
Turn Based Communication Channel

Carlo Brunetta1, Mario Larangeira2, Bei Liang3, Aikaterini Mitrokotsa1 and
Keisuke Tanaka2

1 Chalmers University of Technology, Gothenburg, Sweden
2 Department of Mathematical and Computing Sciences, School of Computing, Tokyo

Institute of Technology, Tokyo, Japan
3 Beijing Institute of Mathematical Sciences and Applications, Beijing, China

Under Submission

Paper H - Turn Based Communication Channel 171

Abstract: We introduce the concept of turn-based communication channel between
two mutually distrustful parties with communication consistency, i.e. both parties have
the same message history, and happens in sets of exchanged messages across a limited
number of turns. Our construction leverages on timed primitives. Namely, we introduce
a novel ∆-delay hash function definition in order to establish turns in the channel. Con-
cretely, we introduce the one-way turn-based communication scheme and the two-way
turn-based communication protocol and provide a concrete instantiation that achieves
communication consistency.

Keywords: Time Puzzle, Delay, Hash Function, Consistency

172 Paper H - Turn Based Communication Channel

1 Introduction

Communication channels are the core mediums allowing different parties to build dia-
logues. They can either be physical or abstract, e.g. electromagnetic wave propagation
or a key exchange protocol that allows to establish a secure communication channel.
Either the case, channels achieve different properties which can be related to the me-
dium, e.g. reliability, energy efficiency, bandwidth, or based on the “content”, e.g. con-
fidentiality, privacy or other. A fundamental and highly desirable property of a channel
is consistency, i.e. different parties exchange messages which cannot be modified or
repudiated in the future once the communication is over. In other words, whenever a
message is shared, it is permanently fixed in the transcription. An example of a pro-
tocol that allows such a property is the public bulletin board which allows any party
to publish any information on the “board”, while receiving a “proof” that guarantees
the integrity that the information is indeed published. Recently, blockchains, or public
ledgers [BGM16, KRDO17], have emerged as complex protocols that allow the instan-
tiation of a public bulletin board, without relying on a central authority.

Their security relies on a specially purposed consensus protocol, which often requires
assumptions of game-theoretic nature, e.g. the proof-of-work consensus protocol implies
that an adversary does not have more than 51% of the available computing power at
its disposal. Bulletin boards based on consensus protocols, albeit practical, suffer from
significant delays when persisting entries. Notably, blockchain-based systems, typically
suffer from scalability issues without a clear solution yet. Consequently, for time critical
systems, blockchain-based bulletin boards may not be a useful alternative. An emerging
technology, autonomous driving, illustrates the challenge between time-critical systems
and blockchains. Autonomous driving in a real-world environment is a notoriously
hard task because of the high number of variables that must be taken into account.
Moreover, in such systems, communication between cars is a viable design approach.
Different systems must communicate and coherently agree on their action plans.

Let us consider a simplified example where a car is overtaking another one. The
one taking the action and surrounding cars must securely execute their algorithms while
communicating to each other. All the communication between the cars should be timely
available and guaranteed to be correct, i.e. could not be changed a posteriori, for audit
purposes. The transcript of the whole communication could be used later, or even
in court, for legal issues. A straightforward approach is to let vehicles be equipped
with cryptographic primitives, such as digital signatures. Despite its feasibility, the aid
of public key cryptography may not be an option in for some devices, in particular,
resource restricted ones. Besides, it may require the use of Public Key Infrastructure
(PKI) which may be, again, prohibitive for some systems.

One of the most basic building blocks in cryptographic literature are hash functions.
They are used to guarantee data integrity and are widely employed in the computer sci-
ence discipline in numerous applications. A natural question is whether such a building
block would allow the construction of a pair-wise communication channel, avoiding the
somewhat heavier cryptographic primitives earlier cited. An application relying only
on hash functions could be significantly “easier”, since it would not be aided by pub-
lic key cryptography schemes with PKI, typically more “complex” than their private
key cryptography counterpart. Furthermore, it could also sidestep the early mentioned
limitations of blockchain based protocols, yet providing a consistent and timely com-
munication channel between two users. More succinctly, we investigate the following
question:

is it possible to design a consistent channel between two parties without using
blockchain’s assumptions nor public key infrastructure?

Introduction 173

Next, we detail the main approach of our idea which is to devise a “turn”, such that
messages are exchanged only within the turns, and the proofs of submitted messages,
similary to a bulletin board, are generated in order to guarantee consistency. The set of
all turns of the channel, i.e. it contains a finite number of them are purposely related to
each other. Therefore, they are not easily altered without affecting the overall transcript
proofs of the exchanged communication.

Concept’s Overview. All the communication is held over time which allows to order
events during communication, e.g. message exchange. Commonly, our daily interac-
tion is held over continuous communication channels in which the communicating
parties can communicate at any point in time.

Our main idea, as depicted in Fig. 54, relies on providing a turn-based commu-
nication channel (TBCC) that forces the two parties to communicate in a limited
amount of distinct turns separated by a ∆ time interval. The interaction between the
parties is slowed down by the necessity of waiting for the next turn, contrary to the
almost-instantaneous reply ability of continuous channels.

Time

C
on

tin
uo

us
TB

CC

Alice

Bob

Charlie ∆ ∆

Figure 54: A continuous and TBCC channel, the messages are gathered in “blocks”, and
each block, and its set of messages, is confirmed only at the end of each turn.

To do so, we assume the existence of functions that “computationally” create time
delays and are used to extend the hash function definition and introduce the ∆-delay
hash function, which paves the way to the construction of time-lock puzzles in the
spirit of Mahmoody et al. [MMV11], i.e. a primitive that allows Alice PA to generate
a puzzle-solution pair (y,π), send the puzzle y to Bob PB that spends a time ∆ to
compute the solution π. Concretely, ∆ is the turn interval in our TBCC construction.
The novel feature provided by TBCC is that PA knows the solution π in advance and
can use it to “commit” to a message m. By releasing m and the puzzle y, PB must
invest ∆ amount of time in computing π before being able to verify the validity of m.
The early described timed-commitment is the stepping stone of our first construction for
a one-way turn-based scheme that allows the communication of blocks of messages
in turns in a single direction, e.g. from PA to PB . We show that if the one-way turn-
based scheme is correct and tamper resistant, i.e. the adversary is unable to modify the
past communication and/or the correctness of the exchanged messages, intuitively this
yields to communication consistency, i.e. both parties have the same view of the
exchanged messages even if the adversary delays/tampers any message. We define the
two-way TBCC protocol as a “two one-way scheme” which allows a simpler exten-
sion of the properties to the protocol, i.e. correctness, tamper resistance, sequentiality
and consistency. Additionally, we introduce the concept of turn synchronisation,

174 Paper H - Turn Based Communication Channel

i.e. the two communicating parties must always agree in which shared turn they are
communicating. The protocol can further provide a recovery procedure that allows
the communicating parties to fix the last-turn messages in case of a communication
error or an adversarial tamper. We summarise our ideas and contributions in Fig. 55.

Time
Assumption

One-way
Hash

∆-Delay
Hash

Mahmoody
TLP [MMV11]

Time-Lock
Puzzle

Message

Solve
Puzzle

Correct
message?

Valid!

Puzzle

∆

One-Way SchemeTwo-Way Protocol

Figure 55: Roadmap of our contributions where we depict in gray the common assump-
tion and definitions, in green our assumptions and basic primitives, in purple our main
idea and construction and in blue our main contributions.

1.1 Related Work

Blockchains and Bulletin Boards. The blockchain data structure is commonly used
in a distributed environment, where cryptographic primitives intersect with game the-
oretical assumptions in order to create a distributed database, where consistency comes
for the orderly generation of blocks added to the structure. In the literature there are
many examples of either using blockchains as a building block with new primitives,
e.g. public verifiable proofs [SSV19], or applying existing cryptographic primitives into
blockchains in order to achieve new functionalities [BBF19, KMS14]. Other focus is ded-
icated to the theoretical aspects related to the consensus mechanism or the blockchains’
theoretical model [GKL15].

Time and Cryptographic Primitives. Cryptography and timing are long time
distinct aspects that are commonly not considered together. Rivest et al. [RSW96]
described the possibility of using time to create a cryptographic time-capsule, i.e. a
ciphertext that will be possible to decrypt after a specified amount of time. Their work
defines the concept of time-lock puzzles, where timing is achieved by cleverly tweaking
the security parameters of some secure cryptographic primitives, e.g. choose a specific
parameter λ such that the computational complexity of a specific problem is solvable by
a real machine in reasonable time. Boneh et al. [BN00] presented the concept of timed
commitments, i.e. a commitment scheme in which at any point, by investing an amount
of effort, it is possible to correctly decommit into the original message. The main con-
ceptual difference with respect to previous works is that, in this work, timing properties
are achieved by forcing the algorithm to compute a naturally sequential mathematical
problem. From a different perspective, Mahmoody et al. [MMV11] defined time-lock
puzzles by just assuming the existence of timed primitives.

In the last years, many community efforts are spent into the definition of verifiable
delay functions (VDFs), i.e. to compute a timed function and be able to verify the
correct computation of it. There are multiple instantiations of this primitive in the
literature, e.g. Lenstra et al.’s random zoo [LW15], a construction using randomized
encoding by Bitansky et al. [BGJ+16] or Alwen-Tackmann’s theoretical consideration
regarding moderately hard functions [AT17]. The VDF’s formal definition is given by
Boneh et al. [BBBF18], subsequent papers provide additional properties for these time

2. PRELIMINARIES 175

related primitives such as Malavolta-Thyagarajan’s homomorphic time-puzzles [MT19]
or the down-to-earth VDF instantiation by Wesolowski [Wes19].

Timing Model. Perhaps the closest set of works to our study deals with the Timing
Model as introduced by Dwork et al. [DNS04], and used by Kalai et al. [KLP07]. While
they do present similarities to our work, e.g. the idea of “individual clock", they also
present significant differences. For instance, while in [DNS04, KLP07] every party in
the real execution is equipped with a “clock tape", extending the Interactive Turing
Machine (ITM) with clocks, in our model the parties are regular ITMs, that perform
computations in order to realize a “single clock" used by the ideal functionality. Ad-
ditionally, our work also shares similarities with Azar et al. [AGP16] work on ordered
MPC, which studies delays and ordered messages in the context of MPC. Our frame-
work is positioned between both models as it focuses on turns equipped with a message
validating mechanism, which is a different approach.

Recently, a concurrent and theoretical work by Baum et al. [BDD+20] formalizes the
security of time-lock puzzles in the UC framework. More concretely they introduce the
UC with Relative Time (RUC), which allows modelling relative delays in communication
and sequential computation without requiring parties to keep track of a clock, in contrast
to Katz et al.’s [KMTZ13] approach which models a “central clock” that all parties have
access. The main contribution introduces a semi-synchronous message transmission
functionality in which the adversary is aware of a delay ∆ used to schedule the message
exchanges, while the honest parties are not aware. In their work, composable time-
puzzle realizes such novel functionality, and yields UC secure fair coin flips and two
party computation achieving the notion of output independent abort. They focused on
composable primitives and therefore have to rely on a constrained environment, i.e. it
has to signal the adversary and activate every party at least once. Another theoretical
difference is the focus of the order and turns but not in relative delays as in [BDD+20].

Baum et al. state as future work a possible extension to their transmission model
in which all the parties have a local clock that would allow to always terminate any
protocol. Our paper tackles that extension and provides a tangible instantiation of the
extended model.

Paper Organisation. Sec. 2 states the preliminaries and time-complexity assumption.
Sec. 3 defines the one-way and two-way TBCC protocol and related properties. Sec. 4
presents a collectively flip-coin protocol between two parties.

2 Preliminaries
In this section, we present notations and assumptions used throughout the paper.

We denote vectors with bold font, e.g. v, and Pr [E] the probability of the event E.
Let {0, 1}∗ be the binary strings space of arbitrary length, N the natural numbers, R
the real numbers and R+ the positive ones. Let [a, b] denote intervals between a and b
and x←RX the random uniform sampling in the set X. Let negl(λ) denote a negligible
function in λ, i.e. negl(λ) = O(λ−c) for every constant c > 0. We omit λ whenever
obvious by the context.

Definition 40 (One-Way Hash Function [KL08]). Let n ∈ N. The function H :
{0, 1}∗ → {0, 1}n is a one-way hash function if it satisfies the properties:

• Preimage resistance: for any x←R{0, 1}∗ and y := H(x), for any PPT ad-
versary A that, on input y, outputs x′, it holds that Pr [H(x′) = y] < negl;

• 2nd Preimage resistance: for any x←R{0, 1}∗, y := H(x), for any PPT ad-
versary A that, on input x, outputs x′ ̸= x, it holds Pr [H(x′) = y] < negl;

176 Paper H - Turn Based Communication Channel

Complexity and Time. Let time be modelled as the positive real numbers R+. At
the core of our construction, we must assume the existence of a measure µ (·) that plays
the role of a “bridge” between complexity and timing. Formally,

Assumption 7. Given a model of computation M, there exists a measure µ (·) that
takes as input an M-computable function f with input x and outputs the amount of time
µ (f , x) ∈ R+ necessary to compute f (x) in the model M. If f ⋆(x) is a probabilistic
function with input x and internal randomness r, then there exists f (x; r) deterministic
function that executes f ⋆(x) with fixed randomness r.

Informally, given a model of computation, e.g. Turing machines, quantum com-
puters, “pen-and-paper”, it is possible to measure “how much time does it take” to
compute f (x) both in the cases when f is deterministic or probabilistic14.

Another required assumption is the existence of a function family F of which func-
tions always output the results after the same amount of time. Formally,

Assumption 8. Given a model of computation M and associated µ (·), there exists a
function family F such that for any function f ∈ F , for any inputs x, x′, f is input-
independent with computing time µ (f), i.e. µ (f) = µ (f , x) = µ (f , x′).

Through the remaining of this work, we consider timing as the output of µ (·) applied
on input-independent functions. Whenever not specified, a hard problem is a problem
of which solution, computed via f , has large computation time µ (f).

The timed one-way hash function extends the hash’s properties of Def. 40.

Definition 41 (∆-Delay One-Way Hash Function). Let n ∈ N. The function H :
{0, 1}∗ → {0, 1}n is a ∆-delay one-way hash function if it is input-independent as
described in Assumption 8 and, in addition to the properties of Def. 40, the following
property also holds:

• ∆-Delay: for any PPT adversary A that takes an input x and outputs y which
runs in time µ (A, x)<∆=µ

(
H
)
, it holds that Pr

[
y = H(x)

]
<negl.

Observe that, in order for the ∆-delay’s property to make sense, the length of x might
require to be limited, e.g. x must be polynomial. We omit such detail and always
consider delay hash functions with the appropriate input space size.

Define the time-lock puzzle (TLP) as a generate-solve algorithm pair in which time
plays a design/security aspect. Our definition is inspired by Azar et al. [AGP16] and,
more specifically, we consider the construction presented by Mahmoody et al.’s [MMV11]
in the random oracle (RO) model. The provided TLP generates m+1 sequential puzzles,
i.e. a list of partial puzzle yi of which partial solution πi is necessary in order to
solve the next partial puzzle yi+1.

Definition 42 (Time-Lock Puzzle). Let m ∈ N, security parameter λ and ∆ ∈ R+

be the desired time delay. Let H : {0, 1}∗ → {0, 1}n be a ∆-delay hash function for
some n ∈ N. Let the algorithms (GenPuz, SolPuz) define a (m∆) time-lock puzzle
(m∆-TLP) as:

• GenPuz(λ, (m,∆))→ (y,π): the generation algorithm randomly samples m+1 bit-
strings xi ∈ {0, 1}n and it computes the hash H(xi) for i ∈ [0,m]. The algorithm
outputs the list of partial puzzles and partial solutions:

(y,π) :=
((

x0,H(x0)⊕ x1, ... ,H(xm−1)⊕ xm

)
, (x0, x1, ... , xm)

)
;

14Observe that the same computational problem might have different timing, e.g. solving a classic-
secure discrete logarithm instance is infeasible on a classical computer while it is theoretically feasible
on a quantum computer.

3. INSTANTIATING THE TURN BASED COMMUNICATION CHANNEL 177

• SolPuz(y, k, (π0, ... ,πk−1)) → πk: the algorithm parses y into (y0, y1, · · · , ym),
k ∈ [1,m] and the known partial solutions (π0, ... ,πk). It then outputs the partial
solution πk := yk ⊕ H(πk−1) where π0 := y0.

The following three properties must hold:

• Correctness: for every delay ∆, security parameter λ and m,n ∈ N, for every
puzzle (y,π) ! GenPuz(λ, (m,∆)), for every k ∈ [1,m], it holds that

Pr [SolPuz(y, k, (π0, ... ,πk−1))=πk] = 1

• Timing: for every delay ∆, security parameter λ and values m,n ∈ N, for every
puzzle (y,π) ! GenPuz(λ, (m,∆)), for every k ∈ [1,m] it holds that µ (SolPuz) =
∆ and generating the puzzle is faster than solving it, i.e.

µ (GenPuz) ≤ m · µ (SolPuz)

• Locking: for every delay ∆, security parameter λ and values m,n ∈ N, for every
puzzle (y,π) ! GenPuz(λ, (m,∆)), for every k ∈ [1,m] and adversary A that solves
the k-th partial puzzle, i.e. A(y, k, (π0, ... ,πk−1)) = πk, it holds that µ (A) < ∆
with only negligible probability.

The (m∆)-TLP describes a sequence of sequential puzzles that must be solved one
at a time. The timing property guarantees that the SolPuz algorithm requires a specific
∆ amount of time to be executed and that generating the whole puzzle takes less time
than solving all the m puzzles. The locking property guarantees that any adversary A
is unable to solve the partial puzzle in less time than ∆ which implies, intuitively, that
SolPuz is the most optimised algorithm for solving the partial puzzle yi. If a better
solving algorithm SolPuz′ exists with solving time ∆′ < ∆, then (GenPuz, SolPuz′) is a
(m∆′)-TLP while (GenPuz, SolPuz) cannot satisfy the locking property.

3 Instantiating the Turn Based Communication Channel
In this section, we discuss the core concepts of timed disclosure, turns block and
communication consistency, later used to fully instantiate one and two-way TBCC,
from a time-lock puzzle based on a ∆-delay hash function.

Timed Disclosure and Message Block. Consider a ∆-delay hash function and the
related time-lock puzzle (y,π) as defined in Def. 42. Alice generates and publishes the
puzzle y. On receiving y, Bob starts solving it. Within the amount of time ∆, only Alice
knows the solution π, which allows her to produce an efficient digest ξ = H(m,π) for
any message m that she wants to communicate with Bob. At this stage, Bob is unable
to compute the same digest because he does not know π. The “timed disclosure” is
achieved whenever Bob finds the solution π which enables him to accept or reject
the previously received message by verifying the correctness of the digest ξ. Timing
is key for the security of the disclosure: Alice must use the knowledge before it is
disclosed and, on the other hand, Bob should reject anything that uses such secret
after the disclosure. Differently, only after ∆ time, Bob can check which are the
correct messages that are blinded to the specific solution π and can collect them into
a turn block. Whenever we consider that Alice can publish a sequential time-lock
puzzle in which one partial solution πi is the starting point for the next partial puzzle
yi+1, Bob must filter and accept the received messages into a block every ∆ amount of
time therefore creating the concept of turns and relative message blocks. This turn
point-of-view is possible because of the sequential timed disclosure that can be seen
as a “clock that ticks” every ∆ amount of time. This means that the communication is

178 Paper H - Turn Based Communication Channel

one-way, from Alice to Bob. Alice does not see the turn because all the partial solutions
are known to her and therefore she is able to generate any possible message-digest pair
at any time, see Fig. 56.

Time

Alice

Bob

Bob’s Vision ∆ ∆

Figure 56: One-way channel scheme representation. Alice shares a time-lock puzzle with
Bob and then sends messages of which some are correctly binded with the next puzzle’s
partial solution. With that solution, Bob is able to filter out the correct messages. Since
this is done every ∆ time, in Bob’s eyes is as if he is receiving messages in turns.

Block of Messages and Communication Consistency. The next step is to create
a two-way communication between Alice and Bob by allowing them to instantiate two
independent one-way TBCC channels between each other, i.e. by exchanging time-lock
puzzles and communicating message-digest pairs that are accepted and personally saved
in blocks. These blocks are not stored in a trusted third party service but Alice and
Bob have their own local copy of the exchanged message history and this means that
it is required to provide a procedure to guarantee consistency between the copies.
Consider our communicating Alice and Bob to be in the i-th turn, i.e. at the end of the
turn they will create the i-th block. Naively, to achieve consistency of all blocks, every
message, of the current block, should be bound to the previous and future block. For
the previous block, they include a digest hi−1 of the previous block in every message
they share in order to correctly verify that both have the same previous block vision.
When the i-th turn ends, they separately create their own block-vision which could be
different. When they enter the (i+1)-th turn, they will have to share the previous block
digest hi and they will see that the values are different. They will therefore start a
recovery phase by publishing the content of the i-th block. At this point in time, the
message’s digest ξi can be tampered by anyone since the partial solution πi is publicly
known. For this reason, for every message we define a second digest σi that binds such
message with the next turn/future block solution πi+1. This procedure allows every
party to understand “who is cheating” or “where the errors are”. In this way it is
possible to abort the communication at any point in time, whenever a malicious party
hijacks the channel. All the parties are thus forced to honestly participate if they want
to maintain the channel up.

3.1 One-Way TBCC Instantiation
In this section, we instantiate the turn-based one-way channel from Alice to Bob. A
“channel” is any collection of parameters that allows to participate into the communic-

Instantiating the Turn Based Communication Channel 179

ation, e.g. whenever a list of parameters is published, anyone can use them to correctly
parse future messages shared using them.

Definition 43. The one-way channel scheme is defined with the PPT algorithms
(setup, send, ext, turntoken, valid-ver, tamper-ver) as:

• setup(λ,∆, n) → (C, Cpriv): to setup the communication channel, PA parses the
security parameter λ, the delay ∆ and the number of turns n The setup algorithm
outputs the public and private channels (C, Cpriv);

• send(Cpriv,m, v, t) → (ξ, aux): the send-message algorithm takes in input the
private channel information Cpriv, a message m with validity v ∈{0,1} and the
turn t < n. The algorithm outputs the message correctness proof ξ and the chan-
nel auxiliary information aux.

• turntoken(C, t, {x0, ... , xt−1}) → xt: this algorithm is executed at the beginning
of turn t. The algorithm parses the channel C, the current turn t and the set
of previously computed turn tokens {x0, ... , xt−1}, after ∆ amount of time, the
algorithm outputs the turn token xt.

• valid-ver(C, t,m, ξ, xt)→ {0, 1}: at the end of the t-th turn, the validity verification
takes as input a message m and its proof ξ and the turn token xt. The algorithm
outputs the validity v for the sent message m with proof ξ;

• tamper-ver(C, t,Mt−1,m, aux, ξ)→ {0, 1}: during the t-th turn, the tamper verific-
ation algorithm takes in input the public channel C, the current turn t, the ordered
block of messages Mt−1 which is the list of valid messages for the turn t−1, a sent
message m with proof ξ and auxiliary information aux. The algorithm verifies if
the sent message m correctly relates to the previously sent messages contained in
the block Mt−1, thus outputting 1 when this is achieved, otherwise 0.

• ext(C, Cpriv, t)→ xt: the extraction algorithm takes as input the public channel C,
the private channel Cpriv and a turn t ≤ n and outputs the turn token xt, without
investing any multiple of ∆ time;

• backward-ver(C, t,Mt−1, l)→ {0, 1}: the recovery algorithm takes as input the pub-
lic channel C, the current turn t, the previous ordered block Mt−1 of bt−1 = |Mt−1|
valid messages mi and an index l ∈ [1, bt−1]. The algorithm outputs if the l-th
message m⋆ in the block Mt−1 is a correct message for the block Mt−1 at the end
of turn t.

Let us explain how the definition is used to generate a communication channel from
Alice PA to Bob PB , as depicted in Fig. 57. First, PA executes setup for an agreed delay
∆ and amount of turns n, and obtains the channels (C, Cpriv), e.g. the public channel
C can consist of PA’s public key and public parameters while the private channel Cpriv

contains PA’s private key. The knowledge of Cpriv allows PA to quickly compute each
turn token xt directly as ext(C, Cpriv, t) while PB must sequentially compute them as
turntoken(C, t, {x0, ... , xt−1}) and obtain them every ∆ amount of time, similarly to
a periodic scheduling process. Whenever PA sends the message m in a turn t, she
executes send for a valid message in the t turn and sends to PB the tuple (m, ξ, aux).
PB can execute valid-ver(C, t,m, ξ, xt) and verify the message validity only whenever PB

obtains the turn token xt, computable only after t·∆ amount of time. This allows PA

to communicate several messages of which PB cannot immediately verify the validity
of m but it has to wait for turntoken to output the specific turn token xt thus creating
the view of turns of the channel.

Message Validity. The sender’s inputs are the validity value v, a bit which indicates
if the message is considered valid or not, along with the message m itself and the choice
of turn t. Only when the turn t ends, the receiver can verify the validity of the message
via the valid-ver algorithm and the turn token xt.

180 Paper H - Turn Based Communication Channel

Time

setup

C Cpriv

C

tamper-ver tamper-ver

x1

x1

∆
x2

x2

∆
x3

x3

∆

turntoken

ext

Alice

Bob

send

inv
ali

d

valid-ver

send

va
lid

valid-ver

Figure 57: One-Way TBCC scheme usage: Alice submits the public channel C to Bob,
and keeps the private information Cpriv. On each end of turn, Bob verifies the received
messages in order to prevent the addition of invalid messages in the channel.

Definition 44 (Channel Correctness/Message Validity). Assume a turn t ≤ n in a n-
turn channel generated by the algorithms of Construction 1, then for all message/validity
pairs m and v, the channel is said to be correct if

Pr

⎡

⎣valid-ver(C, t,m, ξ, xt) ̸= v

∣∣∣∣∣∣

setup(λ,∆, n)→ (C, Cpriv);
send(Cpriv,m, v, t)→ (ξ, aux);
ext(C, Cpriv, t)→ xt;

⎤

⎦ ≤ negl(λ) ,

with probability computed over the random coins of setup, send, ext and valid-ver.

Sequentiality and Turn Definition. The turns of the channel rely on the time
necessary to compute the token values xt via turntoken, defined in the channel C during
the general setup. Each computed turn-tokens xt, allows the receiver to verify the
validity and consistency of all received messages during the turn t, crucially, only at the
end of the turn after the expected delay time ∆.

Definition 45 (Sequentiality). The channel is ∆-sequential if for any turn t, for
any PPT adversary A running in time µ (A) < ∆, the adversary wins the game
GameA,∆

seq (λ, t, n) of Algorithm 3, with negligible advantage, namely,
∣∣∣∣Pr[GameA,∆

seq (λ, t, n) = 1]− 1
2

∣∣∣∣ ≤ negl(λ) .

Algorithm 3 Sequentiality Game GameA,∆
seq (λ, t, n) for the adversary A

1: Execute setup(λ,∆, n)→ (C, Cpriv);
2: Choose a random message m and validity v ← {0, 1}.
3: Execute ext(C, Cpriv, i)→ xi for i ∈ [1, t− 1] and send(Cpriv,m, v, t)→ (ξ, aux)
4: v∗ ← A

(
C, t,m, ξ, aux, {xi}t−1

i=1

)

5: Execute ext(C, Cpriv, t)→ xt

6: If valid-ver(C, t,m, ξ, xt) = v∗, output 1. Otherwise, 0

Last Turn Tamper Resistance. Given any t ≤ n of a TBCC with public setup
information C, define the block Mt−1 as the set of all jt−1 messages in the turn t−1

Instantiating the Turn Based Communication Channel 181

with respective auxiliary information aux1, ... , auxjt−1 and sent proof ξ1, ... , ξjt−1 . The
algorithm tamper-ver(C, t,Mt−1,m, aux, ξ) checks, for any correctly computed message
(m, aux, ξ) ∈ Mt, if it correctly relates to the previous turn block Mt−1 by spotting
whenever this connection is tampered.

Definition 46 (Last Turn Tamper Resistance). During the turn t ≤ n of a channel C
between two honest parties with correct message blocks Mi for each turn 1 ≤ i < t, C is
tamper resistant, if for any PPT adversary A, it holds

Pr
[

tamper-ver(C, t,M⋆
t−1,m⋆, aux⋆, ξ⋆) = 1|

(M⋆
t−1,m⋆, aux⋆, ξ⋆)← A(C, t,M1, ... ,Mt−1)

]
≤ negl(λ)

such that M⋆
t−1 ̸= Mt−1 and tamper-ver(C, t,Mt−1,m⋆, aux⋆, ξ⋆) = 1. The probability is

computed over the random coins of A and algorithm tamper-ver.

Remark 14. Def. 46 is strictly dependent on the current turn being t, in the sense
that it does not deal directly with tampering of messages in earlier turns than t− 1. By
considering the definition for 1 ≤ t ≤ n, it covers all the turns for the channel, except
the n-th turn creating the last message tamper that will not be possible to verify
because there are “no more turns”, i.e. the computation turntoken(C, n + 1, {xi}ni=0) is
not defined or the result must not be used.

Communication Consistency. For any turn t ≤ n of a one-way channel C, the
channel is consistent until turn t−1 whenever the valid messages view between the
parties is the same during the turn t, i.e. an adversary must not be able to force a
wrong message history, regardless if it is the sender or the receiver.

Definition 47 (Consistency). During turn t ≤ n of a one-way TBCC channel C between
two parties with correct message blocks Mi for each turn 1 ≤ i < t, the channel is
consistent until turn t−1, if for any PPT adversary A, it holds

Pr [tamper-ver(C, t,M⋆
t−1,m⋆, aux⋆, ξ⋆) = 1|

(M⋆
t−1,m⋆, aux⋆, ξ⋆)← A(C, t,M1, ... ,Mt−1)

]
≤ negl(λ)

such that M⋆
t−1 ̸= Mt−1, tamper-ver(C, t,Mt−1,m⋆, aux⋆, ξ⋆) = 1 and for all the messages

of the tampered block, along with auxiliary information and proof, i.e. (m⋆
ji , aux⋆ji , ξ⋆ji) ∈

M⋆
t−1, it holds valid-ver(C, t− 1,m⋆

ji , ξ
⋆
ji , xt−1) = 1 The probability is computed over the

random coins of A, tamper-ver and valid-ver.

3.2 One-Way Channel Instantiation.
Let ∆ ∈ R+ be a time-delay and n ∈ N a maximal turn number, both chosen by Alice,
denoted with PA. Let H and H be respectively regular and ∆-delay hash functions. Let
(GenPuz, SolPuz) be the (n∆)-TLP of Def. 42 based on H.

Construction 1. Let λ be the security parameter, n ∈ N number of turns, a sender PA

and a receiver PB. Instantiate the one-way channel scheme with the PPT algorithms
(setup, send, ext, turntoken, valid-ver, tamper-ver) defined as:

• setup(λ,∆, n) → (C, Cpriv): to setup the communication channel, PA parses the
security parameter λ, the delay ∆ and the number of turns n and executes the
algorithm GenPuz(λ, (n,∆)) as defined in Def. 42 and obtains the n turn puzzle
with solution (y,π). Output (C, Cpriv) as (y,π);

• send(Cpriv,m, v, t) → (ξ, aux): to send a message m with validity v in the turn
t < n, PA parses the private channel information Cpriv = π, and compute the
values ht−1 := H(Mt−1,m,πt−1), ξ := H(m,πt) and σ := H(m, ξ,πt+1) where Mt−1

182 Paper H - Turn Based Communication Channel

is the ordered list of valid messages in the turn (t − 1), together with validity
proof and auxiliary information. The sending algorithm outputs, if v = 1, the
message correctness proof ξ and the channel auxiliary information aux = (ht−1,σ),
otherwise random values (ξ, aux) different from the correct ones.

• turntoken(C, t, {x0, ... , xt−1}) → xt: this algorithm is executed by the receiver PB

at the beginning of turn t. It parses the channel C = y and continually executes
SolPuz(y) by considering that every πi := xi for the t partial solution. After ∆
amount of time, the output of the algorithm is xt := πt.

• valid-ver(C, t,m, ξ, xt)→ {0, 1}: at the end of the t-th turn, the validity verification
takes as input a message m and its proof ξ and the turn token xt = πt. Output 1

if the equality H(m,πt)
?
= ξ holds. Otherwise, 0;

• tamper-ver(C, t,Mt−1,m, aux, ξ) → {0, 1}: during the t-th turn, the receiver PB

verify the correctness of the ordered (t−1)-th block Mt−1 which contains the previ-
ously valid ordered messages {mi}jt−1

i=1 for some jt−1 ∈ N, by parsing the auxiliary
information as aux = (ht−1,σ) and outputs the result of the equality verification
H(Mt−1,m,πt−1)

?
= ht−1.

• ext(C, Cpriv, t)→ xt: the extraction algorithm takes as input the public channel C,
the private channel Cpriv = π and a turn t ≤ n and outputs xt = πt;

• backward-ver(C, t,Mt−1, l)→ {0, 1}: the algorithm takes as input the public chan-
nel C, the current turn t, the previous ordered block Mt−1, of accepted message
mi for i ∈ [1, jt−1], and an index l such that m⋆ is the l-th message in the
block m⋆ = ml ∈ Mt−1 with auxiliary information aux⋆ = auxl = (ht−2

⋆,σ⋆).
backward-ver computes ξ⋆ = H(m⋆,πt−1) and outputs if H(m⋆, ξ⋆,πt)

?
= σ⋆. The

backward-ver algorithm verifies at the end of turn t if the message m⋆ is a correct
message for the block Mt−1.

Proposition 11. The proposed one-way channel instantiation of Construction 1 achieves
channel correctness as stated in Def. 44.

Proof. Consider a turn t ≤ n for an n-turn one-way channel defined by executing
(C, Cpriv) ← setup(λ,∆, n). For any message m with validity v, compute the value
send(Cpriv,m, v, t) → (ξ, (ht−1,σ)) of which ξ is either H(m,πt) if v=1 otherwise it is
an incorrect value. Furthermore execute ext(C, Cpriv, t) → πt. By definition, we have
that valid-ver(C, t,m, ξ,πt) outputs as validity the equality of H(m,πt)

?
= ξ which is 1,

when correctly computed, and 0 otherwise. Assume the existence of an adversary A
able to break the correctness property with some non-negligible probability ν > 0, i.e.
A is able to produce an invalid pair (m⋆,πt

⋆) such that valid-ver(C, t,m⋆, ξ,πt
⋆) = 1 for

some given digest ξ with probability ν. Let ϵH.pre be the assumed negligible probability
of finding a digest pre-image for H of ξ. Construct an adversary B that reduce the
pre-image computation to the one-way correctness by querying A for a pair (m⋆,πt

⋆)
for the digest ξ. B outputs as pre-image the value (m⋆,πt

⋆). We conclude that:

ν = Pr

⎡

⎣valid-ver(C, t,m, ξ, xt) ̸= v

∣∣∣∣∣∣

setup(λ,∆, n)→ (C, Cpriv);
send(Cpriv,m, v, t)→ (ξ, aux);
ext(C, Cpriv, t)→ xt;

⎤

⎦ ≤ ϵH.pre

which is absurd. Thus proving the correctness property.

Proposition 12. The proposed one-way channel instantiation of Construction 1 achieves
sequentiality as stated in Def. 45.

Proof. Consider the sequentiality game GameA,∆
seq (λ, t, n) in which the challenger gener-

ates the communication channel (C, Cpriv) and let t ≤ n be an arbitrary turn in which

Instantiating the Turn Based Communication Channel 183

the adversary is challenged. The challenger chooses an arbitrary message m and validity
v ← {0, 1} and executes send(Cpriv,m, v, t)→ (ξ, aux). The adversary A wins the game
if the output v∗ ← A

(
C, t,m, ξ, aux, {xi}t−1

i=1

)
is the challenger’s chosen validity v and

the execution time for the adversary is bounded as µ (A) < ∆. A can therefore be
used by an adversary B to reduce the ∆-delay property for the ∆-delay hash function
to the one-way sequentiality game. Briefly, if we assume A to have a non-negligible
probability to compute v, B is able to break the ∆-delay property which is assumed to
be hard.

Proposition 13. The proposed one-way channel instantiation of Construction 1 achieves
last turn tamper resistance as stated in Def. 46.

Proof. Consider a communication between two honest parties to generate the blocks Mi

for i ∈ {1, ... , t−1} where t ≤ n is the turn in which the adversary A will output the tuple
(M⋆,m⋆, (h⋆,σ⋆), ξ⋆), which contains a tampered block for the turn t − 1, a tampered
message and the related auxiliary information and the tampered validity proof. Ob-
serve that the verification algorithm will compute tamper-ver(C, t,Mt−1,m⋆, (h⋆,σ⋆), ξ⋆)
with the correct block, which will verify the equality of H(Mt−1,m⋆,πt−1)

?
= h⋆. Obvi-

ously, A can always generate, for any messages, correctly evaluated digests. However,
in order to correctly consider it a tamper, the adversarial tamper must verify the al-
gorithm with the tampered block. Then, to allow the existence of two correct but
different block visions, i.e. formally tamper-ver(C, t,M⋆,m⋆, (h⋆,σ⋆), ξ⋆), which is equi-
valent to H(M⋆,m⋆,πt−1)

?
= h⋆. Assume by absurd that such A exists and outputs

correct tampers with non-negligible probability ν > 0. Intuitively, construct an ad-
versary B that reduce the second pre-image computation to the one-way tampering
by querying A. A must provide a second pre-image (M⋆,m⋆) of the digest h⋆ obtained
from (Mt−1,m⋆). Thus, B outputs a second pre-image of h⋆ with probability ν ≤ ϵH.2pre

which is assumed to be negligible.

Proposition 14. Consistency ⇔ last turn tamper resistant and correctness.

Proof. The proof of this proposition is trivial. Our definition of consistency is similar to
the definition of tamper resistance where we additionally require the tampered block to
be formed only by correct messages. Therefore, a consistent channel is trivially correct
and tamper resistant. For the opposite implication, assume that the channel is non-
consistent, i.e. an adversary can compute a wrong message view in a specific turn. This
is true if and only if the adversary can create a correct tamper block which contains at
least a wrong message-proof ξ and auxiliary information tuple aux. This implies that a
non-consistent channel allows to break the correctness and tamper resistance property.

3.3 Two-Way TBCC
In this section, we instantiate a two-way TBCC and explain how to correctly realise
the recovery procedure, i.e. a procedure executed between the parties that allows them
to force the communication’s correctness and coherence.

Consider the parties PA and PB and let both independently setup the consistent
one-way channel of Construction 1 which casts them both as receiver and sender into
two independent channels each. Both parties can send a message to the other one in
the channel they created. Concurrently, each party keeps track of its local turn to
receive and check messages by (1) continuously executing turntoken and (2) keeping of
the previously generated turn tokens xi for i ≤ t.

184 Paper H - Turn Based Communication Channel

Protocol 3 (The Two-Way TBCC Protocol). Given two parties PA and PB, an integer
value n and real non-zero value ∆, define the (Two-Way) TBCC across n turns with
delay ∆ with the procedures:

• Setup: on input the security parameter λ, PA (respectively PB) executes the
algorithm setup(λ,∆, n), obtains (CA, CA,priv), and sends CA to PB, which replies
with CB. PA outputs the two-way TBCC channel information (CA, CB), along with
its respective private information Cpriv and PA performs turntoken(CB , 1, xB,0);

• Local Turn (analogously for PB): on receiving a call to this procedure, PA

returns the current local turn t corresponding to the last computed xPB ,t;
• Send Message (analogously for PB): on a given local turn t, when PA receives

the input (m, v), it executes send(CA,priv,m, v, t) → (ξ, aux) where the previous
block digest is computed as ht−1 := H(Mt−1,m,πPA

t−1,π
PB
t−1), and sends (m, ξ, aux)

to PB;
• Reveal Validity (analogously for PA): at the end of the local turn t, i.e. when

the algorithm turntoken(CA, t, {xA,0, ... , xA,t−1}) outputs the token xA,t, PB ex-
ecutes valid-ver(CA, t,mi, ξi, xA,t)→ vi, and outputs the block of both the parties
valid messages Mt={(mi, ξi, auxi)}i along with the turn token t whenever vi=1.
Furthermore, for all the messages mi, tamper-ver(CA, t,Mt−1,mi, auxi, ξi) is ex-
ecuted and if any result is 0, abort the communication. If t + 1 > n, then output
close and stop. Otherwise, execute turntoken(CA, t+ 1, {xA,0, ... , xA,t}).

Remark 15. The TBCC protocol naturally extends the one-way properties of correct-
ness and tamper resistance to the two-way channel. For example, if the two-way channel
is tamperable, it means the adversary can tamper at least one direction of the commu-
nication channel. In other words, tamper the one-way channel. Mutatis mutandis the
same is true for the correctness property.

Turn Synchronization and Consistency. When considering the two-way protocol
by instantiating two one-way turn based schemes, an additional problem that naturally
arises is turn synchronization between the parties. Consider the parties PA and PB

communicating using Proto. 3 which depends on the specific one-way channels CA and
CB . The specific channel turn is identified by the input of the algorithm turntoken
which are, almost surely, never synchronized, i.e. the outputs are disclosed in different
moments. This timing lack creates a problem in which a message m might be seen in
turn t by PA and in turn (t + 1) by PB . We capture this idea by formalizing the turn
synchronization property.

Definition 48 (Turn Synchronization). Let PA and PB be parties communicating over
the two-way TBCC. The TBCC channel (CA, CB) is turn-consistent if both players
have a unique and equal way to decide in which turn the message m belongs even then
the local turns of the two parties are different.

The TBCC without turn synchronization cannot achieve communication consistency
since the parties might disagree in which block M the message m belongs, making it
unlikely to create an unique communication history. Intuitively, achieving sequenti-
ality means that the turntoken algorithm is defining a “clock”, i.e. sequential “ticks”
distanced by some amount of time, while being desynchronized means that the parties
have “different clocks” where one of the two is always “late”. We prove that if we have a
sequential one-way scheme, then there exists a natural way to achieve turn-consistency
by letting the parties avoid communicating in between the “ticks” thus allowing the
“late clock” to sync.

Proposition 15. Let PA and PB be parties communicating via the two-way TBCC
protocol, constructed from a sequential one-way scheme as in Def. 45. The strategy

Instantiating the Turn Based Communication Channel 185

of (i) dropping communicated messages during de-synchronization, i.e. the local turn
between the parties is different; and (ii) globally advance the turn whenever both parties
have the same local turn; allows turn-consistency as in Def. 48.

Recovery Procedure. We consider the existence of a recovery procedure that should
be executed whenever a party spots a possible communication tamper and, instead of
directly aborting the protocol, the two parties try to find a common correct message
block. In other words, the algorithm tamper-ver from Construction 1 takes as input the
last block views MPA and MPB that the two parties have and either outputs a commonly
agreeable block M or aborts.

Definition 49 (Recovery). Define the recovery procedure for Proto. 3 as the proced-
ure executed during turn t ≤ n by PA (resp. PB) whenever the tamper verification
tamper-ver(C, t,Mt−1,m, aux, ξ) is equal 0 and defined as:

• Recovery: PA sends its view MA
t−1 to PB from whom it receives the view MB

t−1

which is a ordered list of messages {mi}jt−1
i=1 and, additionally, for every mes-

sage the received auxiliary information σ. After identifying the set of indexes
I where the views differ, for each index l ∈ I, if the message ml is a message
from PB, then PA executes backward-ver(CB , t,MB

t−1, l), otherwise PB will com-
pute backward-ver(CA, t,MA

t−1, l). Either the case, if the result is 1, both parties
are forced to use the message ml resolving the discrepancy and saving the result
into the same resolved block Mt−1. Otherwise, if there exists an index for which
the result is 0, the communication is aborted.

The spirit of the TBCC is “if anything seems wrong, abort!”. This forces the parties
to behave honestly otherwise nothing can be achieved, meaning there can never exist
two different correct views. During the recovery procedure, the communication is
paused and completely verified and fixed before continuing and, if necessary, aborted
because it is unrecoverable. The receiver must be aware and promptly alert the sender
if hi−1 is wrong and, if it is the case, only the receiver can force the sender to adopt a
specific message mi by exhibiting the received proof σi, only computable by the sender.

Formally, suppose PA and PB are correctly communicating until the i-th turn, i.e.
all the blocks until Mi−1 are consistent. PA sends

(
hA
i−1,mA

i , ξ
A
i ,σA

i

)
and PB does

the same with the message mB
i . Let us suppose that the values {ξAi , ξBi } are correct

otherwise the messages will be discarded by valid-ver. Thus the correct next block is
Mi = {mA

i ,mB
i }. Whenever the turn (i + 1) starts, PB and PA must share the block

digests hA
i and hB

i and suppose they are not equal.
The recovery procedure is executed and PB will publish the block-view {mA

i ,mB
i },

respectively PA must do the same, and there must be at least a different message pair,
w.l.o.g. suppose it is message mA

i and mA⋆. Since this is the message that Alice sent, in
the recovery, we will just consider Bob’s view mA⋆ with received auxiliary information
σA⋆ which Bob cannot correctly forge by assumption, i.e. he cannot produce a correct
valid pair. Therefore PB can only re-publish what PA sent or abort the communication.
Regardless of PB ’s maliciousness, he is unable to modify Alice’s messages and therefore
the procedure continues only if σA⋆ is correctly computed by PA. In the case that Bob’s
message mB

i is different, Alice’s vision is considered. If Bob is honest, the previous
discussion applies for Alice. Otherwise, Bob might try to force the acceptance of a
different pair (mB⋆,σB⋆). Since his vision during recovery is not considered, he must
have sent the tampered values (mB⋆,σB⋆) before but if this is the case, either Alice is
presenting the tampered pair (mB⋆,σB⋆), which makes the pair not longer a tamper,
since it is correctly received by Alice and not later modified, or by sending an incorrect
pair that will lead to aborting the communication. Mutatis mutandis, the same is

186 Paper H - Turn Based Communication Channel

true when switching PA and PB roles. If everything is correct, the block vision is
consolidated, communication can resume and the only real cost is that both PA and PB

lost a single turn.

4 Collectively Flipping Coins over the TBCC
In this section, we sketch a protocol that allows two parties to collectively flip a coin
which allows them to commonly create a random string. Our TBCC protocol is con-
structed from time-lock puzzles which are used in similar applications, as:

• a user can create encrypted time capsule, i.e. an encrypted message that is meant
to only be decryptable after a designed amount of time;

• a user can provide a signature that can only be verified in the future.
As discussed by Rivest et al. [RSW96], these are founded on the concept of releasing a
timed commitment that can be decommitted after a specific amount of time.

The provided coin-flip solution is simplistic and it has the main goal of showing the
TBCC’s expressiveness/potentiality. To provide a formal security analysis, TBCC must
be proven secure against active adversaries and general protocol’s composability which,
as previously assumed, are left open for future research.
Flipping Coins over TBCC.

The underlying idea is that two parties, communicating over a TBCC’s instance, are
able to jointly flip a coin by both time-committing to some randomness which is later
revealed and used to compute the coin result. By repeatedly flipping coins, the results
produce a random string which is guaranteed to be consistent since communicated over
TBCC.

Let us provide a formalisation of the collectively coin-flip between Alice PA and Bob
PB . These protocols are defined by a set of choices Σ and a set of rules that allows
to determine the result between any two choices, denoted with the function µ(·, ·).
Formally, the collective coin-flip protocol is therefore defined as:

(a) PA and PB set up the two-way TBCC protocol of Proto. 3 and obtain the public
channel C = (CPA , CPB);

(b) In the current turn, PA selects its choice a ∈ Σ and sends on C as a valid message,
i.e. PA execute the sending procedure with the message (a, 1). For each other
choice a⋆ ∈ Σ, PA sends the non-valid message (a⋆, 0). Respectively, PB sends his
valid and invalid messages;

(c) At the end of the turn, PA computes the validity of PB ’s received messages and
obtains b. Respectively for PB ;

(d) Both the parties compute µ(a, b) and, if necessary, repeat the game. If the channel
loses consistency, i.e. one of the party tries to tamper the results, the communic-
ation is aborted;

(e) The random string is obtained by concatenating several consecutive results of the
consistent channel.

The “commit-decommit” phase created by the turn token is key to allow a fair-play since,
for example, if PA knows PB ’s choice b in advance, she can select a winning choice a⋆.
Furthermore, φ must be defined even in the case of one party not participating in the
round or it tries to cheat by proposing multiple choices. We are now left to define
the choice’s set Σ and the rule’s map µ(·, ·). Σ contains the choices head and tail,
respectively 1 and 0 and, additionally, a special element x that represents any non-
correct choice, i.e. a party does not correctly participate in the game. Define the map µ
as µ(a, b) = a⊕b, i.e. the xor between the inputs where the special element is mapped as
µ(x, a) = µ(a, x) = a for each a ∈ Σ and we consider a special state X used to denote that
both player wrongly participated in the flipping, i.e. µ(x, x) = X. In a nutshell, µ(a, b)
computes the xor of both the parties inputs whenever they are correctly participating in

Collectively Flipping Coins over the TBCC 187

the coin-flip. Complementary, if both the parties wrongly flip the coin, µ(x, x) returns
that the coin is in a “draw position” with “no winner”. Whenever a party, e.g. PA,
wrongly participates in the protocol, µ(x, b) awards the other party PB for correctly
behaving and let PB ’s choice be the final result. This forces the parties to correctly
behave to avoid the other party highly influence the coin-flip. For example, suppose
that PA selects 1 as her first choice and sends to PB the TBCC messages (1, 1) and (0, 0)
during the current turn. By the sequentiality property, PB is unable to discover “which
message is the valid one” and therefore has no advantage and must therefore provide
his own choice, w.l.o.g. let PB choose 0. At the end of the turn, the valid messages
are maintained thus the block will contain PA’s message 1 and PB ’s one 0. Both the
parties can now compute µ(1, 0) = 1 and acknowledge that the coin flip is 1. The TBCC
protocol guarantees communication coherence which implies that, whenever repeating
the game, both the parties must accept the previous communication transcription. In
other words, while communicating over C, PA and PB cannot modify the output of the
different rounds played. This means that if the result is 1, in the next round PB cannot
pretend a different outcome and must accept it if he wants to participate in the next
round. The game output’s transcript can be seen as a random string between PA and
PB which cannot be tampered with by a malicious adversary. Additionally, every time
the adversary is caught tampering or deny the communication, the whole protocol is
terminated making it impossible for the adversary to gain any relevant advantage.

We must point out that our protocol does not approximate a public coin flip one
which can be used to generate the common reference string model. In the public
coin-flip protocol, the two parties obtain a random coin-flip without introducing their
own personally sampled randomness. For this reason, our protocol can be used to
approximate an empirical version of the common reference string model in which the
parties actively collaborate to sample a random string.

