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A B S T R A C T   

The use of 3D-woven composite materials has shown promising results. Along with weight-efficient stiffness and 
strength, they have demonstrated encouraging out of plane properties, damage tolerance and energy absorption 
capabilities. The widespread adoption of 3D-woven composites in industry however, requires the development of 
efficient computational models that can capture the material behaviour. The following work proposes a 
framework for modelling the mechanical response of 3D-woven composites on the macroscale. This flexible and 
thermodynamically consistent framework, decomposes the stress and strain tensors into two main parts moti
vated by the material architecture. The first is governed by the material behaviour along the reinforcement 
directions while the second is driven by shear behaviours. This division allows for the straightforward addition 
and modification of various inelastic phenomena observed in 3D-woven composites. 

In order to demonstrate the applicability of the framework, focus is given to predicting the material response 
of a 3D glass fibre reinforced epoxy composite. Prominent non-linearities are noted under shear loading and 
loading along the horizontal weft yarns. The behaviour under tensile loading along the weft yarns is captured 
using a Norton style viscoelasticity model. The non-linear shear response is introduced using a crystal plasticity 
inspired approach. Specifically, viscoelasticity is driven on localised slip planes defined by the material archi
tecture. The viscous parameters are calibrated against experimental results and off axis tensile tests are used to 
validate the model.   

1. Introduction 

Traditional laminated fibre composites, in particular carbon fibre- 
reinforced polymers (CFRP), can provide high strength and stiffness 
relative to weight. Limitations however arise when it comes to compo
nents that must absorb energy or undergo excessive bending. Laminated 
composites that are loaded in this manner, are prone to significant 
delamination due to the low inter-laminar strength. In the event that 
delamination cracks form and propagate, a significant portion of the 
materialâs energy absorption capability is lost, as this damage mode 
consumes considerably less energy than e.g. crushing failure. 

Composite materials with 3D-woven reinforcement may help to 
circumvent some of these challenges. Along with weight-efficient 
strength and stiffness characteristics, 3D-woven composites show a 
number of promising properties. Stig and Hallström (2009) for example 
have demonstrated that composites with 3D-textile reinforcement have 
improved mechanical out-of-plane properties in both tension and shear 

when compared to their laminated 2D reinforced counterparts. This has 
also been discussed by Ansar et al. (2011) and references therein. Even 
more noteworthy, Khokar et al. (2015) have demonstrated that in four 
point bending, a 3D-CFRP I-beam has up to three times the specific 
energy absorption capability of a steel I-beam with equivalent geometry. 
The fibre networks suppress delamination and allow for stable and 
progressive damage growth in a quasi-ductile manner. 

With respect to applications of 3D-woven composites in industry, 
additional requirements arise. Developing computational models of the 
mechanical material behaviour in particular is key to supporting their 
widespread adoption. Suitable modelling approaches are needed in 
order to predict the relevant mechanical material phenomena. These 
models must however be computationally efficient in order to assure 
industrial turnaround times and have a clear calibration procedure. 

Existing modelling approaches for 3D-woven composites, often focus 
on the understanding of the complex material behaviour at the sub
scales. To this end, multiscale modelling techniques are commonly used. 
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Here, the hierarchical nature of woven composites is used to identify 
distinct length scales. The finest scale relevant for a continuum model, 
the microscale, consists of single fibre filaments embedded in the matrix 
material. One level up on the mesoscale, multiple filaments are grouped 
into various yarns that are arranged in a specific weaving architecture. 
The phenomena on the micro and mesoscale subsequently defines the 
effective material behaviour on the macroscale. 

Early modelling approaches for 3D-woven composites focused 
mostly on predicting the link between mesoscale weave architectures 
and the material’s macroscale elastic stiffness and strength values. 
Whitney and Chou (1988), Yushanov and Bogdanovic (1999) as well as 
Tong et al. (2002) all presented various analytical models to do just that. 
Many now turn to finite element (FE) approaches, which require the 
creation of a representative unit cell of the material’s weave architec
ture. This in itself can be quite a challenging task as shown by Stig and 
Hallström (2012) as well as Lomov et al. (2000). Once a representative 
unit cell has been created, it is possible to predict more complex be
haviours such as viscoelasticity of the matrix and yarns, see Hirsekorn 
et al. (2018), and progressive damage, see Lomov et al. (2007), Green 
et al. (2014). More recently El Said et al. (El Said et al., 2018) developed 
an iterative concurrent multiscale modelling approach to predict 
non-linear behaviour and progressive damage in 3D-woven composites. 

Explicitly considering the reinforcement architecture of 3D-woven 
composites has its advantages. It allows for a detailed understanding 
and prediction of the mesoscale response. Modelling the behaviour of 
large structures however, with such detail, requires substantial model
ling effort and computational resources. Another possibility then is to 
turn to macroscale phenomenologically based models. This includes 
models such as the ONERA Damage Model of Polymer Matrix Compos
ites (Marcin et al., 2008) and that presented by Xia et al. (2002) for 
plastic deformations of paper. The ONERA Damage Model in particular 
has been developed to account for viscous effects, damage propagation 
and final failure of 3D-woven composites. Approximating the structural 
domain as a homogeneous material of orthotropic nature allows for a 
computationally efficient manner to model the mechanical behaviour of 
the material. The long-term goal of this work therefore involves devel
oping a phenomenologically based macroscale model to predict how 
3D-woven composites deform and eventually fail under loading. In 
particular it must predict the inelastic processes that lead to energy 
absorption. 

The inherent nature of 3D-weaving techniques allow for the direct 
manufacturing of complex fibre preforms that can be strategically 
tailored to the overall needs of a desired component. The range of 
observed behaviours of 3D-woven composites can therefore vary dras
tically from one set of weave parameters to the next. 3D-woven com
posites have widely been shown to demonstrate prominent matrix 
driven non-linear behaviours when loaded in shear, cf. Ekermann and 
Hallström (2015) as well as Warren et al. (2015). The same general 
statement however can not be made when it comes to loading along the 
reinforcement directions. Dahale et al. (2019) for example, have 
demonstrated that denser weave patterns give a nearly linear 
stress-strain response when specimens are loaded in tension along the 
reinforcement directions. In contrast however, a composite with a less 
dense weave pattern showed more significant non-linearity due to 
straightening of heavily misaligned yarns. In a similar fashion, Stig and 
Hallström (2019) also noticed that while some 3D-woven specimens 
with nominally straight yarns behave linearly until failure when loaded 
along the reinforcements, others do not. Increased crimp in fibre tows 
can drive non-linear behaviours due to a phenomenon denoted by Cox 
et al. (1996) as plastic tow straightening. Developing a flexible foun
dation that allows for straightforward model additions and extensions to 
capture various experimentally observed behaviours would therefore be 
a promising step. 

The following work presents a thermodynamically consistent model 
framework based on the use of structural tensors. It builds on a model for 
unidirectional composite plies first presented by Spencer (1984) and 

later used by e.g. Nedjar (2011), Vogler et al. (2013), Camanho et al. 
(2015) and Nagaraja et al. (2019) and extends it to 3D-woven com
posites. The proposed framework decomposes the stress and strain 
tensors into two main parts. This conveniently allows for the separation 
of reinforcement driven phenomena and shear or off-axis driven phe
nomena. In particular, the separation makes it possible to incorporate 
pronounced non-linear dissipative material behaviour in shear, 
observed for 3D-woven composites. It also allows for the inclusion of 
non-linear behaviour in one or multiple reinforcement directions. 
Various inelastic formulations (viscoelastic, plastic, and viscoplastic) 
can be chosen and included based on the behaviour in each material 
direction. It also implies that separate behaviours can be included in 
different loading directions. Among other benefits, this simplifies ma
terial parameter identification. 

In the present contribution the proposed framework is applied to the 
specific case of a fully 3D glass fibre reinforced epoxy composite. Focus 
is given to capturing both the non-linear shear behaviour demonstrated 
by the considered material as well as the non-linear behaviour shown 
when loaded along one of the reinforcement directions. A Norton style 
(Norton, 1929) viscoelasticity model is used to capture the reinforce
ment related non-linearity. The non-linear shear response in particular 
however is introduced using a crystal plasticity inspired approach (Hill, 
1966). In more detail, it is assumed that viscoelastic slip is localised to 
planes determined by the reinforcement architecture. Further, the 
development of the viscoelastic strain is driven by the shear component 
of the traction vector on each plane. The use of a crystal plasticity 
inspired approach also makes it possible to independently tailor the 
viscous parameters in each slip plane. The viscous parameters are cali
brated against experimental results and it is shown that the calibrated 
model is able to predict the material behaviour under off-axis tensile 
loading. 

2. Considered material 

A sketch of a typical construct of the considered class of 3D-woven 
reinforcement is presented in Fig. 1. This weaving technique, 
described by Khokar (2001) and produced by Biteam AB, allows for the 
direct manufacturing of complex fibre preforms with various cross sec
tion geometries that can be tailored to the overall needs of the desired 
component. It consists of three sets of yarns: warp yarns (blue) extending 
in the weaving direction as well as horizontal weft (red) and vertical 
weft (green) yarns extending transversely to the weave in the width and 
thickness directions respectively. 

Preliminary experimental results for a 3D glass fibre reinforced 
epoxy composite are shown in Figs. 2 and 3a. They are discussed in 
greater detail in Section 5. Fig. 2a shows the stress strain response of 
tensile loading along the warp yarns - the stiffest and strongest direction. 
It exhibits a (nearly) linear response up until failure. The same however 

Fig. 1. Sketch of the 3D-woven reinforcement, created in TexGen (Brown and 
Sherburn, 2017). Blue yarns are warp, red and green yarns are horizontal and 
vertical weft respectively. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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can not be said for loading along all reinforcement directions. Tensile 
loading in the direction of the horizontal weft reinforcements, illustrated 
in Fig. 2b, shows a notable non-linear response. In-plane shear loading, 
shown in Fig. 3a until the first load drop, also produces a prominent 
initial non-linear response as well as deformation modes with a prefer
ence for slip in certain planes defined by the reinforcement architecture, 
illustrated schematically in Fig. 3b. This observed non-linearity is likely 
due to the viscoelastic behaviour and eventual damage of the matrix 
(Marcin et al., 2008). Accounting for these non-linear behaviours is an 
essential first step to developing an accurate computational model of the 
overall behaviour of this class of material. 

3. Model framework formulation 

As a first step, the following section presents a macroscale framework 
for modelling 3D-woven composites. The framework is thermodynami
cally consistent and convenient to extend to a large strain setting. It also 
allows for the adoption of various inelastic models that can be tailored to 

the needs of a given material. First, in Section 3.1 work initially carried 
out by Spencer (1984) for unidirectional composites is reviewed. His 
proposed model is then extended to the case of 3D-woven composites in 
Section 3.2. The thermodynamic perspective of the model is also dis
cussed in preparation for inelastic model additions in Section 4. 

3.1. Decomposition of stress and strain tensors for unidirectional 
composites 

In Spencer (1984) Spencer focuses on continuum theories that 
describe the macroscopic behaviour of fibre-reinforced materials. In 
particular he proposes a method to decompose the stress tensor in a way 
that allows for the separation of behaviour in the reinforcement di
rections from behaviour under off-axis or shear loading. This decom
position has later been utilised by e.g. Nedjar (2011), Vogler et al. 
(2013), and Camanho et al. (2015). They, respectively, used the pro
posed decomposition to develop a viscoelasticity model, a plasticity 
model as well as three-dimensional failure criteria for transversely 

Fig. 2. Preliminary load-displacement curves of tensile specimens.  

Fig. 3. Preliminary load-displacement curve for shear specimen and schematic of shear slipping behaviour.  
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isotropic unidirectional composites. 
Traditional unidirectional composites contain a single family of 

reinforcement fibres which creates an anisotropic material behaviour 
with a single preferred direction. Starting from such a unidirectional 
fibre-reinforced material in which the reinforcement fibres are oriented 
along a vector a, Spencer proposed the following decomposition of the 
stress tensor, 

σ = s + p1 + TA, (1)  

where 1 denotes the second order identity tensor and A the second order 
structural tensor defined as 

A= a ⊗ a. (2) 

Conceptually speaking, this means that the final term contains 
components in the main reinforcement direction, while the middle term 
contains a contribution of volumetric nature. The first term consists of 
the remaining stress components. 

Explicit expressions for p and T are found by considering constraints 
on s. Firstly, in order to ensure that s is completely void of any hydro
static stress contribution s must be deviatoric, i.e. 

s : 1 = 0. (3) 

Secondly, the conditions that s has no contribution in the rein
forcement direction is given by 

s : A= 0. (4) 

By combining Equations (1), (3) and (4), it can be shown that 

p=
1
2
(tr[σ] − [σ : A]) (5)  

T =
1
2
(3[σ : A] − tr[σ]), (6)  

where tr[ • ] = • : 1 is the trace of •. 
For clarity, consider a material with a fibre direction running along 

the first main axis, i.e. a = [1 0 0]T . The proposed stress decomposition 
becomes 

σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 σ12 σ13

σ12
1
2
(σ22 − σ33) σ23

σ13 σ23
1
2
(− σ22 + σ33)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
s

+
1
2
(σ22 + σ33)
⏟̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅⏟

p

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦

+

(

σ11 −
1
2
(σ22 + σ33)

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
T

⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦.

(7) 

When it comes to the strain tensor, Nedjar (2011) later showed that 
for transversely isotropic composite materials (again with fibres aligned 
along a), it is also convenient to decompose it as follows 

ε = e + ζ1 + ξA. (8) 

In a synonymous way to that of the stress tensor, e is assumed to fulfil 

e : 1 = 0, (9)  

e : A= 0, (10)  

from which explicit expressions for ζ and ξ can be derived. Due to the 
decompositions of stress and strain it follows directly that s and e are 
energy conjugated. Furthermore, by imposing this strain decomposition 
and linear elastic transverse isotropy it is shown in Nedjar (2011) that s 
only depends on e and not on the total strain ε, i.e. 

s= s(e). (11) 

Notably, the lack of coupling between the shear, volumetric and 
reinforcement related parts of the strain and stress tensors has a number 
of positive advantages. It becomes possible to identify and incorporate 
material behaviours in the appropriate parts in a physically meaningful 
way. Again, this fact has been exploited by e.g. Nedjar (2011), Vogler 
(Vogler et al., 2013) and Camanho (Camanho et al., 2015). 

3.2. Modelling framework for 3D-woven composites 

Extending these decompositions to the considered 3D-woven mate
rial allows for a generic framework that provides many possibilities for 
further model developments and additions. Specifically, it allows for the 
convenient separation of matrix-related and reinforcement-related ma
terial behaviours. The following section begins by reviewing a structural 
tensor based formulation of the elastic stiffness tensor. This is followed 
by the extension of the stress and strain decomposition to 3D-woven 
composites. 

3.2.1. Elastic orthotropy 
The nature of 3D-woven reinforcement produces a material with 

three preferred directions, each having their own unique properties. 
Modelling this class of material therefore requires the use of a fully 
orthotropic stiffness tensor. One way to express the stiffness tensor is 
through the use of 9 elastic engineering parameters, specifically: 
Young’s moduli, shear moduli and Poisson’s ratios. In Voigt form this 
relationship can be expressed as 
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11
ε22
ε33
γ12
γ23
γ13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1/E11 − ν21/E22 − ν31/E33 0 0 0
− ν12/E11 1/E22 − ν32/E33 0 0 0
− ν13/E11 − ν23/E22 1/E33 0 0 0
0 0 0 1/G12 0 0
0 0 0 0 1/G23 0
0 0 0 0 0 1/G13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ11
σ22
σ33
σ12
σ23
σ13

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(12) 

Defining the orthotropic stiffness tensor through the use of structural 
tensors instead however, has a number of advantages. It provides a 
convenient, flexible formulation which allows for local variations in 
reinforcement orientation at each material point without the need to 
transform to a local coordinate system. 

Consider an orthotropic material with three preferred directions, i.e. 
the reinforcement directions in Fig. 1, defined by the mutually orthog
onal vectors aI for I = 1,2, 3. By introducing three associated second 
order structural tensors 

AI = aI ⊗ aI for I = 1, 2, 3, (13)  

the fourth order orthotropic stiffness tensor can be expressed as 

E=
∑3

I=1
3ϕIA

I +
∑3

I=1
3
∑3

J=1
3φIJAI ⊗ AJ . (14) 

Here the fourth order tensor AI is given by 1 

AI =
1
2
(
AI⊗1 + 1⊗AI) (15) 

To help visualise Equation (14), Equation (16) shows the obtained 
stiffness tensors in Voigt form for the case where the three preferred 
directions correspond to a1 = [1 0 0]T, a2 = [0 1 0]T and a3 = [0 01 ]

T 

respectively. Note that although this structural tensor-based represen
tation of the orthotropic elastic stiffness does not directly involve the 
elastic engineering parameters, it is possible to relate the coefficients ϕI 
and φIJ to them. This is possible by considering the case where the three 
reinforcement directions correspond to the main coordinate axes, i.e. by 
comparing Equations (16) and (12). 

1 The nonstandard ⊗ operator expresses the operation (A⊗B)ijkl = AikBjl 
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Finally, using the considered structural tensors, the constitutive 
stress-strain relationship for elastic orthotropy can be expressed as 

σ =
∑3

I=1
ϕIA

I : ε +
∑3

I=1

∑3

J=1
φIJ
(
AJ : ε

)
AI , (17)  

where φIJ = φJI. 

3.2.2. Decomposition of the stress tensor 
In his work, Spencer (1984) indicated that by following the same 

thought process and procedures, his methodology can be used beyond 
unidirectional composites to describe the macroscopic behaviour of 
increasingly complex fibre-reinforced materials. In the case of the 
considered 3D-woven composite, the stress decomposition would then 
become 

σ = s + p1 +
∑3

I=1
TIAI . (18) 

In a synonymous way to the decomposition presented in Equation 
(1), Equation (18) for 3D reinforcements holds a term with the 
remaining off-axis components, a term of volumetric nature and terms 
containing the components related to the three reinforcement 
directions. 

Expressions for the coefficients p and TI may again be determined 
through assumptions on s. Specifically that s is assumed to be deviatoric 
and contain no volumetric components or components in the rein
forcement directions, i.e 

s : 1 = 0 and s : AI = 0, for I = 1, 2, 3. (19) 

In the considered 3D-woven composite, the three reinforcement di
rections are mutually orthogonal, meaning that 

A1 + A2 + A3 = 1. (20) 

Under these circumstances, p and TI in Equation (18) cannot be 
uniquely determined from the constraints on s in Equation (19) .2 

Therefore a simplification to Equation (18) is proposed as the following 
decomposition 

σ = s +
∑3

I=1
3TIAI . (21)  

Then TI can be determined from the three constraints 

s : AI = 0, for I = 1, 2, 3, (22)  

resulting in 

TI = σ : AI. (23) 

This means that, in the final form given by Equations (21) and (23), 

the normal stress components solely influence the behaviour in the 
reinforcement directions and do not influence the shear response. 

For clarity, consider the decomposition given in Equations (21) and 
(23) for a material point in which the local yarn orientations are given 
by the principal coordinate axes. That is again where a1 = [1 0 0]T, a2 =

[0 1 0]T and a3 = [0 0 1]T. This gives (in matrix form) that 

σ=

⎡

⎣
0 σ12 σ13
σ12 0 σ23
σ13 σ23 0

⎤

⎦

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
s

+

⎡

⎣
σ11 0 0
0 0 0
0 0 0

⎤

⎦

⏟̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅ ⏟
T1A1

+

⎡

⎣
0 0 0
0 σ22 0
0 0 0

⎤

⎦

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
T2A2

+

⎡

⎣
0 0 0
0 0 0
0 0 σ33

⎤

⎦

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
T3A3

. (24) 

The stress is then again decomposed into one term driven by the 
shear stresses in the material (s) and three terms driven by the stresses 
along the three reinforcement directions. Finally, through Equations 
(21) and (23) it is possible to relate s to σ through the fourth order 
projection tensor Q, i.e. 

s=Q : σ (25)  

where 

Q= I −
∑3

I=1
3AI ⊗ AI , (26)  

and I is the fourth order identity tensor. In a similar fashion as for the 
stress, the strain can be decomposed as follows for three mutually 
orthogonal reinforcement directions 

ε = e +
∑3

I=1

(
ε : AI)AI , (27)  

where now 

e : 1 = 0 and e : AI = 0, for I = 1, 2, 3. (28) 

In a synonymous way as for the stress, the first term in the decom
position given by Equation (26), holds the shear strain components 
while the final three terms hold the strain components in the rein
forcement directions. 

The full strain tensor ε and e may again be related to each other 
through the projection tensor given by Equation (24), where 

e = ℚ : ε.

3.2.3. General constitutive framework 
What remains is to fully define the constitutive relationship of the 

material according to the proposed stress and strain decompositions 
given by Equations (21) and (27). Firstly, the relationship between s and 
e can by determined by combining Equations (25) and (17), i.e. 

s=Q : σ =
∑3

I=1
3ϕIA

I : e. (29) 

It is then possible to express the stresses along the reinforcement 
directions (TI) as 

TI = σ : AI = ϕI
(
AI : ε

)
+
∑

J=1

3
φIJ
(
AJ : ε

)
(30) 

E =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

φ11 + ϕ1 φ12 φ13 0 0 0
φ12 φ22 + ϕ2 φ23 0 0 0
φ13 φ23 φ33 + ϕ3 0 0 0
0 0 0 1/4(ϕ1 + ϕ2) 0 0
0 0 0 0 1/4(ϕ2 + ϕ3) 0
0 0 0 0 0 1/4(ϕ3 + ϕ1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)   

2 The constraint s : 1 = 0 will be automatically fulfilled whens : AI = 0for 
I = 1, 2,3. Thus, only three independent constraints remain, which is insuffi
cient to uniquely determining p and TI . 
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Note that it again has been advantageously shown that s and e can be 
directly related to one another without any additional coupling to other 
strain components. The stress-strain relations in Equations (29) and (30) 
are also possible to formulate in the following form 

σ = Em : e + Ef : ε, (31)  

where 

Em =
∑3

I=1
3ϕIA

I , and Ef =
∑3

I=1
3

(

ϕIAI ⊗AI +
∑3

J=1
3φIJAI ⊗AJ

)

. (32)  

3.2.4. Thermodynamic perspective 
From a thermodynamics perspective, the relationships presented in 

the previous sections can also be derived. Beginning from the free energy 
for a linear elastic orthotropic material, given by 

Ψ =
1
2
∑

I=1

3
ϕIAI : ε2 +

1
2
∑

I=1

3 ∑

J=1

3
φIJ
(
AI : ε

)(
AJ : ε

)
, (33)  

where ε2 = ε⋅ε, the constitutive stress-strain relationship for orthotropy, 
Equation (17), can be found given that σ = ∂Ψ/∂ε. Furthermore, by 
considering the strain decomposition given by Equation (26) and 
inserting it into (32), the free energy can also be rewritten as 

Ψ = Ψe(e) +
∑

I=1

3
ΨI

ε
(
AJ : ε

)
, (34)  

where 

Ψe(e) =
1
2
∑

I=1

3
ϕIA

I : e2 and ΨI
ε
(
ε : AJ) =

1
2
ϕI
(
AI : ε

)2

+
1
2
∑

J=1

3
φIJ
(
AI : ε

)(
AJ : ε

)
(35) 

The constitutive relationships presented in Equations (29) and (30) 
then follow from the consideration of the dissipation equality for elas
ticity, i.e. 

D = σ : ε̇ − Ψ̇ = 0. (36) 

The first term, taking into account the aforementioned stress and 
strain decompositions, i.e. Equations (21) and (27), is then given by 

σ : ε̇ = s : ė +
∑

I=1

3 (
AI : σ

)(
AI : ε̇

)
(37)  

The time derivative of the free energy then follows from 

Ψ̇ =
∂Ψe

∂e
: ė +

∑

I=1

3 ∑

J=1

3 ∂ΨI
ε

∂
(
AJ : ε

)
(
AJ : ε̇

)
(38) 

In order to satisfy Equation (34), i.e. that there is no dissipation, the 
following must hold: 

s=
∂Ψe

∂e
=
∑3

I=1
3ϕIA

I : e (39)  

and 

AI : σ =
∑

J=1

3 ∂ΨJ
ε

∂
(
AI : ε

) = ϕI
(
AI : ε

)
+
∑3

J=1
φIJ
(
AJ : ε

)
(40) 

Lending more strength to the argument for the proposed decompo
sition of the stress and strain tensor, it can be seen that s and e are energy 
conjugated. 

4. Model additions to capture inelastic phenomena 

As previously discussed, the proposed decompositions of the stress 
and strain tensors, allow for the separation of reinforcement-related 
behaviours and shear-related behaviours. In the following sections, 
methods with which to include various experimentally observed non- 
linear behaviours in a modular fashion are proposed. In particular, 
focus is given to capturing the shear related non-linearity and weft 
reinforcement related non-linearity discussed in Section 2 for the 
considered 3D glass fibre reinforced epoxy. 

4.1. Adding shear related non-linearity 

Given the nature of the proposed decomposition, it is then natural to 
assume a shear-related inelastic behaviour only through the relation 
between s and e. Inspired by Nedjar (2011), it is proposed that e be 
additively decomposed into an elastic and an inelastic part, 

e= eel + ei. (41) 

The addition of inelastic behaviour means that the stress-strain 
relationship in Equation (53) transforms into 

σ = Em : (e − ei) + Ef : ε. (42) 

The evolution of the inelastic shear strain, ėi is likely governed by the 
behaviour of the matrix. Further, epoxy matrix systems have been 
shown to demonstrate strain-rate dependent viscoelastic behaviours, see 
for example Woo et al. (1991), and Saseendran (Saseendran et al., 
2016). The resulting behaviour observed when the material is loaded 
along the reinforcement direction however must also be preserved. A 
model inspired by crystal plasticity (Hill, 1966) with viscoelastic slip 
planes is therefore considered. As such, it is assumed that viscoelastic 
strain should strictly develop when there is shear traction, tIs, in 
preferred material planes. This is similar to the ideas in a plasticity 
model presented by Larijani (Larijani et al., 2013) for pearlitic steel. 
These planes, illustrated by grey lines in Fig. 4, are defined by their 
respective normal vectors aligned with the nominal direction of the 
reinforcement architecture, i.e. the warp (a1), horizontal weft (a2) and 
vertical weft (a3) yarns cf. Fig. 1. 

To restrict the development of shear-related viscoelastic strain to the 
preferred planes, and to mimic the monotonic load response as observed 
in the experiments, the following Norton type model is considered 

ėi =
∑3

I=1

1
tI*

(⃒⃒tIs
⃒
⃒

κI

)nI

⏟̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅⏟
magnitude

mI
⏟⏞⏞⏟

direction

. (43) 

The magnitude of the viscoelastic slip rate is driven by the magnitude 
of the shear traction, 

⃒
⃒tI

s

⃒
⃒, on each slip plane. In this model, tI

*, nI and κI 

are all parameters that control the non-linear viscous behaviour of the 
model. 

Although in the simplest case these parameters are assumed to be the 
same and constant for each slip plane, we note that they may depend on 
the slip plane and may also be considered to evolve during the 

Fig. 4. Illustration of the considered slip planes and shear traction vector.  
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deformation. For example, in the event that experimental testing shows 
a strong dependence between hydrostatic or transverse tensile/ 
compressive loading and the shear behaviour of the material, a modi
fication to κ could be introduced. In such a case, κ could be made 
dependent on the normal traction in each slip plane. Thus, the proposed 
framework is flexible and allows for the possible choice of other inelastic 
models as experimental results become available. 

Note that the shear traction vectors, tIs, can be conveniently formu
lated given that 

tIs = σ⋅aI −
(
σ : AI)aI . (44)  

Its norm, can therefore be expressed as 
⃒
⃒tIs
⃒
⃒=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s : AI : s

√
, (45)  

or equivalently 
⃒
⃒tIs
⃒
⃒=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ : DI : σ

√
, (46)  

where DI is defined by 

DI =AI − AI ⊗ AI . (47) 

At this point, we also want to emphasise that the choice of letting s 
drive the development of the inelastic strain (through its projection on 
the shear planes) can also be motivated from a thermodynamics 
perspective. This is discussed in detail in Section 4.3. 

Furthermore, the direction of the viscoelastic strain evolution is 
chosen to be of associative type, where 

mI =
∂
⃒
⃒tIs
⃒
⃒

∂s
=

AI : s
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
s : AI : s

√ . (48)  

This can also be expressed as 

mI =
DI : σ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ : DI : σ

√ .

The proposed model can also be extended with non-associative 
evolution laws if experimental data shows that it is necessary, cf. 
Vogler et al. (2013). Note that mI defined in Equation (48) has the same 
property as e, i.e. 

mI : AJ = 0 ∀ I, J = 1, 2, 3 (49)  

and therefore only has components in the slip planes. 

4.2. Adding reinforcement related non-linearity 

In order to include reinforcement-related behaviours into the 
modelling framework, such as those seen in the considered 3D glass fibre 
reinforced epoxy discussed in Section 2, an additive decompositions of 
the strain tensor is again considered. As such 

ε = εel + εi, (50)  

where εel and εi denote the elastic and inelastic parts of the full strain 
tensor, respectively. The nature of the framework allows for the flexible 
inclusion of inelastic behaviours in a single or multiple reinforcement 
directions. The considered material however, shows prominent non- 
linear behaviour when loading is applied in the same direction as the 
horizontal weft yarns (a2), cf. Fig. 2b. This however is not the case for all 
reinforcement directions. Tensile loading along the warp, see Fig. 2a, 
produced a (nearly) linear response up until failure. 

In order to drive the non-linear behaviour strictly when the material 
is loaded along the horizontal weft reinforcements, it is proposed that 
the contribution to the inelastic strain tensor be constructed using 

structural tensors. In this case, the considered direction is defined by the 
horizontal weft, i.e. a2. The reinforcement related inelastic contribution 
to the strain tensor can then be constructed as εvA2. Therefore, taking 
the shear related contribution discussed in Section 4.1 into account as 
well gives that 

εi = ei + εvA2. (51) 

The stress-strain constitutive relationship in Equation may then be 
expressed as 

σ = E : (ε − εi), (52)  

which, due to the nature of the construction of Em and Ef can be further 
expanded to 

σ = Em : (e − ei) + Ef : (ε − εi) (53)  

= Em : (e − ei) + Ef :
(
ε − εvA2) (54) 

The observed reinforcement-related non-linearity is likely due to the 
movement of the weft yarns inside the polymer matrix. One possible 
formulation for the development of the inelastic strain, ε̇v, is again a 
Norton type viscoelasticity model. The nature of the framework however 
allows for the modification of this choice as experimental results become 
available. 

As in the previous section, a choice must be made when it comes to 
the component that is used to drive the development of ε̇v. This is dis
cussed from a thermodynamics perspective in Section 4.3. Conceptually 
however, one can consider that the magnitude of the development of the 
viscoelastic strain should only be driven by loads in the direction of the 
horizontal weft reinforcement, i.e. σ : A2. Further, the direction of the 
evolution of the viscoelasticity is defined by the direction of the loading. 

The evolution of the reinforcement related viscoelastic strain, ε̇v, 
may then be defined by 

ε̇v =
1
tr*

(⃒⃒σ : A2⃒⃒

κr

)nr

⏟̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅ ⏟
magnitude

sgn
(
σ : A2)

⏟̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅⏟
direction

, (55)  

where tr*, κr and nr are calibrated parameters used to fit the model 
response to the available experimental data. Note that also in this case 
the direction of the development is obtained from the assumption of an 
associative evolution law. 

In general, all three reinforcement directions of a 3D-woven material 
can present non-linear viscous behaviours. In the event that experi
mental testing demonstrates the need for the inclusion of inelastic be
haviours in the vertical weft and/or warp direction, a similar procedure 
as for the case of the horizontal weft directions may be followed. 

4.3. Thermodynamic perspective 

The choice of the components driving the development of the in
elastic strain, i.e. s and σ : A2, can be motivated from a thermodynamic 
perspective. Returning to the decomposed version of the free energy in 
Equation (34), the addition of the inelastic strains means that it should 
be expressed in terms of eel and εel. That is that 

Ψ = Ψe(eel) +
∑

I=1

3
ΨI

ε
(
AJ : εel

)
, (56)  

where 

Ψe =
1
2
∑

I=1

3
ϕIAI : e2

el and ΨI
ε =

1
2
ϕI
(
AI : εel

)2
+

1
2
∑

J=1

3
φIJ
(
AI : εel

)(
AJ : εel

)

(57) 
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and where we again clarify that e2
el = eel⋅eel. 

The considered strain tensor, with the aforementioned inelastic 
additions, now has the following form: 

ε = eel + ei +
∑

I=1

3 [
εel : AI + εvA2 : AI]AI . (58)  

Returning to the dissipation inequality 

D = σ : ε̇ − Ψ̇ ≥ 0, (59)  

now means that expanding the first terms gives 

σ : ε̇ = s : ėel + s : ėi +
∑3

I=1

(
σ : AI)

(

ε̇el : AI
)

+
(
σ : A2)ε̇v. (60) 

As in Section 3.2.4, the time derivative of the free energy is then 

Ψ̇ =
∂Ψe

∂eel
: ėel +

∑

I=1

3 ∑

J=1

3 ∂ΨI
ε

∂
(
AJ : εel

)

(

AJ : ε̇el

)

(61) 

By inserting Equations (60) and (61) into the dissipation inequality it 
again follows that 

s =
∂Ψe

∂ee and AI : σ =
∑

J=1

3 ∂ΨJ
ε

∂
(
AI : εe

). (62)  

What remains in the reduced dissipation inequality is then 

D = s : ėi +
(
A2 : σ

)(
A2 : ε̇i

)
≥ 0. (63) 

This reduced dissipation inequality therefore motivates why the 
evolution of ei and εv are driven by s and A2 : σ, respectively. 

5. Results 

Accounting for various inelastic behaviours in 3D-woven composites 
is a central first step to developing an accurate computational model. In 
order to analyse the proposed framework and the viscoelastic and crystal 
plasticity inspired formulations discussed in Sections 4.1 and 4.2, a 3D 
glass fibre reinforced epoxy composite is considered. The viscous pa
rameters are calibrated against results from a tensile test along the 
horizontal weft direction as well as an Iosipescu shear test. The model is 
then validated against a tensile test of a specimen with a ten degree 
offset of the horizontal weft yarns with respect to the loading direction. 
This is discussed in more detail in the following section. 

5.1. Summary of elastic material parameters and experimental testing 

All experimental specimens were manufactured using glass fibre 
yarns made from HYBON 2026 XM (R-glass) 1200 Tex rovings from PPG 
Fiber Glass. The matrix material was selected as MTFA500 epoxy from 
SHD Composites. The representative volume element (RVE) size is 
approximately 15 mm in the warp direction, 5 mm in the horizontal weft 
direction and 3.9 mm in the vertical weft direction. Experimental testing 
in tension, compression and in-plane shear has been carried out. The in- 
plane tensile tests were performed according to the ASTM D3039 stan
dard (D3039/d3039m - stan, 2013). The grip distance was approxi
mately 60 mm for testing along the warp and approximately 70 mm for 
testing along the horizontal weft. Both had a width of 25 mm. The shear 

behaviour was investigated using Iosipescu tests carried out according to 
ASTM’s V-notched shear test standard D5379 (D5379/d5379m - stan, 
2017). However, given the difference between E11 and E22, the proposed 
90◦ angle was adjusted to 100◦ along with the work carried out by Melin 
et al. (Melin and Neumeister, 2006). In both tension and shear tests, a 
digital image correlation (DIC) system was used to study the displace
ment and strain maps on one surface of the specimens. 

The obtained elastic parameters are summarised in Table 1. The out- 
of-plane shear moduli (marked with an asterisk) have been assumed to 
be equivalent to the in-plane shear modulus. Again, the warp, horizontal 
weft and vertical weft are denoted by 1, 2 and 3 respectively. 

5.2. Calibration of the viscoelastic material parameters 

The identification of the viscous parameters presented in Sections 4.1 
and 4.2 is completed in two steps. As tensile testing leads to a macro
scopic state of uniaxial tensile stress, this makes it possible to initially 
disregard the viscous parameters associated with the shear-driven slip 
planes. The parameters associated with the non-linear behaviour in the 
horizontal weft direction are therefore identified first, i.e. tr

*, κr and nr. 
Once they are determined, the shear related viscous parameters can be 
calibrated, i.e. tI

*, κI and nI. Further, the heterogeneous nature of the 
mesostructure will lead to strain localisation tied to the reinforcement 
architecture. The use of a homogeneous macroscale model does not 
allow for the identification of these localisation phenomena. Instead it is 
able to capture the overall global response of the material. For this 
reason, the calibration is carried out using the force-displacement 
response of the considered specimens. 

5.2.1. Calibration of reinforcement related viscous parameters 
The parameter identification routine is built around MATLAB’s 

fminsearch, which uses the Nelder-Mead optimisation method (Nelder 
and Mead, 1965). Within fminsearch’s objective function, the commer
cial finite element program Abaqus is used. In more detail, an Abaqus 
UMAT containing the implemented material model is opened and the 
viscous parameters are changed in each optimisation iteration. An input 
file containing a finite element model of the considered specimen is then 
submitted. Once the job has completed the resulting force-displacement 
data is extracted and compared to the experimental results. More spe
cifically, for each time step i, the error between the experimental force, 
f , is compared to the corresponding value extracted from the simulation, 
f, then normalised. The objective function that fminsearch seeks to 
minimise can then be expressed as 

Table 1 
Material parameters used for the numerical example.  

Stiffness E11  28 [GPa] E22  14 [GPa] E33  9 [GPa] 
Shear stiffness G12  1.8 [GPa] G*

13  1.8 [GPa] G*
23  1.8 [GPa] 

Poisson’s ratio ν12  0.21 [-] ν13  0.30 [-] ν23  0.46 [-]  

Fig. 5. Schematic showing the considered tensile specimen.  

Table 2 
Calibrated viscoelastic parameters for the non-linear response in tension along 
the horizontal weft.  

Parameter name Value Unit 

tr*  3.75⋅107  s 

nr  1.72 – 
κr  1 MPa  
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sse=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑
i

(

fi − f i

)2

max
(

f i

)

√
√
√
√
√
√
√
√

. (59) 

The input file contains a three dimensional model built using fully 
integrated linear hexahedral elements (3DC8). Displacement driven 
boundary conditions on the outer edges are applied, as shown in Fig. 5a. 
The time history of the applied vertical displacement on the upper 
boundary in the model corresponds to the experimental test. More 
specifically, an axial strain signal is extracted from the DIC-analysis 
using a virtual extensometer with an initial separation of 30 mm 
placed approximately in the centre of the sample. Boundary conditions 
were applied to the model to enforce the same global strain. This cor
responded to a displacement of approximately 0.7 mm/min. 

The final result shows convergence of the horizontal weft related 
viscoelastic parameters. They are summarised in Table 2. Note that due 
to the nature of the proposed Norton type viscoelastic model, it is not 
possible to uniquely determine tr

* and (κr)
nr

. As such it is convenient to 
prescribe κr to 1 MPa in order to maintain a dimensionless quantity 
within the brackets. With the obtained parameters, an analysis with a 
finer mesh was carried out to ensure mesh convergent results. 

The obtained force-displacement curves and contour plots showing 
the axial strain distributions are found in Fig. 6. Both the result of the 
calibrated simulation and corresponding experiment are shown. Above 
the loading curve the experimental DIC results are shown while under 
the curve the corresponding model predictions are shown. 

5.2.2. Calibration of shear related viscous parameters 
Once tr*, κr and nr are found, it is possible to calibrate the viscous 

parameters in the shear slip planes. The viscoelastic model presented in 
Section 4.1 generally allows for the consideration of three parameters 
per slip system. The focus for now, however, is given to calibrating the 
viscous slip parameters using an Iosipescu shear test in the plane illus
trated in Fig. 7a. That is specifically, the identification of t2

* , n2 and again 
setting κ2 = 1. 

A three dimensional Abaqus model using the 3DC8 element was 
again used and integrated into the calibration routine based on MAT
LAB’s fminsearch with the equivalent objective function presented in 
Equation (59). Displacement driven boundary conditions on the outer 
edges are applied, as shown in Fig. 7c. The time history of the vertical 
displacement on the right hand boundary corresponds to that measured 
using DIC at the indicated load point in Fig. 7b and is approximately 0.8 
mm/min. 

Fig. 8 again shows the resulting force-displacement curves and shear 
strain distributions for the calibrated model and the corresponding 
Iosipescu shear experiment. The images above the curve again 

Fig. 6. Calibrated load-displacement curve and contour plots showing axial 
strain distribution in the loading direction. Above the loading curve the 
experimental DIC results are shown while under the curve the corresponding 
model predictions are shown. 

Fig. 7. Schematic showing the considered shear specimen.  

Fig. 8. Calibrated load-displacement curve and contour plots showing in plane 
shear strain. Above the loading curve the experimental DIC results are shown 
while under the curve the corresponding model predictions are shown. 

Table 3 
Calibrated viscoelastic parameters for the non-linear response in shear.  

Parameter name value Unit 

t2*  6.46⋅105  s 

n2  1.538 – 

κ2  1 MPa  
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correspond to the experimental DIC results of the experiments while the 
images below the curve show the model prediction. Note that the 
experimental results are shown and calibrated until the first load drop. 
The obtained parameters are presented in Table 3. 

As previously discussed the nature of this approach does not allow 
for the identification of strain localisation behaviours. While the overall 
global response can be accurately captured by the proposed model both 
in the case of tensile loading in the horizontal weft direction (Fig. 6) and 
in shear (Fig. 8), obtaining an equally exact comparison of the axial and 
shear strain distributions is challenging. 

5.3. Overview of the model response 

To demonstrate the main characteristics of the proposed model, the 
case of uniaxial stress at the material point level is considered. Various 
orientations α of the fibre reinforcements are evaluated, as shown in 
Fig. 9. The viscous parameters are taken from Sections 5.2.1 and 5.2.2 
and an equivalent loading rate to that used during experimental testing 
is considered. Fig. 10a shows the material response under tensile loading 
for varying in-plane orientations of the fibre reinforcement. Loading 
along the direction of the warp yarns, i.e. α = 0∘, produces a linear 
elastic response, that gradually softens until reaching an orientation of 
α = 45∘. Continuing past α = 45∘, shown in Fig. 10b, gradually stiffens 
the resulting behaviour until reaching the case of tensile loading along 
the direction of the horizontal weft reinforcement, at α = 90∘. 

5.4. Prediction of off-axis tensile test 

Model validation was carried out by considering a tensile specimen 
with the horizontal weft reinforcement oriented at a ten degree offset to 
the loading direction, i.e. α = 100∘. Testing was carried out according to 
the ASTM D3039 standard with a grip distance of 60 mm and a specimen 
width of 15 mm. A three dimensional FE model using fully integrated 
linear hexahedral elements was again constructed in Abaqus, with 
displacement driven boundary conditions as shown in Fig. 11a. The 
magnitude of the applied boundary conditions was determined based on 
the DIC data of the corresponding experiment. Specifically, a virtual 
extensometer, with an initial separation of 30 mm was used to extract 

the axial strain measurements. The extensometer was placed over the 
approximate centre of the specimen, shown in Fig. 11b. Based on the 
length of the specimen, comparable boundary conditions to achieve the 
same global strain were applied. This corresponded to a displacement of 
approximately 1.3 mm/min. 

The experimental cyclic load-displacement behaviour for the 
considered off-axis specimen is shown in Fig. 12. Currently, focus is 
given to evaluating the predicted material response under monotonic 
loading, again shown in Fig. 12. The initial global response of the ma
terial can be predicted with fair agreement, until the point that damage 
is visible in the DIC images. The model however showed a limited ability 
to predict the unloading behaviour of the test specimen, and is a place 
for future improvements and developments. Initial inconsistencies in the 
stiffness of the experimental and simulation results may be due to var
iations in the loading rate of the on and off-axis specimens. The nature of 
macroscale models again means that localised strains are not possible to 
capture. 

Fig. 9. Illustration of the orientation of the reinforcement directions with 
respect to the loading directions. 

Fig. 10. Stress-strain curves under uniaxial stress for varying reinforcement orientations.  

Fig. 11. Schematic showing the considered off-axis tensile specimen.  

Fig. 12. Load-displacement curve of experimental and predicted results.  
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6. Conclusions 

Composite materials with 3D-woven reinforcements have shown a 
number of promising characteristics over their laminated counterparts. 
This includes improved out-of-plane properties, damage tolerance and 
increased specific energy absorption. In order to allow for their wide
spread adoption in industry however, efficient computational models 
are required. The current contribution proposes a framework for 
modelling the mechanical response of 3D-woven composites on the 
macroscale. The framework is based on a decomposition of the stress 
and strain tensor, assuming three nominal reinforcement directions, 
analogous to the propositions for unidirectional composites (with one 
reinforcement direction) by Spencer (1984) and Nedjar (2011). By 
adopting these stress and strain tensor decompositions, the modelling 
framework conveniently allows for the separation of the model response 
into two parts. Specifically, one which is related to the behaviour of the 
reinforcement directions while the other is related to shear. 

The proposed framework was applied to the case of a 3D-woven glass 
fibre reinforced epoxy material. This material showed a prominent non- 
linear response when loaded both in shear and in tension along the 
horizontal weft. In order to mimic the observed non-linear monotonic 
loading curve, a Norton viscoelasticity model was adopted as an initial 
starting point. In particular, under shear loading, the Norton model was 
combined with a crystal plasticity inspired approach. The viscous pa
rameters were successfully calibrated against experimental results. 
Validation of the model was carried out by considering off-axis tensile 
testing and showed fair agreement. 

The presented framework is general, thermodynamically consistent 
and it allows for the addition of various experimentally observed in
elastic phenomena in a modular fashion, based on loading direction. 
This provides a clear calibration scheme which links parameters to 
distinct experimental tests, simplifying material parameter identifica
tion. Furthermore, we note that it has a straightforward extension to the 
case of finite strains, to incorporate effects such as reinforcement rota
tion and (thereby) stretching under large shear deformation. 
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