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Abstract. In this study, we report atomistic calculations of the core structure of screw dislocations with [001]
Burgers vector in Mg2SiO4 olivine. Computations based on the THB1 empirical potential set for olivine show
that the stable core configurations of the screw dislocations correspond to a dissociation in {110} planes
involving collinear partial dislocations. As a consequence, glide appears to be favorable in {110} planes at low
temperature. This study also highlights the difference between dislocation glide mechanism in {110} versus
(010) or (100) for which glide is expected to occur through a locking–unlocking mechanism.

Résumé. Dans cette étude, nous présentons les résultats de calculs atomiques de la structure de coeur de
la dislocation vis de vecteur de Burgers [001] dans l’olivine (Mg,Fe)2SiO4. Nos simulations, reposant sur
l’utilisation du potentiel semi-empirique THB1, montrent que la configuration stable de la dislocation vis
correspond à une structure de coeur dissociée dans les plans {110}. A basse température, le glissement des
dislocations de vecteur de Burgers [001] dans les plans {110} de l’olivine est donc favorisé.
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1. Introduction

Since the work of Peierls and his seminal paper entitled “The size of a dislocation” [1], it has
been well established that the exact atomic arrangement in the vicinity of the dislocation core
is a key issue in plasticity. Besides the elastic properties of the defect, most intrinsic properties
of dislocations are directly related to the core structure [2]. Among these properties, are the
lattice friction opposed by the crystal to the dislocation motion [3–6], the ability to glide or
cross-slip in different planes [7–10], the extension of kinks with or without friction [11–13] or the
jogs configurations and planes [14–16]. It is worth noticing that previously mentioned intrinsic
properties also apply to more complex materials than simple metals, including, L12 alloys [17],
oxides [18, 19], ceramics or minerals [20–23].

Because of their importance to understand the nature of deformations in the Earth interior,
the plastic properties of some minerals have been extensively studied. Among those, one of the
most studied minerals is olivine, a silicate of chemical composition (Mg,Fe)2SiO4, which is a ma-
jor component of the Earth upper mantle down to 410 km depth. Olivine is orthorhombic (Pbnm
space group) and at ambient pressure and temperature, the lattice constants are a = 4.756 Å,
b = 10.207 Å and c = 5.98 Å [24]. It is now commonly accepted that [010] glide is not activated
in olivine and that the plastic properties result from activation of two types of dislocations with
[100] and [001] Burgers vectors, the two shortest lattice repeats of the lattice [25]. This results not
only from laboratory experiments [26–29], but also from observations of natural samples made
with optical microscopy or Transmission Electron Microscopy (TEM) techniques [30]. Using de-
formation experiments performed at ambient pressure on polycrystalline olivine, Raleigh [26]
showed that the deformation of olivine results from the activation of [001] glide at low tempera-
ture and relatively high-stress conditions, whereas above 1000 °C, Carter and Ave’Lallemant [31]
observed activation of [100] slip. Deformation experiments performed on single crystals lead to
the same conclusion but also gave access to quantitative information on the mechanical behavior
of individual slip systems [28, 32–34]. In particular, Critical Resolved Shear Stresses (CRSS) have
been reported for at least four slip systems: [100](010), [001](010), [001](100), [001]{110}. Whereas
the flow stress for dislocations with a [100] Burgers vector are only reported at high temperature,
experiments performed to promote slip along [001] allow to plot the evolution of the CRSS as
shown Figure 1, over a large range of temperatures. One may note that [001]{110} slip systems
can be activated at low temperature [33] which even allowed a recent in-situ TEM deformation
experiment [35] to activate in-situ glide of [001] dislocations in {110} at room temperature. The
occurrence with [001] glide of a typical microstructure composed of long straight screw dislo-
cation lines (e.g. [27] or [36]) suggests a relative high lattice friction on this character, whatever
the glide plane. Recently, based on electron tomography, the three possible slip planes, i.e. (100),
(010), and {110}, have been reported simultaneously [37], but with a greater occurrence of {110}.

The last 15 years have also seen the development of different numerical methods to in-
vestigate the plastic properties of olivine. The earliest studies performed by Durinck and co-
workers [38–40] relied on Density Functional Theory (DFT) calculations to compute Generalized
Stacking Fault (GSF) energies [41] and to model dislocation core configurations using the Peierls
Nabarro (PN) model [1,3]. The PN model can provide some mechanical information through the
computation of the Peierls stress, but has to be handled with care when dealing with complex
crystal structures. Whereas the PN model gives satisfactory results in case of planar core configu-
rations, it can also lead to several artifacts when the dislocation cores are non-planar or dissoci-
ated [5, 42]. At the same period, Walker and co-workers [43–45] used empirical potential models
to compute dislocation core structures via atomistic simulations. However, due to the limitations
in computational efficiency of the codes existing at that time, mechanical properties were not in-
ferred from the atomic core structures. More recently, the empirical potential formulation used
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Figure 1. Summary of CRSS for [001] dislocations in olivine. Values are reported for the
three slip systems [001](010) [28, 34], [001](100) [32] and [001]{110} [33].

by Walker and co-workers was implemented into the molecular dynamics package LAMMPS [46]
opening the route to revisit the dislocation core structure and properties in olivine [47]. As an
example, in a recent study of Mahendran et al. [48], a detailed investigation of the structure of
dislocations with a [100] Burgers vector highlighted the capabilities of [100] screw dislocations
to cross-slip in various planes resulting in a pencil glide mechanism as invoked by Raleigh in
olivine [26]. Up to now, in case of dislocations with a [001] Burgers vector, only one compact core
structure of the screw dislocation has been reported [43, 45, 47].

In this study, we revisit the theoretical modeling of dislocation cores of [001] dislocations
using quadrupolar arrangements of screw dislocations inserted in a periodic atomic system. As
shown in the following section, the choice of a periodic system allows to compute accurately
the dislocation core structure and its core energy. Finally, we show that our calculations allow
to compute the lattice friction through the evaluation of the Peierls stress and account for high
hydrostatic pressure effects, which are often debated in the field of mineral physics [49].

2. Methods

All calculations rely on the THB1 potential [50, 51] specifically derived to model Mg2SiO4

forsterite, the Mg-rich end member of the olivine solid solution. In order to account for polar-
ization effects in the material, the potential is parameterized with the inclusion of a core–shell
(C/S) description of oxygen ions. The transferability of this potential parameterization has been
checked in several studies [51], including calculations of GSF energies [47] which showed a rather
good agreement with ab initio predictions [39]. With the THB1 parameterization, the lattice vec-
tors of forsterite are a = 4.7874 Å, b = 10.2717 Å and c = 6.0227 Å.

The core structure of [001] screw dislocations is computed using a fully periodic quadrupo-
lar arrangement of dislocations. For ionic materials like forsterite, it is sometimes undesirable
to have free surfaces, which can be charged and introduce artifacts or unquantified size ef-
fects [52]. Hence, a periodic system is preferred here to model dislocations and their properties.

C. R. Physique, 2021, 22, n S3, 1-12
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Figure 2. (left panel) View of the olivine crystal along [001] axis corresponding to the Burg-
ers vector of the screw dislocations investigated in this study. Labels C and D corresponds to
the initial centering of the dislocation elastic displacement field. (right panel) Quadrupo-
lar arrangement of screw dislocations. As described in the Methods section, X and Y are
respectively aligned with [100] and [010]. d1 and d2 refer to the periodic spacing between
opposite dislocation lines.

Periodic arrays of dislocations include size effects, however they can be fully quantified and cor-
rected [53]. The quadrupolar system is created by introducing four screw dislocations with two
positive and two negative Burgers vectors in a Mg2SiO4 crystal oriented along X = [100], Y = [010]
and Z = [001] as shown in Figure 2. The inherent size effect, mostly resulting from the distances
between dislocations, is carefully monitored by increasing the bulk dimension along the X and
Y directions, leading to systems containing between 5632 atoms and 35,200 atoms. The alternate
arrangement of dislocations with opposite Burgers vectors helps to reduce the long-range elastic
fields of the four dislocations [53, 54]. Practically, the screw dislocations are introduced into the
system thanks to the classical displacement field relying either on isotropic elasticity solutions, or
on anisotropic elasticity as implemented in the Atomsk software [55]. The core structures of dislo-
cations are analyzed after a minimization of the total energy and atomic forces as determined by
the classical conjugate gradient algorithm implemented in the LAMMPS package. Relying on an
empirical potential involving long range Coulombic interaction, it is worth noticing that the long
range energy is computed thanks to Wolf summation methods [56] with a cut-off radius of 16 Å.

In this study, the lattice friction is quantified through the evaluation of the Peierls stress
computed by a quasi-static loading of the simulation cell (e.g. [57]). As an example, to trigger
the motion of a screw dislocation, here aligned with the Z -direction, in a glide plane normal to
the Y -direction, the system is statically loaded with a shear strain increment εy z (typically 1%).
After each increment, the system is relaxed. As a result, the stress in the system increases linearly
and the stress–strain curves deviate from linearity for a critical stress at which one can check
that the dislocation starts to move, defining the onset of the plastic regime, i.e. the Peierls stress.
Again, to avoid spurious effects of periodic boundary conditions, such calculations are repeated
with gradual increase in simulation cell sizes along X , Y directions from 40 Å to 100 Å to ensure
independence with the system size.

C. R. Physique, 2021, 22, n S3, 1-12
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Figure 3. (left panel) Differential displacement map of the compact “C” dislocation core
structure as calculated using 3D periodic boundary conditions. The arrows show the
differential displacement between the neighbouring Si ions. The spreading of the disloca-
tion core is found in agreement with those reported in [45]. (right panel) Disregistry func-
tion of [001] Burgers vector versus the position along the dislocation in (11̄0). The disreg-
istry function S along [110] shows a single density peak characteristic of a compact core
configuration.

3. Results

Inserting a [001] dislocation into the olivine structure leads to two possible dislocation core
configurations depending on the exact position of the initial dislocation center (Figure 2). The
resulting core structures are labeled “C” and “D” according to the center position of the core.

3.1. Compact versus dissociated core structure

A first core configuration named in the following “C” is obtained by centering the dislocation
lines in the vicinity of the Mg cation site between four SiO4 tetrahedra (Figure 2). The analysis
of the minimized atomic configurations reveals that all significant differential displacement
between neighboring atoms are restricted to a small area within less than one unit cell around
the dislocation line (Figure 3). Thus, the core appears to be compact with no particular evidence
of spreading in any preferential plane. Such a compact core configuration is consistent with
previous attempts to model screw dislocation cores in forsterite using THB1 potential [43,45,47],
although the geometry of the simulated volumes is here different. Indeed, compared to the fully
periodic system used here, all previous atomistic simulations were performed using either a
“cluster” approach with fixed boundary shells of cylindrical symmetry around the dislocation
line [43, 45], or with semi-periodic boundary conditions and free surfaces [47].

However, we find a second core configuration, labeled “D”, by inserting a [001] dislocation
line in the (010) plane containing Mg cations between SiO4 tetrahedra layers (Figure 2). After
relaxation of the atomic positions to ensure the minimization of the total energy of the system,
the relaxed screw dislocation core exhibits a clear spreading in one of the {110} planes as shown
by the differential displacement map (Figure 4). Further details on the core structure are revealed
by the disregistry analysis (S(x)) in the cationic sub-lattice and its first derivative in the {110}
plane (Figure 4). The dislocation core structure “D” corresponds to a core dissociated into a set of
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Figure 4. (left panel) Differential displacement map of the dissociated “D” dislocation core
structure. Such a dissociated core configuration is obtained after inserting the dislocation
elastic field centered on D position as shown in Figure 2. (right panel) The correspond-
ing disregistry function along [110] in (11̄0) highlights the dissociation into two partial
dislocations.

two partial dislocations of almost equal partial Burgers vector bp . The derivative of the disregistry
function dS/dx highlights the dissociation with two isolated peaks of Burgers vector density (with
similar half-width between 1.4 and 1.5 Å) separated by a distance of R = 10.2 Å. As no evidence of
edge displacement components is detected around the dislocation core, one can conclude that
the dissociation into partial dislocations is fully collinear. In the following, we thus assume that
the two partial dislocations have the same Burgers vector bp = 1/2[001]. Such a dissociation is
consistent with the existence of a stable stacking fault in {110} plane [40] as further discussed in
Section 4.

3.2. Dislocation core energy

For both types of dislocation cores, “C” and “D” described above, the energies of minimized
quadrupole systems were computed by varying the simulation box dimensions (hereafter called
d1 and d2 and shown in Figure 1) from 75 Å to 200 Å along the X and Y directions. These
calculations were performed to identify the core configuration with the lowest energy. Indeed, for
screw dislocations arranged in a quadrupole system, the energy E of the dislocation core per unit
Burgers vector length b scales with the intrinsic lengths (d1,d2) of the dislocation arrangement
according to the following relationship [58]:

E = Ecore +Eelast = Ecore + µb3

4π
(ln(d1/rc )+ A(d1/d2)). (1)

In (1), E corresponds to the energy difference between a system containing a quadrupole of
dislocations and a defect free crystal. The dislocation energy can then be decomposed into a
core energy Ecore and an elastic energy Eelast resulting from the periodic interactions between
the dislocations in the system. In the elastic energy expression, d1 and d2 are the distances
between the positive and negative dislocations (or the reduce scales of the system along X and
Y directions respectively), A is a constant characteristic of the reduce scales (d1/d2), µ is the
anisotropic shear modulus and rc is a cut-off radius for the core energy.

C. R. Physique, 2021, 22, n S3, 1-12
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Figure 5. Dislocation core energy as a function of elastic energy stored in the quadrupole
configuration. The screw dislocation core dissociated into collinear partial dislocations in
{110} are of lowest energy.

Figure 5 shows the evolution of the dislocation energy for the two types of dislocations as a
function of the elastic energy stored in the system. For both configurations, the energies increase
linearly with the elastic energy (as defined in the previous equation). Moreover, as the difference
between the two dislocation configurations are restricted to the core configuration, the elastic
field should be identical as confirmed here by the similar slopes of the data point in Figure 5. For
both dislocation cores, the elastic interaction energy scales with a shear modulus µ = 48.6 GPa,
which is comparable with the isotropic shear modulus (65 GPa) estimated from the elastic
moduli [47]. Whatever the system size, the energy of the dissociated configuration “D” is lower
than those of the compact configuration, meaning that the dissociated core is to the stable core
configuration. One may note that the dislocation core energies for core configurations of types
“C” and “D” are noticeably different with 4.1036 eV/b (0.6813 eV/Å) and 3.2251 eV/b (0.5355 eV/Å)
respectively.

As in the Earth mantle, olivine is found at depths where pressure may reach more than 10 GPa,
we checked the stability of these two configurations by rescaling the computed volume to a given
pressure. We then verified that up to 10 GPa, the dissociated core configuration is the most stable
configuration for the screw dislocation core with no noticeable effect on the dissociation width
(Table 1).

3.3. Lattice friction evaluation

Earlier studies [45, 47] suggested the possibility of a locking–unlocking mechanism [59] associ-
ated with the glide of [001] dislocations in (010) or in (100). However, this was assumed based on
the behavior of what we call here the compact “C” screw dislocation core. In order to check the
validity of this assumption, we used similar quasi-static loading simulations to investigate the
lattice friction associated with the stable dissociated dislocation core “D” found here.

C. R. Physique, 2021, 22, n S3, 1-12
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Table 1. Characteristics of [001] dissociated dislocations

Pressure (GPa) R (Å) σ(11̄0) (GPa) σ(010) (GPa)
0 10.19 1.51 6.10
4 10.44 1.63 6.04
6 10.54 1.6 5.82

10 8.94 1.6 5.32

R corresponds to the width between partial dislocations. σ(11̄0) and σ(010)

correspond respectively to the critical stress at which the dislocation
glides in (11̄0) or unlocks in order to glide in (010).

Therefore, we incrementally increased the applied strain increment εy z on our periodic system
containing “D” dislocations, to promote glide in (010). Up to a strain corresponding to a stress of
6.10 GPa, the system behaves elastically. At or above the critical stress, an analysis of the conjugate
gradient minimizer steps shows that once the four dislocations are set (simultaneously) into
motion, all the dislocations exhibit a different core structure, entirely planar, spread in (010),
identical to the one computed using the PN model in Ref. [45]. Moreover, as described in
Ref. [47], such a planar configuration cannot be stabilized without applying strain (or stress)
to the simulation cell and once this transient planar state is reached, the dislocation core can
travel over several lattice repeats before finally falling back into another stable dissociated core
configuration.

Using the same methodology, we applied a quasi-static loading process with a simple shear
εxz to promote glide in (100). In this case, we observe that the dissociated core starts to glide in
{110} at an applied stress of 3.9 GPa corresponding to a resolved shear stress of 1.5 GPa in the
{110} glide plane. As the dislocation glides in {110}, we observed a continuous displacement of
both partial dislocations so that the stacking fault remained constant.

4. Discussion

Our calculations show that the stable configuration of [001] screw dislocations corresponds to
a dislocation core dissociated in {110}. The dissociation width between partials is proportional
to the energy (γ) of the 1/2[001]{110} stacking fault. For a separation distance R, the stacking
fault energy between two partial screw dislocations (with Burgers vectors bp = 1/2[001]) can be
estimated with the following elastic equilibrium equation [2].

γ=
µb2

p

2πR
. (2)

For the minimized dissociation distance of R = 10.2 Å, the stacking fault energy is 0.0457 eV/Å2.
One the other hand, from the calculation of the [001]{110} GSF [47] performed by constraining the
Si atoms to move perpendicular to the glide plane while Mg and O atoms are allowed to freely re-
lax in all directions, the γ energy associated with the 1/2[001]{110} fault is 0.042 eV/Å2. The good
agreement between the energies of the stacking fault, derived from the GSF calculations or the
core configuration is noticeable. This not only emphasizes that the stacking fault configuration
within the dislocation core should be close to the atomic configuration modeled in GSF calcula-
tions. But also, since a similar stable stacking fault is also computed by DFT calculations [40], one
can argue that the same scheme of dissociation should be expected in DFT calculations and that
our dissociated dislocation core is not potential parameterization dependent.

Regarding the effect of high pressure on the core structure, we note that the width between
partial dislocations is almost pressure insensitive (Table 1). This trend is fully consistent with

C. R. Physique, 2021, 22, n S3, 1-12
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Figure 6. Schematic representation of unlocking mechanism of [001] dislocation. The
stable dissociated core (at the left) when quasi-statically loaded beyond the critical stress
value transforms into a high energy planar core (on the right) spread in (010) to unlock
itself.

Durinck et al. results [39] for [001](110) stacking fault energies calculated using DFT simulations
showing that for the same pressure range, the GSF energy corresponding to 1/2[001]{110} remains
rather constant.

Earlier studies [45, 47] suggested the possibility of a locking–unlocking mechanism associated
with the glide of [001] dislocations in (010). However, this was assumed based on the behavior
of what we call here the compact “C” screw dislocation core, which is not the most stable
configuration. Thus, we have re-investigated the glide mechanisms starting from the stable
dissociated core “D”. We show that when it is forced to glide in (010), the “D” screw dislocation
core also transforms into a transient planar core in (010) (Figure 6). The critical stress at which
the dislocation transforms into the transient planar configuration is found here 20% higher than
the previously reported value for the compact core. This can be, at least qualitatively, attributed
to the difference of core energy; the most stable core configuration with the lowest core energy
requiring a larger stress to evolve into the transient state. Overall, we confirm that the activation
of [001](010) slip system in olivine should exhibit a jerky motion of screw dislocations accordingly
to a locking–unlocking mechanism [59].

Qualitatively our calculations are in agreement with experimental observations of dislocation
dynamics at low pressure. Recently, using in situ TEM nanomechanical testing at ambient tem-
perature, Idrissi and co-workers [35] observed the glide of [001] dislocations in {110}. At the scale
of the observation (timescale corresponding to the video capture, and length-scale correspond-
ing to the spatial resolution in weak-beam dark-field) glide was observed to be smooth. This be-
havior is in agreement with the planar configuration of the dislocation core that we propose al-
though the dissociation width of a few tens of Angstroms cannot be distinguished by conven-
tional TEM. Quantitatively, our results show that [001] dislocation glide in {110} at low temper-
ature (as our calculations are performed using molecular statics) can be activated with a Peierls
stress value of 1.51 GPa. This value is slightly larger than the stress measured at ambient temper-
ature by Idrissi but compares well within the range of CRSS values in intermediate temperature
range obtained experimentally (Figure 1).

In order to build a model of crystalline plasticity, one has to describe the collective response of
dislocations within a given microstructure. Nowadays, the collective behavior of dislocations can
be accurately treated by several mesoscale simulations called Dislocation Dynamics (DD) [60].
One of the most critical input of DD simulations is the mobility law of dislocations. This depends

C. R. Physique, 2021, 22, n S3, 1-12
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critically on the dislocation core structure that one can determine from atomistic calculations,
but also from the knowledge of the glide mechanism. In case of glide governed by the kink pairs
mechanism, the mobility of dislocations at finite temperature can be inferred by atomistic simu-
lations which account for the nucleation enthalpy and migration barriers of kinks [12,23,61]. For
the peculiar case of [001] dislocations in olivine, whatever the glide plane, several issues arise. In
order to properly define a velocity, one has to model kink nucleation and migration of dissociated
dislocations or the atomic mechanism responsible for the strong core modifications involved into
the locking–unlocking mechanism. For the latter mechanism, one has first to elucidate the atom-
istic mechanism alloying the transformation into a transient core. Such a mechanism should in-
volve atomic configurations of macro-kinks for which the height is unconstrained and depends
on the jump distance. As pointed out in Ref. [59], the probability of unlocking events should be
length-dependent whereas the dislocation velocity is not. According to this scheme, finite length
calculations with a detailed inspection of the energy landscape will be mandatory. This is out of
the scope of the present study and is left for future work.

5. Conclusion

In this study, we characterized the stable configuration for the screw dislocations of [001] Burgers
vector in olivine Mg2SiO4. Compared to the compact non-planar core proposed in previous
studies, we demonstrate here than a dissociated core with two 1/2[001] partial dislocations
separated in a {110} plane corresponds to the stable configuration of the screw dislocation in
olivine. This stable core of type “D” was subjected to gradual shear loading to extract information
on lattice friction in different slip systems. We confirm that the glide of [001] screw dislocation in a
(010) plane requires a core transformation here reached at stress values greater than 6 GPa. Such a
transformation into a planar transient core can be interpreted as the signature at the atomic scale
of a locking–unlocking mechanism. On the contrary, glide in {110} exhibits a smooth behavior and
glide for applied resolved shear stress below 1.5 GPa.
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