this problem, such as the original approach of [12] or the one by
LinpBLAD and RoDNIANSKI [30] based on the formulation of the Einstein equations
in wave coordinates. These pioneering works were generalized in different ways
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to more general sets of initial perturbations as well as to various Einstein-matter
models [5,17,22-24,27,31,42,45].

On the other hand, not all Einstein-matter systems have Minkowski space as an
attractor. The Einstein-dust system leads to the well known Oppenheimer-Snyder
collapse for initial data arbitrarily close to Minkowski space, while the Euler equa-
tions will generally lead to the formation of shocks even in the absence of coupling
with gravity.!

A realistic matter model which is widely used in general relativity and avoids
shock formation on any fixed background spacetime is that of collisionless mat-
ter considered in Kinetic theory, which, when coupled to gravity, constitutes the
Einstein—Viasov system (EVS). In the case when the individual particles in the
ensemble are massive, this system models distributions of stars, galaxies or galaxy
clusters and constitutes an accurate model for the large scale structure of space-
time; it admits a large variety of nontrivial static solutions [3,4,25,34,35] which
are potential attractors other than Minkowski space.

The study of the nonlinear stability problem for Minkowski space for the
EVS was initiated by Rein and Rendall in the spherically symmetric setting [33]
and recently established without symmetry restrictions for certain complementary
regimes of initial perturbations [17,31]. Other stability results for the massive EVS
were established in the cosmological setting [1,14,15,36].

1.2. The Massless Einstein—Vlasov System

The EVS is also used to model ensembles of self-gravitating photons or other
massless particles, when the corresponding mass parameter m is set to zero. The
system then takes the form

1
Ry (x) — ERg,w(x) = ./nl(x) Sopvudpg-1(y), VYx e M, w1)

Te(f)(x,v) =0, VY(x,v)eP

for (M, g) a Lorentzian manifold and f a massless Vlasov field. Here, T, denotes
the Liouville vector field and P C T*M is the fiber bundle consisting of all the
future light cones of the spacetime. We refer to P as the co-mass shell.> The fibre
of P over x € M isdenoted by 7 ~!(x) and dpu,, 1 (x) 18 the natural volume form on
7~ (x) arising from the metric g. For a comprehensive geometric introduction to
relativistic Vlasov fields, see for example [38]. While the massless system formally
differs from the massive system only by changing the support of f from timelike
to null vectors, the behaviour of its solutions differs substantially in several key
points.

The first stability result of Minkowski space for the massless EVS in spherical
symmetry was established by DAFERMOS [13] and later generalised to the case

1 On the other hand, shock formation can be avoided in the presence of expansion [19,21,
37,40,41].
2 This is a small abuse of language, since the particles have no mass here.
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without any symmetry assumptions by TAYLOR [44]. In both cases, initial data are
restricted to distributions of particles with compact support in momentum variables
and space. This implies in particular that the particles stay in the wave zone, while
the spacetime remains vacuum in interior and exterior regions. For a global existence
result in spherical symmetry without necessarily small (but strongly outgoing)
initial data cf. [20]. Note that, for initial data with generic momenta, a smallness
assumption is nevertheless necessarily required since the massless system does
possess steady states for sufficiently large data [2].

In the present paper we consider the nonlinear stability problem of Minkowski
spacetime for the Einstein—Vlasov system with massless particles without any com-
pact support assumptions, neither for the distribution function nor for the metric per-
turbation. This removes any restrictions related to the semi-global features observed
in [13,44] and allows for arbitrary initial particle distributions including standard
Maxwellians, which are excluded by compact momentum support assumptions.
Moreover, metric perturbations and matter field are coupled initially in all regions
and the propagation of these general initial conditions is captured by the solutions
we consider. For the metric, the spatial decay rates of the initial perturbations we
consider coincide with those of [30].

1.3. The Main Result

The precise statement is given in Subsection 2.3, and can be summarized as
follows:

Theorem 1.1. (Main theorem, rough version) Consider smooth and asymptotically
Aat initial data (2, &, 12, f), where Lo ~ R3, to the massless Einstein—Vlasov
system which are sufficiently close to the ones of Minkowski spacetime (R3, 8, 0, 0).
Then, the unique maximal Cauchy development (M, g, f) arising from such data
is geodesically complete and asymptotically approaches Minkowski spacetime.

In the massive case, metric perturbations and particles travel at different speeds,
in particular in a uniform sense when velocities are bounded away strictly from the
speed of light. In contrast, for the massless system this decoupling does not occur,
which creates substantial new difficulties in comparison with the massive system.
3 We resolve these problems by a number of new techniques in the realm of the
vector field method for relativistic transport equations [18] discussed in the next
section.

1.4. The Vector Field Method for Transport Equations and Technical Aspects

The vector field method for relativistic transport equations was developed
recently to provide a robust technique which yields sharp estimates on velocity

3 Note that, in return, the massive case also contains independent difficulties, in particular,
the components of the energy-momentum tensor do not decay arbitrarily fast in the interior
region, contrary to the massless case.
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averages of kinetic matter in spacetimes with geometries close to Minkowski space-
time [18]. It is based on the commutation properties of complete lifts of Killing
fields of Minkowski spacetime with the transport operator. The method has the
additional feature to be compatible with the corresponding method for the wave
equation introduced by Klainerman, which constitutes the foundation of most sta-
bility results of Minkowski spacetime. For a classical version cf. [42]. The vector
field method for transport equations has in the meantime been applied successfully
to the Vlasov—Nordstrom system [16] and the massive Einstein—VIasov system in
[17]. In a series of papers, [6-9], the method has also been extended to the Vlasov—
Maxwell system in various contexts, in particular, without the need of any compact
support assumptions.

In the present paper, we apply the method to the massless Einstein—VIasov
system. In particular, we introduce fundamental improvements, which are tailored
to the structure of the system in the massless case, which we will lay out in the
following.

1.4.1. Null Structures. The vector field method is based on the commutation
properties of the transport operator T, with the complete lifts of Killing fields of
Minkowski spacetime. The perturbation of the transport operator, defined loosely by
the difference between the transport operator in curved space and that of Minkowski
spacetime, Ty — T, creates an error term in the commutator with the complete lifts
and in turn obstructing terms in the resulting energy estimates.

The first crucial structure in the transport part of the massless system is the null
structure of the perturbation terms. There are roughly three distinct sources of null
structures. Two of them arise from the decomposition of the metric components
and the momentum variables with respect to a null frame. The third arises from the
identification of null forms for products involving (z, x)-derivatives of the metric
components and v-derivatives of the Vlasov field. These null structures are all
discussed in Subsection 2.4.2.

It can be shown, as for the Vlasov—Maxwell system [9], that this structure is
conserved under commutation with complete lifts. What is crucial in a subsequent
step is to assure that this null structure can be exploited at all levels of regularity,
which is not straightforward to validate. A particular difficulty occurs when well-
behaved components of the metric perturbation need to be estimated in energy. In
that case the bulk energies of Lindblad and Rodnianski are insufficient to close the
estimates. We return to this issue below.

1.4.2. A Null Structure in the Energy-Momentum Tensor and its Consequence
for Propagation of the Metric Perturbation. The energy momentum tensor for
massless particles is trace-free. As a consequence of that, the 4-Ricci tensor is
proportional to the energy-momentum tensor. From the aforementioned null struc-
ture in the momentum components, after decomposition on a standard null frame,
we obtain a system of wave equations where certain matter source terms enjoy
improved decay in comparison with a generic energy-momentum tensor term. This
structure is another characteristic feature of the massless system. To our knowledge,
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in the massive case, matter source terms are usually taken of the generic type and
an underlying hierarchy was never exploited.

To derive suitable energy estimates for the frame components of the metric,
we consider additional energy norms for the metric components. The resulting
estimates are better than the generic ones due to the fast decaying matter source
terms and improved null properties satisfied by the semi-linear terms of the Einstein
equations. It is those energy norms that in turn can be used to estimate the good
frame components of the metric perturbation when the source terms in the Vlasov
equation are analysed at top order. Moreover, compared to the proof of LINDBLAD—
RobpNIANSKI [30], thanks to these norms, we do not need Hormander’s LY — o
estimate.

1.4.3. Strong (¢ — r)-Decay for Velocity Averages. In order to close the energy
estimates for the particle density, we have to deal with the weak decay rate of the
perturbation part of the metric in the interior of the light cone. In the case of Vlasov
fields with compact support, massless particles will follow straight lines parallel to
the light cone, so that the support of the Vlasov field is located close to the light
cone. We capture this effect in the non-compactly supported case using hierarchized
weighted-energy norms for the Vlasov field, similar to those considered in [7]. The
extra weights allows us to prove strong decay away from the wave zone, that is when
t —ris large.

1.4.4. The Lie Derivative. As in [31], we commute the Einstein equations with
Lie derivatives. Following a strategy initially developed for the Vlasov—Maxwell
system in [6], we also write the error terms arising in the commutation of the
Vlasov equation in terms of Lie derivatives of the metric components. Compared
to [17], this reduces the complexity of the error terms, and fully conserves the
null structure of the system after commutation, which appears to be crucial in our
proof. Moreover, it also allows to avoid many hierarchies considered in [30] in the
commuted Einstein equations and in [17] in the commuted Vlasov equation.

1.4.5. Decay Loss and v-Derivatives. At the linear level, derivatives in v do not
commute well with the massless transport operator, so that one should expect that the
presence of terms of the form 9, Z! f in the source term of the Vlasov equation to be
problematic. In the massive case [17,31], the introduction of improved commutators
seemed necessary to deal with the similar issue. Here, this issue can be resolved
essentially by using the null structure of the system, the strong decay in ¢ — r of
the Vlasov field and a hierarchy of growth in ¢ at the top order.

1.4.6. The Morawetz Weight. The Morawetz vector field, which has been used
extensively as a multiplier in the study of wave equations (cf. [26,32]) gives rise
to a momentum weight m (defined in (3.19)), which is in the kernel of the flat
transport operator and in turn yields a conserved quantity in Minkowski spacetime.
Its potential use in stability problems has been pointed out in [10]. In the present
paper we provide the first application for this weight by utilising it to construct
auxiliary energies, which allow for an absorption of |t — r| growth in the primary
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energy estimates for the distribution. It constitutes an essential ingredient to the
hierarchized energy scheme, which we use to close the estimates.

2. Strategy of the Proof and Outline of the Paper

2.1. The Cauchy Problem in Wave Coordinates and Initial Data

It is well-known that the Einstein equations can be formulated as a Cauchy
problem and in the case of the Einstein—Vlasov system, the well-posedness is guar-
anteed by a theorem of CHOQUET-BRUHAT [11]. See also [43] for the massless case.
A detailed formulation of the Cauchy problem for the Einstein—Vlasov system can
be found in [36].

Consider a smooth 3-dimensional manifold X with a Riemannian metric ¢, a
symmetric covariant 2-tensor k and a function f defined on TS (or equivalently
on T*X), with all data assumed to be smooth and such that the constraint equations
(see [36] for details) are satisfied. The Cauchy problem then consists in constructing
a 4-dimensional manifold M with Lorentz metric g, a smooth function f defined
on P, satisfying the Einstein—Vlasov system (1.1), and an embedding i : ¥ — M
suchthati*g = 8, i*k =k, fo prg1 = f, where k is the second fundamental form
of i(¥) in (M, g) and the function prg1 : T*3 — P is defined as follows. Let 7 :
P C T*M — M the canonical projection. Given p € T*X, there exists a unique
g+(p) € T*i(2) such that p = i*¢(p) and then a unique ¢! proportional to the
normal to i (X) atn(qL(p)) such that ql(p) + q”(p) =: prgl(p) e G (D).

Analogous to [29,30], we consider here wave coordinates, that is we choose
coordinates (r = X9, xl X2, x3), on M which satisfy

VO <3, Ogxt =0, (2.1)

where 0, = g*¥ D, Dy is the wave operator associated to the metric g. An element
v € T*M can then be written as v = v, dx* and this gives rise to coordinates
(x*, vy), u,v=0,...,30n T*M.

The class of initial data which is considered in the following is asymptotically
flat and small in the following sense. Let M > 0 be a constant.* Following [30],
we make the ansatz

g=n+hn"+n", (2.2)

where 7 denotes the Minkowski metric while the perturbation 2 + A'! consists of
the Schwarzschild part hg g =X (ILH) %80(,3, and the perturbation h!. The function
x is smooth and chosen such that x(s) = 0if s < % and x(s) =1ifs = %

In wave coordinates, the evolution equations can be written as a system of
quasilinear wave equations, the reduced equations, taking the form

4 With our convention, M is twice the ADM mass of the initial data.
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~

Oeguv = Fun(@)(Vg, V) = 2T[fluw, 0= v <3, O, = g%800,5,
(2.3)

where V denotes the covariant derivative of the flat Minkowski space-time. An
initial dataset (g, g, k, f) givesrise toinitial data of the reduced equations coupled
to the Vlasov equation via

flizo=f. &ijli=0o = &ij» 8oili=o =0,

gooli—o = —a*, a(x)*=1- x(r)g, (2.4)

and
3:8ijli=0 = —2akij, 9igooli=o = 2a°§" kij, 2.5)
i goili=0 = a?§7*9;gix — gﬁjkaié*jk —ad;a. (2.6)

One can show that, with the choice (2.5)—(2.6) the wave coordinate condition (2.1)
is satisfied by (g.v, 9;guv)lr=0, see, for example, [29, Section 4].

In view of the decomposition (2.2), the equations (2.3) can be rewritten as a
system for the components of 4!, with extra source terms depending on 4. Thus,
the unknowns of the reduced Einstein—Vlasov system are 4! and the distribution
function f. The initial data will be chosen small in the sense that the mass parameter
M and certain energy norms of 2! and f are bounded by a small constant & > 0.

2.2. Vector Fields
Let
K= {0;, 9,1, 0,2, 0,3, 12, Q13, 223, Q01, 02, Q03, S},
be an ordered set of conformal Killing vector fields of Minkowski spacetime, where
Qij=x"0; —x78, Qo =x"0 +18,  S=xM3,, = den.

We consider an ordering on K = {Z!, ..., Z!"} and for any multi-index / =
(11, ..., 1)) of length |I]| we denote the high order Lie derivative Elzl e Eg” by
EIZ. Also let

Po := {8, 0,1, 0,2, 0,3, Q12 13, D23, Qo1 Qoo Qo3 S} = (Z,... Z'},
where

Qij =x"8) — x7 3 +vidy, — vjdy, (2.7)

Qok = xX0 + 10 + 13y, Pl = VIR + 0+ 2 (28

and we denote Z/1 ... Z/il by Z!. Moreover, we work with the null frame U/ =
{L,L,e, e}, where L = 0; + 9., L = 9y — 9,, and (ey, e2) form an orthonormal
basis of the tangent space to the 2-spheres of constant ¢ and r. We define 7 =
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{L, e1, ez} as the set of the basis vectors which are tangent to the light cone and we
denote £ = {L}.

Let k be a symmetric covariant 2-tensor field and V, W € {U, 7T, L}. At any
point (¢, x), we define

IVklyw(t.x) == > VgV, W)|(, x)
Ueld,VeV ,WeW
= Z | ek (t, x)U* VP W
UelU, VeV, WeW

Vklyw(t.x) = > VeV, W)t x)
TeT, VeV, WeW
= > |owkpt. ) TOVIWH
TeT, VeV, WeW

’

Finally, we denote by X; the hypersurface of constant ¢, that is
o= {(r.x) eR" f T =1},

and we introduce, for any (a, b) € R2, the weight function

1

T Er— t2r,
ol =wl(t,r) = { (I+r=rD) =7 (2.9)

a = A+t —rDl, t<r

2.3. Detailed Statement of the Main Theorem
Our main result can then be formulated as follows:

Theorem 2.1. (Main theorem, complete version) Let N = 13,0 < y < %

and (Xo, gij, Ioc,- s f ) be an initial data set to the massless Einstein—Vlasov sys-
tem such that Lo ~ R> where M > 0 and giving rise to initial data
(h,lw lt=0, Bth}w li=0, fli=0) of the reduced Einstein—Viasov system through (2.4)—
(2.6). Consider ¢ > 0 and assume that the following smallness assumptions are

satisfied
2
<e,
LXRY) ) —

2 9
Z 1 FNHI0+11 PP, ” <e
1-+1J1EN+3 H( +r) (+vh <9 f LIRIxR3) ~

oy 12
M+ Y <H<1+r>%+y+”'vv’h‘
IIEN+2

+|a il
)

L2(R3

There exists a constant &y > 0 such that if ¢ < &g, then the maximal Cauchy
development (g, f) arising from such data is geodesically complete and asymptotes
to the Minkowski space-time.

Moreover, there exists a global system of wave coordinates (t, xb, %2, x3), and
a constant 0 < §(e) < 2”—0, with §(¢) —¢—0 0, in which the following energy
bounds hold:
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For the Vlasov field, ¥V t € R,

3 //‘2’f‘|v|dvdx§s(l+t)%,
z JR3

[EN-1

2/ / ‘2’f‘|v|dvdx§s(1+z)%+3.
5 JR3

|I|=N

For the metric perturbation h', ¥ t € R,

2
3 /Z)wg(hl)‘ w0y Tdx Se (141,

[JIEN-1
2
> / ‘vcg(hl)‘ w7y Se (1+1)°,
lIEN-17% e
vl Y
/—‘ A )| w)z/+2ydx§8(l+t)2‘s,
\JI=N %, 14+t+r
2
Z/ ’Vﬁé(kl)‘ 0l dx Se (1417,
=N b LL

Remark 2.2. On top of the above energy bounds, we also prove pointwise decay
estimates on /1 and its derivatives, see Propositions 10.1 and 10.6 . We note that the
decay rates we state on certain null components of V! (see (10.6)) are weaker near
the light cone than those obtained by LINDBLAD—RODNIANSKI [30]. This is because
we can close our main estimates without using the L! — L>-decay estimate of
Hormander. Of course, a posteriori, one can upgrade these rates to those of [30,
Subsection 10.2] to obtain that for any |J| £ N — 5 and for all (¢, x) € R4 x R3

JE

Velog(3+1)
—_— NS
IL+t+r

VL hl‘ 1,x) <
veLmh| e s it

veiahle,
Remark 2.3. At the top order, the strong growth of the energy norm of f leads to
a strong growth of the L?-norm of the perturbation of the metric. For a technical
reason and in order to avoid a much stronger decay hypothesis on 4! (0, -), we, in
some sense, include this strong growth through the weight (1 +¢+r)~! into the top
order energy norm of 4'. Not all top order norms actually need to grow: the small
growth on the ££-top energy norm for ' can in fact be removed at the expense of
a more carefull analysis of the error terms.

The proof of the main theorem is based on vector field methods and a continuity
argument so that it essentially consists in improving bootstrap assumptions on well-
chosen energy norms of ' and f. The global-in-time existence then follows by
standard arguments. As we use a vector field method, we then need to

e commute the equations by high order derivatives composed by elements of K
for the Einstein equations and P for the Vlasov equations,
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e perform energy estimates to propagate weighted L2-norms of 4! and weighted
L'-norms of f,

e obtain pointwise decay estimates for the solutions through Klainerman—Sobolev
type inequalities and

e cstimate all the error terms arising from the energy estimates using the decay
estimates.

As is usual for these type of problems, the main sources of difficulty arise from

e the bad behaviour near the light cone and the weak decay rate of 4 in the
interior region ¢ > r,

e the bad commutation properties of the Vlasov equation, in particular, generating
error terms containing d, derivatives of f,

o the top order estimates, where some of the structural properties of the equations
cannot be used anymore.

We present below some key technical ingredients of the proof that address in par-
ticular the issues above.

2.4. L'-Estimates for the Vlasov Field

2.4.1. Naive Estimate As Z the complete lift of a Killing vector field Z, com-
mutes with the flat relativistic transport operator T, := |v|d; + v;d,; and since
lg — nl| is expected to be small, commuting T, (f) = 0 with Z should create
controllable error terms.> However, a naive estimate leads to

T (Z) S Y 2|18 f11v]
0<u,v<3

+ |8t,xZ(h;w)| [0y fllv] + |8t,x(h;w)| 19y flv]

and, during the proof, we will have

1
(I+|t=r]2
|Z(huw)| «/EW,

NG

|02 Z(hyun) | + |86 () | S 7
A+t+r)'1=3(1+]t—r|)2

so that, since (3, f| < (¢ + 1) |drx 1 + Y505, 1Zf1.

/ f /R T, (Z1)] dvdx de

: 5
/ / %w,,xmmdvdmr + better terms. (2.10)
= JR3

5 The case of S, which is merely a conformal Killing vector field, is slightly different but
does not create more complicated error terms.
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Controlling the left-hand side is necessary to close the energy estimates for f using
a Gronwall type inequality. However, with the above naive estimate, there are two
obstacles preventing us to do so.

(1) The decay rate degenerates near the light cone r = r. As mentioned earlier,
we will deal with this issue by taking advantage of the null structure of the
equations.

(2) The decay rate is not integrable (and not even almost integrable). Even if we
could transform the # — r decay into a ¢ + r one, the overall ¢ decay is too
weak to derive an estimate such as ||Zf||L1 < &(1 + )" for any Z e ]P’o,
with n <« 1.

2.4.2. The Null Structure of the Vlasov Equation. Let us denote g~' —~! by
H and vo + |v| by Av. Then, the deviation of T, from the flat relativistic transport
operator is

1
T, — T, = —Avd, +va HP 3,5 — EV,-(H)“ﬁvavﬁ - By (2.11)

Now, recall

o that the derivatives of H tangential to the light cone can be compared to those
of & and have a better behavior than the others. More precisely,

(14t —r)?

IVLHI|(t, x) + [Ve, H|(t, x) + Ve, H| (1, x) S «/Em

It will be important to notice that a similar property holds for |Lf].
e from [30, Section 8] and the wave gauge condition that the £7 components of
H enjoy improved decay estimates near the light cone,

(14|t —r[)3+

(141t —rp2*s
(I+147r)22"

, VH t,x) < e
Trr+r IVH|p7(t, x) S Ve

|H|p7(t, x) S Ve
We will prove that V., (H) 1 decays even faster near the light cone, which will
be crucial in our proof.

e from [6, Proposition 2.9], that certain null components of v behave better than
others. In particular, in the flat case where v9p = —|v|, one can control

IZfI
—————lvr|dvdxdr
= JRY (1 + |t —r|)8

by the initial energy of |Z f1, so that, in the presence of vy, we can exploit the
decay in r — r in order to close the energy estimates.® Moreover, the angular
components satisfy, still in the flat case, [va| < +/[v[[vL], so that angular
components also behave better than generic ones.

6 The exponent % appearing in the denominator could be replaced by any number a > 1.
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e from [6, Lemma 4.2], that & 8v, f behaves better than d,, f near the light cone

since |x73v,-f| St — r||at,xf| +2.2P, Zf].
e from [17, Subsection 4.2], that Av satisfies a kind of null condition. In our case,
we have

|[Av| = |H(,v)| < |H|cz vl + |HIlvLl.
Now note that a naive estimate of (2.11) gives us

(I+t+4r)
Vit —r]

e
(1+t+r)1 Bmzlzﬂ

ITe(f) = To(HI S Ve 10r,x £

whereas, expanding all the error terms according to a null frame and taking advan-
tage of the improved properties satisfied by the good null components of the solu-
tions, we obtain

ITg (f) = Ty()l

<ﬁ(1+|r—r|>%
~ 1+t+r

Ve — Nl 7 25 >
+(1+t+r)m22ﬁ;((l+lt AP IZ I+ (1402l Z ).
€lfp

(1= D210l 14+ (1402 ol 104 £1)

This last estimate is much better since either the decay rate is almost integrable for
t &~ r or the Vlasov field is multiplied by +/[v[[v.[, which allows to use part of the
decay in ¢ — r. This indicates how important the structure of the non-linearities is
and how important it is to conserve them by commutation. By differentiating the
metric by Lie derivatives, we will obtain that

To(Qij f) = —Qij (A% 0,6 f —va Loy, (H)*Pd, s f

+= Vi (Lay, () vavpdy, f. (2.12)
Ty (O ) = =0 (M) 35 f —va L, (HYP 35 f
1 .
Vi (Lo ()P vyvpy, f, (2.13)

which improves the commutation formula obtained in [17], where the quantities
controlled, Z(hy,), are not geometric, and where the full structure of the non-
linearities were not preserved.” This will allow us to improve our naive estimate
(2.10) in the following way:

7 The commutation formulas for the scaling and the Lorentz boosts contain more terms
which can be handled in a similar way as those of (2.12) and (2.13).
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t . t 1 _ %-1-8
/f f T, (Zf)] dvdxdrgf Vel +lz—rD 18, f1|v] dv dx dt
0Js, JR3 0Js, l+t+r

CrVE(+ T -2
- d dvdxd
/é/zr (14714714 [0 x fllve| dvdx dT

+ better terms, 2.14)

so that we can expect to propagate the bound ||Zf(t, .)”L)lc ) < e(1 4+ )", with
n < 1 independent of §, provided that we can improve the decay in  — r of the
velocity averages of f and its derivatives. Note that we will take n = ¢ during the
proof.

2.4.3. Dealing with the Non Integrable Decay Rate. Even after exploiting the
null structure as explained above, we are still left with error terms which are not
time-integrable and therefore with energy norms a priori growing in time. We
will circumvent this difficulty by following the strategy of [7] and we will then
consider hierarchized weighted L!-norms. It essentially relies on the following
two properties:

(1) The translations d,,, when applied to solutions of a wave equation, provide an
extra decay far from the light cone compared to the other commutation vector
fields. In view of (2.12) and (2.13), we can expect the following improved
behavior for Ty (dxu f),

ITg @i ) ~ (14| — r) "V T (i I,

which would considerably improve the estimate (2.14) for 7Z = Oyi. Since
the worst source terms of T, (2 f), for any Z e f@o, contain only standard
derivatives 0, , f of the particle density, the system composed by the commuted
Vlasov equations is in some sense triangular.

i \2 1
(2) The weight m := |1 + ((t2 +r?) — 2tr%%> |* can be used in order to
obtain stronger decay on f. This essentially arises from the contraction of the
Morawetz conformal Killing vector field K = (12 + r?)d; + 2trd, with the

flat velocity current, and it satisfies, in particular, that
T,(m) =0, I+t—r|<m

so that one can expect Ty (m” f) to be small and then propagate L'-norms of
f weighted by m”" 8

As a consequence of these two observations, we will then be able to prove an
< g(1 + )". This will then allow us to

~

estimate such as ||m%8,,xf(t, My,
improve the estimate (2.14) by

8 The overall exponent 1/4 is here only for homogeneity, so that m ~ ¢, for ¢ > r.
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2
t - ! 310,
/// \Tg(Zf)\dvdxdrgff EmiBa Ly g dr
0 Jx. Jr} 02 (I+14+r)1+[r—r)s?

. 39
+// Jem3|9; . fllvg| —dvdxdz
0Jx,;

A4+1+n=YA+ |t —rs
-+ better terms,

and then prove ||2f(t, M < e(l 4 1) Since we will have to consider higher
order derivatives, in order o apply this strategy, we will rather consider energy
norms of the form ||mQ’%1P/Z\’f(t, ')”Li ) with O > 0 sufficiently large and
where 17 is the number of homogeneous véctor fields composing Z!.

2.5. Study of the Metric Perturbation h'

As already observed by LINDBLAD [28], differentiating the metric by Lie deriva-
tives considerably simplifies the study of the Einstein equations. The two main
arguments for using the Lie derivative are presented in this section.

2.5.1. The Wave Gauge Condition is Preserved by Commutation with Eé,
where Z’ € KII. More precisely, the wave gauge condition Jgx” = 0 leads to

1
\a (h — —tr(h)n + O(|h|2)) =0
2 v
and one can prove (see Subsection 4.2) that this property is preserved by differen-
tiation by the Lie derivative, that is

VIJIEN, V* (cg(m — %tr(ﬁéh)n + L5 (C’)(|h|2))> =0.

v

This implies in particular, with V= (v, Ve, Ve,) containing the good derivatives
of the null frame (those tangential to the light cone), that for any |J| < N,

VLM er SIVLLWI+ Y 1L WIIVLY (h)].
IK1|+K2 S|

In [30] (and in [17]), this property was obtained for V. but could not be directly
obtained for its derivatives, since the quantities controlled, Z ! (hyv), were not geo-
metric. For the purpose of this article, it is crucial to derive improved estimated on
the null components of the higher order derivatives of % in order to close the energy
estimates. Otherwise, certain error terms of the commuted Vlasov equations would
lack too much ¢ + r decay.

Remark 2.4. In [30], a lack of (r + r)‘s-decay in the error terms of the commuted
Einstein equations was circumvented by considering several hierarchies so that
||VZ1hl1w(t, Mz Sel+ )31, with 311 < 1 growing with |7]. In our case the
lack of decay seems to be much worse (recall the naive estimate (2.11)) and this
prevents us to consider such hierarchies between the energy norms at top order.
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Remark 2.5. Several analogies exist between the Einstein equations and the
Maxwell equations

VMF;/.\) = J\h VM*F/L\) = 07

where the electromagnetic field F is a 2-form, *F is its Hodge dual and the source
term J is a current. In particular, studying the Einstein equations in wave coordinates
has to be compared to considering the Maxwell equations in the Lorenz gauge. This
means that we work with a potential A satisfying dA = F and the Lorenz gauge
condition V# A, = 0, which has to be compared to the wave gauge condition since
it gives |[V(A) | < |§A|. Moreover, we noticed in [6] thatV Z € K,

(dA=F and V"A, =0)= (d.cz(A) = Lz(F) and V'Lz(A), = 0),

so that commuting with £z conserves the Maxwell equations as well as the Lorenz
gauge condition.

2.5.2. The Null Structure of the Einstein Equations. For the study of the Ein-
stein equations (2.3), all the error terms arising after commutation will have suffi-
cient decay outside the wave zone. To control the error terms near the wave zone,
one of course, needs to exploit the null structure and the weak null structure of the
equations.

Indeed, one cannot propagate L>-estimate on &' by performing naive estimates.
It was shown in [30] that F,,(h)(Vh, Vh) is composed of cubic terms which
decay strongly, of quadratic terms Q,,,(Vh, Vh), which are a linear combination
of standard null forms, and other quadratic terms P(V,h, V,h) which contain
semi-linear terms satisfying

|P(Vyuh, Vo) < Vi3, + Vil eI VR + VR VA .

Since the wave gauge condition holds, the problem arises from the term |Vh |27u.
To deal with it, the proof of [30] used the L' — L°-estimate of Hormander which
yields |Vh|7ys < e(1 + 1)~!. We provide in this paper an alternative way for
treating this issue, which seems in fact necessary in order to deal with the top order
energy estimates for the Vlasov field (see Subsection 2.6). The L? bound that we
will have on h! is

Vi
g = | vh |2w‘+2ydx+// _IVRTE 0, dxdr
P X I+ |T - V|

S e(1+0%, s5<y,
where
oht. ) SA+t—=rD™ Do, + A+t —rD’1sy, (a,b) €RT.

We then observe that for any (T, U) € T x U, P(Vth, Vyh) satisfies the null
condition and that T'[ f]7ry, due to the presence of the good component v in the
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integrand, decays much faster near the light cone than |T[ f]|. As a consequence,
we will be able to prove that

VA3
oV 10) —/ |Vh |Tuwl+ydx+f / 1+|TTL’r| w, " dxdr
¥ P -
S e+,

where k < 1 can be chosen independently of §, allowing us to control sufficiently
well the error term |VA |2TL{' During the proof, we will take k = §.

Remark 2.6. These estimates reflect that, even estimated in L2, |Vh'|7y has a
better behavior than VA! for r & r. As no improvement can be obtained far from
the light cone, this property can only be captured if the L2-norm of |Vi!| 77, carries
a weaker weight in # — 7 than the one of Vi

Again, it is then important to prove that the structure of the source terms of the
Einstein equations are conserved by commutation with Lé. As noticed in [28], we
have for a Killing vector field Z,’

Lz (P(Vyh, Vok)) = P(VyLzh, Vyk) + P(Vh, Yy L7k),
Lz (Quv(Vh, VK)) = Quv(VLzh, V) + Qv (Vh, VLZE).
Moreover, the structure of the commutator
(O, L21(hy) = Lz(H)* Vo Vghy,

is also preserved by the action of Eé and the cubic terms as well as [J ghgv can be
easily handled. Similarly, one can prove that

Lz(T[fDuw = T[/Z\f],w + good terms,

so that Lz (T'[ f]) enjoys the same improved properties as T'[ f] in the good null
directions.

2.6. The Top Order Estimates

After commuting the Vlasov equation by Z!, with |I| = N and where N is
the maximal number of commutations, a specific difficulty appears with the error
terms of the form

(t +IVLL Y 2eld f1,

where all the null structure is contained in the /! -factor. Since |I| = N, one cannot
gain ¢ + r decay by expressing the good derivatives V in terms of the commutation
vector fields anymore. Since the estimate

/ 10y f11v]dv <
R}

&

A+t4+r2 20+ —r])?

9 The case of the scaling vector field leads to additional non problematic terms.
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holds, we have

t
// / (t + PIVLL (B 22130 f] dv dx dT
0Js, Jr3

1
2

VEZBD e 4 g e(l+1) 7.

g, (L+ |7 —rp?

Then, even the energy bound STMHV [LI hl 1) < e(1+1)* would not allow us t0
close the energy estimates at top order. Indeed, we would obtain || Z Z! F@&)l L,

el + t) , leading to i l+2y[£’hl](t) < e(l 4+ 1)'*%% . Even though
|T[Z Z! f ]|Tu has a good behavior, this would prevent us to prove a better esti-
mate than E2y’1+y [Clzh 1) < Ce(1 + 1)*t3. Since § > 0, we would then fail
to improve all the bootstrap assumptions. The idea to resolve this problem is then
to notice that Iﬁg (Elzhl) L1 strongly decays near the light cone, so that one can
propagate the bound

vl !
f \VLL(h )|L[;w1+2ydx+/f VEZ(lee 0}, dxdr S e (14D,
5, Atlr—r]

where 79 < 1 can be chosen independently of all the other bootstrap assumptions.
As mentioned in Remark 2.3, we could prove that the previous estimate holds for
no = 0.

2.7. Organization of the Paper

In Section 3, we introduce the notations used in this article. Useful results for the
analysis of the null structure of the equations concerning the commutation vector
fields, the velocity current v and the weights preserved by the free transport operator
are presented. We also introduce the energy norms used to study the solutions. In
Section 4, we study the consequences of the wave gauge condition and the source
terms of the commuted Einstein equations. Section 5 is devoted to the commutation
formula of the Vlasov equation, as well as its analysis and in Section 6, we compute
the derivatives of the energy momentum tensor 7[ f]. The energy estimates used
for the metric perturbation are proved in Section 7 and the one for the particle
density is derived in Section 8. We set-up the bootstrap assumptions in Section 9.
In Section 10, we prove pointwise decay estimates for the null components of 4!
and its derivatives and we use them to bound all the source terms of the Einstein
equations but for the contribution of 7 f]in Section 11. In Section 12 (respectively
Section 13), we improve the bootstrap assumptions on /! (respectively f). Finally,
in Section 14, we prove the required estimates on the L2-norm of T'[ f] in order to
close the energy estimates.

3. Preliminaries

In this section, we set-up the problem and introduce basic mathematical tools
and notations.
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3.1. Basic Notations

We will use two sets of coordinates on R!*3, the Cartesian (t, x! x2, x3), in

which the metric n of Minkowski spacetime satisfies n = diag(—1, 1, 1, 1), and
null coordinates (u, u, w1, ®z), where

u=t+r, u=t-—r

and (w1, wy) are spherical variables, which are spherical coordinates on the spheres
(t,r) = constant. These coordinates are defined globally on R!*3 apart from the
usual degeneration of spherical coordinates and at » = 0. We will use the notation
V for the covariant differentiation in Minkowski spacetime. We denote by Y the
intrinsic covariant differentiation on the spheres (¢, r) = constant and by (ey, e>)
an orthonormal basis of their tangent spaces. Capital Roman indices such as A or
B will always correspond to spherical variables. The null derivatives are defined
by

L=0+9, and L =20, —0,,
so that
Lw =2 Lwm)=0, Lw)=0, Lu) =2.

With respect to the null frame {L, L, e, €2}, the Minkowski metric has the follow-
ing components

n(L,L)=n(L,L) =n(L,es) =n(L,es) =0,
n(L,L)=n(L,L)=-2, n(ea,ep) =054B.

We define further V = (VL, Ve,, Ve,), the derivatives tangential to the light cone,
aswellasd ={L,L,ey,er}, T ={L,e;,ex}and L = {L}, which will be useful
in order to study the behavior of certain tensor fields in null directions. For that
purpose, we introduce for a symmetric (0, 2)-tensor field of Cartesian components
kotﬂ >

klvw = > KV W= > |kpVOW,
VeV, WeW VeV, WeW

[Vklyw = > IVu () (V, W)| = > |0, (kap) UFVEWP|
Ueld, VeV, WeWw Uel, VeV, WeW

Vklyw = Y. VeV W= > [dukep) T VWP
TeT, VeV, WeW TeT VeV, WeW

IfV =W = U, we will drop the subscript UU. For instance, |k| := |k|y4-

As we study massless particles, the distribution functions considered in this
paper will not be defined for v = 0 so we introduce Rg =13\ {0}.

We will use the notation Dy < D» for an inequality such as D1 < C D,, where
C > 0is apositive constant independent of the solutions but which could depend on
N € N, the maximal order of commutation, and fixed parameters (6, y,...). We will
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raise and lower indices using the Minkowski metric n. For instance, x* = x,n"*
and, for a current p,

pL=-2p%  pL=-2p"  pa=pt

The only exception is made for the metric g, where in this case, g"*¥ will denote
the (u, v) component of g L
Finally, we extend the Kronecker symbol to vector fields, that is if X and Y are

two vector fields, 8}? =0if X # Y and 8)’; = 1 otherwise.

3.2. Vlasov Fields in the Cotangent Bundle Formulation

Our framework for the study of the Vlasov equation and the Vlasov field is
adapted from the one developed in [17] and is thus based on the co-tangent formu-
lation of the Vlasov equation. The presentation below follows closely that of [17],
but takes into account the fact that we consider here massless particles only.

Let (M, g) be a smooth time-oriented, oriented, 4-dimensional Lorentzian
manifold. We denote by P the following subset of the cotangent bundle 7* M

P = {(x, v) e T*M : g7 (v,v) =0 and v future oriented} .

Note in particular that for v to be a future oriented covector, necessarily v # 0.
P is a smooth 7-dimensional manifold, as the level set of a smooth function with
non-vanishing gradient.

In the massive case, P is often referred to as the co — massshell. By an abuse
of language, we will keep calling P the co-massshell, even in the present massless
case. We will denote by 7 the canonical projection 7 : P — M.

Given a coordinate system on M, (U, x%) with U C M, we obtain a local
coordinate system on 7* M, by considering the coordinates v* conjugate to the x*
such that forany x e U C M, any v € T} M

v = vgdx®.

We now assume that there exist local coordinates (x®) such that x* = 7 is a
smooth time function, that is its gradient is past directed and timelike. In that case,
the algebraic equation

Vo VB ¢*? =0 and v, future directed

can be solved for vy by

vo = —(g")~! (gof' vy =/ (g%up)? + <—g°°)gifv,»vj) <0.

It follows that (x*,v;), 1 < i < 3 are smooth coordinates on P and for
any x € M, (v;), 1 £ i £ 3 are smooth coordinates on 7~ 1(x). Note that the
requirement that v # 0, implies that v; € R3\ {0}. We thus define R?) = R3\ {0}.
All integrations in v can be performed using the (v;) coordinates in which case, the
domain of integration will always be R>.
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With respect to these coordinates, we introduce a volume form du,-1(,) on
7~} (x) defined by

J—detg™!

dvy Advy A dvs.
vpghl

A1) =

For any sufficiently regular distribution function f : P — R, we define its
energy-momentum tensor as the tensor field

Toplf1(x) = /1( )Uavﬂfdllnfl(x)- 3.1)

For the above integral to be well-defined, one needs f (x, -) to be locally integrable
in v, to decay sufficiently fast in v as |v| — 400, as well as |v| f to be integrable
near 0, in view of the fact that the volume form dj,-1(,) becomes singular near
v = 0. All distribution functions considered in this paper will always be such
that these properties hold. Moreover, we will also require f to possess additional
decay in x and v, so that we can perform the various integration by parts needed.
In any case, one can assume for simplicity for the computations to hold that all
distribution functions are smooth, compactly supported, with a support away from
v = 0, and then use the standard approximation arguments to obtain the results in
the non-compactly supported case.

The Vlasov field f is required to solve the Viasov equation, which can be
written in the (x*, v;) coordinate system as

1
Ty () = 8" vadyn f = S vavpdi 8" By f = 0. (32)
It follows from the Vlasov equation that the energy-momentum tensor is diver-

gence free and more generally, for any sufficiently regular distribution function
k:P—R,

gaVDV Taﬂ[k] = /Tg(k)vﬁd/.»bn—l(x),
v

where D is the covariant differentiation in (R!*3, g).

3.3. The System of Equations

We decompose the metric as

guv = Muv + Ay = o + h?w + hiw’

where
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is the Schwarzschild part, and x : R — R is a smooth cutoff function such that
x(s)=0ifs < 41‘ and x(s) = 1ifs > % For the inverse metric we will use the
decomposition

r M
73V T3 Y) L ny __ Y ny 0\ pv ny
gt =9""+H", H —x(—1+t>—r8 +H =G)H" +H.

The relation between 4! and Hj is made precise in Section 4.1. Define the reduced
wave operator

O, = %P 8,0p.

In wave coordinates (xo, x!, %2, x3), we have [, x" = 0 by definition, so that (see
[29, Section 3])

Vvel0.3], 9, (g’“’\/| detg|) —0. (3.3)

The massless Einstein—Vlasov system then reads
Oghyyy = Fun(h)(Vh, Vi) — 0,10, — 2T f 1, (3.4a)
T, (f) =0 (3.4b)

where
1
T, = g“ﬂvaaﬁ — Eax,-g“ﬁvav,gavi,

Videtg™!|

T flw = /Rg fvuv,,gooé—vadvl dv, dvs.

Moreover, according to [29, Lemma 3.2] the semi-linear terms can be divided
in three parts

Fuw(h)(Vh,Vh) = P(V,h, Vyh) + Qu(Vh, Vh) + G, (h)(Vh, Vh),

where P(V,h, Vih), Q0 (Vh, Vi) and G, (h)(Vh, Vh) are (0, 2)-tensor fields,
the indices (., v) refers to their components in the wave coordinates system (%, x),
and P, Q, G are defined as follows.

e P contains the source terms which do not satisfy the null condition and is given
by
1 / ’ l ! !/
P(Vyh, Vik) := " dyhaan™ dukpp — 51" PP 8, hapdokep.  (3.5)
e () is a combination of the standard null forms and is given by
0y (Vh, VK) = 1“0 b darkgry = 0“0 (dahpudprkars — rhpyudakary)
P (8,ha ks — Buhar Dk
+ 0" P (Buharp dakpy — duhar k)
1 ’ /
+ E’]a anﬂﬂ (aﬁ’haa’aukﬁv - auhaa’aﬁ’kﬁu)

1

+ En“’“nf‘f" (8p'haw dvkpy — duhaw dpkepy) - (3.6)
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e Finally, G, (h)(Vh, Vh) contains cubic and quartic terms and can be written
as a linear combination of

HP3chyvdohie,  HOPOYHP3ch,0,0, R, (3.7)

where all the indices are taken in [0, 3].

The null structure of the quadratic terms is of fundamental importance and is
described in the following result:

Lemma 3.1. Let k and q be (0, 2)-tensor fields. Then
I[P (Vk, V)| S IVklTulVglru + IVklceIVal + VKVl e,

|P(Vk,V)lTu + 10 (Vk, V)| < | VK| Vgl + VK| |Vg],
IP(VE, VD)o + 1Q(VE. V) or S IVKIIVgl Ty + [VEl7ulVql.

Proof. According to (3.5) and since ntL = nk4 = 0, we have for any (V, W) €
Uz,

[P(Vvk, Vwg)| S IVvklTulVwglTu + IVv &) Lol lVwal + VvV (@)Ll

This implies all the inequalities which concern P (Vk, Vq). Note now that, for any
Cartesian component (i, v), Qv (Vk, Vg) can be written as linear combination
of

No(h}xl)xzs h}\,})\4)1 Naﬁ(h)\.l)\,zv h)»})u;)s
0<a<pB<3, (A2 23,79 € [0,3]%

where at least one of the A; is equal to p or to v and

No(@, ) = =000 + 01901 + 0Dy + 31V,
Neap(@, V) = 3,00y — 9V

are the standard null forms. They satisfy (see [39, Chapter 2] for a proof), for any
o < B,

No@, W) + INap (0, )| S IVOIIVY + VIV

3.4. Commutation Vector Fields for Wave Equations
Let IP be the generators of the Poincaré algebra, that is the set containing

o the translations s 0 u<3,
e the rotations Qij =x'9; —x/9;, 1<i<j<3,

e the hyperbolic rotations Qox = 1 + x*o;, 1<k <3,
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which are Killing vector fields of Minkowski spacetime.!® We also consider K :=
P U {S}, where S = x*9,, is the scaling vector field which is merely a conformal
Killing vector field. The elements of P are well known to commute with the flat
wave operator [, = 82 + 82 + 82 + 32 and we also have [[],, S] = 20],,.

We consider an ordermg on K = {Z", A , Z"M such that Z'! = § and we
define, for any multi-index J € [1, 11]" oflength neN* 7/ = le ...Z". By
convention, if |J| = 0, Z/¢ = ¢. Similarly, V3 will denote Vs, ... V.

When commuting the system (3.4a) and (3.4b), we will use the Lie derivative
to differentiate the metric g in order to preserve the structure of the equations. In
coordinates, the Lie derivative Ly (k) of a tensor field kg:_'_‘fg:l with respect to a
vector field X is given by

Exkal Z:’I - X (kozl Z:,l) _ kglof.z.mana ) CLE kg::::g;—luauxan
+ kz;}Z'(‘%’;ﬁm 8,31 X”l + + kal a" Maﬂm XH' (38)

For Z’/ € KV, we define £ (k) = L, ... L4, (k). Note that that for n € N, we
have
Y [viw| s X |esw| £ Y vl (39)
[J1<n |JI1<n IJI1<n
The standard lemma can be obtained using
i i

1 .
(—PL=S—"Qu. (+1L=S+=Q. ex=-C Q. (.10)

where C Z are bounded smooth functions of (wi, w;), and

(=1 = ——5 P A LR
g — e P o
! t+r t+r o ! t+r t+r o t+r Y

Lemma 3.2. For any sufficiently regular function ¢ : [0, T[xR3 — R, it holds
that

Y o(.x) [0, T[XRY, (14|t —rDIVel+ (1 +1+n[VI < Y 1Zel.
ZeK
The purpose of the following result is to generalize Lemma 3.2 to tensor fields.
Lemma 3.3. Let k;,, be a sufficiently regular symmetric tensor field defined on

[0, T[XRS. Then, the following estimates hold, where 7’ e KV, For all (t,x) e
[0, T[xR3:

< <
[VE| S E —1 T |, }Vk|~ E —l‘ . (3.11)

11 1711

10 1n this article, we will denote 9., for 1 < i < 3, by 9; and sometimes 9; by 9.

xis
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Forall (1, x) € [0, T[xR? such that r > 1,

Ik| L7k |1
S i 1=z7Tu
IVkln’N1+t+r+Z: T+i—r (3.12)
=1
k|7 L2kl o |£Jk|7u
VKler S oy > AT Vk|pr S Z (3.13)
J1Z1 |J\<1
klcr |£7k }LE o < |['Jk|£7
Vil —1+t+r+z - Vk| e S Ty G
V=1 1711

This implies in particular the following weaker but more convenient estimates,
which hold for any WV, W) € {U,U), (T ,U), (L, T), (L, L)} and for all (¢, x) €
[0, T[xRR3,

|£2] |£’k|wv Tl <
IVkyw S D R S VE| < Y —E 1+ + (3.15)
1711 171=1

Proof. By Lemma 3.2 and since, for any Z € K, |Vzk| < |Lzk| + |k|, we have

A+t —rD VK + A+ +7) [VE| S Y 1VZkl Skl + ) 1Lz
ZeK ZeK

which implies (3.11). Suppose now that r = % Define the operation “—", by
L =T, T =U, U =U.

With this notation, we claim that for V € {£,7,U}and V €V,

1
VUGU, VUVZ E axX, |ax|§*, (316)
r
XeVv-
t t—
VZeK, [Z,VI= )Y bwW+ Y dxX, bwl < L ‘dX|SM-
r
WeV XeV-
(3.17)

Indeed, the first inequality comes from V, W = V. W = 0 for any W € U/ and
Ve L = =V, L = % aswell as Vo, ep = V'ogep — 4:85(L — L), where V0
are the connection coefficients in the e4 basis of the sphere of radius r. The second
one follows from

[0, L1 =13, L1 =0, [8,eal=0, [S,L1=—L, [S,Ll=-L, [S,eal=—
(4, L1 = [, L1 =0, [Qij, eal = —ea(Q)en — Qfilea, eplen, Q= (Qj, ep),
t+r '

xi xt
[€20i, L] = fwz ep)s*Pes — *L, [S0;, L] = (9, ep)s*Pes + TL’

[20i, el = (a“ eA) —— (¢ +r)L — (@ —r)L) +1(9;, ec) SBCVBAED,



LEo BIGORGNE ET AL.

1 x! 1 (x
[0i, L1 = —[8;, L1 = = (8 — —0r) = — | — K
r r r

r

and the fact that [0;, ea] = C i‘ %, where C £ are bounded functions of x.
For U, V, W € U we have

Vv&)yvw = Vylkyw) —k(VyV, W) —k(V, VyW).

Using (3.16), we obtain,as 1 +7+r <ron{r 2 1%},

[kly-yp + klyy-
Yo VRvwl S Y IVkyw)| +

VeV, WeW VeV, WeW Itr4r
- - lely-yy + lklyyy-
> Vwwwls X Fevw|+ =22
Vey,WeWw VeV, WeW

where V, W € {U, T, L}. It then only remains to bound |V (kyw)| and |§(kvw)|.
Start by noticing that, by Lemma 3.2,

(141t =rD) [Vkyw)| + A+ 1 +7) [Vkyw)| S Z IVz(kvw)l.
ZeK

Now, for Z € K, we have
Zkyw) = Lz)YV, W) +k(Z,V],W)+k(V,[Z, W],
so that, using (3.17) and that | +¢+r Sron{r = %},
14|t —r|
> IVztkvw)l S 1LzKvw + Klvw + T (kv + [khyw-)
VeV, WeW

O

The following two results will be useful in order to commute the Einstein equations
geometrically.

Lemma 3.4. Let k be a (0, 2) tensor fields, so that Vk and VVk are respectively
(0, 3) and (0, 4) tensor fields of cartesian components

(Vk)kuv = BAkMVa (VVk)Ekuv = 858)»](#1)-
Forall Z € K, we have
L7 (Vk) =V (Lzk) and L7 (VVk) =VV (Lzk).

Proof. Both relations follow from (3.8) and the fact that 9, Z B is constant for any
(a, B) € [0,3]% and Z € K. Let us give more details for the first one. For cartesian
components («, @, v), we have

L7 (VK0 = Z (dakpw) + 00 (ZM) 0k + 3,(Z)duksy + 30(Z4)duk
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and, since (VLzk) g0 = 0o (L2 (K) ),

(VLZK) gy = 80 (ZM) . (kpu) + Z3a (k) + (30 ZMksy + 8, (Z*) 30 ()
+ 0y (3 ZM ey A+ 80(Z™) 0 (i)

To derive the equality VLzk = L7 Vk, it only remains to remark that 9,9, 7Z*=0
forall0 < o,p,A<3. 0O

Lemma 3.5. Let k and q be two sufficiently regular (0, 2)-tensor fields. For any
permutation o € Gg, the (0, 2)-tensor field R° (Vk, Vq) defined by

Rglaz (Vkv VQ) = 77a3a477a5aéva k

o (1) Mo (2)6 (3) V%(At) qarr(S)%(t’))

satisfies
VZeK, Lz(R°(Vk,Vq))=R(VLzk, Vq)+ R’ (Vk,VLzq) — 455R° (Vk, Vq).

Proof. Let Z € K. Using that the Lie derivative commute with contractions, we
get

£Z (R(T (Vk, Vq)) = Ez(nil)a3a4na5a6va k

o) Kao 2100 g) Veo ) et 50 6)

1 Lz (™) Ve 4 a0y 5) Vet et 5006

+ 0N L7 (VR 0y 1m0 Yo w doos) o6

4 a3 st Voo kg oyoom Lz (Vq)%m)%(s)%@ .
The result then ensues from £z (n~ ') = —26%77’1 as well as L7 (Vk) = V(Lzk)
and Lz(Vq) = V(Lzq), which comes from Lemma 3.4. O

3.5. Analysis on the Co-tangent Bundle

As in [18], we will commute the Vlasov equation using the complete lift Z of
the Killing vector fields Z € P of Minkowski spacetime. They are given by

By = 0y, 0=p=3,
ﬁ,’j =xi8j—xj8i+vi8vj—vj8v,, 1Si<j<3,
Qok = 13 + x*0, + 0|y 1£k<3
and they commute with the flat massless relativistic transport operator T, := |v[9;+

V101 + v202 + v393 (see [18, Section 2.7] for more details). Even if the complete
lift S of S satisfies [T, §] = 0, we will rather commute the Vlasov equation with
S, which verifies [T, S] = T}, for technical reason (see Lemma 3.9 below). We
then introduce the ordered set

Po:=1{Z/Z e PyU{S} ={Z",....Z"},

where Z!'! = Sand Z' = Zi ifi € [1, 10], so that forany multi-index J € [1, 11]",
Z/ .= 7’1 ... Z’". For simplicity, we will denote by Z an arbitrary element of Py,
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even if the scaling vector field S is not the complete lift of a vector field X" 9, of
the tangent bundle of Minkowski spacetime. Similarly, we will use the following
convention, mostly to write concisely the commutation formula: for any Ze f@o,
it Z # S, then Z will stand for the Killing vector field which has Z as complete
lift and if Z = S, then we will take Z = . The sets

(Q12, Q13, 223, Qo1, Qo2, 03, S}, {Q12, 13, 23, Qo1, Qo2, Q3. S}

contain all the homogeneous vector fields of K and f@o. Assuggested by Lemma 3.2,
0,.¢ has a better behavior than Z¢ for Z an arbitrary element of K. It will then be
important, in order to exploit several hierarchies in the commuted Vlasov equation,
to count the number of homogeneous vector fields which hit the particle density f in
the error terms. Given a multi-index J so that Z/ € K|/ and Z” € @le, we denote
by J¥ (respectively J7) the number of homogeneous vector fields (respectively
translations) composing Z” and Z’ . For instance, if

7! = 9,912898;,, J' =3 and JF =2.

The following technical lemma will be in particular useful for commuting the
energy momentum tensor 7'[ f] and then the Einstein equations (it illustrates the
compatibility between the commutation vector fields of the wave equation and those
of the relativistic transport equation):

Lemma 3.6. Let ¢ : [0, T[XR;E X R% — R be a sufficiently regular function and
Z € P. Then,

dv dv
V4 — | = — S — | = —
(fﬂg;,‘”|v|) ) "”|v| (/nglv|> R} ‘”|v|

Proof. Let, for any Killing vector field Z € P, Z¥ := 7 — Z. We have,

Z(fﬂ@gwm)zfﬂeg?(md”/mzu ol S/ |v|> S'”|d7v|'

R;

It then remains to note that,

[v] [v] |v]

and, by integration by parts in v,

a — v (L) do = Y Vo= — [ 2
/Rg(u,avj vjavi)<|v|>dv_0, /Rwlavk<| |> v = ANUPWU

In order to treat the curved part of the metric as pure perturbation, we define
the one form

w=—|dx® + vy dx! +vd® +u3dd, ul = Vv 2+ vl + sl
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Using that wy = w,U* = n(w, U) for any vector field U, we directly obtain
i i
wy = —|v|, wr =wy+ Tw,-, w = wo — Tw,-, W] = VwawA.
(3.18)
As [18], we introduce the set of weights
ko =f{w, /0= w3V w}Ulx'w; —x/w; /1S < j <3}
Ultwe +x*wo /1 £ k £ 3}

and we consider, as suggested by [10, Remark 2.3],

2 2
; t t—
m:= (> + rHwy + 2tx‘w; = ( —Zr) wr + ( 2r)
All the above weights are obtained by contracting the current w with the conformal
Killing vector fields of Minkowski spacetime. They are preserved along the flow
of T, and will be used in order to obtain strong improved decay estimates for the

distribution function. In particular, m has to be compared with the Morawetz vector

wp.  (3.19)

2 2
field @L + % L when used as a multiplier for the wave equation. Note that
m < 0, so that we often work with |m].
We now define z as an overall positive weight, by

i

3 m?>
= s + W s (3.20)
ot [v] v
so that
V3 € ko, % <z and g <22 (3.21)
v v

Note also that T, (z) = 0 and moreover, since % =1, deko I3l < wl(14+2+4+7)
and [m| < |v|(1 + ¢ + r)%, we have

1<z<1+1+r (3.22)

The following lemma illustrates how the null components of w and the weight z
interact.
Lemma 3.7. The following estimates hold:
2
lwel z ’ lwe| 4 ’
wd Y A+t —r|)? wd Y (1+t+7)?

] < Vwllwl.

From which it follows that

2

Whe = ‘

S an <—.
wd Y14t +r I+t —r|
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Proof. Since wy, < 0and wy < 0, we have

1+|t+r|2| |+1+|t_r|2| = (t+r)? (t—r)?
— W — W =w — wy, —
2 k 2 = 2 F

=w0—m§w0z2,

) YL

which proves the first two inequalities.
For the third inequality, we use the mass shell relation for the flat spacetime
— phv _ AB
0=n"wyw, =—-wrwr +n""wawp,
from which it follows that

wo — TU)i' S lwrpw®.

2 AB
2 = [ Bwawp| < fwpllwg] = lw|

The fourth estimate then ensues from the third and the second one. For the last
inequality, we use w? Slwel+lwel <4/ |w£|w0 + +/|lwg |wY and then apply the
first two inequalities. O

The following Lemma illustrates the good interactions between the weights
3 € ko, m and the vector fields Zek:

Lemma 3.8. Forall n € [0,3], 1 =i < j < 3andk € [1, 3], we have
0, DI S 1S@I Sz [0Sz [Qu@] Sz

Proof. Consider a vector field Y = Y Ho +Y l’) dy; and use (3.21) in order to get

s 4 l]ls/m\ m ~(3\ 3 ’?(ﬁﬂ o> 3
Fol=5P(5) i+ 2 7(8) o = =+ T ()

3€ko 3€ko
(3.23)

A straightforward computation reveals that for all 3 € Ko, 7 e @0, there holds
Z(3) € span{ko}, and consequently,

‘2( 3 >‘ <z (3.24)
[v]
For the weight m, one can check that
9 (m) = 2x w,, 9(m)=—-2(x'w’—rw’), Sm)=2m, Q;m)=0.
(3.25)

We then obtain the first three inequalities of the lemma by taking Y = 9y, S and Q j
in (3.23) and using (3.24)—(3.25). For the Lorentz boosts, we use the decomposition

~ x* x4 ~ xf( Xk ~ ) (3.26)

QOk:7_90q+ QOk__QOJ
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Now, note that for 1 < k < 3,
Wk

W.
(3.27)

~ . ~ 1
Qo (m) = 2tka0 + 2xkx’w,- + (t2 — rz)wk, Qok (ﬂ) = —
v

We then deduce

x4 ~ . x4 xk
—Qoq (M) = 2trwo + 2rx'w; + (- rz)—wq =2trwo + (12 + r?) —wy
r r r

x4 x4
=m—m+2rw+ (* +r)—w, =m— (t — r)wo + (t — 1) > —w,,
r r

so that, taking Y = %ﬁoq in (3.23) and using (3.21), (3.24) as wellas (1+|t —r|) <
z (see Lemma 3.7), we obtain

2
l‘_

[m |+( r)
~ vz

‘—Qoq @] S +z5z. (3.28)

We also obtain from (3.27) that

2 —r , .
(xfwk — xkwd)y,

xJ ~ xk t
TQOk(m) - TQOj(m) =

2_,2 k
t°—r° (x/ X , .
= (—(tw — xfuw® — —(@w/ - x~’w0)> .
r r

t
(3.29)

Since |t — r| < z and using that (xjwk — xkwl) € kg and (rw’ — x'w?) € ko, we
obtain from the last two equalities

k
‘—szo;((m)— —S0;m)| St —r|—0— Z 31 < lvlz”.

Combining this last inequality with (3.23), applied with Y = "TjQOk — %ﬁo j»and
(3.24), we get

x4~ xk
TQOk(Z) - TQo,'(z) <z (3.30)

The estimate |§0k (z)| < z then directly ensues from (3.26), (3.28) and (3.30). O



LEo BIGORGNE ET AL.

3.6. Decomposition of 0y

In this subsection, we state the decompositions and estimates that will allow
us to deal with error terms of the form 9,i¢d,,y» which appear in the commuted
Vlasov equation (see Section 5), where ¢ is a function on M and ¥ is a function
on P. We start by introducing the notation

Vo o= Oy, Y1 + Y02 + Y03,

The v derivatives are not part of the commutation vector fields and will be trans-
formed using

S 1
3, =———<x 3 + 10, ) (3.31)
vl vl

so that, for v a sufficiently regular solution to the free relativistic massless transport
equation w” 9,y = 0, |V, ¥| essentially behaves as (1 +r)|V; »¥|. In the following
lemma, we prove that the radial component

i

X
(Vv W) = 7 81},- '(ﬂ
has a better behavior near the light cone.

Lemma 3.9. For the radial component of V, the following estimates hold:

(| S 5 Z| w|+—|"|v,,xw|, |(vvz)f|5|2’7|. (3.32)

Let A denote a spherical frame field index. The angular part verifies the weaker
estimates

Z+1
‘(V ¥ ‘ S Z | I//’ T lv] th‘/f| ‘(va)A‘ S W (3.33)
Proof. Since
xf X 1 o . -
_Bvi :—Qol‘ ——(r(’)t—}—tar):__(“zol. __S+ L,
r r|v] [v] 7 ] ol

the assertion (3.32) follows by Lemma 3.8. For the first inequality of (3.33), recall

that the vector field e4 can be written as e4 = C;; A (X 0, T’ax, ), where Cl/j are

bounded functions of x, so that, using (3.31),

[CA%% (< - aw‘ Zl v+ [Vl

The second inequality of (3.33) is obtained by applying the last estimate to ¥ = z
and using Lemma 3.8 again. O
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Similar to the case of the wave equation, we can then deduce that L1 enjoys
improved decay near the light cone. More precisely,

Ly| < ———
1LV 1++

————Via¥l + ———— 1+t+ Z Zy|. (3.34)

ZEPO

This can be obtained by combining the previous Lemma with the relation

xt Xt
t+r)L=S+ TQOi =5+ TQOi — | (Vyy)".

3.7. The Energy Norms

We define here the energy norms both for the distribution function f and the

metric perturbation /. First, recall the definition (2.9) of the weight function a)fl’.

Then, define, for all sufficiently regular function ¢ : [0, T[XIR)% X Rf) — R and
symmetric (0, 2)-tensor field &,

t
Ea”’[w](t):/ / |1ﬂ||v|dva)fl’dx+/// v lw | dv ? dx dr,
= JR3 0 Je, Jr3 1+ |ul

t b
a,b o 2 b o1 2 @
E5D k1) ._/E |Vk|vwa)adx+/0 /E |Vk|vwr"|u|dxdr,
: Vk|? Vk b
£b[k)(r) = / VK pa / / [ e dxdr, (3.35)
):,1+t+ s, L+T+7r 14 |ul

where V, W € (U, T, L}.If V = W are equal to U, we omit the subscript Y. For
a,be Ri, an integer n = 0 and a real number £ = %n, we define the energies

B0 = Y E5 [ 20y,

[11=n

SO (5“"’[£gk](z)+ / |v,c§(k)|2dx>,
[71<n Z

Eblk)ry = Y g“”[c’ ](z)
[J1<n

Eh k0 = Y &l cok] o,
I71=n

Evpclkin = 3 Egz[Lok] 0. (3.36)
[JI=n

Remark 3.10. During the proof of Theorem 2.1, as we will take £ > 1 g and since

1 + |t — r| < z according to Lemma 3.7, the energy norm ES[ £] will control
fz ng |Z f|dvdx for any || < n.



LEo BIGORGNE ET AL.

3.8. Functional Inequalities

We end this section with some functional inequalities, starting with the follow-
ing Hardy type inequality, which essentially follows from a similar one of [30].

Lemma 3.11. Let k be a sufficiently regular symmetric (0, 2) tensor field defined
on [0, T[xR3. Consider0 <a <2,b>1,a > —1,and V,W € (L, T,U}. Then
forallt € [0, T[ it holds that

+oo k|2 400 Vi|?
/ | lVW 32dr / —' |VW wsr2dr.
r=0 (L+1+r)%(1+ [t —r))? —o (L4141

Proof. Let V, W € {£,7,U} and (V, W) € V x W. Then, applying the Hardy
type inequality proved in [30, Appendix B, Lemma 13.1], we obtain

+o0 k 2 +00 15 (k 2
/ | VW| za)grzd </ | r( VW)| a)Zrzdr.
r=0 (I+1+r)*A+ |t =71 r=0 (I4+1t47r)

Since V5, V = Vi, W = 0, we have |9, (kyw)| = |Vy, (k)vw| and the result follows
from the definition of |Vk|yyy. O

The following technical result will be useful to prove boundedness for energy
norm:

Lemma 3.12. LetC > 0,k > 0, k > O such thatk # k and g : [0, T[xR?> — R,
be a sufficiently regular function satisfying

t p—
Vtel0T], / f gdxdr £ C(1 + 1)~
0 JX;
Then, there exists CE > C such that

8, x) z 07—
Viel0,T ddrSC’(1+tmaX("‘9.
L //2 1+ )K = Gl )

Proof. This follows from a integration by parts in the variable t,
/ / s@n o [fo f s 0 dxdsT
T =
z, I+ D)< I+«

/0 (1+T)/<+1/ / g(s, x)dxdsdr

<CU+%“4+C -5/ 1+ ldr
0

|_C £|) (1 + t)max(O,EfD.
K—K

§<c+
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Recall the decomposition (2.2), where x is a smooth cutoff function such that
=0on]— o0, }1] and x = 1 on [%, +o0o[. It will be useful to control the

derivatives of the cut-off x ( r 1) which is the content of the next lemma.
Lemma 3.13. For any Z’ e KV with |J| = 1, there exists a constant C; > 0
such that
r Cj
z’ <—1
(X (r+1>>‘ BES R

Proof. For any p € [0, 3], we have 9y (x*) = 8, and for any homogeneous
vector field Z € K, Z(x*) = 0 or there exists 0 < v < 3 such that Z(x*) = +x".
Hence, in view of support considerations, there exist two polynomials Py, (¢, x)
and Py, (1 4 ¢, r) of degree n| and ny, such that

_r [ Py (2, )|
‘ZJ <X (t+1)>'<|Pnz(llTr)l]l[‘< <! } ng—ny=—JI.

sincel+7+r Srandl+1+4r Stif

A

S %, the result follows. O

We will need the following, weighted version, of the Klainerman—Sobolev
inequality.

Proposition 3.14. Let k be a sufficiently regular tensor field defined on [0, T[xR3.
Then, for all (t, x) € [0, T[xR3,
5 [Jesol

Proof. It is sufficient to prove the proposition for scalar functions ¢ since we can
apply the inequality to each cartesian component of k and then use that

> o] < 5 et

712 712

1
(IT+r+rd+1— r|)2|w|2u‘<2

lkl(t,x) <

LA(%, )

Recall the classical Klainerman—Sobolev inequality

WDl S A+ A+li—rh72 Y Hzfx/f‘

1122

(3.37)
L2(%)

and that x is a smooth cutoff function such that x = 0 on ] — oo, 4—11] and y = 1
on [%, +oo[. Consider first (¢, x) € [0, T[xR3? such that x| < %. Applying
B3N toy(t,y) =¢(t,y) - (1 - X (%)) gives, using the Leibniz formula and
Lemma 3.13,

(1+1)"/?

91, %) |7 @en aro?
(l+t+r)(l+|t—r|)2 152

(1)’
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As (1 +1)7* < a)Z(t, y) < (A +07¢forall |y| £ 1+’ , we obtain the result
for the region considered. Consider now (¢, x) € [0, T[><]R3 such that |x| < %

and let us introduce t— = (1 + |t — r|2)% for regularity issues. Applying the
b

classical Klainerman—Sobolev inequality (3.37) to x (r — t)t2¢ and x(t — r +

2)x (1+I) 7_ % ¢, we obtain, for all (¢, x) € [0, T[xR3,

2121, x) S 7 X(l—IXI+2)X< 2 |>|¢\(l X)+I x(x] = D)lol(z, x)

< 1 Z/z,

~ i
A+t+rA+t—r]2 =2

1 Z/):’

1
AFt4+n0+t—rD? 72,

1
2 2

Z](X(t—r+2)x( 2r )ri%¢>> dx
1+¢t)
b 2
ZJ(X(r—t)r_7¢)
Note that

dx
o forK > 1, ‘ZK (x (1%))‘ < ]l%g <l + » which can be obtained by following
the proof of Lemma 3.13. In particular, we have 7 ~' < (1 +¢ 4 r)~! on the
support of the two integrands on the right-hand side of the previous inequality.
e (t—r)y=1,0i(t—r)= —"r—l, Q;i(t—r)=0,Qu(—r)= —xr—k(t —r)and
S(t —r) =1t —r,sothat

1
2

1t
VK| <2 ’zK(t—r)’§<1+—+—>|t—r|.
r r

o X' (r—=0)+Ix(t—r+2) <2||X’||Loo]1|< ;<7150 that # — r is bounded
on the supportofx (r—1) andx (t—r+2)
° X(r—t)r +x@t—r+2)1_ 2<2,/ w?,.

‘We then obtain

/ ZJ(x(t—r+2)x< 2 )T—g¢>
5, I+:) ~

Z[ ‘Zlqﬁ‘ wbdx,
PP

1152

7
I

2

2 b
+ ’ZJ (X(r — t)l'_2¢>)

which implies the result. O

Furthermore, we will need a slight improvement of the Klainerman—Sobolev
inequality for massless Vlasov fields originally proved in [18].

Proposition 3.15. Let (a, b, ¢) € R3and f : [0, T[ XR3XR3 — Rbe asufficiently
regular function. Then, for all (¢, x) € [0, T[XR3
1

/]Rz 710 ol S Z/Z/mzc

11153

We point out that the constant hidden by < depends linearly on (|a|+|b|+|c|+1)3.
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Proof. As we do not have the inequality |2 I(z)| < z at our disposal if |I] > 2
and since a)g is not C3 class, one cannot apply a standard L! Klainerman—Sobolev
inequality for velocity averages to z¢f a)Z and derive the result. In fact, one just
have to slightly modify one step of its proof.

Remark that |2(a)3)| < a)é7 forall Z e P (this follows from |2 @t —r) <
1 + |t — r]). Hence, since |2(zc)| < z¢ according to Lemma 3.8, we obtain,

applying Lemma 3.6,

VZ e Py, z(/ zC|f||v|w3du>5/ z”|f||v|a)2dv+/ 1 Z flv|widv.
R3 R3 R3

(3.38)

Following the proof of [9, Proposition 3.6], with f formally replaced by z¢|v]| f wfl’,
and using (3.38) instead of Lemma 3.6, each time where this lemma is applied in
[9, Proposition 3.6], we get the result. O

4. Preliminary Analysis for the Study of the Metric Coefficients

In this section, we recall standard analytical properties of the metric coefficients
in wave coordinates, independently of the Vlasov field. Most of the material of this
section can be found in either [30] or [31]. In order to be self-contained, we present
here not only the statements but also detailed proofs.

We fix, for all Sections 4, 5 and 6, a sufficiently regular metric g and its decom-
position as

r M
g=n+h=n+ho+h1, where hg":X(l—f—t)ra’w’ g_lzn_l—i—H.

@.1)

We assume that g is defined on [0, T[xR3, satisfies the wave gauge condition
(3.3) and verifies the following regularity conditions. For an integer N = 6 and
0 < & < § small enough, M < /& and

Vi el0, TLYIJIS N, L40) € LA(S), VIISN -3, |cft

L S /e

L7y
4.2)

These conditions, which will be verified during the proof of Theorem 2.1 for N = 6
(see the bootstrap assumption (9.5) and the decay estimates of Propositions 10.1
and 10.2) and ¢ > 0, ensure that all the quantities considered in the next three
sections are well-defined. In particular, the series of functions appearing below will
be convergent in L2(X,).

Let us start by estimating pointwise the Schwarzschild part and its derivatives.

Proposition 4.1. For all Z' € K1, there exists C; > 0 such that for all (t, x) €
R, x R3,

|£2 |, x) < ¢y and |VLL(W")|(t,x) < Cy

l+1+4r A+r+r)?

4.3)
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Proof. Let Z70 e K!%! and recall that hg = X(t+1) 8,v- Recall also that J

(respectively JOP ) is the number of translations (respectively homogeneous vector
fields) composing Z”0. By the Leibniz rule we have,

cpan| s XY 1z,

0=, v=3 1= ol
r 1
79 — ) )zE(=)]. 4.4
(=)= ) e

m=yr
M)
By Lemma 3.13 and a straightforward computation, we have
1
1< r <1
G R O
r+1 (I41+7r)2Q" r

|QI+K 1ol

oT+kT=y!
where Pgr (2,1, 7) is a certain polynomial in (¢, r, ) which has degree K P in
(t r). Applying this to Z/0 = Z/ and using that 1 + ¢ + r < r on the support of
O aswellas 1 +7+r <7+ 1if L 1S P < ;, we obtain the first estimate. For
the second one, note that

X
|Pgr(t,r, 7))l
K

(4.5)

VLot s > Jea, L)
0=pus3

and apply (4.4) and (4.5) to Z/0 = 9, Z” for all u € [0, 3]. O

4.1. Difference Between H and h

In this subsection, we study the difference between H*¥ := g*¥ — p*V and
Y = haﬁn““nﬂ”.
For this, let us define

H" = g — g + (hO)",
so that
W= (e + 00, + )T = (O + =Y

Using the expansion in Taylor series of the inverse matrix function, we then
obtain

HY = — " hagnf + 0" (|h*) = =k + O (||,
H" = = n"hggn® + 0" (Ih]>) = =Y + 0" (|h]*), where

+o00 n
O (h*) = Y (=" hap, [ [07 " hag )n” Z( 1)"h* g H(h’s‘

n=2 i=2
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The goal now is to compare H with 4 and H; with 4!. In order to unify the
treatment of these two cases, we consider (9, h) € {(H, mh, (H, h)}. Recall now,
as the elements of K\ { S} are Killing vector fields and since S is a conformal Killing
vector field of factor 2, that, when acting on the contravariant tensor n*",

VZeK, Lzn Hhw =287 (4.6)
As the Lie derivative commutes with contraction, this implies
VZ K, Lz®)" =n""LzB)apn” — 450"  hapn®, B = 0" hapn.

Iterating the previous arguments, we then obtain

TexVlac) ez ci®m =i+ Y ol Ll my, (4.7)
IM|<|J]|
VLI = VL0 + Y CyVLY M, (4.8)
IM|<|J]|
VL, = VL e+ > VLY . (4.9)
IM|<|J]|

Moreover, using (4.6), we also obtain that
L5(O(|h]*))

+oo n
=Y =D Y LY Wy [ [P OLY (a0

i+t T S]] i=2
(4.10)

where Cf J, € Z.Consequently, since we have |£K(h)| < 1for all| K| S N-3

.....

by the cond1t1on (4.2), it holds that

VIISN, |choanPs Y |epm| |kl

[+l 2I S 1]

Similarly, one can prove that

VIISN, |veyoaP|s Y |edm)||ves

i+ 1|
VeiomPy|s Y || [Vesm|.
1+12IS1 ]

We then immediately obtain

Proposition 4.2. Letr N = 6, assume that (4.2) holds and consider ($,h) €

{(Hi, hY), (H, h)}. Then, for all |J| £ N and (U, V) € U?, we have

Ly@uoy —Lhoov| 5 Y o]+ Y |l |ck
IM|<|J] MARSFAN
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ves@uy Ve v S Y [ve muv|+ Y b |vezm|,

IM|<|J| WARSRARN
VL@ - Ve v s Y [Fe o |+ Y b [Fepm|.
IM|<|J| WARSRARY

Here L, (9)uv = LL(9)P11aynpp U7 VP,

Remark 4.3. More precise inequalities will be required during the proof of Propo-
sition 5.14 in the case where Z/ contains at least one translation, that is J7 > 1.
Since MT = JT in the sums on the right-hand sides of (4.7)—(4.9) and that
Y i<i<n JT = JT in the one of (4.10), we have

by —Limuov| s X | owr|+ X [hml|er

IM|<|J]| 1|+l S
M= JE+7] Zmin(1,J7)
VeL@oy -V £ X [veow|+ X |eho||vezm)
IM|<|J]| 11+ ST
M7=y I+ Zmin(1,47)
+ Y |epwllerm||vesml,

oI+ 11+ 1 S]]

YLy oy - Ve M| s Y [FEY iy

i
+ Y |gw|[Feim)|
[T+ RIS

JE+7] Zmin(1,J7T)

+ Y |epwllerm| ek

[Jol+1Jt |+ ST

4.2. Wave Gauge Condition

Using the wave gauge condition, one can estimate the bad derivative L of
good components £7 of the metric by good derivatives of the metric and cubic
terms. We emphasize that the result also holds for £, 7 (H) since, crucially, we are
differentiating the metric geometrically.

Proposition 4.4. Let N = 6 be such that (4.2) holds and assume that the wave
gauge condition is satisfied. Then, for all |I| < N, we have

‘Vﬁlz(h)‘ng Wﬁé(h)‘m“L > ‘ﬁé @.11)
II+IKIS ]
ekl S Pkl I s

(4.12)
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Remark 4.5. From the wave gauge condition, one can also derive
VL), S [TELH) | |v25a].
‘EZ(H)LTN Lhn)|  + Y |eyH||VEEH
I IH+HIKISI|

It can be obtained by expressing (4.14) in terms of H instead of /# and by following
the rest of the upcoming proof. Note that a slightly weaker estimate could be
obtained by combining Propositions 4.2 and 4.4 .

Proof. Remark first that we only need to prove these inequalities for | \72 EIZ (h) | T
and [V, L% (h")| . since V = (VL. V,,. Ve,). In order to lighten the notations,
we will use (’)W(lhlz) in order to denote a tensor field of the form

+00
O (1h) =) Pul)
n=2

where

e P,(h),y is a polynomial in the variables (ha,g)0§a,ﬁ§3 of degree n.

e Forall [J| £ N, Y5 £7 (Py(h)) and 3725 VLS, (P, (h)) are absolutely
convergent in L?(X,) and we have

VIJ <N, ‘vgg(oqhﬂ))‘g 3 \cg<h>chg(h>\.(4.13>
IS

This will be implied by the fact that g satisfies the condition (4.2).
e The tensor field O, (|h |?) can be different from one line to another.

Recall from (3.3) that the wave gauge condition implies

9 (g’”w/ldetgl) -0, vel03].

Expanding the determinant of g (the first order term is the trace), we have
detg = —1 — tr(h) + P(h]?),

where P(|h|?) is a polynomial in the variables (hap)o<q,p<3 Of degree at most

4 and of valuation at least 2. Hence, using H*’ = —h*" + O*'(|h|?) and the
expansion in Taylor series of the square root function, we get!!

Vi (h — %tr(h)n + 0(|h|2)) =0, velo3]. (4.14)
nv

Now, observe by a straightforward calculation that for a general tensor field F,,,
we have

Lz(VH(F)u dx”) = V(L7 F)uy dx” — 285V (F) 0 dx”,  (4.15)

11" Recall that the covariant derivative V is the one of the flat Minkowski spacetime.
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AsLz(n) =285n,L7(n~") = —285n~ ! forall Z € K and since the Lie derivative
commutes with contractions,
VZ eK, Lz @r(hn) =Ly (1%Phagn) = tr (Lzh) 1. (4.16)

The identities (4.14), (4.15) and (4.16) yield, by an easy induction, to

VII| <N, V¢ (L"Z(h) — %tr(ﬁlzh)n + L (O(|h|2))> =0. (4.17)
J7aY

For a vector field U and a tensor field F),,, there holds the formula
O (Lzh") — L7 (T,h") 4.18)
= —L7(H)*PVyVgh' — 285 HPV,Vgh! 4285 Og(h").  (4.19)
Applying this identity to U = T € 7, F = L% (h) and then F = tr(L,h)n, one
has, since .7 = 0,
1 1
wepl _ ! I ! I A pl
VAL = ZVL (EZh)LT 2VL (£2h>gr +v (£2h>AT’
(4.20)
m I _ _1 I A I
\% (tr(ﬁzh)n)MT = EVL tr(EZh) nLr +V tr(LZh) NAT- 4.21)
Combining (4.17) with (4.13), (4.20) and (4.21), we obtain
VLLL 00|y S[TEGH 1, [T CUICZE
vLLh ) L S|VELh| Ve |+ 3 |ved|[cEn

I I+IKISI|
(4.22)

The first estimate (4.11) then follows from

Vir(LLh) = w(VLL ) = "N LY (1) 10
= —VLL() L +VLL () an +VLL () 5.

We now turn to the second one.
Note first that

r
I+t

0 r M
fun = X 141 o O

Ash =h%+ k' and S — Nuv = 280,0v, the condition (4.14) leads to

1 M
(ho);w - E tr(ho)ﬂ;w =X < ) T(S;Lv — Nuv)>

since

1 2M r
A e o(n)? ' —— ) 8p =0, e o, 3].
( T +0mn) 7 (7 ) ve[o,3]
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As the support of x’ is included in [%, %], we obtain, since Z” is a combination of
translations and homogeneous vector fields,!?

oM r Ly cigs
L) ' de )| < mM——=—=2_.
Z((Htﬂx (1+t> )'” (I+1+47r)?

Using (4.15) and (4.16), we then get for all |J| £ N and v € [0, 3],

VIJI =N,

<M== (403)

1
v <£§h‘ — Etr(cghl)n + L5 (O(|h|2))>

v

Since (4.20) and (4.21) also hold if 4 is replaced by /', the inequality (4.12) ensues
from (4.13) and (4.23). O

4.3. Commutation Formula for the Einstein Equations

In this section, we compute the source terms of the wave equation satisfied by
the cartesian components of £ é (h 1 ). In order to do it in a geometric way, we define,
for any sufficiently regular (0, 2)-tensor field &, the (0, 2)-tensor field Ug (k) whose
components in wave coordinates satisfy

Dg(k)/w = Dg(k;w) = gaﬁaaaﬂ (k;w) = gaﬁvavﬂ (k;w) = (gaﬁvavﬂk)lw s
since V is the covariant differentiation of Minkowski spacetime whose Christoffel
symbols vanish in the coordinates system (, x). Our goal now is to compute, for
any Z7 e KIVI, g (ﬁéhl). The first step consist in determining the commutator
ﬁg(ﬁéhl) - Lé(ﬁghl) and then we will describe ﬁé(ﬁghl). We start by the
following technical result.

Lemma 4.6. Let K be a (2, 0)-tensor field and k a (0, 2)-tensor field, both suffi-
ciently regular. Then, for all Z € K, we have

L7 (K**V,Vgk) = L7 (K)*P Vo Vgk + KV Vg L7 (k).

Proof. We will use here that K*#V,, Vgk is obtained by contracting K with the
(0, 4)-tensor field VVk. Since the Lie derivative commute with contraction, we
have forany 0 < u, v < 3 and for all Z € K,

L7 (K¥VeVgk) ==Lz (K)P (VVK)apu + K (L7YVE) g, -

Uy

It then remains to apply Lemma 3.4, which gives (LzV'Vk) g, = (VVLZK) o0 =
VaVﬂ,Cz(k),w. O

We are now able to compute the commutator.

12 We refer to the proof of Lemma 3.13 for a more detailed estimate of a similar quantity.
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Corollary 4.7. For all Z € K, we have
B (£20") - £2 (Beh")
= —L7(H)*PV,Vgh' — 255 H¥V,Vgh' + 255 O, (h').

For all multi-index |I| < N, there exist integers Ello QS x € Z such that

p (c’zhl) s (ﬁghl)
= > LV VeLE (") + Ck (£§h1>.
K]

IK|<|1]

Proof. Let Z € K and recall that ﬁg(hl) = g*VgVyh!. Then, applying
Lemma 4.6, we get

L2 (Beh') = L2667 VaVsh' + g% VaVsL2(h")
= L7(g7 )PV Vph! + O, (ﬁzhl).
It only remains to use g_1 = n_l + H and Ez(n_l) = —28§n_1, so that
Lz(g PV, Vgh! = —2850*PV,Vsh' + L7 (H)*PV,Vgh!
= 28500, (h") + 285 H*PV,Vh' + L7 (H)*PV,Vsh'.

For the higher order commutation formula, we proceed by induction on |/| (note
that the result is straightforward if |/| = 0). Let n € N and assume that the result
holds for all multi-indices |lp| = n. We then consider a multi-index / of length
n + 1 and we introduce Z € K and |Iy| = n such that Z! = ZZ%_ Then,

T (£n') = £ (Ben') = B (£2(£5n")) — £2(B, (£20"))
+£2(8, (chn') - £ (Ben')).
According to the first order commutation formula applied to El‘)hl
O (2 (cn") = £2(0, (£21") = —L2 DV LE MY = 285 HPVL VLY ()
+255 00 (L’“h )

All the terms on the right-hand side of this equality have the required form since
|[Io] < |I|. Using the induction hypothesis, we can write L‘Z(E]g (E?hl) —

L',? (ﬁ ghl)) as linear combination of terms of the form

L2 (L5HPNBLEGD), 1JI+IK] £ Kol
Ly (ﬁg <L§h1)), K| < ol
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It remains to apply Lemma 4.6 in order to deal with the first ones and the first order
commutation formula for the last ones (note that |J| + |K|+1 < |[[y| +1 = ||
and |[K|+1 < |I]). O

We now focus on £ (Cgh').

Lemma 4.8. Let k and q be two sufficiently regular (0, 2)-tensor fields. Then, for
all Z € K,

L7 (P(Vk, V), = P(VuLzk, Voq) + P(Vk, V,L7q) — 485 P(Vuk, Viq),
L7 (Q(Vk, V), = Quv(VLzk, Vq) + @ (Vk, VLzq) — 485 0,0 (Vk, V).

Iterating these relations, we obtain that for all |I| < N, there exist integers C 5 K
such that

Ly (P(VE V)= Y. Chx P(VuLyk. ViLEq),
71+IKIS1|

LL OOV = Y Cigx Qu(VLGk VLE ).
T1+IK 1|

Proof. This directly follows from the definition of P(Vk, Vq) and Q(Vk, Vq)
(3.5) and (3.6) as well as Lemma 3.5. |

We then deduce the commutation formula for the Einstein equations (3.4a).
Proposition 4.9. Ler Z! € K with |I| < N. Then, there exists integers C 5 x and
Eé,K such that, for any (i, v) € [0, 3]]2,

B (Lh0hw) = D Chx L4 PVaVaLE ()

IJI+IKIS |
[K|<II]

—1 —1
+ Y Ck PONVLLL VI LEG) + Tk 0u(VLIK. VLE g)
I+ KIS

+ > LY (G)(Vh,Vh),, — L] (ﬁgho)w — 2L (T[f Dy -
WISI]

The derivatives of T[f] and ﬁgho will be computed in Section 6 and Proposi-
tion 11.2. For the cubic terms, we have under the assumption (4.2),

LL (Gh)(Vh, Vh))‘ < 3 ‘cgh‘ ‘vcgh
[Ty |+ 2|+ IS

vesn

Proof. The commutation formula for the Einstein equations (3.4a) follows from
an induction on |/| relying on Corollary 4.7 and Lemma 4.8. For the estimate for
the cubic terms, we obtain from (3.7) and the definition of the Lie derivative (3.8)
that CIZ (G(h)(Vh, Vh)),, can be bounded by a linear combination of terms of the
form

AL 852 Rz zh 353 Mz

s

(1 + ‘ZJOHO!oﬂo

) ‘Z-’l H* B
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where all the multi-indices are in [0, 3] and |Jo| + |J1| + |J2| + |J3] < |I]. Note
now, using (3.9) and Lemma 3.4 that

‘ZJiH"‘iﬁi < )Vé’H‘ < 3 ’L?H :
KiIS1;]
Zhidg by < |\VYVRl S Y ey vel= S0 |veyh
§illajej| =|Vz N z = 72 hl.
K115 K111

Finally, without loss of generality, we can assume that |Jy| £ N — 3, so that, using
Proposition 4.2 and the assumption (4.2), |Z]0H “0ﬁ0| < 1. This concludes the
proof. 0O

5. Commutation of the Vlasov Equation

The purpose of this section is to compute the commutator [Ty, 71, for Z! €
@(l)[ |. The commutation formula obtained here is more geometric than the one used in
[17]. In the spirit of [9] for the Vlasov—Maxwell system (see in particular Subsection
2.5), we express the error terms using Lie derivatives of the metric instead of
derivatives of its Cartesian components. We recall the notations

(wo, wi, wa, w3) = (—|vl,v1,v2,v3), [v] =4 v]+v]+03

Av = vg — wy = vg + |v],
1
T, := v,8""0, — Evavﬁaig“ﬂavi,

and we consider for all this section a sufficiently regular symmetric tensor field
HH¥ and a sufficiently regular function ¥ : [0, T[xR} x R} — R. We define
the vertical parts S* and Z", for Z € P a Killing, respectively conformal Killing,
vector field, by

S¥:=0 and Z":=Z— Z.

For instance, £} = —wody, . Recall also that, in order to simplify the presentation
of the commutation formula, we use the following convention. For any Ze @0, if
Z # S, then we denote by Z the Killing vector field which has Z as its complete
lift and if Z = S, then we set Z = S. Finally, we extend the Kronecker symbol to
vector fields (X, Y), that is 8Y =1if X =Y and 8;; = 0 otherwise.

5.1. Geometric Notations

In order to clearly identify the structure of the error terms in the commuted
equations, let us rewrite the two parts composing the operator T,. For this, we
will denote the differential in the spacetime variables (¢, x) of ¥ by di and we
recall that V’H denotes the covariant derivative of H with respect to the Minkowski
metric. We then have

dy = d,dx”, v=v,dx", VH =0, H" dx* @ dyu @ dyv.
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With these notations,

v HR 3,0 = H(v, dy), .1)

v Vpd M 3y, = Vi(H) (v, v) - 3y, ¥, (5.2)

Vaugd " HP N = VI (H) (v, v) - . (5.3)
Vo Vo

Similar identities hold if v is replaced by w = w, dx*. Note that the transport
operator can then be rewritten as

T, (¥) = To(¥) — V (H)(v,v) - 9y, (5.4)

with
T,(¥) =g~ (v, dY) = Ty(¥) — Avd, ¥ + H(v, dy) (5.5)
and where T, = |v|d; + ufa,w = whd, is the massless relativistic transport

operator with respect to the Minkowski metric. Let us mention that the quantity
(5.3) will appear as an error term in the commutator [Ty, Q20x]. We now prove a
technical lemma which contains useful identities.

Lemma 5.1. Let 6 = 6,dx" and 6 = §,de” be two 1-forms and A= f@o. Then,
H(Lz(w), 0) + H(Z" (), 0) = 65 H(w, 0), (5.6)
L7(ViH)(©O,0) - 3y, ¥ + Vi(H)(©,0) - Z’iv,wlf

= Vi (Lz(H)) (0, 0) - 3y, ¥ + Vi(H)(©, 0) - Iy, Zy
— 83Vi(H)(0,0) - 0y, ¥ + SQOkvﬂ(H)(e ). L avkw (5.7)
L7 (V*H)(,0) - + VA(H)©,0) - Z ( >
wo
= V* (Lz(H)) (6, 0) - asv”m)(e 0) -
wo

+59°k W(H)(e 9)- e (5.8)

Proof. As the Cartesian components of w do not depend on (¢, x), we have
Lz(w) = w,d,Z"* dx". We then deduce

Ly, (w) =0, A (w) =0, (5.9)
Ls(w) = w, S*(w) =0, (5.10)
Lo (w) = —w; dx/ + w; dx’, Q}lj’.(w) = w; dx/ — w; dx’, (5.11)
Loy, (w) = wo dx* + wy dt, QU (w) = —wy dt —wodx¥,  (5.12)

and then that

H(Lz(w), 0) +H(Z" (w), 0) = 83H(w, 6).
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In order to compute (5.7) and (5.8), let us introduce

Rz = Lz (ViH)©O,0) - 0y, + Vi(H) (6, 0) - Zy, b,
Qz = L7 (VFH)(O, 0) - By VA (H)(O,0) - Z (ﬂ)
wo wo

and remark, since V; = £;, and V¥ = n’“[ﬁap that
[L7,Vil=Vizy and [Lz, V*]=n""Viz4,.
Note now that [9,,, 93] = [y, d;] = 0 and 9, (%) = 0 implies

Ra, = Vi (La,(H)) 0,6) - 9, + Vi(H)(6,0) - 8y, 00,
Qo, = VI (La, (H)) (0,8) - —L.
wo

Since [, 8] = —4, [S, 8, ] = 0 and §¥ (ﬁ—g) — 0, we have

R = Vi (Ls(H)) (0.8) - 0y, + V; (H)(0.8) - 0, S — Vi (H)(8.8) - 0y, ¥,
Qs = VA (Ls(H)) (0.8) - 2 — VI (H)(©@.8) - -~
wo wo

A (R0, 8] = =850 + 810k, [Qu, 9] = 8k, + 810y, and By (%) =
[ w k w,
5uw_§ - (Sﬂw—(l), one gets

Ry, = Vi (Lay (H)) (6, 8) - 3y, ¥ + Vi(H) (6, ) - 3y, Ry,
— w
Qo = V* (Lay (H)) (0, 0) - w—’;

Using [Qok, 8,1 = —050r — 890k, [Qoc. ] = 20y, Qor (%2) = 0 and
QOk (Z—é) = —8§ + I(Uuﬁ(:l)}';, we obtain

Ray, = Vi (Lag (H) (0.8) - 9, ¥ + Vi(H)(O.8) - 9, Qox
FVICH)©O.8) - 0,1,
wo

Qo = V* (Lay (H) 0.8) - £ + ZEvrr)9,8) - 2L,
wo wo wo
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5.2. Commutation Formula for T‘g

We start by deriving a commutation formula for the first part T ¢ of the transport
operator. To this end, we first decompose it as

T,(y) = T,(¥) + Avg~ ' (dt. dv) + H(w, dy).
The following lemma is a prerequisite for Lemma 5.3.
Lemma 5.2. Let Z € Py and 0 < u < 3. Then,

Z (H(w, dy)) = H(w, dZy) + Lz (H)(w. dy) + 85 H(w, dy),
Z (H(dx", dy)) = H(dx*, dZy) + Lz(H)(dx*, dy) + 8, (Z*YH (X", dy).

Proof. We have, as Z% = 7 — Z,

Z (H(w, dy) = Lz(H)(w, dy) + H(Lz(w), dy) + H(w, Lz(dy)
+H(Z (w), dyr) + H(w, Z" (dy)).

Applying the identity (5.6) of Lemma 5.1, we get
H(Lz(w), dy) + H(Z" (w), dyr) = S%H(w, dy).
We also have, since Lz(dy) = d Lz (), that

Ly, (dy) + 0, (dyr) = d(0,¥), (5.13)
Ls(dy) 4+ S (dy) = d(Sy), (5.14)
Lo, (dy) + QP dy) = d(Qi;v), (5.15)
Loy (dY) + Qf (dy) = d(Qoxy), (5.16)

which leads in particular to
Hw, Lz(dy) +H(w, Z*(dy)) = H(w, dZy)
and then concludes the first part of the proof. The second formula follows from

Z (H(dx", dy)) = Lz(H)(dx*, dyr) + H(Lz(dx"), dy)
+H(dx", Lz(dy)) + H(dx", Z¥ (dy)),

the equalities (5.13)—(5.16) and Lz (dx*) = 9,Z*dx". O
We then derive the commutation formula for the operator ’T‘g.
Lemma 5.3. Let Z € f@o. Then,

[T,, ZI(W) = —Lz(H)(w, dy) — AvLz(g~")(dt, dy) — Z(Av)g~' (dz, dy)
+5§Tg(1/f) — 263 H(w, dy) — 265 Avg™" (dt, dy)

_sZ —1 ik
8%, Avg (@, dy).
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If?l € @)”, there exists integers Cé, CiK and C/Iz,JLJz,K such that
(T, Z'Ny) = Y CoZ2 (M) + Y. Ch gLy (H)w,dZ y)

[QIS1|-1 I+ KIS ||
or<r®? IKISITI-1

+ Yk Z(AnLE (e Ex", dZFy),
i+l +IK S]]
IKIS||-1

where the multi-indices J, J1, Jo and K in the last two sums satisfy one of the
following two conditions,

(1) either K¥ < I7,
2)orKP =1 anajm 2 1, JF + 7] = 1.

Remark 5.4. Combining the first order commutation formula with the identity
(5 20), written below, one can check that ZK and 79 (respectively Z7, Z’2 and
Zh )is builtby at most || —1 (respectlvely atmost |J|, at most | J>| and at most [J1])
of the vector fields composing Z/, so that K¥ < 1P and QF < IP. IfKP =17,
this means that there is at least one translation in Z/ which is part of Z” and either
Z%”or 7't thatis JT > Land J| + J] > 1.

Proof. Let Z € Py and recall from Subsection 3.5 that
[T,. Z] = 83T, (5.17)

Applying the first equality of Lemma 5.2 to H = H and the second oneto H = g~

and 1 = 0, we get
Z (H(w, dy)) = H(w.dZy) + Lz(H)(w. dy) + 65 H (w. dy),
2(Avg—1(dt, dw)) = Avg'(dt, dZy) + Z (Av) g~ (dt, dy)
+ AvLz(g~H(dr, dy) (5.18)
+ AvsZgT (dr, dy) + Av8%0kg_1(dxk, dy). (5.19)

The first order commutation formula directly follows from (5.17), (5.18) and (5.19).
The higher order formula can be proved similarly by performing an induction on
|1], using

(T,, ZZ!1 = [T, Z1Z" + Z[T,, Z'] (5.20)

and applying the first equality (respectively the second equality) of Lemma 5.2
to ZK v and H = £ 7 (H) (respectively H = L?(g_l) ), for well-chosen multi-
indices J, J, and K. O

Remark 5.5. Expressing the error terms in the commutation formula using v
instead of w, we find, since Ez(n_l) = 8Z _1,

[Te, ZI(Y) = 83T, () — Lz(H)(v, dy) — Z(Av)g ™" (dt, dy)
— 283 H (v, dy) — (SgOkAvg_l(dxk, dv).
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5.3. Commutation Formula for the Transport Operator
In view of Lemma 5.3 it remains to study the action of Z! on the term
- %Vi(H)(v» v) - Oy Y
= —%%(H)(w, w) - By Y — %|Av|2v,~(H>°° S0y ¥ — AvVi(H)(dE, w) - 0y, .

The following identities will then be useful in order to determine [Ty, 7! ]:
Lemma 5.6. Let Z € ﬁP\)O and (1, v) € [0, 3]%. We have,
Z (Vi(H)(w, w) - 3y, 9%) = Vi(H)(w, ) - 8y, ZY + Vi (Lz(H)) (w, w) - 8y, ¥
83V, (H)(w, w) - 0y, ¥ + 894 VA (H) (w, w) - =,
wo
(5.21)
Z (Vi(F)" - 8y, %) = Vi(H)(dx", dx") - 3y, Z¢ + Vi (L2(H)) (dx", dx") - 8, ¥
+ 8 ZMV (H)(dx™, dx") - 3y, + 9, 2" Vi () (dx™, dx™) - 3y,
— S5V (X, dx”) - 3y, + SV (H)(dx, dx”) - 2,
wo
(5.22)
Z (Vi(H)(dx", w) - 3, ¥) = Vi (L2 (H)) (dx*, w) - 3y, + Vi (H)(dx*, w) - 8, Zy
+ 8; ZM Vi (H) (dX*, w) - 8y, ¥ + sgf”f VHH) (dx", w) - %%w.
0
(5.23)
Proof. We have, using again the notation Z% = 7-7 s
2(Vi(H)(w, w) - 9y, ) = Lz2(ViH)(w, w) - 9y, ¥ + 2Vi (H)(Lz(w), w) - 0y, ¥
+2V; (H)(Z" (W), w) - 3y, ¥ + Vi(H) (w, w) - Z0y, .
The first equality (5.21) then follows from identities (5.6) and (5.7) of Lemma 5.1.
In order to get the second formula (5.22), notice, as V; (H)*V9,, ¥ = V; (H)(dx",
dx")d,, ¥, that
Z (Vi()" 0y, 9r) = Vi(H)(dx", dx") Zdy, ¥ + Lz (ViH)(dx", dx")dy, ¥
+Vi(H)(Lz(dx"), dx")dy, ¥ + Vi(H)(dx", Lz(dx"))dy, .
It then remains to use £z (dx®) = 3; Z* dx* and apply (5.7). Similarly, we have
Z (Vi(H)@x*, w)dy, ) = Vi(H)(dx*, w)Zdy,  + Lz (ViH) (dx", w)d,

+Vi(H)(Lz(dx"), w)dy, ¢ + Vi (H)(dx", Lz (w))dy, ¥
+Vi(H)(@dx", Z" (w))dy, ¥

and the third identity (5.23) then ensues from (5.6) and (5.7). O

We are now able to compute the first order commutation formula. In fact we
will state it in two different ways. The second one has the advantage of being more
concise whereas the first one will be more adapted to the problem studied in this
paper and for the purpose of deriving the higher order formula.
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Proposition 5.7. Let Ze f@o. Then,

[Tg, ZI(W) = —Lz(H)(w,dy) — AvLz(g~")(dr, dy) — Z(Av)g~ (dr, dy)
|Av[?

SV L) w009+ 2 () 0,y

+ AvY; (Lz(H)) (df, w) - 3y, + AvZ(Av)V; (Lz(HN - 0,9
+ Z(Av)Vi (H)(dt, w) - 3y, + ag(Tg(w) —2H(w, dw))

+ 85 (Vi (H) (w, w) - 9y, — 280g ™" dr, dyr) )

+65 (10 PV () 8, + 280V; (H) @t w) -0y, )

+og (—Avg”(dxk, Q) + 29 (H) (w,w) - ﬂaw)
2 wo

+5§°kAv (v,- (H) (dxk, w) - 9y, + AvV; (KO - 31,,-10)

9 w Av w
+ 650 Ap [ VE (H) (dt, w) - —L oy + = V* (H)O - L3, 9 ).
Z wo 2 wo
Alternatively, expressing the error terms using v instead of w, we get

-~ l Z
[Te, 210 = ~L2(H)w.dy) + 3 Vi (E2(H)) (. 0) - 0,1 = Z(Av)g™ dr, d)
+ Z(A0)V; (H)(dr, v) - 0y, + %‘Sg(’k V) 0,0) - Ly
0
+85 (T (W) — 2H (v, dy) + Vi (H) (v, v) - 3y, )
— 2% Ay (g(dx", dy) = Vi (H) (@x",v) - 3“[‘/’)

on Av

i vi
Z 2 IV(H)( )-?Oavkw«

Proof. The first commutation formula follows from Lemma 5.3 and Lemma 5.6
applied to H = H and (i, v) = (0, 0). The second formula can be obtained from
the first one using that v = w + Avdt and

vy 1 1 ;
VEH(,v) - = =VAH@W,v) - £ — ([ — = — | VIH®@,v) - v;
wo vo vo wo
v Av_ . v
= V*H(v,v) - - —V'Hv,v) - -,
vo v v
since wyg = —|v| and Av = vy — wy. O

Remark 5.8. Even if the second commutation formula might seem to be more
convenient, we will work with the first one for two reasons.

e The second and higher order formulas are not more concise when expressed in
terms of v instead of w.
e Working with w instead of v is more adapted to our method since no inequality

analogous to ‘le m holds for the component vy . Indeed, according
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to Lemma 5.12 proved below and || < /|v[|wr| (see Lemma 3.7), we have,
if g satisfies (4.2) and for ¢ small enough,

1
lvp —we| =[Av] S mlH(w, Wl S lwellHl + VIvllwellHl g7 + vl Hel.

Although we will have, during the proof of Theorem 2.1, |wp||H| +

JIlwellH g S |v|ﬁ, the term |v||Hp | will not behave sufficiently
well near the light cone. Because of the Schwarzschild part, | Hy 1 | cannot decay
faster than (1 + 7 4 r)~! and no decay can be extracted from the weight z if
t ~ r without a good component of the flat velocity vector wy, or .

Due to the new error terms generated by the Lorentz boosts, the following additional
identities are required in order to compute the higher order commutation formula.

Lemma 5.9. Let Z € Py, (»,v) € [0,3]* and g € [1, 3]. Then,
2<v“(H>(w, w) - ﬂaqu) = VE(H) (w, w) - -3, Z
wo wo
+ V(L2 (H) (ww) - 9,
wo ¢
+ CL L )V H) W, w) - L5,
5 wo
Z (W(H)“ ~ ﬂaqu) = VEHM - 29, Zy + V(L (H)™ - g,
wo wo wo
HCLL a0 Dy,
2(VM(H)(dx*, w)- ﬂaUM) = VA(H)(AxH, w) - 9, Zy
wo wo
+ VR (L7 (H)) (dxF, w) - 9, 9
wo
+CLY @)V R w) - 3, v,
Ko wo

q,A,v
Zk,oz,ﬁ
of elements of{ﬁ—’;/ 0 <3

. A . L
where the functions C% k(w), C (w) and C% . a(w) are linear combinations

Proof. Note first that
7 (V"(H)(w, w) - ﬂ) = L (VAH) (w, w) - S £ 2V (H)(Lz(w), w) -
wo wo wo
+ VA (H) (w, w) - Z <%> F2VE(HY(Z (), w) - 2K
wo wo
7 (V"(H)” : %) = VA(H)M . ZV <@> T L (VRH)AX, dx”) - 2
wo wo wo
+ VA (L2 (XY, dx") - = 4 VE(H) XY, L7(dxY) - =L,
wo wo
7 (vﬂm)(dx*, w) - ﬂ) = VA(H) (X, w) - Z% (%) + L (VEH) X, w) - 2
wo w wo

+ VI H) (L2 (dX), w) - %
0
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+ VIEH) (A, Lz w) + 27 (w)) - =
wo

Then use the identities (5.6) and (5.8) of Lemma 5.1, L7(dx*) = 3, Z*dx® and,
in order to deal with Zd,, f,

—~ _~ w
[0y, 8,1 =[S, 0,1 =0, [Quz. 3y, ] = —8} 3y + 5,0y [QOk,avq]=w—Zaukf.

O

We are now ready to describe the error terms of the higher order commutator
[Tg, Z'] in full detail.

Proposition 5.10. Let 7l e f@gl. Then, [T, 7! 1(¥) can be written as a linear

L. . . . LW .
combination with polynomial coefficients in o 0 < & < 3, of the following
terms,

o Z(To()). ol SHI-1, If <17 -1, (5.24)
o L (H)(w,dZXy), (5.25)
oV (ﬁgH)(w, w) - 8y, 2K, (5.26)
rpd W sk
oV (LZZH)(w, w) - ko, 26y, (5.27)
o ZM(Av) L2 (¢ (x", dZK ), (5.28)
o ZMi(Av) Y, (,cgy)(dx“, w) - 8y, 25, (5.29)
o ZMI AV ZM2 (AV) Y, (L%H)W 9,25y, (5.30)
o ZMi(Av) v*(ch)(dx“, w) - 8, Z5y, (5.31)
wo
o ZMi(AD)ZM2 (Av) V* (L%H)W 29, 25y, (5.32)
wo

where,

q€[,3], Guvel03 [|KIS|T-1,
I+ IKI =], My + M| + 101+ K| = |1
Moreover K, J, Q and M satisfy the following condition

(1) either K¥ < I?,
(2) or K¥ =1 and then JT > 1, 0T + MT = 1.

For the term (5.27), J and K satisfy the improved condition

IJ|+ K| <=1 and K < 1IF.
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Proof. The result follows from an induction on |/|, relying on
[Tgv /Z\/Z\I] = [’Tgv /Z\/Z\I] + [Tg - :fgv /Z\]’Z\[ + 2[Tg - Tgv /Z\[],

Lemma 5.3 as well as several applications of Lemmas 5.6 and 5.9 .

The conditions on the multi-indices are easy to check when |7| = 1 (see Propo-
sition 5.7). In that case there holds |K| = K = 0. So, if Z! = Z is a homo-
geneous vector field, we have K P~ IP = 1. Otherwise, Z 7! is a translation Oy nt
and each source term contains either the factor Ly , (H) or dyu(Av). Moreover,
K? < I” always holds for the terms of the form (5.27) since they do not appear
when Z! = dxn. One can check during the induction, and more precisely when
we apply Lemmas 5.6 and 5.9 , that these conditions hold for all 7 (the general
principle is explained in Remark 5.4). O

Remark 5.11. As mentioned in Subsection 2.4.3, we would not be able to close the
energy estimates for the Vlasov field without taking advantage on the conditions
on K ¥ and I given in Proposition 5.10.

We also point out that the condition K P~ IP for the terms (5.27) is of funda-
mental importance. We would not be able to handle such terms if the case K* = 17
was possible, even if we had at the same time J T > 1.

5.4. Null Structure of the Error Terms in the Commuted Vlasov Equation

The aim of this subsection is to describe the null structure of the terms given
by Proposition 5.10. We start by estimating Z™ (Av), which will be useful in order
to deal with (5.28)—(5.32).

Lemma 5.12. Let N > 6, ZM ¢ @i)Ml with |M| < N and assume that the metric
g satisfies the wave gauge condition and (4.2). Then, if ¢ is sufficiently small, we
have

ZManls Y e
[+ IKIS|M|
JTZ2min(1,MT)

+ LS (H) e + L5 (DL (H)).
(5.33)

Proof. According to Proposition 4.2 and (4.2), we have
VIJ| SN =3, V(i x)el0, T[xR?, ‘cg(H)‘ (t,x) < Ve (5.34)
Hence, as g~ (v, v) = g“ﬂvavﬁ =0, we get
|08 = 1P| = 1H @, 0)] S Vell + Ve,
which implies, since wy = —|v| and if ¢ is sufficiently small,

1
—2lv| Syy £ —§|v| and |Av| < 3. (5.35)
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Consequently,
(vo — [v)Av = v — o] = H" vuv, = H (v, v),
so that, as |vg — |v|| 2 |v| and v = w + Avdt,

|H @, v)| _ [H(w,w)]|
(1 1]

As |H| < /e, we obtain, if ¢ is sufficiently small, that |Av| < ZW. Now,

recall from Lemma 3.7 that wAw4 < |v||wyz|, which implies

|Av| =

+ |Av||H]|.

IH(w,w)I
|Av| < NI S |Hlgrlvl + H|HABwAwB| + |H|lwe|
SIH|zr vl + | H|wel (5.36)

and the result holds for |M| = 0. The next step consists in proving an inequality
which will allow us to prove the result by induction in |M|. The starting point is
the decomposition

0=g'w,v) =g '(w, w)+ |Av?¢% + 2Avg~ (dr, w).

Now, using Lz(dt) = S%dt + SgOk dx¥ and (5.6), we get

Z (g7 ) = L2087 (w, w) + 27 (L2 (w) + 27 (w), w)
= Lz(g"Hw, w) +283¢" (w, w),
7 (|Av|2g00> =27 (Av) Avg® + |Av2 Lz (g~ )P
+283 | Avg™ + 252 |Av|2 ko,
2(Avg—1(dt, w)) = Z (Av) g~ (dr, w) + AvLz (g~ ") (dr, w)
S -1 Z —1,4.k
+282Avg (dz, w) + S§OkAvg (dx*, w).
It then follows that
= —1 _ —1 Z -1 Z —1 4.k
2Z(Av)g™ (dt,v) = =Lz(g (v, v) =258 (v,v) — 25§OkAvg (dx*, v).

Iterating the process, one can prove that, for all Z ZM ¢ ]P’lMl

Mg @l s Y 1£56Hw, )l
|/|§|M\
JT

n Z 3 ‘z (Av) L2 (g~ (dx", v)

OSpuS3 I TI+HITISIM|

1T+ gT—pmT
[T]<IM]
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+ Y |[Zanzfe||ele].
-+ T1+IK|S M|
[T+ JT kT =pmT
I],1K|<IM]
Using both (5.34) and (5.35) we get [v| < 3|g~!(dr, v)| < 9Jv|. Hence, as v =
w + Avdt, we obtain

~ £~
Zian|s ¥ 1A D)
< 1M v
JT—mT
Zl(A ~
vy BNy ) iz o,

vl

|71+ 1+ K| £ M|
1T 4+ 7T > mint, MT)
|11, K| < M|

(5.37)

Consider now Ny < N — 1 and suppose that (5.33) holds for all | /| < Ny. Then, let
M be a multi-index satisfying |[M| = No+ 1. As Lz(n~") = —28%77’1, we have

1£2,(g~ Y (w, w)| S 1L5(H)(w, w)| + [~ (w, w)| = [L5(H)(w, w).

Following the computations made in (5.36), we then get

ﬁlﬁ 7 D, w)| 1L H)|erlvl + L5 (H)llwe]. (5.38)

In order to bound the second sum on the right-hand side of (5.37), start by noticing
that, since Lz (n~!) = —285n71,
2| < |£’(H>| it 7>
~ Lz + It T =

Now, by the induction hypothesis,

Vi<l |Z'awls Y wlfelan|(1+]ckan)),
]+ 15l < 1)
1 = min(1, 17T)

so that, using |£2 (H)| < 1if [Io] £ N -3,

2

|+ 1|+ K| < M|
1T 47T > min1, M7T)

1, IK| < M|
S DI ]

|+ 1] < M|
1T > min(1, MT)

Z
M 25| (vl +1Z% Aw)
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ZIAav| | ) -
> ||T|\n 1125 aw)
[+ K| < M|
1T > min(1, MT)
1, IK| < M|

S X wilehan||esan|.
1+ 171 < M|
1T > min(1, MT)
The claim then follows from (5.37), (5.38), the last two inequalities and
Yoo 1Z'awin TS ) wellLhH))

|| < M| |1+ K| < M|
1T > min1, MT) JT > min1, MT)

HIIL(H) o1 + WILZ (FDIILT (H)I,
which is a direct consequence of the induction hypothesis. O

In the next lemma, we deal with the remaining error terms given by (5.25),
(5.26) and (5.27) by expanding them with respect to the null frame (L, L, ey, €2).

Lemma 5.13. The following estimates hold:

H ~
[H(w, dy)| < [v] 7 (II—FIVI//H- > IZV/I)-HUIIHUIIVW

1+t+r A
ZePy
+ VIvllwe I Hlzy Vi,
[Vi(H)(w, w) - 3y, ¥ | S (wr|[VH| + [[VH]£T) (It —rlIVYl+ Y Zﬂl)
’Z\E@Q

+ (\/|v||wL\|VH| + |vWH|U;) (rww +y @m),

2 Eﬁo

2
V() (w, w) - ﬁav,,w‘ < ("“' VM + |wL||VH|n) ((r+r>|vw £y |zw)

v v P
o o =

+ (VI VM + vl THl . ) ((r+r>vw| + 3 |2w|>.
ZeBy
Proof. The first inequality follows from
H(w, dy) = HE wp Ly + HE (o Ly + wi L) + HE (wpea (W) + waLyp)
+HM P wp Ly + H Y (wrea (W) + walyy) + HA P waep(y)

and from Lemma 3.7, as well as (3.34), which give

[t —r| 1 _~
S d |Ly| S ——I|V —_— Zy|.
wal S Vivllwel and (L] S IV I+ 7= > 129

ZePy

Remark now that for a symmetric tensor G*",
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Gw, w) =Gwj + G " wi + G P wawp
~|—2§LLwLwL + ZQLAwLwA + 2QLAwLwA.

Consequently, using again that [w4| < /|v[|wr ]|, we get

1G(w, w)| < wllwellGl+ v*IGleT, (5.39)
1G(w, w)| < IV vllwelIGl+ v*Glee. (5.40)

Recall from Lemma 3.9 that

[t —r]| 1 ~
(VY| S =, |vw|+m2|2w|,
26]1370

t 1 ~

(| S 1T+ o 3T 129, (5:41)
/Z\E]P)()

The last two estimates then result from (5.39), (5.40), (5.41) and

Va, (H) (w, w) (Vo) + Va(H) (w, w) (Vo)™

VEHY @, w) - 2 = — L9, g, w L = Ly 0w, w) L
w2 w2 0]

+ VAH) (w, w)%' O

Vi(H)(w, w) - 9y, ¥

5.5. Final Classification of the Error Terms

In this section, we list all the error terms that appear in the commuted equations
in such a way that we will able to easily estimate them when we try to improve all
the bootstrap assumptions on the energy norms of the Vlasov field.

Proposition 5.14. Let N = 6 be such that the metric g satisfies (4.2), assume
that the wave gauge condition holds and consider 7!l e ﬁl)ll with |I| £ N. Then,
[T,, Z! 1(¥r) can be bounded by a linear combination of terms taken in the following
families:

The terms arising from the source terms

|Z" (Ty(y))

The terms arising from the Schwarzschild part,

. ol S -1, 1 =17 -1 (5.42)

V]

=K 75K
=M— 775y, 5.43
Slo (1+1+47r)2 ‘ w‘ (5.43)
[v] 5K
Sk =M———|VZ , 5.44
1,00 Txisr ‘ ¥ (5.44)
~ [v] PN
ik .y ’c’ Al HZZK , 5.45
1,1 (1+t+r)2 Z( ) ‘ﬁ ( )

G

JK |v| ’ J IHAAK
Ko |veiah|2z
12 e M Al v

, (5.46)
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J.K ._ J K
CHEES M—1+t+ ‘Lz(h )Hvz

It
STK .~ M —(Vﬁ nt Hvz" (
1= Ml s | [V 2y

&K = Mpl )vc (h )‘ ‘vz’(w),
&7 = Mplcah [vegah| |[v2Ey |,
where, Z € P,

o QI+ IJI+IKIS L, KIS =1, KP<TP,

The quadratic terms,

EK =y ‘vcg(hl)‘ (22%‘,

& = ol ([vesah| + [Fesah]) 2259,
€5 = % csmh|[22%y

¢y =1 Imjﬁ | [vZ¥y].

ek = pifega|, |25y

i =\/m’£§(hl)uv2’<lp

ey =l = rilwel [VEL 0| |VZE g

el == rll [vesah| V2],
€5 = (t‘i"’)\/WHTL‘VE (h )HVZK

&l 1l = @+l [Vegah)| V2],

where, Z € Py,

e [JI+IKI= I, [KI=|I|-1

e K and J satisfy one of the following conditions.
(1) Either K* < I,
(2)or KP =17 and JT > 1.

ek =+ pyloLl ‘Vﬁ’(h )Hsz

where

o |JI+IKIS I IKISI=1, KP<TP

(5.47)

(5.48)
(5.49)

(5.50)

(5.51)

(5.52)
(5.53)

(5.54)
(5.55)
(5.56)
(5.57)
(5.58)
(5.59)

(5.60)

(5.61)
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The cubic terms,

~m Kk . vl My INIES TS
¢ =T ‘ﬁz ( )Hﬁz(h )HZZ v, (5.62)
EYLN = ol Y | |[vegah] 225, (5.63)
where, Z € ﬁlso,
o M+ JI+IKIS I IKISH|—1, KFP<TIP,
&)X = ol [ed | [es | [vZE v (5.64)
K =1 —ril [£Y )| VL] [v2K g |, (5.65)
iR =+ | ]ﬁy(hl)‘ ‘Wé(hl)‘ ‘V?Kw , (5.66)
i =+l |eY | Ve [vZFy |, (5.67)
where
o M|+ |JI+IKI=|Il, [K|=|I]-L

e K, M and J satisfy one of the following conditions.
(1) Either K* < I?,
(2)or KP =1F and MT +JT > 1.

The quartic terms,
el =+ LS HILY RHIVLLBYIVZE YL, (5.68)
where
o [QI+ M|+ +IKIS I, [KISI—1, KP<IP.

Remark 5.15. To clarify the analysis, we have denoted by S or @, the error terms
that contain factors of the form |Z zk IM, and by G or €&, error terms containing
|VZ K|, so that we know that the last derivative hitting v is a translation.

Proof. Since g verifies (4.2) and in view of Proposition 4.2, we will use throughout
this proof that

VIQISN -3 [efan|+|cdm)| s Ve (5.69)

Consider a multi-index [ such that |[I| < N. In order to clarify the analysis, let
us introduce a notation. Fix ¢ € [4, 11] and multi-indices (J, K) satisfying the
conditions presented in the proposition which are associated to (’E;f Then, for a
sufficiently regular tensor field k, denote by (’3;: [£] the quantity corresponding to

QEJ’K

Iq > but where 4! is replaced by k. For instance,

¢ K k) = | ‘Lg(k)‘m ‘v?’ﬂy).

We define similarly €7 X [k], ¢} "X k1, €)." X [k] and €Pi§"" ¥ [k]. Then we
make two important observations.
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For all ¢ € [4,11], (’Ej”f [H] is a linear combination of G;?(}K [A] and lower

order terms (’EM; J0-K 111 and (‘EIQ(I’gMU Jo- K111, where p € [14,17] and (Jo, K),
(Mo, Jo, K) as well as (Qq, My, Jo, K) satisfy the conditions presented in the
proposition. This follows from Remark 4.3, so that, for instance,

pllesan|, V2RI s Y e+ Y et .
[Jol <1 [Mo|+[JoI <17 |
=i M +J] Zmin(1,J7)

Similar relations can be obtained, using also (5.69), for QEJ K [H], QEM J; K[ H],

qu’ K1H] and €& X (11,

Foralln € [1, 3] and ¢ € [4, 11], we have
&/ S € Ih' 1+ 8, =€ + &, ¢ S €y + 6.

This ensues from the decomposition # = h' + h° and Proposition 4.1, which
gives that, for all |J|,

M
I (%)) S ———, VLS (R P BT ——
1£7( )INIJFIJr VL] S ETETSY

Similar inequalities hold for L’EM I K[h] GM I K[h] and Q‘Sg’llg’J’K[h]. For
instance,

et S e i+ &1 1! 1+6,1 + 67y,
Q‘311”1; K < eilli[i;’K[h I+ G{SK + G Kt 61 00>
elQllé/I JK[h] ,S e[Q’i%/I‘ij[hl] + 6M,J,K[h] GQ,6],K
+6 el + 67 + 65

For the quartic terms, we have sometimes estimated one of the two factor of
the form |£/0(h')| by /& and (1 + 7 + r)~! by 1. We specify that two cases
need to be considered for (’Eﬁwlg K [A]. Indeed,

iy 1] S g h' 1+ €75 + &Fgg
(4 D)wr 1LY RO NVLLBYIVZE £ (5.70)

Then, the last term is bounded by @{1 if KP < I?. Otherwise K¥ = I” and

MT + JT > 1, so that it can be bounded by @JK if M7 > 1 and by QEJK if
JT > 1.

The remainder of the proof then consists in bounding the terms written in Propo-
sition 5.10 by (5.42) and those of (5.51)—(5.68), with ! replaced by H. For that
purpose, we will use several times Lemmas 5.12 and 5.13 . Until the end of this
section, each time that we will refer to one of the terms (5.51)—(5.68), i! has to be
replaced by H.
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The terms (5.24) can be controlled by those of the form (5.42).

The terms (5.25) can be estimated, using the first inequality of Lemma 5.13, by
a linear combination of terms of the form (5.53)—(5.56).

The terms (5.26) can be bounded, according to the second estimate of
Lemma 5.13, by terms of the form (5.51) and (5.52) and (5.57)—(5.60).

Using the third inequality of Lemma 5.13, one can bound the terms (5.27) by a
linear combination of terms of the form (5.51) and (5.52), (5.57)—(5.61) and

Aur @K [H] = (¢ + r)|wy | (vzg(H)‘U‘vaw . KPP <1P,

|O| + |K| £ |I],1K| £ |I| — 1. Applying Proposition 4.2, we obtain

el FH1 S Y Ky Y e K,
IV1Z10] IMI+1J1Z1Q]

so that, using the wave gauge condition (see Proposition 4.4),

Qlu;{J([H] < Z (t +r)|wgl ’Vﬁg(h)‘ ‘V/Z\Kl/f‘ + Z élxié,x[h].
VIS0 IMI+1J1<]0]

Use |wz| £ TolJwz] as well as the decomposition 7 = h° + h' and the
pointwise decay estimates on h° given by Proposition 4.1 in order to get, since
KPP <1P,
ey M HISSF 0+ D €+ Y. etk
VISIQl IMI+ITIZIQ]

Finally, it remains to estimate Q‘Eyig K through the inequality (5.70).

Applying Lemma 5.12, one can control the terms (5.28) by a linear combination
of

(1L 1EY DL+ WIEY () 7 + Wl £Y OIS () 1256~ IV ZE i,

with [M| 4+ Q|+ |J| + |K| S I, |K| S |I|—1and KP <T1P or KP =17
and JT + M7T > 1. Recall the relation Ez(n_l) = —28§n_1, so that
o if Z/ # SVI then Eé(g_l) = [é(H) and we obtain terms of the form
(5.64). For this, we use that |£§(H)| < 1 forall |[R| £ N — 3 in order to
deal with the quartic terms.
e Otherwise [£7 (g7 )] < |£%(H)| + |n~"| and we still get terms of the form
(5.64) as well as, since [n7'| < 1, (5.55) and (5.56).
According to Lemma 5.12, one can estimate (5.30) and (5.32) by terms of the
form

WL (H)I|ILS> DIV LY (E)IIVyZK |,
with |Q1] 4+ |Q2| + |J|+ |K| < |I],|K| £ |I| —1and K? < 1P, Using that
WIVVZE Y S ¢+ 0IVZRy+ Y 1ZZ5y),
/Z\EPO

which comes from (3.31), we finally get quartic terms of the form (5.68) and,
using (5.69), cubic terms (5.63).
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e Finally, since for two functions ¢ and 1, there holds

Vig - 0y = Vo, (Vo) + Vad (Voy)?

1 1 4
V“dwwu = —EVL¢wL—EVL¢wL+V dwy,
we can bound, using (5.41), the terms (5.29) and (5.31) by

\ZM (AW IVLLHWZZE g + 1t = rlIVLL(HDZM (Av)|[VZE |

((r+r>|vz (H)| + (t+r )%IVE (H>|)|2M'<Av>||v2’<w|,

with M|+ |J| +|K| S |I],|K| £ |I|—1and K¥ < I? or KP = I? and
MT +J7 > 1. The estimate

ZM@anls Y wIedH(1+1£8an1),

M|+ Q| < M|
mT gmin(l,MlT)

which follows from Lemma 5.12, leads to terms of the form (5.63) and (5.65)—
(5.68). O

It will be convenient to introduce the following notations:

Definition 5.16. Given one of the error terms foy’iK, i € [4, 11], listed in Proposi-
tion 5.14, we define Qlf’iK as the quantity which contains everything of QEJ’K but
the v -part [VZX|. We define similarly, for n € [1,3] and p € [14, 17], QLJ K

In>
M, J,K §M.J.K §M,J.K 0.M,1.K .
Ql,)p ,Ql,,lz ,%,’]3 and%[”8 . For instance

=7

ALk - |v||(vcé<h1>lw+\W<hl>D’

ol K —(t+r)|wL|‘£M

and the multi-indices 7, J and K (respectively I, J, K and M) satisfy the same

conditions as those of the term @{ZK (5.55) (respectively @%’g’K (5.60)).

J.K

1j
0.J.K =K K RJK ~JK 0.J.K

%]16 from the error terms (‘5]10, 61,00, 61’1. 61,/' and 6[’6 , so that

We also define in a similar way the quantities BX , 8K B K 87K and

M|v| SJ.K M|v| 7ol
B = ——, B T ehmh),
A 1= G )
ByE = Mp|IVLY ().
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6. Commutation of the Vlasov Energy Momentum Tensor

To evaluate the commuted Einstein equations (see Proposition 4.9), we will
require the null components of the tensor field EIZ (T[fD- In order to simplify the
presentation of the following results as well as their proofs, we denote by T[W] the
energy-momentum tensor of the Vlasov field in the flat case, that is

T = /R} v o,

This field is considered in the following:

Lemma 6.1. Let ¢ : [0, T[xRi X R?) — R be a sufficiently regular function. We
have,

VZ eP, LTy =TIZy] and Ls(Tly]) =T[Sy]+2T[¥].

Proof. The result for the Killing vector fields Z € P holds in a more general setting.
More precisely, if X is Killing for a metric 4 and T[] is the energy-momentum
tensor of a Vlasov field v for the metric &, then LxT[¢¥] = T[)?w], with X the
complete lift of X. It can easily be verified by choosing a local coordinate system
such that X coincides with one of the coordinate derivatives. For the scaling vector
field, S = x*9,, we have

Ls (T),, = S (T ) + 9 S T W b + 0,8 T[]0

Wy, w

= [ s i av - 2T 1y,
R? w

We now turn on the real energy momentum tensor 7'[v].13

Proposition 6.2. Let I be a multi-index and Z' € K. Then, there exist integers
1 1, 1
Cix CJ’K’M;W and CJ’K’L’M;W such that

~| a ~ /| det g~
LyTWDw = Y 05,,(7{2’((10)2’(%)]

JI+IKIS | v

N ~ ~ ~, (vl detg=1| \ dv
+ C?K,M;wfw wszmv)zK(xu)zf(ig e

0Sts 8% vy vl
ITI+IK+IMIS T

~ ~ - ~,f Iv]v/|detg= |\ dv
+ Z Clxrmuw | ZMa0)ZH A0 Z ) Z! lvlyidetg™ | "/F =.
R}

8" vy [v]
[+ K [+ LIHMIE )

13 The types of formula can be in fact generalized to any conformal Killing fields on a
general Lorentzian manifold.
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Proof. The formula is satisfied for |7| = 0 since w® = |v| and

Vldet g~ 1| 1 w®/| det g~ 1|
Vuvy S = —5 (wuwy + 8wy Av + 80w, Av + 8980 | Av|F) ————.
8% vq w 8% va

The result for arbitrary multi-indices / follows by induction, applying several times
Lemmas 3.6 and 6.1. m]

Recall that the metric g satisfies the decomposition (4.1) and the condition (4.2).

Proposition 6.3. Let N > 6 and g be a metric such that (4.2) holds. Then, for all
7! e KM such that |1| £ N and V, W € U, we have, if € small enough,

chrwhvw| < Y / 12K gy 2wl

vl
IKI<IT|

1 K
+ Z <m+lﬁ (h )I) /R3|Z W) |v|dv.

[I+IK ST v
6.1)

Proof. Note first that according to Proposition 4.2 and the assumptions (4.2),

VIJISN, L5 S Y (L2, VIJIEN =3, |L5(h)] < Ve (6.2)
1QIZ1J]

Hence, using Lemma 5.12, we have

VIMISN, [ZY@an]s Y el 63)
QI IM]
Suppose that
~ 0 dt —1
VIJISN, |27 (w— videtgT 1) oy oLl 64

Oc
8 Vu
0111

holds. Then, from Proposition 6.2 and (6.3) and (6.4), it holds that
chatspww| = X F[iZFw], ¢ X il [ 12K @i
KISIH| KIS o

X emi (11w [zl

[JI+IQI+HIKIS||

The result then follows from

1L (h)] S (L5 + 1LY < Ve

N Lk
=TT L5 (Y],
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which holds for any |J| £ N and follows from the decomposition 4 = h® +h! and
Proposition 4.1. It then only remains to prove (6.4). For this, note first that, using
v=w+ Avdr, g7 =y~ + H,(6.3) and (6.2),

20 (s

S ) 1£2 I+ 122 av))
1011410212101

Shl+ Y Iyl

NIy

Similarly, using that det(g™') is a polynomial of degree 4 in g*¥, 0 < u, v < 3,
we get

ZK@etg ™| s 14+ Y 1601
IZIK]

Using |H| < /e, |Av| S Ve, v = w + Avdt, (6.3), and that the determinant is a
multilinear mapping, we obtain, for ¢ small enough,

1
18%%ve| = (vl — (1 + [HPD|Av| — [H*wge| = [v] — Cy/elv]| = 51l

Jldetg=1] = [detn + O(H])|? >

The inequality (6.4) then follows from the Leibniz rule, |2Q wh £ C olv| and
the last four estimates. 0O

. (6.5)

| =

Remark 6.4. Note that a better estimate could be obtained for the good components
of ﬁIZ(T[ f1) in Propositions 6.2 and 6.3 but the result stated in this section will be
sufficient in order to close the energy estimates.

7. Energy Estimates for the Wave Equation

The aim of this section is to prove energy inequalities for solutions to wave
equations in a curved background whose metric g is close and converges to the
Minkowski metric 7. These results can be found in Section 6 of [30] and we give
here, for completeness, an slightly different proof. More precisely, the goal is to
control, for some (a, b) € Ri_ and a sufficiently regular function ¢, energy norms

w
1+ Jul

t
El[P1(1) = |vt,x¢|2w3dx+// (|L¢|2+IY7¢|2) dxdr,
PN 0 P

1) = / Vi x ¢l dx + E40[p1(2),

P

. v 2 t L2 2 b
E4b1p](r) 3=/ sz dx+f / ILoI” + V9] . “a dxdr,
s, L +t+7r 0oJs, l1+14r 1+ |ul
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Remark 7.1. The bulk integral
b
a

._ ! 2 2 W,
ﬁ._fo /2 <|L¢>I + |V ) [ dxdr

will allow us to take advantage of the decay in + — r. Without an a priori good
estimate on it, we would merely obtain that

A< (1 +1) sup / IVixpP0ldx < (1+1) sup E“P[¢](2).
7€[0,1] J 1 7€[0,1]

Note however that the bulk integral provides only a control on the derivatives
tangential to the light cone, that is L and Y, and constitutes an important tool in
order to exploit the null structure of the massless Einstein—Vlasov system. The
problem when @ = 0 or b = 0 is that the energy estimate derived below (see
Proposition 7.5) will not allow us to control K. Moreover, if a > 0, the norm
[r<, IVix¢|?wf dx is strictly weaker than [ -, |V, ¢|* dx, which explains why

we introduce ga’b[¢].

We introduce the energy norm gab [¢] in order to avoid a strong growth at the
top order which would force us to assume more decay on the initial data in order
to close the energy estimates.

We fix, for the remaining of this section, T > 0 as well as a function ¢ and a
metric g, both defined on [0, T[xR> and sufficiently regular. We also introduce
H := g~ — »~!. In order to derive energy inequalities, we introduce the (1, 1)-
tensor field

1
Tig)", = g" 0:pduep — —n",8" B pds .

Remark 7.2. The tensor field 7'[¢] is the energy momentum tensor of ¢, written
as a (1, 1) tensor. However, we point out that since we lower indices with respect
to the Minkowski metric, T'[¢],, 7# 0,¢0,¢ — %g,wg"‘/3 doPdpe. The (1, 1) tensor
field T[¢] appears to be well adapted to prove energy estimates for the norms that
we are interested in.

Let us now compute the divergence of T [¢]. For this, it will be convenient to
use the notation

_ 14 |u| — T t> r,
b . b b (T+]ul) =
=——1L =1+ 0 =

W, (w,) = ( lu|)orw, { 1+ | |)b’ f<r

Lemma 7.3. We have, forall a,b € R,
~ 1
TP, = O - 8v + 9 (H")s ¢ - dy0p — Eavw‘)”)aw 309,
~ 1
0. (TIg1 o) = (ngs 0+ 0u (H")dep - 01 — 0 (H')3p - am) o

1 1 1
+ <5|L¢|2 + E|Y7q>|2 —2HY 3 - 9 + EH"”am : aaqs)
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—b

wa

1+ |ul’
o (Tlel ol _ 9u(TI81 owr)
P\ 14+t+4r )" 1+4t+r

1 1 1
+<5|L¢|2+5|V7¢|2—2H“85¢ O+ EHG”aw : am)

b

a

A+t+r)?

[0

Remark 7.4. In general, T, [¢] is not symmetric.
Proof. The first identity follows from straightforward computations,
0uTI1", = 8, (") ddup + 50,050 + 8" D 3yu Db

1 Qo Qo
_Eav(g )80¢aa¢ — & av39¢ao¢
~ 1
= Oy - v + 8, (H") e pdyp — EaxH"")awaaqb.

For the second one, start by noticing, as L(a)é7 ) = 0 and W(a)g ) = 0, that
—b

1
T$1* 030l = TIp1E)L(wh) = —2%““{' (g“ depdp — anogeﬂaecbaa(P) .

Then, using the first identity and nLO = % one gets,
e (T191“0e} ) = B (T1910) of, + TI91 0D,

~ 1
= D¢ - i + 0, (H")de ey, — — 0 (H")dopdy P

Lt L 4o 24
-2| g™ 3g¢8z¢—1g P35 T ]

It remains to write g~ = ! + H and to note that

1 1
2 (anawat«b - Zﬂ’“amam) 1LY (L + Lo) — n=ELoLe — SIVgI

1 2 1 2
= |Lo)® — Z |V
2| o 2|Y7<i>|
Finally,as L(1+t+r)=2and L1+t +7r) = V(1 +t+r) =0, we have

w? ) 0 (TIo1"goh) w?

. ( TIo1" a —2T[¢p]Fg— .
“( Yo > 1+1+r Wl oa 2

1

Then, writing again g~' = n~! + H and since n’ = %, we obtain

1 1 1
—2T(91"0 = IO + S IV = 2H 0:¢ - 0,6 + - H 7 0op - o,

which gives the result. O
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We are now ready to provide an alternative proof of Proposition 6.2 of [30].

Proposition 7.5. Let a, b € R*, Cy > 0 and suppose that H satisfies

H C
1|+I|u| IV IIJ\/E L
(I4+t+r2(1+ |Lt|)T

|Hrrl = Cuve
+|VH +|VH| £ ———,
T Ju] IVH |z + | I_1+t+r

Then, there exists a constant C := Co%, where Cy > 0 is an absolute

constant, such that, if ¢ is sufficiently small 14" \we have forallt € [0, TJ,

’5“’b[¢](f)dt

E4P81(1) < CE“P[P1(0) + CCr/e f :
0 +7

t
+Q// |Og¢ - 86| 0l dx d, (7.1)
0 JX;

2191 "

%1010 £ CE"[91(0) + CCh /e f .
0 +7T

'
g/ / |Og¢ - 86| wf) dx dr. (7.2)
0Jx,
Finally, it also holds that

t da,b
E4b[p1(r) £ CE“P[P1(0) + CChe / %dr
0

// Oge - [Gs¢ - 29| b dxdr. (7.3)
v, l+t+r

Proof. In order to lighten the proof, we will not keep track of the constant Cp,
which appears merely when +/¢ does. The (Euclidean) divergence theorem yields

t
/ ~T[¢]° g0’ dx = / ~T[¢%w’ dx — / / a,L [p1H gl )dxds
PP 2o 0 JXg
Now, note that, for ¢t € [0, T[,

1
~T($1% = —g% 90,6 + En%g@“awam

1 1
= §|v,,x¢|2 — H%3:0,¢ + 5H9“89¢>ag¢>.

14 One can check that & needs to satisfy a condition of the form C1Cy/e(1 +a + b) <
% min(1, a, b), for a certain constant C; > 0.
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As |H| < /e, we have, if ¢ is sufficiently small,

1 3
Z|v,,x¢|2 < Tl < Z|v[,x¢|2.

(7.4)

The first inequality (7.1) then follows, if & is sufficiently small'>, from the second

equality of Lemma 7.3 as well as

! Lo o 1 2) @,
/O/Z< |Lo|” + |77¢| P |dxdr

> el 1 [ (1zor+1992) 22 ‘e
t 1
LE _ Y60
fof HE D 0,9 — S H 7 dpp - a(,¢‘1+| |d xdt
a,b
<f(a+b>£“b[¢]<r>+f<a+b)/ M .,
t
/O / au(H“f)aw.a,qs——at(HQ")ag¢-a(,¢ wldxde
gab
<\/—5ab[¢](t)+\/—/ 1[¢](7:)
+1

In order to prove (7.6), start by noticing that
2HY 3¢ - 8¢ = HEELY - (Lo + L) + HEF Lo - (Lo + Lo)
+HE es0 - (Lo + Lo,
2
+H " Lopead + HEA Loend,

which implies

1 _
’H*aw - — ZH9°89¢ : aaqs’ S |HLo|IVo* + [H||[Vo|?

1+ |ul

<
\/_l+t+

This, together with f; Js. Vo1 f‘uldx dr < (a + b)E¥P[p1(r) and

1 —b l‘
/f g2 dxdr§/ / Vo 2wbdx dr
. l—i—‘t—i—r 1+ |ul 1+

gab
Saro [ S e

Vo> + VelVol.

(7.5)

(7.6)

(7.7)

1 1 1 1
~H" % -3¢ = EHABemeBd» + 5H“|L<¢>|2 + EH%@F +H"SLoLe

I5 This condition allows us to absorb the terms of the form C JVEE a.b [¢](¢) in the left-hand

side of the energy inequality.
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finally gives us (7.6). Now, remark that

19, (H"$)3: 93,6 S (IVH| o + IVHDIVYI? + IVHIIV||3,
< VeV JElVeP

, 7.8
Yl4t+r o (14 |uplte (7.8)
|0:(H)0o¢p - 95| < IVH|ILo)> + |VH|[V| |V
< VEVOP | JEIVeL 7.9
“l4r+r 0 A+ uphtte’ ’
The estimate (7.6) is then implied by
/ / — Y |V¢Peb dxdr </ / Vo >0l dx dt
DR 1+t+ 141 .
5ab
< JE/ e (7.10)
0 1+t

and

// V5 (Gt drdr < JE// FoP—2 dxdr < JEES[1(0)
0 Jx, (L4 [u])i+a “ - o Jx, I+ |ul| - .

We now turn on the second inequality (7.2), which can be obtained by taking the
sum of (7.1) and'®

! So’o[d)](f)dr

£90[p1(1) < 3E90[$]1(0) + C/eEX[$](r) + Cu/e /0 o

t
+4// |Ce¢ - 8] dx d.
0 JZ;

To prove this estimate, apply the Euclidean divergence theorem to T'[¢]*, and
follow the proof of (7.1). The identity (7.4) does not depend of (a, b) and (7.5)—
(7.6) are trivial for (a, b) = (0, 0) as 58 = 0. It then remains to bound sufficiently
well the left-hand side of (7.6) when (a, b) = (0, 0). For this note that (7.8), (7.9)
and (7.10) still hold in that context and that

! Ve T2 ! S 90 b
N < a < a,
/ /r (1 + |u|)l+g |V¢| dxdr ~ \/g/(; s, |V¢| 1+ |M| dxdr = \/Eg [¢](t)

Finally, (7.3) can be proved similarly as (7.1) by applying the divergence theorem

b
to T[d)]”()% (see Lemma 7.3). Apart from the fact that each integral contains
anextra |1 4+ 4 r|~! (or [1 + v 4+ r|~!) weight, the only significant difference is
that we need to control

b
2 pyLE o @y
// ( |Lo|*+ = |V¢\ 2H" 3¢ - a,¢+ H o - a¢>(1+ - )dedr

16 Onpe can verify that the constant C depends only on C.
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In view of sign considerations and since |H| < /e, we can bound it by

, o erigio)
e A e A

which concludes the proof. O

8. L'-Energy Estimates for Vlasov Fields

Let ¢ be a sufficiently regular function defined on the co-mass shell P and
recall the Vlasov L'-energy

10 = [ [ el lavat o
R JR3

t b
+/ / / 1 (2, x, v)| Jwz| dv —8— dx dx. (8.1)
0 JR3 JR3 14 |ul

In this section, we prove the following L'-energy estimate for Vlasov fields:

Proposition 8.1. Assume the bounds

VHIr < Y vm < Y
l+t+4r 1+ |ul
1
Ve + |ul) Vel + |u))2
|Hl| 51—, H| < ——
+t+l" (1+t+}")7

For any parameters a,b > 0 and 0 < t; < tp < 00 and any sufficiently regular
Sunctionyr - PN {t; £t £ 0} — R, we have, if ¢ is small enough,

t a,b
B Y1) S CEVI0) +CVE [ = e
n

n
g/ / / T, (¥)| dvof dxdr,
1 R; R%

where C and C are two constants such that C depends only on (a, b).

Proof. We denote by D the covariant differentiation in (R'*3, g). Let ¢ be a
solution to T, () = G(¥). Then, || solves Ty (|y¥]) = F (), with F(y) =

‘:/p/—‘G(lﬁ) verifying | F (¥)| < |G (¥)|. Then, by considering the energy momentum
tensor of || as in (3.1), a computation shows (cf Lemma 4.11 in [17]), that

¢ Dy (Toally1]) = /

UQF(W)d/,Lﬂ—l(x) +/ |1//|v°‘8xa (Uo)dﬂn—l(x)
7=1(x) Tx)

1
B
+3 /ﬂ L e 6 ﬁoduﬂ-1<x)
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This leads to

8 D (o} Toal1¥11) = / 00 F Y Ik + / YR B (00) a1 )
()

+2/ o e (67 28 T
+¢*Pop (@) ToolI¥11. (8.2)

We apply the divergence theorem between the two hypersurfaces {t = #,} and
{r =1}

- f Toag® 1Yl y/| det gldx = — / Toa g [1¥ 1l /| det g|dx
{t=n) t

{r=n}

~ [ _ 0y (ol Tullivil) Viderglax e
n>t=n

and analyse the resulting terms. To this end, we note that it holds for & small enough

5 S /ldetg| =2, (8.3)

[Av] S lwil|H| + [vl[H]zT, (8.4)
1 2/ | detg™!|
5|U| < (vo) Tg“o < 2Jv], (8.5)

where we used (5.36) for (8.4) and the assumptions on H for (8.3) and (8.5).
The boundary terms at ¢ = ¢; are given by

\/ldet
/{ ]T0ag°”[|1/f|]wa,/\detg dx—/{ f 1 [voveg g Videtg | | b /[ det gldx
t=t; t=t;}

/ / \wlvodebdx
{r=t;}

Thus, using (8.4) and the assumptions on H,

/RS /M W (1, x, v)] [v] dvw? dx < —/ Towg [V |1w2y/] det g|dx
X v t=t;

5/ / W5, x, )] 0] dv oo d.
R JR3

Consider now the last term on the right-hand side of (8.2), for which we have

P ag () Tooll¥ 1] = g*LL(!) Taoll¥ ] = —

D‘Lvoduﬂq (x)*

Note that

Uagaé = Uaﬂlaé + vocHaL
= (vg — wL)n Ly wrn LL 4 vLHLL + vLHLL + vy HAL

1 1
—yAv = Jwr + wr HYE + AvHYE 4 v HEE 4 vy HAL,
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which we rewrite as
1 1
§|wL| = ve gL + EAU —wrHM: — AvHEE — ULHQ — v HAL,

In view of the bounds on H, it follows that

L lvlve( + |ul)

wr| < v,g”
lwp| S veg T +t+r

+ |Av],

so that, using (8.4), we have

L, vlve(d +Jul)

Ly ———
I14+t+r

It follows that the contribution of the last term on the right-hand side of (8.2),
f{tl <r<n) g% o (a)Z)T[W |la0+/] det g| dx df can be estimated from below as

2} e(1 + |u))
/{ a || (|wL| - C|v|fi> (—v0)dtt-1 4y /| det gldxds
1

1<) L Tul Jry I+i4r

< / P ag () T11¥[1a0y/| det g| dx dt
{n1<t<n)

lwr| S V8"

for some constant C > 0, and, using (8.3)—(8.5), that

a)b
Y| |wp | —-—dxdz
/{t1<t<t2} /1‘&3 1+ Jul

P (o) 2 NIy
S ¢ op (@) TIW laoy/det gldxdr + V& | "y,
{n=t=n} " 147

The left-hand side of this last inequality will provide the spacetime term of
]E“’b[w](tz) when we sum all the terms at the end of the analysis. Note that it
will arise with the same sign as the boundary term at t = 1.

Finally, we consider the contribution of the terms

1 v, gV!
— Va0, (gP) L _dp 1., / ¥y (vo)d e, —
2/U|¢| aUB Oy (g )Uﬁgﬁo I’Ln 1()c) vhﬂ' X ( 0) /'Lr[ l(x)

To this end, we decompose v, Vg, (g*?) on the null frame

vavﬂajgaﬂ = vaL(a,-H)LL =+ I)LI)LE),'(I'I)Q + ZUAULB,-(H)AL

+2v40L8; (H)AE + vavpd; (H)AE
and we use Lemma 5.12 in order to get
10 ()| = [9yi (vo — wo)| S NwrlIVH| + [v[IVH |7 + [vI[H|IVH].

Using the assumptions on H, we derive, since |vavp| < |v||wg| by Lemma 3.7,
Velwellvl | Vel

+ 9

14 |u| 1+t+r

where we note that the contribution of the first term on the right-hand side can
be absorbed if ¢ is small enough into the spacetime positive term containing |wy |
obtained above, while the contribution of the second term can be simply estimated
in terms of the energy. O

|vavﬁ8xigaﬂ| + [v¥ 0 (v0)| S
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9. Bootstrap Assumptions

We consider the following bootstrap assumptions on certain energy norms
which have been defined in Subsection 3.7. Let N = 13, £ = %N + 6 and consider

the parameters 0 < 206 < y < 21—0. We have
e bootstrap assumptions for the Vlasov field: For all ¢ € [0, T,

ESPS A1) < Cre(l 03, 9.1)
EY L [f10) € Cpe(l +1)2, (9.2)
E4[F1() € Cre(l + 1)1, 9.3)
e bootstrap assumptions for the metric perturbations: For all ¢ € [0, T'[,
EN ) < Tel + 0%, (9.4)
ERPT RN () £ Ce(1 + )%, ©.5)
ENF R0 £ Crye( 417, (9.6)
End @) £ Cye(l + 0%, 9.7)
Ev AR @) £ Cre(i +1)°, 9.8)

where Cr, C, C1y and C g are constants larger than 1 which will be fixed during
the proof in Section 12. As is usual for this type of proof, the above bootstrap
assumptions are satisfied with strict inequality for # = 0 by our assumptions on the
initial data and provided that C, C, Cry and C are large enough. By standard
well-posedness theory, it follows that they are satisfied on some non-empty interval
of time [0, T'[, with T > 0. Theorem 2.1 then holds provided that we can improve
each of the above bootstrap assumptions.

Remark 9.1. We point out that the (1 + 7)?® growth of the bootstrap assumption
(9.4) (respectively (9.5) and (9.7)) is related to the growth of the energy norm of
the bootstrap assumption (9.2) (respectively (9.3) and (9.3)—(9.5)). Similarly, the
growth on (9.3) is related to the ones of (9.1), (9.7) and (9.8).

The growth on the bootstrap assumptions (9.1), (9.2) and (9.8) are independent
from all the other ones and could be chosen to be of the form (1 + ¢)”, with n
arbitrary small.

We deduce from the definition (3.36) of IE§V+_35[ f1, the bootstrap assumption
(9.1) and the Klainerman—Sobolev inequality of Proposition 3.15 that, for any
|K| < N — 8 and forall (¢, x) € [0, T[xR3,

E%’% I:Z€+3*%(KP+3)’Z\I ’Z\K f] (1)
2P ~ g
/ AH1-3K |v|‘ZKf‘(t,x,v)dv,§ Z >
R} < T+t A4 —r)s
_ ELC5LA1)
T4+ 4t —r)E
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< e(l+1)?2 ' 9.9)

T A4+ 20 41—

Recallthat £ -2 = %N +4. Hence, we obtain similarly, using this time the bootstrap
assumption (9.2), that for any |K| < N — 4 and for all (¢, x) € [0, T[xR3,

8
R 141)2
/ z4+%(N*KP)|v|‘ZKf‘(t,x,v)dvS ed+D 7 (9.10)
R A+t+r2A 4+t —r))s

The next result will be useful to improve the bootstrap assumptions (9.6)—(9.8).
The rough idea is that the L2-norm of |VLZ (h')(V, W)| and |V (LA (V, W)) |
are equivalent.

Lemma 9.2. There exists a constant C > 0 independent of C, C1y and Crz such
that, for all t € [0, T,

r —
RS EE DY SZV*”V[x<H—1>Lé(h‘)TU (1) £ CCe,

m<N 1(T,U)eT xU -

e =y Y 5'”"”[}(( H)ﬁé(h)ru (1) £ CTe(1 41,

[J|EN (T, U)eT xU -

11V+[2:y£][/1 ]1-— Z £1+2y,l|:x< +1)£Z(h )LL (1) £ C(C + Cry)e.
[JIEN

Proof. For the purpose of keeping track of certain quantities, all the constants hid-
den in < will be independent of C, C7¢; and C . This convention will only hold
during this proof. In order to lighten the notations, we introduce k’ := Lé (h") for
any |J| < N. Then, observe that according to the triangle inequality, the lemma
would follow if we could prove the first inequality (respectively the last two inequal-
ities) with N — 1 (respectively N) replaced by 0 and 2! by k” forany |[J| < N — 1
(respectively |J| < N).

We start by an intermediary result. Let us fix (W, W) € {U, T, L£}>,0<a <
I1+2yand0 < b <1+ y.Since

1,14 14
r {(FH<rs3)
=1 <1 \vj < t4==27
X14 , +ool . IxI=1 and ‘ 1,x <X<l t))’ ST i

one has,

®

b J b r J
& vwlk’1— SSVW[X <,+1>k ]
t a)b
5/ |V 2wl dx+/ / |Vk’|? —4— dxdr
[r§'+l} 0 [rng‘Fl} 1+ |ul

L
+ ——w,dx
|m< g%] (1+1t4+7r)?
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// Ll % gea ©.11)
[tz Trr+r? Tl '

Note that since the domain of integration of the four integrals on the right-hand side
of the previous inequality are located far from the light cone, we do not keep track
of ¥ and W.!7 Our goal now is to bound them sufficiently well for well chosen
values of |J| and (a, b) in order to obtain

VIJISN -1,
t+1

i r 7 _
Eotmt K = &5 x( )kf ) <CTe,  (9.12)

VIJI SN, ‘S”V TR gy x( ’ )k’ (1) S Ce(1+0%,

rt1
(9.13)

- ] B
VJISN, & k] - 3;2glx(t+_])kf () <CTe.  (9.14)

For the purpose of controlling the four integrals on the right-hand side of (9.11),
we will use many times the inequality 1 + v +r < 1 + |t — r| which holds on
their domain of integration. We start by dealing with the case |J| £ N — | and
(a,b) = 2y, 1 +vy):

yl+2y 1
1 h](t
/ |ij|2w2 )/dx / |VkJ|2 1+2yd 7[()’
<ol v T A4y s (IL+1)r

2

P 1+y ]2 I+y y1+2y 1

Vk h
f/ VK P2 e dr < // VET0y gy ar /ﬁdr
0 Jrszy 1+ ul <t (T+ )ity o (A+oltr

Applying the Hardy inequality of Lemma 3.11 and making similar computations,
one gets

/ P iy gy < / Ll RTE,
e (Thr4m2 % O W07 Jugcn T 2™
y1+2y

1))
RETIL

X

I+y

t Kk’ 2 . t 1 Kk’ 2
/ / S L dxdr 5/ / Il ! dxdr
0 JiErg g (L+T+1)2 1+ [ul 0o A+ Jicue (L+[up? 7

! 1
5/0 m[ IVK’ 2w, t2 dx dr

l+2y
I _
< / [A71(x) dr < Ce,
o ( + T)l+r
in view of bootstrap assumptions (9.4). We now assume that |[J| < N and we
introduce 1 € {0, y} in order to unify the treatment of the remaining two cases. We
have

7 1t is only near the light cone that certain null components of the metric enjoy improved
decay estimates.
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Vi Pl Y g < AVKIP iy,
<L I+y+n ~ (14" <,+1 14+t4+r 7
i LR [0)
S (o

s

1+V n

! ! 1 Vk|?
// v qumd dr / —/ VK at2y g de
0 Jrsmd + [ul o I+ Jicen 14747 “y

CEVT 1)
/0 (14 7)1+

<

Applying the Hardy inequality of Lemma 3.11, one obtains

k! 2 kJZ
/ %w{?ﬁrndx < 7/ %w%ﬁ'z” dx
segegry (402 S W i g Tt 0 (1 Tul)

1 / [VE! |2 2y <51VV2+2V[h1](x)
S+ g, L+t+r @y ~ (4

and
f’/ Ik’ wfimd d </' 1 / Ik’ Pyt dxdr
_ xdt _ K oy 7 dxdr
0 Jurg e (L4142 14 u ~Jo A+ g A4+ 4+0A+ Ju))?

_ /' A L (C))
~hoo ot

Now recall from the bootstrap assumptions (9.4) and (9.5) that

vie[0.T[, 570 < 2Ce + 0%,

Vi e [0, TL, ELFTh0) £ 2Ce(1 + 0.

Using also that 2§ < y, we can deduce (9.12)—(9.14) from the last estimates. We
now turn on the second part of the proof. Note that

e ViL=V,L=0and VL= A, so that ||VA! g2 — IV DI S LIk | o7
and |[Vk! |zp — V(& DI S Lk o7
° Xl[o%[=Oand5r§ l+t+rifdr=21+rt.

Hence,

1+2y,1 r 7 1+2y.1 r J
bocs [X<t+1>k]_g° [X<r+1>k“}

1
L / / K [7r @iy
< dx + dxdr
N/[zﬂ(1+z+r)2 +2y [z} A4z +m2 1+ Juf

(9.15)

Q)
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According to the Hardy type inequality of Lemma 3.11 and the bootstrap assump-

tions (9.5) and (9.7), we have, since 28 < y,'®
‘k‘/ ‘2 1 Ik./|2w$/+21’
/ 2 1+2y dx 5 / 2
Ir;%} (I+1+r) A+ Jixet 41 A ul)
P / |VE!|? W7 dx
T+ Jize (Lt 4r) @y

éy,2+2y h o o
< Ni[]() < Cel + )Py < Ce,
141y

1
/[ ‘kJ‘LT P2y /f |Vk/‘LT dxdr
>ﬂ|(l+t+r)21+|u| s, (I+7+7)? w3y

<A W/ VK Bryyo1 7 dxde

. . £1+y 1+y[h 1(7)
A (1+ 1)ty

dr < Crye.

The third inequality of the Lemma then ensues from (9.14), (9.15) and these last

two estimates.
By similar considerations, one can obtain, for |J| £ N — 1,

‘c"g,y?"lzjy |:X ( ’ 1) kj:| - Z gg%lﬂ/ |:X (—1> kru] ()
I+ (T,U)eT xU r+
1+y

< / W ol ax + / / Ll 2 dxdr.
{r2t] A+r+r)2% [rzept] A+ T+ 1+ ful

(9.16)
and, for |J| £ N,
1+y,1 r 14+y,1 r
Eo 0 +”[x (t+1>k’] - Y &" +”[x <—t+1>k%U} (1)
(T,U)eT xU

14y

</ Ik’ |? o+ dx+/ f |k’ |2 D14y

~ iz (4147200 ze) (L7402 1+ Jul
(9.17)

All these integrals will be estimated using the Hardy inequality of Lemma 3.11.

For those of (9.16), we have
1+2y

kj kJZ
/ L i ol dx </ L dx
[rze] (41 47) 4 >u (L4 1)7 (1+|u|)

SEasaTII0)
ST

18 Note that we could avoid the use of the bootstrap assumption (9.7) by taking advantage of
the wave gauge condition. The consequence is that the right-hand side of the third inequality

of Lemma 9.2 could be independent of C7,.
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+y
/t/ |k1|2 w2y dxdr < //‘ |Vk1|2 2+y i de
0 {@%}(H_TM)ZI"H"' s, I+ 747272

Iijz 1+2y
//E (1+r)1+V dxdrt
142
</ Eva )
~Jo (I41)HtY

Using the bootstrap assumptions (9.4) and 26 < y, we have
y 1+2y y 1+2y

[1"1(1) / -
(1+t)V 0 (1+r)1+V ~

[n'1(z) Te

The first inequality of the Lemma follows from these last three estimates, (9.12)
and (9.16). For the integrals on the right-hand side of (9.17), one has, according to
the bootstrap assumption (9.5),

|k1|2 |k.l|2 242y
/ L PNE LN / dx
[r§@| (A 4t+r2 Hr o >l (1+t+r)(1+|u|)2

S EP (1) £ Ce(l + 1),

t kJ2 w VkJZ
// Ll . Iy dx dr // VK] T M dxde
0 Jpzep ) T+ T+ 1ul v (+T+7)

/f ELPTH [)(x)
0 1+t

<

~

dt < Ce(1 + 0.

The second inequality of the Lemma then ensues from the last two estimates, (9.13)
and (9.17). O

10. Pointwise Decay Estimates on the Metric

We prove here pointwise decay estimates on 4! and its (lower order) derivatives
using the bootstrap assumptions (9.4) and (9.6). The Schwarzschild part 4° can
always be estimated pointwise using its explicit form. This will then allow us to
obtain asymptotic properties of & = h! + h°.

Proposition 10.1. We have, for all (t, x) € [0, T,

5—1 -1 >
Vﬁjhl‘l, - A+r+r°= A+l —rh72, t2r 5 <n_3
‘ AU x)N\/g (1+t+r)5—1(1+|t—r|)_l_yyf<” 1=

(10.1)
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1
7ol < A4+t+"10 4+t —rD2, 127 <
|£5 )\(z,x)wﬁ{(1+t+r)s_1(1+|t_r|)_y’t<r, JISN -3,
(10.2)
V5|60 5 vE (L1472 4] —r2, 127 TSN 4.
A+t+r) 20+ t=rD7V, t <7’ -

(10.3)

Proof. The first inequality directly follows from the bootstrap assumption (9.4)
and the Klainerman—Sobolev inequality of Proposition 3.14, applied with a = 0
andb=142y.Let|J| <N —3,0 €S% (u,v) € [0,3] and

S, u) > LY 0 <£;u£;u0>

so that EJ (W)@, ro) = o(t +r,t —r). We start by considering the exterior of the
light cone, that is we fix (¢, r) € [0, T[XR* such that r 2 ¢. Hence,

3 3
|LL (RN (2, r0)] < ZZ|‘Pw(f+r t— 1)
n=0v=0
3 3 t—r
=22 f Bu@un (t + 1, w)du + @ (t + 7, —1 — 1)
=0 v=0 =—t—r

t—r
< /
~
u=—t—r

+ |£Lmh| ©. ¢+ o)
- \/E /tr du + \/E
YA+t 4+n o A uDY A+ )Y

- NG
YAt ) A A+ =Y

t t —
Vﬁz(h)‘< +r+u’ +; u@)du

We can now treat the remaining region and we then fix (¢, ) € [0, T[xR7 such
that » < t. We have

2@ r0)| = ZZ

n=0v=0
—r
<
— Ju=0

(h)’<t+r+u’t+r 9)du+’£](h)’<t+r t+r9>
- Ve /’—’ du JE <f<1+|r—r|>%

2 2
P ae—— + E——.
~A+t+n ), (1+|u|)% (1+t+r)ti-s~ (1+t+r)t-3

f 0u@uv(t +ru)du + @y (t +r, O)‘

For the third estimate, we use the inequality (3.11) of Lemma 3.3 and the estimate
(10.2). O
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In order to obtain the decay rate of £, 7 (h),for|J| < N —3, itremains to study h0
and its derivatives. The following result is a direct consequence of Proposition 4.1
and M < \Jfe:

Proposition 10.2. For all 77 e KU there exists C; > 0 such that for all (t, x) €
Ry x R3,

2500 0.0 = £ ' Crve 4)

BEREATd (1+t+)2(
Remark 10.3. In the interior of the light cone, the behaviour of £, 7 (h) is clearly
given by Eé(hl). In the exterior region, note that £é(h0) has a weaker decay rate
than Lé(hl) when r > 2t but a stronger one when t ~ r.

‘vc ho)‘(z x) <

We can improve the decay estimates satisfied by certain null components of
h' through the wave gauge condition. According to Proposition 4.4 as well as
the pointwise decay estimates given by Propositions 10.1 and 10.2 (recall that
h=h+ hl), we obtain the following results.

Proposition 10.4. For any multi-index |J| < N, there holds for all (t,x) €
[0, T[xR?,

& &
I — L —_
Uxrtmf =% T 010

2 |eEmh)
(‘Vﬁ’g(h])‘ +—|(12+|u|)|2 .

vesah|, s [Teban) +

(1 + |ul)

1+1+7r)27%
( ) IKISIJ]

(10.5)

Remark 10.5. This inequality will be used several times in this article. Apart from
its application during the proof of Propositions 12.8 and 13.4 below, we will always
bound the term |§£éhl |§'ZA by |V£éhl \2.

Proposition 10.6. The following improved decay estimates hold. On the TU com-
ponent, we have for all (t, x) € [0, T[XR3

< Ve Adt4+m2 A4 je—r) 27, 27

VL 0! ,
‘ 2 )’T Adt4m2 A4l —r) "5 1 <r

|J| <N - 3.

(10.6)
On the LT and LL components, we have for all (t, x) € [0, T[xR3,

252 15 >
vﬁjh]‘ < A4+z1+7r) A4+t =rpz—°, t:r’ JISN -4,
’ 2 )nw“/g A+t+0220 4+t —r) 7S, t <r 1=

(10.7)

SRR LT RIS So T
r hl‘ < A+t4+r) ( =T JI <N —4,
‘ 2 )ﬁT“”/g (L4t +r)- vt t<r /1=

(10.8)

1
=l < A+14+r)27BA 4t —rP2, 1t 27 N
‘Vﬁz(h )‘ﬁﬁ'\’«/g (1+414r)"2vts, t<r’ VIS N =5

(10.9)
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Proof. We start by the 7U/-components. According to Proposition 10.1, the esti-
mate (10.6) holds in the region r < % If |x| = t“ , the Klainerman—Sobolev
inequality of Proposition 3.14 gives, for |J| £ N — 3 since XL 4oo] = =1,

(1+1+ r)a) 1 |V£§(h1)|m

s ) > z'<< )v L )TU) %3

0Su<s3 =2
(T,U) € ’T xU

It then remains to bound the right-hand side of the previous inequality. Let us fix

w € [0,3] and (T, U) € T x U. Using Lemma 3.13 we get, for any |7| < 2,

/ r 14y
VAR D 1_—|—t Z(h )TU)CUV

<2

1QI=2

Lz(Er).

L2(%)
+}/
29V, L,y ) w .
( )or 2(frz5t)

We denote by [Z]Z;, X] the nested commutator [Z1, [Z3, X]] where Z1, Z; and
X are arbitrary vector fields. We can bound the right-hand side of the previous
inequality by

2 = Z

|K|+|L1|+L2|S2

+V

1
c8v, chmhaz, 1, 12", U)o, ?

s(fz))
Note now that

e cither [£z, V] = 0 or there exists v € [0, 3] such that [Lz, V] = £V,,.
e Following the proof of (3.17) and using
VZ €K, [ZO+1ZA+r)| ST+t+r [ZG-n)| ST+t —r],

one can prove that for all » > 5 and || < 2,

(25 T1= ) bwW+ Y dxX. [Z".Ul=) byY.

weTl Xeld Yeld
where |dx| < TH and by | + |Ey| < Isince 1 +¢ 4 r < r in this region.
We then deduce, since lﬂi J;‘ S V 2.0+~ 5 , that
1
D < veEmh|
izl O oz
IKIS|J|+2 =4
1+t — Ly
+ H ‘vg’z‘(h‘)‘uwf
1+t+r Lz({rz%})
1
‘gy 1+2y[h1]
< ‘52)/,1+y
N-1,TU (l—f-l)%



Asymptotic Stability of Minkowski Space-Time

The pointwise decay estimate (10.6) then follows from the bootstrap assumptions
(9.4) and (9.6) as well as 26 < y.

Now consider the £7 components and assume that |J| £ N — 4. The first esti-
mate can be obtained from the wave gauge condition (10.5) and the three inequalities
of Proposition 10.1. For the second one, fix 6 € S? and consider, for T € 7T, the
function

Uu+u u-—u
w:(g,um£§<h1)LT(—2 ) 9>,

so that Eé(hl)LT(t, rf) =@t +r,t —r). Since VL L =V, T =0, we have

_ J 1 Uu+u u—u _ Jo1 utu u—u
zaugo(g,m—L(zZ(h m( 5 9))-(@@}: )LT( 5 e>.

Let now (¢,r) € [0, T[><]R*Jr such that r = ¢. Using the estimate (10.7) and the
good decay properties of the initial data, we obtain

ILL Y7 (t,r0) = lo(t + 1t —1)| =

t—r
/ 0,p(t +ryu)du + @t +r,—t —r)
u

=—t—r

<V / e

T AH 0T Jyey (L fu)y
s 1-y—6

St bl bt N NG . JE |

- (414722 (It4+n)Hr ~ (L1 4r)Hr=3

+ |£Ler| ©. @ +r)0)

On the other hand, if r < ¢, we have

L5 Lr(,r0)| = 1ot + 1.1 = )] =

t—r
f Ot +r,u)du + @(t +r,0)
u=0

Ve /‘,_r 1-s 11 t+r t+r

S A 1 Fdu o+ | £ (| Ity
ATl AP e O
(L4t —rp3—? NG (Lt —rp2ty

SVE < e

(4147272 A4r4+n)Hr=8 > (414 r)ltr=8"

Finally, (10.9) directly ensues from the estimate (3.14) of Lemma 3.3 and (10.8) if

rz % and from Proposition 10.1 otherwise. O

Remark 10.7. Note that using Proposition 4.2 as well as the pointwise decay esti-
mates given by Propositions 10.1, 10.2 and 10.6 , one can check that

1
|H| cC? e
o+ IVH| S :
+ ful (It r+r2(0+u) 2"
1
|HlcT CC?\[e

VH VH| < ,
T fuy TVl HIVHES 777
so that we will be able to apply the energy estimates of Propositions 7.5 and 8.1 for
well-chosen parameters a and b.

The estimate |VH | oo < /€ (iiy_:)‘z , which can be obtained in a similar way,
will also be useful.
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When h! is differentiated by at least one translation, we can improve the pointwise
decay estimates given by Propositions 10.1 and 10.6 . Note that certain of the
following decay rates could be improved, in particular in the exterior of the light
cone.

Proposition 10.8. Let J be a multi-index satisfying |J| £ N —5and JT 2> 1, that
is Z' contains at least one translation. Then, forall (t,x) € [0, T[xR3,

NG
(140314t —r])3
JE
(Lt 4134t —r)?
JE
A+t+r)230 4]t —r)?
NG
A+14+r)22(0 4|t —r)2
A+t —rh?
(I +1+47r)227
A+t —rl)?
(141 +7r)3=2"

Proof. By assumption, there exists u € [0, 3] such that the translation 9,, is one
of the vector fields which compose Z”. Since [Z, 9.1 € {0} U {£d,/v € [0, 3]}

for all Z € K, there exists integers C é’v such that

ciymh=3Y > ¢l rciamh.
0=v=3|QIS|/|-1

‘vcg(hl) t,x) <

L) @0 s

Wzé(hl) (%) <

‘vzg(hl))ﬁ (t,%) <

cpah| 0 S Ve

VeLmh|,, w0 S Ve

We can then assume, without loss of generality, that Ké(hl) = Eauﬁg(hl) with
|Q| £ N—6and u € [0, 3]. Using (3.11) and that[Z, 9,,] € {0}U{%d, /v € [0, 3]}
for all Z € K, we obtain
Al =rD|VL5D| + A+ 140 [TL5mh| s 3 |£h £, £80)]
1121

Y Y |eackob|

003 | h|EN-5

Similarly, using (3.13) and (3.14), we get

7ol < ‘La‘“cg(hl)‘ ‘ﬁa”ﬁgﬁg(hl)‘cT
)Vﬁz(h )‘LTN l+t+r s 1+t —7]
3 25 24, £501)] [£0,£50Y)|
‘Vﬁé(hl)‘ccs Z I+1+4r 3 Z Z TJHET

=1 0Sv=3|h|SN-5
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All the estimates then ensue from L3, = Vj, and Propositions 10.1 and (10.7). O

11. Bounds on the Source Terms of the Einstein Equations

The aim of this subsection is to bound the source terms of the commuted Einstein
equations which are given in Section 4.3. We will control them sufficiently well
to close the energy estimates but more decay in ¢ — r could be proved for certain
terms. We start by the semi-linear terms

Ly (F(h)(Vh, Vh)y = LY (P(Vh, V) + L7 (Q(Vh, V),
+L, (G(h)(Vh,Vh)),, .

Proposition 11.1. Let I be a multi-index with |I| < N. Then

LY F((Vh, VI)| § ———— + “/‘i
A1+ Qe +0)'72(0 + u)y

> VL Ty
IS

\/E </l
+ VLR
A1+ T ul u%m‘ z ’

1 Jpl
NRGEITLE (lwéhlhlﬁzh )

2-25
d+z+n) ISI] Lt lu

u™~ A+t+r*  (A+t+r)22

1
1 2 £int
CLFU AR <& 4 EduD ) ‘Vﬁéh1‘+| 2
- N T ful

a A
+ veon,
I+t +r)=5 T+ ul u\;u z

3 Jp1
CLEOH VD S o VEALTID? 5 <‘V£§h"+|£zh|>

Y44t A4 1+ fu
( AN ) VIS Jue]
G N
+ vegn!|
2 A+t+n)3YT+ul |77 l1u

I

Proof. Let |/| £ N and recall from Lemma 4.8 that there exist integers C § x such
that

LY (F(h)(Vh,Vh), = Y Chx P(VuLyh, VyLER)
[I+IKISI|

+ Y Clk Quu(VLLh. VLER)
II+HKIS ]

+ LY (G(h)(Vh, Vh)),,, .
Moreover, according to Proposition 4.9 and the split 4 = h® + h!,

LL (G(h)(h, Vh))‘ s 3 3 (zgh/" (V£§h’“ (vzghq’ .
Jogel0) 7 +K [+ QIS
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We start by dealing with the cubic terms and we define, for j, k, g € {0, 1} and
multi-indices J, K, Q such that |J| + |K| + |Q] £ |1,

~Jk, . Jj Kk 0
Wiy = |ehn| | eS| [vedna.

Using the pointwise decay estimates given by Proposition 10.2 on 4° and its deriva-
tives, we have

0,0,0 ~0,0,1 0,1,0 1,0,0
Jik0T9/ k0

1
<7 L ¢ (‘VEMhl‘ +—|> (11.1)
t+r

l+14r)y  (I+t+7r)3
( > ( ) =)

Finally, using also the pointwise decay estimates given by Proposition 10.1 on &!
and its derivatives (at most one of the multi-indices J, K and Q has a length larger
than N — 3), it follows that

Myl
0,1,1 1,0,1 ~1,1,0 € Myl |Ezh |
ijQJFjJKQJ’J““QS(1+t+r)2—5 2 (‘V,Czh ‘+l+t+r ’
M1
(11.2)
~1,1,1 € Myl |£ h! |
S —— (7]
IKOS (T3 422 ( T
M1
(11.3)

The inequalities (11.1)—(11.3) provide a sufficiently good bound on the cubic terms
for the purpose of proving the three estimates of Proposition 11.1. Consider now
the semi-linear terms Q and P. Start by decomposing / into A% + A! so that, using
the pointwise decay estimates on 4 given in Proposition 10.2, we get for any null
components (V, W) € U2,

JE

A+i+nt  A+i+r?
+|ovw (vegn' vesnt)|,
e Ve
A+i+r'  A+i+m?
+’P<VV££W,VW£§ )y

‘va<vzﬂh Vﬁ§h>‘ ch1w1+¢ch ‘)

P (VvLsh, vwckn)| s (|vegn!|+|vesn'|)

It then remains to study the last term of the previous two inequalities for (V, W) €
UU (respectively (V, W) € TU and (V, W) = (L, L)) in order to derive the
first (respectively the second and the third) estimate of Proposition 11.1. For the
quadratic terms P, recall from Lemma 3.1 that, if V = W = L, the null condition
is not satisfied. More precisely,
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P (vepn vesnt)| s [vegn'|  |vesn'|
‘ z z N 2"y zm |y

vepn'| | |veSnt| + |\vent|[vesat|
+ ‘ 2| VR VR 2% lce
Hence, using the pointwise decay estimates given by Propositions 10.1, 10.2 and
10.6 as well as the wave gauge condition (4.12), we find that for any null components
(V. W) e U,

(et et s ot X fee
(I+t+r) 720+ up2” M|

G oMy
+ VLY h
(1+t+r)l_5«/l+|u|‘M|2<:|”‘ z )

1
Ve + Jupz=? Mol gk
P i 2 ‘VLZh ‘+ > Yok
IMI<]1] K QM ]
k.qel0.1)

Since (1 + |u])¥ < (1 + |u|)%_y and according to (11.1)—(11.3), this bound is
sufficient to prove the first estimate of the proposition. Now we deal with the 71
components of P and the /U components of Q together. According to Lemma 3.1
and the pointwise decay estimates of Proposition 10.1, we have for any (7, U) €
T xUand (V, W) e U?,

|P(Vregn VuLhn)|+|ovw (vegn vekn)|

< [Vein'||vesnt| + | vegn!|[esn']

> Ve T+Tu] vy + Ve|veyn'|
~ (41420 1077 A+t 403 YTHTul

IM|S|1|

Note that this inequality needs to be improved to obtain the third estimate of the
Proposition, thatis forthecase T = U = V = W = L, but s sufficient for the first
two estimates. Finally, applying again Proposition 10.1 and Lemma 3.1, we obtain

|P(VLLyh', VL LyhY +1Qr (VL R VLERY)|
SIVLLMOYIVLE R |70 + VLo 1701V LE R
&1+ |u ° _
gfi'zls > )vﬁyhl‘Jr *C > VEY R Ty
(I+t+r) (L4t +m)10YT+Tul

M=)

M|
This implies the last estimate of the Proposition and concludes the proof. 0O
Next we consider the Schwarzschild part 2°.

Proposition 11.2. Let I be a multi-index such that |I| < N and (1, v) € [0, 3]
Then,

2L B0

v

JE Ve Vi .
—1 —1 _ ‘ﬂ h ‘
S x0T et 2 T |J|Z<I ‘
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Proof. Recall from Subsection 4.3 the definition of the tensor field {J gho and start
by decomposing [, as [, + H°%V_V,. Then, as Dn% = 0, we have, for all
0= u,v=3,

B (1) 00 = Oy [ (——)) M5, — 5 - Ma + H 3,9 T\ Mg
g v = Upl X r+1 - yan r l‘+1 jiay o060 +1 - v -

According to (3.9), it holds that

> ek ()| 2

0<1u,v<3

> % \zf (ﬁghgs)‘ .

0=A.ES3[QIS|]

Fix then |Q| < |I|. One can easily check, by similar calculations as those made in
the proof of Proposition 4.1 and in view of the support of x’, that

= (o () (4 - (o () (4)

[JI+IKIS|Q]
Je

S ——1 .
Nt =
Similarly, since 1 + ¢ 4+ r < r on the support of x (H_Ll) and using (3.9), we have

% r M Je J
z (8“39(X(z+1)7>>’5(1+t+r)3 > ‘ﬁZH"

I7I1=10]

‘ZJHGQ
[JI+KI=1Q]

By Proposition 4.2, the split 7 = h° + ! and the pointwise decay estimates of
Propositions 10.1,10.2, we get

1
7P
> | et X
JIS)7) [JIS]

and the result follows from the combination of all the previous identities. O

We now estimate the error terms arising from the commutator ﬁg ([éhl) —
J (7 pl

L2 (Ogh').

Proposition 11.3. Let n < N and J, K be multi-indices such that |J| + |K| < n

and |[K| <n—1. ForV,W € {U, T, L}, it holds that

& VEth & ﬁQh
‘ﬁé(H)aﬂvavﬁﬁg(hl)‘ < Z MJF Z VelL7 1|LL -
vw 1Q1<n T+iar jo1<n + 141751+ Jul)2

9,1
YEITI L (Wﬁgth}ﬁzh !).

(140272 2 1+ Jul

For the LL component, we have the improved estimate

3 VEIVLDR |

E’H"‘ﬂVVEKhl‘ <
2(H) “ﬁz()ﬁc’“ l+t+r

|QI<n

+M<‘ o) 120 h\)

(I+1+47r)>2 1+ Jul
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Proof. Start by noticing that for V, W € {U, 7T, L},

ﬁé(H)“ﬂVaVﬁﬁg(hl)‘vwg 3 )ﬁéH)u)v&ALghl’VW
0=SA<3

con||[Veochn| .
+ ) z BEZE lpw

Applying Lemma 3.3 and using that [Z, 8;] € {0} U {£9, /0 < v < 3} as well as
Ly, = V,, yield

|L7H| .,

LLH|
L)V, VLK h1’ < ’Vﬁth‘ ezH]
2D NaVpLz (), < 2 1+ |ul 2" oW P Tt

[QISIK|+]

vedn'|.

Applying Proposition 4.2, which makes the transition from H to & precise, and
then using the split & = h' + h¥ as well as the pointwise decay estimates given by
Propositions 10.2, for the Schwarzschild part 1 and 10.1, for 1!, one obtains

JE
LIH| < —Y " LYnl,
LZHIS 7+ 2o e
M1
JE V14 Jul
LLH < — LYp! D —— LMpl.
LoHle S T+ 2 1LY e+ T > 1Y nl
IM|<]J]| IM|S|J|
‘We then deduce that
(ﬁg(ﬂ)“ﬂvavﬁﬁg(hl)‘vw
- )3 VEIVEGR [y, 1LY [VESR
~ A+t +r)A+ |ul) 1+ |ul
M|+ 10| <n+1
M|, |Q| <n
£Mhl [,Mhl
+ \/§2+’Z’+ |Z| 1|Vﬁghl|.
1+t+7r) 1+t+r A+1t4m)31 + |u)2

Note that one factor of each of the quadratic terms in &' can be estimated pointwise
since N 2 n 2 13. Hence, using the decay estimates given by Propositions 10.1
and 10.6 , we obtain the following bound:

LYY e VDR |y
1+ |ul

AR DTN DS
IM|Sn|QIEN-5

JE VE(+ ul)2tY 001
" ((1+t+r)(1+|u|) * A +1 4731+ |u)) 2 [VEZR |y

[Q1<n
VESTFul JE wpry, L7
VLY .
+<(1+t+r)2—6 (414722 lﬂ;n Nz
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In order to estimate the first term on the right-hand side of the previous inequality,
we use the pointwise decay estimates of Propositions 10.1 and 10.6 which provide

JE

VLR, <
vzt o A+t +r)1=3(1 + u))?

and, if YV =W = L,

(1 + [u])2

0,1
|V£Zh iVWS“/E(l_I_t_i_r)Z—ZB'

The asserted bounds now follow (note that we use § < % and that we do not keep
all the decay given by the last estimates). O

Finally we bound the error terms coming from the commutation of 0 , with the
contraction with the frame fields 77U or LL and the commutation of [, with the

multiplication by the characteristic function x (ﬁ)

Lemma 11.4. Let k,,, be a (2, 0) tensor field and (T, U) € T x U. Then

JET+ ul
VNI T gk
r(14+1t+r)l-38

VE( + [ul)?
r(1+t+r)l-9

~ ~ 1 — 1
|Og (kry) — Ug (k) THUY| §;|Vk|+r—2|k|+ I,

~ ~ 1 — 1
O ter) = B (k) L4 L*] < ZVI 720 + 511 + VKL
Proof. We will use, in the upcoming calculations, that

- 2
Dg=—33+ar2+;ar+vAvA+H“ﬂaaaﬁ, YU elU, VU =0,

and that, for any U € U, there exist bounded functions ay v and by v such that

1 A 1
AU=-) ayyV., VaViUs=—3 byvV (11.4)
veld Vel

These last relations can be proved similarly as (3.16). As a consequence, we imme-
diately deduce that for any (7, U) € 7 x U,

2 2 2 2 2 2 Hyrv
—0; (kry) + 97 (kry) + ;3r(kru) —\ =07 (k) + 97 (k) + ;3r(k;w) T"U" =0

and, also using Proposition 4.2 combined with the decay estimates of Proposi-
tion 10.1,
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1 1
H*P00p(krv) = H 005 (k)| S ~IHIIVAI + — | H]IK]

Ve + [u)?

Nr(1+t+ s VK 2|k|'

These two estimates are good enough to prove the two inequalities of the Lemma
(recall that (L, L) € 7 x U). It then remains us to study the commutation of the
frame fields with VA VA, If (T, U) € T x U, one has, since V4 V4 (k) THUY =
VaVAK)(T, U),
VaVAkry) = VaVA k) THUY = Va(R)(VAT, U) + Va(k)(T, VAU)
+k(VAVAT, U) + k(T, VAVAU).

The first inequality of the Lemma can then be obtained using (11.4) and [V k]| <
|Vk|. For the second one, we apply the last equality to 7 = U = L and we remark

that, using again (11.4), [V4(k)(VAL, L)| < +|Vk|7y. This concludes the proof.
O

Lemma 11.5. Let ¢ be a sufficiently regular scalar function. Then

‘ﬁg (X< jrt> ¢> _X<1it> ig¢‘

L 91 V9|
1 .
SUEEEEI\ O+ Tty

—_—

Proof. Let us denote x (—

771) merely by x. Start by noticing that

O (x®) = Oy (x®) + H" 8,0, (x$). (11.5)
Using that O,¢ = ——LL(r¢) + Ag, one gets, as Vax =0,

Uy (x@) = xUy(@) + Uy GO ¢ =L L(@) =L@ L(x). (11.6)

Now, according to Lemma 3.13, we have

1
Viax| S 1< <y (11.7)

2 ——
vicx| 2 (40! GEdsh (11.8)

We then deduce that

[
Or (0@ =LGOL@ ~L@ L] S 7yl st
| 11.9
sy 419

We now focus on the second part

H""9,0,(x¢) = x H""0,,00¢ + H""8,0, ()¢ + 2H""9,,(x)u (). (11.10)
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Using again (11.7), we obtain, as |[H| < 1,

Ll
yaY yay < .
[H*" 8,8, 00¢ + H 9,000 @] £ 7o rp ls <)
Ve 1
14+t+4+r FSerss)
The result then follows from the combination of this last inequality with (11.5),
(11.6), (11.9) and (11.10). O

Remark 11.6. Note that the error terms given by Lemmas 11.4 and 11.5 are of
size /¢ whereas the source terms of the Einstein equations are of size ¢. For this
reason, we will have to consider a hierarchy between the different energy norms
considered for A!. In particular, when we will improve the bootstrap assumption
on & Il\,-r?}’-’zj—w[h ] (respectively &€ N-%zl[hl]), the terms given by the previous two
lemmas will have to be bounded indenpendantly of C7y and C (respectively

Crr).

12. Improved Energy Estimates for the Metric Perturbations

12.1. Improved Energy Estimates for the General Components of h'

The aim of this subsection is to improve the bootstrap assumptions on the energy

norms 5 [h Jand £y 3. 242y [h']. We start by the first one. For this, recall from
Remark 10 7 that we can apply the second energy estimate of Proposition 7.5 to
Eé (h") for (a, b) = (¥, 1 + 2y) and for any |J| £ N — 1. Consequently, by the
Cauchy—Schwarz inequality and the bootstrap assumption (9.4), we obtain, for all
tel[0,T],

142
g)/ Y

[ ](T)
l—l—r

v, 12y

U iy < g ! ]<0>+cf/

1

=y, 142y
+C >

' 1 2
/51\/1 [h ](T) // (1+7:)‘D EZ )‘ l+2ydxdr
1+t
[JISEN-1 T

~ 2
<Cet+Cer 40P+ vﬁ > ‘/ /1(1+~w‘mg(ﬁghj‘ ol dxdr,
5

[JIEN-1

(12.1)

where C > 0is an absolute constant which does not depend on the boostrap constant
C, while the constant C appearing in the second and third terms on the right-hand
side might depend on the C. We are now ready to prove the following result.

Proposition 12.1. Suppose that the energy momentum tensor T[f] of the Viasov
field satisfies, for all t € [0, T1,

3 //(1+r)‘z: (T] f])’ ot dxdr < 21+ 02,

[T1EN-1
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Then, if C is chosen sufficiently large and if € is small enough, we have

1426
gy

Vi € [0, T, W) < %68(1 +1)%.

Proof. In view of the commutation formula of Proposition 4.9, the analysis of the
source terms of the wave equation satisfied by £7 (h )v» Which has been carried
out in Section 11, and the inequality (12.1), we are led to bound sufficiently well
the following integrals, defined for all multi-indices |[J| S N — 1:

I
30—8// T axar
<gd+747)

1+7 142
+e 1+ |u)'™% dx dz,
./ -/{r>r} (I+7+ )8( b

VLI

~J | TUu 1+2y

Ji =¢ 1+ dx dr,
! /O z,( )(1+r+r)2 51+ [u))2r 0

t Vﬁjh |
~J | 1+2y
Jy = 1+ dxd
2 8/ ( t)(l‘f‘f‘f‘r)z 28(1+| D “o ran

%= / / (1 +| |)‘V£fh1’2+ ‘ﬁéhlf 1+2yd 4
’ P (1+T+ )4 48 ! z 1+ |u w, xdrt,

147 2 44
. Tl +2y
3 = /fz s )2) c40h[ @yt axar,

1+t 1+2
37 = ‘ Al ‘ Ydxd
Ef/z (1 +7+r)225(1 + [u))? 20| oo drd

//(1“)‘5 (T[f])‘ ol dxdr.

U

D~

J

Let us precise that

Proposition 11.2 gives the terms Jp and TJ! .

Proposition 11.1 gives the terms Jo, j{ , TJ{ and TJ{ .

Proposition 11.3 gives 37, J; and J7.

Jg is the source term related to the Vlasov field. It is estimated in Proposi-
tion 14.15.

According to (12.1), the result follows if we prove, for any |J| < N — 1 and all
q € [1,6],

JoSeh YUISN—1, 3] <P +n%.

For later use, it will be useful to bound Jy by an auxiliary quantity Jo. Since
1 + 2y < 2, one easily finds that

t
- d
Jo < Jo // d‘L’<8 / —T3§8.
r=0 (1+r+r)2 0 (1+1)2

o
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We fix |J| £ N — 1. Using the bootstrap assumption (9.6), we get

2y, 14y 1
' teg & [A'](T)
~{5/ _ 1_5/ VLY 2oyt dxdr S / NOLTUZ e
0 (1+‘E) ho 0 (1+l’)

t )
< 52/ AFD" <20 402,
0

(141)l=

By the crude estimate (1 + |u])Y < (1 + 7+ )12 and the bootstrap assumption
(9.4), one obtains

3{58// cg(h)‘

The Hardy type inequality of Lemma 3.11 yields

! € 1(h1)|2 142
3] < _— V[,J h —_— T dxd ,
3 N/(; (1_'__5)2,45/ (‘ ( )‘ (1+| |)2 CL)O Xdart
!

&
5/(; m/ ‘VE (l’l )‘ 1+2dedT.

We then deduce, using the bootstrap assumption (9.4) and 65 < ;, that

CENLT I C a4
~J N— 2 2
J3 58/(; Wdt§8 /(; Wdfgé‘ . (122)

The next term can be estimated easily, using again the bootstrap assumption (9.4),

1+2y

L S 80 () < 21+ ).

y1+2y 1
h'l(t
st [0,
0 +7

For 351 , the first step consists in applying the Hardy inequality of Lemma 3.11. For
this reason, we cannot exploit all the decay in u = ¢ — r in the exterior region (for
simplicity, we do not keep all the decay in ¢ — r that we have at our disposal in the
interior region as well). We have

142y 25

J 1|2
J] < ! |£Zh |£L’, wV+25 dxd
5~8 1-25 yaxdr
0 Js, L+1+7) (1 + [ul)

' V,th 1+2y
< s/ / | 1}£2§ 55dxdr.
0 Je, A+14+r)"=7( + |ul)

Now, recall from (10.5) that

& &

]l -
S N EY RS

‘vz:fhl} <[vesn'| o b
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2
(1 + |u]) k12 |£5R!
(I+t+r) EIZ] (1 + |ul)

Then, remark that, since 1 + |u| < 14+ 7 +r,

t |V£Jh| 1+2y +
dxdr <&y [h' @
8/0 /2 TFrr B T B @,

so that, according to the bootstrap assumption (9.4) and the previous calculations,

3 ST + 50+ Y I S+
IKI=1J]

Finally, the required bound on J 6 is given by the assumptions of the proposition.
This concludes the proof. O

In order to improve the bootstrap assumption (9.4), one then only has to combine

the previous result with Proposition 14.15, which will be proved in Subsection 14.3.

We now turn on é[}\/],Z—i—Zy [A']. In the same way that we derive (12.1), one can

prove using the third energy estimate of Proposition 7.5, the Cauchy—Schwarz
inequality and the bootstrap assumption (9.5), that, for all ¢ € [0, T,

EXT () £ Ce + Ce3 (1 + 1)

+_ Z/f ‘D Ez ’ w2t dxdr, (12.3)

IJ\<N

where C > 0is a constant which does not depend on C. This last estimate, combined
with Proposition 14.15 and the following result improve the bootstrap assumption
(9.5) if ¢ is small enough and provided that C is chosen large enough.

Proposition 12.2. Assume that for all t € [0, T,
2
> / (1+r+r)‘£IZ(T[f])‘ P dxdr S (1411
[11EN
Then, if C is chosen sufficiently large and if € is small enough, we have
Vi €0, T, EL7 PN £ Cel +0)%.

Proof. The proof is similar to the one of Proposition 12.1. In view of the com-
mutation formula of Proposition 4.9 and the estimates obtained on the error terms
in Propositions 11.1-11.3, the result would follow if we bound by £2(1 4 7)?® the
following integrals, defined for all multi-indices |J| < N.

1 242y
o_e/f . ddt—l—s// AHRDT g,
<1} (1+r+r) (14 |ul)” 2y (I+747)
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. ! VLo h'
3] :=8/ / | 7 w2t dxdr,
s, L+ 7472730 + Ju)?r 7
. ! VL
3] = 8/ / | ‘ w2 dxdr,
(I+T+r)> 20+ [u) 7

o t 1 2 |£]hl|2

J:: - 1 v Jpl Zz 242y

5 s/ f = (( +lub|vegn!| + T ) e v,
°J:: h 2+2yd d

% //;(1+T+)2‘£()) e

°J.: 242y

5 /,/I(H-r—i—r)z s [EH00 ] o Prarar,

we] .

Note first that, using (12.2), 30 <7 < 2. We fix |J| < N for the remainder of
the proof. Using the bootstrap assumption (9.5), we directly obtain

VAN
ﬁ] </t € f ‘Vﬁz(h )| a)2+2ydxdr
ot s s

t &V.242y 1
. / S U (D)
0

ﬁé(T[f])\ 02 dxdr.

dr <21+ n%.
~ 1471 rRed4n

By the bootstrap assumption (9.7) and y > 38, we get

14,1
37 [/ 8|V£'Jh1|7u w77 dxd </t85NJ,r7y'u+y[h1](f)d
I~ s, (1+T)1+V 5 @14y T 0 (14 7)l+r=s T

2
<82/ Ly e se
~o o A+t

Since 1 — 28 = 0, the bootstrap assumption (9.5) gives

2+2y

[ veymh” s
5 < dxdr < &V 2 ) < £2(1 = 02
2NE/O / I+T+r 1+|u| xdr S ey TN S eI+ 1)

Using first the Hardy type inequality of Lemma 3.11 as well as the inequality
1 + |u| £ 1+ 7 + r and then the bootstrap assumption (9.5) as well as 76 < 1, we
obtain

2
. _J t e 1 2 |Lhah|
3 <75 = VL (h! | Wl dxd
P /0 <1+r)2-45/z, 1+f+r(’ p] + (1 + luh)? "

t ANE t SV 2427 1
5/ £ / VL7 (D) w2+2ydxd,§g/ 2 U ()
o I+ Jg, 1+t+r 7 0 (1471)>4%
(12.4)




Asymptotic Stability of Minkowski Space-Time

Applying the Hardy inequality of Lemma 3.11, we get

J1.112 1+2y
57 <8/t/ ’ﬁzh |£L @ity dx dr
5~ 2-28 2
o Jy, (L4+141)77% (1 + [u])

f / |V£Jh |Ll: a)1+2ydxdr

(4147227 04y

Using (10.5) and a)iiiy = 1+\u| , we obtain by (12.2) and (12.4),

<3 450+ Y T sEan®
IKIZ1J]

Finally, by the assumptions of the Proposition and Lemma 3.12,

36 < // 1—|—r+ ‘ﬁJ(T[f])‘ W2 dxdr < 21+ 1),

O

Remark 12.3. The proofs of Propositions 12.1 and 12.2, combined with (12.1) and
(12.3), give the bound

I Iy + ELT () £ Ce + Cel (1 + )%,
As a consequence, the constant C can be chosen independently of C77; and Cz,
provided that € is small enough.
12.2. TU-Energy

In this subsection we improve the bootstrap assumptions on the energies

512\}/_’11’4_7%[ 1 and &£ ]{,T,;’Llﬁy[hl]. More precisely, we prove the following result

which, combined with Proposition 14.15, improves (9.6) and (9.7) provided that &
is small enough and C7¢, chosen large enough.

Proposition 12.4. Suppose that the energy momentum tensor T[ f] of the Viasov

field fulfils

Vi € (0.7, Z//(H:)\c' ff, olfraarse. 129

=N

Then, there exist a constant Cy independent of ¢, C7y4 and Crr and a constant C
independent of ¢, such that, for all t € [0, T,

1
71y ) < coC%us(l + 00+ Ced(1 417,

Er @) £ cocmg(l 0% 4 Cex(1+ 2.
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Remark 12.5. Note that C7 has to be fixed sufficiently large compared to C but
there is no restriction related to C ..

All the constants hidden by < will not depend on C774 nor on C - to simplify the
presentation of the following calculations. This convention will hold in and only in
this subsection. We mention that all the energy norms which will be used here are
defined in Subsection 3.7. We start with the following result:

Proposition 12.6. There exist a constant Cy independent of ¢, C114 and Cpp such
that, forall t € [0, T,

52y 11+TVu[h 1) < Coe + CoCTusz (A +1)°
L s
+ ) CoChyer(+nt
[JISN-1

t

//(l+r) O,

0o Jx.
(T.U)eT xUU

ENTIT IR < Cos(1+ 0P + CoCrue? (1 + )%
2
/(1+r) ( ( )Lé(h )m)

Proof. As these two estimates can be obtained in a very similar way, we only
prove the second one. In order to lighten the notations, let us introduce (/)% U=
X(H_l)ﬁé(hl)TU forany |J| < N and (T, U) € T x U. We can obtain from the
first energy inequality of Proposition 7.5, Remark 10.7 and the Cauchy—Schwarz
inequality that,

1+y
w,, dxdr

2
.
(x (le) cé(hl)m)

1 1
+ > CoCiyer(i 41y
/1SN
(T, U)eT xU

+y
a)l+ dxdr

t glty.l+y [¢7{U](T)d

I+y, 1+y J < el+y.1+y J
et oo 705 o ] v [ £

1

t gty [gd (1) t - 2 2
/O #df/o /r(1+f)‘|jg (¢§U)‘ w17 dxdr

+ 1+t

According to Lemma 9.2, the smallness assumption on &' ( = 0) and the bootstrap
assumption (9.7), we obtain, using also C774 = 1,

e (o], ] O  EVTT IO + 2 S EFT IO + e S,

P 81+y A4y

/-t gl+y.1+y[¢7{u](r)dt </ N U [I’ll](‘[)-i-e(l +.[)28
0 147 ~ 0 1+1

EETTIN < Y Y EI ] 1w + e+ 02
(T,U)eT xU |J|EN

dr < Crye(l + 12,

It then remains to combine these last four estimates. O

Proposition 12.4 then ensues from the following two results:

Proposition 12.7. Assume that (12.5) holds. Then, there exist a constant Cy inde-
pendent of ¢, C7yy and Cpp and a constant C independent of €, such that the
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following estimate holds: for any |J| < N — 1, (T,U) € T x U and for all
1€[0,T],

t
| [ avo B
0 JX;

Proof. According to the commutation formula of Proposition 4.9 and the result of
Section 11, the proposition would follow if we could bound sufficiently well the
quantities 3,{ defined below, for any multi-index J satisfying |J| < N — 1 and any
null components (T, U) € 7 x U.

Those arising from the commutation of the wave operator with the cut-off function
(see Lemma 11.5),

2
(X( t+ 1>Eé(h )TU)‘ wé;r]/ dXdT§C08+C82(1—|—t)8'

IV (LLY70) P 1LL R 7o ot
}(1—}—1)( A +74r)2 +(1+t+r)4 dx dr.

Those coming from the commutation of the contraction with 7U and the wave
operator (see Lemma 11.4),

12
N5 .—/ /> (1+ )'L( )l w,7 dxdr

i
)
3 = f/ 1+ 05—t vl Pl dedr,
’ > 1) r2(1 4+t +r)>2
VL (Y2
3= // (1+ )ﬁ 7 dxde.
{rzz] ’

Those coming from the contraction of ﬁgﬁé(hl) wv With THUY,

2 /'/ (1+ 7)dxdr
N <oy (L+T4+r00 + [u)?

1+ 1+
+e + |lu|)' 7Y dx dr,
/ ~/;r>r} I+7+ )8( b

= t J ] 2

~J (1+T)(1+|u|) T 1812 |[i ( )| 1+y

: ~ 7 U \VLL(h Zz 7 dxdr,
v 8/0 s, (L+ 747144 IVLZ(R)]” + -

(1 + |u))?
! vl mh)? |
~J . — 1 | +Vd d
v 8/ D G BT ™ 29
|£% (Y2
~J LL 1+}'
J3 —8/ f I+t )(] T2 1 )’ w,, " dxdz,

|vz’( hh2
~J TLI 1+
v _8//(1 (A+14r)? @y dxdr,

o = /O 2(l+r>)£§(ﬂf}>m w7 dxdr.
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Note that we used that ‘ X (1’?)‘ < 1 for these last terms. Moreover,

Proposition 11.1 gives us the terms Js, and \}7

Proposition 11.2 leads us to control J5 and 37 6"

Proposition 11.3 gives the terms 3g s 32{ and 35 .

J7p is the source term related to the Vlasov field, it is estimated in Proposi-
tion 14.15.

We fix |[J| £ N —1and (T,U) € T x U for all this proof. Let us start by
dealing with J/, k € [5, 10]. Using (12.2), we have J5 < J9 < &% and J{; <

€2 holds by assumption. According to the bootstrap assumption (9.6), we have
eV [h(1) £ Cye(1 +1)P, 5o that

VLJ h!
/ / | ( )|Tu ;H/ dxdrt
i 4

2y, 1+y
< EN_I,m[h o)
= 0 1 + 1

dr < Crye*( +1)’.

For J g , we start by applying the Hardy inequality of Lemma 3.11. For this reason,
we cannot use all the decay in ¢ — r in the exterior region. We have

1
j |‘Cé(hl)|2ﬁl:wl-—::gy
J3 3 2dxdr
y, A+ 47200+ |u))
// AVESODGe 1y o
z, (L4 7+ )21+
Using (10.5) yields
R SH 4T+ 3
IKISIJ]

where J is defined and bounded by 2 in (12.2) and

_ VL, Y2
ngzsff | (Rl i?dd
5, (L7 4r)-270H2

Since 39 < ‘18 , it only remains to deal with J7 and J 118 As 56 < y, we have, using
Lemma 3.12 and the bootstrap assumption (9. 4)

Vﬁ] AN 1+2V
Jg < // | ( )|25 dXd‘L’S&Z.
)i (1-|—1')V l+| |

Finally, we use (12.2) in order to get 37 < 3] < &2
Let us focus now on 51] , 3% s 3{ and J ‘{ . Since these integrals are of size ¢ (and
not &%), we cannot use the bootstrap assumptions (9.6)—(9.8) to control them as it

would give us a bound larger than C74e(1 + 1)°. We will use several times the
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inequality 1 + 7 +r < 5r, which holds for all r = TTH (and then on the domain of
integration of all these integrals). Since |V(££ MHry)| < |Vﬁé(h1) |+ % Iﬁé(hl)l
and 1+t +r 1+ |t —r|foralr < TTH,wehave

|£5(hh)? dx
\51 N/ (1+.[)l+y 41+r§ g%] (|V£, (h )l + (1+|u|)2 (1—|—|u|)7/dt

We also have

to L7 (Y2
T =
o (L+D)!ty [rzte) A Jub)

Hence, by the Hardy type inequality of Lemma 3.11 and using the bootstrap assump-
tion (9.4) as well as y — 2§ > 0, we obtain

J J < ' J 2 142 ! gy n 1](t)
~ Y < = - -7 <
1+ 3 N/(; a t)H‘V / VL, (h)Pw) ™ de /0 a t)1+V dr Se.

Since 1 — 45 + y > 0, we get from the bootstrap assumption (9.4) that

CERT o)
. T IN2, 142y o [TEN @)
3 N/ (1_’_1)2 2+y /{@'T} VL7 (h) w, " dxdr < N = dr <e.

Finally, Lemma 3.12, combined with the bootstrap assumption (9.4) and y = 38,
gives

V,CJ h 2 1+27
/ / | Gl dxdr <e.
>% (14 1)Y 1+| |

O

Proposition 12.8. Assume that (12.5) holds. Then, there exist a constant C inde-
pendent of ¢, C1yy and Cpp and a constant C independent of €, such that the
following estimate holds: for any |J| < N, (T,U) € T x U and forallt € [0, T,

t - 2
/(; 21(1+T) O, <X< +1)£é(h )TU)

Proof. The proof is similar to the one of Proposition 12.7. According to the com-
mutation formula of Proposition 4.9, Propositions 11.1-11.3 and Lemma 11.4-11.5,
it is sufficient to bound by Cpe + Ce2(1 4 1)? the following integrals, defined for
any |[J| S Nand (T,U) € T x U.

W(ﬁé(hl)TU)}z IL5,mYru? JRESS
}(Hr)( Utetn? T Qtrint |2 &dr

a)Hy dxdr < Coe + Ce2(1 + 1%,

t ‘LJ 1)|2 .
7 ;:/0 - 1+ )7 13‘1 dr
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! 1+ |ul
J . 2
H | / | O VA2 oy dxde
=77

VLS, <h HE
‘74] / /r>r+l (l+ ) liid dT

=t [y amrmnrm o L, Catenar o
ST Sy Qrrrroa e © > (47478 ’

t 2
.76] 128/ A+ +u) <|V[, (hH? +7|£ Gl ) w7 dxdr,

5 (L7404 T+ Ju? ) 17
t gﬁJ(hwz
J — 1+ | l‘H’d d
Home /,( R R it
jSJ = S/t (14+1) lﬁj(hl)lﬁﬁ o' 77 dx dr,

(e 027 2(+ a1+

VC h
5 _8//(1 |<1+(+)|T>2u o1y drdr,

T -_/0 (140 |£2T 1 Dro| 0!t axar,

We fix, for all this proof, | J| £ N and (T, U) € T xU. Using (12.2), the hypothesis
(12.5) and the bootstrap assumption (9.7), we have

T <To S, T S e
2y, +y 11
re [271(7)
Ji < e/ INTU T T G < Cqye(1 + )%,
0 1+

For JSJ , as previsouly for similar integrals, we cannot keep all the decay in t — r
when we apply the Hardy inequality of Lemma 3.11 (the problem comes from the
exterior region). We have, since 1 = 26,

: |£j(h])|2 w1+y—26
j,§8// 5 V4 LLO14y+25 4o -

+ 7+ )=+ |u))?
1+y

< 8/7 L AT PR dx dt
~ x, T+7+r)172 (14 u))? '

Using (10.5) yields

FSTs+50+ > JK

IKIS|J]

where J < &2 according to (12.2) and, using 1 + v 4+ r < 1 + |u| as well as the
bootstrap assumption (9.7),

_ 14y
=7 ! VL7 Dy 4y, 14y 1 2 26
Js :=s/ / (l+t+r)1_25(1+|u\)25dXdT _SEN Tu ) < Crye (1 +0)7°.
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Note now that 75 < 7g and, using (12.4), 7K < ﬁf < &2. Consequently,
T+ T +F S A+ cnpd +n*

We now turn on JIJ , jzj s j3j and J4J which are of size ¢ and then cannot
be bounded using the bootstrap assumptions (9.6)—(9.8). Recall that the inequality
1+t +r < 5r holds on the domain of integration of all these integrals. Since
IV(LL (WY 7) S IVLL Y]+ Lc, (Yl and 1+ 7 +7r S 1+ |t — 7| forall

r< T'H , we have
1L (h"? dx
VLY + L d
(' O 5w ) T

W5
! 1+7 %gg%}l—l-r—l-

We also have

7 </ LZBOP ey
~Jo 1+t ;% (1+r+r)(1+|u|)2 @y

1 VL (hY)?
J < - - =z 2 DR dxdr.
J N/o (1+r)2—25/{;¢} T+otr 7 O

Applying the Hardy type inequality of Lemma 3.11 and using the bootstrap assump-
tion (9.5), we get

t 1 VEJ hl 2
J]J—FJQJ-I—JJS/ / VEz (Rl w7 dr
o I+t)y, 1+1+7
t SV 242y 1
_ f I
~Jo 1+
Finally, the bootstrap assumption (9.5) gives

VLY w0t .
g | dxdr < EV2 1) < e(1 + ).
jN//>i; 1+r+r1+|u|XT~N (A1) S e(l+1)

<e(l+0)%.

12.3. LL-Energy

The purpose of this subsection is to prove the following result which, combined
with Proposition 14.15, improves the bootstrap assumption (9.8) provided that ¢ is
small enough and C ., chosen large enough.

Proposition 12.9. Assume that the following estimate holds
J 2 1 2
3 / A+ ’LZ(T[f])‘uszy dxdr < &2, (12.6)
JISN

Then there exist a constant Cq independent of € and Cr and a constant C inde-
pendent of e, such that

1
Ve e[0.TL EN R0 < Co(1+Chp)e(l+0) + Ce3(1+1).
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Remark 12.10. For the conclusion of the previous proposition, it was crucial that
C and C7ys were fixed independently of C ., (see Remarks 12.3 and 12.5 ).

In order to simplify the presentation of the following computations, all the constants
hidden by < will not depend on Cz . This convention will hold in and only in this
subsection. The following result is the first step of the proof.

Proposition 12.11. There exists a constant Co independent of ¢ and Crp, such
that, for all t € [0, T,

1
ENTZAN@) < Coe + Col + Cop)ed (14 0° + Y Col +Chpet(1+1)3

[JIEN
t 1+1)|0 —\cln!
[ r( ) g(X(Z 1) 7( )LL)

Proof. In order to lighten the notations, let us introduce ¢” := (HLl)[,é(hl) LL
forany |J| £ N.We canobtain from the second energy inequality of Proposition 7.5
and the Cauchy—Schwarz inequality that

1
2 2

1
X w49, dxdr

(12.7)

N il (20
— Y art

gt [gl @ s et [¢’](0)+ﬁ/0 I+t

1

2

N /t £l+2}/,1 [¢J] (T)
0

t ~ 2
d | ‘D " L dxd
T1c T./o /Er( + 1) || @4y, dxdr

According to Lemma 9.2, the smallness assumption on &' ( = 0) and the bootstrap
assumption (9.8), we obtain

£t [67] O < eV IO + e < EFP N0 +e S

t51+2y1

/, A g (OIS </ vocr @ +e
0 147 ~ 0 14+1

Evor N S Y g0 + e
[JIEN

dt < (Cpp + De(1 +1)°,

It then remains to combine these last four estimates. O

We are then led to prove the following proposition:

Proposition 12.12. Assume that (12.6) holds. Then, there exist a constant Cy inde-
pendent of ¢ and Cpp and a constant C independent of €, such that, for all

tel0,T],
//(1+f) ( ( )Ez(h )LL)

2
o}, dxdt < Coe + Ce*(1 +1)°.
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Proof. Let us point out that C ., will only appear when we will use the bootstrap
assumption (9.8). In order to prove this result, we are led to bound sufficiently well
the following spacetime integrals where the multi-index J will satisfy |J| £ N.
Those coming from the commutation of the wave operator with the cut-off function
(see Lemma 11.5),

|V(£é(hl)LL)|2 1LYl
}(1+T)< (1+t+r)2 +(1—|—'[+r)4 w1+2ydxd1'.

Those coming from the commutation of the contraction with LL and the wave
operator (see Lemma 11.4),

|£J 1)|2 .
£2 —/ / (1+ )— 1+2VdXdT

241}
1+ |ul
J .
£3 / /;I (1+7) 2(1+-C+r)2 26|V£ (h )| w1+zydxdf
IVLL(hY[3
7 TU
= ff>1 r—w1+2ydxdr

Those coming from the contraction of D Ll (h v With LFLY,

o 52/1/ (1 + t)dx dr

T ey (L4 T+ 00+ ) 1727

+ // LT (14 Juldxd

& u xXdar,

v AT +)8
(14 2)(1 4 Ju)) 1LY

= I —= dxdr,
8/ />; Arrrt® (' 20OF + (T e ) o1y e

VL (h)|
2] — Z TUu 1 dxd ,
S/f % (l+t+r)2—25(1+|u|)w1+2” e

)
s

N
H\/

§ = Jln2 1

a 8/ /;1} d+r+ )Z'Vﬁz(h )21, dxdr,

g5 = //> N (l—i—r)’E (T Die| 0l s, dxdr.
:T

More precisely,

Proposition 11.1 gives us the terms £s, Sg and E{ .

Proposition 11.2 leads us to control £5 and Eg .

Proposition 11.3 gives the terms Eé and £§ .

ng is the source term related to the Vlasov field. It is estimated in Proposi-
tion 14.15.
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We start by the easiest ones, £s, Eg s £7J , Sg and Eé . First, according to (12.2), the
hypotheses (12.6) and (12.4),

£5<T30Se% LoSel,  Jl ST <

We obtain from Lemma 3.12, the bootstrap assumption (9.7) and 26 < 1 — 24, that

ot

t P o
o< —&5 ‘ VLl ( I 4xde <
7”/0(1+r)1—25/2 2 )Tu1+||Xt e

According to the bootstrap assumption (9.8), we have
1+2y,1-5 1
_— cEN R ()
J JepIy2 1 N.LL
’88 58'/0\ H—T/T|V£Z(h )|££w1+2dedT§S/0 Tdf
S Ceee’(L+1)°.

We now focus on Slj s 22{ s £J and EJ Since these integrals are of size ¢ (and
not £2), we cannot use the bootstrap assumption (9.8) in order to control them as
it would give us a bound larger than Czze(1 + 1)%. We will use several times the
inequality 1 + 7 4+ r < 5r, which holds for all r = ”1 (and then on the domain
of integration of each of these integrals). Using the 1nequa11ty |V(£J hYHrp)) <
VLS (hY)| + 1|£3J(h Yandthat 1 + 7 +7r < 14|t —r|forr < TH , we have

1 |L2 (hY|? dx
J < h 2 V4 d
B N/O “*”Hy [{'fgrg'?} Ttr+r (' VELOE+ e ) T

Note also that

|£5(hY)|?
J < - 2+Vd
& Nfo (1+10)i+r /{ 2] (L4747 Fupz®r

t 1 VEJ hl 2
)32] 5/ T o3 28/ —| )] a)ﬁy dxdr.
: o (I1+1)~ {@Ij} l+t+r

T

Consequently, applying the Hardy type inequality of Lemma 3.11 and using the
bootstrap assumption (9.5), we get, since 1 — 28 = y and 28 < y,

' IVLL(hH?
El 2./ 2/ </ / Z 2+)/d
1+ 2++3N 0(1+.L-)l+y s, 1+T+l" C()y T
t &Y.24+2y 11 t 28
ngN [h](f)dTN/ e(l+1) r<e
o (147!t o (1+o)l+r

Finally, as (1 + [u])!™” < (1 + © 4+ r)!77, we obtain, using Lemma 3.12, the
bootstrap assumption (9.7) and 2§ < y, that

PRECY
Oy
P ——— vVLLn! dxdr <
4~/ (1+I)y/{ 1+r| 2 )|77,{1 ||X'L' 5.

rz4

O

The proof of Proposition 12.9 follows directly from Propositions 12.11 and 12.12,
which concludes this section.
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13. Improvement of the Bootstrap Assumptions on the Particle Density

13.1. General Scheme

In this section we prove the following proposition.

Proposition 13.1. There exist an absolute constant Cy > 0 and a constant C > 0
such that, for all t € [0, T[,"°

ES£10) € Cos + Ce3 (1413, (13.1)
B [£1) < Coe + Ce3(1+1)2, (13.2)
E4[£1(t) < Coe + Ce? (14127, (13.3)

This improves in particular the bootstrap assumptions (9.1)—(9.3) if ¢ is small
enough and provided that C y is chosen large enough.

Remark 13.2. One can check during the upcoming computations that the initial
decay hypotheses on f stated in Theorem 2.1 could be lowered. The choices made
in Theorem 2.1 allow for an easier presentation with energy norms for f weighted
by z¢, where the exponent a is as simple as possible.

In order to unify the proof of these three inequalities, we introduce for any multi-
index |[I| £ N the quantity

2 <N —
£|1|:={£+3 $N+9, [U[SN-5, (13.4)

t=2N+6, |I| = N — 4.
According to the energy estimate of Proposition 8.1, we have
E%’%[Zﬁu%lpflf](;) < Q]E%’%[/uﬁ%lpflf](o)
; E%%[Zﬁu—%”fl’f](f)
147

dr

+CJE/O

t
wef )]
0o Jz, Jr3

where C is an absolute constant, which in particular does not depend on Cy. In
view of

o the definition (3.36) of the energy norms E{%[ f1. E{,_,[f]and E§[£],
e the smallness assumption on the particle density, giving

~ 1
T, <Zlu|—%lpzlf>) dv o} dxdr,
8

11 (‘,l

E& & [ZE"'*%’Pflf] O = Ejp [f10) S .

19' Contrary to C, the constant Co does not depend on C £ C,Cry and Cpp.
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e the bootstrap assumptions (9.1)—(9.3), which give

(ERE[=320 | @) CE O
U
f/ I+7 v 3 \/E/O 147

_ {83(1+r)3, if 1] < N,

e3(1+0)3, if|I|=N,

o the Vlasov equation T, (f) = 0, leading to
2P =
4 =31 [Tg,zl](f), (13.5)

Proposition 13.1 is implied by the following two results:

Proposition 13.3. Let I be a multi-index of length |I| < N. Then,

t ~ 1
=// / =311 ITe(2)|1Z" fldvw} dxdr
0 Jz, JR3 3

_ea+ni i<,
e3(14+02%, if|I|=N

Proposition 13.4. Let I be a multi-index of length |I| < N. Then,

t R 1 3 3 .
/ f / Z(\Il_%lp H:Tg’zl](f)‘ dez]; ddeS 8?(1+t)?»5 l‘f|1| <N7
0 Jx, Je3 § e3(1+03, if || = N.

13.2. Proof of Proposition 13.3

Since the weight z is preserved by the flat relativistic transport operator T, that
is n%Pwy 0p(z) = 0, we have, using the notations introduced in Subsection 5.1,

T, (2) = Avg~l(dr, dz) + H(w, dz) — %V[(H)(v, V) - Oy, 2. (13.6)

Moreover, since, for any 0 < pu, v < 3,
Vi(H)" - 8y,z = Vo, ()" - (V2) + Ve, ()" - (Vo) ",
we get from Lemma 3.9 and |Av| < |v],
|Vi(H) (v, v) - 3y 2| < |Vi(H)(w, w) - 3y,z| + z| Av||[VH| + t|Av||[VH|.(13.7)
By a direct application of Lemmas 3.7 and 3.8, we have

Viwe|

IVixzl + 1t =rlIVix (@D + @ +1)—— N

Vir@I+ ) Z@)| 14252
ZEIP’()
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and recall from Remark 10.7 that?°
1+t —r| N
H| < , H < _ VH| < ————
HIS Ve, | mN\/EIHH VHIS 5
_ JE 1+t —r]
VH +|VH| < ——, r <
VHIer + VHI S 1 SV T

We can then bound the first term of the right-hand side of (13.6) using (5.36) and the
second one by applying Lemma 5.13, so that we obtain, since |wz| < /[v[[wL],

Avg~l(dt, dz)| < |AvlIn~! + H||V, 1 (2)]

VeElvlz
< (|H H Vv, < M=
S (Hllwel + |Hlz7 DI Vix ()] & ——— —
[v||H|z z Jelv|z
Hw, d7)| £ ———— + |v||H < .
|H ( z)|_1+t+r [v]] I571+|t_r|_1+t+r

To deal with the last term on the right-hand side of (13.6), we use (13.7). First, by
Lemma 5.13,
Vi (H)(w, w) - 3y,2| < (Jwol[VH| + PIIVH |27 + PIIVH]) Y 1Z)|
/Z\E@O
+ 1t = rlIVHwLl|Vex (D] + WIIVH 7|t = 7] Vi x (2)]
+ 1|VH|V |l wil [ Vex @) + 10| [VH 2] Vi1 (2)]

Velwelz VeElvlz
S + .
14+1t—r] 14+t+r

Finally, using (5.36) and t < T +\ t op which comes from Lemma 3.7, we obtain

zZ|AV|IVH| + 1| Av[VH| S zIVHI(Hlwe| + [H 2T v])

Hl|lwp|+ |H v
1 |t | L LT

Velwelz VeEllz
~ + M
l4+t—r] 14t+4+r

We then deduce that

Velwelz N Vellz

L4+t—r] 14t+r

ITg(2)] S (13.8)

Consequently, for a multi-index [I| £ N, we get, according to the definition (3.36)
4

of the energy norm El i L1
t ~ 1
3’S/f / < ool el )Ze”‘glplz’flde?dxdf
0 bl Rl}, 1+‘c+r 1+|T—r| g

20 Note that all these estimates could be improved.
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Ed4 =31 |Z’f|]<r>
<\/—./ 1+t dr

1
+f/// 2n=317120 1 L gt dr
o I+ |ul 3

IZIHI‘ L/1) iy

< JE/ de + VEEJILF10).

o 1+7

The result ensues from the bootstrap assumptions (9.2) and (9.3).

13.3. Proof of Proposition 13.4

The starting point consists in bounding the commutator [Tg, Z'](f) by alinear
combination of the terms listed in Proposition 5.14. Then, in order to close the
energy estimates and to deal with the weak decay rate of the metric, we will have
to pay attention to the hierarchies related to the weights z which have been built
into the Vlasov energy norms IE£+3 [f], Ef\, ([f]and Efv [ f]. Before performing
the proof, let us explain the strategy, which will be illustrated by the treatment in
full details of the integrals arising from the two families of error terms

&K =y | ‘Vﬁé(hl)‘ (22’%’ — sk ’22’%‘,

el =+l [Feyuh|, |V2¥ 7| =2l V2K g

where Z € Py, |J] + K| < 1], K| < |I] — 1 and

o cither K¥ < I7
e or K” =17 and JT > 1, so that Z” contains at least one translation 9,,.%!

We will then have to bound sufficiently well, as follows:
! 2/P |An L
7 =/ f / |wL|‘V£§(h1)(z‘w—§’ ‘ZZKf‘ dve® dxdr,
0 Jz, JR3 8
! _ ~ 1
J :=/ / f ( +r)|v| ‘w:g(hl)) Zbn=31" ‘VZKf‘dva)i‘ dxdr.
0 Jx, JR3 LL 8

Apart for the error terms 6{ , and 6{2, there are two cases to consider.

Step 1: if all the metric factors®* can be estimated pointwise, example !Vﬁé (hl)’
for’Q\E{,’lK and |§£é (h") |L£ for @f llf), i.eif|J| £ N —5inview of Propositions 10.1
and 10.6 . Then, the particle density is estimated in L' through the following result:

Lemma 13.5. Consider Z € f@o and let I and K be two multi-indices such that
| <N, |K| S |I|—1and KP < IP. Then,

21 We use below the notation introduced in Definition 5.16.
22 The cubic and quartic terms contain several metric factors.
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oif KP < IP, we have E%3 [ l‘”_%IPJ’%V/Z\Kf] |[1u|‘[f] as well as
Es-3 [ Gn-31"7 ZKf] < Ezl”[f]
o Otherwise K* = I and we still have E§°3 [ze‘”*%]PV/Z\K f] ‘L’]‘,“ [f]as

well as 33 [ze‘” 5! _’ZZKf] < IEZ'”

Lf].

Proof. This directly ensues from the fact that vzk (respectively VA ) contains
K P (respectively at most K © 4 1) homogeneous vector fields and that 411 S k41
since |I| Z |[K|+1. O

We need to consider two subcases for the most problematic terms, the quadratic and
some of the cubic ones (see Proposition 5.14), in order to deal with a non integrable
decay rate.

e If ZK contains less homogeneous vector fields than 71 , that is K* < I°P,

then the terms containing the factor A f are good since we control the
energy norm of 11~ 31" 77K f and the pointwise decay estimates on the metric
provide an integrable decay rate. For Z, we obtain from the pointwise decay
estimates of Proposition 10.1, Lemma 13.5 and the bootstrap assumptions (9.1)—

9.3),
t PN 1
IS/// v 1ZZ“F%[P‘szf‘leldededt
0 JE B (L 40! (1 4]t —r)2 g

! PN 1
2«/5/ / / zéw—%IP’ZZKf‘ wel dvew dxdr
0o Jz, JR} L+ ful 8

3 8
11 _2/P s ¢ e2(l+1)2, if |[I] < N,
< VEES [ 22K () = VEE 110 S
= VERL e2(1+02% if|I| =N

For the remaining quadratic and cubic terms, which contain the factor vZK f,
the pointwise decay estimates on the metric do not provide an integrable decay
rate. The idea is to take advantage of the fact that we control the L'-norm

41—

of 201=31"+3vZK £ and then gain decay through the extra weight z~3 and

Lemma3.7.For 7, we use Proposition 10.6, the inequality 7~ 3 < A+|t=r])73
which comes from Lemma 3.7, that § < y < %, Lemma 13.5 and the bootstrap
assumptions (9.1)—(9.3). We have

t |.[_r|%+]/ ZZ‘”—%IP"F%
< t
I / Ve +’)(1+r+r)2+y B/R% A

+ _,
// |'L'—r|2 v f|v|zf\1\*%1"+%
. (1+t+r)1+?’ S Jg3
1
(ERE [20-5T4E9ZK £l [‘”[f](r)
—p R
< dr <
[/ 0 TNJE/O e
letasns s N -1,
e3(1+02, if|I|=N

~ 1
VZKf’ dvw? dx dt
8

~ 1
VZKf‘ dvw? dx dt
8




LEo BIGORGNE ET AL.

In summary, we have proved first that

5K < VElwe| o

eV
K < ’ : < Vel
: I+ |ul Z3

Ql
1 ~1l+Tt+r

and then we have applied Lemma 13.5.

e Otherwise all the homogeneous vector fields of Z! are contained in ZX , that
is I” = KP”. Then at least one of the metric factors is differentiated by a
translation and we can obtain an extra decay in ¢ — r (see Proposition 3.3). For
T and J, this means that Z’ contains a translation 9,, and that we can use the
improved pointwise decay estimates of Proposition 10.8. We then get, using
also Lemma 13.5 and the bootstrap assumptions (9.1)—(9.3),

(141 +47r)3=2
11 e, 2P g5k @1
<f/ Es§ | 0n=31"vZ f](r)drgﬁ/ ‘,‘"[f](z)
<1+r)‘f*2‘S o T

Sleaeni ifnsN -1
e3(1+02% if || =N

t 1 r— % 7 5
J§/ / ﬁ(m:»)u/}'l"%”'*%ﬁ\VZKf‘ dvoy drde
8

2,P 2 A
For Z, as we merely control the energy norm of z11=3/" =3 ZZX f_ we use the

. _24P 2 _24P_2 .
estimate z‘11 =37 §(1+t+r)3zg“| 51" =3 which comes from (3.22), so that

t
T R T
0o Js. Jr} (1+r+r)?_8(1+|t—r|)5
t
e[ [ f i
B 0 Jx, JR3

3 8
_uriss 3(1+10)2, if|I| <N,
< H«:ss[‘fw P-377K ]t < JeEU 1 < 1 E2C
JE rlo < VEE 10 < S+t i1 =N

f‘ |wL|dva) dx dr

1
dve$ dxdt
1+ |ul H

In summary, we have proved first that

il gk o _JE
~“l+t+r

2
3

(1+7+7r):

5. K
A + ul’
and then we have applied Lemma 13.5.
Step 2: if one of the metric factors cannot be estimated pointwise. In that case,
the considered error term contains a factor where 4! has been differentiated too
many times so that we cannot apply Propositions 10.1 and 10.6 anymore. For 7,
this means that |J| = N — 4. For Z, we could have dealt with the cases |J| €
{N — 4, N — 3} during the first step but for simplicity we treat them here. Since
|J|+ |K| < |I| £ N, we necessarily have [I| 2 N —4 and |[K| £ 4 < N -9,
so that the Vlasov field can be estimated pointwise. Note also that if | /| = N then
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|I] = N. Moreover, since £|7) + 3 = {|k |41, we will be able to gain decay through

bl o< 2
~ (1+t+r)? ~ 1+[t—r|

applying the Cauchy—Schwarz inequality in (z, x) and since |wz| < /Jw]|v],

J ol
I</ / |V£ (h )| ‘ | 1+ —
L+t +r Jrs

|V£J(h)| éddft/(lJr +7)
D rE—— ()] X dt T r
AT+ g 0 Js,

. For Z, we get,

the weight z and Lemma 3.7 using |wg | <

1
f‘ dvodx dr
g

[ piztsen=ier
R}

1
¥ dxde| .
H

Z?Kf( dv

For 7, we have

: VLY _ '
J</ o+ )%/ IUIZQH"'_%’P‘VZK]“ dve® dx dr
3

(I+ |t —r?

VL (h! 1

| ( )|f£a)?dxdr
(1 + ul) 8

1
o’ dxdt
8

7 f‘dv

' 24y =217
X (t+r) lv|z 3
0Jx, R3

Remark 13.6. We point out that G{’ﬁ) is the most problematic term and that its
treatment is more complicated than the ones of the other error terms. In particular,

it is this term which prevents us to prove that EL’HZV [h"(r) <e(l+ 2.

We are then led to prove the following lemma, which will also be useful for all the
other error terms:

Lemma 13.7. Let I and K be two multi-indices satisfying N —4 = |I| = N,
|K| < 4and K¥ < IP. Then, for all Z € Py, we have

t
Af:://(l+t+r)
0 T
t
=//(l+r+r)
0 Jx,

. _24P _ 2P
Proof. For the first integral, note that =31 < =37+, Hence, by
the Cauchy—Schwarz inequality in v, we have

t
aTK
A,§/

0

2

PN 1
/ |v|zl+i|l|—%1P ‘ZZKf) dv| o} dxdr 582(14-2‘)5,
R3 B

A

~=

2
~ 1
/ |v|z2+im—%1P ‘VZKf‘ dv| o¥dxdr <& +0)°.
R3 H

(147 +r)/ o]0 THD )22Kf(dv
R L(E0)

dr.
LY(Zy)

Oﬂ\'—‘ OO\

/ PESGER R )22’(;’( dve
B3



LEo BIGORGNE ET AL.

Since ZZX contains atmost 77 +1 homogeneous vector fields, |[K|+1 <5 < N8
and £);) + 3 = £ 4 3 = {|g|+1, we obtain from (9.9) and the bootstrap assumption
(9.1) that

&

2 A~
/ |U|Zf\1|+l—§(11)+1) ‘Zsz‘ (T,x, U) dv 5 _—
R} (I+7+r)?2

SEYIA0 S e+,
L(Zo)

01— ool —

2,4P o~
/ Jp|gbnF3=3UT+D ‘ZZKf‘ dvw
R}
which gives us

XK“Z/IL%%MS
P arnt '

The bound on .Af can be obtained in the same way using this time that vZzk
contains at most /” homogeneous vector fields. O

We can then bound Z using the bootstrap assumptions (9.5). For any |J| £ N,

1 1

2 t
- edr
7< dr - AK </—.21 %

~ T 1 ~ 0 (1+T)2_28 8( +)

/, ELT (o)
0 (1 + r)2

3 3 )
Sez <ez(l+1)2.

To estimate &/° I 10, and thus J, we will need to treat differently the cases |J| =

than those for which N — 4 < |J] £ N — 1. Nonetheless, in both cases, we w1ll
make use of the energy norms related to special components of 4! in order to close
the energy estimates. Assume first that |J | = N, which implies |/| = N. Then,
using sup, g, 11:|§+:| < 141,y < {& and the bootstrap assumption (9.8), we
obtain

VL7 (WD) 7, of UK
/(l-l- )/r T %dxdt A

VLS (hY)|7
(1+r)//2 1+|u|“ Loy dxdr - AF

1

2

e+ [N 70 0 gg%(1+t)%+5.

We now turn on the case N —4 < |J| < N — 1. Apply first the inequality (3.14),
so that

D=

Ty

[Jol =N

LPROE, K
dxdr -
f/ F 40+t A
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Then, we bound Af using Lemma 13.7 and we apply the Hardy inequality of
Lemma 3.11. Note that once again we need to be careful since we cannot use all
the decay in u = 7 — r in the exterior region. We obtain

1
2

; ' L2 ()2
Se(l+10)2 E // LT w!T8 dxdr
J e ) N w, T+ 7 +7r)(1+ |u))? “2el

vLP (R
58(1+t)g Z // | ( )|g7 o1 dx dr

|J|<N l—i—t—l—r 2+g
0l=

1

2

Fix now |Jo| £ N and use the estimate (10.5), which was obtained using the wave
gauge condition, in order to get

Jo/11 Jopl
// VLY (D121 o+ dx dr <// VLY (D17, o+ dy dr
l—i—t—l—r 2+g hole 1—|—7:—|—r 2+8

// e dxdr
s (T4 |

where, according to (12.2), féfrét (lgf;f:)S < —1J0 < ¢ and
0 71152
1+ Jul 0,12, L7 (0] !
=2 / / A+t+rp32 ('Vﬁz(h W+ G ap? ) @t 44T
1QI=N :

Using firstthat 1 +7 S 1+ 747, Sy, y S 1+ % and then the Hardy inequality
of Lemma 3.11, we get

1 ﬁQ hl 2
Sy f — zs/ |vcg(h1)|2+% @t dx dr
Q1SN 0 (1+r) s, L+T+r (1 + |ul)

Q152 t &Y24+2y 1
T [ et [ S e [ £,
OI=N 0 (1+r) s, l+t+r o (U+1

We then deduce from the bootstrap assumption (9.5) and 48 < 1thatI < e. Finally,
asy < %, Lemma 3.12 combined with the bootstrap assumption (9.7) and y > 34
give

I+y

J Ji 14,2
/f |V£ O(h )|’TM 1+5 d dr <f/ |V£20(h )|']’u wl+y dx dr <8
1+t+4r y, I4+1)77% 14 |ul

We then deduce from the previous estimates that 7 < ¢ 3 (141) 5 forall|J| £ N—1.
In summary, we have used the Cauchy—Schwarz inequality, applied Lemma 13.7
and then proved that

~ 2
e e

t 1,1 L
// dxdr
0 ho 1+7:+r
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, if [1] < N,
(I4+0! if || = N

3
2
3
2

<! (13.9)
&

We now analyse the other error terms.

}}.3.1. The Terms Arising from the Source Terms. Since T, (f) = 0 we have
zh (Tg (f)) = 0 for any |Iy| < || and all the error terms of the form (5.42) are
equal to 0.

13.3.2. The Terms Which Do Not Contain #'. We start by dealing with the

27P = _2qP . . . .
error terms z11~31 Gf o and Zbn—31 Gf oo Since their treatment is different from
the other ones.

Lemma 13.8. Let K be a multi-index satisfying |K| < |I| — 1 and K* < IP.
Then, for any Ze }Po,

3 s .
/ff W‘*’P S 0+6,00) de drdr < 20 +D% FHI<N,
R3 e2(14+02%, if|I| = N.

Proof. As the Schwarzschild mass satisfies M < /e, we have

t=31" \ZZK £
Gr—317 (@K sk >< Vel v 7K 122 Jy
z 10+ Cr0) ST | f|+1+r+r

Note now that ze‘I‘_%1P|22Kf| SO+t + r)%zg“'_%(IPH)I??Kfl, so that
Lemma 13.5 gives us

'”[f](r)
// A;% i 6K0+6100) deldxdr<f/ \11|+t

It remains to use the bootstrap assumption (9.1), (9.2) or (9.3). O

13.3.3. A Sufficient Condition for Proposition 13.4 to Hold. The two examples
treated just before suggest us to prove the following three results, where we use the
notations introduced in Definition 5.16. The first two ones concern the cases where
all the metric factors can be estimated pointwise. In the last result, we deal with
the case where one of the &' factors has to be estimated in L. Let us start by the
easiest terms.

Lemma 13.9. Let Q, M, J and K be multi-indices sansfymg Q|+ M|+ |J|+
K|S N5 |K|<|I|—1and KP < IP. Fixalso Z € Py. If for all (t, x, v) €
[0,7] x R x R,

JK | @K GOJK | 50K Velul | Jelwil
—(1+r+r)3(%11 +By, +A +91113 >§1+r+1+|f—r|’

K gl K | ol K 0.J.K oM.JK _ el Velwg |
F =By +Bp, +B5 +B,77 + A §1+T+1+|1_r|,
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then,
=317 (BI.K | &I #0.J.K | 50, J.K
///R3 (&) + & F + @B + €K ) dve

1
// /3 =S (7w orf oK + 82+ e ) dvwtdrde
. JR : . . . . 1

_leta+ni. i<,
e1(14+07H, if|I|=N

dxdr

o0l — ool—

Proof. This follows from the definition of the quantities considered here and from
the inequality z% <(4+7+ r)%, so that

o~

S (S + & + B PN ) S F iR 220 ),
2 o~
=5t (6{3 + 614 + 61 5t 6[1\461 L+ QIQIQ/I ” K) = F.n=st" \VZE £1.
11
Recall now the definition (3.35) of the norm E38°8[.], so that, using Lemma 13.5,

the integrals considered in the statement of the lemma can be bounded by

f,"ﬂ [f1() o

JE/ S e+ VEE 10

0 1

and it remains to use the bootstrap assumptions (9.1)-(9.3). O

We now focus on the more problematic terms, for which we will need to use our
hierarchy related to the weight z and the number of homogeneous vector fields
composing Z! and ZX.

Lemma 13.10. Let Q, M, J and K be multi-indices satisfying |M|+ | Q|+ |K| <
N =5 |J|+|K|SN-=5|K|<|I| -1, KP < I? and the following condition

o cither K¥ < I?
eorKP =1f and then JT > 1 and QT + MT > 1.

Fixalso Z € @0 and define
5. 6K | 50K | §0.K J.K 0.M,K
g-:ﬁm +Ql1,2 +Ql,,3, G:= Zmu + Zmu :
j=14

Assume that for all (t, x, v) € [0, ] x Ri X Rg,

= 1 IK < Vel Velwe| P P

G+ =G+ 91 < + ifKP < 1P,
R R e N aa 4

(1+r+r)f§+g5‘/§|v|+ Velwe| ifKF =1".

1+7 1+ |t —r|
Then,
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t 3 1
/f / a3 (S g Zez{’i’(+ Z@M’K dveo’ dx dr
0 Jz, JR3 la ’ B

a=1 j=14
~farni i<,
e3(1+02H if[I|=N

and,ifKP < P2

3 ) .
// / @m—zl QEJ de dxdr< 8?(1"‘1‘)?75 if Il <N,
R3 e2(14+1)2%°, if|I| = N.

Proof. We follow the proof of the previous lemma. Note that if K¥ < 17,

23" (@JK + & + 613 ) <G tn=3T1ZZK g,

10
_2yr K K MK 1 K _2P42 5
P L Ry e +Ze9 < — (G+aff) 23 vz g,
i= j=14 23

Otherwise K = I” and

=317 (G @;2 + (’3 ) SU+t4+m3G- 3731278 ),

10
Zn=31" Z@{vi + Z @Q MEN < g n=31"\yzK 5.
i j=l4

It then remains to use Lemma 13.5 and the bootstrap assumptions (9.1)-(9.3). 0O

‘We now prove a similar result for the error terms containing a high order derivative
of hl.

Lemma 13.11. Let K be a multi-index such that |K| < |I| — 1 and K¥ < IP.
Consider multi-indices Q, M, J, Q, M and J satisfying

o|J|ZN—dand|J|+|K| = 1],
|01+ M| = N —4and || + M| + K| < |1}
o [Q|+ M|+ |J| 2N —4and |Q| + M| +|J| + |K| = |I].
Assume that for all t € [0, T,
et it s e
S / /, (1 + 7 +r)z2v)?
Lo

1259513 B

‘2

dxdr,

oc\~ ool—

2 2 .
J, 1K 0.M.K 0MT.K
R e e T e P i o I
Z 1 13 o dxdr,
s5i<s D I+ 7+t g
4<i<n Ly
14§p§17

23 Recall that we cannot have K¥ = I in the error term @{IK] .
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are bounded by € if |I| < N — 1 and e(1 + t)' 8 if |I| < N. Then,
! ~ o~ ~ _~ ~ _~ _~ 1
/0 [ (S S 4 E + EE + EE BT 4 BN ) 0] avar,

501 17 L - 1
_2yp L

> D // tn=31 (6;’,«K+6,9;)M‘K+Gﬁ(+€,Q,;,M‘K+€,Qyig4’J‘K>wfdxdr

i=3 j=4 p=1470 JZr 8

are bounded by £3(1+1)2 if 1| < N — Land e3 (1 + )23 if |I| < N.

Proof. Recall the definition of the error terms (see Proposition 5.14 and Defi-
nition 5.16) as well as Af and .Af (see Lemma 13.7). The Cauchy—Schwarz
inequality in (7, x) give that

2 3 13 ¢ l
2P [/~ R N 1 L
ZZ Z /0 /E Zﬁll\*jl (6;!( + @{]K + @I(%,qM,K) a)zdxd‘c < "]—[Af

i=1 j=1g=12

1
2

Similarly, we have that

6 11 17 . o .
2 <
>y / / = (&1 + S el e 1 e ) oY drdr
i=4 j=4 p=1470 /T 8

1
is bounded by }H . Af | 2 Tt then remains to remark that we necessarily have | K| <
4 and to apply Lemma 13.7. 0O

13.3.4. The Assumptions of Lemmas 13.9-13.11 Hold. The last part of the
proof consists in proving that we can apply the previous three lemmas.

Proposition 13.12. Ler Q, M, J and K be multi-indices satisfying |Q| + M| +
[JI+ K| < N—=5|K|S|I|—1and K¥ < IP. Consider also Z € Py. Then,
forall (t,x,v) € [0, T[X]Rf’c X Rg,

<\/5le7
~ 1+t

K J.K J.K 0.1.K oM. JK _ el
By +Byy +B5 +BgT A §—1+T-

2 /o~ ~ ~ —~
U+ 7405 (B +B7F +AALF +AZLK)

Proof. Since |J| + |[M| + |Q] £ N — 5, one can apply Propositions 10.1 and
10.6 in order to estimate pointwise /! and its derivatives. We then get, for all
(r,x,v) € [0, T[xR} x R3,

~ ~ ﬁj(hl)} glv]
BIK L /IK < Vel (L5 ’vLJ Al ‘ < ’
mr B = e e T IVEZMD ~ A+t +r)2
I
01K | 507K 0,1 [ 1£zHD) I elvl
AT HALET S ’LZ(h )‘ (l—i-r—i-r +‘V£Z(h )’ S Qtctr2
LK | onlK < VeI ‘ J 1‘ _ ‘ J 1‘ N
DD 1+T+r(£Z(h) e =rl VLS (D)) 5 T
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JK =71 eI+t —r|
Bys < Velvl ‘Vﬁz(h )’ S ET =
0.1.K Q1 Il glvl
B < Ve[| Ve D] <

ev|/1T+ |t —r|

mgizg,J,K <t +r)| ‘ﬁg(hl)’ ’E?(hl)‘ ‘Vﬁé(hl)) < (474723

It then only remains to use (1 + |t — r|)% <471+ r)2 and § < 16
Proposition 13.13. Ler O, M, J and K be multi-indices satisfying |M| + | Q| +
K| SN =5 1J|+|K|<N=51|K| < |I| -1, KP < I? and the following
condition

o cither KP < I?

eorKP =1P and then JT > 1 and QT + MT > 1.
Consider also 7 € @0. Then, ifKID < I? we have for all (z, x, v) € [0, T[X]Rfc X
R3,

m}

11 JK 17 M
A o Vel Jelw
ALK m )
Lt ; Z% ,Z % P prr—

Otherwise K* = IY and we have**

<1+f+r>3zm;{<+zm;f+ S0 @ < VEL el

o 1+7 14|t —r|

Proof. Since |J|,|Q|, |M| < N — 5 by assumption, we can estimate pointwise /'
and its derivatives through Propositions 10.1 and 10.6 . We will also use several
times that 205§ < y < % and 1 + |t —r| £ 1+ t + r. Note first that using
the inequality (1 4+t + r)% |wL|% < |v|%z%, which comes from Lemma 3.7, and
|wL|% < |v|%, we obtain

1

2
3

ALK = (t+r) ‘v,c’ |
z3|v|

< Velwe| < Vel
T4t nit A le—rpr T LHIT =

Z

We consider now the first three terms. If K < I”, we have

Velw|
A4+ 14+m)=30 4+t —r])?

A F = el Ve, <

= L2 (h! _
sy 815 - (49 s ocgan,, +Fezun)

24 Recall that we cannot have KX = TP for the error term Q‘i 7 11
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J1+ |t —r]

< -~
SV G

which give the required bounds. If K¥ = I”, then JT > 1 so that we can use the
improved decay estimates given by Proposition 10.8. This leads to

(40380 < lol o el
R R L (R LR LA L
NG < el

2 (5K | §J.K
(1+t+r)3(91[’2 +Ql,’3)§ <
’ ’ A+t+r3 B 4l—rphz ~ 147
We now treat the remaining terms, using again the pointwise decay estimates of
Propositions 10.1 and 10.6 as well as the ones of Proposition 10.8 when J7 > 1.

We have, using the inequality (1 + |t —r |)% < z%, which comes from Lemma 3.7,
and then 2ab < a2 + b2,

1K
R +Q‘ vIvIIwL (

Zg B Z3
- VeVl
T 4T+ [T — ]
oA NG

T4 r+niT® G+t A4l —r)3

£40D|+@ +n[Tesmh))

Otherwise we have J7 > 1 so that

Veullwe]
A+t4+m)-30+ |t —r|)2
Velvl n Velwr|

A+74mi 2 (Q4t4nid+ir—r)

LK | oK
Ay +A19 S

A

and we have then obtained the expected bounds when K¥ < I”. Similarly, one
obtains

1K [vl|t —r]

3

1+|t—r])2

NP s

%1,‘4 — Eé(hl)‘ < (I47+r) |

1+1¢ 2 .
(+edn VEIEES T >

1
(t[r—rp2*”
VeI
1

1+ 7.
Vel it 2 1,

w = nl|eiah)| s
1.5 [v] z( )LTN

1
(If]z=r2
\/E|wL| (l+‘[+r)1_8
Velwe| : if JT >
(I+r+r) =3 (4] —r|)2 B

WK == rllwg ] [VEL ()| S




LEo BIGORGNE ET AL.

(+e—rD?
Vel (4?2

1+ 1.
\/_|U|((1+r|t+r;2|)2a if JT

A =lr =il [vLs0h| <
1.8 | r{lvl 7( )E’T

v

(te=r)?*
Vel
1

I+lt=r)2 .
Vel it T

A/ = @+l [VeL 0! )(

1\

and

T—r|
Velv |(1+,+r)z oh
(1+£L1;|2—28 lf QT + MT g 1,
1+|t—r|
M.K Vel g
ALCME _ o ) \cg(hquc!g(m)\ 5{ v

A2 = ol [ £ b [e o] 5 {

1,15 .
s 0T+ M 21,
Q M. K Q \/Elel‘ 26
MR 1 Mol < ) (+r+r)i-
A2 K = @+l |£0N| [vLY )| < = T MT 21
(I+t4+r) =2 (14|r—r|) ="

ALMK _ coam|[veran| < [V T
w40l |£Sh||[FeY ah| < .
" : ‘ T 0T M 1.

This leads to the required bounds since z_% <+t - r|)_% (see Lemma 3.7).
O

It remains to prove that the hypotheses of Lemma 13.11 hold.

Proposition 13.14. Let K be a multi-index such that |K| < |I| —1and K* < 1P,
Consider multi-indices Q, M, J, Q, M and J satisfying

o lJ| 2N —4and|J|+ K| < |I)
10|+ M| 2 N —4and|Q| + M| +|K| < 1]
10|+ M|+ 7| = N —4and |Q| + M| + ]| + K| < |1II.

Then, for all t € [0, T|, the integrals

2 2 2 2 2 2
VYA SN N LN N SEIR YN SN T
Z // 531,1 ’ ""%1,2 ‘ +‘Q[1,1 ‘ +‘Ql,‘2 ‘ +)911,3 ‘ +)Ql1,q ’ b
w8 dxdr,
A+t +r)22)? 3
q=12
Ly
S 2
oA e e e
) dxdr,
FYNIp) 1
3<i<5 (1 +7+r)z%|v| N !
4<j<11 Ly
14<p<17

are bounded by ¢ if |I| < N — 1 and e(1 + 1) 3 if |[I| < N.

Proof. Recall that we already dealt with the term associated to Ql{ﬁ) when we have
bounded 7 (see (13.9)). We also already treated the integral associated to ’QI{ IK but
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we will repeat the proof here. We will often use that 1 + |u| < 1+ 7 + r as well
as the inequalities

1 lwi| 1
El 5 El
A+t —rD2  l2 ~ (I +1+71)?

1
=3 (13.10)
b4
which come Lemma 3.7. We start by the terms of degree 1 in 4!, that is the quadratic

terms and some of the terms arising from the Schwarzschild part. We obtain, using
(13.10), that

2 2 2 2 2
&K SIK 7K 7K I.K
R R I e o I e N>
A+t +n2pP Att+n@p? ~“A+c+030+lt—r)?’
2 2 2 2 2
S K SI.K 7K 7K K
’%1,2 ‘ + ‘9[1,1 ) ‘%1,4 ’ + )le ‘ + ’Q’ll,ll‘ - ]V[é(hl)\z

(I+t+nr22v? (I+T 4P Yt
2 2
J,K J,K -
375 |+ 2| vy
A+7+n2HP ~ A+r+n0+t—rh?

Similarly, we have

2
J,K 2 2
sl ek, ey,
A4t+n P~ A+t+n0+lt—rh* ~ A+t +n"20 4t —rh*

Finally, using the wave gauge condition (10.5), it holds that

il ot weenr el
A+t +n2PE | A+t +nZ PP ~ A+t +n0+lt—r)2 | (d+7+0)
TN MG cg ] ,

A+r+r)7 Yordt] A+r+r3BA+r—r) A+r+r)328A+|r—r]3

We now study the remaining terms. Note that without loss of generality, we can
assume that |[M| < N — 5. Since |Q] £ N —5o0r |[M| £ N — 5, we have, using
the pointwise decay estimates of Proposition 10.1 and (13.10),

2 2 2
50 M.K 0.M.K Iyl
| 2| 5 g
I+t+n22P?>  A+t+ntP? ™ A+T+r)3 B0+t —r)3

[0l =11

If Q] £ N —5and Q £ N — 5, we use again Proposition 10.1 and (13.10) in
order to get
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1,15 1,16
1+ 7 +rz2v)? (1+7+r)*v?
2

Ve VeS|

Z l+t+r)3¥A+|t—r
Ilolélll( )7+ D

2 2
At I sl vl e |

+ 2 X

<

and

vy mh|’
A+t4+r)=20+ |t —rp?

2
0.M,K
T
&
A+t +rHp?>~

Otherwise we have |[M| < N — 5and |J| £ N — 5, so that we obtain

2 2

0.M.K 0.M.K 0.M.K 0.M.K 0.M.K 0.M,7.K

‘9[113 ‘ ‘%1,6 ‘ +)m1 15 ’ +‘Ql, 16 ‘ +‘m1 17 ‘ +‘Q[118 ‘
(147 +r)2?vf? (147 4 r)z*vf?

et

~ Z 3-45 — 3"
Ilo\§\1\(l+r+r) A+t —r)

Combining all the previous estimates, we are then led to prove that for all | Io| < N,

t
£
= _f  _dxdr<e,
Bo IOLT(1+T+r)5725er5

t Llo(hl) 2 1 .
m{O :2/ / ’ z 1 2(3‘LT Ferdxdr S o 148 Tfllo' =
s, L+ T4+ + [uh* s e(L+0)', if [l =N

|2 ! 1 ~
= [ ./ 3( 4s)| ?dXdT <{® 145 filol <N,

CAFTH)ITEA+ u)? s e(L+0)'™°, if [Iy] =
I
lo ::/ / [vchnh? obarar < [ » if | Io] < N
: A+ T+ 4 u))? s ~Mled+nTe, it | =

I X , if |Io] < N
. o Io 1412 8 < & ! 0 ’
By '_/0 ,/r a +r+r)3748|v£z(h ) w%dth ~ {5(1 +0)! i I = N

As before, when we will apply the Hardy inequality of Lemma 3.11 in the upcoming
computations, we will not be able to exploit all the decay in u = t —r in the exterior
region. Using first the Hardy inequality and then the wave gauge condition (10.5),
we have

VLY h
IO</ / i ( )|£T 1+5dxd_[<;:p3 +€p0+ Z %24’
poM

(Tt 41224
( ) [Jo|=Io

_ VLY o
10 - / / | ( )| 1+5 dXdT
z, (L1412 2

where,
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148 « 142y
244 = @ity >

Jo 1142
—1Ip I+ |ul Jo 112 L7 ()] W2
\% _—
PBay = //2,(1+T+r)3 43<| Ez(h)| +(1+|u|)2 lerdd

Using (12.2), we have Py < 7173y < . As moreover ‘ﬁg" < ﬁ;o and ‘13;0 —i—‘I}ff’ <

ﬁ;OA, it only remains to deal with the integrals q_3§° and %é?“. Applying the Hardy
type inequality of Lemma 3.11 and using the bootstrap assumption (9.5), we get

Jo 1 t SV2+2y 1
B < 25 GO RTPo B S i UR (O
2,4 s, (I+7+7r)3% @y 0 (141)2%4

If |[Io] £ N — 1, we have using 1 + |u| < 1+ 7 +r and then Lemma 3.12 combined
with the bootstrap assumption (9.4) and y — 3§ > 24,

_ CroVERahH]P e Lo |VERaY) et
‘}3;0 < / / ’ ( )3|8 dxdr £ [ / ’ ( )3‘5 dxdr < e.
0 Js, A+ 1+ |ul 0 Jz, I+ 1+ |u

For the case |Iy] = N, use SUp, e, 1++|;+:| < 1+ 7 and then 3§ < 2y as well as

1+ % — 28 = y in order to obtain

t v ol
ggos'/ (1+r)25/ VL7 (h )| o3 dydr
0 B

Ttz+r 2442

t |V£10(h )| 2+2y 212
<1 tza// dxdr < (1 4+ 02802 1),
SI+0n A S e 1+|M|XTN(+) N (7" ]()

Using the bootstrap assumption (9.5) and that 45 < 1+6, we get ﬁgo < e(1+10)!8.
This concludes the proof. O

13.3.5. Conclusion. According to Proposition 5.14, Lemmas 13.8-13.11 and
Propositions 13.12-13.14, Proposition 13.4 holds.

14. L%-Estimates on the Velocity Averages of the Vlasov Field

The purpose of this section is to prove that the assumptions of Proposi-
tions 12.1, 12.2, 12.4 and 12.9 on the energy momentum tensor 7[f] of the
Vlasov hold. More precisely, we will prove L’-estimates on quantities such as
fv |2Kf||v|dv. If |[K| £ N — 4, this will be done using the pointwise decay esti-
mate (9.10). The main part of this section then consists in deriving such estimates
for |[K| = N — 3. For this, we follow an improvement of the strategy used in
[18] (see Subsection 4.5.7), which was used in [9, Section 7] in the context of the
Vlasov—Maxwell system. Contrary to the method of [18], this improvement will
allow us to exploit all the null structures of the system. Let us first rewrite the
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commuted equations of the Einstein—Vlasov system and then we will explain how
we will proceed. Let M and M, be the following ordered sets:

M := {Imulti-index/N —5 < |I| = N}y ={I, ..., Im}.
My, := {Kmulti-index/|K| S N — 5} ={K1, ..., KMy}

Remark 14.1. We put the multi-indices of length N — 5 in these two sets for a
technical reason. Note that M contains all the multi-indices corresponding to the
derivatives on which we do not have any L2-estimate yet.

We also consider two vector valued fields F' and W of respective lengths |M| and
IM| such that

Fi=F [24‘ f] — 7l f and W, = 2K 1,

We will see below that it will be convenient to denote the i™ component of F by
F [Z" f]. Letus denote by V the module over the ring {1/ : [0, T[xR3 x R —
R} generated by (0 )0§ u<3 and (ij ) <j<3- ‘We now rewrite the Vlasov equations
satisfied by ' and W.

Lemma 14.2. There exist two matrix-valued functions A : [0, T[X]Ri X ]Rz —
Mm (V) and B : [0, T[xR3 x R} — 9Mymy m, (V) such that
Tg(F)+A-F=B-W.

Moreover, if 1 < i < M| and I; is the multi-index such that F; = Zl f, then A
and B are such that T (F;) can be written as a linear combination with polynomial
coefficients in ==, 0 < & < 3, of the following terms,

W
L (H)(w, dF[Z" f]). LL(H)w, dWy),
v, (Lg H)(w, w) -y, FIZ" f1, v, (LZH)(w, w) -y, Wi,
©pJ w, 51 - af AT w,
v (LZH)(w, w) -k, FIZY 1), v <£ZH>(w, W) L, Wi,
ZM (av) £S (g7 (dx", dFIZ ), ZM1(Av) L4 (g7 (dx", dWp),
2 (a0 V, (L H)@x w) -0, FIZU f1, 2 (a0) Y, (CH) @ w) - 8, Wi,

—~ ~ Y e P ey — 7
ZMI(Av)zM2<Au)vp(£§H) -9y, FIZ" 1, ZMI(AU)ZMZ(Au)vp(ch) 0y Wi,

Up

2 (a) VH (LS H ) @xt, w) - 24, FIZV 1),
wo
ZM (Av) V* ([ﬁgH) (dx*, w) - ﬂavq We,
wo
ZM (Av)ZM2 (Av) vk(cgﬂ)’” W FIZY 1,
wo

- P T\
7M1 (Av)ZM2 (Av) V*(ch) -2, Wi,
wo
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where, q € [1,3], (1, v) € [0,3]% |Kkl £N — 6, K < IF with Wy = ZK¢ £,

1+ 1Kl S 151, Myl + Mo+ 101+ 1Kkl <L Kl S 15| -1,
I+ L, M+ Mo+ 101+ 111 S04, G S L] - 1.

Moreover I}, J, Q and M, satisfy the following condition:

(1) either 1}’ <17,
(2) orlf =1 andthen JT =1, QT + M = 1.

For the term V* (CéH) (w, w) - 3—3 3qu[21f f1, J and I; satisfy the improved
condition that

I+ 1L S LI —1 and 1] <17
Remark 14.3. Notice that if |/;| = N — 5, then A7 = 0 forall 1 < ¢ < [M].

Proof. One only has to apply the commutation formula of Proposition 5.10 to
Z'i f and replace each derivatives of the Vlasov field ZX f, for |[K| # N — 5, by
the corresponding component of F or W. If |K| = N — 5, we replace it by the
corresponding component of F for the following reason. In the terms listed in the
Lemma, a derivative is applied to the components Wy. Hence, if |Ky| £ N — 6, we
are able to rewrite d,» Wy, and 0,, Wy as a combination of components of W, which
will be important later. O

The goal is to obtain an L2-estimate on F. For this, let us split F as F hom | pinh
where

Tg(F?Om) +A- Fhom — 0’ FhOII'l(O’ . ) — F(O’ - .)’
To(F™) + A-Fi'h = B.Ww, Finh,., )=0.

By uniqueness, F = F'™ 4 Finh and it is thus sufficient to prove L>-estimates for
the velocity average of F"°™ and F™M To this end, schematically, we will establish
that Fi"" = KW, with K a matrix such that E[K K W] does not growth too fast, and
then use the pointwise decay estimates on f o |Wllv|dv given by (9.10) to obtain the
expected decay rate on || [, [F™|[v|dvl| 2. For || [, |[F"™||v|dv]|;2, we will make
crucial use of the Klainerman—Sobolev inequality of Proposition 3.15 so that we
will need to commute the transport equation satisfied by F"°™ and prove L'-bounds
similar to the ones of Section 13.

It will be convenient to denote, similar to F, the components F l.hom and F l.i“h of
Fhom and Finh a5 follows:

Fihom _ Fhom [2Ii f:l i Fiinh _ Finh I:?Ii f] )

Remark 14.4. Contrary to [18], we kept, as in [9], the v-derivatives in the statement
of Lemma 14.2 in order to take advantage of the good behavior of radial component
of V, F. If we had already transformed the v-derivatives, we would be left with terms
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such as XTJ (t —r)d,,; F from (V,F)" (see Lemma 3.9). We would then have to deal
. 3 .
with factors such as I;T during the treatment of the homogeneous part F'°™ (apply
koo . . .
three boost to %) since we will have to commute at least three times the equation
Ty (F™) + A . Fhom = 0,

On the other hand, keeping the v-derivatives also creates two new technical dif-
ficulties compared to the strategy of [18]. We will circumvent them following [9].
The first one concerns F"°™ and will lead us to consider a new hierarchy (see Sub-
section 14.1). The other one concerns certain source terms of the transport equation
satisfied by F'™P which contain derivatives of FI"". Because of the presence of top
order derivatives of i!, we will not commute this equation and these derivatives
have to be rewritten as a combination of components F™ and controlled terms,
which will be derivatives of Fhom,

14.1. The Homogeneous System

In order to obtain L, and then L2, estimates on /, o | F hom| 13,140, we will have
to commute at least three times the transport equation satisfied by each component
of F'°m However, if for instance |I;| = N — 4, we need to control the L'-norm of
ZK phom[Z1i f], with |K| =4 and |I;| = N — 5, to bound [|Z! F™m[Z% £)|,

with | 1| = 3. We then consider the following energy norm (recall that £ = %N +6):

Epon = 30 . B [From[Z0]]

1<i<IM| 0SkSN (1]

N S T e

ISiSIM] |5 +HTISN+3
We have the following commutation formula:

Lemma 14.5. Leti € [1, M|] and I be a multi-index satisfying | I; |+ 1| £ N +3.
Then, Ty(Z Lphom(Z1Li £1) can be written as a linear combination with polynomial
coefficients in z—z 0 < & < 3, of the following terms:

o L} (H)(w,dZX F*"(Z15 f)),
oV (LLH) @, w) -8, ZX Fom( 20 p),
o VA(LLH ), w) - 22 5, ZK FromZ0 g,
wo
o ZM (Av) LZ (g7 (dx", dZK Frm(Z1 £,
o ZM1(AV)V, (LgH)(dx”, w) - 3y, ZK From(Z1 f1,
o« 2 (A0 ZM A0V, (LEH) -0, ZK Pzl ),

o ZM (a0) VH(LEH ) (@x, w) - =20, 2K Frm( 20 ),
wo
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~ ~ woow ~ ~
o ZM (AV)ZM2 (Av) V* (cg H)  Zhg, ZK FRmZU £, (14.2)
wo

where, q € [1,3], (u,v) € [0,3]% j € [1.IM]],

IJISN =5, [Mi|+ M| +1QI SN =5, [KI= I |1;] = |4l
|K|+ 11| = L]+ 1] = 1.

Moreover K, J;, J, Q and M, satisfy the following condition:

(1) eitherKP+1jP <IP+15P>
(2)or KP +17 =17 + 17 and then J* 21, Q" + M = 1.

For the term (14.2), J and K satisfy the improved condition KP+ I]P <IP + IiP.

Proof. Leti € [1,|M]|] and |I| £ N + 3 — |I;|. The starting point is the relation

T, (2/Fm(2" 1) = [T, 2] (Frm12" 1) + 27 (T (From (20 £
According to Proposition 5.10, the error terms arising from the commutator
[Ty, Z"] (Fhom[Z"i £]) are

e such as those listed in the lemma, with /; = I;. Note that the conditions on | J |
and |M1| + [M>| + | Q] follows from |J| + K|, [Mi] + [M>| + | Q] + |K]| =
|1] <N+3—|I|<8andN> 13;
e or such as Z0 (T (Fhom[ZI f])) with |Ip| < |I]| and IP <P,
The analysis of the other source terms is similar to the one made in order to derive
the commutation formula of Proposition 5.10. In view of the source terms of
T (Fhom[ZI fD, listed in Lemma 14.2, and according to Lemmas 5.2, 5.6 and
5. 9 Z! (Tg(Fhomy A /1) and Zh (T (T (Fhom[fl' f1) can be written as a linear

combination with polynomial coefficients in —= oo £ of the terms written in this lemma.
The condition on |J| and |M1| + |M>| + | Q| follows in particular from

IKI+ I+ 1] S 1L+ [T =N +3,

K|+ M|+ |Mz| + Q1+ |I;| =N +3,

;] =2 N -5,

sothat |J|, |M1| + |Ma] + |0 S8 < N —5. O

We are now able to prove

Corollary 14.6. Let i € [1, [M|] and I a multi-index satisfying |I;| + |I| £ N + 3.
Then, Ty(Z L phomiZLi £1y can be bounded by a linear combination of terms of the
form

(x/glvlJr Velwel ) 1;

141t 1+ |t —r|

Vel VEWLL \ (5K mhom[51.
(Yo7 + iy ez K+ 1f <11l

K +17 <17+ 17 +1,

ZK] Fhom I:ZI“ f]
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ZK} F/’l()m [2113 f:l ,

K{+1[ <1"+1F,

(ﬁm+ NG >Z;

141 14|t —r|
where forany 1 = q = 3, j, € [1,3] and |Ky| + |1j,| = |[I| + |i| = N +3. In
particular, in view of the definition (14.1) of E phom, this implies that

Ed % [Z%sz%(lhrlf)’z‘m Fhom[’z‘l_/l f]](z)
+EEE [ =zt )ZKZFh"’"[ZIJZf]](I)
n Eb [Z%ZZ_%(IP""I:'P)’Z\IQ fhom [’Z\Ij3 f]](t) < B pion (0).

Proof. Given two multi-indices I and K, we define the multi-index K I such that
ZKl = ZKZI holds. The following intermediary result can be obtained from
Lemma 14.5 similar to the derivation of Proposition 5.14 from Proposition 5.10.
Fixi € [1,|M]|] and [ such that |I;| +|I| £ N + 3. Then, T, (Z’Fh"m[Z’t f1) can
be bounded by a linear combination of the terms listed below where Z € IP’O and
the multi-indices Ij, K, J, M and Q will always satisfy

IKI = II, I =1L K[+ < T+ L] S N+ 3,
KP 1P <17 +1f

and |J| + [M| + 0| < N — 5, so that A! can be estimated pointwise. The most
problematic terms are

Z Qlj KI; ‘ZZKFhom [ZIJf]‘ KP+IJ_P <IP+I’_P
12953
. JKIj | GZK phom [ 51 ¢ P P P P
Q=Y Wty [vzEeen (20| KP+1F <17 +1F,
4Spsll
¢ = Z 2 7Klj ‘VfKFhom [21,-}(” KP4 1P <P 4 1P
1= I1;.n ’ J i
14<n<17
Q= Y Af U |ZZK phom [z’/f” STz KMl =17 4 af
15¢<3
Q= Y wy [vZEEem (20| VS R S S LR
4<p<10
Z QlIQ[lanlf vy 7K phom |:’2‘iji|" ol +JT >1, KP+]P 1P+1P
14<n<17

The other ones are

S (&KL | &dKD LKL,  ~Q0.0KI,  ~0.JKI
Ri= (% o+ B +%11 DA A /)

55K Fhom[’z\lj f} ‘

(Kl 1K1 1K 1K 0.J.KI; 0.M.1.KI;
R = (%11,,00"'%11,,3 +By . +B s B A g

V’Z\K Fhom I:’Z\I_,' f] ‘

Recallthat‘B” ‘o S Vel +141)” -2 and%” ‘o0 S < Velvl(14+1+r)~L Apply
then Propositions 13.12-13.13, as well as z < 1 + ¢ + r for the first inequality, in
order to obtain

Z(ﬁ LR) < (x/glvlJr Velwr| )L%

1+t 1+t —r]|

zz8penzin g KPI S 1740
Z
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QO+ R < Ve N elwr| )V’Z\KFhoml:’Z\Ijl f]‘ KPP <I1P4 P
~\1+1 1+t —r| i = i
9, < Vel | Velwel )2ZKFh°m[ZIf1 f:H KP4 1P < 1P 4 1P,
T+t 1+ —r] j

o}
Wit

. (QI"I‘@])S(
z

VR, Vel >Z§

v?"z«““f“[i’m ]‘ KP+1P < 1P+ 1P
I+r  14|t—r] f i i

Wit

It remains to notice that VZX (respectively A ) contains K (respectively at
most 1 + K ¥) homogeneous vector fields. O

As FPom(Q, . .) = F(0, -, ), it then follows from the previous corollary and the
smallness assumptions on f, h!' and the mass M that there exists a constant Cr > 0
such that E phom (0) < Cre.

Proposition 14.7. There exists a constant C g > 0 such that, if ¢ is small enough,

E phom (1) < Cre(l + t)%for all t € [0, T[. Moreover, for any |I;| + |I| £ N and
forall (t,x) € [0, T[xR3, we have
e(1+ t)%

/ R (US4
-
R} (I+t4+r)2(1+t—rDs

Proof. We use again the continuity method. There exists 0 < Ty < T such that
E phom () < Cre(l —i—_t)% for all t € [0, To[. Let us improve this estimate, if ¢ is
small enough and for C r chosen large enough. The proof follows closely Section 13.
According to the energy estimate of Proposition 8.1, the smallness of E hom (0) and
the bootstrap assumption on E znom, we have

Z1 phom [2Iif]‘ (t, x,v)dv <

& [ 30D ZI(FromZl £1) |(0) < Coe + Ce3 (1 +0)% + € (300 4 210,
where Cy is a constant independent of C F,

2 ! 2P Py A ~ 1
300 (z—g(ﬂ’wi”))/o / /R ST @1 |21 Pzt 1| v axdr,

t
Zli =// / R (USR]
0 Jz. JR}

Using [T, (z)| < Y2 4 YEIWLEE (gee (13.8)) and (3.35), we can bound 37/ by

~ ~ 1
T, (2 Fm (2" £1) | av o] dxdr.

= l+t+r 1+[t—r|
11 20 7P L Py~
, Eg’ﬁ[z“i(’ +1, )ZIthm[Z]i f]](r)
JE/() o dr + EER [ 30021 prom[Z0 £ o),

Then, Definition (14.1) of E ghom and the bootstrap assumption on it lead to
4 E om
3[,11‘ S\/E/‘ TT(T)dT—i‘«/EEFhom(t)gS%(l"‘t)%.
0 T

The integral Z%-% can be bounded similarly using Corollary 14.6 instead of (13.8).
We then deduce_from (14.1) and the last estimates that there exists a constant Cy
independent of C r such that

]EFhom(t) _EOE 5 8%(1 + t)%’
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which improves the bootstrap assumption if ¢ is small enough and C r chosen large
enough. This implies that 7o = T. The pointwise decay estimates can then be
obtained from the Klainerman—Sobolev inequality of Proposition 3.15 and the fact
that E gnom controls up to three derivatives of 23U HID) 71 phom [Z" ], for
any [I|+ || S N. O

14.2. The Inhomogeneous System

To derive an L2-estimate on F™' we cannot commute the transport equation
because B contains top order derivatives of /'. We then need to rewrite the deriva-
tives of ™M, kept in the matrix A in order to use the full null structure of the system,
in terms of quantities that we can control. To this end, we will use the following
result:

Lemma 14.8. Leti € [1, |M|] such that |I;| < N — 1 and 0 < p < 3. Then,
0 F™ (20 | = F [0 20 £ ]+ FYm [0 20 £ | = b PPom [ 20 1]

Moreover,

3

o [T 141t —r]
LthI:ZII :H<
‘ = 1+t+r§)

1 o Taa —~— ~ ~
+ Z ‘th [Zzl,f]’ 4 ’Fhom I:ZZI,f:H + )ZFhom [Zl,fjH .
1
T

Finh I:axl 21,- f:|‘+‘Fh()m I:ax’\ 21,' f:l""_’ax" Fh()m [21, f:”

For the v derivatives, it holds that

Finh I:ax’\ 21,- f:| ‘ + ‘ Fhrlm [3}(}\ 2],- f:| ‘ + ‘ B.M Fh(}m |:2I,- f] ‘

'(vmnh [f’ff])A’ < ﬁ i

A=0

1
2

ZePy

i [221,. f]} i ‘Fhom[’z\’z\li f]’ n lthom [2u f” ,

(ORI (R0 w I O ey e el

1
+mz

26@0

Finhl:z/z\l,- fi” + ‘Fhvml:’z\zl, f:” + lehaml:Z\li f:” .

Proof. Recall that F' = F h‘i“ + F i“hAaEd note that for any 7€ @0 and N -5 <
|I;| £ N —1,wehave ZF[Z!i f1 = ZZ! f = F[ZZ"i f]. Consequently,

ZFh (20| = P[220 ]+ prem [ 220 | - ZFm (20 7] 143)

This directly implies the first identity of the lemma. For the second one, combine
(14.3) with (3.34). Finally, for the last two ones, combine (14.3) with Lemma 3.9.
]
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In order to rewrite the transport equation satisfied by F'"™", we will then need to
consider a larger vector valued field than W. Moreover, in order to take advantage
of the hierarchies that we identified in the commuted Vlasov equation, we will work
with a slightly different quantity than Fimh,

Definition 14.9. Let F!" be the vector valued field of length |[M| defined by
inh 2(N—1P) pinh [ 5
Fith i 30D pk [0 7],
We define Y as a the vector valued field of length [y containing the following
quantities:

o All z%(N_KP)fo satisfying |[K| £ N — 5. In other words, z%(N_KkP)Wk for
all k € [1, [Mxol]-

2 P Py~ -~
o 3NN ZE phom (71 £] for all 1] + |1;] £ N.
We are now ready to prove the following two results:

Lemma 14.10. There exist two matrix-valued functions A [0, T[xR} x R} —
M (R), B : [0, T[X]R)% X R?j — Mmy,1y (R) such that

To(FI"™)y +A-Fi"h =B .y.

Moreover, A and B are such that, ifi € [1, M][], TF(FZiﬁh) can be bounded by a
linear combination of terms of the form

( Vel " Velwe|

inh < T,
T4+1+r 1+|t—r|>|Fz~j|’ ;1 = il

and, where |Q| + |M| + |J| < |I;| (the value of the multi-index K is irrelevant
here),
R Tt T UL e ) B
(=

2 X

4<j<11 1454517

K J.K J.K J.K 0.J.K | o). K | 5O JK | Q.M. J.K
LootBys +By 4 +By s BT A HALTT H A )|Y|-

Proof. Fix i € [1,|M|] and note that, since Tg(FI"™") + A - Fi'h = B . W,

T (Fith) = 3WIDTIT () Pt [ 20 £ | — Al 31D pinn [ 200 ] 4 g2 3Ny,

Since |73 (V=17 pish [ Z1i £]) = |Fith| < |Fi™|, we obtain using (13.8) that

inh| Na Velw| inh
LE B + [
1+t+r 14t —r|

Z%(Nfl,_f’)fng(Z)Finh [?ff]‘ < ‘Tg(z)
z

2 P . . o .
One can bound Bf 23 V=1 Wy by applying directly Proposition 5.14 since, accord-
ing to Lemma 14.2, Bf Wy is a combination of error terms arising from [Ty, zZh.
We can then control it by a linear combination of the error terms
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FEK L @ILK LK L GIK L GLK L §IK L GOMEK  §OMKY IN-1F) 5
(‘B;(.OJF%LI +B 7y A A AT AT AT >Z3(N NZw.

J,K J,K J,K JK J,K JK MK\ _2(N—IF
> (%foﬁ%m +B7F+ B E B Kl Kl K )23(N ww,l,
45jS11
14<¢<17

where |[Kg| < N — 6, KP < 1P 1Q|+ M| +1J] £ |I;| and Z € Pop. As

|K4| < N — 6, there exist, forany 0 < A < 3, (p, sp) € [1, Iy]? such that
2 A 2 -~
Y, =3NKIDZZKepy, = 3WNKD g 7K f,
This implies, since K (f < II.P , that

3
Z(N=IPy |5 2 2(N—IP
SNINZW,| S 251Y,1 13V IVW <1,

A=0

and the term B - W can then be rewritten in order to be included in the product
B-Y.

Let us now focus on the terms A?z%(N —1f) pinh [Z' £], which are fully
described by Lemma 14.2. Similar to the way we estimated the terms listed in
Proposition 5.10 during the proof of Proposition 5.14, but using now Lemma 14.8
instead of (3.32), (3.33) and (3.34), these can be estimated by the terms written
below. The multi-indices /;, O, M and J will satisfy

1P <rr

;S 101+ IMI+ T+ = ],

so that
Q|+ M|+ |JISN—-(N—=5<5<N-5,

and we will have Z € Py, 0 < A < 3. Moreover, for convenience we define
I
201y »= 0 when IJP = I/ These terms are

Qinh . — Z Qi .Z%W*Iip) }Fi“h [Zflff]}, I;’ < I,.P or JT >1,

li.q
15953
[hom . _ Z ﬁjlql 3 N=IP) (‘Fhom [ffljf]) " )thom [f’f‘ j”)
15¢<3
Qinh . Z m;’}; 3= lth [akfzj f” I_f’ <If or JT 21,
45psll
ginh . Z Q[IQV{II .Zguv_,f) ‘Finh[al\’z*ljf]" IjP - IiP or 0T +J7 > 1,
14<n<17
Qhom 4 ghom . _ ( Z 2[2’,2+ng:,f’l'f>z%w71f> (‘Fhom [iﬁ?[" f]‘Jr‘aAFhom [2@- f”)
4<p=1l
14<n<17

and
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FRinh . =( ! 0+%I Ij+%l 4 JrQlIQ ]JZI, +QLQJI )23(N s Fhom[Z/Z\I,f]‘,

gainh . :( / 00+%11/+%11/ +%11/ + B2 JI/+Q[QM]I ) z [BAT#-] i

Gihom ._ ( Po+ By 4By L AZLY +Q(Q-J<I,)Zj(1vf1,") (’phom[?iff f]‘ + ‘/Z\Fhom[/z\ljf]‘)‘
R = (B 0+ B 5 +B7 L + B+ B ) )N (|prem [, 20 1]

(2]

Since |7;| = |I;|—1, there exists, forany 0 < A < 3, (p1, p2, qx.1,92.2) € [1, Iy]*
such that

I(N-IP - S51 2N_IP )~ —~
Yy, = L3N l)Fhoml:ZZI/fiI’ Yy, = L= ”ZFhOm[Z’ff],
2 P —~ 5 P R
Y1 = Zj(N_Ij 'phom [a)»zljf:l > Yg,= Zj(N_If )3AFhom[Z1-/ f] .

As 1} < I, we obtain that Qbom 4 jjhom can be bounded by
~ ~ ~ ~ ~ =7 ~ 2
(BEo+ B+ B S+ A S+ A AR ALY ) 22y + 17D
and Qhom + ehom + mhom by

> (%f00+% Krml K ol +mQ’K+2t,?3’§’”’K>(|Y1,.A,,|+|Ym_2|).
0513 35nss

4<i<i

14<¢<17

This concludes the construction of the matrix B. In order to deal with the remaining
terms, note first that since |I;| < |I;| — 1, there exists k,k;, € [1, [M[] such that

. 2 P . PN : 2 P . -~
Finh — L3N 71)th[zzlj f] ’ F;“;ll — 3N )th[akzlj f] _

Consequently, we have

i1r <1f, 0 )(th[ ]‘+th[3 Z’ff])) < F 43| F
(14.4)
iijP _ IiP’ Z3(N 1P)(F1nh[ ]‘_’_th[a lef])) < a +t+r)3| 1nh| + | z1n]£1/~l
(14.5)

Recall that %] 0 SVEd 4142 and %1 00 S Vel +1+7r)7! Using that
1 ]P < Il.P and Proposition 13.12, we then get

mmh+mmh<< ol ﬁ'w”r') PR+ ) IFR

_ 2,k
14+t+4+7r 14t 05r<3
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If jP < I, we obtain from Proposition 13.13 and (14.4) that

Sinh inh inh Velvl Velwe| inh inh
R AaTe §<1+t+r+1+|t—r| |FZ"‘|+O<AX;3|FZ"‘*|

(14.6)

Finally, if 1 J‘.D = I, then we have J7 = 1in the terms Qinh and QI (recall that in

that case Ql;lll’l =0)aswellas J© + QT > 1 in the term ¢i"P, Proposition 13.13
and (14.5) then also yield to the estimat3(14.6). Since |Ix| = |Ix,| < |I;], this
concludes the construction of the matrix A and then the proof. O

Lemma 14.11. There exists a matrix valuedﬁeldﬁ . [0, T[xRi X Ri — My, (R)

such that Tg(Y) = D - Y and

NG + Velwe| >|Y|.

Viellly], |Tg(Yi)‘§<1+t+r 14+t —r|

Proof. Let i € [1,ly] and recall that either ¥; = z%(N_KP)fo or Y; =
SW=IT=IDZ1 phom[Z1; £ \where 1] + |I;| < N. Using (13.8), we obtain

Vel el SN (ZK )| or
+ [Yil + Z(N—IP_IP 2 71
T+i4r  141]—r] 23 DTy (Z! From(Z1 f1)].

T, (YD S (

Then, Z%(N—IP—IiP)|Tg(ZIFh°m[2Ii f1)| can be bounded by applying Corol-

lary 14.6. For 23V =K")|T,(ZK f)], the result ensues from the fact that Ty (ZX f)
can be bounded by a linear combination of terms of the form

( NG LRGN ) 1

Z51f], kP <KP 41,

L+r+r  1+lt—rl) 3

el EwLl ) zee | kF < k",
T+r4r  1+t—r| =
Vel + Jelwe| Z% 2K3f ’ K3P - kP
l4+t+r 14|t —r|

This can be obtained from Proposition 5.14 exactly as we obtained Corollary 14.6
from Lemma 14.5 since Ty (2 Ky ) only contains derivatives of ! of order at most
|K| £ N —5.1In other word, we combine Proposition 5.14 with Propositions 13.12
and 13.13 . O

Consider now K satisfying T, (K) +A-K+K-D=BandK(0, -, -) = 0. Hence,
K.Y= in“h since they both initially vanish and T, (KY) + AKY = BY. Recall
that the Vlasov field and 4! have a bad behavior at top order. In order to derive
better estimates on F Zmlh for |I;| < N, we define the following subset of M,

My :={IeM/[I[SN -1}
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and we assume for simplicity that the ordering on M is such that My_; =

{11, ... Imy_;|}- The goal now is to control the energies
My—1l Iy Iy 2 M| Iy Iy
N-1 i .
B = Y 23w [k x| Bl = 3 S m [/ n .
i=0 j=0g=0 i=0 j=04g=0

We will then be naturally led to use that

7r (IK/1PY,) = 1K/ PDyY, =2 (A7 Kj) + K/ D)) K'Y, + 2B/ K] Y,. (147)

Remark 14.12. Lemma 14.10 gives us the following:
o Ifi € [1, [My_1l], then Zf) = 0forall p > [My_1|, thatis forall [I,] = N

Consequently, in that case, the only components K] appearing in the term
Zf’Kﬁ satisfy 1 < s < [My—1].

o Ifi € 1, [My_1]], then E{ contains only derivatives of 4! up to order |I;| <
N —1.

Proposition 14.13. If ¢ is small enough, we have

Vielo,T[, EY, 1(I)§8(1+I)% and EY (t)§8(1+t)1+%5.

Finh Finh

Proof. Let Tp € [0, T'[ the largest time such that EYN Finh (t) e(1 + t)% and

th () Sel+ t)H'Z‘S for all t € [0, To[. By continuity, Ty > 0. The remaining
of the proof consists in improving these bootstrap assumptions, which would imply
the result. For convenience, we will sometime denote M by My . Fixn € {N—1, N}
and consider i € [1, [M,|] and (j, ¢) € [1, ly]*. According to the energy estimate
of Proposition 8.1, K (0, -, -) = 0 and (14.7), we have

g Kf} A

E
§§[|K’| Y,] (t)<ff dr + ;5 + 13
<¢g/ L()drﬂ,fﬂ,
~ 0 ]_'_1, A,D B>

where

o[ [ L.
B—// J;

Using Lemmas 14.10-14.11 and Remark 14.12 (for the case n = N — 1), we obtain

. . . 1
K/ PDyY, —2 (A7 K} + K/ D)) K/¥, | dvoo ] dxde,
8

1
B/ K 'y, ‘dva)?dxdt
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IM] [M, |
Vel Velwe| i2 2 12 1

77<§ E K/ K’ ‘K]‘ Y|dvew? dxd

AD ~ // _/]Rz(l-i-l-i-r L+t —r] KT+ [KE P[] ) 1Yidveydade

r=1 p=1

ff Frum (@ )d T 4 EEL (1),

The bootstrap assumptions on E%;hl and El}]inh then give us

AD"‘\/_/

B (@) 31403, ifn=N-—1,
1+ e2(14+0"38, ifn=N

We now focus on Iz. Recall from Lemma 13.11 the definition of ’FZ and ‘H and

from Lemma 14.10 the form of Bij . By the Cauchy—Schwarz inequality in (7, x),
I can be bounded by the terms

t = . 1
I :=// / (3B o+ BE ) [K/ ¥ |dve} dxdr,
0 Jxz, JR3 v v 8

=

)
i

1
w¥dxdr|
8

t .
Ao [ [ aseen| [ I/ v
0J%,; R3

v

! . 1
I:= H./ (l—l—r—i—r)/ 2|k |IY|vldy| ofdxdT| |
0 Jz, R} 8

v

where the multi-indices J, M, Q, J, M and a, which are hidden in 7 and H,
satisfy?>

IS Sn, Q1+ IM[Sn, QI+ M|+]J]|<n.
Now, recall from Proposition 13.14 that

~ & ifn=N-1,
<
HAHS {e(1+t)1+5, ifn=N

To deal with the second factor of 1 andf, we follow the computations made dur-
ing the proof of Lemma 13.7. Recall first that for any k € [1,[,], there exists

K| £ N—5or|I|+|I;| £ N such that ¥, = z3V-KIZKf or v =
2 Py~ -~
Zg(N#P*[-/ )ZIFhom[Zlf f1. Hence, using (9.10) and Proposition 14.7, we have

25 As in the statement of Lemma 14.10, the multi-index K has no meaning here.
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¥ (7, x) € [0, T[xR3,
8
1 2
/ lvlz*Y|(z, x, v)dv S #0+7) —. (14.3)
R3 (I+7+r20 4+t —r)8

Using the Cauchy—Schwarz inequality in v, we then obtain, as i < |M,,|, that

2
t .
//(1+r+r)f 2|k} 1Y [ |vldv
0 J%, R3
t . 1
5// (1+T+r)/ z4|Y||v|dv/ \K{|2|Y||u|de§dxdr
0Jx, R3 R} 8

e i §
S| — |K! 7Y ]|v]dve} dxde
0 14+ 2/=Jr} 8

_ ft e Bl (T) - {82(1 +1)8, ifn=N—1,
0 (1+0)-8 T LA+ ifn =N

1
w¥dxdr
8

As z% < 72, we obtain that I +1 < 83(1 + t)% ifn = N—1landI+1 <
8%(1 + t)H'g‘S ifn = N. Finally, since 1 + |t — r| < z (see Lemma 3.7) and

, 0 S < Vel (I +t+r)72, , 00 S < Jelv|(14+1+7r)"!, we get, by the Cauchy—
Schwarz inequality in x, that
>
I

2
/ 2|k [1Y||vldv
]R3

"o Vo T2+ —r)? : ; '
Since
T e(l+ |t —r|)%r2dr oo dr
3 7S¢ — 3
r=0 (I+74+r)+|t—r)) r=0 (14|t —r])?

/ 2|K][1Y|lvldv
]R3

v

2
1 . 1
— 2 S
/ w§dx§/ / z4|Y||v|dvf |K/ 1Y [|v]dve! dx,
bl g =, JR3 R3 H

we obtain from the pointwise decay estimate on f ; z*|Y||v|dv and the bootstrap
assumption on 7, that
! 1
s [ L ol
0 (1+1) "4

e2(140?2, ifn=N—1,
e2(14+0", ifn=nN

We then deduce that Iz < g%(l + z)% ifi £ |M,|and Iz < 8%(1 + t)1+%8
otherwise, so that
M| Iy Iy
mh(t) - Z ZZEg S[IKJ

i=0 j=0¢=0

e2(1402, ifn=N-—1,
(OISR 1435
e2(1+0)1T2°, ifn=N

If ¢ is small enough, this improves the bootstrap assumptions on Egmhl and Eﬁmh

O
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14.3. The L*-Estimates
We start by estimating the L?-norm of fR3 zlf K fldv.
Lemma 14.14. For any |I| < N, it holds, for all t € [0, T, that

21+~ fII| SN -1,

2
1
— 71 8 <
K:= /Et(1+t+r) /Rgaz (H)lvldv wgdx~{82(1+z)25, I = N

Proof. Assume first that || < N —4. Then, using the Cauchy—Schwarz inequality
in v and then the pointwise decay estimate (9.10) as well as the bootstrap assumption

(9.2), we get
/ f A (f)llvldegdx
EY_ [£10) <

L®(%) (1+t)1—5

(l+t+r)/ 21Z1(H)lvldv
R}

Loe(%)

< He(l i3

Otherwise |I| =2 N — 3 and there exists i € M such that
215y =28 f = F 2" p] = From [20 ]+ P 20 7]

We deduce that & < KPom 4 KCinhwhere, using Proposition 14.7,

2
~ 1
Jchom ::f (1+t+r)f z‘Fhom[ZIif}‘|v|dv wfdx
= R} 8
(1+t+r)/ ‘FhOm[Z[ ‘|v|dv / / phom z’ ‘lvldv(o dx
Loco:) z, JR3
<lea+r+mn1+s E prom (1) $ —————
NH ( + +I’) Lo(3) Fh ()N(1+t)175

and
2 1
/ z ‘Fi“h [2”']‘” [v|dv| w¥dx.
R3 §
Recall Definition 14.9 and that K - Y = anh. Hence,
] < o ) = |

Using first the Cauchy—Schwarz inequality in v and then the pointwise decay esti-
mate (14.8), I; = I as well as Proposition 14.13, we obtain

.12 1
ff ’Kf) 1Y Plvldved dx
Loz B R :

B! () < {82(1+t)1+3, if 1] <N —1,

b :=/ (I+1+7)
D

ICinh <

A+t +r)/ 22|Y||v|dv
R}

< Hg(1+r+r)—1+%

Loo(%) E pion e(1+10)%, if|I|=N
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We are now able to prove the following result:

Proposition 14.15. The energy momentum tensor T| f] of the particle density sat-
isfies the following estimates. For all t € [0, T[ and for any |I| < N,

/ (1+1+7r)
P

t
/0 j (1+r+r)‘£IZ(T[f])’ W2 dxde S E(1+ 0", if ) =

l (T[f])] Y axdr S (1400, I EN -1,

t 2
/ (l+r+r)‘£’Z(T[f])‘ wzyydxdt<e
0 Jx,

Proof. According to Proposition 6.3 and Lemma 3.7, giving |wr| < 7 + ; +r for any
TeTanlelHt |,wehave
1+ L] ~
AT ES = 22K f i, 149
| s Y T ]2 i (14.9)
[JI+HIKISI
chai| < Y e n Wy
z TU ™ l+i4+r 1+t—r|) Jgs '
[JI+IKIS| v
(14.10)

We are then led to bound the following three integrals, where |J| + |K| < |1,

2
1+t+r SK 242y
Z ‘ d dxdr,
// (I /R%,Z‘ fllvldv| wy " dxdr
I4+7+ ?
// trr / ‘ZKf‘h)ldv a)2+ydxdt
s, (1+7+7)?
2
5ah[’

242
a)0+ Y dx dr.

J3.=/ (I+7t+7r)
0 Jz,

/ z ‘2Kf‘ lv|dv
R}

Applying Lemma 14.14, we have, since 2y < %, that

2
A@Zl?l(ﬂ |v|dv

1+y 1
< 1 8 l
Using (1+T+r) 3 a)% and then y + 26 < g,

(14741877
2
/ z ‘ZKf’ |vldv
R}

I+t —rDh?

e2(1+0)%  if|K| <N,

t
<
Jl,\,/ov z:r(l'i"’:'i'r) 82(1+l‘)1+25, lf|K|:

1
b dxdr < {
8

t 1 1
J2§/ ——— [ U+7t+7r) w¥dxdr
0 (1+T)§_y X 3

t 2
s[5 se
0 (I+7)s7 72
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For 73, assume first that |J| < N — 3. Using the pointwise decay estimates of
Proposition 10.1 and then Lemma 14.14, we obtain

2
242
w0+ Y dx dr,

! & ~
735// 4747 - /z‘z"f’wmv
0J%, A+t+r> B+t —r)? |/R3
2
! £ = togddr
S s | A4y /z‘ZK ’vdv wodxdr§/7<g3.

(1 + .[)2—46 ~
Otherwise |J| =2 N — 2 and we necessarily have | K| < N —4. Then, using succes-
sively the pointwise decay estimates (9.10), the Hardy inequality of Lemma 3.11
and the bootstrap assumption (9.5), we obtain

t EJ hl 2
VLS 82] / £z wé+2ydxdr,
0 Jz: (1
t 2

F T3+ | — P

<L e B
xXat
~Jo A+ Je 14T+ L+t —r))?

t 2 J 142 122 &V242y 1
<[ [ EOE g < [ EETIO s
o (I1+1)~ L 1+t +r 0 (1 4+ 1)~

The proof follows from (14.9) and (14.10) and the estimates obtained on 71, J>
and J3. 0O
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