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Abstract: Semiconductor optical amplifier (SOA) is widely used for power amplification in
O-band, particularly for passive optical networks (PONs) which can greatly benefit its advantages
of simple structure, low power consumption and integrability with photonics circuits. However,
the annoying nonlinear pattern effect degrades system performance when the SOA is needed as
a pre-amplifier in PONs. Conventional solutions for pattern effect mitigation are either based
on optical filtering or gain clamping. They are not simple or sufficiently flexible for practical
deployment. Neural network (NN) has been demonstrated for impairment compensation in
optical communications thanks to its powerful nonlinear fitting ability. In this paper, for the
first time, NN-based equalizer is proposed to mitigate the SOA pattern effect for 50G PON with
intensity modulation and direct detection. The experimental results confirm that the NN-based
equalizer can effectively mitigate the SOA nonlinear pattern effect and significantly improve the
dynamic range of receiver, achieving 29-dB power budget with the FEC limit at 1e−2. Moreover,
the well-trained NN model in the receiver side can be directly placed at the transmitter in the
optical line terminal to pre-equalize the signal for transmission so as to simplify digital signal
processing in the optical network unit.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The explosive bandwidth consuming services, like virtual reality (VR), 8K videos, and cloud
services drive capacity upgrade of the access network to satisfy ever-increasing users’ demand.
Passive optical network (PON) has been demonstrated to be the most promising and cost-effective
broadband access technology. During the past two decades, the line rate of PON increased
from 1G to 10G, and 25G. The international standardization ITU Q2/SG15, and IEEE 802.3ca
task force started to standardize 50G per wavelength in recent years [1–2]. Many research
works show their solutions for 50G [3–4] or even 100G [5–6] PON. Among these solutions,
intensity modulation and direct detection (IMDD) is chosen as the mainstream technique due
to its simplicity and low cost compared to coherent detection. Since high-speed signal are
sensitive to fiber dispersion, O-band is selected as the working waveband for 100G PON [7]
at the expense of a higher insertion loss of 0.33 dB/km, which on the other hand would put
more pressures on the system power budget. Avalanche photodiode (APD) with high receiver
sensitivity is considered as the receiver in the optical network unit (ONU) to ensure enough power
budget for downstream. The commercial APD with big volume is 10G-class, and nowadays the
25G-class APD is still costly. An alternative choice is combining the photodiode (PD) with the
semiconductor optical amplifier (SOA). The high-bandwidth PD is already mature for 100G
large-scale Ethernet applications. Moreover, compared with the APD, the PD is usually with
better linear response which is more suitable for high-order modulation formats. Meanwhile,
the SOA works as a pre-amplifier to increase the signal power injected into the PD. Therefore,
the receiver sensitivity can be greatly improved. However, the nonlinear pattern effect due to
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the SOA gain saturation degrades performance, particularly for high-speed signal [8]. Several
approaches have been proved to be effective in the mitigation of SOA nonlinearity [9–11]. In [9]
SOA induced frequency shift needs to be considered when applying optical filter after the SOA.
The approach introduced in [10] requires an extra wavelength for the gain-clamped SOA. Digital
backpropagation approach [11] brings high complexity to the receiver at the ONU side. The lack
of flexibility and high complexity introduced at the ONU hinder their applications in high-speed
PONs.

Neural network (NN) has been demonstrated to be a powerful tool to compensate linear and
nonlinear impairments in optical transmission system and outperforms some conventional digital
signal processing (DSP) algorithms, e.g., feed forward equalizer (FFE) and Volterra [12–13].
However, NN is mainly deployed at the receiver side. If directly employing it in the PON, the
high computation complexity introduced at the receiver of the ONU makes it difficult for real
deployment. Even though some pruning algorithms can simplify the NN structure [14], it would
be more beneficial to employ NN at the transmitter of the optical line terminal (OLT), where all
connected ONUs can share the deployment cost.

In this paper, for the first time, we propose to use a well-trained NN-based pre-equalizer to
mitigate SOA pattern effect in a 50G PON system with IMDD. Thanks to the capability of
nonlinearity compensation, the pattern effect induced dynamic range limitation can be significantly
improved by the NN. By introducing training data from multiple sampling, the NN model shows
better performance resisting system dynamics. Moreover, placing the well-trained NN model
generated from the ONU at the OLT for pre-equalization significantly reduces the deployment
cost of the ONU while maintaining performance for nonlinearity mitigation.

2. SOA nonlinear pattern effect

The SOA gain G, is defined as the ratio between output power and input power Pin. With the
increase of Pin, carriers inside the SOA active G = G0e(−

G−1
G )∗

Pout
Psat region deplete, rPout esulting

in gain saturation [15]. The relationship between G and Pout can be expressed as follow:

G = G0e(−
G−1

G )∗
Pout
Psat , (1)

where G0 is the small signal gain, and Psat is the saturation power defined as the output power
at which G0 is compressed by 3 dB. Psat is the boundary between linear and nonlinear region.
When Pin ≪ Psat,

(︂
−G−1

G

)︂
∗

Pout
Psat
= (1 − G)∗

Pin
Psat

, gets close to 0, then we can get G ≅ G0 and
the SOA works in linear amplification mode. As the increase of Pin, G decays exponentially.
Figure 1 shows the measured curve of the SOA used in this experiment. The SOA saturation
output G − Pout power is 7 dBm and it begins to saturate when the input power is higher than -13
dBm.

After signal modulation, G becomes time-variant since the instantaneous power of input pulse
varies with time. In this case, the SOA instantaneous gain G(t) [15] can be expressed as:

G(t) =
G0

G0 − (G0 − 1)e(−E(t)/Es)
. (2)

E(t) represents the fraction energy of input pulse contained in the leading part of pulse up to
τ<t, which can be expressed as:

E(t) = ∫
t
−∞ Pin(τ)dτ . (3)

In (2), Es is the saturation energy. For a single pulse with energy Eg > Es, with the
leading-edge gain G(−∞) = G0, the SOA is not saturated, while for the trailing-edge, the gain
G(∞) = G0/[G0 −(G0 − 1)e(−Eg/Es)]. Therefore, the pulse shape evolves from rectangle to jagged
waveform and the gain compression becomes more serious for input pulse with higher power.
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Fig. 1. The measured SOA gain as a function of output power. Insets (a) and (b): eye
diagrams without and with SOA pattern effect; Insets (c) and (d): PAM-4 signal symbols
without and with SOA pattern effect.

Moreover, for a series of data, the former symbol also influences SOA gain to the current symbol,
which is known as the pattern effect. Taking 4-level pulse amplitude modulation (PAM-4) as an
example, the insets (a)-(d) of Fig. 1 show the eye diagrams and symbol levels without and with
such SOA pattern effect, where the input power is -18 dBm and -5 dBm, respectively. It is clear
that the eye diagram is distorted by the pattern effect and more severe distortion is observed on
higher levels of the PAM-4 signal.

3. Principle of NN based pre-equalizer and offline DSP flow

3.1. NN based pre-equalizer

Figure 2 shows the architecture of NN based pre-equalizer. The target function of this architecture
can be written as follows: x

Θ̂ = arg min
Θ

| |d(n)| | = arg min
Θ

| |u(n) − u′(n)| |

= HNN[x(n), θ] − HNN[y(n)/G, θ]
(4)

where u(n) and u′(n) are the output signal from pre-NN and post-NN, HNN denotes the function
of pre- and post-NN. If the network is trained perfectly, we can consider the error d(n) = 0, then

HNN[x(n), θ] = HNN[y(n)/G, θ] (5)

and consequently,
y(n) = Gx(n) (6)

where G is the scaling factor.
Typically, d(n) does not vanish completely because the NN model may not be estimated

perfectly. Moreover, the SOA presents a time-varying response, even the well-trained network at
the receiver side may not be perfect when applied at the transmitter side. To relieve this effect,
the post-NN model is trained by a double-sized training data sampled at two time slots aiming
at learning SOA dynamic features. From above deductions, the normalization gain G should
be properly set for a unit gain provided by the NN. In this case, the values of received signal
are normalized to -3 to 3 before training in the NN. By employing double-sized training data
samples and normalization, the swap of the NN from post- to pre-equalizer can work efficiently.

3.2. DSP flow

The DSP block at the transmitter side (Tx) is shown in green in Fig. 3(a). Random data generated
by Mersenne twister are mapped into PAM-4 symbols with a length of 215. To compensate the
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Fig. 2. Architecture of NN based pre-equalizer.

bandwidth limitation from the optoelectrical devices, time-domain digital pre-emphasis based on
linear finite impulse response (FIR) filter and Nyquist pulse shaping based on root-raised-cosine
(RRC) filter with the optimal roll-off factor 0.15 are used to reduce the corresponding inter-symbol
interference (ISI) effect. The FIR filter is estimated from the FFE under the back-to-back (BtB)
case. The spectra before and after RRC is shown in Fig. 3(b) and (c), respectively. Next, the
symbol sequence is resampled to match the sampling rate of the arbitrary waveform generator
(AWG).

Fig. 3. (a) The offline DSP blocks at Tx and Rx side, (b) and (c) transmitted spectra of
original PAM-4 before and after RRC, respectively, and (d) NN structure. Insets are the
electrical eye diagram of 25Gbaud PAM-4: (I) and (II) with RRC and the roll-off factor is
0.4 and 0.15 respectively, (III) with pre-NN equalization, and (IV) with pre-emphasis.

The offline DSP block at the receiver side (Rx) is shown in blue in Fig. 3(a). The captured
offline data is first resampled to 1-sample per sequence (sps) with the matched filter, and then
synchronization is applied to remove the time jitter and extract the sending data. Afterwards,
a FFE filter is followed to pre-converge the data which can accelerate the convergence of the
post-NN in the next stage. Once the post-NN converged, then it is transferred to the Tx side
for pre-equalization and only the FFE is employed at the Rx side. The electrical eye diagrams
of 25Gbaud PAM-4 signal with Tx DSP are shown in Insets (I) to (IV), respectively. It can be
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observed that the eye diagram after pre-NN is distorted since the NN with a reverse nonlinear
response of SOA.

The training data set for NN is sampled with received optical power of 0 dBm when strong
pattern effect appears. The structure of the NN-based equalizer is shown in Fig. 3(d). It is a
4-layer fully connected network, containing input layer, two hidden layers and output layer. The
input layer has 107 nodes, which means 107 consecutive sampled symbols are required as input
for one symbol decision. Each hidden layer has 48 nodes, while the output layer has 1 node. The
activation function of hidden layers is ReLU and the optimal learning rate is set as 0.0001. The
training is carried out with the optimization technique Adam [5]. The size of the whole data set
is 100,000, with 50,000 symbols for training and 50,000 symbols for the final test. The final
bit-error rate (BER) performance is evaluated based on the test data set.

4. Experimental setup and result discussion

4.1. Experimental setup

The experimental setup is shown in Fig. 4. At the transmitter side, the 25Gbaud PAM-4 signal
is generated by an arbitrary waveform generator (AWG, Keysight 8195A) working at 65 GSa/s
with the 3-dB analog bandwidth of 20 GHz. The output signal is first amplified to 1.8 Vpp by
an electrical amplifier (EA) before driving the commercial 20 Gbps directly modulated laser
(DML) with a 3-dB bandwidth of 12 GHz and a center wavelength of 1315 nm. The end-to-end
frequency response and the spectra before and after modulation are shown in Insets (a) and (b) of
Fig. 4. Then, the 25Gbaud PAM-4 optical signals are transmitted over 20 km standard single
mode fiber (SSMF) with an average loss of 0.33 dB/km at 1310 nm. An O-band polarization
independent SOA (Inphenix IPSD 1316c) with a noise figure of 7 dB is used at the receiver side
before direct detection. A variable optical attenuator (VOA) is applied to emulate the splitter loss
and also test the SOA performance. The measured OSNR of 25Gbaud PAM-4 signals after SOA
is shown in Inset (c) of Fig. 4, where the SOA bias current is optimized to 250 mA. Higher bias
current generates more amplified spontaneous emission (ASE) noise. Note that the optical filter
in our lab with 6-dB insertion loss cannot further improve the receiver sensitivity, so it is not
used after the SOA for filtering ASE noise. A 40G PD is used to convert the optical signal to
electrical signal. Following the PD, the output signal is captured by a 40 GSa/s oscilloscope with
20 GHz bandwidth and processed by the offline DSP.

4.2. Experimental results and discussion

To understand how the NN works, we start from the BtB case and first measure the eye diagram of
25Gbaud PAM-4 signal directly detected by a PD without SOA for pre-amplification. The results
are shown in Fig. 5. The eye diagrams are clearly open since there is no nonlinear distortion (see
Fig. 5(a)). After employing SOA as a pre-amplifier, the pattern effect due to the gain saturation
degrades the signal quality. As explained in Section 2, the SOA gain decreases as the input power
increases, and the higher levels of the PAM-4 signal corresponding to higher optical power are
amplified with lower gain. From the histogram of Fig. 5(b), it can be observed that levels ‘1’ and
‘3’ are aliased between each other resulting closed eye diagram. To compensate the nonlinear
distortion, a fully connected NN is employed as nonlinear equalizer at the receiver side to recover
the signal. It can be seen from Fig. 5(c), the more aliasing at the higher levels is mitigated, so
a clearer eye diagram and a higher peak in the histogram can be observed. However, applying
the NN as a post-equalizer in the ONU increases the complexity and deployment cost. Based
on the analysis in Section 3.1, we can move the well-trained NN module to the OLT side as a
pre-equalizer, allowing for sharing DSP complexity by all the connected ONUs and thus lowering
operation and deployment cost.
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Fig. 4. Experimental setup of 50 Gb/s/λ PAM-4 PON; Insets: (a) Frequency response of
end-to-end system, (b) optical spectra of signal and (c) measured OSNR of 50Gb/s PAM-4
signal versus SOA output power.

Fig. 5. Eye diagrams and histograms of 25Gbaud PAM-4 signal for the BtB tests: (a)
without SOA, (b) with SOA, and (c) with SOA after the post-NN equalizer.

In the practical deployment, the SOA features can be learned in the lab. Once the well-trained
NN is obtained, it can be directly applied at the OLT side without additional manipulation in the
ONU to adapt to nonlinear dynamics induced by the SOA. Note that since O-band is employed
here, the dispersion induced performance variations due to different distance to the OLT is minor
and can be neglected. Otherwise, to mitigate such dispersion induced performance variations the
NN should be trained with data from different distances and wavelengths achieving a universal
NN [16].

Figure 6(a) shows the BER performance comparison between NN-based post- and pre-equalizer.
Both of them can achieve around -21 dBm sensitivity at the low-density parity-check forward
error correction (LDPC) FEC limit of 1×10−2 [17]. However, if the NN model is trained with
data sampled at just one time slot, the pattern effect cannot be well compensated when the SOA
has high input power. The performance gap mainly comes from the time-varying feature of the
SOA as mentioned earlier. After training with double-sized data sampled at two time slots, the
BER gap is reduced.

To evaluate the system performance of using the SOA as a pre-amplifier, we first measure
and compare the receiver sensitivity before and after using the SOA. The results are shown in
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Fig. 6. BER of 25Gbaud PAM-4 signals: (a) performance comparison between NN-based
pre-equalizer and post-equalizer at the back-to-back test. (b) with 20 km SSMF at O-band
with and without SOA.

Fig. 6(b). Without the SOA, the optical signal is directly injected into the PD for detection. The
sampled signal is processed offline by a 37-tap FFE, and the receiver sensitivity of -10 dBm is
achieved. After employing the SOA as pre-amplifier, 10 dB improvement can be obtained at
the LDPC FEC limit. However, the BER curve changes with the input power. In the beginning,
the BER drops rapidly with the increase of the received optical power thanks to the improved
optical signal-to-noise ratio (OSNR). When the input power is higher than -14 dBm, the SOA is
saturated and the BER stops decreasing due to nonlinear pattern effect even given a higher OSNR.
When the input power surpasses -8 dBm, degraded BER performance can be observed, which
can be attributed to the worse nonlinear effect. The dynamic range of receiver is an important
performance indicator for the receivers deployed in PON. Considering the BER at 1×10−2, a
dynamic range is limited to 18 dB when the SOA is employed. To enlarge the dynamic range of
the receiver, nonlinear effect needs to be compensated. Following the previous analysis, the NN
is first trained by 100,000 sampled at the receiver side and then applied to the transmitter side for
pre-equalization. As shown in Fig. 6(b), the BER decreases continually with the increase of the

Fig. 7. Receiver sensitivity and system power budget versus the DML launching power.
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received optical power. When the power is higher than -10 dBm, the BER is lower than 1 ×10−5

which cannot be displayed, indicating a significantly improved dynamic range of the receiver.
Note that there is no optical filter used between the SOA and PD in the experiment, therefore the
SOA+PD solution is easy for integration as a high-sensitivity receiver with low cost.

Finally, we evaluate the system power budget and receiver sensitivity at different launching
power for 25Gbaud PAM-4 PON (i.e., 50G PON). As shown in Fig. 7, the optimal launching
power of the DML is 8 dBm and the corresponding power budget can reach 29 dB which is able
to meet the PR-30 requirement [18]. Higher launch power makes the DML bias at nonlinear
range causing nonlinear distortion, and the receiver sensitivity turns to be degraded accordingly.

5. Conclusion

We have proposed to use the NN-based pre-equalizer at the OLT to compensate the nonlinear
pattern effect in the high-speed PON system where the SOA+PD is employed as a low-cost
optical receiver at the ONU. A data set taking multiple sampling is employed for training a NN
model which is adaptive to system dynamics. Applying the equalizer at the transmitter side can
relax the complexity of DSP needed at each ONU and allows for sharing the cost with all ONUs
while maintaining system performance. The experiment validation reveals that the NN-based
pre-equalizer effectively compensate the SOA nonlinear patten effect, improving the dynamic
range of the receiver and offering a power budget as high as 29 dB for the 50G PON system.
Funding. EU H2020 5G STEP-FWD (722429); Key Technologies Research and Development Program (2019YFB1803803).
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