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Background
Machine learning (ML) based regression analysis, which is 
used to discover complex relationships between sample fea-
tures and labels (supervised learning), is frequently applied 
in diverse biological fields including metabolic engineer-
ing,1 protein engineering,2 and systems biology.3-5 A key 
question when developing these supervised ML models is 
whether there is sufficient information in the available data 
to accurately predict sample labels. For a given dataset, the 
performance of the best possible function for mapping 
input features to sample labels should thus be estimated to 
serve as a benchmark in ML model development. This level 
of performance is typically referred to as Bayes optimal 
error for classification problems.6 In many classical ML 
problems—such as image classification, handwriting recog-
nition and speech recognition—human-level performance 
at the task is very high and can therefore be used as a  
heuristic to estimate maximal performance.7,8 However,  
for biological multi-dimensional data, human-level 
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ABSTRACT

BACkgRouNd: A challenge in developing machine learning regression models is that it is difficult to know whether maximal performance 
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performance is low and is therefore not a good performance 
estimate. On the contrary, in biology one often seeks to 
train ML models for the explicit purpose of recognizing 
patterns and gaining insights that were obscured from the 
human intellect.9,10 Therefore, without a clear performance 
benchmark against which to bootstrap biological regression 
models, it is difficult to know whether further model devel-
opment is worth-while and when the performance limit has 
been reached.

When testing the performance of trained ML regression 
models on holdout data, the discrepancy between predicted 
labels and observed labels in a test dataset is evaluated using 
metrics such as the mean squared error (MSE) and the coeffi-
cient of determination (R2).11 Sample labels used in regression 
analysis of biological systems are typically real numbers obtained 
through measurements in a set of laboratory experiments. Such 
measurements inextricably have experimental noise and meas-
urement error associated with them,12-14 thus affecting the qual-
ity of the sample labels. Because of such label noise a ML model 
with an MSE of 0 or R2 of 1 (perfect prediction) cannot be 
achieved; there is an upper bound that cannot be surpassed. * Gang Li and Jan Zrimec contributed equally to this study.

https://uk.sagepub.com/en-gb/journals-permissions
mailto:martin.engqvist@chalmers.se
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Methods to estimate this upper bound are underdeveloped, 
although some progress has been made recently.15,16 Moreover, 
the resources invested into model development have diminish-
ing returns on model performance as one approaches the upper 
bound. Knowing the best expected MSE or R2 (i.e. the upper 
bounds) of a specific regression problem and dataset enables the 
discrepancy between current and potential model performance 
to be quantified, thus giving researchers a means to assess the 
cost-benefit trade-off of further model development.

In the present study, we mathematically derive a method to 
estimate upper bounds for the regression model performance 
metrics MSE and R2 on holdout data directly from the experi-
mental noise associated with response variables in a dataset and 
independently of their predictors. Using Monte Carlo simula-
tions, we show that this method is highly accurate and outper-
forms existing ones. Furthermore, by applying the method to 
real biological modeling problems and datasets, including pro-
tein sequence data, transcriptomics data and genomics data, we 
demonstrate how the new upper bound estimates can inform 
model development.

Methods
Enzyme catalytic temperature optima dataset

We first collected Topt of 5675 enzymes with known protein 
sequences from BRENDA.17 Of these 3096 enzymes were 
successfully mapped to a microbial optimal growth tempera-
ture (OGT) database.18 To obtain a clean dataset with less 
noise we carried out several steps: (1) Enzymes for which the 
Topt entry contained “assay at” in the BRENDA “comments” 
field were removed from the raw dataset. (2) If a subset of all 
enzymes from a specific organism had the same EC number 
and exactly the same Topt, then these were removed. This was 
done to address an issue with non-perfect matching between 
experimental data from the literature and Uniprot identifiers 
(186 enzymes). (3) Enzymes with multiple Topt values having 
standard deviations greater than 5 were removed (96 enzymes). 
After these steps, 1902 enzymes remained in the cleaned data-
set, of which 1232 were with known OGT. In both raw and 
cleaned datasets, any sequences shorter than 30 residues or 
containing letters that are not in 20 standard amino acids were 
discarded and for enzymes still with multiple Topt values the 
average value was used. Estimation of label noise: For enzymes 
with multiple Topt values in BRENDA, the variance for each 
enzyme was calculated. Subsequently, the average variance for 
all those enzymes was calculated and used as the estimation of 
experimental noise σ y

2  of the dataset. For the cleaned dataset 
the label noise was estimated at step (2) in the paragraph above, 
before samples with high standard deviation were removed.

Protein transcription level dataset

Genomic data including open reading frame (ORF) boundaries 
of Saccharomyces cerevisiae C288 was obtained from the 

Saccharomyces Genome Database (https://www.yeastgenome.
org/)19,20 and published data.21,22 Coding regions were extracted 
based on ORF boundaries and codon frequencies were normal-
ized to probabilities. Processed raw RNA sequencing Star 
counts were obtained from the Digital Expression Explorer V2 
database (http://dee2.io/index.html)23 and filtered for experi-
ments that passed quality control. Raw mRNA data were trans-
formed to transcripts per million (TPM) counts24 and genes 
with zero mRNA output (TPM < 5) were removed. Prior to 
modeling, the mRNA counts were Box-Cox transformed.25

Yeast pangenome and quantitative traits dataset

The gene presence/absence (P/A) encoding of S. cerevisiae pan 
genome were obtained from Li et  al.26 The 35 quantitative 
traits were obtained from Peter et al.27

Monte Carlo simulations on expected R2  score

Given the true functions between features and labels f x( ) :

1. Randomly generate 1000 samples from N ( , )0 1  as x . 
Then true values are y f x= ( ) ;

2. Randomly generate a noise vector ε y . Each ε y i,  is ran-
domly sampled from N y i( , ),0 2σ , where σ y i,

2  is randomly 
sampled from χ

2 1( ) ;
3. y yobs y= +ε ;
4. Add noise to x xobs x= +ε , in which εx  is sampled from 

a normal distribution with zero-mean and variance of 
σ x

2  (varying from 0 to 1);
5. Calculate RML

2  by performing a 2-fold cross-validation 
on dataset { , }, ,x yobs i obs i  with support vector machine 
regression model (another inner 2-fold cross-validation 
for hyper-parameter optimization);

6. Calculate upper bound for R2  with R
LG

obs y

obs

2
2 2

2
=

−σ σ

σ
 

and R
FP

obs y

obs

2
2 2

2

2
=

−σ σ

σ
, where σ obs

2  is the variance of 

yobs  and σ y
2  is the average value of randomly generated 

σ y i,
2 .

7. Repeat steps 1 to 6 for 1000 times.

A linear function f x x( ) = +2 1  and a nonlinear function 
f x sin x( ) ( )= +2 1  were tested, respectively.

Monte Carlo simulations on data cleaning

Define a linear function f x x
i

i( ) =
=
∑

1

10

 as the true function to 

map 10 features to a target y . Each feature follows a standard 
normal distribution.

1. Randomly generate feature of 1000 samples as X . 
Calculate real target values y ;

https://www.yeastgenome.org/
https://www.yeastgenome.org/
http://dee2.io/index.html
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2. Randomly generate a noise vector ε y . Each ε y i,  is ran-
domly sampled from N y i( , ),0 2σ , where σ y i,

2  is randomly 
sampled from χ2 5( ) ;

3. Calculate observed target values via y yobs y= +ε , and 
resulted a dataset { , }X yobs ;

4. Assume we only know the first n  features 
( , , , , )n = 2 4 6 8 10 , Sort all samples based on σ y i,

2  values, 
gradually remove the samples with the highest σ y i,

2  val-
ues, calculate R2  score of a linear function via a 2-fold 
cross validation on such a dataset with only a subset of 
features.

5. Repeat steps 1 through 4 for a total of 100 times.

Feature extraction for enzymes in Topt dataset

The 5494 features from iFeature were broken up into 20 sub-
feature sets according to their types, and their predictive power 
was evaluated using 5 different regression models (linear, elas-
tic net, Bayesian ridge, decision tree and random forest 
regressors).

A total of 20 different sets of protein features were 
extracted with iFeature28 using default settings: amino acid 
composition (AAC, 20 features), dipeptide composition 
(DPC, 400), composition of k-spaced amino acid pairs 
(CKSAAP, 2400), dipeptide deviation from expected mean 
(DDE, 400), grouped amino acid composition (GAAC, 5), 
composition of k-spaced amino acid group pairs (CKSAAGP, 
150), grouped dipeptide composition (GDPC, 25), grouped 
tripeptide composition (GTPC, 125), Moran autocorrelation 
(Moran, 240), Geary autocorrelation (Geary, 240), normal-
ized Moreau-Broto (NMBroto, 240), composition-transi-
tion-distribution (CTDC, 39; CTDT, 39; CTDD, 195), 
conjoint triad (CTriad, 343), conjoint k-spaced triad 
(KSCTriad, 343), pseudo-amino acid composition (PAAC, 
50), amphiphilic PAAC (APAAC, 80), sequence-order-cou-
pling number (SOCNumber, 60) and quasi-sequence-order 
descriptors (QSOrder, 100). In total, we obtained 5494 fea-
tures from iFeature. Furthermore, we additionally obtained 
features in the form of sequence embedding representations 
encoded by a deep learning model UniRep,29 which is a 
Multiplicative Long-Short-Term-Memory (mLSTM) 
Recurrent Neural Networks (RNNs) that was trained on the 
UniRef50 dataset.30 A total of 1900 ×  3 features were 
extracted for each protein sequence using UniRep.

Supervised classical ML methods

Input features were first scaled to a standard normal distribu-

tion by x
x u

N i
i i

i
, =

−
σ

, where xi  is the values of feature i of all 

samples, ui  and σ i  are the mean and standard deviation of xi , 
respectively. Two linear regression algorithms BayesianRidge 
and Elastic Net as well as three non-nonlinear algorithms 

Decision Tree, Random Forest and Support Vector Machine6 
were evaluated on each feature set (iFeatures and UniRep). The 
evaluation was conducted via a nested cross-validation 
approach: an inner 3-fold cross validation was used for the 
hyper-parameter optimization via a grid-search strategy and an 
outer 5-fold cross-validation was used to estimate the model 
performance (see Table S2 for hyper-parameter values). With 
the transcriptomics data, linear regression was the only algo-
rithm used, as it was previously found to outperform all other 
algorithms with a similar dataset.5 For genomics datasets, only 
the random forest regression was tested. All ML analysis was 
performed with scikit-learn (v0.20.3)31 using default settings 
and Python v3.6.7.

Supervised deep ML methods

To test the performance of a deep neural networks on the pre-
diction of enzyme Topt, architectures were tested that com-
prised up to 9 convolutional neural network (CNN) layers32 
followed by 2 fully connected (FC) layers.33 Batch normaliza-
tion34 and weight dropout35 were applied after all layers and 
max-pooling36 after CNN layers. The Adam optimizer37 with 
MSE loss function and ReLU activation function38 with uni-
form7 weight initialization were used. In total, 26 hyper-
parameters were optimized over a predefined parameter space 
(Table S3) using a tree-structured Parzen estimators approach39 
at default settings for 1000 iterations.40,41 The Keras v2.2 and 
Tensorflow v1.10 software packages were used.

Prediction of Topt for enzymes from BRENDA and 
CAZy

Sequences and associated OGT values for the BRENDA data-
base was obtained from Li et  al.42 For the CAZy database, 
enzyme information including protein name, EC number, 
Organism, GenBank id, Uniprot id, PDB id and CAZy family 
id were obtained from http://www.cazy.org/.43 1 346 471 pro-
teins with unique GenBank identifiers were obtained. Protein 
sequences were first downloaded from NCBI ftp site: https://
ftp.ncbi.nih.gov/ncbi-asn1/protein_fasta/. Then only those 
sequences that were present in the CAZy dataset were kept by 
matching GenBank identifier. 924 642 sequences could be 
mapped to an OGT value by cross-referencing the source 
organism name and an OGT dataset.18 Only the species names 
were checked, ignoring strain designations, for instance S. cer-
evisiae S288 C was considered as S. cerevisiae. For Topt predic-
tion on the BRENDA and CAZy data, the model with the best 
performance was selected, which in this case was the random 
forest model trained only on amino acid frequencies and OGT. 
The model was then trained on all samples in the training 
dataset. For the prediction, (1) the 20 amino acid frequencies 
were extracted with iFeature28 and OGT values of their source 
organisms were mapped; (2) all these 21 features were 

http://www.cazy.org/
https://ftp.ncbi.nih.gov/ncbi-asn1/protein_fasta/
https://ftp.ncbi.nih.gov/ncbi-asn1/protein_fasta/
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normalized by subtracting the mean and then divided by the 
standard deviation obtained from the training dataset; and (3) 
these data were used as input of the model for the prediction of 
the Topt values.

Theoretical Analysis
Starting from first principles, we mathematically derived a 
method to estimate upper bounds of model performance on 
holdout data in terms of R2 and benchmarked the upper bound 
estimates against existing methods.

Estimating the theoretical upper bound of regression 
model performance

Given a set of samples with experimentally determined 
labels { },yobs i  and corresponding unknown real labels { }yi , 
we assume a normally distributed experimental noise 
ε σy i y iN, ,( , )∼ 0 : y yobs i i y i, ,= +ε  ( y Ri ∈ ), and that a com-
plete set of features is known as x Ri

k∈  for each sample. 
This complete set of features can be used to calculate the 
real value of label yi  with y f x= ( )  for all samples. The 
performance of this real function f x( )  on the dataset 
{ }, ,x yi obs i  gives an upper bound for the expected perfor-
mance of any ML model. The coefficient of determination 
( R2 ) is a common metric to assess model performance 
and thus the R2  of the model in the above argument is 
given by

R
y y

y y

y
i

m
obs i obs i

i

m
obs i obs

i

m
obs2 1

2

1

2
11 1= −

−( )
−( )

= −=

=

=∑
∑

∑, ,

,

,ii i

i

m
obs i obs

f x

y y

− ( )( )
−( )

=∑

2

1

2

,

 
(1)

where m  is the number of samples. Although it is not possible 
to obtain an exact value from the above equation, since the real 
values f xi( )  are unknown, we can instead obtain the expecta-
tion of R2  (Note S1), which is given by

 
R

y f x

y y

m
m

i

m
obs i i

i

m
obs i obs

y

obs

2 1

2

1

2

2

1 1
3

= −
− ( )( )
−( )

= −
−

=

=

∑
∑

,

,

σ

σ 22  (2)

and in which σ σy
i

m

y im
2

1

21
=

=
∑ ,

. As the number of examples in 

ML is usually very large (m >> 1), we can approximate the 
final equation for upper bound estimation as

 R y

obs

obs y

obs

2
2

2

2 2

2
1≈ − =

−σ

σ

σ σ

σ
 (3)

We refer to this upper bound estimate as R
LG

2  hereafter. 

It has a variance of 
2 2

3 5
2

4

4

m m

m m
y

obs

−( )
−( ) −( )

σ

σ
 (Note S1). Similarly, 

the best MSE that one can expect is given as MSE y= σ 2  

with a variance of 2
4σ y

m
(Note S2). R

LG
2  gives a measure of 

the best R2 one can expect when testing an ML model on a 
held out dataset.

The new upper bound estimate R
LG

2 , which is the 

R2  expectation of the best possible ML model on holdout 
data, solely depends on 2 properties of the dataset: (1) the 
true variance of the observed response values ( )σ obs

2  and (2) 
the average variance of experimental noise of all samples 
( )σ y

2 . In practice, σ obs
2  and σ y

2  are unknown and have to be 
approximated from the dataset. σ y i,  can be approximated 
with the standard error (SE) of n replicates, which repre-
sent the standard error of the mean, and σ obs

2  can be approx-
imated as the variance of the target values (Figure 1). Since 
the resulting R

LG
2  is an expectation and relies on 

approximated values, it does not strictly represent an upper 
bound for the R2  of regression models and the real value 
may be slightly higher or lower. In this way the R

LG
2  

estimate is analogous to using human-level performance to 
approximate upper bounds in image classification 
applications.44-47

R2

LG
 upper bound estimates outperform existing 

methods

In recent publications it has been proposed that, given a set of 
experimentally measured values yobs i, , the best possible model 
is y x=  in which x  are the values collected from another set 
of experiments conducted at identical conditions.15,16 Under 

ˆ

Figure 1. Schematic diagram depicting the estimation of the upper 

bound of model performance R
LG

2  based on experimental label noise. 
σ y

2
 can be approximated from the standard errors (se) of samples in the 

dataset, and σobs
2  can be approximated as the variance of the target 

values. Data shown were randomly generated, sei denotes standard error 

of sample i. R
LG

2  is the expected upper bound for the coefficient of 

determination R2  derived in this study (see section “Estimating the 

theoretical upper bound of regression model performance”).
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this assumption, the expectation of the upper bound for MSE 

is 2 2σ y  and R2  is 
σ σ

σ σ

DB y

DB y

2 2

2 2

−

+
, where σ y

2  is the average vari-

ance of all sample noise and σDB
2  is the variance of the real 

values (without noise). Since σ σ σDB y obs
2 2 2+ ≈ , the upper bound 

for R2  becomes σ σ

σ
obs y

obs

2 2

2

2− , and we refer to this upper 

bound as R
FP

2  hereafter. Despite claims that no ML model 
could perform better than this upper bound,15,16 by comparing 
the equations for R

LG
2  and R

FP
2 , it is clear that R

FP
2  

estimates are lower than both R
LG

2  estimates as well as 
achieved ML model performance.

To directly compare R
FP

2  and R
LG

2 , we performed 
Monte Carlo simulations. Briefly, a random dataset x yi , obs,i{ }  
was generated from a known real function f x( )  with added 
experimental noise σ y i,  (see section “Monte Carlo simula-
tions on expected R2  score”). For this dataset, R

FP
2  and 

R
LG

2  were calculated, and then the R2  of a support vector 
machine regression model48 trained on the data was calcu-
lated via a 2-fold cross validation approach ( RML

2 ). This pro-
cess was repeated for 1000 iterations. A linear (Figure 2A) 
and nonlinear real function (Figure 2B) were used in two 
separate simulations (see observed data distributions in Figure 
S1). Furthermore, to evaluate the effects of feature noise on 
regression model performance, we generated noise-free fea-
tures (σ x

2 0 0= . ), as well as features with different levels of 
noise associated with them (σ x

2 0 2= . , σ x
2 0 4= . , σ x

2 0 6= . , 
σ x

2 0 8= . , σ x
2 1 0= . ). The simulations illustrated three key 

points. First, in both linear and nonlinear cases, RML
2  is always 

smaller than or close to R
LG

2 , which confirms that R
LG

2  
gives a good estimation of the model performance upper 
bound. Second, the simulations show that there are ML mod-
els with RML

2  higher than R
FP

2 , which is contrary to the 
expectation if R

FP
2  is a true upper bound.15,16 Third, as σ x

2  

Figure 2. Monte Carlo simulations of the upper bound of R2  assuming different levels of feature noise. R
FP

2  and R
LG

2  are expected upper bounds 

for the coefficient of determination R2  with equations derived by Benevenuta and Fariselli et al15 and this study, respectively. R
MC

2  is the expected 

upper bound for R2  obtained by Monte Carlo simulation as described in the “Results” section. RML
2  is the R2  obtained via a 2-fold cross-validation with a 

support vector machine. Two real functions were tested; (A) linear and (B) nonlinear. σ x
2  is the variance of noise added to feature vector x , with 

examples of the observed data distributions depicted in Figure S1. (C) Monte Carlo simulation on data cleaning via gradually removing the samples with 

the largest σ y i, . n/10 indicates that n features out of a complete set of 10 features were used to train and validate the model. Noise values are given as 

the average variance of all samples ( )σ 2 .

increases, the ML model performance falls short of the R2  
upper bound, eventually falling below R

FP
2 . This shows 

that R
LG

2  gives a more accurate estimation of the upper 
bound for the performance of ML models at any condition, 
including cases with or without noisy features. R

FP
2  is 

however useful as an estimate of the reproducibility of experi-
ments, in accordance with the assumptions in the original 
papers.15,16

Since x  is normally distributed in the simulations (Figure 
2B), 2 1sin x( )+ +  gives a non-normal distribution for yobs  
values. While R

LG
2  was derived under the assumption that 

yobs  is normally distributed, the Monte Carlo simulations 
indicate that R

LG
2  is accurate also when applied to non-

normal distributions (Figure 2B). Since it is challenging to 
prove this mathematically, we devised an additional simulation 
strategy to further test whether R

LG
2  can be applied to a 

given dataset with non-normal distributed yobs  values given 
the experimental noise. Following the same notations as 
“Estimating the theoretical upper bound of regression model 
performance,” we can get y yi obs i y i= −, ,ε , in which 
ε σy i y iN, ,( , )∼ 0 . We can randomly draw a yi  as an estima-
tion of yi  in this equation. The R2  resulting from using { }yi  
as the prediction of { },yobs i  is an independent estimation of 
the best achievable R2 . By repeating this step, a list of R2  
scores can be calculated and the average R2  gives an estima-
tion of the expectation of the best R2  we can get (referred to 
as R

MC
2 ). Since R

MC
2  does not rely on the normality 

assumption of yobs  values, it can be applied to any distribution. 
As shown in Figure 2A and B, R

LG
2  gives a consistent esti-

mation of R
MC

2 , at least in the 2 tested cases (Figure 2A 
and B). With a dataset with non-normal distributed yobs  val-
ues, one can use this simulation strategy to obtain a R

MC
2  

to check if R
LG

2  gives a correct estimation.
In the above analysis, idealized conditions were used in that 

all features were known. Conversely, in real-world ML 

ˆ
ˆ
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applications, typically only an incomplete set of features is 
known. To more accurately simulate this real-world situation, 
we performed Monte Carlo simulations using incomplete fea-
ture sets (see section “Monte Carlo simulations on data clean-
ing”). We also evaluated how ML model performance is 
affected by removal of the most noisy sample labels (Figure 
2C). As anticipated, models trained with the full feature set 
(10/10) outperformed those trained with a subset of features, 
with the model containing all 10 features reaching the R

LG
2  

(Figure 2C). Furthermore, model performance generally 
improved as noisy samples were removed. However, an inter-
esting observation is that the degree to which the models 
improve upon removal of noisy samples depends on how many 
features were used to train them. For instance, if only a small 
fraction of relevant features were used (2/10 in Figure 2C), the 
removal of the most noisy samples did not improve model per-
formance. In contrast, when a majority of the relevant features 
were known (8/10 and 10/10 in Figure 2C), the removal of 
noisy samples significantly improved the model performance 
in terms of R2 . These results indicate that when RML

2  is very 
far from the R

LG
2  upper bound, model performance can be 

most readily improved by obtaining additional or more relevant 
features, as opposed to performing data cleaning to reduce 
sample noise.

Experimental Case Studies
We next explored the applicability of R

LG
2  to inform ML 

model development on real-world data that included enzyme 
optimal temperatures, transcriptomic and genomic datasets.

Using the theoretical upper bound to inform 
modeling

We first tackled the problem of obtaining models to accurately 
predict enzyme optimal catalytic temperatures (Topt) using fea-
tures extracted from their protein primary structures. A dataset 

comprising the Topt of 5343 individual enzymes was collected 
from the BRENDA17 database. Here, using enzymes for which 
Topt values had been measured in multiple experiments, the 
experimental noise σ y

2  was estimated as ( . )7 84 2°C  and σ obs
2  

was ( . )16 32 2°C , giving an R
LG

2  upper bound of 0.77. 
Moreover, an estimated R

MC
2  of 0.77 confirmed that 

R
LG

2  could be applied on this dataset with non-normally 
distributed Topt values (Figure S2). To provide features for ML 
model training (see section “Supervised classical ML meth-
ods”), two established feature extraction methods were applied 
to the protein primary structures, one based on domain knowl-
edge (iFeature,28 5494 features) and the other based on embed-
dings obtained from unsupervised deep learning (UniRep,29 
5700 features). Despite testing six different types of regression 
algorithms to predict enzyme Topt using the two feature sets, 
even the best achieved R2  of 0.42 (average over 5-fold cross-
validations, Figure 3A) was only 55% of the estimated R

LG
2  

upper bound, indicating that the model could be further 
improved. Such improvement might be achieved through 
either feature engineering or noise reduction, as seen in the 
Monte Carlo simulations (Figure 2C).

First, we performed feature engineering by including the 
OGT of the organism, from which the enzyme was derived, as 
an additional feature into the iFeature and UniRep feature sets. 
Consequently, the dataset size decreased to 2917 enzymes, as 
55% of the samples were omitted due to unknown OGT values 
of their source organisms. This led to models improved by 33% 
and 384%, respectively (Figure 3A), and the best resulting R2

(0.56) achieved 71% of the estimated R
LG

2  (0.79). These 
results are consistent with our previous work,42 where it was 
shown that prediction of enzyme Topt was significantly 
improved when including OGT as a feature. We then tested 
whether a deep convolutional neural network (Figure S3, see 
section “Supervised deep ML methods”) could discover 

Figure 3. Development of machine learning models for the prediction of enzyme optimal temperature (Topt). (A) Performance of classical models using 

iFeatures28 and UniRep encoding29 feature sets as well as a deep neural networks with one-hot encoded protein sequence as input. (B, C) Comparison of 

model performance on raw and clean dataset (B) with; and (C) without optimal growth temperature (OGT) as one of the features. The features calculated 

by iFeature were grouped into 20 sub-feature sets as described in the “Methods” section. Error bars show the standard deviation of R2  scores obtained 

in 5-fold cross validation. R
LG

2  is the expected upper bound for the coefficient of determination R2  derived in this study (see section “Estimating the 

theoretical upper bound of regression model performance”).
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additional features in the enzyme primary structures5,40 and 
provide better predictive models (with/without OGT as an 
additional feature). This did not, however, lead to models that 
outperformed the classical ones trained on iFeatures (Figure 
3A). Next, we considered reducing the noise ( )σ y

2  in Topt val-
ues as a means to further improve model performance and used 
the information from the “comment” field associated with each 
enzyme in the BRENDA database to remove values that were 
deemed less likely to represent true catalytic optima (see sec-
tion “Enzyme catalytic temperature optima dataset”). Despite 
dramatically reducing the number of samples in the dataset 
(1902 enzymes of which 1232 with known OGT), the experi-
mental noise σ y

2  was reduced from ( . )7 84 2°C  to ( . )7 22 2°C  
and the calculated R

LG
2  increased from 0.79 to 0.85 

( R
MC

2  was 0.85). Accordingly, the best model obtained 
with this dataset achieved an improved R2  of 0.61, which 
again was around 71% of R

LG
2 . Here, in accordance with 

the expectation that large training datasets are required for 
optimal deep learning performance,40 the convolutional net-
work displayed a reduced R2  score (Figure 3A). Finally, further 
in-depth analysis to explore how different sub-features of the 
iFeature set contributed to predictive accuracy (20 sub-feature 
sets used, see section “Feature extraction for enzymes in Topt 
dataset”) showed that each sub-feature set only improved 
model performance when OGT was included as an additional 
feature (Figures 3B, C and S4, 5). This is consistent with Monte 
Carlo simulation results showing that noise reduction is mainly 
beneficial with more complete feature sets (Figure 2C).

As a side note, we used the improved model (a random for-
est trained on amino acid composition and OGT) to update 
Topt annotation of BRENDA enzymes in the Tome package42 
and also extended it to carbohydrate-active (CAZy) enzymes43 
(Figure S6) (https://github.com/EngqvistLab/Tome).

Further analyses of R
LG

2  in relation to 
experimental noise

We next explored how the amount of experimental noise in the 
response variables can affect the R

LG
2  and model perfor-

mance. A suitable problem for this was the prediction of intrin-
sic gene expression levels in S. cerevisiae, since thousands of 
RNAseq experiments across multiple conditions are available 
for this species.23 For a given gene, the intrinsic expression level 
was defined as the average mRNA level across the different 
experiments and conditions.5 The noise level could then be 
adjusted by increasing or decreasing the number of sampled 
data points (i.e. replicates) (Figure 4 inset), where the corre-
sponding standard deviation was used to quantify the amount 
of noise present within the intrinsic expression levels (see sec-
tion “Protein transcription level dataset”). Apart from estimat-
ing the R

LG
2  upper bounds, the achievable predictive 

performance was explored by building linear regression models 

using DNA sequence features (codon usage)5,49 as input. We 
observed a strong effect of the amount of experimental noise 
on the theoretical upper bound, especially with a smaller num-
ber of data replicates (Figures 4 and S7). Similarly, the variabil-
ity of the R

LG
2  upper bound also markedly decreased with 

an increasing number of replicates. Therefore, with an insuffi-
cient amount of replicates, apart from a lower confidence in the 
estimated upper bound, the variability of the data was found to 
also drastically affect the predictive performance and accuracy 
of the models. This suggests that for data that are inherently 
noisy, such as those obtained from transcriptomics, the R

LG
2  

upper bound, as well as the overall ML performance, can both 
be improved by increasing the number of experimental repli-
cates generated for downstream computational analysis.50 For 
accurate condition-specific or cross-condition modeling, the 
number of replicates of at least 100, with most reliable results 
above 1000, should be used (Figures 4 and S6). Such dataset 
sizes are nowadays highly feasible, especially in the case of 
genomics, transcriptomics and proteomics data, as resources 
that comprise thousands of experiments are readily available 
for each model organism.23,26,27

Finally, for some datasets it may not be feasible to estimate 
the experimental noise, for instance, if the values for replicates 
in an experiment are not available. We thus analyzed how 

R
LG

2  can be used to define the predictive potential of bio-
logical regression analysis even in the absence of direct experi-
mental noise estimates. Since R

LG
2  is an upper bound 

estimate, R RML LG
2 2≤  holds true, from which we obtain that 

σ σy ML obsR2 2 21≤ − ×( ) . If multiple datasets with the same  

Figure 4. Amount of experimental noise affects estimates of R
LG

2  and 

model performance. Analysis of the effect of experimental noise in the 

response variables on the R
LG

2  upper bound estimates (black) and 

predictive performance of ML models (red) with the case of a large yeast 

multi-experiment transcriptomics dataset.23 The noise level was varied by 

adjusting the number of data replicates with random sampling (inset 

figure). Lines and shaded areas depict means and standard deviations of 

the 30 measurements per each n replicates, depicted as points. R
LG

2  

is the expected upper bound for the coefficient of determination R2  

derived in this study (see section “Estimating the theoretical upper bound 

of regression model performance”), CV denotes cross validations.

https://github.com/EngqvistLab/Tome
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level of (unknown) experimental noise are available, the  
inequality holds for all datasets, meaning that 
σ σy ML i obs imin R i s2 2 21 1≤ − × =({( ) | ,.., }), , , in which s  is the 
number of the datasets. In this way it is possible to estimate the 
maximal level of experimental noise based on the ML results, 
and then further use it to obtain the minimal value of R

LG
2 , 

where R
LG

2  could be any value between R
LG min

2

,
 and 1.0. 

This idea was applied on a problem to predict yeast phenotypes 
directly from genomes51 (Figure 5A) using a dataset of growth 
profiles of 971 sequenced S. cerevisiae isolates under 35 stress 
conditions,27 where experimental noise was not reported nor 
replicate data provided (see section “Yeast pangenome and 
quantitative traits dataset”). To analyze these data we made use 
of a published S. cerevisiae pan-genome26 that included all pro-
tein-coding genes across 971 isolates with measured pheno-
types. Here, the pan-genome was represented as either a gene 
presence/absence table (P/A, Figure 5B), or copy number vari-
ation table (CNV) which contains additional information to 
P/A (Figure 5C). Using these features we could estimate 
R

LG min
2

,
 for each condition by training a random forest 

regressor on the 35 different quantitative traits. P/A and CNV 
showed a similar predictive power and could explain at most 
30% of the variance (Figure 5D: R2 was ~0.3) for some traits 
like the growth profile under the YPD medium enriched with 
40 mM of caffeine (YPDCAFEIN40). Furthermore, with 
RML

2  s for these 35 datasets, the maximal experimental noise 

Figure 5. R
LG

2  is applicable even in case the experimental noise is unknown. Analysis of 34 quantitative traits of S. cerevisiae from its pan-genome 

composition. (A) A random forest model applied to predict yeast phenotypes from genomics features. Genomes are represented as (B) gene presence/

absence table and (C) copy number variance table in the pangenome.26 (D) Obtained R2 score for 35 different phenotypes. Experimental trait values were 

taken from Peter et al.27 Detailed label description can be found in Table S2 of Peter et al.27 Error bars show the standard deviation of R2  scores 

obtained in 5-fold cross validation. R
LG

2  is the expected upper bound for the coefficient of determination R2  derived in this study (see section 

“Estimating the theoretical upper bound of regression model performance”).

were estimated as σ y
2 20 076≤ . , based on which we could 

finally estimate the R
LG min

obs i

2
2

2
1
0 076

,
,

.
≈ −

σ
 for each condition 

(Figure 5C). Since most of the traits did not follow a normal 
distribution (Figure S8), R

MC
2  was obtained by Monte 

Carlo simulation with σ y
2  of 0 0762.  for each dataset and was 

used to cross-check the R
LG

2  values, indicating that break-
ing the normality assumption did not adversely affect the R2  
estimate (Figure S9 : R

MC
2  was consistent with R

LG
2 ). 

Despite that for a small number of traits (e.g. YPDNACL15M) 
the low R

LG min
2

,
 was too low to be useful (Figure 5D), in 

most cases it was higher than the current predictive perfor-
mance of our models (e.g. > 0.97 with YPDCUSO410MM). 
Thus, for most of the conditions, the estimated upper bounds 
showed great potential for further improvement of model per-
formance (Figure 5D), demonstrating the applicability and 
usefulness of R

LG
2  even in case the experimental noise is 

unknown.

Discussion
In the present study, we establish a method to estimate an 
upper bound for expected ML regression model performance 
on holdout data. This addresses an important need in the ML 
field as human performance on multi-dimensional data is poor 
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and cannot be used to bootstrap regression model perfor-
mance,9,10 an approach that is common when developing ML 
systems for image analysis.7,8 The coefficient of determination 
upper bound (model performance) for regression analysis is: 

R
LG

y

obs

2
2

2
1≈ −

σ

σ
, and depends only on the experimental 

noise σ y
2  and the variance of observed labels σ obs

2  (Figure 1), 
under the assumptions that observed label values { },yobs i  are 
normally distributed and that each yobs i,  has a normally dis-
tributed experimental noise with 0 mean. With non-normally 
distributed yobs i,{ } , we provide a Monte Carlo based approach 
( R

MC
2 ) to estimate R

LG
2 . In all tested cases, R

LG
2  

gives results consistent with R
MC

2 , indicating that even 
though it was derived under the normality assumption of 
yobs i,{ } , it can also be applied to data with other distributions 

(Figures 2A and B and S8). R
LG

2  is thus confirmed using 

Monte-Carlo simulations and also shown to outperform exist-
ing measures15 (Figure 2A and B).

Our case studies demonstrate how calculating the R
LG

2  
upper bound estimate for experimental data yields a more realis-
tic modeling objective than naively assuming that an R2  of 1.0 
is possible. For instance, in the prediction of enzyme optimal 
temperature, R

LG
2  was estimated at 0.86 for a specific dataset 

(Figure 3A), and one should not expect to obtain ML models 
with R2  scores on holdout data above this value. Moreover, 
achieving upper bound performance is only possible when a 
complete set of noise-free features relevant for the predicted 
labels are used for model training and prediction (Figure 2A to 
C). When noisy features are used, the performance attainable by 
ML algorithms will be lower than R

LG
2 , and thus for classi-

cal ML models relying on engineered features, models with 
holdout data R2  close to their upper bound are not easily 
achieved in practice (Figures 3A, 4 and 5D). On the other hand, 
if the estimated R

LG
2  upper bound for a specific problem and 

dataset is low (label values are noisy compared to the label vari-
ance, σ y

2  is close to σ obs
2 ), it may not be worthwhile to attempt 

modeling at all, at least not before collecting additional data 
(more replicates). An example of this is the prediction of melting 
temperatures of human proteins (Table S1) using the dataset 
from Leuenberger et al.52 The sample labels for human proteins 
in this dataset have a large level of noise (σ y

2 , 5.49)2 compared 
to the label variance ( σ obs

2 , 6.57)2 and the calculated R
LG

2  
was therefore correspondingly low at approximately 0.30 (using 
equation (3), see section “Estimating the theoretical upper bound 
of regression model performance”). Even if a ML model with 
upper bound performance could be developed for these data, it 
would have little predictive value. In contrast, for three other, 

non-human, organisms in the Leuenberger dataset the calcu-
lated R

LG
2  was above 0.90, indicating that the development 

of predictive ML models may be worthwhile (Table S1).
To conclude, our method for estimating upper bounds for 

model performance on holdout data should aid researchers 
from diverse fields in developing ML regression models that 
reach their maximum potential.
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