
Constructing a universe for the setoid model

Downloaded from: https://research.chalmers.se, 2021-08-31 11:06 UTC

Citation for the original published paper (version of record):
Altenkirch, T., Boulier, S., Kaposi, A. et al (2021)
Constructing a universe for the setoid model
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/475663832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Constructing a universe for the setoid model

Thorsten Altenkirch1 ∗ B, Simon Boulier2†, Ambrus Kaposi3 ‡, Christian
Sattler4§, and Filippo Sestini1

1 School of Computer Science, University of Nottingham, Nottingham, UK
{psztxa,psxfs5}@nottingham.ac.uk

2 Inria, Nantes, France simon.boulier@inria.fr
3 Eötvös Loránd University, Budapest, Hungary akaposi@inf.elte.hu

4 Chalmers University of Technology, Gothenburg, Sweden sattler@chalmers.se

Abstract. The setoid model is a model of intensional type theory that
validates certain extensionality principles, like function extensionality
and propositional extensionality, the latter being a limited form of uni-
valence that equates logically equivalent propositions. The appeal of this
model construction is that it can be constructed in a small, intensional,
type theoretic metatheory, therefore giving a method to boostrap ex-
tensionality. The setoid model has been recently adapted into a formal
system, namely Setoid Type Theory (SeTT). SeTT is an extension of
intensional Martin-Löf type theory with constructs that give full access
to the extensionality principles that hold in the setoid model.

Although already a rich theory as currently defined, SeTT currently lacks
a way to internalize the notion of type beyond propositions, hence we
want to extend SeTT with a universe of setoids. To this aim, we present
the construction of a (non-univalent) universe of setoids within the setoid
model, first as an inductive-recursive definition, which is then translated
to an inductive-inductive definition and finally to an inductive family.
These translations from more powerful definition schemas to simpler ones
ensure that our construction can still be defined in a relatively small
metatheory which includes a proof-irrelevant identity type with a strong
transport rule.

Keywords: type theory · function extensionality · univalence · setoid
model · induction-recursion · induction-induction

∗ Supported by USAF grant FA9550-16-1-0029.
† Supported by ERC Starting Grant CoqHoTT 637339.
‡ Supported by the Bolyai Fellowship of the Hungarian Academy of Sciences

(BO/00659/19/3) and by the “Application Domain Specific Highly Reliable IT Solu-
tions” project that has been implemented with support from the National Research,
Development and Innovation Fund of Hungary, financed under the Thematic Excel-
lence Programme TKP2020-NKA-06 funding scheme.
§ Supported by USAF grant FA9550-16-1-0029 and Swedish Research Council grant

2019-03765.

c© The Author(s) 2021
S. Kiefer and C. Tasson (Eds.): FOSSACS 2021, LNCS 12650, pp. 1–21, 2021.
https://doi.org/10.1007/978-3-030-71995-1 1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-71995-1_1&domain=pdf
http://orcid.org/0000-0002-6582-5025
http://orcid.org/0000-0001-9897-8936
http://orcid.org/0000-0002-8701-5613
https://doi.org/10.1007/978-3-030-71995-1_1

2 T. Altenkirch et al.

1 Introduction

Intuitionistic type theory is a formal system designed by Per Martin-Löf to be
a full-fledged foundation in which to develop constructive mathematics [23,24].
A central aspect of type theory is the coexistence of two notions of equality. On
the one hand definitional equality, the computational equality that is built into
the formalism. On the other hand “propositional” equality, the internal notion
of equality that is actually used to state and prove equational theorems within
the system. The precise balance between these two notions is at the center of
type theory research; however, it is generally understood that to properly sup-
port formalization of mathematics, one should aim for a notion of propositional
equality that is as extensional as possible.

Two extensionality principles seem particularly desirable, since they arguably
constitute the bare minimum for type theory to be comparable to set theory as a
foundational system for set-level mathematics, in terms of power and ergonomics.
One is function extensionality (or funext), according to which functions are equal
if point-wise equal. Another is propositional extensionality (or propext), that
equates all propositions that are logically equivalent.

Type theory with equality reflection, also known as extensional type theory
(ETT) does support extensional reasoning to some degree, but unfortunately
equality reflection makes the problem of type-checking ETT terms computa-
tionally unfeasible: it is undecidable.

On the other hand, intensional type theory (ITT) has nice computational
properties like decidable type checking that can make it more suitable for com-
puter implementation, but as usually defined (for example, in [23]) it severely
lacks extensionality. It is known from model constructions that extensional prin-
ciples like funext are consistent with ITT. Moreover, ITT extended with the
principle of uniqueness of identity proofs (UIP) and funext is known to be as
powerful as ETT [19]. We could recover the expressive power of ETT by adding
these principles to ITT as axioms, however destroying some computational prop-
erties like canonicity.

What we would like instead is a formulation of ITT that supports exten-
sionality, while retaining its convenient computational behaviour. Unfortunately,
canonicity for Martin-Löf’s inductively defined identity type says that if two
terms are propositionally equal in the empty context, then they are also defi-
nitionally equal. This rules out function extensionality. The first step towards
a solution is to give up the idea of propositional equality as a single inductive
definition given generically for arbitrary types. Instead, equality should be spe-
cific to each type former in the type theory, or in other words, every type former
should be introduced alongside an explanation of what counts as equality for its
elements.

This idea of pairing types together with their own equality relation goes
back to the notion of setoid or Bishop set. Setoids provide a quite natural and
useful semantic domain in which to interpret type theory. The first setoid model
was constructed to justify function extensionality without relying on funext in
the metatheory [18]. Moreover, it was shown by Altenkirch [4] that if the model

Constructing a universe for the setoid model 3

construction is carried out in a type theoretic metatheory with a universe of strict
(definitionally proof-irrelevant) propositions, it is possible to define a univalent
universe of propositions satisfying propositional extensionality. The setoid model
thus satisfies all the extensionality principles that we would like to have in a set-
level type theory 5 . The question is whether there exists a version of intensional
type theory that supports setoid reasoning, and hence the forms of extensionality
enabled by it.

This question was revisited and answered in Altenkirch et al. [5]. In this
paper, the authors define Setoid Type Theory (SeTT), an extension of inten-
sional Martin-Löf type theory with constructs for setoid reasoning, where funext
and propext hold by definition. SeTT is based on the strict setoid model of
Altenkirch6, which makes it possible to show consistency via a syntactic trans-
lation. This is in contrast with other type theories based on the setoid model,
like Observational Type Theory [9] and XTT [28], which instead rely on ETT
for their justification. A major property of SeTT is thus to illustrate how to
bootstrap extensionality, by translation into a small intensional core.

SeTT as defined in [5] is already a rich theory, but its introspection capabili-
ties are currently lacking, as its universes are limited to propositions. We would
like to internalise the notion of type in SeTT, thus extending the theory with a
universe of setoids. This goal brings up several questions, one of which has to do
with the notion of equality with which the universe should come equipped: the
universe of setoids is itself a setoid (as any type is) so it certainly cannot be uni-
valent, since setoids lack the necessary structure. Another issue is the way such
universe can be justified by the setoid model, and in particular what principles
are needed in the metatheory to do so.

Contributions This paper documents our work towards the construction of a
universe of setoids inside the setoid model, and tries to answer these and other
questions related to the design and implementation of this construction. Our
main contribution is the construction of the universe in the model; this is given
in steps, first as an inductive-recursive definition, which is then translated to
an inductive-inductive definition, and subsequently to an inductive type. As a
consequence, we show that we only need to assume indexed W-types and proof-
irrelevant identity types in the metatheory (along with some obligatory basic
tools like Σ and Π types) to construct the universe.

The universe constructions presented in this paper are, to our knowledge, the
first examples of two kinds of data type reductions in an intensional metatheory:
the first involving an inductive-recursive type which includes strict propositions,
and the second involving an infinitary inductive-inductive type.

Finally, the mathematical contents of this paper have been formalized in the
proof-assistant Agda (see [10]).

Structure of the paper We begin by describing the metatheory that we will use
throughout the paper, in Section 2. In Section 3, after briefly recalling cate-

5 In the sense of HoTT we mean a type theory limited to h-sets.
6 A strict model is one where every equation holds definitionally.

4 T. Altenkirch et al.

gories with families as an abstract notion of models of type theory, we outline
Altenkirch’s setoid model as given in [5]. We then briefly discuss the rules of
Setoid Type Theory in Section 3.2.

In Section 4 we discuss the setoid model and various design choices related to
it. We then recall inductive-recursive universes, and the way they can be equiv-
alently defined as a plain inductive definition, in Section 4.1. We then provide,
in Section 4.2, a first complete definition of the setoid universe using a special
form of induction-recursion. This form of induction-recursion is not known to
be reducible to plain inductive types. Then we describe an alternative definition
of the universe in Section 4.3, that does not rely on induction-recursion but in-
stead on infinitary induction-induction. This inductive-inductive encoding of the
universe is obtained from the inductive-recursive one, inspired by the method of
Section 4.1. We end the series of universe constructions with Section 4.4, where
we outline a purely inductive definition of the setoid universe, obtained from the
inductive-inductive one.

1.1 Related work

The setoid model was first described in [18] in order to add extensionality princi-
ples to Type Theory such as function extensionality and propositional extension-
ality. A strict variant of the setoid model was given in [4] using a definitionally
proof-irrelevant universe of propositions. Recently, support for such a universe
was added to the proof-assistants Agda and Coq [17], allowing a full formal-
ization of Altenkirch’s setoid model. Setoid Type Theory (SeTT) is a recently
developed formal system derived from this model construction [5]. Observational
Type Theory (OTT) [9] is a syntax for the setoid model differing from SeTT
in the use of a different notion of heterogeneous equality. Moreover, the consis-
tency proof for OTT relies on Extensional Type Theory, whereas for SeTT it
is obtained via a syntactic translation. XTT [28] is a cubical variant of OTT
where the equality type is defined using an interval pretype 7 . XTT’s universes
support universe induction, whereas it is left open whether the construction
presented here supports this principle. Palmgren and Wilander [27] construct a
setoid universe using a translation into constructive set theory. Palmgren [26]
constructs an encoding of ETT in ITT through Aczel’s encoding of set theory
in type theory [3]. He uses type theory as a language for his formalisation but
his construction is set-theoretic in nature. Setoids are utilized to encode sets as
arbitrarily branching well-founded trees quotiented by bisimulation. His notion
of family of setoids does not use strict propositions and it has a weaker form of
proof irrelevance which seems to be not enough to obtain a model of SeTT.

The principle of propositional extensionality in the setoid model is an in-
stance of Voevodsky’s univalence axiom [29]. The cubical set model is a con-
structive model justifying this axiom [11]. A type theory extracted from this
model is Cubical Type Theory [13]. The relationship between the cubical set

7 To quote one of the referees: the fact that the interval is a pretype is but the easiest
part of the story.

Constructing a universe for the setoid model 5

model and cubical type theory is similar to that between the setoid model and
SeTT. Compared to cubical type theories, SeTT has the advantage that the
equality type satisfies more definitional equalities. For instance, whereas in cu-
bical type theory equality of functions is isomorphic to pointwise equality, in
SeTT the isomorphism is replaced by a definitional equality. SeTT is also a syn-
tactically straightforward extension of Martin-Löf Type Theory, that does not
require exotic objects like the interval pretype. In turn, the obvious advantage
of cubical type theory is that it is not limited to setoids.

An exceptional aspect of the metatheory used in this paper is the presence
of a proof-irrelevant identity type with a strong transport rule allowing to elim-
inate into arbitrary types. In [1], Abel gives a proof of normalization for the
Logical Framework extended with a similar proof-irrelevant equality type. Abel
and Coquand show in [2] that the combination of impredicativity with a strong
transport rule results in terms that fail to normalize but this is irrelevant in our
setting.

2 MLTTProp

This section describes MLTTProp, our ambient metatheory. We employ Agda
notation to write down MLTTProp terms throughout the paper.

One of the main appeals of Altenkirch’s setoid model is that it can justify
several useful extensionality principles while being defined in a small intensional
metatheory. We tried to stay true to this idea when figuring out the necessary
metatheoretical tools for the universe construction in this paper. In particular,
we wanted to avoid having to assume strong definition schemas that go beyond
inductive families. MLTTProp is thus an intensional type theory in the style of
Martin-Löf type theory.

We have sorts Typei of types and Propi of strict propositions for i ∈ {0, 1}.
Here, i = 0 means “small” (and we will omit the subscript) and i = 1 means
“large”. We have implicit lifting from i = 0 to i = 1, but do not assume type
formers are preserved. Type1 has universes for Type and Prop. We do not
distinguish notationally between universes and sorts. We continue to describe
only the case i = 0; everything introduced has an analogue at level i = 1.
Propositions lift to types via Lift : Prop → Type, with constructor lift : {P :
Prop} → P → Lift P and destructor unlift : {P : Prop} → Lift P → P .

We have standard type formers Π,Σ,Bool,0,1 in Type. Σ-types are defined
negatively by pairing – , – and projections π1, π2. We have definitional η-rules
for Π-, Σ-, 1-types. We also require indexed W-types, both in Type and Prop:
W� : (S : I → Type) → ((i : I) → S i → I → Type) → I → � where
� ∈ {Type,Prop}. The elimination principle of WProp only allows defining
functions into elements of Prop. From WProp we can define propositional trun-
cation ‖–‖ : Type → Prop, with constructor |– | : {A : Type} → A → ‖A‖
and eliminator elim‖–‖ : {P : Prop} → (A→ P)→ ‖A‖ → P .

In addition to type formers in Type, we will need the propositional versions
of 0, 1, Π, and Σ. The latter three can be defined from their Type counterparts

6 T. Altenkirch et al.

via truncation. That is, given P : Prop and Q : P → Prop:

1Prop :≡ ‖1‖
ΠProp P Q :≡ ‖Π (Lift P) (Lift ◦Q ◦ unlift)‖
ΣProp P Q :≡ ‖Σ (Lift P) (Lift ◦Q ◦ unlift)‖

We assume that we have 0Prop : Prop together with exfalsoProp : {A : Type} →
0Prop → A.

Finally, we will assume an identity type in the style of Martin-Löf’s inductive
identity type. The main difference is that our identity type is a Prop-valued
relation. We have a transport combinator transp from which J is derivable.

Id : {A : Type} → A→ A→ Prop

refl : {A : Type}(a : A)→ Id a a

transp : {A : Type}(C : A→ Type){a0 a1 : A} → Id a0 a1 → C a0 → C a1

with transp C {x} {x} e u ≡ u. The transp combinator provides a strong elim-
ination principle allowing to eliminate a strict proposition (the identity type)
into arbitrary types. We only use this identity type in Section 4.4. For the rest
of our constructions, the traditional Martin-Löf’s identity type suffices.

2.1 Formalization

A universe of strict propositions has been recently added to the Agda proof assis-
tant [17], making most of MLTTProp a subset of Agda, with the exception of the
proof-irrelevant identity type. Most of the universe constructions presented here
have been formalized and proof-checked using Agda, with the proof-irrelevant
identity type and the strong transport rule added via postulates and rewriting.
The formalization can be found in [10].

For convenience, we slightly deviate from MLTTProp both in the paper and
in the formalization, for instance by relying on pattern matching instead of elim-
inators, and using primitive versions of Prop-valued Π and Σ types instead of
deriving them from truncation. We operate under the assumption that every-
thing can be equivalently carried out in MLTTProp, although we have not fully
checked all the necessary details.

3 Setoid model

By setoid model we mean a class of models of type theory where contexts/closed
types are interpreted as setoids, i.e. sets with an equivalence relation, and de-
pendent types are interpreted as dependent/indexed setoids. A setoid model was
first given for intensional type theory by M. Hofmann [18], in order to provide
a semantics for extensionality principles such as function and propositional ex-
tensionality.

Constructing a universe for the setoid model 7

Here we consider a similar model construction due to Altenkirch [4]. The
peculiarity of this model is that it is presented in a type theoretic and intensional
metatheory which includes a strict universe of propositions.

The setoid model thus defined validates function extensionality, a universe of
propositions with propositional extensionality, and quotient types. Therefore, it
provides a way to bootstrap and “explain” extensionality, since the model con-
struction effectively gives an implementation of various extensionality principles
in terms of a small, completely intensional theory.

3.1 Setoid model as a CwF

The setoid model can be framed categorically as a category with families (CwF,
[14]) with extra structure for the various type and term formers. The core struc-
ture of a CwF can be given as the following signature:

Con : Type

Ty : (Γ : Con)→ Type

Sub : (Γ ∆ : Con)→ Type

Tm : (Γ : Con)→ Ty Γ → Type

In our presentation of the setoid model, contexts are given by setoids, that is,
types together with an equivalence relation. A key point of the model is that the
equivalence relation is valued in Prop and is thus definitionally proof irrelevant.

Γ : Con

|Γ | : Type

Γ∼ : |Γ | → |Γ | → Prop

refl Γ : (γ : |Γ |)→ Γ∼ γ γ

sym Γ : ∀{γ0 γ1} → Γ∼ γ0 γ1 → Γ∼ γ1 γ0

trans Γ : ∀{γ0 γ1 γ2} → Γ∼ γ0 γ1 → Γ∼ γ1 γ2 → Γ∼ γ0 γ2

Types in a context Γ are given by displayed setoids over Γ with a fibra-
tion condition given by coe, coh. In the following, we sometimes omit implicit
quantifications such as the ∀{γ0 γ1} in the type of symΓ .

A : Ty Γ

|A| : |Γ | → Type

A∼ : {γ0 γ1 : |Γ |} → Γ∼ γ0 γ1 → |A|γ0 → |A|γ1 → Prop

refl* : {γ : |Γ |}(a : |A|γ)→ A∼ (refl Γ γ) a a

sym* : ∀{γ0 γ1 a0 a1}{p : Γ∼ γ0 γ1} → A∼ p a0 a1 → A∼ (sym Γ p) a1 a0

trans* : A∼ p0 a0 a1 → A∼ p1 a1 a2 → A∼ (transΓ p0 p1) a0 a2

coe : Γ∼ γ0 γ1 → |A|γ0 → |A|γ1
coh : (p : Γ∼ γ0 γ1)(a : |A|γ0)→ A∼ p a (coeApa)

This definition of types in the setoid model is different from the one in [4],
but it is equivalent to it [12, Section 1.6.1]. The main difference here is in the
use of a heterogeneous equivalence relation A∼ in the definition of types.

8 T. Altenkirch et al.

Substitutions are interpreted as functors between the corresponding setoids,
whereas terms of type A in context Γ are sections of the type seen as a se-
toid fibration Γ.A → Γ . Note that we only need to include components for the
functorial action on objects and morphisms, since the functor laws follow from
proof-irrelevance in the metatheory, and thus hold definitionally.

σ : Sub Γ ∆

|σ| : |Γ | → |∆|
σ∼ : Γ∼ ρ0 ρ1 → ∆∼ (|σ|ρ0) (|σ|ρ1)

t : Tm Γ A

|t| : (γ : |Γ |)→ |A| γ
t∼ : (p : Γ∼ γ0 γ1)→ A∼ p (|t|γ0) (|t|γ1)

We can show that the setoid model validates the usual basic type formers
(Π,Σ, etc.), function extensionality and a universe of strict propositions with
propositional extensionality [4]. Note that we do not need identity types or in-
ductive types (W-types) for this.

3.2 Setoid Type Theory

The setoid model presented in the previous section is strict, that is, every equa-
tion of a CwF holds by definition in the semantics. One advantage of strict
models is that they can be turned into syntactic translations, in which syntactic
objects of the source theory are interpreted as their counterparts in another tar-
get theory. In the case of the setoid model, this gives rise to a setoid translation,
where source contexts are interpreted as target contexts together with a target
type representing the equivalence relation, and so on.8

A setoid translation is used in [5] to justify Setoid Type Theory (SeTT), an
extension of Martin-Löf type theory (+ Prop) with equality types for contexts
and dependent types that reflect the setoid equality of the model.

We recall the rules of SeTT that extend regular MLTT below, but with
a variation: whereas the equality types in [5] are stated as elements of SeTT’s
internal universe of propositions, here we state the context equalities as elements
of the external, metatheoretic universe Prop. This generalises the notion of
model of SeTT thus making it easier to construct models. Equality on types is
defined as before in [5].

We have a universe of propositions Prop defined as follows:

Γ : Con
Prop : Ty Γ

P : Tm Γ Prop

P : Ty Γ

u : Tm Γ P v : Tm Γ P

u ≡ v

Equality type constructors for contexts and dependent types internalize the
idea that every context and type comes equipped with a setoid equivalence rela-
tion. Note that Prop is the universe of the metatheory while Prop is the internal

8 Semantically, this translation corresponds to a model construction, in particular a
functor from the category of models of the target theory to the category of models
of what will be Setoid Type Theory. Since the setoid translation is structural in the
context component, we can work with models in the style of categories with families
rather than contextual categories.

Constructing a universe for the setoid model 9

one. As in the model, equality for dependent types is indexed over context equal-
ity.

Γ : Con ρ0, ρ1 : Sub ∆ Γ

Γ∼ ρ0 ρ1 : Prop

A : Ty Γ ρ01 : Γ∼ ρ0 ρ1
a0 : Tm ∆ A[ρ0] a1 : Tm ∆ A[ρ1]

A∼ ρ01 a0 a1 : Tm ∆ Prop

We have rules witnessing that these are indeed equivalence relations. We only
recall reflexivity:

ρ : Sub ∆ Γ

R ρ : Γ∼ ρ ρ

A : Ty Γ ρ : Sub ∆ Γ a : Tm ∆ A[ρ]

R a : Tm Γ A∼ (R ρ) a a

In addition, we also have rules representing the fact that every construction in
SeTT respects setoid equality, so that we can transport along any such equality:

A : Ty Γ ρ0, ρ1 : Sub ∆ Γ p : Γ∼ ρ0 ρ1 a : Tm ∆ A[ρ0]

coeA p a : Tm ∆ A[ρ1]
cohA p a : Tm ∆ A∼ p a (coeA p a)

Notably, equality types in SeTT compute definitionally on concrete type
formers. In particular, they compute to their obvious intended meaning, so that
an equality of pairs is a pair of equalities, an equality of functions is a map
of equalities, and so on. From this, we get definitional versions of function and
propositional extensionality.

We can easily recover the usual Martin-Löf identity type from setoid equality,
with transport implemented via coercion.

A : Ty Γ a0, a1 : Tm Γ A

IdA a0 a1 :≡ A∼ (R Γ) a0 a1 : Tm Γ Prop

P : Ty (Γ.A) p : Tm Γ (Id A a0 a1) t : Tm Γ P [a0]

transp P p t :≡ coe P (R id, p) t : Tm Γ P [a1]

We can also derive Martin-Löf’s J eliminator for this homogeneous identity
type. The only caveat is that transp and the J eliminator do not compute defi-
nitionally on reflexivity.

4 Universe of setoids

As pointed out in the introduction, SeTT is seriously limited by the lack of a
universes internalizing the notion of setoid. Our goal is to extend SeTT with
a universe of setoids; since SeTT is a direct syntactic reflection of the setoid
model, this essentially amounts to showing that a universe of setoids with the
necessary structure and equations can be constructed within the setoid model.
This opens several questions and possible design choices.

A first fundamental consideration has to do with the very definition of the
setoid universe: as any type in the setoid model, this universe must be a setoid

10 T. Altenkirch et al.

and thus come equipped with an equivalence relation. However, unlike the uni-
verse of propositions, a universe of setoids cannot be univalent, since this would
force it to be a groupoid. The obvious choice is therefore to have a non-univalent
universe, and instead define the universe’s relation so that it reflects a simple
syntactic equality of codes rather than setoid equivalence.

Another question has to do with the metatheoretic tools required to carry
out the construction of the universe. In fact, one of the main aspects of the setoid
model construction recalled in Section 3 and shown originally in [4] is that it
can be carried out in a very small type theoretic metatheory, thus providing a
way to reduce extensionality to a small intensional core. We would like to stay
faithful to this ideal when constructing this setoid universe.

A known and established method for defining universes in type theory relies
on induction-recursion (IR), a definition schema developed by Dybjer [15,16].
Inductive-recursive definitions can be found throughout the literature, from the
already mentioned type theoretic universes, including the original formulation
à la Tarski by Martin-Löf [24], to metamathematical tools like computability
predicates.

Although universe constructions in type theory—including our own setoid
universe—are naturally presented as inductive-recursive definitions, they may
not necessarily require a metatheory with induction-recursion. In fact, it is pos-
sible to reduce some instances of induction-recursion to plain induction (more
specifically, inductive families), including some universe definitions. We recall
this reduction in Section 4.1.

Other design choices on the setoid universe are less essential, but still require
careful consideration. For instance, one question is whether the setoid universe
should support universe induction, thus exposing the inductive structure of the
codes. Such an elimination principle is known to be inconsistent with univalence,
although this is not an issue in our case; nevertheless it is not immediately clear
if the elimination principle can be justified by the semantics, that is, if our encod-
ing of the setoid universe in the model allows to define such a universe eliminator.
The question arises because our final encoding of the setoid universe only sup-
ports a weak form of elimination, for reasons that are explained in Section 4.4.
Although not currently needed, a stronger eliminator might be necessary to jus-
tify universe induction. This problem should not arise in the other encodings of
the setoid universe (as given in Section 4.2 and Section 4.3).

Another design choice has to do with how the setoid universe relates to
the other universes. One could provide a code for Prop in the setoid universe.
Moreover, the setoid universes could form a hierarchy, possibly cumulative.

Yet another choice is whether to have two separate sorts, one for propositions
and one for sets (with propositions convertible to sets) or a single sort of types
(sets), with propositions given by elements of a universe of propositions, which
is a (large) type. We have chosen to present the second option to fit with the
standard notion of (unisorted) CwF. However, this has downsides: to even talk
about propositions, we need to have a notion of large types. The first option is
more symmetric: we can have parallel hierarchies for propositions and sets.

Constructing a universe for the setoid model 11

4.1 Inductive-recursive universes

An inductive-recursive universe is given by a type of codes U : Type, and a
family El : U → Type that assigns, to each code corresponding to some type,
the meta-theoretic type of its elements. The resulting definition is inductive-
recursive because the inductive type of codes is defined simultaneously with the
recursive function El.

An example is the following definition of a small universe with bool and Π.

data U : Type

bool : U

pi : (A : U)→ (El A→ U)→ U

El : U→ Type

El bool :≡
El (pi A B) :≡ (a : El A)→ El (B a)

Induction-recursion is arguably a nice and natural way to define internal
universes in type theory, however it is not always strictly required. We can
translate basic instances of induction-recursion into inductive families using the
equivalence of I-indexed families of types and types over I (that is, A : Type
with A→ I) [22].

In our case, we can encode U as an inductive type inU that carves out all
types in Type that are in the image of El. In other words, inU is a predicate
that holds for any type that would have been obtained via El in the inductive-
recursive definition. As El is indexed by the type of codes, the definition of inU
quite expectedly reflects the inductive structure of codes.

data inU : Type→ Type1

inBool : in-U

inPi : inU A→ ((a : A)→ inU (B a))→ inU ((a : A)→ (B a))

U and El can be given by U :≡ Σ (A : Type) (in-U A) and El :≡ π1.
Note that this construction gives rise to a universe in Type1, rather than

Type, since the definition of U quantifies over all possible types in Type. Hence
this kind of construction requires a metatheory with at least one universe.

4.2 Inductive-recursive setoid universe

In this section we give a first definition of the setoid universe, as a direct general-
ization of the simple inductive-recursive definition just shown. We only consider
a very small universe with bool type and Π for simplicity; a more realistic uni-
verse that includes more type formers can be found in the Agda formalization.

To construct the universe of setoids in the setoid model, we first of all need
to define a type U : Ty Γ for every Γ : Con, and for every A : Tm Γ U a
type El A : Ty Γ . Recalling Section 3, these are essentially record types made
of several components. Since U is a closed type, it requires the same data of
a setoid; in particular, we need a type of codes together with an equivalence
relation reflecting equality of codes, in addition to proofs that these are indeed
equivalence relations:

data U : Type1

– ∼U – : U → U → Prop1

reflU : (A : U)→ A ∼U A
symU : A ∼U B → B ∼U A

transU : A ∼U B → B ∼U C → A ∼U C

12 T. Altenkirch et al.

El is given by a family of setoids indexed over the universe, that is, a way to
assign to each code in the universe a carrier set and an equivalence relation.

El : U → Type

– ` – ∼El – : {a a′ : U} → a ∼U a′ → El a→ El a′ → Prop

Note that – ` – ∼El – is indexed over equality on the universe, because El is
a displayed setoid over U , hence in particular it must respect the setoid equality
of U . We also require data and proofs that make sure we get setoids out of El:

reflEl : (A : U)(x : El A)→ reflU A ` x ∼El x

symEl : p ` x ∼El x
′ → symU p ` x

′ ∼El x

transEl : p ` x ∼El x
′ → q ` x′ ∼El x

′′ → transU p q ` x ∼El x
′′

coeEl : A ∼U B → El A→ El B

cohEl : (p : A ∼U A′) (x : El A)→ p ` x ∼El coeEl p x

We give an inductive definition of U , mutually with a recursive definition of
the 4 functions – ∼U –, reflU , El and – ` – ∼El –. The other functions are then
recursively defined: reflEl alone, symU and symEl mutually, transU , transEl, coeEl
and cohEl mutually. The whole construction is quite long, below we only show
the more interesting definitions of U and El:

data U : Type1

bool : U
pi : (A : U)(B : El A→ U)

→ ({x x′ : El A} → reflU A ` x ∼El x
′

→ B x ∼U B x′)→ U

El bool :≡
El (pi A B h) :≡

Σ (f : (a : El A)→ El (B a))

(∀{x x′}(p : reflU A ` x ∼El x
′)

→ h p ` f x ∼El f x
′)

Note that in the definition of U we require that the family B : El A→ U be a
setoid morphism, respecting the setoid equalities involved. This choice is crucial
for the definition of El to go through, in particular since we eliminate the code
for Π types into the setoid of functions that map equal elements to equal results.
To state this mapping property we need to compare elements in different types,
coming from applying f to different arguments x and x′. We know that x and x′

are equal, but to conclude B x ∼U B x′ we need to know that B respects setoid
equality. This is exactly what we get from our definition of U .

We can now give a full definition of the setoid universe, and of El A for any
A : Tm Γ U:

|U| :≡ λ γ.U
U
∼ :≡ λ p x y. x ∼U y

refl U :≡ reflU

. . .

coe U :≡ λ p a. a
coh U :≡ λ p. reflU

|El A| :≡ λ γ.El (|A| γ)

(El A)∼ :≡ λ p x y.A∼ p ` x ∼El y

refl (El A) :≡ reflEl

. . .

coe (El A) :≡ λ p. coeEl (A
∼ p)

coh (El A) :≡ λ p. cohEl (A
∼ p)

Constructing a universe for the setoid model 13

We can show that U is closed under Π types and booleans, and satisfies
El (piAB) ≡ Π (El A) (El B) and El bool = Bool. The universe can be closed
under more constructions if more codes are added to U . This gives a complete
definition of a universe of setoids, which is, however, inductive-recursive. More-
over, the kind of recursion involved in this definition is particularly complex,
and not obviously reducible to well-understood notions of induction-recursion
like the one described in [16]. In any case, we would like to avoid extending the
metatheory with any form of induction-recursion in order to keep the metatheory
as small and essential as possible.

In the next section we transform our current inductive-recursive definition to
one that does not use induction-recursion. The way this is done is inspired by
the well-known trick to eliminate induction-recursion described in Section 4.1,
but modified in a novel way to account for the presence of Prop-valued types.
To our knowledge, this is the first time this reduction method is applied to an
inductive-recursive type of this kind.

4.3 Inductive-inductive setoid universe

We will follow the method outlined in Section 4.1. In addition to inU for defining
U, we also introduce a family inU∼ of binary relations between types in the
universe, from which we then define – ∼U –.

data inU : Type→ Type1

bool : inU

π : inU∼ a a A∼ → (∀{x0 x1}(x01 : A∼ x0 x1)→ inU∼ (b x0) (b x1) (B∼ x01))

→ inU (Σ (f : (x : A)→ B x)

((x0 x1 : A)(x01 : A∼ x0 x1)→ B∼ x01 (f x0) (f x1)))

data inU∼ : {A A′ : Type} → inU A→ inU A′ → (A→ A′ → Prop)→ Type1

bool∼ : inU∼ bool bool (λx0 x1 . x0
?
= x1)

π∼ : {b0 : (x0 : A0)→ inU (B0 x0)}{b1 : (x1 : A1)→ inU (B1 x1)}
{a0∼ : inU∼ a0 a0 A0∼}{a1∼ : inU∼ a1 a1 A1∼}
{b0∼ : ∀{x0 x1}(x01 : A0∼ x0 x1)→ inU∼ (b0 x0) (b0 x1) (B0∼ x01)}
{b1∼ : ∀{x0 x1}(x01 : A1∼ x0 x1)→ inU∼ (b1 x0) (b1 x1) (B1∼ x01)}

→ inU∼ a0 a1 A01∼

→ (∀{x0 x1}(x01 : A01∼ x0 x1)→ inU∼ (b0 x0) (b1 x1) (B01∼ x01))

→ inU∼ (π a0 a0∼ b0 b0∼) (π a1 a1∼ b1 b1∼)

(λf0 f1 . ∀(x0 x1)→ A01∼ x0 x1 → B01∼ x01 (π1 f0 x0) (π1 f1 x1))

Just as the role of inU is, as before, to classify all types that are image of El,
in the same way inU∼ a a′ classifies all relations of type A → A′ → Prop that
are image of – ` – ∼El –, given proofs a : inU A, a′ : inU A′. In particular, this
definition of inU∼ states that the appropriate equivalence for boolean elements

is the obvious syntactic equality –
?
= –, whereas functions are to be compared

14 T. Altenkirch et al.

pointwise. Note that inU appears in the sort of inU∼. Since these types are
mutually defined, they form an instance of induction-induction, a schema that
allows the definition of a type mutually with other types that contain the first
one in their signature [25].9

As in the universe example in Section 4.1, we now define U as a Σ type, and
El as the corresponding first projection.

U : Type1 El : U → Type

U :≡ Σ (X : Type) (inU X) El :≡ π1

What is left now is to define the setoid equality relation on the universe, as
well as the setoid equality relation on El A for any A in U . Two codes A,B in
the universe U are equal when there exists a setoid equivalence relation on their
respective sets El A and El B. Intuitively, since elements of a setoid are only ever
compared to elements of the same setoid, this should only be possible if A and B
are codes for the same setoid, that is, if A ∼U B. Existence and well-formedness
of such relations is expressed via the type inU∼ just defined, hence we would
expect A ∼U B to be defined as follows:

(A, a) ∼U (B, b) :≡ Σ (R : A→ B → Prop) (inU∼ a b R)

Unfortunately this definition only manages to capture the idea, but does
not actually typecheck. In fact, – ∼U – should be a Prop1-valued relation, so
A ∼U B should be a proposition. However, the Σ type shown above clearly is
not, since it quantifies over a type of relations, which is not a proposition. One
possible solution is actually quite simple, and it just involves truncating the Σ
type above to force it to be in Prop1.

– ∼U – : U → U → Prop1

(A, a) ∼U (B, b) :≡ ‖Σ (R : A→ B → Prop) (inU∼ a b R)‖

We are now left to define the indexed equivalence relation on El:

– ` – ∼El – : {A B : U} → A ∼U B → El A→ El B → Prop

p ` x ∼El y :≡ ?

In the definition above, p has type ‖Σ (R : ElA → ElB → Prop) (. . .)‖.
If the type was not propositionally truncated, we could define p ` x ∼El y by
extracting the relation out of the first component of p, and apply it to x, y.
That is, p ` x ∼El y :≡ π1 p x y. This would make the definition of – ∼U – and
– ` – ∼El – in line with how we defined U and El.

However, this does not work in our case, since the type of p is propositionally
truncated, hence it cannot be eliminated to construct a proof-relevant object.
Fortunately, we can work around this limitation by defining p ` x ∼El y by
induction on the codes A B : U , in a way that ends up being logically equivalent
to the proposition we would have obtained by π1 p x y if there were no truncation.

9 The main example of induction-induction is the intrinsic definition of a dependent
type theory in type theory [6].

Constructing a universe for the setoid model 15

More precisely, we need to construct proofs that for any concrete R and inR, the
types |(R, inR)| ` x ∼El y and R x y are logically equivalent. These in turn need
to be defined mutually with – ` – ∼El –. We direct the interested reader to
the Agda formalization for the full details of these definitions, as they are quite
involved.

The full definition of the universe is concluded with the remaining definitions,
like reflU , reflEl, etc., which can be adapted from their IR counterparts more or
less straightforwardly. The final result does not use induction-recursion, but it is
nevertheless an instance of infinitary induction-induction. The ability to define
arbitrary, infinitary inductive-inductive types clashes, again, with our objective
of keeping the metatheory as small and simple as possible. The next step is
therefore to reduce this inductive-inductive universe to one that does not require
(infinitary) induction-induction.

4.4 Inductive setoid universe

This section encodes the inductive-inductive universe of setoids from the pre-
vious section without assuming arbitrary inductive-inductive definitions in the
metatheory.

Before turning our attention to the setoid universe, we recall the known, sys-
tematic method to reduce finitary inductive-inductive types to inductive families.

Reducing finitary induction-induction It is known that finitary inductive-
inductive definitions can be reduced to inductive families [8,7,21]. To illustrate
the idea, let us consider a well-known example of a finitary inductive-inductive
type, the intrinsic encoding of type theory in type theory itself. Actually, we
only consider the type of contexts Con : Type and the type of types Ty : Con→
Type; since the latter is indexed over the former, this is already an example of
induction-induction.

Contexts in Con are formed out of empty contexts • and context extension
– , –. Types in Ty are either the base type ι or Π types.

• : Con ι : (Γ : Con)→ Ty Γ

– , – : (Γ : Con)→ Ty Γ → Con Π : {Γ : Con}(A : Ty Γ)→ Ty (Γ,A)→ Ty Γ

The general method to eliminate induction-induction is to split the original
inductive-inductive types into a type of codes and associated well-formedness
predicates. In our Con/Ty example, these would be respectively given by codes
Con0,Ty0 : Type and predicates Con1 : Con0 → Type,Ty1 : Con0 → Ty0 →
Type.

The definition of the codes and predicate types follows that of the original
inductive-inductive type, and can be derived systematically from it. More im-
portantly, they can be defined without induction-induction, since although Con0

and Ty0 are defined mutually, their sorts are not indexed.

16 T. Altenkirch et al.

•0 : Con0

– ,0 – : Con0 → Ty0 → Con0

ι0 : Con0 → Ty0

Π0 : Con0 → Ty0 → Ty0 → Ty0

•1 : Con1 •0
– ,1 – : ∀{Γ0 A0} → Con1 Γ0 → Ty1 Γ0 A0

→ Con1 (Γ0 ,0A0)

ι1 : ∀{Γ0} → Con1 Γ0 → Ty1 Γ0 (ι0 Γ0)

Π1 : ∀{Γ0 A0 B0} → Con1 Γ0

→ Ty1 Γ0 A0 → Ty1 (Γ0 ,0A0) B0

→ Ty1 Γ0 (Π0 Γ0 A0 B0)

We can recover the original inductive-inductive type as Con :≡ Σ (Γ0 :
Con0) (Con1 Γ0) and Ty Γ :≡ Σ (A0 : Ty0) (Ty1 (π1 Γ) A0). Recovering the
constructors is straightforward:

• :≡ (•0, •1)

(Γ0, Γ1), (A0, A1) :≡ ((Γ0 ,0 A0), (Γ1,1A1))

ι (Γ0, Γ1) :≡ (ι0 Γ0, ι1 Γ1)

Π {Γ0, Γ1}(A0, A1)(B0, B1) :≡ (Π0 Γ0 A0 B0, Π1 Γ1 A1 B1)

Finally, we can define eliminators/induction principles for Con and Ty as just
defined, by induction on the well-typing predicates.

Following [25], we distinguish two versions of the eliminator: the simple and
the general one. Note that this is orthogonal to the distinction between non-
dependent and dependent eliminators, from which we only consider the latter.
The motives for the simple eliminator are C ′ : Con → Type, T ′ : (Γ : Con)(A :
TyΓ)→ Type and the eliminators themselves have the following signatures:

elim′Con : (Γ : Con)→ C ′ Γ elim′Ty : ∀{Γ}(A : Ty Γ)→ T ′ Γ A

In the case of the general eliminator, the motive for Ty depends on the motive
for Con, making the two eliminators recursive-recursive functions. For motives
C : Con→ Type and T : (Γ : Con)→ Ty Γ → C Γ → Type the signatures are:

elimCon : (Γ : Con)→ C Γ elimTy : ∀{Γ}(A : Ty Γ)→ T Γ A (elimCon Γ)

The general eliminators can be derived from our encoding of Con and Ty via
untyped codes and well-typing predicates. The way to do it is to first define the
graph of the eliminators in the form of inductively-generated relations:

data R-Con : (Γ : Con)→ C Γ → Type

data R-Ty : {Γ : Con}(A : Ty Γ)(γ : C Γ)→ T Γ A γ → Type

The next step is to prove that these relations are functional, by induction on
the untyped codes Con0 and Ty0 [21]. From this result, defining the eliminators
is immediate.

Reducing the setoid universe The reduction described in the previous sec-
tion works generically for an arbitrary finitary inductive-inductive type, thus

Constructing a universe for the setoid model 17

giving a systematic way to reduce finitary inductive-inductive definitions to in-
ductive families. However, it is not clear whether this method extends to in-
finitary induction-induction, of which the setoid universe defined in Section 4.3
is an instance. Of course, the absence of a general reduction method does not
mean that we cannot reduce particular concrete instances of infinitary induction-
induction, which is exactly what we hope for our universe construction.

The obvious challenge in successfully completing this reduction is to avoid
the need for extensionality in the metatheory. In fact, consider the simple in-
finitary inductive-inductive type obtained from the previous Con/Ty example by
replacing the finitary constructor Π with an infinitary one: Π : {Γ : Con} →
(N → Ty Γ) → Ty Γ . Already with this simple example, we run into prob-
lems as soon as we try to define the eliminator. One issue is that the definition
of the eliminator relies on a proof that the well-typing predicates inU1, inU∼1

are propositional, that is, any two of their elements are equal. Without further
assumptions this proof can only be done by induction, and requires function
extensionality since these predicates include higher-order constructors.

One way to get around this is to define the well-typing predicates as Prop-
valued families, rather than in Type:

data inU0 : Type→ Type1

data inU∼0 : {A A′ : Type} → (A→ A′ → Prop)→ Type1

data inU1 : (A : Type)→ inU0 A→ Prop1

data inU∼1 : {A A′ : Type} → (R : A→ A′ → Prop)→ inU∼0 R→ Prop1

Using Prop avoids the issue of proving propositionality altogether, since the
predicates are now propositional by definition. However, it introduces a different
issue: inU1 and inU∼1 give rise to equational constraints on their indices, in the
form of proofs of the Prop-valued identity type. The definition of the eliminators
for inU and inU∼ relies on the ability to transport along these proofs, hence the
need to extend our metatheory with a primitive, strong form of transport for
Id.10

Having Prop and a strong transport principle does help to some extent.
However, we would still need extensionality to derive the general eliminators for
inU and inU∼. In fact, as explained in the previous section, to derive the general
recursive-recursive eliminators we need to prove that the corresponding graph
relations are functional, which cannot be done without funext.

Luckily, the simple elimination principle is sufficient for our purposes: all
functions described in Section 4.3 can be defined just using the simple elimina-
tor without recursion-recursion. The simple eliminator itself can be defined by
pattern matching on the untyped codes, and does not require extensionality or
any extra principles beyond strong transport.

Once the inductive encoding of the inductive-inductive universe is done, the
setoid universe can be defined just as in Section 4.3.

10 Note that this issue cannot be solved by expressing the equational constraints with
an identity type in Type, since the well-typing predicates force it to necessarily be
in Prop.

18 T. Altenkirch et al.

5 Conclusions and further work

We have described the construction of a universe of setoids in the setoid model
of type theory; this is given in several steps, first as an inductive-recursive defini-
tion, then as an inductive-inductive definition, and finally as an inductive type.
Every encoding is obtained from the previous by adapting known data type
transformation methods in a novel way that accounts for the peculiarities of our
construction. In [5] we present rules for SetTT, clearly these rules need to be
extended by the rules for a universe reflecting the semantics presented here.

It is known that finitary IITs can be reduced to inductive types in an exten-
sional setting [21]. In our paper we reduce an infinitary IIT to inductive types
in an intensional setting. In the future, we would like to investigate whether this
reduction can be generalised to arbitrary infinitary IITs.

In contrast to the inductive-recursive and inductive-inductive versions of the
universe, the inductive definition relies on a metatheory with a strong transport
rule. As future work, we would like to prove normalization for this metatheory
since previous work in this respect [2] seems to suggest that is represents a
non-trivial addition.

Another question regards the relationship between SeTT [5] and XTT [28].
Both systems are syntactic representations of the setoid model with similar de-
sign choices, like definitional proof-irrelevance. We would like to know whether
their respective notions of models are equivalent, that is, if we can obtain an
XTT model from a SeTT model, and vice versa. Since XTT universes support
universe induction, for one direction we would need to extend our own universe
with the same principle (see discussion in Section 3 and the previous paragraph).
Thus a related question is whether our encodings of the setoid universe can sup-
port universe induction. A further question is whether this mapping of models
is functorial.

Groupoids can be regarded as generalized setoids. In the future we would
like to design a type theory internalizing the groupoid model of type theory [20],
in the same way that SeTT represents a syntax for the setoid model. A further
question is whether such “groupoid type theory” can be justified, similarly to
SeTT, via a syntactic translation, perhaps with SeTT itself as the target theory.

References

1. Andreas Abel. Extensional normalization in the logical framework with proof irrele-
vant equality. In Olivier Danvy, editor, Workshop on Normalization by Evaluation,
affiliated to LiCS 2009, Los Angeles, 15 August 2009, 2009.

2. Andreas Abel and Thierry Coquand. Failure of normalization in impredicative
type theory with proof-irrelevant propositional equality, 2019. arXiv:1911.08174.

3. Peter Aczel. The type theoretic interpretation of constructive set theory. In
Angus Macintyre, Leszek Pacholski, and Jeff Paris, editors, Logic Colloquium
’77, volume 96 of Studies in Logic and the Foundations of Mathematics, pages
55 – 66. Elsevier, 1978. URL: http://www.sciencedirect.com/science/article/pii/
S0049237X0871989X, doi:https://doi.org/10.1016/S0049-237X(08)71989-X.

http://arxiv.org/abs/1911.08174
http://www.sciencedirect.com/science/article/pii/S0049237X0871989X
http://www.sciencedirect.com/science/article/pii/S0049237X0871989X
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)71989-X

Constructing a universe for the setoid model 19

4. Thorsten Altenkirch. Extensional equality in intensional type theory. In Proceed-
ings of the Fourteenth Annual IEEE Symposium on Logic in Computer Science
(LICS 1999), pages 412–420. IEEE Computer Society Press, July 1999.

5. Thorsten Altenkirch, Simon Boulier, Ambrus Kaposi, and Nicolas Tabareau. Se-
toid type theory—a syntactic translation. In Graham Hutton, editor, Mathematics
of Program Construction, pages 155–196, Cham, 2019. Springer International Pub-
lishing.

6. Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using
quotient inductive types. SIGPLAN Not., 51(1):18–29, January 2016. URL:
https://doi.org/10.1145/2914770.2837638, doi:10.1145/2914770.2837638.

7. Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von Raumer. Re-
ducing inductive-inductive types to indexed inductive types. In José Esṕırito Santo
and Lúıs Pinto, editors, 24th International Conference on Types for Proofs and
Programs, TYPES 2018. University of Minho, 2018.

8. Thorsten Altenkirch, Ambrus Kaposi, András Kovács, and Jakob von Raumer.
Constructing inductive-inductive types via type erasure. In Marc Bezem, editor,
25th International Conference on Types for Proofs and Programs, TYPES 2019.
Centre for Advanced Study at the Norwegian Academy of Science and Letters,
2019.

9. Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Observational equal-
ity, now! In PLPV ’07: Proceedings of the 2007 workshop on Programming lan-
guages meets program verification, pages 57–68, New York, NY, USA, 2007. ACM.
doi:http://doi.acm.org/10.1145/1292597.1292608.

10. Thorsten Altenkrich, Simon Boulier, Ambrus Kaposi, Christian Sattler, and Fil-
ippo Sestini. Agda formalization of the setoid universe. https://bitbucket.org/
taltenkirch/setoid-univ, 2021.

11. Marc Bezem, Thierry Coquand, and Simon Huber. A model of type theory in cubi-
cal sets. In Ralph Matthes and Aleksy Schubert, editors, 19th International Confer-
ence on Types for Proofs and Programs (TYPES 2013), volume 26 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 107–128, Dagstuhl, Germany,
2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.
dagstuhl.de/opus/volltexte/2014/4628, doi:10.4230/LIPIcs.TYPES.2013.107.

12. Simon Boulier. Extending Type Theory with Syntactical Models. PhD thesis, IMT
Atlantique, 2018.

13. Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type
theory: A constructive interpretation of the univalence axiom. In Tarmo Uustalu,
editor, 21st International Conference on Types for Proofs and Programs (TYPES
2015), volume 69 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 5:1–5:34, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2018/8475, doi:10.

4230/LIPIcs.TYPES.2015.5.
14. Peter Dybjer. Internal type theory. In International Workshop on Types for Proofs

and Programs, pages 120–134. Springer, 1995.
15. Peter Dybjer. A general formulation of simultaneous inductive-recursive definitions

in type theory. Journal of Symbolic Logic, 65, 06 2003. doi:10.2307/2586554.
16. Peter Dybjer and Anton Setzer. A finite axiomatization of inductive-recursive

definitions. In Jean-Yves Girard, editor, Typed Lambda Calculi and Applications,
pages 129–146, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg.

17. Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Defi-
nitional proof-irrelevance without K. Proceedings of the ACM on Programming

https://doi.org/10.1145/2914770.2837638
http://dx.doi.org/10.1145/2914770.2837638
http://dx.doi.org/http://doi.acm.org/10.1145/1292597.1292608
https://bitbucket.org/taltenkirch/setoid-univ
https://bitbucket.org/taltenkirch/setoid-univ
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://drops.dagstuhl.de/opus/volltexte/2014/4628
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://drops.dagstuhl.de/opus/volltexte/2018/8475
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://dx.doi.org/10.4230/LIPIcs.TYPES.2015.5
http://dx.doi.org/10.2307/2586554

20 T. Altenkirch et al.

Languages, pages 1–28, January 2019. URL: https://hal.inria.fr/hal-01859964,
doi:10.1145/329031610.1145/3290316.

18. Martin Hofmann. Extensional concepts in intensional type theory. PhD thesis,
University of Edinburgh, 1995.

19. Martin Hofmann. Conservativity of equality reflection over intensional type theory.
In Stefano Berardi and Mario Coppo, editors, Types for Proofs and Programs, pages
153–164, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

20. Martin Hofmann and Thomas Streicher. The groupoid interpretation of type the-
ory. In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of
Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

21. Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-
induction, induction is enough. In Marc Bezem and Assia Mahboubi, editors,
25th International Conference on Types for Proofs and Programs (TYPES 2019),
volume 175 of Leibniz International Proceedings in Informatics (LIPIcs), pages
6:1–6:30, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für In-
formatik. URL: https://drops.dagstuhl.de/opus/volltexte/2020/13070, doi:10.

4230/LIPIcs.TYPES.2019.6.
22. Lorenzo Malatesta, Thorsten Altenkirch, Neil Ghani, Peter Hancock, and Conor

McBride. Small induction recursion, indexed containers and dependent polynomi-
als are equivalent, 2013. TLCA 2013.

23. Per Martin-Löf. An intuitionistic theory of types: Predicative part. In H.E. Rose
and J.C. Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic
and the Foundations of Mathematics, pages 73 – 118. Elsevier, 1975. URL: http:
//www.sciencedirect.com/science/article/pii/S0049237X08719451, doi:https://

doi.org/10.1016/S0049-237X(08)71945-1.
24. Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof theory.

Bibliopolis, 1984.
25. Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis, Swansea

University, 2013.
26. Erik Palmgren. From type theory to setoids and back. arXiv e-prints, page

arXiv:1909.01414, September 2019. arXiv:1909.01414.
27. Erik Palmgren and Olov Wilander. Constructing categories and setoids of setoids in

type theory. arXiv e-prints, page arXiv:1408.1364, August 2014. arXiv:1408.1364.
28. Jonathan Sterling, Carlo Angiuli, and Daniel Gratzer. Cubical syntax for reflection-

free extensional equality. In Herman Geuvers, editor, Proceedings of the 4th
International Conference on Formal Structures for Computation and Deduction
(FSCD 2019), volume 131 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 31:1–31:25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019. URL: http://drops.dagstuhl.de/opus/volltexte/2019/10538, arXiv:1904.

08562, doi:10.4230/LIPIcs.FSCD.2019.31.
29. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-

dations of Mathematics. https://homotopytypetheory.org/book, Institute for Ad-
vanced Study, 2013.

https://hal.inria.fr/hal-01859964
http://dx.doi.org/10.1145/329031610.1145/3290316
https://drops.dagstuhl.de/opus/volltexte/2020/13070
http://dx.doi.org/10.4230/LIPIcs.TYPES.2019.6
http://dx.doi.org/10.4230/LIPIcs.TYPES.2019.6
http://www.sciencedirect.com/science/article/pii/S0049237X08719451
http://www.sciencedirect.com/science/article/pii/S0049237X08719451
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
http://dx.doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1
http://arxiv.org/abs/1909.01414
http://arxiv.org/abs/1408.1364
http://drops.dagstuhl.de/opus/volltexte/2019/10538
http://arxiv.org/abs/1904.08562
http://arxiv.org/abs/1904.08562
http://dx.doi.org/10.4230/LIPIcs.FSCD.2019.31
https://homotopytypetheory.org/book

Constructing a universe for the setoid model 21

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Constructing a universe for the setoid model
	1 Introduction
	1.1 Related work

	2 MLTT^Prop
	2.1 Formalization

	3 Setoid model
	3.1 Setoid model as a CwF
	3.2 Setoid Type Theory

	4 Universe of setoids
	4.1 Inductive-recursive universes
	4.2 Inductive-recursive setoid universe
	4.3 Inductive-inductive setoid universe
	4.4 Inductive setoid universe

	5 Conclusions and further work
	References

