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Significant progress has been witnessed in the development of
organic solar cells (OSCs) with power conversion efficiency (PCE)
over 18% due to the tremendous breakthrough of non-fullerene
fused-ring small molecule acceptors (SMAs) in recent years
[1–3]. Although OSCs comprising of a polymer donor and a SMA
have achieved the highest PCE, all-polymer solar cells (all-PSCs)
consisting of tightly entangled polymer donor and polymer accep-
tor are generally considered to be the most promising practical
wearable power generators in the future due to their outstanding
device stability under mechanical and thermal stresses [4,5]. Fan
et al. [4] systematically compared the mechanical properties of
the flexible devices based on all-polymer and polymer:SMA blends
with the same polymer donor. The all-polymer blend shows excel-
lent mechanical elongation and high toughness of 9.3 MJ m�3,
which are 6 and 11 times higher than those of the polymer:SMA
one, respectively. The related flexible all-PSCs maintained >90%
of their initial PCE after bending and relaxing 1200 times at a bend-
ing radius of 4 mm, which is much superior to the SMA-based flex-
ible OSCs. Lee et al. [5] developed an all-PSC that retained over 90%
of its initial PCE even after 100 h continuous heating at 100 �C, bet-
ter than the relevant SMA-based OSCs. Driven by the above-men-
tioned advantages, several polymer acceptors based on
Y6-derivetives have been developed and boosted the PCEs of all-
PSCs up to 17% in the past two years (Fig. 1 and Table 1).

Reviewing the road-map of all-PSCs, only few polymer accep-
tors demonstrated moderate PCEs before 2017 due to their clear
shortcomings. For instance, the naphthalene/perylene diimide-
based polymer acceptors have low extinction coefficient of
~10�4 cm�1 [6] and the B  N-bridged ones suffer from narrow
absorption spectra (300–700 nm) [7], resulting in PCEs below
12%. To overcome the shortcomings, Zhang et al. [8,9] developed
a strategy of polymerizing small molecule acceptors (PSMAs) to
make high-performance polymer acceptors in 2017. As the first
milestone of this strategy, PZ1 achieved a promising PCE of over
9% in all-PSCs [8], for it inherits the advantages of its SMA precur-
sor namely IDIC-C16, i.e., wide absorption spectrum (300–800 nm),
high extinction coefficient (>105 cm�1), and high electron mobility.
After that, plenty of PSMAs based on SMAs of IDIC or ITIC
derivatives have been developed and boosted the PCEs approach-
ing 13% [9].

In 2019, a milestone A-DA’D-A type SMA, namely Y6, was devel-
oped by Yuan et al. [10], and its single-junction OSCs obtained a
record-breaking PCE of 15.7%. Unlike previous A-D-A type SMAs,
Y6 has benzothiadiazole-fused central core (dithienothiophen
[3,2-b]pyrrolobenzothiadiazole (BPT)) with a DA’D fused structure,
which results in strong quinoidal character for broadening molec-
ular absorption to near-infrared region. Moreover, the twisted cen-
tral core conjugated with two end-groups on the same side offers
the mixed intermolecular interactions from BPT-core in the per-
pendicular direction and from end-groups in the horizontal direc-
tion, forming a three-dimensional interpenetrating network for
efficient intermolecular charge transport [11]. So far, the OSCs
based on Y6 derivatives have achieved PCE over 18% [2,12].
Inspired by the successes of the PSMA strategy and Y6-derivatives,
rapid development in polymer acceptors based on Y6-derivatives
has occurred for more efficient all-PSCs (Fig. 1 and Table 1). Jia
et al. [13] reported a polymer acceptor PJ1 with a narrow bandgap
and a high absorbance by polymerizing a Y6-derivaitve with a thio-
phene spacer, and the resulting all-PSCs achieved an impressive
PCE of 14.4%. At the same time, Wang et al. [14] developed another
similar polymer acceptor PYT with different side-chain on BPT core
and obtained a PCE of 13.44% by finely controlling molecular
weight. Fan et al. [15] developed a polymer acceptor PF5-Y5 by
replacing thiophene spacer with benzodithiophene. PF5-Y5 shows
strong absorption (onset at 880 nm and extinction coefficient
>105 cm�1 in film), excellent electron mobility (>103 cm2 V�1 s�1),
and high-lying lowest unoccupied molecular orbital (LUMO) level
(�3.84 eV), which is conducive to both high open-circuit voltage
(Voc) and high short-circuit current density (Jsc) in all-PSCs. More-
over, the PF5-Y5-based all-PSCs possess smaller energy loss (Eloss)
(0.57 eV) and more efficient charge separation and transport in
comparison with the OSCs based on its SMA precursor Y5. As a
result, the PF5-Y5-based all-PSCs achieved a high PCE of 14.45%.
Different from the above polymer acceptors with an electron-
donating p-spacer, Sun et al. [16] reported an A-A type polymer
acceptor L14 with narrow bandgap and low-lying energy levels
by copolymerizing a Y6-derivative with a bithiophene-fused imide
as p-spacer. Such low-lying energy levels offer higher electron
transfer character without sacrificing Voc, being attributed to a
s://doi.
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Fig. 1. (Color online) The chemical structures of representative polymer acceptors based on Y6-derivatives.

Table 1
Performance data for binary all-PSCs with polymer acceptors based on Y6-derivatives.

Acceptors Donors Eg (eV)a Voc (V) Jsc (mA cm�2) FF (%) PCE (%) Ref.

PJ1 PBDB-T 1.41 0.90 22.3 70 14.4 [13]
PYT PM6 1.41 0.93 21.78 66.33 13.44 [14]
PF5-Y5 PBDB-T 1.41 0.946 20.65 74 14.45 [15]
L14 PM6 1.41 0.96 20.6 72.1 14.3 [16]
PY-IT PM6 1.39 0.933 22.3 72.3 15.05 [17]
PY-IT:N2200 PM6 1.39 0.947 22.60 74.9 16.04 [18]
PS1 PTzBI-oF 1.39 0.92 22.47 66.7 13.8 [19]
PZT-r PBDB-T 1.36 0.896 24.7 71.3 15.8 [20]
PFY-3Se PBDB-T 1.35 0.871 23.6 73.7 15.1 [21]
PYN-BDTF PBDB-T 1.38 0.86 22.28 69 13.22 [22]
PYTT-1 PBDB-T 1.49 0.93 20.66 70.35 13.54 [23]
PYTT-2 PBDB-T 1.49 0.91 22.00 71.53 14.32 [23]
PYTT-3 PBDB-T 1.44 0.82 21.99 68.47 12.41 [23]
PFA1 PTzBI-oF 1.41 0.87 23.96 72.67 15.11 [24]
PYF-T-o PM6 1.38 0.901 23.3 72.4 15.2 [25]
PY2F-T PM6 1.37 0.86 24.27 72.62 15.22 [26]
PY2F-T:PYT PM6 1.34 0.90 25.2 76.0 17.2 [27]
PTPBT PBDB-T 1.42 0.849 19.82 59.2 9.96 [28]
PTPBT-ET0.3 PBDB-T 1.42 0.899 21.33 65.3 12.52 [28]
PFY-2TS PBDB-T 1.40 0.906 20.47 66.3 12.31 [29]

a Calculated from absorption onsets of polymer acceptors.
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small nonradiative energy loss of 0.22 eV. Blending with PM6, L14
yielded a PCE of 14.3% in all-PSCs.

Considering the previously reported Y6-derived monomers con-
taining three isomers with bromines at different positions, Luo
et al. [17] separated these isomeric monomers and synthesized a
regio-regular polymer acceptor PY-IT. Compared to its random
analog PY-IOT (PYT), PY-IT shows red-shifted absorption and
improved electron mobility, yielding an excellent PCE of 15.05%
in PM6:PY-IT-based all-PSCs. Afterwards, Ma et al. [18] made
PM6:PY-IT:N2200-based ternary all-PSCs with an optimized mor-
phology by introducing a crystalline polymer acceptor N2200 as
the third component, and the corresponding devices achieved a
higher PCE over 16%. Recently, by replacing BPT central core of
PJ1 with dithienothiophen[3,2-b]pyrrolobenzotriazole (BPTz), Zhu
et al. [19] developed a polymer acceptor PS1. Owing to the addi-
tional solubilizing alkyl side-chain in BPTz unit, PS1 can be readily
dissolved in non-halogenated 2-methyltetrahydrofuran (THF-Me)
solvent, and the all-PSCs gave a promising PCE of 13.8%. Fu et al.
[20] reported another BPTz-containing polymer acceptor PZT-c
by combining side-chain engineering and regio-specific end-group.
Because of less electron-deficient property of benzotriazole unit,
PZT-c shows significantly red-shifted absorption and up-shifted
LUMO level in comparison with BPT-containing PYT, leading to
an improved Jsc of 24.7 mA cm�2 and a lower Eloss of 0.51 eV in
all-PSCs. As a result, a record-high PCE of 15.8% was demonstrated.
In addition to wide absorption and high LUMO level, it is also
important to note that PSMAs have good batch-to-batch consis-
tency and excellent reproducibility in device performance. By com-
bining selenophene-fused Y6-derived framework and selenophene
p-spacer, Fan et al. [21] reported a multi-selenophene-containing
narrow-bandgap polymer acceptor PFY-3Se with a high PCE of
15.1% in all-PSCs. Owing to the strong intermolecular interaction
of selenophene units, three batches of PFY-3Se with different num-
ber-average molecular weights (Mn) show similar temperature-
dependent aggregation property, helping the formation of
consistent blend morphology. In all-PSCs, PFY-3Se shows excellent
batch-to-batch reproducibility in device performance, and all the
devices based on PFY-3Se with different Mn (25.8–42.4 kDa) gave
high PCEs of 14.5% – 15.1%. Recently, the end-group modification
strategies of SMA building blocks have been also applied in design-
ing high-performance Y6-derived polymer acceptors. Su et al. [22]
reported a polymer acceptor, PYN-BDTF, by introducing p-
extended naphthalene-based end-groups. Compared to its analo-
gous polymers with benzene-based end groups, PYN-BDTF shows
a red-shifted absorption onset extending to ~900 nm. Blended with
PBDB-T, PYN-BDTF-based all-PSCs exhibited a PCE of 13.22% with a
high Jsc of 22.28 mA cm�2. Wang et al. [23] developed three poly-
mer acceptors (PYTT-1, PYTT-2, and PYTT-3) with different
isomeric thiophene-fused end-groups. The isomeric molecular
geometry significantly affects the optoelectronic, packing, and
charge-transport properties. PYTT-2 offered the highest PCE of
14.32% in all-PSCs due to the improved charge transport, less non-
radiative loss, faster charge extraction, and optimized morphology.

Fluorination of polymer acceptors based on Y6-derivatives was
also carried out to improve photovoltaic performance. Peng et al.
[24] developed a polymer acceptor PFA1 based on a Y6-derivative
with monofluorinated 1,1-dicyanomethylene-3-indanone (IC) end
group. Compared with its fluorine-free analog PY5T (PJ1) with a
low PCE of 4.01% in all-PSCs based on a wide-bandgap polymer
donor PTzBI-oF, PFA1 achieved an outstanding PCE of 15.11% due
to broadened absorption spectrum, higher extinction coefficient,
increased electron mobility, and better compatibility in PTzBI-oF:
PFA1 blend. Unlike random PFA1 (PYF-T), the regio-regular poly-
mer acceptor PYF-T-o with fluorine on the specific position showed
more ordered inter-chain packing and suitable phase separation in
active layer [25]. Blended with a polymer donor PM6, the PYF-T-o-
3

based all-PSCs offered an increased PCE of 15.2% than PFA1-based
ones (14.0%). Further, Yu et al. [26] developed a polymer acceptor
PY2F-T based on a difluorinated end group. Compared with
PYF-T-o with a monofluorinated end group, PY2F-T presented
broadened absorption and the corresponding all-PSCs gave a
higher Jsc of 24.27 mA cm�2. Then, PYT as the third component
was introduced into PM6:PY2F-T host system [27]. Thanks to the
complementary absorption and fine-tuned microstructures of the
ternary blend, the ternary all-PSCs achieved a record-high PCE of
17.2%, which is comparable to the polymer donor:SMA system.

On the other hand, Du et al. [28] synthesized a series of polymer
acceptors namely PTPBT-ETx via a random ternary copolymeriza-
tion strategy with a Y6-derived building block, a thiophene
p-spacer, and fine controlled amount of 3-ethylesterthiophene
(ET) units. With increasing ET content in PTPBT-ETx, the related
all-PSCs showed gradually increased Voc. Among the devices with
PTPBT-ETx, the PTPBT-ET0.3-based all-PSCs yielded the highest
PCE of 12.52% with a long-term photostability over 300 h. Interest-
ingly, Fan et al. [29] reported a non-fully conjugated polymer
acceptor PFY-2TS via polymerizing a Y6-derived unit (namely
YBO) with a non-conjugated thioalkyl linkage. Compared with
YBO-based fully-conjugated polymer acceptor PFY-DTC, PFY-2TS
showed similar absorption spectrum and electron mobility, but
quite different crystallinity and aggregation properties, leading to
optimal active layer morphology and better device physical pro-
cesses in all-PSCs. As a result, PFY-2TS-based all-PSCs gave a PCE
of 12.31% with a small non-radiative energy loss (0.24 eV), better
than PFY-DTC-based ones (11.08%).

Viewing the development of Y6-derived polymer acceptors, the
various molecular design strategies focus on side-chain engineer-
ing on Y6-derived building blocks for optimizing solubility,
p-spacer modification for regulating intermolecular interaction,
fluorination and regio-regulation on the end group for broadening
absorption, and screening of Y6-derived units and introduction of
the third component for optimizing crystallinity and energy levels.
Thanks to the rapid development of Y6-derived polymer acceptors,
the highest PCE over 17% has been achieved in all-PSCs [27], which
significantly narrows the PCE gap between all-PSCs and SMA-based
OSCs. With fine-tuned polymer structures and optimized active-
layer morphologies, all-PSCs achieve high Jsc enabled by broaden-
ing absorption spectra (300–920 nm), increased Voc due to well-
matched energy levels and decreased energy loss (0.50–0.55 eV),
and improved fill factor, leading to the state-of-the-art all-PSCs
performing quite close to the most efficient SMAs-based devices.
To this end, one can confidently conclude that the photovoltaic
performance of all-PSCs does not necessarily fall behind
SMAs-based devices. Apart from further improvement of PCEs for
all-PSCs through the development of novel polymer donors and
acceptors, optimization of morphologies and innovation of device
architectures, further attention should be paid to the device stabil-
ity, batch-to-batch variations, and large-area processing
techniques in near future.
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