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We consider Gaussian quantum circuits supplemented with non-Gaussian input states and derive sufficient
conditions for efficient classical strong simulation of these circuits. In particular, we generalise the stellar
representation of continuous-variable quantum states to the multimode setting and relate the stellar rank of the
input non-Gaussian states, a recently introduced measure of non-Gaussianity, to the cost of evaluating classically
the output probability densities of these circuits. Our results have consequences for the strong simulability of a
large class of near-term continuous-variable quantum circuits.
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I. INTRODUCTION

Understanding the origin of quantum advantage is of
paramount importance at both the fundamental and techno-
logical levels. Continuous-variable (CV) systems are being
recognized as a promising alternative to the use of qubits.
On the one hand, unprecedented large CV entangled quantum
states, of up to one million elementary systems, can be deter-
ministically generated [1,2]. On the other hand, they offer the
potential of increased robustness with respect to noise [3].

Wigner function negativity has been shown to be a nec-
essary resource for quantum advantage with CV quantum
computing architectures [4,5]. Since Gaussian states and
processes have positive Wigner functions, this necessarily
corresponds to the use of non-Gaussian resources. However,
establishing under which conditions non-Gaussianity is also
sufficient for quantum advantage [6], and when instead non-
Gaussian circuits are classically efficiently simulable [7], is
still an open question.

In what follows, we analyze the computational power
of non-Gaussian states and thus focus on the case where
Gaussian circuits and measurements are supplemented with
non-Gaussian input states as a computational resource. We ob-
tain a classical strong simulation algorithm in the case where
the non-Gaussian input state has a bounded support over the
Fock basis, which runs in time polynomial in the support size
and exponential in the total photon number of the input state.
Note that any normalised state can be approximated arbitrarily
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well using states of bounded support simply by considering a
renormalised truncation of the state.

This choice of input non-Gaussian states with bounded
support is motivated by the recent characterization of the
structure of non-Gaussian quantum states in the single-
mode case using the so-called stellar representation [8]. This
characterization establishes an operational hierarchy of non-
Gaussian states: The states of finite stellar rank, i.e., in a finite
level of the stellar hierarchy, are the states that can be obtained
from the vacuum with a given number of photon additions,
together with Gaussian unitary operations. Alternatively, such
states may also be obtained from a state with finite support
over the Fock basis—a core state—with a Gaussian unitary
operation. In this work, we generalize the stellar representa-
tion to the multimode case and relate the cost of classically
simulating Gaussian circuits with non-Gaussian input states to
the stellar rank of these states. Additionally, we show that the
equivalence between photon addition and core state does not
hold in the multimode setting, that is, there exist multimode
states with bounded support over the Fock basis that cannot
be obtained from the vacuum using a finite number of photon
additions and Gaussian unitary operations.

The classical simulation results obtained have conse-
quences for more general CV circuits, since non-Gaussian
gates and non-Gaussian measurements can be implemented
by Gaussian operations together with non-Gaussian ancillary
states [9–11]. In particular, we retrieve the fact that boson
sampling circuits with a logarithmic number of input photons
are strongly simulable [12], and we show that Gaussian cir-
cuits interleaved with a constant number of photon additions
or subtractions can be simulated efficiently classically. These
results are reminiscent of similar works in discrete-variable
quantum architectures, where Clifford circuits supplemented
by few magic states have shown to be classically efficiently
simulable [13,14]. Additionally, our results allow us to com-
pute the output probability distributions of a wide variety
of CV circuits and imply their efficient classical strong
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simulation when the non-Gaussianity of these circuits is small
enough, such as boson sampling with unbalanced heterodyne
detection [15,16], measurement-based CV circuits [17,18], or
approximate CVIQP circuits [19,20], among others.

The rest of the paper is structured as follows. In Sec. II,
we recall notions of classical simulation of quantum com-
putations. In Sec. III, we define classes of Gaussian circuits
with non-Gaussian input states and derive explicit expressions
for their output probability densities. In Sec. IV, we obtain a
classical algorithm for strong simulation of these circuits, with
explicit complexity depending on non-Gaussian parameters
of the input state—its support size over the Fock basis and
its stellar rank. This allows us to give efficient simulability
results when these parameters are small enough with respect
to the size of the computation for various interesting sub-
classes of Gaussian circuits with non-Gaussian input states.
We conclude in Sec. V.

II. CLASSICAL SIMULATION OF
QUANTUM COMPUTATIONS

Depending on the approach used for simulating classically
the functioning of quantum devices, several notions of simu-
lability are commonly used. Hereafter, we recall the notions
of strong and weak simulation.

A. Strong simulation

To each quantum computation is associated a probability
distribution from which classical outcomes are sampled. In
the case of continuous-variable quantum computations with
continuous outcomes, the output probability distribution is
replaced by an output probability density. This motivates the
following (informal) definition [21,22]:

Definition 1 (Strong simulation). A quantum computation
is strongly simulable if there exists a classical algorithm which
evaluates its output probability distribution (density) or any of
its marginals for any outcome in time polynomial in the size
of the quantum computation.

This notion of simulability is referred to as strong because
it asks more from the classical simulation algorithm than from
the quantum computation: the quantum computation is merely
sampling from a probability distribution (density), while the
classical algorithm has to compute efficiently the exact prob-
abilities. Various relaxations of this definition are possible,
allowing the classical evaluation to be approximate rather than
exact or to abort with a small probability.

B. Weak simulation

A sampling counterpart to the notion of strong simulation
is to ask the classical simulation algorithm to mimic the output
of the quantum computation [21,22]. Informally:

Definition 2 (Weak simulation). A quantum computation
is weakly simulable if there exists a classical algorithm
which outputs samples from its output probability distribu-
tion (density) in time polynomial in the size of the quantum
computation.

Akin to strong simulation, various relaxations of this def-
inition are possible, allowing the classical sampling to be

approximate rather than exact or to abort with a small proba-
bility. Hereafter we only consider the definition above.

In the case of continuous-variable quantum computations
with continuous outcomes, a weaker requirement is to ask the
classical simulation not to sample from the output probability
density but rather from a discretized probability distribution
obtained from the probability density by performing an effi-
cient binning of the sample space. Indeed, samples from the
output probability density yield samples of such a discretized
probability distribution with efficient classical postprocessing.

As it turns out, weak simulation is indeed weaker than
strong simulation, as was shown in Refs. [21,22]: An effi-
cient classical algorithm for strong simulation provides an
efficient classical algorithm for weak simulation (assuming
one can efficiently sample from efficiently computable uni-
variate probability distributions over a polynomial number
of samples). For quantum computations yielding continuous
classical outcomes, the result still holds with a similar proof
for binned discretized probability distributions rather than the
corresponding probability density, as long as the discretized
probabilities can be computed efficiently from the probability
density and have support on a polynomial number of bins for
each mode.

In what follows, we consider strong simulation of a large
class of CV quantum circuits: Gaussian circuits with non-
Gaussian input states.

III. GAUSSIAN CIRCUITS WITH NON-GAUSSIAN
INPUT STATES

A. The stellar representation

The stellar representation of single-mode continuous-
variable quantum states has been introduced in Ref. [8].
It establishes a hierarchy among single-mode non-Gaussian
pure states based on the number of zeros of their Husimi Q
function [23]. It shows that any state of stellar rank N , that is,
whose Husimi Q function has exactly 2N zeros (counted with
multiplicity), may be written in the following form:

D̂(α)Ŝ(ξ ) |C〉 , (1)

where D̂(α) is a displacement of amplitude α ∈ C, Ŝ(ξ ) is a
squeezing of parameter ξ ∈ C and |C〉 is a core state of rank
N , i.e., a state which has bounded support over the Fock basis
with highest Fock state |N〉. Additionally, the stellar rank of
a pure quantum state corresponds to the minimal number of
photon additions that are necessary to engineer the state from
the vacuum, together with Gaussian unitary operations.

Hereafter, we extend a few definitions from Ref. [8] to the
multimode case, using bold math for multi-index notations
(see Appendix A). First, the stellar function, which provides a
representation of multimode pure states as multivariate holo-
morphic functions:

Definition 3 (Multimode stellar function). Let m ∈ N∗ and
let |ψ〉 = ∑

n�0 ψn |n〉 ∈ H⊗m be a normalized pure state over
m modes. The stellar function of the state |ψ〉 is defined as

F �
ψ (z) = e

1
2 ‖z‖2 〈z∗|ψ〉 =

∑
n�0

ψn√
n!

zn, (2)
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for all z ∈ Cm, where |z〉 = e− 1
2 ‖z‖2 ∑

n�0
zn√
n!

|n〉 ∈ H⊗m is
the coherent state of complex amplitude z.

The following definition also extends naturally from the
single-mode case:

Definition 4 (Multimode core state). Multimode core
states are defined as the normalized pure quantum states
which have a (multivariate) polynomial stellar function.

Like in the single-mode case, these are the states with a
finite support over the (multimode) Fock basis. For any m ∈
N∗, the set of multimode core states over m modes is dense in
the set of normalized states for the trace norm (by considering
renormalized cutoff states). We also introduce the following
definitions:

Definition 5 (Degree of a multimode core state). The
degree of a multimode core state is defined as the degree-sum
of its stellar function.

This definition generalizes to the multimode case the no-
tion of stellar rank for core states in the single-mode case.

Definition 6 (Support of a multimode core state). The sup-
port of a multimode core state is the set of Fock basis states
which have nonzero overlap with the core state.

For example, the four-mode core state 1√
2
(|1230〉 +

|0001〉) has degree 6 and support size 2, and its stellar function
is given by 1

2
√

6
z1z2

2z3
3 + 1√

2
z4, for all z1, z2, z3, z4 ∈ C4.

Single-mode states of finite stellar rank—which are the
states whose stellar function has a finite number of zeros—
have two equivalent representations: They are obtained either
from an underlying core state by a Gaussian unitary opera-
tion or from the vacuum by photon additions and Gaussian
unitary operations. In the multimode setting, however, the
stellar function has either no zeros or an uncountable infinite
number of zeros [24]. Moreover, we show in Lemma 1 that
the two representations are no longer equivalent in the multi-
mode setting: The class of multimode states that are obtained
from a multimode core state by a multimode Gaussian unitary
operation is strictly larger than the class of multimode states
that can be obtained from the vacuum by photon additions and
multimode Gaussian unitary operations. Hence, we generalize
the notion of finite stellar rank for multimode states as follows:

Definition 7 (Multimode stellar rank). Let |ψ〉 = Ĝ |C〉,
where Ĝ is a multimode Gaussian unitary and |C〉 is a
multimode core state. The stellar rank of the multimode state
|ψ〉 is defined as the degree of |C〉.

Additionally, for multimode quantum states which do not
admit a decomposition of the form Ĝ |C〉, we define their
stellar rank to be +∞.

As in the single-mode case, it is easily seen that the stellar
rank is invariant under Gaussian unitary operations (we refer
to Ref. [8] for the proofs in the single-mode case). Similarly,
the notion of multimode stellar rank induces a multimode
stellar hierachy which is robust with respect to the trace norm.
In what follows, we only consider multimode states of finite
stellar rank, which form a dense subset of the multimode
Hilbert space (since these include the set of multimode core
states).

We now turn to the analysis of the computational power
of multimode non-Gaussian states. We consider Gaussian
unitary circuits with multimode states of finite stellar rank
in input. Since these states are of the form Ĝ |C〉, where Ĝ

FIG. 1. Representation of a Gcore circuit with multimode core
state input |C〉. The unitary Ĝ is Gaussian and the measurement is
performed by heterodyne detection.

is a given multimode Gaussian unitary and |C〉 is a given
multimode core state, this is equivalent to consider Gaussian
unitary circuits with input core states. In what follows, we
show that the degree and support size of a multimode core
state are sufficient to quantify the hardness of strongly simu-
lating Gaussian circuits with input core states.

B. Gcore circuits

We define Gcore circuits as the family of Gaussian circuits
with Gaussian measurements, supplemented by non-Gaussian
multimode core states in the input.

Measuring a state with unbalanced heterodyne detection
effectively amounts to squeezing the state and then sampling
from its Q function [16], with a squeezing parameter ξ ∈ C
depending on the unbalancing of the detection. Setting ξ = 0
yields balanced heterodyne detection, while sending |ξ | = r
to infinity yields homodyne detection. Any Gaussian measure-
ment can thus be implemented by Gaussian unitary operations
and heterodyne detection only, since it can be implemented
by Gaussian unitary operations and homodyne detection only
[25,26]. Without loss of generality, a Gaussian measurement
may thus be written as a tensor product of single-mode bal-
anced heterodyne detections preceded by a Gaussian unitary.
Gcore circuits are then described by two (multidimensional)
parameters: a multimode core state |C〉 in the input and a
Gaussian unitary evolution Ĝ (Fig. 1).

In what follows, we derive a general expression for the
output probability density functions of these circuits. Then,
we study the classical simulability of Gcore circuits and of
various notable subclasses of these circuits.

C. Output probability density of Gcore circuits

We first recall a few combinatorial functions related to
the permanent, which appear in the expressions of the output
probability densities. The Hafnian of a square matrix A =
(ai j )1�i, j�2m of size 2m is defined as [27]

Haf (A) :=
∑

M∈PMP (2m)

∏
{i, j}∈M

ai j, (3)

where the sum is over the perfect matchings of the set
{1, . . . , 2m}, i.e., the partitions of {1, . . . , 2m} in subsets of
size 2. The Hafnian of a matrix of odd size is 0. The Hafnian
is related to the permanent by

Haf

(
0m B

BT 0m

)
= Per (B), (4)
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for any m × m matrix B. By convention we set Haf (∅) = 1,
where ∅ is a square matrix of size 0.

The loop Hafnian of a square matrix R = (ri j )1�i, j�r of
size r is defined as [28]

lHaf (R) :=
∑

M∈SMP (r)

∏
{i, j}∈M

ri j, (5)

where the sum is over the single pair matchings of the set
{1, . . . , r}, defined as the set of perfect matchings of a com-
plete graph with loops with r vertices. This set is isomorphic
to the set �1,2({1, . . . , r}) of partitions of {1, . . . , r} in subsets
of size 1 and 2 (by mapping a block {k} of size 1 of a
partition to the matching {k, k} and a block {i, j} of size 2 to
the matching {i, j}). In particular, when R is a matrix whose
diagonal entries are all 0, we have lHaf (R) = Haf (R). The
loop Hafnian of a matrix of size r may be computed in time
O(r32r/2) [28].

We obtain a closed expression for the output probabil-
ity density of Gaussian circuits with multimode core states
input in Theorem 1, by adapting proof techniques from
Refs. [29–31] (see Appendix A for multi-index notations):

Theorem 1. Let m, n ∈ N and let

|C〉 =
∑

p ∈ Nm

|p| � n

cp |p〉, (6)

be an m-mode core state of degree n. Let Ĝ be a Gaussian
unitary over m modes. For all α ∈ Cm, let us write V and d̃ =
(d, d∗) the covariance matrix and the displacement vector of
the Gaussian state Ĝ† |α〉. Then, the output probability density
for the Gcore circuit Ĝ with input |C〉 and heterodyne detection,
evaluated at α, is given by

Prcore[α] = κ (α, Ĝ)
∑

p, q ∈ Nm

|p| � n, |q| � n

× (−1)|p|+|q|
√

p!q!
cpc∗

qlHaf (Ap,q), (7)

where

κ (α, Ĝ) =
exp

[
− 1

2 d̃
†
(V + 12m/2)−1d̃

]
πm

√
Det (V + 12m/2)

(8)

is a Gaussian prefactor and where Ap,q is the square matrix of
size |p| + |q| obtained from

V =
(

0m 1m

1m 0m

)
[12m − (V + 12m/2)−1] (9)

and

D = [d̃
†
(V + 12m/2)−1]T , (10)

by replacing the diagonal of V by the elements of D, then
by repeating pk times the kth row and column and qk times
the (m + k)th row and column of the obtained matrix for all
k ∈ {1, . . . , m}.

We give a proof in Appendix B. When the input core
state is a multimode Fock state, we refer to the corresponding
subclass of Gcore circuits as GFock circuits (see Fig. 2). In that

FIG. 2. Representation of a GFock circuit with multimode Fock
state input |n1 . . . nm〉. The unitary Ĝ is Gaussian and the measure-
ment is performed by heterodyne detection.

case, the sum in Eq. (7) reduces to a single term and we obtain
the following result:

Corollary 1. Let m, n ∈ N and let n = (n1, . . . , nm) with
|n| = n. Let Ĝ be a Gaussian unitary over m modes. For
α ∈ Cm, let us write V and d̃ = (d, d∗) the covariance matrix
and the displacement vector of the Gaussian state Ĝ† |α〉.
Then, the output probability density for the GFock circuit Ĝ
with Fock state input |n〉 and heterodyne detection, evaluated
at α, is given by

PrFock[α] =
exp

[
− 1

2 d̃
†
(V + 12m/2)−1d̃

]
n!πm

√
Det (V + 12m/2)

lHaf (An,n), (11)

where An,n is the square matrix of size 2n obtained from

V =
(

0m 1m

1m 0m

)
[12m − (V + 12m/2)−1] (12)

and

D = [d̃
†
(V + 12m/2)−1]T . (13)

by replacing the diagonal of V by the elements of D, then by
repeating nk times the kth and the (m + k)th rows and columns
of the obtained matrix for all k ∈ {1, . . . , m}.

Note that the expressions obtained in Theorem 1 and
Corollary 1 may be used to retrieve the expressions of the
output probability distributions for a large class of CV circuits
that do not necessarily have all their non-Gaussian elements
in the input. To see this, consider a Gcore circuit of size
2m with input |C〉 ⊗ |C′〉, where |C〉 and |C′〉 are m-mode
core states, with Gaussian evolution Ĝ ⊗ 1, where Ĝ is an
m-mode Gaussian evolution, and projecting onto tensor prod-
ucts of displaced two-mode squeezed states between mode
k and m + k, for all k ∈ {1, . . . , m}. Its output probability
density evaluated at 0, in the limit of infinite squeezing for
the two-mode squeezed states, is given by | 〈C|Ĝ|C′〉 |2, up to
a normalization factor. This encompasses the expressions of
output probabilities of boson sampling circuits [12], when Ĝ
is a passive linear evolution and |C〉 and |C′〉 are multimode
Fock states, or else of Gaussian boson sampling circuits [29],
when |C〉 = |0〉⊗m.

IV. STRONG SIMULATION OF WEAKLY
NON-GAUSSIAN QUANTUM CIRCUITS

In this section, we use the expression obtained in Theorem
1 in order to study strong simulation of CV quantum circuits
with few non-Gaussian elements. The first general result deals
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FIG. 3. Representation of interleaved photon-added Gaussian
circuits with n photons additions. The unitaries Ĝ(0), . . . , Ĝ(n) are
Gaussian and the measurement is performed by balanced heterodyne
detection. Note that all photon additions act on the first mode without
loss of generality, since swapping two modes is a Gaussian operation.

with Gcore circuits, i.e., Gaussian circuits with multimode core
state input.

Theorem 2. Let m ∈ N∗ and let |C〉 be an m-mode core
state of support size s and degree n. Then, Gcore circuits over
m modes with input |C〉 and heterodyne detection can be
strongly simulated classically in time O(s2n32n + poly m).

The expression of the probability density Prcore[α] in The-
orem 1 is composed of a Gaussian prefactor multiplied by a
sum of s2 loop Hafnians of matrices of size at most 2n, where
s is the suppost size and n is the degree of the input core state.
The Gaussian prefactor may be computed efficiently in m the
number of modes. Thus, to compute the output probability
density, one may compute s2 loop Hafnians of matrices of size
at most 2n, which can be done in time O(s2n32n) [28]. In order
to obtain an algorithm for strong simulation, one also needs to
compute marginals. We show in Appendix C that these may
also be computed in time O(s2n32n + poly m).

Theorem 2 implies that strong simulation of Gcore cir-
cuits is efficient (polynomial in m) when the input core
state has a logarithmic degree n = O(log m) and polynomial
support size s = O(poly m). This result may be understood
as a generalization of the efficient classical simulability of
Gaussian computations [32], and has consequences for the
simulability of various continuous-variable quantum comput-
ing models, in particular those based on Gaussian operations
and photon additions or subtractions. We define and con-
sider three interesting examples in what follows: interleaved
photon-added Gaussian circuits (IPAG), interleaved photon-
subtracted Gaussian circuits (IPSG), and Gaussian circuits
with input Fock states (GFock).

First, we define IPAG circuits with m modes and n photon
additions as (i) product vacuum state over m modes in input;
(ii) an evolution composed of interleaved multimode Gaussian
unitaries Ĝ(0), . . . , Ĝ(n) and n single-mode photon additions;
and (iii) a Gaussian measurement. Without loss of generality,
all the photon additions act on the first mode, since swap-
ping two modes is a Gaussian operation. Moreover, up to an
added Gaussian unitary to the final Gaussian unitary Ĝ(n), the
measurement may be written as a tensor product of balanced
heterodyne detections (Fig. 3).

The stellar hierarchy of single-mode pure quantum states
derived in Ref. [8] details the engineering of a single-mode
quantum state from the vacuum using unitary Gaussian opera-
tions and single photon addition as a non-Gaussian operation.
In particular, the states of finite stellar rank, which correspond
to the states that can be obtained from the vacuum using a

finite number of single photon additions or subtractions, are
shown to be exactly the states that are obtained by applying
a Gaussian unitary operation to a single-mode core state [see
Eq. (1)].

The situation is different in the multimode case: We show
that the set of states that can be obtained from a multimode
core state with a multimode Gaussian unitary operation is
strictly larger than the set of states that can be obtained from
the vacuum using a finite number of single photon additions
and Gaussian unitary operations. We do so by providing ex-
plicitly an example of a state that is a multimode core state,
and that is not obtainable with IPAG circuits (Lemma 1). We
also deduce strong simulability results for IPAG circuits.

We first establish a reduction to an equivalent model
where the evolution and measurement are Gaussian and only
the input state is non-Gaussian. This is done by commuting
the photon additions to the input of the circuit. The output
state of an IPAG circuit with m modes, n photon additions and
Gaussian unitaries Ĝ(0), . . . , Ĝ(n) is given by

Ĝ(n)â†
1Ĝ(n−1)â†

1 . . . Ĝ(1)â†
1Ĝ(0) |0〉⊗m . (14)

Gaussian operations act on annihilation and creation operators
through their symplectic representation, inducing affine trans-
formations of the vector of annihilation and creation operators
[33]. Let us define the column vector of ladder operators

λ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â†
1

...

â†
m

â1

...

âm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

and let Ĝ be an m-mode Gaussian operation. Then, there exists
a 2m × 2m symplectic matrix S = (si j )1�i, j�2m and a complex
vector d = (d1, . . . , dm), such that for all k ∈ {1, . . . , m},

Ĝâ†
kĜ† = dk + (Sλ)k

= dk +
m∑

l=1

sk,l â
†
l + sk,m+l âl ,

(16)

where (Sλ)k indicates the kth element of the column vector
Sλ and the identity operator is omitted for brevity. Hence,
commuting to the right the creation operators in Eq. (14),
starting by the rightmost one, yields

Ĝ(n)â†
1 . . . Ĝ(1)â†

1Ĝ(0) |0〉⊗m

= Ĝ(n)â†
1 . . . a†

1Ĝ(1)Ĝ(0)
[
d (0)

1 + (S(0)λ)1
]|0〉⊗m

= . . .

= Ĝ(n) . . . Ĝ(0)

× [
d (n−1)

1 + (S(n−1)λ)1
]
. . .

[
d (0)

1 + (S(0)λ)1
] |0〉⊗m ,

(17)
where S(k) and d (k) = (d (k)

1 , . . . , d (k)
m ) implement the

affine transformation corresponding to the action of
(Ĝ(k)Ĝ(k − 1) . . . Ĝ(0) )†, for all k ∈ {0, . . . , n − 1}. Writing
Ĝ := Ĝ(n)Ĝ(n−1) . . . Ĝ(0) and S(k) = (s(k)

i, j )1�i, j�2m for
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k ∈ {0, . . . , n − 1}, we obtain the output state

Ĝ |CIPAG〉 , (18)

where the state

|CIPAG〉 :=
[

d (n−1)
1 +

m∑
l=1

s(n−1)
1,l â†

l + s(n−1)
1,m+l âl

]

. . .

[
d (0)

1 +
m∑

l=1

s(0)
1,l â

†
l + s(0)

1,m+l âl

]
|0〉⊗m (19)

is a multimode core state of degree equal to n, by property
of symplectic matrices. Using this characterization, we obtain
the following result:

Lemma 1. The set of output states of IPAG circuits is
strictly included in the set of output states of Gcore circuits.

We prove this Lemma in Appendix D by showing that the
core state 1√

2
(|20〉 + |01〉) cannot be generated by an IPAG

circuit. In other words, the set of states that can be obtained
from a multimode core state with a multimode Gaussian uni-
tary operation is strictly larger than the set of states that can
be obtained from the vacuum using a finite number of single
photon additions and Gaussian unitary operations, unlike in
the single mode case, where the two sets coincide.

When n = O(1), the support size of the core state |CIPAG〉
in Eq. (19) is O(poly m) and its degree is O(1). Then, from a
direct application of Theorem 2 we obtain:

Lemma 2. IPAG circuits over m modes with n = O(1) pho-
ton additions can be strongly simulated efficiently classically.

When n = O(log m), however, the support size of the core
state is superpolynomial, so the classical simulation is no
longer efficient. Note that when photon additions are imple-
mented using Gaussian operations and threshold detection,
Ref. [34] gives a classical simulation algorithm which has ex-
ponential space complexity in the number of photon additions.

Similarly, we define interleaved photon-subtracted Gaus-
sian circuits (IPSG) by replacing photon additions by
subtractions in the definition of IPAG circuits. With a similar
proof we obtain the following result:

Corollary 2. IPSG circuits over m modes with n = O(1)
photon subtractions can be strongly simulated efficiently clas-
sically.

Note that the same reasoning holds for Gaussian circuits
interleaved with both photon additions and subtractions.

A particular subclass of IPAG circuits, where all the photon
additions act at the beginning of the circuit, is the class of
GFock circuits, i.e., Gaussian circuits with Fock state input.
In that case, the input is a multimode core state of support
size 1. With Corollary 1, we obtain the following result as an
immediate consequence of Theorem 2:

Lemma 3. Let m ∈ N∗ and let n ∈ Nm, such that |n| =
O(log m). Then, GFock circuits over m modes with Fock state
input |n〉 and heterodyne detection can be strongly simulated
efficiently classically.

In other words, sampling with Gaussian measurements
over m modes from n = O(log m) indistinguishable photons
is strongly simulable classically. This contrasts with the case
where m = 	(poly n): In that case, strong simulation and
even weak simulation is classically hard [16].

Note that, when restricting GFock circuits to boson sampling
circuits [12] using projection onto two-mode squeezed states
as described in the previous section, we retrieve the fact that
computing classically the output probabilities is efficient for a
logarithmic number of input photons.

V. DISCUSSION AND CONCLUSIONS

In this work, we generalized the notion of stellar rank to
the multimode setting and we studied the simulatability of
Gaussian circuits with multimode non-Gaussian input states
of finite stellar rank, based on the properties of their underly-
ing core states. In particular, we have shown that Gcore circuits
over m modes, with input states possessing a support of size
n = O(poly m) over the Fock basis and which stellar function
has degree n = O(log m) can be strongly simulated efficiently
classically.

Note that this result, formalized in Theorem 2, outper-
forms existing previous results available in the literature. In
particular, in Ref. [35] it is shown that the cost for clas-
sically estimating the probability of a specific outcome of
a quantum circuit—an easier task than sampling or strong
simulatability—scales polynomially with the Wigner nega-
tivity of the circuit. In terms of the more commonly used
Wigner logarithmic negativity [36], that result could be re-
formulated by saying that the cost for classically estimating
the probability of a specific outcome of a quantum circuit
scales exponentially with the Wigner logarithmic negativity
of the circuit [37]. For some core states of degree O(log m),
such as the Fock state with log m photons in log m modes and
vacuum in the other m − log m modes, the Wigner logarithmic
negativity is 	(log m log(log(m))). Therefore, the classical
cost for estimating outcome probabilities with the simulation
algorithm from Ref. [35] becomes superpolynomial, i.e., is
no longer classically efficient. In contrast, the results on the
efficient classical simulatability of Theorem 2 show that we
can simulate efficiently classically these circuits. Also note
that our results deal with a stronger notion of simulatability
than outcome probability estimation.

Our results are complementary to those in a recently ap-
peared work [7], where non-Gaussian states with unbounded
Wigner negativity supplemented to Gaussian circuits are also
shown to be classically efficiently simulable. In that work, the
simulatability with input unbounded non-Gaussianity, namely
with states characterized by infinite stellar rank, is possi-
ble due to the fact that the input states are discrete-variable
stabilizer states encoded in CV by means of some bosonic
encoding, such as for instance the Gottesman-Kitaev and
Preskill one [9].

We have also identified various subclasses of Gcore cir-
cuits to which our simulation algorithm applies. In particular,
we have shown that Gaussian circuits interleaved with a
constant number of photon additions or subtractions can be
efficiently strongly simulated classically. However, the clas-
sical algorithm is no longer efficient when the number of
photon additions is logarithmic in the number of modes. This
contrasts with the—intuitively equivalent—discrete variable
case where strong simulation of Clifford circuit supplemented
with a logarithmic number of T gates is classically efficient
[38,39]. It would be interesting to investigate whether this is a
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fundamental difference between the discrete- and continuous-
variable cases, or else if more efficient classical simulation
algorithms may be derived in the case of CV circuits based on
photon addition and subtraction.

Since any quantum state may be approximated up to
arbitrary precision using core states, we expect to obtain
approximate simulation results for circuits with specific in-
put non-Gaussian states, such as cat states or GKP states
[9]. It would also be interesting to investigate further
weaker notions of classical simulability for these circuits,
such as weak simulation. Finally, it is an open ques-
tion whether the measure of non-Gaussianity based on the
stellar rank can be related to other operational tasks, anal-
ogously to Ref. [40]. We leave these questions for future
work.
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APPENDIX

In this Appendix we provide the notations and proofs for
the results stated in the main text.

APPENDIX A: MULTI-INDEX NOTATIONS

We use bold math for multimode states, vectors and multi-
index notations. Let m, n ∈ N∗. We define 0 = (0, . . . , 0) and
1 = (1, . . . , 1), and we write 0n = (0, . . . , 0) ∈ Nn or 1n =
(1, . . . , 1) ∈ Nn to avoid ambiguity. For all k ∈ {1, . . . , m},
we also define 1k = (0, . . . , 0, 1, 0, . . . , 0), where the kth
entry is 1 and all the other m − 1 entries are 0. For
all z = (z1, . . . , zm) ∈ Cm, all z′ = (z′

1, . . . , z′
m) ∈ Cm and all

p = (p1, . . . , pm) ∈ Nm we write

z∗ = (z∗
1, . . . , z∗

m)

−z = (−z1, . . . ,−zm)

z̃ = z ⊕ z∗ = (z1, . . . , zm, z∗
1, . . . , z∗

m)

|z〉 = |z1 . . . zm〉
‖z‖2 = |z1|2 + · · · + |zm|2

zp = zp1
1 . . . zpm

m

z + z′ = (z1 + z′
1, . . . , zm + z′

m)

z � z′ ⇔ zk � z′
k ∀k ∈ {1, . . . , m}

p! = p1! . . . pm!

|p| = p1 + · · · + pm

∂ p = ∂
p1
1 . . . ∂ pm

m(
∂

∂z

)p

= ∂ |p|

∂zp1
1 · · · ∂zpm

m
. (A1)

APPENDIX B: PROOF OF THEOREM 1

We first prove an intermediate technical result:
Lemma 4. Let m ∈ N∗, let V be a 2m × 2m symmetric ma-

trix and let D be a column vector of size 2m. For all p, q ∈ Nm,
there exists a square matrix Ap,q(V, D) of size |p| + |q| such
that

Tp,q(V, D) :=
∫

β∈Cm

exp

[
1

2
β̃

T
V β̃ + DT β̃

](
∂

∂β

)p(
∂

∂β∗

)q

× δ2m(β,β∗) dmβ dmβ∗

= (−1)|p|+|q|lHaf [Ap,q(V, D)], (B1)

assuming the integral is well defined. The matrix Ap,q(V, D)
is obtained by repeating the entries of V according to p and
q and replacing the diagonal of the matrix obtained by the
corresponding elements of D (a detailed example follows the
proof).

Proof. Writing p = (p1, . . . , pm) and q = (q1, . . . , qm),
we first get rid of the integral by successive integration by
parts:

Tp,q(V, D) = (−1)|p|+|q|
(

∂

∂β

)p(
∂

∂β∗

)q

exp

[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

= (−1)|p|+|q|
m∏

j=1

(
∂

∂β j

)p j
(

∂

∂β∗
j

)q j

exp

[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

(B2)

= (−1)|p|+|q| ∏
j∈Ep,q

(
∂

∂β̃ j

)
exp

[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

,

where the multiset Ep,q is defined as the set of size |p| + |q| obtained from {1, . . . , 2m} by repeating pk times the index k and qk

times the index m + k, for all k ∈ {1, . . . , m}.
We make use of Faà di Bruno’s formula [41] in order to expand the product of partial derivatives and we obtain

Tp,q(V, D) = (−1)|p|+|q| ∑
π∈�(Ep,q )

∏
B∈π

(
∂ |B|∏
j∈B ∂β̃ j

)[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

, (B3)
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where �(Ep,q) denotes the set of all partitions of the multiset Ep,q, and where the product runs over the blocks B of the partition

π ∈ �(Ep,q), with |B| the size of the block. The function β̃
†
V β̃ + D†β̃ is a sum of a quadratic and a linear functions, so all

derivatives of order greater than 2 in the sum vanish. We thus have

Tp,q(V, D) = (−1)|p|+|q| ∑
π∈�1,2(Ep,q )

∏
B∈π

(
∂ |B|∏
j∈B ∂β̃ j

)[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

= (−1)|p|+|q| ∑
π∈�1,2(Ep,q )

∏
{i, j}∈π

(
∂2

∂β̃i∂β̃ j

)[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

∏
{k}∈π

(
∂

∂β̃k

)[
1

2
β̃

T
V β̃ + DT β̃

]∣∣∣∣∣
β̃=0

, (B4)

where �1,2(Ep,q) denotes the set of all partitions of the multiset Ep,q in subsets of size 1 and 2. All derivatives of order 2 of the
linear term vanish, and all derivatives of order 1 of the quadratic term vanish when evaluated at β̃ = 0. We thus obtain

Tp,q(V, D) = (−1)|p|+|q| ∑
π∈�1,2(Ep,q )

∏
{i, j}∈π

(
∂2

∂β̃i∂β̃ j

)[
1

2
β̃

T
V β̃

]∣∣∣∣∣
β̃=0

∏
{k}∈π

(
∂

∂β̃k

)[
DT β̃

]∣∣∣∣∣
β̃=0

. (B5)

Writing V = (vi j )1�i, j�2m, with V = V T , and D = (dk )1�k�2m

we obtain

Tp,q(V, D) = (−1)|p|+|q| ∑
π∈�1,2(Ep,q )

∏
{i, j}∈π

vi j

∏
{k}∈π

dk . (B6)

We now show that this expression may be rewritten as the loop
Hafnian of a matrix of size |p| + |q|. Define Vp,q the (|p| +
|q|) × (|p| + |q|) matrix obtained from V by repeating pk

times its kth rows and columns and qk times its (m + k)th rows
and columns, for k ∈ {1, . . . , m}. Similarly, define Dp,q the
column vector of size |p| + |q| obtained from D by repeating
pk times its kth element and qk times its (m + k)th element,
for k ∈ {1, . . . , m}. Finally, let Ap,q(V, D) = (ai j )1�i, j�|p|+|q|
be the (|p| + |q|) × (|p| + |q|) matrix obtained from Vp,q by
replacing its diagonal with the vector Dp,q. Then, Eq. (B6)
rewrites

Tp,q(V, D) = (−1)|p|+|q| ∑
π∈�1,2({1,...,|p|+|q|})

∏
{i, j}∈π

ai j

∏
{k}∈π

akk

= (−1)|p|+|q| ∑
M∈SMP(|p|+|q|)

∏
{i, j}∈M

ai j

= (−1)|p|+|q|lHaf [Ap,q(V, D)], (B7)

where the sum in the first line is over the partitions of
{1, . . . , |p| + |q|} in subsets of size 1 and 2, where the sum
in the second line is over the single pair matchings of the
set {1, . . . , |p| + |q|} and where the third line comes from the
definition of the loop Hafnian in Eq. (5).

Let us illustrate with an example how the matrix Ap,q(V, D)
appearing in Lemma 4 is constructed from the matrix V and
the vector D. Let us set m = 2, p = (2, 0) and q = (1, 0). We
write

V =

⎛
⎜⎜⎜⎝

v11 v12 v13 v14

v21 v22 v23 v24

v31 v32 v33 v34

v41 v42 v43 v44

⎞
⎟⎟⎟⎠ and D =

⎛
⎜⎜⎜⎝

d1

d2

d3

d4

⎞
⎟⎟⎟⎠. (B8)

We first build the matrix Vp,q by repeating pk times the kth
row and column of V and qk times the (m + k)th row and
column. In that case, p = (p1, p2) = (2, 0), so we repeat 2

times the first row and column and discard the second row and
column, and q = (q1, q2) = (1, 0), so we keep the third row
and column and discard the fourth row and column, obtaining
the 3 × 3 matrix

Vp,q =

⎛
⎜⎝

v11 v11 v13

v11 v11 v13

v31 v31 v33

⎞
⎟⎠. (B9)

Similarly, we obtain the vector Dp,q by repeating pk times the
kth element of D and qk times the (m + k)th element, as

Dp,q =

⎛
⎜⎝

d1

d1

d3

⎞
⎟⎠. (B10)

Finally, we replace the diagonal of Vp,q by Dp,q:

Ap,q(V, D) =

⎛
⎜⎝

d1 v11 v13

v11 d1 v13

v31 v31 d3

⎞
⎟⎠. (B11)

In this construction by repeating rows and columns, the
first index denotes which rows and columns are repeated
for indices in {1, . . . , m}, while the second index denotes
which rows and columns are repeated for indices in {m +
1, . . . , 2m}.

Combining Lemma 4 with phase space formalism and
properties of Gaussian states, we are now ready to prove
Theorem 1:

Proof. The Gaussian circuit is composed of a Gaussian
unitary Ĝ and balanced heterodyne detection. The output
probability density reads, for all α = (α1, . . . , αm) ∈ Cm,

Prcore[α] = Tr
[
Ĝ |C〉〈C| Ĝ†�α

]
= 1

πm
Tr

[
Ĝ† |α〉〈α| Ĝ |C〉〈C|]

=
∫

β∈Cm

QĜ†|α〉〈α|Ĝ(β)P|C〉〈C|(β) dmβ dmβ∗,

(B12)

where �α = 1
πm |α〉〈α| is the POVM element corresponding

to the heterodyne detection of α = (α1, . . . , αm). The state
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Ĝ† |α〉 is a Gaussian state: let V be its covariance matrix and d its displacement vector. For all γ ∈ Cm, we write γ̃ =
(γ1, . . . , γm, γ ∗

1 , . . . , γ ∗
m ). Then, for all β ∈ Cm,

QĜ†|α〉〈α|Ĝ(β) = 1

πm
√

Det (V + 12m/2)
exp

[
−1

2
(β̃ − d̃ )†(V + 12m/2)−1(β̃ − d̃ )

]

=
exp

[
− 1

2 d̃
†
(V + 12m/2)−1d̃

]
πm

√
Det (V + 12m/2)

exp

[
−1

2
β̃

†
(V + 12m/2)−1β̃ + d̃

†
(V + 12m/2)−1β̃

]
,

(B13)

i.e., it is a Gaussian function which can be computed efficiently. On the other hand, we have

|C〉〈C| =
∑

p, q ∈ Nm

|p| � n, |q| � n

cpc∗
q |p〉〈q|, (B14)

so that

P|C〉〈C|(β) =
∑

p, q ∈ Nm

|p| � n, |q| � n

cpc∗
qP|p〉〈q|(β), (B15)

for all β ∈ Cm. Moreover we have, for all p, q ∈ Nm and all β ∈ Cm,

P|p〉〈q|(β) = e‖β‖2

√
p!q!

(
∂

∂β

)p(
∂

∂β∗

)q

δ2m(β,β∗) = e
1
2 β̃

†
β̃

√
p!q!

(
∂

∂β

)p(
∂

∂β∗

)q

δ2m(β,β∗), (B16)

where δ2m(β,β∗) = δ(β1) · · · δ(βm) δ(β∗
1 ) · · · δ(β∗

m). Combining Eqs. (B13), (B15), and (B16) with Eq. (B12) we obtain

Prcore[α] = κ (α, Ĝ)
∑

p, q ∈ Nm

|p| � n, |q| � n

cpc∗
q√

p!q!

∫
β∈Cm

{
exp

[
−1

2
β̃

†
(V + 12m/2)−1β̃

]

× exp
[
d̃

†
(V + 12m/2)−1β̃

]
e

1
2 β̃

†
β̃

(
∂

∂β

)p(
∂

∂β∗

)q

δ2m(β,β∗)

}
dmβ dmβ∗, (B17)

where we have set

κ (α, Ĝ) =
exp

[
− 1

2 d̃
†
(V + 12m/2)−1d̃

]
πm

√
Det (V + 12m/2)

. (B18)

Given that

β̃
† = β̃

T
(

0m 1m

1m 0m

)
, (B19)

for all β ∈ Cm, the integral terms in Eq. (B17) rewrite as∫
β∈Cm

exp

[
1

2
β̃

T
V β̃ + DT β̃

]

×
(

∂

∂β

)p(
∂

∂β∗

)q

δ2m(β,β∗) dmβ dmβ∗, (B20)

for |p| � n and |q| � n, where

V =
(

0m 1m

1m 0m

)
[12m − (V + 12m/2)−1] (B21)

is a 2m × 2m symmetric matrix, due to the initial structure of
the covariance matrix, and where

D = [d̃
†
(V + 12m/2)−1]T (B22)

is a column vector of size 2m. By Lemma 4, the terms in
Eq. (B20) are equal to

(−1)|p|+|q|lHaf (Ap,q), (B23)

where the square matrices Ap,q of size |p| + |q| are obtained
from V by repeating its entries according to p and q and
replacing the diagonal by the corresponding elements of D
(see the example following Lemma 4 for a detailed description
of the construction). With Eq. (B17) we finally obtain

Prcore[α] = κ (α, Ĝ)
∑

p, q ∈ Nm

|p| � n, |q| � n

× (−1)|p|+|q|
√

p!q!
cpc∗

qlHaf (Ap,q), (B24)

where

κ (α, Ĝ) =
exp

[
− 1

2 d̃
†
(V + 12m/2)−1d̃

]
πm

√
Det (V + 12m/2)

, (B25)

where V and d are the covariance matrix and the diplacement
vector of the Gaussian state Ĝ† |α〉, respectively.
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APPENDIX C: PROOF OF THEOREM 2

Proof. By Theorem 1, up to an efficiently computable
prefactor, the output probability density is a sum of s2 loop
Hafnians, where s is the support size of the input core state.
The loop Hafnian of a matrix of size r may be computed in
time O(r32r/2) [28]. For |p| � n and |q| � n, the matrices
Ap,q appearing in Eq. (7) are efficiently computable square
matrices of size |p| + |q| � 2n, so all the loop Hafnians may
be computed in time O(n32n). Hence, the output probability
density can be evaluated in time O(s2n32n + poly m).

We now consider the evaluations of the marginal
probability densities. Let k ∈ {1, . . . , m − 1}, for all α =
(α1, . . . , αk ) ∈ Ck we have

Prcore[α] = Tr[Ĝ |C〉〈C| Ĝ†(�α ⊗ 1m−k )]

= 1

π k
Tr[Ĝ†(|α〉〈α| ⊗ 1m−k )Ĝ |C〉〈C|] (C1)

= πm−k
∫

β∈Cm

QĜ†(|α〉〈α|⊗1m−k )Ĝ(β)P|C〉〈C|(β)dmβ dmβ∗,

where �α = 1
π k |α1, . . . , αk〉〈α1, . . . , αk| is the POVM

element corresponding to the heterodyne detection of

(α1, . . . , αk ) over the first k modes. With Lemma 4 and
the proof of Theorem 1, it is sufficient to show that
QĜ†(|α〉〈α|⊗1m−k )Ĝ is an efficiently computable Gaussian
function in order to prove that the marginal probability
density can be evaluated in time O(s2n32n + poly m).

For all (α1, . . . , αk ) ∈ Ck and all (γ1, . . . , γm−k ) ∈
Cm−k we write α = (α1, . . . , αk, 0, . . . , 0) ∈ Cm and
γ = (0, . . . , 0, γ1, . . . , γm−k ) ∈ Cm so that α + γ =
(α1, . . . , αk, γ1, . . . , γm−k ) ∈ Cm. Using the overcomplete-
ness of coherent states we obtain, for all (α1, . . . , αk ) ∈ Ck

and for all β ∈ Cm,

πm−kQĜ†(|α〉〈α|⊗1m−k )Ĝ(β)

=
∫

γ=(γ1,...,γm−k )∈Cm−k

QĜ†|α+γ〉〈α+γ|Ĝ(β) dm−kγdm−kγ∗.

(C2)

Let S and d̃ = (d, d∗) be the symplectic matrix and the dis-
placement vector associated with the Gaussian unitary Ĝ†.
The Gaussian state

Ĝ† |α1, . . . , αk, γ1, . . . , γm−k〉 = Ĝ† |α + γ〉 (C3)

is described by the covariance matrix V = 1
2 SS† and the dis-

placement vector S(α̃ + γ̃ ) + d̃. Its Q function is thus given
by

QĜ†|α+γ〉〈α+γ|Ĝ(β) = exp
[− 1

2 (β̃ − S(α̃ + γ̃ ) − d̃ )†(V + 12m/2)−1(β̃ − S(α̃ + γ̃ ) − d̃ )
]

πm
√

Det (V + 12m/2)
, (C4)

for all (α1, . . . , αk ) ∈ Ck , for all (γ1, . . . , γm−k ) ∈ Cm−k and for all β ∈ Cm. Let us discard the efficiently computable denomina-
tor and expand the product in the exponential. Writing M = (V + 12m/2)−1, we are left with

exp

[
−1

2
(β̃ − Sα̃ − d̃ )†M(β̃ − Sα̃ − d̃ )

]
· exp

[
−1

2
γ̃†S†MSγ̃ + (β̃ − Sα̃ − d̃ )†MSγ̃

]
, (C5)

The first exponential term is an efficiently computable Gaussian function which factors out of the integral in Eq. (C2). Rewriting
Eq. (C2) up to this efficiently computable Gaussian function we are left with∫

γ=(0,...,0,γ1,...,γm−k )∈Cm

exp

[
−1

2
γ̃†S†MSγ̃ + (β̃ − Sα̃ − d̃ )†MSγ̃

]
dm−kγdm−kγ∗

=
∫

γ=(γ1,...,γm−k )∈Cm−k

exp

[
−1

2
γ̃T V γ̃ + DT γ̃

]
d2(m−k)γ̃,

(C6)

where V is the 2(m − k) × 2(m − k) submatrix of (
0m 1m

1m 0m

)
S†MS (C7)

obtained by removing the rows and columns of indices l and m + l for l ∈ {1, . . . , k}, and where D is the column vector of size
2(m − k) obtained by removing the elements of

[(β̃ − Sα̃ − d̃ )†MS]T (C8)

of indices l and m + l for l ∈ {1, . . . , k}. The matrix V and the vector D are efficiently computable. Moreover,∫
γ=(γ1,...,γm−k )∈Cm−k

exp

[
−1

2
γ̃T V γ̃ + DT γ̃

]
d2(m−k)γ̃ = (2π )m−k

√
Det (V )

exp

[
1

2
DT V −1D

]
, (C9)

which is an efficiently computable Gaussian function of β.
This implies that the value of the marginal probability density Pr [α1, . . . , αk] may be computed in time O(s2n32n + poly m).

Moreover, it is clear that this does not depent on the choice of k ∈ {1, . . . , m − 1} and on the choice of the modes. Hence, all
marginal probability densities may be evaluated in time O(s2n32n + poly m).
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APPENDIX D: PROOF OF LEMMA 1

Proof. The inclusion is immediate with Eq. (18). Up to the Gaussian unitary, it is sufficient to consider core states. To prove
the strict inclusion, we show that the m-mode core state (|20〉 + |01〉) ⊗ |0〉⊗m−2 (we omit normalization), which has degree 2,
is not a core state of the form of Eq. (19).

By Eq. (19), all m-mode core states of IPAG circuits of degree 2 have the form[
d (1) +

m∑
k=1

s(1)
k â†

k + s(1)
m+kâk

][
d (0) +

m∑
l=1

s(0)
l â†

l + s(0)
1,m+l âl

]
|0〉⊗m , (D1)

for some complex numbers d (0), d (1), s(0)
1 , . . . , s(0)

2m, s(1)
1 , . . . , s(1)

2m. This expression rewrites[
d (1) +

m∑
k=1

s(1)
k â†

k + s(1)
m+kâk

][
m∑

l=1

s(0)
l |1l〉 + d (0) |0〉

]
, (D2)

where for all l ∈ {1, . . . , m}, we write 1l = (0, . . . , 0, 1, 0 . . . , 0), with a 1 at the lth position. We finally obtain

√
2

m∑
k=1

s(0)
k s(1)

k |2k〉 +
m∑

k, l = 1
k �= l

s(0)
k s(1)

l |1k + 1l〉 +
m∑

k=1

[
d (1)s(0)

k + d (0)s(1)
k

] |1k〉 +
[

d (0)d (1) +
m∑

k=1

s(0)
k s(1)

m+k

]
|0〉 , (D3)

where for all k ∈ {1, . . . , m}, we write 2k = (0, . . . , 0, 2, 0 . . . , 0), with a 2 at the kth position. On the other hand we have

(|20〉 + |01〉) ⊗ |0〉⊗m−2 = |21〉 + |12〉 . (D4)

In order for this core state to be of the form of Eq. (D3) we must have{
s(0)

1 s(1)
1 �= 0

s(0)
k s(1)

l = 0, for k �= l,
(D5)

by considering the first and second terms of Eq. (D3). This implies s(0)
k = s(1)

k = 0 for all k �= 1. Hence, the coefficient of |12〉 in
Eq. (D3) is equal to 0, while it is nonzero in Eq. (D4). Therefore the core state described by Eq. (D4) cannot be generated by an
IPAG circuit.
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