THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Systems biology of yeast metabolism

- Understanding metabolism through proteomics and constraint-based modeling

Carl Malina

Department of Biology and Biological Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021



Systems biology of yeast metabolism

- Understanding metabolism through proteomics and constraint-based modeling

CARL MALINA
ISBN 978-91-7905-520-2

© CARL MALINA, 2021.

Doktorsavhandlingar vid Chalmers tekniska hogskola
Ny serie nr 4987
ISSN 0346-718X

Department of Biology and Biological Engineering
Chalmers University of Technology

SE-412 96 Gothenburg

Sweden

Telephone + 46 (0)31-772 1000

Cover: The systems biology workflow used for studying metabolism

Printed by Chalmers Reproservice Gothenburg, Sweden 2021

i



Systems biology of yeast metabolism

- Understanding metabolism through proteomics and constraint-based modeling

Carl Malina
Department of Biology and Biological Engineering
Chalmers University of Technology

Abstract

Metabolism is the set of all chemical reactions that occur inside of cells. By providing all
the building blocks that are required for sustaining a cellular state and cell proliferation,
metabolism is at the core of cellular function. Therefore, in order to understand cellular
function it is important to understand cellular metabolism. The cellular metabolic network
comprises thousands of reactions even in the simplest of organisms. Due to the high com-
plexity, a holistic approach is required to study and understand the interactions between

different parts of metabolism giving rise to cellular phenotypes.

In this thesis, a systems biology approach to studying metabolism in yeast, mainly with
a focus on Saccharomyces cerevisiae (baker’s yeast), was used. This approach consisted of
combining proteomic analysis with constraint-based modeling to gain insights into different
aspects of metabolism. First, the role of mitochondria in cellular metabolism throughout
diauxic growth was evaluated, showing that mitochondria balance their role as a biosynthetic
hub and center for energy generation depending on the mode of cellular metabolism. Next,
the construction of a model of mitochondrial metabolism describing the essential mitochon-
drial processes of protein import and cofactor metabolism as well as the proton motive force
driving the generation of free energy (in the form of ATP) is described and evaluated. The
model was used to investigate the dynamics in mitochondrial metabolism and the require-

ment of these processes.

Second, the constraints on cellular metabolism arising from finite protein resources was
investigated in two studies. The first study evaluated the effect of amino acid supplementation
on the physiology and allocation of protein resources. This study showed that as the burden
of producing amino acids is relieved, the cells can allocate more protein to the translation,
which allows the cells to grow faster. In the second study, a quantitative comparison of four
yeast species was performed to evaluate the underlying causes of overflow metabolism, which
is the seemingly wasteful strategy of using aerobic fermentation instead of the more efficient
respiratory pathway for glucose utilization. We showed that overflow metabolism in yeast is
linked to adaptations in metabolism and protein translation. This phenomenon is seen in
cells ranging from bacteria to yeast and cancer cells, and the insights provided in our study
could therefore be valuable in understanding the metabolism not only in yeast but in more

complex systems.

Keywords: Systems biology, yeast, metabolism, proteomics, constraint-based modeling
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Systembiologi av metabolismen i jast

- Undersokning av metabolismen genom proteomik och villkorsbaserad modellering

Carl Malina
Institutionen for Biologi och Bioteknik
Chalmers Tekniska Hogskola

Sammanfattning

Metabolism dr samlingen av alla kemiska reaktioner som &ger rum i celler. Genom att forse
cellen med de byggstenar som behdvs for att uppréatthalla ett cellulért tillstand samt tillvaxt
av cellen dr metabolismen en central cellulér funktion. For att forsta hur celler fungerar ar det
darfor viktigt att forstd metabolismen. Det metaboliska nétverket i celler innefattar tusentals
reaktioner, dven i de allra simplaste av organismer. Givet den héga komplexiteten behdvs
ett holistiskt tillvigagangssitt for att forsta hur olika delar av metabolismen &r kopplade till

olika cellulara fenotyper.

I denna avhandling anvindes ett systembiologiskt tillvigagangssatt for att studera metabolis-
men i jast, med ett fokus pa Saccharomyces cerevisiae (bagerijast). Detta innefattade en
kombination av proteomikanalys och simuleringar med villkorsbaserade modeller med syfte
att ge en inblick i olika aspekter av metabolismen. Forst utviarderades rollen av mitokon-
drier under de tillvixtfaser som intraffar vid odling av jést, vilket visade att mitokondrier
balanserar sin roll som biosyntetiska hubbar och center fér generering av energi beroende pa
cellens metaboliska tillstand. Déarefter beskrivs konstruerandet och utvarderingen av en mod-
ell 6ver mitokondrien, innefattande en beskrivning av mitokondriell proteinimport, syntes av
cofaktorer samt den protontranslokerande kraft som driver genereringen av fri energi (i form
av ATP). Modellen anvéndes till att studera dynamiken i den mitokondriella metabolismen

samt behovet av ovanstaende processer.

Sedan utvérderades de restriktioner som verkar pa den celluldra metabolismen, med ursprung
i cellens begransade proteinresurser, i tva studier. Den forsta studien utvirderade effekten av
att tillsdtta aminosyror pa fysiologin och allokeringen av proteinresurser. Studien visade att
nér bérdan som utgors av att syntetisera aminosyror minskas, kan cellen omférdela protein till
tillverkningen av nya protein, vilket leder till att cellen kan véxa snabbare. I den andra studien
utfordes en kvantitativ jamforelse mellan fyra jastarter for att utvéardera de underliggande
orsakerna till att celler anvander en till synes slosaktig aerob fermentering istéllet for den mer
effektiva respirationen for att bryta ner glukos. Vi pavisade att denna metaboliska strategi ar
kopplad till adapteringar i metabolismen och proteinsyntesen. Existensen av detta fenomen
stricker sig fran bakterier till jast och cancerceller, och insikterna fran denna studie kan

dérfor appliceras inte bara i jast utan dven i mer komplexa system.

Nyckelord: Systembiologi, jdst, metabolism, proteomik, villkorsbaserad modellering
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Background

Biology is the study of life and "what is life?", as posed by Schrodinger [1], has been a
fundamental question for biologists to tackle. The fundamental unit of life is the cell. Within
cells, the genetic material encoding all the components required for cell proliferation is stored
in the genome. The flow of genetic information in cells is described by the central dogma
of molecular biology. In its modern interpretation, it describes the transcription of DNA
into RNA and the translation of RNA into protein Figure 1A. Proteins are diverse in
their functions, ranging from structural proteins to transporters and metabolic enzymes,
which catalyze the reactions converting nutrients into cellular building blocks. For a cell
to function, the above mentioned processes need to be precisely regulated and organized.
Following the genomics revolution and the development of high-throughput technologies
for studying biological macromolecules, we are now able to study the entire set of genes
(genome), transcripts (transcriptome), proteins (proteome) and metabolites (metabolome) as
illustrated in Figure 1B, allowing the generation of large amounts of biological data [2]. To
understand the behavior of cells, there is a need for understanding the complex interactions
between these different layers, requiring a shift from studying individual constituents to

studying living organism as a system of its components and their interactions.
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Figure 1 The central dogma of biology in the omics era. (A) The central dogma of molecular biology describing
the flow of information from DNA to RNA to protein. (B) The development of high-throughput techniques has led
to an evolution of new ways to study the central dogma. Current techniques for omics analysis not only allow for
studying the entirety of molecules involved in each layer but also for studying the interaction between layers.



1.1 Systems biology

Systems biology is an interdisciplinary field that lies at the intersection of biology, engineering,
mathematics and computer science. It emerged to meet the growing need of a systematic
framework for analyzing and integrating the increasing amount of biological data being gen-
erated in the post-genomics era [3-5]. The field aims to build, quantify, and understand
the complex networks that form living organisms using a holistic approach comprised of
a combination of computational and mathematical models with large scale experimental
data. There is in principle two complementary approaches in systems biology [6]. Top-down
systems biology involves the integrative analysis of omics data to gain insight into the cel-
lular functions [7]. In many cases, there is not a specific hypothesis when using a top-down
approach, but often hypotheses are generated and tested against the data as the analysis
proceeds, making top-down systems biology an inductive scientific approach [8|. Typical
top-down systems biology approaches involve iterative cycles starting with the generation
of large datasets, such as proteomics and/or transcriptomic data, that are analyzed to find
correlations between the components of the system [6]. The cycle ends with the generation of
hypotheses that can predict new correlation, which can be further evaluated in a new round
of experiments. Top-down systems biology studies often rely on the use of different models
at various stages of the analysis. The models used in top-down systems biology are phe-
nomenological, meaning that they rely more on data and require less mechanistic knowledge
than those used in bottom-up approaches [6]. As such, top-down systems biology is useful in
mapping cellular functions at the genome-scale, identifying previously uncharacterized inter-
actions between the components of the system, and for generating hypotheses that can drive
future studies. Bottom-up systems biology involves the formulation of mechanistic models
for specific processes or pathways based on a detailed description of its constituents and the
idea that system behavior emerges from the interactions of these constituents, as exemplified
by a kinetic model of yeast glycolysis [9]. The ultimate goal of bottom-up systems biology
is to combine these individual models into a holistic model describing the function of the
system as a whole [6]. A main challenge in the construction of models in bottom-up systems
biology is the requirement of high-quality data on the properties of the system components,
such as kinetic and physiochemical properties of enzymes, which to a large extent depends
on in vitro studies of individual enzymes and, when such data is unavailable, on parameter

estimation.

The common feature of the two approaches is that they can both be used to elucidate
the interplay between the components of the system that underlie the emergent properties
that give rise to the cellular functions of a biological system, which is not possible using a
reductionist molecular biology approach [7]. In the work included in this thesis, I made use of
both the top-down and bottom-up approaches to gain insight into different aspects of cellular
phenotypes and overall physiology. This includes using proteomic- and lipidomic data to
study the role of mitochondria in cellular function during the course of a batch cultivation
(Paper II). In Paper III, I used a bottom-up approach involving the reconstruction of a

model of the two essential processes of mitochondrial protein import and iron-sulfur cluster
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biogenesis, that I then used to investigate the energetics and dynamics of the processes.
Finally, an approach combining integrative analysis of proteomic data and model simulations
was used to understand the behavioral changes of yeast grown in rich and minimal media
(Paper IV) as well as to investigate the underlying mechanisms of the Crabtree effect by

comparing four different yeasts (Paper V).

1.2 Saccharomyces cerevisiae (and some of its relatives)

Saccharomyces cerevisae, commonly known as baker’s yeast, has been employed by humans
for baking and brewing for thousands of years. The close connection to human activities was
a contributing factor to the extensive research on yeast genetics and physiology that has been
ongoing for the last century and a half, making S. cerevisiae perhaps the most well-studied
eukaryal organism. It is widely used as a model organism for studying eukaryal cell physiology
and molecular events, including human disease [10]. The importance of the yeast as a model
organism is further highlighted by the fact that it was the first organism for which a complete
chromosome was sequenced [11] and the first eukaryal organism with a complete genome
sequence available [12]. There are several factors that make the yeast an attractive model
organism. First, S. cerevisiae is a unicellular fast-growing microorganism that can easily
be cultivated in a simple and inexpensive media, allowing the cultivation under controlled
conditions that allow for a high reproducibility. Second, there is a large and well-curated
research infrastructure available, such as the Saccharomyces Genome Database (SGD) [13].
Third, a large number of high-throughput technologies are available which has resulted in
the generation of a vast amount of biological data, including transcriptomic, proteomic and
metabolomic data. Furthermore, although yeast is a relatively simple organism, many cellular
processes are conserved in higher eukaryal organisms, and a large fraction of S. cerevisiae
genes have human orthologues. Lastly, yeast is amenable to genetic manipulation enabling
the deletion, insertion, or manipulation of any sequence in its genome and a complete single
gene deletion collection is available [14]. The relative ease by which the S. cerevisiae genome
can be manipulated has contributed to the extensive use of the yeast as a cell factory for

producing pharmaceuticals, chemicals and biofuels [15, 16].

While much attention has been focused on S. cerevisiae, other yeasts have also come to play
important roles in research and biotechnological applications. Since most of the work carried
out in this thesis was performed using S. cerevisiae, unless otherwise stated yeast will be
referring to this species and the other three yeasts used, namely Schizosaccharomyces pombe,
Kluyveromyces marxzianus and Scheffersomyces stipitis, will only be described briefly here. S.
pombe is a fission yeast that diverged from the S. cerevisiae lineage more than 300 million
years ago. Like baker’s yeast, it was one of the early eukaryal organisms to have its complete
genome sequenced [17]|. Being a fission yeast, its cell division more closely resembles that
of human cells than does S. cerevisiae’s, it is another commonly used model organism for
studying eukaryal cells, especially for studies on the genetics of the cell cycle [18|. Although
different in many aspects, the metabolism of the two yeasts, which is the main focus of this

thesis, is very similar and they both experience aerobic fermentation. K. marzianus is a

3



dairy yeast that has emerged as an attractive alternative for industrial applications due to a
number of favorable characteristics [19]. It has a high thermotolerance, a very high maximum
specific growth rate and can assimilate sugars, such as xylose and lactose, which S. cerevisiae
is unable to utilize. K. marzianus is Crabtree-negative but does exhibit respiro-fermentative
growth in response to limitations in oxygen availability. Finally, S. stipitis, like K. marzianus,
is Crabtree-negative and only ferments under conditions of limited oxygen availability. The
yeast is most known for its ability to efficiently utilize pentose sugars [20]. The specifics of

overflow metabolism and the Crabtree effect will be discussed in section 1.3.

1.3 Metabolism

Every organism relies on the ability to take up and utilize nutrients from its surroundings to
generate energy and building blocks required for cell growth. Metabolism consists of thousands
of reactions interconverting chemical compounds, referred to as metabolites, some of which
are biomass precursors and some that are secreted as by-products. Metabolic reactions are
commonly grouped into metabolic pathways containing series of linked reactions. Although
some reactions can occur spontaneously, most reactions require the catalysis by enzymes, a
specific class of proteins dedicated to accelerating the rate of reactions to proceed at rates

high enough to sustain growth. A simplified overview of metabolism is illustrated in Figure 2.
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Figure 2 A simplified representation of a metabolic network.

Metabolism is broadly categorized into the opposing processes of catabolism and anabolism
[7]. Catabolism involves all reactions responsible for breaking down carbon- and energy
sources into 12 precursor metabolites that are used in anabolic reactions to synthesize all
building blocks that are used to synthesize biomass precursors. These building blocks include
nucleotides, amino acids, monosacccharides and fatty acids that are polymerized into the main
constituents of biomass: DNA, RNA, proteins, carbohydrates and lipids. Catabolism further
involves the generation of free energy stored mainly in the form of adenosine triphosphate
(ATP), the main energy currency of the cell, as well as redox power stored in nicotineamide
adenine dinucleotide phosphate (NADPH) or nicotineamide adenine dinucleotide (NADH).
NADPH is mainly used in the biosynthesis of macromolecules. NADH is either re-oxidized by
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the conversion of precursor metabolites into by-products that are secreted from the cell or in

the respiratory chain resulting in the production of ATP through oxidative phosphorylation.

1.3.1 Central carbon and energy metabolism

Central carbon metabolism is the series of metabolic reactions required for the synthesis of
precursor metabolites, that form the basis of biomass, as well as the generation of energy
and redox power required for biomass production. It can be broadly divided into glycolysis,
the pentose phosphate pathway (PPP), the tricarboxylic acid (TCA) cycle and oxidative
phosphorylation. As an understanding of central carbon metabolism is important for the

research performed in this thesis, I will give a brief overview of the different pathways involved.

Glycolysis

Glycolysis is the set of reactions converting glucose, which is the preferred carbon source for
S. cerevisiae and many other organisms, into pyruvate [21]. It should be noted that other
sugars, such as fructose, can also enter glycolysis but for the purpose of the work in this
thesis, only glycolysis starting from glucose will be considered. Glycolysis can be divided
into two phases. The first phase, often referred to as the preparatory phase, involves the
investment of energy in the form of 2 molecules of ATP to convert glucose into two molecules
of the three-carbon sugar-phosphate glyceraldehyde-3-phosphate (GA3P). The first ATP
is invested in the phosphorylation of glucose to form glucose-6-phosphate (G6P), which is
catalyzed by either the hexokinases Hxk1l and Hxk2 or glucokinase Glk1. G6P is then further
isomerized to form fructose-6-phosphate (F6P), catalyzed by phosphoglucose isomerase Pgil.
In the following step, a molecule of ATP is invested in the phosphorylation of F6P to
form fructose-1,6-bisphosphate (F1,6bP), catalyzed by phosphofructokinases Pfkl and Pfk2.
Fructose bisphosphate aldolase Fbal then splits F1,6bP into GA3P and dihydroxyacetone
phosphate (DHAP), which can be converted to GA3P by triose phosphate isomerase Tpil.
The second stage of glycolysis, called the energy generation phase, starts with the conversion
of GA3P to 1,3-bisphosphoglycerate (1,3bPG) by glyceraldehyde-3-phosphate dehydrogenase
Tdh1, Thd2 or Tdh3, resulting in the generation of NADH. 1,3bPG is then converted into
3-phosphoglycerate (3PG) by phosphoglycerate kinase Pgkl, generating one molecule of ATP.
In the following two steps, 3PG in converted into 2-phosphoglycerate (2PG), which is in turn
converted into phosphoenolpyruvate (PEP), catalyzed by phosphoglycerate mutase Gpm1l
and phosphopyruvate hydratase Enol or Eno2, respectively. Finally, PEP is converted into
pyruvate by pyruvate kinase Cdcl9 (Pykl) or Pyk2, resulting in the synthesis of one ATP.
Overall, glycolysis results in the generation of two molecules of NADH and 2 molecules of

ATP per molecule of glucose.

Pentose phosphate pathway

The PPP generates reducing power in the form of NADPH, as well as precursors for nucleotide
and amino acid synthesis. In the PPP, G6P is converted to 6-phosphogluconolactone (6PGL),
catalyzed by G6P dehydrogenase Zwfl. 6PGL is converted into 6-phosphogluconate (6PG)
by 6-phosphogluconolactonase Sol3 or Sol4, and 6PG is in turn converted to ribulose-5-

5



phosphate (Ru5P) and carbon dioxide by 6-phosphogluconate dehydrogenase Gnd1 or Gnd2.
This initial part of the PPP is referred to as the oxidative branch and results in the generation
of 2 molecules of NADPH per molecule of G6P. The Ru5P generated is converted via Rkil,
Rpel, Tkll, TkI2, Tall and Nqml into the glycolytic intermediates GA3P and F6P or into
ribose-5-phosphate (R5P) or erythrose-4-phosphate (E4P), that serve as precursors for the

synthesis of for example aromatic amino acids and nucleotides.

TCA cycle

The TCA cycle is a series of reactions responsible for complete oxidation of acetyl-CoA to
release energy and redox power. During respiratory metabolism, it is the main pathway for
pyruvate utilization. In eukaryal cells, the TCA cycle takes place in the mitochondrial ma-
trix. Pyruvate produced in glycolysis is transported into mitochondria via the mitochondrial
pyruvate carrier (MPC). It is then converted into acetyl-CoA by the pyruvate dehydrogenase
(PDH) complex, consisting of subunits Pdal, Pdbl, Pdx1, Lpdl and Latl, resulting in the
formation of NADH and COs. In the next couple of reactions, acetyl-CoA is combined with
oxaloacetate by citrate synthase Citl, to form citrate, which is converted into isocitrate by
aconitase Acol. In the next step, isocitrate is converted into a-ketoglutarate by isocitrate
dehydrogenase (IDH), consisting of subunits Idhl and Idh2, resulting in the formation of
NADH and CO,. This step can also be carried out by NADP-dependent isocitrate dehydro-
genase Idpl. a-ketoglutarate dehydrogenase (KGD), consisting of Kgdl and Kgd2, convert
a-ketoglutarate into succinyl-CoA, forming an additional NADH and COs. Succinyl-CoA
is converted into succinate by succinyl-CoA ligase, Lscl and Lsc2, generating an ATP, and
succinate is further converted into fumarate by the succinate dehydrogenase complex (SDH),
resulting in the reduction of the redox carrier FAD to FADH,. Finally, fumarate is converted
into malate by fumarase Fum1, and malate is converted into oxaloacetate by malate dehy-
drogenase, forming an NADH, and then the cycle repeats. Overall, the PDH reaction and
the TCA cycle generates 4 molecules of NADH, 1 molecule of FADHs5, 1 molecule of ATP,

as well as 3 molecules of CO2 per molecule of pyruvate.

Oxidative phosphorylation

In order for the TCA cycle to continue, the reduced redox factors, NADH and FADH, must
be re-oxidized. In yeast, under aerobic conditions, the electrons from these cofactors are
transferred to molecular oxygen through a series of electron acceptors, organized as protein
complexes in the mitochondrial inner membrane. Electrons enter the electron transport
chain (ETC) either through the oxidation of NADH at NADH dehydrogenase or at SDH
where FADH, is re-oxidized to FAD. In some yeasts, including S. cerevisiae, complex I
is missing and NADH oxidation is instead carried out by internal NADH dehydrogenase
Ndil, for mitochondrial matrix generated NADH, or external dehydrogenases Ndel and Nde2
facing the intermembrane space for NADH produced in the cytosol. The electrons released
are transferred to the electron carrier coenzyme Q. From there, electrons are transferred to
ubiquinol-cytochrome c reductase complex (complex I1T), which reduces cytochrome c. Finally,

electrons are transferred from cytochrome c to molecular oxygen through the cytochrome c
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oxidase complex (complex IV) resulting in the formation of water. As electrons are transferred,
free energy is released, which is used to translocate protons across the inner membrane at
complexes IIT and IV. This results in the generation of a proton motive force (PMF) consisting
of a proton gradient and a membrane potential. The gradient is harvested by ATP synthase,
that allows protons to re-enter the matrix, resulting in the release of energy which is captured
by the formation of ATP.

1.3.2 Overflow metabolism

Cellular resources are finite and the cell needs to optimize its allocation of resources in any
given condition. Biological processes depend on enzymes and other proteins to function. As
the protein content of the cell is limited, the cell must balance the allocation between the
different functions to ensure optimal cellular function. The optimal allocation is dictated by
the specific growth conditions and achieved through a finely tuned regulation of transcription
and translation as well as the activity of individual enzymes [22-24|. The finite proteome
resources result in a trade-off in allocation between different sectors of the proteome. An
example of such a trade-off is the allocation between ribosomes and metabolic proteins. It
has been shown that the requirement of ribosomes scales linearly with the growth rate [25],

giving rise to a trade-off between different metabolic strategies used.

Overflow metabolism is the result of a trade-off between the rate and yield of ATP production.
It is signified by a shift from respiratory to fermentative metabolism even at fully aerobic
conditions [26]. This results in an increased substrate, for example glucose, consumption rate
and an increased channeling of carbon flux through fermentation, ultimately resulting in the

secretion of fermentation by-products and thus a lower yield of ATP production (Figure 3).

Fermentation Respiration
Glucose \Glucose
5:‘ bbb
‘b‘ ‘b
ATP K ATP
By-products CO,

Figure 3 Comparison of the fermentative and respiratory pathways for energy generation. Fermentation
and respiration differ in the glucose flux and proteome mass required to produce an equivalent amount of ATP.
Fermentation is less efficient in terms of ATP produced per glucose and therefore requires a high glucose flux. Respiration
is more efficient in terms of ATP yield per substrate, but is less efficient in terms of the yield per protein mass required.

In many organisms, glucose is the preferred substrate. Respiratory consumption of glucose,
which in addition to glycolysis involves the full oxidation of pyruvate to carbon dioxide and
water through the concerted action of the TCA cycle, the ETC and ATP synthase, is the
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most efficient pathway in terms of the amount of ATP generated per molecule of substrate.
However, apart from the glycolytic proteins, the pathway requires the synthesis of a large
number of mitochondrial proteins involved in oxidative phosphorylation while the fermenta-
tive pathway only requires the synthesis of a few additional cytosolic enzymes. Fermentation
thus has a higher catalytic rate than respiration, resulting in more ATP synthesized per en-
zyme mass. Overflow metabolism is therefore a favorable strategy when fast ATP production

is required.

In yeast, overflow metabolism is referred to as the Crabtree effect [27, 28| and it results in the
secretion of high levels of ethanol, and to a smaller extent acetate. Not all yeasts experience
the Crabtree effect, and yeasts are commonly classified as Crabtree-positive or negative
based the presence or absence of the Crabtree effect. Some yeasts, such as K. marxianus
and S. stipitis do not experience the Crabtree effect, while still growing at similar rates as
Crabtree-positive yeasts. The underlying causes of the Crabtree effect will be evaluated in
part II of this thesis.

1.4 Mitochondria

The first part of this thesis is focused on studying mitochondria and their role in the overall
function of the cells. In this section, I will go through Paper I and give an overview of
mitochondrial biology, including mitochondrial evolution, the general characteristic of the

organelle as well as the role of mitochondria in various metabolic pathways.

1.4.1 Mitochondrial evolution

Mitochondria are organelles that are present in the vast majority of all eukaryal cells. The
organelle resulted from an endosymbiotic event where an a-proteobacterium was taken up by
a host cell [29]. The nature of the host has been debated and it was originally thought that
the host was a primitive eukaryon with an anaerobic lifestyle, lacking many of the modern
features of eukaryal cells, that engulfed the mitochondrial progenitor through phagocytosis
[30]. However, more recent studies point towards the host being an archeabacterium, and that
the complexity of eukaryal cells evolved after acquiring the mitochondrial ancestor |31]. It
has been hypothesized that a reductive evolution of the endosymbiont and specialization into
mitochondria resulted in expansion of the bioenergetic membrane surface area [32]. Ultimately,
this would result in an increase in the energy per gene allowing for a large expansion of the
number of genes expressed, supporting the evolution of the complex traits that are hallmarks
of eukaryal cells. As a result of the reductive evolution, the majority of all mitochondrial
genes were either lost or transferred to the nuclear genome. Modern mitochondrial genomes
only encode a small number of proteins, that are translated on mitochondrial ribosomes. In
the case of S. cerevisiae, the mitochondrial genome encodes eight proteins of which seven are
core subunits of the respiratory chain and one is a ribosomal protein of the small subunit of

the mitochondrial ribosome.



1.4.2 Mitochondrial structure

Mitochondria are highly dynamic and their morphology is tightly linked to the physiological
state, including the bioenergetic requirements, of the cell [33]. The shape, number and size
of mitochondria is governed by the opposing forces of fission and fusion, and exponentially
growing yeast cells can experience up to two and a half fusion and fission event per minute
and cell. Under conditions where the respiratory activity is high, fusion is favored as it
generates large and interconnected tubular networks, that allow for efficient mixing of the
mitochondrial content, including mitochondrial DNA, proteins and metabolites. When the
respiratory activity is low, on the other hand, mitochondrial fission drives the generation of

a smaller and fragmented mitochondrial network as illustrated in Figure 4.
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Figure 4 Overview of mitochondrial morphology adaptation to respiratory activity. The mitochondrial
morphology is governed by cycles of fission and fusion in response to the respiratory activity. Fragmented mitochondria

are preferred when the respiratory activity is low while a fused network is preferred when the respiratory activity is
high.

Mitochondria consist of two membranes, the inner- and outer mitochondrial membrane that
enclose two aqueous compartments, the intermembrane space (IMS) and the mitochondrial
matrix. The structure of mitochondria plays an important role in the function of the organelle.
The outer membrane contains porins allowing diffusion of molecules up to 4-5 kDa in size,
while the inner membrane is largely impermeable, and therefore only allows the diffusion of
small uncharged molecules such as oxygen and carbon dioxide [34]. This creates a compart-
mentalization, that is crucial for the generation of a proton motive force (PMF), through the
pumping of protons from the matrix to the IMS across the mitochondrial inner membrane
by the ETC complexes. This force is harnessed by ATP synthase to drive ATP production.
However, the compartmentalization also presents a physical barrier for metabolites and to
the roughly 99% of the mitochondrial proteins that are synthesized on cytosolic ribosomes
and must be imported into the organelle upon synthesis. Consequently, mitochondria rely
on a set of carrier proteins for exchanging metabolites with the cytosol [34], as well as a
dedicated machinery for protein import. Mitochondrial protein import and its implications

will be discussed further in Paper II1.



1.4.3 Mitochondrial metabolism

Mitochondria have long been known as the powerhouses of eukaryal cells due to their role
in cellular energy generation, through the ETC and oxidative phosphorylation, but mito-
chondria also play an important role in various other metabolic processes. Being the site
of the TCA cycle, mitochondria are crucial for the generation of metabolic precursors for
biosynthetic pathways. Examples of such pathways are in the synthesis of amino acids. Apart
from producing a-ketoglutarate, which is an important precursor for many amino acids,
mitochondria are also directly involved in the synthesis of some amino acids. In yeast, mi-
tochondria host the majority of the enzymes involved in the biosynthesis of branched-chain

amino acids (BCAA), as well as parts of the pathways for synthesis of arginine and lysine [35].

In addition to the role in amino acid biosynthesis, mitochondria are also involved in synthesis
of heme, in which the first and last two steps are localized to mitochondria, as well as iron-
sulfur (Fe-S) clusters. Fe-S cluster biosynthesis is one of the essential functions of mitochondria.
Fe-S clusters are versatile inorganic cofactors that are found in proteins involved in processes
ranging from energy metabolism, biosynthesis, maintenance of DNA, gene expression, and
translation [36]. An overview of mitochondrial Fe-S cluster biosynthesis is given in Figure
5. Briefly, a [2Fe-2S| cluster is first synthesized on a scaffold protein, Isul/Isu2, involving
the cysteine desulfurase complex consisting of Nfs1, Isd11 and Acpl, as well as Ythl and the
electron transport chain constituted by NADPH, Yahl and Arhl. Next, the [2Fe-2S]| cluster
is transferred to the Grx5 transfer protein, a process catalyzed by the hydrolysis of ATP by
Hsp70 protein Ssql, requiring Jacl and nucleotide exchange factor Mgel. After transfer to
Grx5, the cluster is either inserted into target proteins or further transferred to the machinery
responsible for assembly of [4Fe-4S] clusters, consisting of Isal, Isa2 and Iba57, after which
the [4Fe-4S]| cluster is inserted into target proteins.
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Figure 5 Overview of mitochondrial iron-sulfur cluster biosynthesis in yeast. Briefly, a [2Fe-2S] cluster is
first synthesized on a scaffold protein requiring the action of Ythl, the cysteine desulfurase complex consisting of Nfsl,
Isd11 and Acpl, as well as the electron transport chain consisting of Yahl, Arhl and NADPH. Next, the cluster is
transferred to the Grx5 transfer protein dimer through the action of Ssql, Jacl and Mgel requiring the hydrolysis of
ATP. From Grx5, the cluster is inserted into target proteins, or transferred to the machinery responsible for synthesis
of a [4Fe-48S], consisting of Isal, Isa2 and Iba57.

Furthermore, mitochondria are involved in phospholipid metabolism, more specifically in

the conversion of phosphatidylserine (PS) to phosphatidylethanolamine (PE), as well as

10



in the synthesis of the mitochondrion-specific phospholipid cardiolipin (CL) [37]. CL is a
phospholipid consisting of four acyl chains attached to a dimeric glycerophosphate backbone.
This results in a conical shape, that makes the lipid suitable for membranes where curvature is
needed. Therefore, the lipid has been found to be enriched in in the cristae of the IMM, where
it facilitates the assembly and stabilization of respiratory chain complexes [38]. Mitochondria
also contain a machinery for fatty acid synthesis (FAS), which synthesizes fatty acids in an
acyl-carrier protein (ACP)-dependent manner resembling bacterial type II FAS [39]. The
main role identified for mitochondrial FAS is the synthesis of octanoyl-ACP, which is a
precursor of lipoic acid that is an essential cofactor for pyruvate dehydrogenase (PDH),

a-ketoglutarate dehydrogenase (KGD) and the glycine cleavage system (GCV).
1.5 Constraint-based modeling of metabolism

Given the complexity of metabolic networks, mathematical models have played an important
role in understanding metabolism at a systems level. The types of models used for studying
metabolism can be mainly classified as kinetic or stoichiometric. In kinetic models, reaction
fluxes and metabolite concentrations are modeled as a function of time using ordinary differen-
tial equations [40]. In this thesis, stoichiometric models are employed. Stoichiometric models,
often referred to as constraint-based models, infer the reaction fluxes by imposing steady
state mass balances around each metabolite of the network [41]. Genome-scale metabolic
models (GEMs) comprise a mathematical description of the metabolic network. They contain
stoichiometric information on the entire set of known metabolic reactions of an organism,
and links them to the corresponding enzymes. As such, GEMs connect genes, reactions and
metabolites into a network (Figure 6A), which can be represented as a stoichiometric matrix
(Figure 6B).

A) Metabolic network B) Stoichiometric C) Imposing constraints
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Figure 6 Overview of constraint-based modeling of metabolism. The metabolic network (A) is reconstructed
and represented in a stoichiometric matrix (B). The constraints imposed by the stoichiometric matrix are combined
with a steady-state assumption and additional constraints on reaction bounds. An objective for optimization is set
and simulations are performed to solve the linear set of equations defined to find an optimal solution (C).

Flux balance analysis is a widely used method for analyzing GEMs [42]. A flux balance
results from constraints imposed by the stoichiometric matrix implying that the production
of any compound must equal the net consumption of the compound at steady state (Figure
6C). Additional constraints are imposed by defining the upper and lower bounds of reactions,

such as the maximum allowed carbon source uptake rate. These constraints are commonly
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inferred from experimental data. Furthermore, an objective such as maximizing cellular
growth is used, which together with the mathematical representation defines a system of
linear equations. In FBA | these equations are solved using linear programming, which results

in the prediction of a flux distribution that optimizes the objective.

During the last decade, an increasing focus in constraint-based modeling has been on de-
veloping models that combine FBA with proteome allocation by accounting for enzymatic
constraints. A recent framework for accounting for enzyme-constraints in GEMs was devel-
oped by Sanchez et al., in 2017 [43]. In this framework, enzymatic constraints are accounted
for by incorporating enzyme usage in metabolic reactions. It also incorporates kinetic in-
formation in the form of the turnover number (k) of each enzyme, which is included as
stoichiometric coefficients for enzyme usage in reactions. This way, reactions are constrained
by the enzymatic capacities as given by the k., multiplied by the abundance of the enzyme,
limiting the reaction fluxes to physiologically feasible values. Additionally, the framework

allows for the integration of proteomic data.

1.6 Proteomics

An important part of systems biology is to capture the emergent properties of biological
systems. With the advances in high-throughput mass-spectrometry based methods during the
recent decades, proteomics, the large-scale study of proteins, has come to play an important
role in systems biology [44]. Analogous to genomics and transcriptomics, proteomics denotes
the study of the entire set of proteins of an organism. However, in contrast to genomics,
proteomics measures the phenotype as shaped by the genotype and environmental factors
[45]. From a systems biology point-of-view, proteomics contributes three different types of
data. The first is expression data, that is the relative or absolute protein levels, and will
be the primary proteomics data type in this thesis. Proteomics can also be used to study
post-translational modifications and protein-protein interactions. In expression proteomics,
much like in transcriptomics, the use of internal standards allows for absolute quantification
of the proteins in a sample, which is important in some systems biology modeling frameworks.
An advantage of proteomics over transcriptomics is the direct measurement of proteins, the
end product of gene expressions, which are more closely related to the biological function.
The quantitative nature of expression proteomics makes it very useful for comparing the
phenotypic differences between samples, such as different genetic backgrounds or different
experimental conditions. Furthermore, quantitative proteomics is well suited for analyzing
the proteome on a subcellular level as well as creating an inventory of organellar proteomes,

as has been shown by recent studies [46, 47|.
1.7 Aims and significance

Until here, I have given a background of both cellular and mitochondrial metabolism (Paper
I). I have also introduced how systems biology plays an integral role in studying metabolism
due to the inherent complexity of metabolism. In this thesis, I will explore and detangle

various aspects of metabolism by investigating proteome allocation and combining proteomic
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data with constraint-based modeling to get an insight into metabolic fluxes. This thesis is
divided into two parts. I start at the subcellular level focusing on mitochondrial metabolism,
expand to cellular proteome allocation and translation, and finally analyze metabolism at

the cellular level to elucidate the factors underlying the Crabtree effect.

In the first part, I focus on mitochondrial metabolism. Mitochondria are central to many cel-
lular processes and an understanding of mitochondrial metabolism is therefore imperative to
understanding cellular metabolism. In Paper II, I investigate the changes in mitochondrial
metabolism and structure as yeast cells undergo the shift from fermentative to respiratory
metabolism. I present a strategy for quantifying the proteome on a subcellular level using
state-of-the-art fluorescence imaging and a precise determination of biophysical parameters.
I demonstrate that mitochondria balance their role as biosynthetic hubs and centers for
energy generation and that major structural and functional changes during the diauxic shift
are initiated at the mitochondrial level. In Paper III, I constructed the first genome-scale
metabolic model describing mitochondrial protein import, iron-sulfur cluster biosynthesis
and the PMF in yeast. I use the model to study the dynamics and the requirement of protein
import and iron-sulfur cluster biosynthesis, as well as the energy cost of transport across the
mitochondrial inner membrane. The results point towards a dynamic requirement of these
process, which are reported to have a rather constant expression, and the model could serve

as a valuable tool for studying these processes and the implications of perturbations.

In part two, I focus on cellular proteome allocation and the importance of balancing allocation
between different processes to ensure cellular function. I present a study investigating how
cells’ maximum capacity for growth depends on allocation of proteins to different processes
(Paper IV). In this study, we cultivated S. cerevisiae in bioreactors with or without supple-
menting amino acids and analyzed the global changes in proteome allocation during aerobic
and anaerobic growth on glucose. We found that a reallocation of protein mass, mainly from
amino acid biosynthesis to translation, allowed the cells to grow faster upon amino acid
supplementation. This demonstrates that proteome constraints limit cellular growth rate
and by increasing the fraction of the proteome allocated to translation, cells can achieve a

higher growth rate.

In the final study of part II, I put the pieces together and use the understanding gained
from the first three studies to investigate the underlying causes of the Crabtree effect in
yeast (Paper V). We cultivated four yeasts, the two Crabtree-positive S. cerevisiae and S.
pombe, and two Crabtree-negative K. marzianus and S. stipitis, in bioreactors at conditions
of glucose excess. We combined physiological and proteome quantification with genome-scale
modeling to quantitatively describe the differences between the two groups. I demonstrate
that the Crabtree effect is coupled to adaptations in metabolism, both in central carbon
metabolism and translation, which reflect the trade-off between different strategies for gen-
erating ATP.

Taken together, the work in this thesis demonstrates the application of a systems biology ap-
proach combining physiological and proteome quantification with constraint-based modeling

to gain insight into various aspects of metabolism.
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Part I: Investigating mitochondrial metabolism

As introduced in the background section, mitochondria play an important role in a diverse
set of cellular functions. Due to their importance in cellular function, mitochondrial dysfunc-
tion is implicated in various human diseases [48] and understanding mitochondrial function
is therefore important to combat these diseases. The yeast S. cerevisiae is a widely used
model organism for studying mitochondrial biology and much of our current understanding
of mitochondrial function has come from studies using the yeast. In this chapter, I present
two studies investigating mitochondrial metabolism. The first study (Paper II) investigates
the role of mitochondria in the physiological and metabolic adaptations as cells shift from
fermentative to respiratory growth. In the second study (Paper III), I present the construc-
tion of an enzyme-constrained GEM describing mitochondrial metabolism and the use of
the model to study the essential mitochondrial processes of protein import and iron-sulfur
cluster biogenesis as well as the effect of mitochondrial transport on the proton motive force

(PMF).
2.1 The role of mitochondria in diauxic growth (Paper II)

Being Crabtree-positive, S. cerevisiae preferentially uses fermentative pathways for consuming
glucose, which is the preferred carbon source, when glucose is available in excess. Fermentation
is a high-flux process that leads to secretion of by-products, mainly in the form of ethanol,
acetate and glycerol. The fermentative metabolism in presence of glucose is coupled to a
repression of respiratory functions, including genes required for mitochondrial biogenesis,
oxidative phosphorylation and the TCA cycle [49, 50]. As glucose is exhausted, cells undergo
a transition phase, known as the diauxic shift, characterized by a metabolic reorganization
from fermentation to respiration [51|. In the diauxic shift, the transition occurs gradually
but is initiated as glucose availability becomes low. The shift involves a decrease in glycolytic
flux, expression of glycolytic enzymes PFK and PYK, inhibition of the PPP as well as an
activation of the TCA and gluconeogenesis, and is accompanied by a decrease in growth rate
[52]. Some studies have investigated the changes occurring during the diauxic shift on the
transcriptional level and relative changes on the cellular proteome level [52-54], as well as
quantified the mitochondrial proteome on different fermentable and non-fermentable carbon
sources [46, 55, 56]. However, the role of mitochondria in the switch from fermentative to
respiratory metabolism is not fully elucidated. Therefore, we set out to accurately characterize
the physiological adaptations by performing absolute quantification of the mitochondrial
proteome and lipidome, as well as the morphology of mitochondria throughout diauxic growth

in batch cultures.
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2.1.1 Experimental setup

In order to study the mitochondrial morphology, we used an engineered strain of S. cerevisiae
CEN.PK 113-7TD expressing GFP and mCherry coupled to the mitochondrial targeting
sequences of ATP synthase subunit 9 (preSU9) from Neurospora crassa and COX4 (preCOX4),
respectively. preCOX4-mCherry is imported into the mitochondria strictly depending on the
membrane potential, leading to import being proportional to the membrane potential. preSU9
is a strong targeting signal and can therefore drive mitochondrial import of preSU9-GFP
even at low membrane potential [57]. This allows visualization of mitochondrial morphology,
while at the same time ensuring the functional integrity. This strain was used throughout
the study. An overview of the experimental design is given in Figure 7. Briefly, cells
were cultivated in bioreactors in minimal medium with 2% glucose as carbon source at
30°C, pH 5 and dissolved oxygen (DO) was kept above 30%. Biological triplicates were
used. Samples for proteomic and lipidomic analysis were taken at 9, 13 and 20 hours after
inoculation, corresponding to fermentative metabolism, the mid-diauxic shift and respiratory
metabolism, respectively. Mitochondria were isolated using differential centrifugation followed
by additional sample concentration, according to [58]. The proteomes of cells and isolated
mitochondria were quantified by mass spectrometry (MS) using tandem mass tags (TMT)
labeling for simultaneous quantification. To obtain absolute abundances, an intensity-based
absolute quantification (iBAQ) approach [59] using a reference sample spiked with the
universal proteomics standard set (UPS2) protein standard. An HPLC-MS-based lipidomic
analysis of crude mitochondrial extract was performed using an internal standard comprising
a mixture of 15 lipid species. For characterization of mitochondrial morphology and volume
of the mitochondrial network, confocal microscopy was performed. Z-stacks were generated
and used to calculate the mitochondrial volume. Additionally, we performed a thorough
physiological characterization by measuring cell dry weight, number and volume, as well as

HPLC analysis of exometabolites.
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Figure 7 Overview of experimental design. Cells expressing preCOX4-mCherry and preSU9-GFP were cultivated
in bioreactors in minimal medium with 2% glucose. Cells and isolated mitochondria for proteomics, lipidomics and
fluorescence microscopy were harvested after 9, 13 and 20 hours. Samples for physiological characterization were taken
throughout the cultivation. G, glucose phase; D, diauxic shift; E, ethanol phase
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2.1.2 Quantification of cellular and mitochondrial proteome

The proteomic analysis resulted in the quantification of 3801 proteins across all whole cell
samples and 3700 proteins in the isolated mitochondria samples. The high level of detected

proteins in the mitochondrial fractions highlight the connectivity of the organelle but also
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the high sensitivity of the MS-based approach for detection of lowly abundant contaminating
proteins as seen in previous studies on the proteome of isolated mitochondria [46]. To
obtain a curated set of mitochondrial proteins, we compared the proteins identified to two
previous studies [46, 47| as well as the Saccharomyces Genome Database (SGD) [13]. Of
the 3700 proteins identified, 1024 were annotated as mitochondrial in SGD, of which 824
were assigned through manual curation. The resulting list after curation contained 1036

mitochondrial proteins, representing a 5% increase compared to previous studies [46, 47].

2.1.3 Mitochondrial morphology

Confocal microscopy images from 50 individual cells from each replicate were analyzed and
the volume of the mitochondrial network was determined. The results show that there is a
large increase in mitochondrial volume as cells transition from fermentative to respiratory
metabolism (Figure 8A). We also observed changes in the network morphology, from a
small and fragmented network in the glucose phase to a more fused state in the ethanol phase
(Figure 8B), in line with previous findings of a more interconnected mitochondrial network
at conditions of growth on non-fermentable carbon sources [60]. Overall, the mitochondrial
network expanded from occupying around 5% of the total cell volume in the glucose phase
in the glucose phase, 11% in the diauxic shift and 35% during respiratory growth on ethanol.
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Figure 8 Mitochondrial morphology and size during the three stages of cell growth. (A) The fraction
of the cellular volume occupied by the mitochondrial network. (B) The volume of the mitochondrial network as
measured from 50 replicates per condition. (C) Mitochondrial morphology as determined based on confocal microscopy.
Cells expressing mitochondrially targeted preSU9-GFP are shown. Scale bar, 2 um. (D) Correlation between cell and
mitochondrial volume, calculated from samples of 50 cells including budding and non-budding cells.

The mitochondrial network size is regulated in response to glucose exhaustion, starting
already in the diauxic shift, suggesting a strong coupling to glucose exhaustion. In contrast
to the observations on mitochondrial network size, the cell size was rather constant comparing
the glucose phase and diauxic shift, and was altered only as cells start assimilating ethanol
(Figure 8C). Furthermore, we observed a strong correlation between the cell size and the
size of the mitochondrial network in all three phases. Our findings confirm the scaling of
mitochondrial network size previously shown [61] and point towards mitochondria having

an important role in coupling of the metabolic activity and cell size regulation in line with

previous studies [62].
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2.1.4 Mitochondrial proteome

To obtain a quantitative picture of the mitochondrial proteome in the three stages of growth,
we set out to calculate the absolute protein abundances at the mitochondrial level. Based on
previous studies on the biophysical properties of mitochondria, the density of mitochondria
can be approximated as the overall density of the cell [63, 64]. We used this approximated
density combined with the data on cell mass and volume, and the mitochondrial volume
to calculate the mass of the mitochondrial network in the three phases. To identify the
overall changes in the mitochondrial proteome as cells shift from fermentative to respiratory
metabolism, we calculated the log2 fold changes (log2FC) of protein abundance between the
three phases and performed significance testing using a Student’s t-test. We then used a
cut-off of |log2FC| > 1 and p-value < 0.05 to identify significantly regulated proteins (Figure
9A-C).
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Figure 9 Changes in mitochondrial proteome composition. (A-C). Volcano plots showing the differentially
expressed proteins identified after pairwise comparison of the three stages of growth. Logl0O transformed p-values,
calculated by a paired Student’s t-test, are plotted against the log2-transformed fold change (log2FC). Vertical dashed
lines indicate a fold-change cut-off of |log2FC| > 1. The horizontal dashed line indicates the p-value cut-off of 0.05.
(D-E) Venn diagrams illustrating the number of proteins up- and down-regulated identified in the pairwise comparison
between the three metabolic stages.

Overall, this resulted in the identification of 428 proteins significantly regulated compar-
ing the diauxic shift and glucose phase (413 up and 15 down-regulated), 309 significantly
regulated proteins comparing the ethanol phase and the glucose phase (273 up and 36 down-
regulated), and 16 significantly regulated proteins comparing the ethanol phase and the
diauxic shift (2 up and 14 down-regulated). 272 significantly regulated proteins, of which
259 were up-regulated and 13 down-regulated, were shared both when comparing the diauxic
shift and ethanol phase to the glucose phase (Figure 9D-E). We performed a GO-term
enrichment analysis for biological process using YeastMine [65] with a cut-off of Benjamini-
Hochberg corrected p-value < 0.05, to elucidate trends among the proteins. We observed an

enrichment of proteins in the TCA cycle, respiratory chain, ATP synthase and mitochondrial
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transporters. These proteins were largely up-regulated in the diauxic shift and showed a
slight further up-regulation in the ethanol phase, indicating that they are part of an early
response to glucose exhaustion lasting throughout the diauxic shift. This finding has also
been seen in a previous study investigating the changes in the cellular proteome during the

transition from fermentation to respiration [54].

Interestingly, when performing a GO-term enrichment analysis of the proteins uniquely up-
regulated comparing the diauxic shift to the glucose phase, we identified proteins involved
in mitochondrial morphology and energy metabolism, further supporting the importance of
regulatory events during the diauxic shift in the transition from fermentation to respiration.
Furthermore, we looked into the specific set of proteins that were significantly up-regulated in
the diauxic shift compared to the glucose phase but fell below the log2FC > 1 cut-off in the
ethanol phase. These proteins were enriched in processes related to mitochondrial gene ex-
pression and translation, mitochondrial organization, protein targeting to mitochondria, and
respiratory chain complex assembly. These findings indicate that mitochondrial biogenesis-
related processes are important at an early stage of the adaptation of the mitochondrial

network to respiratory growth.

2.1.5 The increase in respiration is coupled to changes in membrane
architecture

The changes in respiratory processes observed when analyzing the mitochondrial proteome
led us to further investigate proteins involved in respiration. It has been established that
the mitochondrial membrane architecture is tightly linked to mitochondrial function, and
respiratory chain complexes and ATP synthase have been shown to be enriched in folds
in the inner membrane referred to as cristae [66]. Therefore, we also focused the analysis
on cristae-associated proteins including the components of the respiratory chain, and the
mitochondrial contact site and cristae organizing (MICOS) complex involved in cristae orga-
nization [67]. Overall, we observed a 3.5-fold increase in the abundance of cristae-associated
proteins comparing the diauxic shift to the glucose phase and an additional 0.3-fold increase
as cells progressed into the ethanol phase (Figure 10A). This suggests that there are clear
changes, not only in the size of the mitochondrial network as shown in Figure 8B, but
also the organization of the mitochondrial inner membrane in response to an increase in

respiration.

The increase in the overall abundance of cristae-associated protein was further reflected in the
abundance of the individual components of the respiratory chain and ATP synthase (Figure
10B and C). The complexes show a significant, roughly 3-fold, increase in abundance as the
cells enter the diauxic shift and, in line with what was observed at the overall mitochondrial
proteome level, show only a slight increase in abundance comparing the ethanol phase to
the diauxic shift. This confirms previous findings that these processes are part of an early

response in the shift from fermentation to respiration.
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Figure 10 Increasing proteome allocation of respiratory proteins is coupled to changes in cristae
formation. Absolute protein abundances of cristae-associated proteins (A), ATP synthase (B), respiratory chain
complexes (C), mitochondrial contact site and cristae organization (MICOS) complex components (D) and dynamin-
like GTPase Mgm1 (E). Data represent mean values + standard deviation of three biological replicates. Statistical
comparisons were performed using paired t-test. ns, not significant (p > 0.05); *p < 0.05; *x*p < 0.01; * * *p < 0.001.
G, glucose phase; D, diauxic shift; E, ethanol phase.

The respiratory chain and ATP synthase have been shown to assemble into supercomplexes
(SCs) within the cristae of the mitochondrial inner membrane and the cristae structure directly
affects the assembly and stability of these complexes [68]. The MICOS complex is located
at cristae junctions, where it has been shown to regulate membrane architecture through
stabilizing cristae curvature [69]. In addition to the MICOS complex, the mitochondrial
GTPase Mgm1, has been shown to play a critical role in maintenance of cristae structure,
as well as in assembly and stability respiratory chain SCs [68, 70]. In our proteomic data
we observed a 3.5-fold and 2-fold increase in abundance for the MICOS complex and Mgml,
respectively after the transition from the glucose phase to the diauxic shift, followed by a
similar abundance in the ethanol phase (Figure 10D and E). Overall, the findings from
the analysis of the respiratory chain, ATP synthase and proteins involved in maintaining the
membrane architecture support the hypothesis that the structural and functional changes of

mitochondria occur in the diauxic shift to prepare cells for respiratory metabolism as glucose

is exhausted.

2.1.6 Remodeling of the mitochondrial inner membrane

Given the observed changes in inner membrane architecture, we performed an analysis of
the lipidome of isolated mitochondria to investigate the coupling of the increase in respi-

ration to the composition of the inner membrane. Here, I will focus on the observations
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for the mitochondrion-specific phospholipid cardiolipin (CL). As mentioned in the back-
ground section, CL is a phospholipid consisting of four acyl chains connected to a dimeric
glycerophosphate backbone, giving the phospholipid a conical shape suitable for areas of
membrane curvature. Furthermore, it has been implicated in stabilizing individual complexes
of the respiratory chain [38]. Comparing the abundance of CL in the three stages of growth,
we observed an increase in the levels in the diauxic shift compared to the glucose phase
followed by a decrease in abundance as cells entered the ethanol phase (Figure 11A). In
addition to the increase in abundance of CL as cells transition to respiratory metabolism,
we also observed a change in the level of unsaturation of the phospholipid (Figure 11B
and C). As respiration increased, we observed an increasing preference for incorporation of
unsaturated acyl chains in CL, resulting in an increase in the overall degree of unsaturation.
An increase in acyl chain unsaturation in CL has been speculated to increase the fluidity in
the cristae membrane regions, in turn leading to an increased curvature and incorporation
of ATP synthase complexes [38|. The increase in unsaturation seen is in line with a previous
study linking an increase in membrane viscosity through increased unsaturation to increased
respiratory activity [71], further highlighting the importance of membrane architecture in

promoting respiratory metabolism.
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Figure 11 Changes in abundance and unsaturation of cardiolipin. (A) Abundance of cardiolipin (CL). (B)
Absolute abundances of individual CL species. (C) Degree of unsaturation (DoU) of total CL species in the three stages
of growth. (D) Absolute abundances of proteins involved in CL biosynthesis. Statistical comparison was performed
using paired t-tests. Significance levels are defined in the following way: not significant (ns), p > 0.05; xp < 0.05; *xp
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The changes observed in CL unsaturation were also reflected in the abundances of proteins
involved in CL biosynthesis (Figure 11D). We observed an increase in abundance of the
phospholipase Cld1 and acyltransferase Tazl, the main enzymes responsible for maturation of
CL through remodeling of the acyl chains. Cld1 removes an acyl chain, preferably C16:0, from
premature CL to form an intermediate monolysocardiolipin (MLCL), and Tazl subsequently
catalyzes the acylation of MLCL to form mature CL [72, 73]. We observed an up-regulation
of both the enzymes in the diauxic shift compared to the glucose phase, while maintaining
similar enzyme levels in the ethanol phase. This further highlights the diauxic shift as an

important stage for remodeling of the mitochondrial network.

2.1.7 The dual role of mitochondria in cellular metabolism

To analyze the overall changes in mitochondrial proteome allocation as cells shift from fer-
mentation to respiration, we divided the proteome into 19 groups based on protein function
and compared the allocation between the two stages (Figure 12A). Three main trends were
observed. The first trend was the significantly higher allocation of energy-related processes,
including the TCA cycle, respiratory chain and ATP synthase during respiration, as previ-
ously observed. Second, we observed a lower allocation for biosynthetic processes, including
biosynthesis of amino acids, cofactors, sterols and phospholipids. Lastly, the allocation of pro-
cesses related to mitochondrial biogenesis, including the protein import machinery, and the
related chaperones and proteases, as well as maintenance of the mitochondrial genome, have
a similar allocation in fermentation and respiration. This is an interesting finding since the
protein import machinery imports more than twice the amount of protein during respiration

[74] and is therefore something we explored further in Paper III.
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In summary, we showed that mitochondria play a dual role in metabolism, serving as a
biosynthetic hub during fermentation while shifting towards an energy generation-centered

role during respiration, as visualized in Figure 12B.
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2.2 Modeling mitochondrial metabolism (Paper III)

Mitochondria have gained an increasing interest due to the numerous important physiological
functions and the number of human disorders linked to mitochondrial dysfunction [75]. With
advances in proteomic, genomic and bioinformatic approaches for studying mitochondria,
there is now an ever-increasing inventory of mitochondrial components [76]. Given the com-
plexity of metabolism, a systems level understanding can be aided by using computational
models, which lie at the heart of systems biology [3|. Owing to the genetically and biochem-
ically consistent format of the computational models, especially genome-scale models, for
representing metabolic networks, they represent valuable scaffolds for integrating omics data

with the added benefit of improving model predictions [77, 78|.

So far, several stoichiometric models of human mitochondrial metabolism have been devel-
oped. The first detailed model was constructed by Vo and co-workers, and described energy
metabolism, detoxification of reactive oxygen species (ROS), synthesis of heme, as well as
lipid and nitrogen metabolism in human cardiac mitochondria [79]. The model proved useful
for determining the ATP yield per glucose, as well as providing insight into the flexibility
of lipid and heme production. It was later used to study mitochondrial metabolism under
different metabolic conditions, including diabetic and ischemic conditions [80]. A more recent
model of human mitochondria was constructed by Smith and Robinson in 2011 [81]. The
model was used to study metabolic disorders related to the TCA cycle. It was later expanded
and used for simulating respiratory chain disorders, and more recently also expanded to a
more comprehensive representation of central metabolism [82, 83|. Although these models
have proven useful, as these models do not directly account for enzymes, they are limited to
studying the turnover of metabolites within the mitochondrial metabolic network. Another
common feature of these models is that they are limited to central metabolism. Connecting
enzymes to metabolism would allow for studying the dynamics of the mitochondrial pro-
teome under different conditions, which in turn would aid our understanding of mitochondrial
function. Furthermore, integrating mitochondrial metabolism in overall cellular metabolism

would allow studying the interactions of mitochondria with other metabolic processes.

In Paper III, we constructed an enzyme-constrained model of mitochondrial metabolism
in the model eukaryon S. cerevisiae, which has served as an important model for studying
mitochondrial function. The model encompasses a detailed representation of mitochondrial
protein import and Fe-S cluster biogenesis, two processes that are essential for cellular function
in all conditions. We introduced a detailed representation of the proton motive force (PMF)
to directly link transport reactions and the respiratory chain to ATP synthesis. Additionally,
we represented the incorporation of the cofactors biotin, lipoic acid, Fe-S clusters and heme

into enzymes.

2.2.1 Model reconstruction

The model was created using the consensus yeast GEM as a scaffold [84], with two new

mitochondrial compartments, the intermembrane space and outer membrane added. The
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model was generated using the GECKO framework for incorporating enzymatic constraints
in metabolic models [43, 85]. This culminated in ecMitoYeast, which is outlined in Figure
13A. As a consequence of describing mitochondrial enzyme requirements as well as import
of proteins and cofactor incorporation, the newly reconstructed content resulted in a change
in enzyme usage from an amount in the unit mmol/gDW to a flux with unit mmol/gDW /h
(Figure 13B). To balance the units of enzyme exchange reactions, the growth rate is
accounted for in the stoichiometric coefficients of enzyme usage in the reactions. This also
meant that simulations using the model were performed using a binary search to find the
maximum feasible growth rate. In the following sections, I will go through the procedure of
reconstructing the added content in more detail as well as present the main findings from

the related model simulations.
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Figure 13 Overview of the ecMitoYeast model. (A) Scope of the model. In addition to metabolism, the model
accounts for cofactor biosynthesis and binding to enzymes, and the translocation of proteins into mitochondria. The
dotted line signifies the inclusion of cofactor requirement of unmodeled proteins into the biomass reaction. (B) The
relationship between metabolic reaction and enzyme usages established based on a steady-state assumption.

2.2.2 Modeling the proton motive force

The PMF, as described earlier in this thesis, is generated by the translocation across the
mitochondrial inner membrane at complexes IIT and IV of the respiratory chain, upon the
transport of electrons originating from NADH or FADH, through the ETC. It consists of two
components, a membrane potential (AW) arising from the difference in charge, and a proton
gradient (AHT) resulting from the difference in proton concentration across the membrane
[86]. The PMF is not only affected by the translocation of protons in the ETC, but also
by other processes transporting charge and/or protons across the inner membrane such as
metabolite transport and protein translocation. As the PMF is central for mitochondrial
function, we set out to represent it in the model. Inspired by a model of human cardiac
mitochondria [83], we implemented an approach where a pseudometabolite representing the
PMF is introduced in the model. This metabolite was set to be co-transported in reactions
transporting charge or protons across the membrane. A relative contribution of (AV) and
(AH™) of 0.9 and 0.1, respectively, was used based on experimental data [87], using the
average value from experiments with NADH and ethanol as substrates. Accordingly, the
complexes of the ETC and ATP synthase move PMF pseudometabolites corresponding to
the number of protons translocated (Figure 14A). As two examples of transport reactions

the ATP/ADP translocase transporting a net negative charge across the membrane was
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set to co-transport 0.9 PMF and the electroneutral, but proton-translocating phosphate
transporter was set to co-transport 0.1 PMF pseudometabolites (Figure 14B).

B
PMF PMF 0.9 PMF 0.1 PMF
ADP(3-)

AH* + Ay

ATP(4-)

Figure 14 Representation of the PMF in the model. (A) Coupling of the respiratory chain complexes and
ATP synthase to the proton motive force (PMF). The components transfer PMF corresponding to the number of
protons translocated across the inner membrane. (B) Coupling of reactions transporting charges or protons across the
inner mitochondrial membrane to the PMF as exemplified by the ADP/ATP translocase, resulting in net transfer of a
negative charge, and electroneutral but proton coupled phosphate carrier.

We evaluated the effect of modeling the PMF on model performance by comparing the
phosphate-oxygen ratio (P/O) in our model to a model without the PMF represented simply
using the theoretical P/O of 1.5. The P/O was calculated as the ratio between the ATP
production and the number of electron pairs entering the ETC at the NADH dehydroge-
nases and complex II and was found to be 1.08 (Figure 15A). This value is close to the
experimentally determined P /O of approximately 0.95 [88|. Based on these results, a PMF
sink was introduced in the following simulations and constrained to a value bringing the
operational P/O ratio closer to the in vivo value. Furthermore, we evaluated the energy
cost explicitly represented by metabolite transport. We calculated the change in the growth-
associated energy cost (GAEC), that represents a combination of processes related to growth
not associated to polymerization of macromolecules, by fitting to experimental data and
compared the resulting cost to that in a model without the PMF represented. We observed
a decrease in the simulated GAEC from 49.1 to 17.1 mmol ATP/gDW. Metabolite transport
across the mitochondrial inner membrane was calculated to account for 27% of the total
PMF generated at a growth rate of 0.1 h~! (Figure 15B).

We next ran simulations at increasing growth rates to evaluate the P/O ratio and biomass
yield (Figure 15C). We found that the P/O ratio was rather constant at the different
growth rates, the exceptions being at maximum growth rate both with glucose and ethanol
as carbon source. The model correctly predicted a drop in biomass yield at higher growth
rates seen experimentally [89]. Our findings demonstrate that representing the PMF in the
yeast model improves performance by directly accounting for a significant energy cost that
was previously lumped together into the GAEC but can now be estimated and evaluated

using the model.
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Figure 15 Effect of representing the PMF in the model. (A) Effect of explicitly modeling the PMF on the
operational phosphate/oxygen ratio (P/O) and the simulated growth-associated energy cost (GAEC). (B) Overall
fraction of the generated PMF used for transport across the inner membrane, and synthesis of ATP. (C) P/O ratio
and biomass yield on carbon source at increasing growth rate. Unless otherwise specified, glucose was used as carbon
source. The ethanol condition represents conditions of maximum specific growth rate.

2.2.3 Modeling mitochondrial protein import

Roughly 99% of the mitochondrial proteins are synthesized by cytosolic ribosomes and there-
fore must be imported into the correct mitochondrial compartment. Depending on the final
localization of the proteins, five main pathways for import exist [90]. Since the scope of our
model was on metabolism, we focused on three of these pathways (Figure 16A), namely
(i) import of IMS proteins through the mitochondrial intermembrane space assembly (MIA)
complex [91], (ii) translocase of the inner membrane 22 (TIM22) complex-mediated pathway
for inner membrane proteins and (iii) the translocase of the inner membrane 23 (TIM23)
mediated pathway for import of proteins into the mitochondrial matrix and inner membrane.
The remaining two pathways include the import of outer membrane proteins, that are mostly
out of the scope of the model, by the sorting and assembly machinery (SAM) [92], and the
mitochondrial import complex (MIM) [93], for which mechanistic knowledge is scarce. The
main pathway of import is the TIM23 pathway, which is responsible for import of 60-70% of
all mitochondrial proteins [94]. These proteins are synthesized with a cleavable N-terminal
targeting sequence of around 15-50 amino acids in length, directing the proteins to the
mitochondrion, that is cleaved by mitochondrial processing peptidase (MPP) upon import.
Import occurs through the action of the translocase of the outer membrane (TOM) and
TIM23 assisted by the presequence translocase-associated motor (PAM). The presequences
are positively charged and are imported through TIM23 driven by AW [57|. Thereafter,
the mechanism depends on the final destination of the protein. Matrix proteins are further
translocated driven by multiple cycles of ATP binding and hydrolysis by mitochondrial
Hsp70 associated to PAM. Most inner membrane proteins contain a hydrophobic sorting
signal causing translocation to halt and directing insertion into the membrane [95]. A few
inner membrane proteins are fully translocated into the matrix and then inserted into the
membrane by the oxidase assembly (OXA), also responsible for insertion of proteins syn-
thesized by the mitochondrial ribosome [96]. Although the model does not account for the
mitochondrial carrier proteins, we chose to include the TIM22 machinery responsible for
import of the carrier proteins [97] based on it being responsible for import of some of the
components of TIM23.
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Figure 16 Modeling protein import. (A) Overview of the pathways incorporated in the model. (I) The disulfide
relay pathway mediated by MIA for import of IMS proteins, (II) The TIM23-mediated pathway for import of proteins
synthesized with a cleavable N-terminal sequence, and (III) the TIM22-mediated pathway for import of mitochondrial
carrier proteins. (B) Validation of model performance. Predicted allocation of the components of mitochondrial protein
import compared to allocation as measured by proteomics [98]. OM, outer membrane; IMS, intermembrane space;
IM, inner membrane; TOM, translocase of the outer membrane; MIA, mitochondrial import and assembly; TIM23,
translocase of the inner membrane 23; PAM, presequence translocase-associated motor; MPP, mitochondrial processing
peptidase; OXA, oxidase assembly; TIM22, translocase of the inner membrane 22.

We used the wealth of knowledge available in the literature to reconstruct protein import. As
a first step, all proteins were assigned to a compartment based on the localization evidence
available in SGD and the MitoMiner database |76], which incorporates localization evidence
from UniProt, mass spectrometry- and GFP studies, as well as presequence predictions and
gene ontology information. We then used the compiled evidence to assign each model protein
to a compartment and a translocation pathway. Template reactions were constructed for
each import pathway and were then used to add the import reaction for individual proteins.

As an example, the template reaction for the TIM23 pathway of matrix import is:

protX[c] + yPMF[ims] + zATP[m] + zH20[m] =>
protX[m] + yPMF[m] 4+ zADP[m] + zphosphate[m] + H" [m] + presequence[m] (2.1)

where y represents the effect on the PMF as calculated from the total charge of the protein.
x is the number of ATP required for import calculated using the protein sequence length and
an average length between binding sites of mtHsp70 of 25 amino acids, resulting in 1 ATP
per 25 amino acids [99]. As an initial step in adding the usage of protein import complexes
to the import reactions, we estimated the k., values based on proteomics data [100], given
the assumption that protein degradation can be neglected, as:

Y[E]

kcat = Ho* m (22)

where 1 is the specific growth rate, X[E| is the summed abundance of proteins requiring the
import complex and [E] is the mean abundance of complex subunits. To validate the model
performance, we compared the model simulated proteome allocation of the import compo-
nents at a dilution rate of 0.1 h™! to experimentally measured abundances [98] (Figure

16B). The correlation between measured and model predicted protein abundances was not

27



significant (Pearson’s R = 0.53, p-value = 0.17). To improve the model performance, we
queried the BRENDA database [101], as well as the available literature for k¢, values. Curat-
ing the kot values with experimental data, and substituting the proteomics-estimated k¢
values for measured k..t values when available, resulted in a significant correlation between
measured and model predicted protein abundances (Pearson’s R = 0.73, p-value = 0.039).
The two main outliers were MIA and TIM22, which can be explained by the fact that many
of the protein substrates of MIA functioning in copper homeostasis and respiratory chain
complex assembly in the case of MIA and metabolite transport in the case TIM22, processes

that are outside the scope of our model.

We also analyzed the levels of protein import components at increasing dilution rates, from
0.1 h™! to 0.4 h™!, and at maximum growth rate (Figure 17A and B). We observed an
increase in the fraction of the proteome allocated to protein import up to the critical dilution
rate for fermentation onset at 0.28 h™!, from 0.63% at 0.1 h=! to 1.67% at 0.28 h™!, while
the allocation based on proteomics data was 1% at 0.1 h=!. At higher growth rates, the
allocation decreased, in line with an increase in fermentation, reaching an allocation of 0.47%
at maximum growth rate. Interestingly, the allocation at 0.4 h~! was higher than at 0.1
h~!, pointing towards the respiratory activity required to support the respiro-fermentative
metabolism at high growth rates is higher than that required at fully respiratory metabolism
at low growth rates.
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Figure 17 Modeling protein import. Model-predicted requirement of the protein import machinery at increasing
dilution rates and at maximum growth rate, compared to allocation from proteomics data at dilution rate 0.1 h—1!.

Protein import has been shown experimentally to occupy around 5% of the mitochondrial
proteome both during fermentation and respiration (Paper II, [46, 74]). The mitochondrial
proteome accounts for around 10% and 20-30% of the cellular proteome in fermentation and
respiration, respectively. Protein import would therefore account for 0.5% and 1.5% of the
cellular proteome in fermentation and respiration respectively, which is in good agreement
with the model predictions. However, it should be noted that ecMitoYeast covers metabolic

proteins, which correspond to roughly 2/3 of the mitochondrial proteome by mass.

2.2.4 Modeling cofactor biosynthesis and incorporation

Mitochondria are involved in the synthesis of a variety of cofactors, including lipoic acid, bi-
otin, iron-sulfur clusters and heme. The functions of these cofactors range from mitochondrial

a-keto acid dehydrogenases and respiratory proteins to carboxylases and enzymes in amino
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acid biosynthesis. Therefore, mitochondrial cofactor biosynthesis is important for the overall
function of the cell and iron-sulfur cluster biosynthesis is one of the essential mitochondrial
processes under any given condition. An accurate representation of cofactor biosynthesis
is imperative for a model of mitochondrial metabolism. We constructed reactions for the
synthesis of Fe-S clusters representing the three distinct steps as illustrated in Figure 5 as
well as reactions for synthesizing lipoic acid. The enzymes responsible for the synthesis of
the cofactors were also included in the model. Thereafter, we constructed a list of enzymes
containing the above mentioned cofactors using information available in the literature and
the UniProt database [102]|. Based on this list, we added reactions for incorporating cofactors
into enzymes for enzymes included in the model and added a cofactor requirement in the

biomass reaction for the non-modeled enzymes (Figure 13A).

To investigate the changes in cofactor usage, we used the model to estimate the cofactor
requirements at increasing growth rate in the span of 0.1-0.4 h~! and maximum growth
rate (Figure 18A-C). We observed three different trends for the cofactor requirements.
First, the requirement of biotin and siroheme scaled with growth rate, displaying the highest
requirement at maximum growth rate. This can be explained by the proteins requiring these
cofactors being involved in biosynthetic processes, thus causing an increased requirement as
the requirement for biomass precursors increases. For example, siroheme is required for the
function of Met5 involved in methionine biosynthesis, and biotin is required for the function
of Accl and Hfal in fatty acid biosynthesis. Second, the predicted requirement for ferroheme
b, lipoic acid and [2Fe-2S] clusters scaled with the respiratory activity with a maximum
requirement at 0.28 h™! before the onset of fermentation. A decrease in the requirement
was observed after that point, in line with most of the proteins requiring these cofactors
being respiratory proteins or proteins of the TCA cycle. Lastly, the requirement of heme A
and [4Fe-4S] clusters showed a dual dependence on the growth rate and respiratory activity.
The requirement increased with the respiratory activity, with a maximum requirement at
0.28 h™!, and largely retained the level after the onset of fermentation, highlighting the dual

function of these cofactors in respiration and biosynthesis.
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Figure 18 Cofactor requirements at increasing growth rate. Absolute requirements predicted by the model
for (A) biotin, ferroheme b, heme a and lipoic acid, (B) siroheme, and (C) iron-sulfur clusters.

In conclusion, we constructed a detailed model of mitochondrial metabolism, comprising
a representation of the PMF, protein import and cofactor metabolism. Our work provides

insight into the dynamics of mitochondrial metabolism. Our model could serve as a valuable
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tool complementing experimental work, and given the high conservation of mitochondrial
metabolism, could also be valuable for studying mitochondrial dysfunction related to human

diseases.
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Part 1I: Investigating constraints in cellular metabolism

As seen in part I of this thesis, changes in the growth conditions lead to changes in the
allocation of the cellular proteome resources in order for the cell to adapt its finite resources
to the environmental conditions given. The principles behind cellular resource allocation
have been given extensive attention in recent years, as developments in high-throughput
techniques have allowed for quantification of gene expression and protein abundances. An
important step in the resource allocation theory was the realization that the cost of making
enzymes was in itself an important factor determining the growth rate of cells [26]. This
led to the consideration of cells as self-replicating systems that, in order to proliferate, need
to duplicate their components before the next cell division. To do so, the cell needs to use
its metabolic pathways to break down substrates into building blocks for polymerization
of macromolecules that make up the cell. The balance between the fluxes from metabolic
precursors to polymerization determines the growth rate. Cells have to make a substantial
investment in the machinery, mainly in ribosomes, responsible for polymerization and at
the same time also in the enzymatic machinery catalyzing metabolic reactions. Given the
finite proteome resources, cells need to balance the investment in different cellular processes.
In models of resource allocation, this balance is studied by dividing the proteome into
fractions, which are used to derive growth laws [103]. Studies performed by perturbing the
metabolism of Escherichia coli, demonstrated that the proteome could be divided into sectors
based on how the expression of the proteins within a sector responded upon perturbations
of metabolism [103, 104]. The importance of resource allocation in determining cellular
phenotypes has been further demonstrated in studies of nutrient limitations and overflow
metabolism in E. coli [105, 106], as well as studies on the effect of different carbon sources
on the growth of S. cerevisiae [25]. A common theme in these studies was the perturbation
of metabolism by imposing limitations, such as carbon- and nitrogen limitation or partially
inhibiting translation, causing a lowered growth rate. In this chapter, I present two studies
that aim to expand the current knowledge on how constraints in metabolism, mainly arising
from finite proteome resources, affect cellular phenotypes. In the first study (Paper IV), we
cultivated S. cerevisiae under the supplementation of amino acids and studied the effect on
growth rate and proteome allocation. In the second study (Paper V), we investigated the
underlying causes of the Crabtree effect, which has been suggested to arise from limitations

in proteome resources.
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3.1 Proteome allocation upon supplementation of amino acids
(Paper IV)

In this study, we evaluated the effect of supplementing amino acids on the growth and
proteome allocation of yeast. An overview of the experimental setup is given in Figure
19A. Briefly, we cultivated S. cerevisiae CEN.PK 113-7D in bioreactors in minimal medium
with 2% glucose as carbon source. We tested four different conditions, combining aerobic
and anaerobic conditions with or without the supplementation of a mix of 14 amino acids
commonly used in protein production medium [107]. We used an LC-MS/MS-based approach
consisting of tandem mass tags (TMT) and intensity-based absolute quantification (iBAQ)
[59] using a UPS2 protein standard-spiked reference sample, to measure the absolute protein
abundances in the four conditions. We also measured the concentration of biomass, amino
acids and exometabolites throughout the cultivations. An overview of the proteomic analysis
is given in Figure 19B. In total, we quantified the abundance of 3690 proteins all samples
combined, of which 3074 (83%) were identified in all samples. The largest variation was
seen between the samples from aerobic and anaerobic cultivations, where 206 and and 404
proteins, respectively, were identified in only one of the conditions. The difference between
these conditions were also reflected in the principal component analysis (PCA), showing that

the samples cluster according to the oxygen supply (Figure 19C).
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Figure 19 Overview of experimental setup and general findings. (A) S. cerevisiae was cultured in minimal
media with 2% glucose in aerobic and anaerobic conditions with or without the supplementation of amino acids.
Proteome quantification was performed using intensity-based absolute quantification (iBAQ). (B) Venn diagram
showing the overlap between samples for the 3690 proteins quantified in total. (C) Principal component analysis (PCA)
plot of the protein abundances showing the clustering of samples based on oxygen availability. (D) Growth rate and
biomass yield.

3.1.1 Amino acid supplementation allows cells to grow faster

The analysis of the biomass concentration showed that the cells grow faster when supple-
menting amino acids and that the biomass yield was higher in both aerobic and anaerobic
conditions (Figure 19D). For anaerobic conditions, the increased growth rate was not seen
from the biomass measurements, but when calculating the growth rate based on the carbon
dioxide production profile we found that the growth was faster when supplementing amino
acids. This indicates that supplementing amino acids to the medium has a direct effect on the

proteome constraints limiting growth. To investigate the effect of adding amino acids, we first
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quantified the amino acid uptake by measuring the amino acid concentrations in the medium
at different time point throughout the cultivation, and compared it to the requirement of
amino acids for formation of biomass as defined in the yeast consensus GEM (84| (Figure
20A). Overall, the amino acid uptake was similar in the two conditions studied and most
amino acids were taken up in an amount similar to the biomass requirements. However, we
observed a higher uptake of methionine, arginine and threonine. For arginine and threonine,
we observed an increase in the abundance of enzymes involved in catabolizing the amino
acids. In the case of arginine, the two catabolic enzymes, Carl and Car2, converting arginine
into proline as well as Durl,2 involved in the conversion of arginine to urea were significantly
up-regulated. This indicates that arginine is used both as a source of nitrogen and a precursor
for proline synthesis. We also observed a down-regulation of the enzymes responsible for
synthesizing arginine. These findings are in line with previous studies showing that excess
cytosolic arginine leads to an induction in expression of Carl and Car2, and a repression of
Argl and Arg3 in arginine synthesis [108, 109]. The down-regulation of arginine biosynthetic
enzymes further resulted in a decrease in the overall allocation of arginine biosynthesis,

independent of oxygen availability (Figure 20B).

A Aerobic B Aerobic
s "]
% T 4+
D 200
S = 3-
E s
3 -400- - 2-
= £
2 -6001 817
> 5 o [aiMlallall_sall Blecull_aa_
X 4 T T T T T T T T T T T T T T
I 8001, T — T 6 Anaerobic
= Anaerobic S 59
) Trp. Tyr Asp, =
.g 0..|\2 yr _ P S 4
-
2 20011 pet 2 31
E S 2]
< 400!
| Ly
soo ! | | NN I
8001, SEOE SRR SESE R R
0 100 200 300 400 T 202 53 52238 =x2¢52
Model biomass need (umol/gDW) 207~ = 3 ' TOoO<kFFFLQ

® Acidic Aromatic © Hydroxylic
@ Aliphatic ®Basic @ Sulphuric

Figure 20 Amino acid supplementation allows for proteome reallocation. (A) Amino acid uptake compared
to the amino acid requirement for biomass formation, as defined in the yeast consensus GEM, for both aerobic and
anaerobic conditions. (B) Summarized mass proteome allocation for enzymes involved in pathways for amino acid
biosynthesis (based on SGD [13]). Number in parentheses indicate the number of enzymes quantified within each
pathway. xeight proteins were detected in samples from aerobic cultures, and nine proteins were detected in samples
from anaerobic conditions. *p < 0.05, * * xp < 0.001

Similarly, for threonine, we found that the biosynthetic enzymes were down-regulated while
the catabolic enzyme Glyl [110], the major enzyme converting to threonine to glycine, was
significantly up-regulated which could explain the low uptake of glycine. Again, this was
coupled to a decrease in the overall proteome allocation of threonine biosynthesis, as well as
a decrease in the glycine biosynthetic enzymes (Figure 20B). Furthermore, we observed a

drastic change in the allocation of methionine biosynthetic enzymes upon supplementation of
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methionine (Figure 20B). The summed decrease in allocation was 3 and 4% of total protein
mass in aerobic and anaerobic conditions, respectively, resulting from the down-regulation
of around ten enzymes in both conditions. This is in line with the highly coordinated nature
of regulation of biosynthesis of sulfur-containing amino acids [111]. The large protein mass
saved can be explained by the low turnover number and large molecular weight of the enzymes
involved in methionine biosynthesis (data taken from the ecYeast model [43]). Interestingly,
most of the protein mass saved was from a down-regulation of the last two enzymes of the

pathway, with a decrease of >1% of total protein mass for both enzymes in both conditions.

In addition to the high uptake of some amino acids, we also observed a lower uptake, than
required for biomass formation of the BCAAs and tyrosine. For BCAA biosynthetic enzymes,
we observed a decrease in allocation adding up to a total decrease of around 1% of total
proteome mass, independent of oxygen supply, but no significant increase in the BCAA

catabolic enzymes.

3.1.2 Supplementation of amino acids results in reallocations in the pro-
teome

We analyzed the data on protein abundances to identify the overall changes in proteome
allocation between the different conditions. In total, we found that 9 proteins were significantly
up-regulated in both aerobic and anaerobic conditions (Figure 21A). To characterize the
gene function, we mapped the genes to gene ontology (GO)-slim terms downloaded from SGD
[13]. The resulting mapping showed that four of the nine proteins were involved in catabolism
of amino acids, with Carl being the most significantly up-regulated in both conditions (log2FC
2.6 and 2.66 in aerobic and anaerobic conditions, respectively). The remaining proteins were
involved in amino acid transport. We further found that 46 proteins were significantly down-
regulated independent of oxygen supply (Figure 21B). Of these proteins, 34 were assigned
GO-slim terms related to amino acid metabolic process, including many biosynthetic enzymes
related to synthesis of the 14 supplemented amino acids. Furthermore, Zwfl, catalyzing the
first step of the PPP, was significantly down-regulated, indicating that the flux through
the PPP was lower. This could be explained by a lower requirement of NADPH and E4P,
a precursor of aromatic amino acids, upon a decrease in the requirement of amino acid
biosynthesis. Interestingly, we found that the summed decrease in allocation for proteins
that were significantly down-regulated (given a cut-off of [log2FC| > 1 and p-value < 0.05)
was 10-times as large as the summed increase in allocation from proteins significantly up-
regulated (6.67% down-regulated vs 0.43% of total protein mass in aerobic conditions, and
5.62% down-regulated vs 0.31% up-regulated in anaerobic conditions). This points towards a
substantial down-regulation of a few proteins sustaining the up-regulation of a large number

of proteins, which is in agreement with the proteome allocation model.
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Figure 21 Supplementation of amino acids leads to a substantial remodeling of the proteome. (A)-
(B) Venn diagram displaying the shared and uniquely up-regulated proteins (A) and down regulated proteins (B)
comparing rich and minimal media within the two conditions. (C) Summed allocation of amino acid metabolic enzymes
and translation-related proteins. The differences in allocation are highlighted between rich and minimal medium are
highlighted. (D) Summed allocation of translation-related proteins vs metabolic enzyme.

3.1.3 The decrease in allocation of amino acid biosynthesis allows for an

increase in translation

We next analyzed the overall changes in summed allocation of GO-slim terms and found
that two groups, cellular amino acid metabolic process and cofactor metabolic process, were
significantly down-regulated in both aerobic and anaerobic conditions, in line with what
was seen previously. The summed allocation of the down-regulated proteins in amino acid
metabolism was 6.51% in aerobic conditions and 5.59% in anaerobic conditions. Most of
the terms that were significantly up-regulated were related to protein translation and the
collected increase in translation was 4.55% of total protein mass in aerobic conditions and
5.42% of total protein mass in anaerobic conditions (Figure 21C). This shows that the
majority of the cellular resources saved in amino acid metabolism are redirected toward
translation to increase the overall translational capacity of the cell, which would explain the
increase in growth rate seen. The general trend of biosynthetic enzymes being down-regulated
and protein mass re-directed to translation was also seen for the overall metabolic fraction of
the proteome (Figure 21D). However, although the overall trend was the same independent
of oxygen supply, the allocation is different between the aerobic and anaerobic condition,
potentially explained by the difference in growth rate and the fully fermentative metabolism
at anaerobic conditions. The finding that increased allocation to translation allows for an
increase in growth rate is in line with studies showing that there is a linear correlation

between the ribosomal content and growth rate |25, 112].
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3.1.4 Allocation of central carbon metabolism remains largely unchanged
upon addition of amino acids

Central carbon metabolism is inherently linked to amino acid biosynthesis, since it provides
the precursor metabolites required for synthesis of biomass. To evaluate the effect on central
carbon metabolism from amino acid supplementation, we analyzed the allocation of proteins
involved in glycolysis and the TCA cycle, which are two of the main pathways of importance to
supply precursors and cofactors for amino acid biosynthesis (Figure 22). The main difference
in terms of glycolysis was seen between anaerobic and aerobic conditions (Figure 22A),
where the summed allocation of glycolytic proteins was almost 2-fold higher in anaerobic
conditions. This could be explained by a strictly fermentative metabolism under anaerobic
conditions compared to the respiro-fermentative metabolism at high growth rate aerobically
[89]. The allocation of individual glycolytic enzymes was similar comparing minimal rich and

minimal media between the two conditions (Figure 22B).
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Figure 22 Most enzymes of central carbon metabolism retain their allocation when supplementing
amino acids. (A) Summed allocation of glycolytic enzymes. (B) Allocation of individual glycolytic enzymes in rich
vs minimal medium. (C) Summed allocation of TCA cycle enzymes. (D) Allocation of individual enzymes of the TCA
cycle in rich vs minimal medium. * % *p < 0.001

For the TCA cycle, we observed a significant difference in the total allocation of proteins
in anaerobic conditions, but in aerobic conditions the allocation was similar irrespective
of amino acid supplementation (Figure 22C). During anaerobic conditions, the isocitrate
dehydrogenase, consisting of subunits Idhl and Idh2, as well as the two aconitases, Acol
and Aco2, were down-regulated upon amino acid supplementation Figure 22D. Isocitrate
dehydrogenase, together with Acol plays a key role in the initial steps of the TCA cycle
converting citrate to a-ketoglutarate, an important precursor for the synthesis of glutamate
and the glutamate and glutamine families of amino acids [35]. The uptake of glutamate was
high in anaerobic cultures, and the observed changes are in line with reports of reduced
aconitase activity upon glutamate supplementation [113|. Furthermore, the concerted down-

regulation of isocitrate dehydrogenase and aconitase could imply a lower flux requirement
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in the oxidative branch of the TCA cycle [114]. Interestingly, during aerobic conditions,
only the two aconitases were down-regulated, although Acol was less significantly down-
regulated while Aco2 was down-regulated 2-fold Figure 22D. The decrease in allocation
seen in both conditions is in line with the specific role of Aco2 in biosynthesis of lysine [115],

which was supplemented and taken up to an extent close to meeting the biomass requirement.

In conclusion, through the comparison of the proteome allocation in yeast grown with or
without the supplementation of amino acids, both under aerobic and anaerobic conditions, we
provide experimental evidence that supports the proteome allocation model for constraints on
metabolism. Upon amino acid supplementation, the proteome resources saved are redirected
to translation allowing for an increased translational activity allowing cells to increase their
growth rate, independent on the oxygen supply. This supports previous studies proposing the
use of strains with reduced proteomes as an interesting approach for increasing expression

of heterologous proteins in metabolic engineering.

3.2 A comparative study of the Crabtree effect (Paper V)

Overflow metabolism in yeast, as introduced in the background section, is the strategy of
using aerobic fermentation to break down glucose instead of the more efficient respiration at
high glucose availability. In yeast, overflow metabolism is referred to as the Crabtree effect
[27, 28]. The Crabtree effect is characterized by a high flux through glycolysis and a large
fraction of the carbon being shuttled toward the fermentative pathway leading to secretion
of by-products. Although the Crabtree effect has evolved independently in multiple yeast
lineages, suggesting a clear competitive advantage, not all yeasts experience the Crabtree
effect and some instead rely on respiration to fully oxidize glucose into carbon dioxide and
water (Crabtree-negative), which in some cases can support a growth rate similar to those
yeast experiencing the Crabtree effect (Crabtree-positive). Although the Crabtree effect is
a well-studied phenomenon, the underlying reasons for why some Crabtree-negative yeast
can reach high growth rates without any by-product formation is still not fully elucidated.
According to the principles of proteome allocation, and as seen in Paper IV, cells must
balance the allocation between energy generation and translation, making this an even more
puzzling phenomenon. This has recently been explored in S. cerevisiae using computational
approaches [116, 117]. In Paper V we were interested in experimentally investigating the
trade-off between energy generation and growth. To do so, we performed a comparison of
four yeast, two Crabtree-positive and two Crabtree-negative, to elucidate the underlying
differences between the two groups. The yeasts studied were Saccharomyces cerevisiae and
Schizosaccharomyces pombe, which are Crabtree-positive, as well as Kluyveromyces marzianus

and Scheffersomyces stipitis, which are Crabtree-negative.

Briefly, we cultivated the four yeasts in bioreactors in minimal medium under conditions
of glucose excess. An overview of the experimental setup can be seen in Figure 23. Since
overflow metabolism has been reported in K. marzianus when oxygen availability is limited

[118], we kept the dissolved oxygen (DO) levels above 60%. We performed a physiological
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quantification, measuring the exometabolites and biomass concentration, as well performed
absolute proteome quantification. We then used the data to generate condition specific
models for S. cerevisiae and K. marzianus, allowing us to analyze metabolic fluxes and

enzyme usage.
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Figure 23 Overview of the experimental setup.

3.2.1 Characterization of physiological differences between Crabtree-positive
and negative yeasts

To characterize the overall phenotypic differences between the Crabtree-positive and nega-
tive strains, we measured the concentration of biomass and exometabolites throughout the
cultivations (Figure 24A-D). The Crabtree-negative yeast showed insignificant levels of
by-product formation, with the exception of a small amount acetate produced by K. marz-
ianus, which has also been seen in previous studies [118, 119|. The Crabtree-positive yeast
produced higher levels of by-products, corresponding to >50% of the total glucose consumed
for both species, in line with the occurrence of overflow metabolism. This resulted in a lower
biomass yield, which was compensated for by a higher glucose uptake rate compared to the
Crabtree-negative yeasts (Figure 24F and H). In terms of growth rate, S. pombe grew at
around half the rate (0.22 h™!) of the other three yeasts with growth rates ranging from 0.42
to 0.47 h~!. Furthermore, the respiratory growth of the Crabtree-negative species was seen
from the respiratory quotient (RQ) values close to 1, compared to 8.6 in the Crabtree-positive
yeasts Figure 24H. Interestingly, the oxygen uptake rate and carbon dioxide evolution rate
of S. stipitis was around 50% of that of K. marzianus. A potential explanation for this is
the presence of a proton translocating NADH dehydrogenase (complex I) in the former [120]
leading to an extra site of proton translocation, which in turn leads to a larger PMF and
P /O ratio. This would result in a higher ATP yield per NADH oxidized, and could explain

the higher biomass yield seen in S. stipitis compared to K. marzianus (Figure 24G).

3.2.2 The Crabtree effect is linked to differences in metabolic fluxes of

central carbon metabolism and respiration

To further characterize the differences between the Crabtree-positive and negative yeast, we
performed MS-based absolute proteome quantification using the iBAQ approach [59] and
tandem mass tags (TMT) [121]. This resulted in the quantification of 3925, 3765, 3612 and

4110 proteins in total in S.cerevisiae, S. pombe, K.marzianus and S. stipitis, respectively.
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Figure 24 Physiological characterization. (A)-(D) Fermentation profiles of the four yeasts, including optical
density (ODgoo) and concentrations of glucose, ethanol, glycerol and acetate. (E) Fractional consumption of glucose
(C-mmol/C-mol glucose) normalized against the total carbon recovery. (F) Glucose uptake rates. (G) Total protein
content (Ptot), biomass yield (Ysz) and growth rate (u). (H) Oxygen uptake rate (OUR), carbon dioxide evolution rate
(CER) and respiratory quotient (RQ). Mean values =+ of biological triplicates are shown for all figures, except for OUR
and CER, where biological duplicates were used. Sstip, Scheffersomyces stipitis; Kma, Kluyveromyces marzianus; Spo,
Schizosaccharomyces pombe; Sce, Saccharomyces cerevisiae.

To investigate the metabolic adaptations underlying the Crabtree effect, we used the GECKO
toolbox [43, 85| to incorporate the proteomic data and the data on exchange fluxes into
the enzyme-constrained (ec) consensus yeast model and the eciSM966 K. marzianus model
(both available from https://github.com/SysBioChalmers/ecModels). This resulted in the
generation of condition-specific models constrained with the experimental data. We limited
the model-based analysis to these two organisms based on the quality and standardized
format of the models, facilitating the comparison of simulation results [122]|. We then used
the models and performed an FBA [42] simulation to obtain flux distributions. We focused
the analysis on central carbon metabolism since that is where the most significant differences
are expected, and compared the flux distributions of S. cerevisiae and K. marzianus (Figure
25A). We observed two main differences in the flux distribution, in addition to the previously
discussed difference in glucose uptake rate. First, the fluxes entering the pentose phosphate
pathway (PPP) at glucose-6-phosphate differed between the two yeasts. The absolute flux
was higher in S. cerevisiae. However, the fraction of G6P metabolized in the PPP was 3-fold

higher in K. marzianus, in line with previous studies comparing the metabolism of Crabtree-
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positive and negative yeasts [123-125|. The higher absolute flux in S. cerevisiae could be
coupled to a higher requirement of amino acid biosynthesis, which requires NADPH, due to
the higher protein content (Figure 24G), while the lower fractional flux indicates differences
in the strategy of NADPH production.
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Figure 25 The trade-off between glucose utilization and ATP yield is associated to metabolic adaptations
and proteome allocation. (A) Flux distribution as simulated by condition-specific models of S. cerevisiae and K.
marzianus. (B)-(C) Simulated ATP production flux and yield. (D) Proteome allocation of selected processes, defined
from GO terms, plotted against the glucose uptake rate. Individual values and mean values of triplicates are shown.
Colored boxes indicate the organism as specified in panel E. (E) Abundances of glucose transporters. Spo, S. pombe;
Sce, S. cerevisiae; Kma, K. marzianus; Sstip, S. stipitis.

The simulation results also showed a difference in fluxes around the pyruvate branching point.
Along with a high flux through glycolysis, S. cerevisiae mainly metabolized pyruvate through
pyruvate decarboxylase (PDC) and fermentation. Only a minor fraction was metabolized by
pyruvate dehydrogenase and the TCA cycle, and the main flux-carrying reactions were the
initial steps leading to production of a-ketoglutarate, suggesting a primary role of the cycle
in providing precursor metabolites during fermentation. K. marzianus, on the other hand,
had a lower flux through glycolysis and metabolized pyruvate mainly through the TCA cycle.
Our results indicate that balancing the glycolytic flux plays an important role in the Crabtree
effect. It has been shown that the PDC has a higher activity than PDH in S. cerevisiae
[126], and would therefore be an important factor for determining the flux from pyruvate.
The lower glycolytic flux in K. marzianus could therefore be a strategy for ensuring that the

PDH activity is sufficient to support fully respiratory catabolism of pyruvate.

The differences in fluxes were reflected by the simulated ATP production. The net ATP
production flux, combining the ATP production of glycolysis and respiration, equal to the
ATP consumption of the cell, was slightly lower in K. marzianus (Figure 25B), indicating

a more efficient ATP utilization for biomass. Furthermore, K. marzianus showed a 3-fold
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higher ATP yield (Figure 25C). These results highlight the differences in strategies in
energy generation, where K. marzianus balances the flux through glycolysis to maintain a
high efficiency of ATP production, while S. cerevisiae compensates for the low efficiency of

fermentation by a high glycolytic flux.

3.2.3 Proteome allocation reflects the trade-off between glucose strategies
for glucose utilization and ATP yield

We summed the allocation of individual proteins based on GO term annotation [127] and
compared the differences in allocation of selected processes (Figure 25D). In line with the
results of the model-based analysis, the Crabtree-positive species showed a higher allocation
of proteins to glycolysis at the expense of mitochondrial proteins, reflecting the fermentative
strategy of glucose utilization. However, only small differences were observed for amino acid
biosynthesis and the PPP, indicating that the main distinguishing factor between the groups

is in energy metabolism.

A major event in the evolution of S. cerevisiae was the increase in glycolytic gene dosage
following a whole-genome duplication [128, 129 and it has been suggested to be an important
factor in the evolution of the Crabtree effect. When analyzing the levels of glycolytic proteins,
we indeed found that the Crabtree-positive species showed higher levels of all proteins.
Although S. pombe has not gone through a WGD, some glycolytic genes are duplicated
[130], and we found that the single copy enzymes showed similar abundance as the summed
abundance of the S. cerevisiae orthologs. Additionally, we found differences in the number
and abundance of active glucose transporters (Figure 25E) both between the two Crabtree-
positive yeasts and between the groups of yeasts. The Crabtree-negative yeasts as well as S.
pombe, based on abundance, seemed to rely mainly on a single transporter while S. cerevisiae
distributed the expression among several transporters. Glucose transport has been proposed
to be one of the key flux-controlling steps of glycolysis [129, 131, 132], and our result suggest
that the optimization of glucose transporters for rapid glucose uptake is an important factor
in the Crabtree effect.

3.2.4 Limitations in the electron transport chain and ATP synthase are
characteristic for the Crabtree effect

We calculated the capacity usage, defined as the ratio between enzyme demand predicted
in ec-model simulations and the measured enzyme levels, for energy related processes in
S. cerevisiae and K. marzianus (Figure 26A). Here, we found that S. cerevisiae had a
higher usage of enzymes involved in glycolysis and PPP, while K. marzianus had a higher
usage in the TCA cycle. These findings indicate that the flux differences of these pathways
are not only coupled to increases in expression but also to a higher usage of the enzymes.
The usage of proteins in the ETC and ATP synthase was close to 100% in both species,
indicating that the cells balance the expression of these proteins based on the demand. This
makes sense from a biological standpoint since they are membrane-bound meaning that any
unused proteins would occupy membrane space and therefore compete with other membrane

proteins such as carrier proteins.

41



B® — ATP synthase® —ETC TCAcycle C Spo [l Sce [E] sstip [B] kma
Glycolysis TCA ETC syl“l\t-ll‘-lFa,se PPP 3_0._6_ ® E P . E . .
100 —| [ — e 121
— 2.5 114
k) < =101
875 2 2,01 2 o
@ Iy o
3 ® ] E, 8-
= 1.5
> © = 74
- . : |7 g
8 ® S 1.0 £
S 25 2 ° 3 59
T 0.5 & 34
) D o < 3
() S | LN | B — 0-——— v T 21
E 3 g 3 g g g ] g g 4.5 5.6 8.9 18.8 11
Eo Eo Ea £0 Ea 0 m O | o |
re, (MmMol/gDW/h) NADH Cll  Cll CIV ATP

synthase

Figure 26 The Crabtree effect is characterized by limitations in the ETC and ATP synthase. (A) Capacity
usage of energy-related process in S. cerevisiae and K. marzianus, calculated as the ratio between model predicted
enzyme demand and the experimentally measured enzyme levels. (B) Allocation of ATP synthase, ETC and TCA
cycle. (C) Abundances of ATP synthase and individual complexes of the ETC. NADH, NADH dehydrogenases; CII,
complex II; CIII, complex III; CIV, complex IV.

We next analyzed the allocation of the processes in the four yeasts. The two Crabtree
negative yeasts, showed a more than 3-fold higher allocation of the TCA cycle, ETC and
ATP synthase, which was also reflected in the abundance of the individual complexes of the
ETC and ATP synthase (Figure 26B and C). These results, together with the trend of
increasing allocation of glycolytic proteins at expense of respiration (Figure 25D) in the
Crabtree-positive yeasts point towards the high glycolytic flux causing a saturation of the
capacity of NADH reoxidation in respiration leading to increased fermentation. Limitations
in the capacity of NADH re-oxidation have previously been suggested as one of the drivers

of overflow metabolism in S. cerevisiae [133].

3.2.5 The Crabtree effect is accompanied by differences in translation

The evolutionary advantage of the Crabtree effect is thought to be that it allows for a
higher rate of ATP production, therefore allowing Crabtree-positive yeasts to grow at a
higher rate in glucose excess conditions [89]. However, our data shows that S. cerevisiae
and the Crabtree-negative yeasts grow at similar rates, and that S. pombe, although being
Crabtree-positive, grows at about half the rate (Figure 24G). This point towards some other
constraint that limits the growth rate. A natural candidate for such a constraint is protein
translation. The WGD in S. cerevisiae resulted in the retention of 59 of 78 ribosomal proteins
(RPs) in duplicates [134], in addition to duplication of genes in carbohydrate metabolism.
Interestingly, although the Crabtree-effect evolved independently in S. pombe, 62 of 78 RPs
have paralogs. The Crabtree-negative yeasts, however, have no RP paralogs. The evolution
and retention of RP paralogs, could contribute to a specialization of ribosomes, potentially
with slower kinetics as a consequence. This led us to analyze the ribosomal content and

translation efficiency.

Our data shows that the ribosomal content was 19.5-23.6% of total protein mass in the faster
growing yeasts (S. cerevisiae, K. marzianus and S. stipitis) and 16.1% in S. pombe. This

agrees with previous studies reporting a linear increase in RP abundance with increasing
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growth rate |25, 112|. We calculated the translation efficiency and found that S. stipitis had
the highest efficiency, S. cerevisiae and K. marzianus had similar efficiencies, while S. pombe
had the least efficient translation (Figure 27A). Given the differences seen in the expression
of ETC components and ATP synthase (Figure 26), we also examined the abundance and
translation efficiency of the mitochondrial ribosomes, responsible for translating some key
subunits of the complexes. Here, we found that the mitochondrial ribosomal content of the
Crabtree-positive yeast was only 28% of that of the Crabtree-negative yeasts (Figure 27B).
We calculated the efficiency of the mitochondrial ribosomes using mean subunit abundance of
the ETC complexes and ATP synthase as a proxy for the mitochondrially synthesized proteins.
We again found that S. cerevisiae and K. marzianus had similar efficiencies, while S stipitis
had the highest efficiency and S. pombe the lowest (Figure 27C). The less efficient cytosolic
ribosomes together with the lower expression of mitochondrial ribosomes, and differences in
efficiency of mitochondrial ribosomes could explain the much lower levels of expression seen
for cytochrome ¢ oxidase and ATP synthase seen in the Crabtree-positive species (Figure
27D), although further studies including more yeast species would be required to confirm

this observation.
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Figure 27 The Crabtree effect is associated to differences in translation. (A) Overall translation efficiency.
(B) Allocation of mitochondrial ribosomal proteins (MRPs), calculated as percent of total protein. (C) Translation
efficiency of mitochondrial ribosomes. (D) Allocation of ATP synthase (ATPS) and cytochrome c oxidase (COX). Sstip,
S. stipitis; Kma, K. marzianus; Spo, S. pombe; Sce, S. cerevisiae

Taken together, this study shows that the Crabtree effect in yeast is coupled to adaptations in
both central carbon metabolism and protein translation, related to differences in the strategy
of ATP production. We, to the best of our knowledge, performed the first quantitative
comparison of Crabtree-positive and negative yeasts on the proteome level. In addition to
the insights obtained on the underlying causes of the Crabtree effect, we provide a dataset
of absolute protein abundances that could serve as a valuable resource for further studies on

this important phenomenon.
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Conclusions and perspectives

The work presented in this thesis has revolved around using systems biology approaches
to study the metabolism of yeast, mainly Saccharomyces cerevisiae, with the overall aim of
increasing the understanding of the metabolism and physiology of this model eukaryon. The
approaches have consisted of proteomic analysis, constraint-based modeling and general physi-

ological characterization of yeast and mitochondria harvested from a diverse set of conditions.

4.1 Part I: Investigating mitochondrial metabolism

In part I, I presented two studies on mitochondrial metabolism, which is not only impor-
tant for energy generation, but also contributes to the synthesis of important metabolites
such as amino acids and cofactors, as reviewed in Paper I. In Paper II, we performed a
thorough analysis of mitochondrial metabolism during the different stages of a batch cul-
tivation. We presented a novel approach for quantifying the mitochondrial proteome on a
subcellular level, building upon the combination of quantification of biophysical parameters
and microscopy imaging to determine the mitochondrial volume. Through this approach, we
were able to identify the transition of mitochondria from being a biosynthetic hub providing
cellular building blocks at fast growth to a center for energy generation during respiration.
Furthermore, we identified the diauxic shift as a phase where major structural and metabolic
changes on the mitochondrial level occur. We found that as glucose is exhausted, there is a
drastic up-regulation in response to the shift towards respiratory metabolism, involving the
TCA cycle, respiratory chain, ATP synthase as well as mitochondrial carriers. Our findings
indicated that these processes are part of an early response to glucose exhaustion that lasts
throughout the diauxic shift, in line with what was observed in a previous study on the
temporal dynamics of the yeast proteome during the diauxic shift [54]. In addition to these
processes, we found an enrichment of proteins involved in mitochondrial gene expression
and translation, mitochondrial organization, protein import, and respiratory chain complex
assembly among proteins specifically up-regulated in the diauxic shift. This highlights the
importance of mitochondrial biogenesis at an early stage of the transition from fermentation
to respiration. These processes were not found by Murphy et al. [54]. We hypothesize that
studies quantifying the overall cellular proteome, including our analysis of the cellular pro-
teome, fail to capture these changes specifically occurring at the mitochondrial level due to
not accounting for the increase in mitochondrial mass as cells go through the diauxic shift.
Many of these changes are less abundant and would therefore be more difficult to capture

without specifically targeting the mitochondrial proteome.

During recent years, the mitochondrial proteome has been given increasing attention ow-

ing to the central role of mitochondria in cellular function. Many studies have focused on
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defining the mitochondrial proteome in terms of the entire set of proteins, their function
and localization as well as the protein levels and dynamics [46, 47, 74, 135, 136]. Our study
contributes to the knowledge on the mitochondrial proteome by extending the number of
proteins identified in mitochondria as well as providing insight into the dynamics of the mi-
tochondrial proteome. As we showed, focusing on isolated mitochondria allows the detection
of more subtle changes in the mitochondrial proteome that may otherwise go undetected.
Unfortunately, studying the dynamics of mitochondria is to some extent limited by the low
throughput of mitochondrial isolation. As faster techniques for isolation of mitochondria
become available, studies expanding our work to include multiple timepoints in the diauxic

shift to capture the dynamics in more detail would be very interesting.

In Paper III I, for the first time, constructed a genome-scale model describing mitochondrial
protein translocation in an eukaryal organism. The model also included a detailed description
of the proton motive force, as well as the synthesis and incorporation of cofactors synthe-
sized partially or entirely in mitochondria, including Fe-S clusters, lipoic acid, and heme.
Fe-S cluster biosynthesis and mitochondrial protein import are essential for cell viability
in any given condition [36, 90| and are therefore imperative for a comprehensive model of
mitochondrial metabolism. Interestingly, although the activity of the mitochondria varies
significantly depending on the mode of metabolism, the levels of the mitochondrial protein
import and the Fe-S biosynthetic machinery remains a rather constant part of the mitochon-
drial proteome (Paper IT). We used the model to investigate the dynamics of mitochondrial
protein import and Fe-S biosynthesis, as well as to estimate the energy cost of metabolite
transport across the mitochondrial inner membrane. We found that for protein import, the
model predicts a dynamic behavior where the requirement of protein import machineries
scale with respiratory activity, in good agreement with experimental observations. For the
Fe-S biosynthetic machinery on the other hand, model predictions showed a worse correlation
with experimental data, with an underprediction of the protein requirements. This could
indicate that the cells keep a reserve capacity of these proteins in order to ensure that no
potentially toxic intermediates in the Fe-S cluster synthesis are released but also that the

parameters used in the model need to be further curated.

The model represents a knowledge base for reactions in protein import and Fe-S biosynthe-
sis. Although there is a vast amount of literature on the processes described, the data on
mechanistic details are still scarce. As any protein-constrained GEM, the model relies on
the protein turnover numbers (keat) of enzymes. These two factors have implications for the
model performance as the simulation performance depends on the ke, values chosen [137].
Therefore, improvements of model predictions are likely to come from further characterization
of the kcat values of, in particular protein import and Fe-S cluster biosynthesis, but also from
an overall increase in the coverage of metabolic enzymes and transporters in S. cerevisiae.
This could come from further experimental studies or computational approaches that have
been shown to perform well in predicting turnover numbers based on fluxes and proteomics
data [138]. Additionally, the model is based on the current knowledge and the scope is limited

to metabolic enzymes. However, the framework used to develop ecMitoYeast can easily be
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updated to represent newly discovered metabolic content and the related enzymes. Increasing
the scope to modeling metabolism and gene expression, using a so-called ME model, as suc-
cessfully done to model protein translocation in E. coli [139], would improve the predictions
by substantially increasing the coverage. Two ME models have recently been developed for
S. cerevisiae 140, 141], opening up an exciting avenue for future modeling-driven studies of
mitochondrial metabolism. As the accuracy of the models increase, their use in integration

and analysis of omics data, such as proteomics, will be a valuable tool for future studies.

I envision that ecMitoYeast could serve as a valuable complement to experimental studies.
The processes reconstructed here, can also partly be integrated into the metabolic and enzyme-
constrained yeast consensus model [84] and contribute to further expansions both in the
scope and accuracy of those models. Additionally, an accurate representation of mitochondrial
protein import would be imperative in the further development of the yeast ME-models in
the future endeavor of creating a model describing the yeast cell as a whole. Lastly, given the
high conservation of mitochondrial protein import as well as Fe-S cluster biosynthesis, and
the recent developments in modeling human metabolism [142], the framework used to develop
ecMitoYeast could be adapted to allow the reconstruction of these processes in human cells.
Such a model would allow for studying mitochondrial function and dysfunction in relation

to mitochondrial diseases directly in Human.

4.2 Part II: Investigating constraints in cellular metabolism

In part II of this thesis, I presented two studies focusing on investigating the constraints
in cellular metabolism that give rise to specific phenotypes. In Paper IV, we investigated
the effect of supplementing amino acids on the physiology and proteome allocation of S.
cerevisiae by cultivating the yeast with or without supplementation of amino acids in both
aerobic and aerobic conditions, and quantifying the concentration of medium components
and abundances of proteins. We found that as the burden of biosynthesis of amino acids
is relieved, the cells reallocate proteome resources to protein translation, which resulted in
an increased growth rate and biomass yield. The principles of proteome allocation in yeast
have previously been explored using computational approaches [116], and a few studies have
investigated proteome allocation experimentally [25, 143]. Our study provides experimental
evidence for the proteome allocation theory [103], and highlight the importance of balanc-
ing the allocation of proteome resources as well as how the trade-offs between allocation to

protein translation and other cellular processes give rise to constraints on cellular growth rate.

Translation capacity is thought to be one of the main factors limiting growth [144]. This
has been seen both in studies overexpressing a non-essential protein to increase the burden
of proteins synthesis of the cell [103, 145], and studies using gene deletions to reduce the
requirements for synthesis of proteins other than those necessary for cellular proliferation,
in both E. coli and yeast. As an example, D’Souza et al. (2014) [146] deleted genes in
pathways for synthesis of single amino acids, nucleotides or vitamins in F. coli, and showed
that when supplementing the resulting auxotrophy, the maximum specific growth rate was

increased. They further saw that the beneficial effect on growth was larger the higher the
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protein expression of the genes deleted were, supporting that protein translation capacity
is an important constraint on the growth rate of cells. Similarly, our results add further
experimental evidence to this, in yeast, by showing that removing the need for synthesis
of 14 amino acids results in a substantial amount of protein mass being freed up and used
by cells to increase their translational capacity and grow faster. Further studies into the
effects of supplementing biomass precursors would be interesting to see how much the growth
rate of cells can be increased. Although I would expect that there is some room for further
increases in growth rate, as seen by the higher growth rates of yeast in rich YPD medium,
at some point the cell is going to hit another constraint on growth that cannot be overcome
by simply allocating more proteome mass to translation. For investigating this constraint, I
think that the recent development of ME-models mentioned above could play an important
role in complementing experimental research, not only in verifying the hypothesis generated
in our study but to perform further in silico experiments on proteome allocation. These
models allow the investigation of the effect of perturbations, such as nutrient supplementa-
tion, on the expression levels of proteins and the machinery required for protein synthesis.
The potential of these models for investigating constraints on cellular metabolism arising
from the finite protein resources has already been demonstrated in E. coli [147]. It has been
proposed from studies in E. coli that the cell growth rate is ultimately limited by the rate
of synthesis of ribosomes [148-150]. These studies have involved extensive investigation of
the biophysical limits of the cells, mechanistic modeling of ribosomes, as well as proteomics
data-driven analysis, highlighting the interdisciplinarity of systems biology and the value
of both top-down and bottom-up systems biology. These studies argue that while many
processes can be sped up by increasing protein abundances or increasing DNA replication,
this is not the case for synthesis of ribosomes. As a consequence, the translation time for
each ribosome places an inherent limit on the growth rate that can only be overcome by
increasing the protein elongation rate or altering the composition of the ribosome. It would
be interesting to see if systems biology studies in yeast, utilizing the increasing amount of
proteomics data and mechanistic insights, would reach the same conclusions and if these

findings can be extended also to eukaryal cells.

An exciting application of the findings on proteome reallocation would be in the construction
of lean proteome strains in metabolic engineering, as proposed by Valgepea et al. (2015)
[151]. An important challenge in metabolic engineering is that the expression of heterologous
proteins required for synthesis of the desired product competes with the expression of the
native proteins adding an additional protein cost, often-times resulting in a reduction of
the growth rate [145]. By deleting genes encoding non-essential proteins, the cellular protein
synthesis requirement would be reduced, with an increasing fraction of the proteome being
freed up for proteins synthesis, potentially increasing the production of the heterologous pro-
teins required for synthesis of a desired product with increased production as a consequence.
A main challenge in this approach is to identify the targets for deletion. When it comes
to yeast, I believe that the increasing abundance of proteomics datasets from a diverse set
of conditions, the existence of a gene deletion collection [14], as well as the emergence of

ME-models [140, 141], could aid in elucidating targets with a non-inhibitory effect on growth
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that at the same time represent a large enough fraction of the proteome to see a beneficial
effect.

In Paper V, we quantitatively described the metabolic and proteomic adaptations under-
lying the Crabtree effect by comparing the Crabtree-positive yeasts S. cerevisiae and S.
pombe to the Crabtree-negative yeasts K. marzianus and S. stipitis, cultivated in glucose
excess conditions. We used an approach combining physiological and proteome quantification
and genome-scale metabolic modeling and found that the Crabtree effect is associated to
adaptations in metabolism and protein translation reflecting the trade-off between glucose
utilization strategies in terms of the rate and yield of ATP production. Optimal carbon
usage is crucial to synthesize the ATP and biomass precursors required for cell growth. We
found that the Crabtree-positive yeasts utilize a strategy to maximize the rate of ATP pro-
duction using glycolysis and fermentative pathways, and balance the low ATP yield of the
pathway by a high glucose uptake. Contrastingly, the Crabtree-negative yeasts balance the
glucose uptake to maintain sufficient capacity of the respiratory pathway to fully oxidize
glucose, resulting in a high ATP yield. The two approaches differ in the protein cost, where
fermentation is less efficient but less costly in terms of protein mass, and respiration is more
efficient but requires more protein mass. Our data on proteome allocation showed that the
total proteome mass allocated to energy metabolism, consisting of glycolysis, the TCA cycle,
ETC and ATP synthase, was roughly the same among the four yeasts. This suggests that
there is a limit to the maximum proteome fraction allocated to energy metabolism, acting
as an additional constraint on the growth rate. This is in line with a recent modeling-based
study showing that increasing the proteome fraction of energy metabolism is a potential
mechanism to increase the growth rate [117]. Furthermore, we found a lower content and
translational efficiency of both cytosolic and mitochondrial ribosomes in S. pombe compared
to the Crabtree-negative yeasts, suggesting that differences in translation is an underlying
cause of the Crabtree effect. This is an intriguing finding given that a major event in the
evolution of both §. cerevisiae and S. pombe was the duplication of ribosomal genes, and
future studies expanding on our work to include additional yeast species would be highly

interesting to confirm the findings of our study.

In summary, the research performed in this thesis highlights the value of using a systems
biology approach to study metabolism. It shows that the combination of experimental studies
with constraint-based modeling is a powerful strategy for gaining insights into the various
aspects related to metabolism, ranging from mitochondrial metabolism to the overall pro-
teome allocation and the imposed constraints evaluated in this thesis. I believe that the
frameworks presented here, together with the datasets and model generated, will provide

value in generating and testing hypotheses in future studies.
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