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PREFACE 

The present book started as a four way debate concerning the interaction 

of theory and design in computer security. To fix the discussion, let us note 

that many computational processes proceed on the assumption that a naive or a 

malicious user may attempt to disrupt the process or to make undesirable 

inferences from observing aspects of the computation. Security is concerned 

with avoiding this sort of penetration. On one hand, we saw that, over several 

generations of systems, designers had addressed security issues with varying 

degrees of success, and in the process, a considerable body of folklore and 

genuine technology developed. On the other hand, we knew of theoretical work 

with models simple enough to permit rigorous analysis, and we wondered about 

the real world implications of these theoretical results. 

Fortunately, we found support among our colleagues. The papers collected 

herein all lie near the "crack" between theory and practice; they all address 

issues at the foundations of security. 

The contributing authors met in October 1977 in Atlanta, Georgia for a three 

day workshop. During this time, most of the technical details of the contribu-

tions were reviewed and discussed in informal presentations. We also met for 

an extensive round table discussion concerning the history, current state and 

prospects of research in secure computation. Many of these discussions were 

taped and edited. They appear sprinkled throughout the volume. 



The atmosphere of our meeting in Atlanta was charged by an external (and 

unexpected) sequence of events. In the summer of 1977, the national news 

media began to release a series of stories concerning aspects of security 

research -- these developments concerned results in which the interaction 

between theory and practice figured prominently. Even at this writing, the 

news carries reports concerning security research. Clearly, the ideas dis-

cussed in these pages will have public impact. In a fashion, this is a 

resolution of our debate: theory and practice do interact visibly. 

A few words about the level of the nineteen papers contained in the sequel 

may help the reader. We anticipated that a considerable body of new technical 

results would issue from our meeting. We were pleasantly surprised to ,find 

ample survey material scattered among the research papers. Therefore, in 

addition to being a timely collection of research contributions, we offer the 

current collection as a book suitable for collateral readings in a seminar or 

an advanced course in computer security. 

This project was given generous support from a number of sources. The 

Office of Naval Research and the U. S. Army Research Office each provided grants 

to support travel to Atlanta and the assemblage of these papers. t 
Gordon 

Goldstein, Marvin Dennicoff, Robert Grafton, and Lenny Haynes of the Office of 

Naval Research, and Paul Boggs and Jimmy Suttle of the U. S. Army Research Office 

were particularly valuable in bringing about the meeting. Support was also 

provided by the Computer Science Departments of Carnegie-Mellon University and 

Yale University. In addition, the School of Information anci Computer Science at 

the Georgia Institute of Technology cordially extended its considerable resources 

to us in holding the meeting and in providing the administrative support needed 

to assemble the papers into their final form. 

ONR grant no. N00014-76-G-0030, ARO grant no. DAAG29-77-M-0086. 
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Michael Fola and David Swanson of Academic Press gave us many valuable 

helping hands in putting the volume together. Finally, Brandy Bryant deserves 

special thanks. She not only typed and retyped all of these papers, but she 

ran herd on the project. She made sure that we did not miss our deadlines by 

more than a month or two, and she insisted that we do things right. 

Richard A. DeMillo, Atlanta, Georgia 

David P. Dobkin, Tucson, Arizona 

Anita K. Jones, Pittsburgh, Pennsylvania 

Richard J. Lipton, New Haven, Connecticut 
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THE FOUNDATIONS OF SECURE COMPUTATION* 

Richard A. DeMillo 

School of Information and Computer Science 
Georgia Institute of Technology 

Atlanta, Georgia 

David Dobkin 

Department of Computer Science 
Yale University 

New Haven, Connecticut 

"How do you insure privacy?" 
"By coding," I said. "A two-word signature is required to 

gain entry to a section of the memory bank. Each word is made 
up of fourteen bits, making a total of twenty-eight bits." 

"Then the odds are about one hundred million to one against 
a chance guess" ... "What if I entered someone else's code by 
mistake?" ... 

"Nothing would happen. A countersign is necessary which 
requires another fourteen bits ..." 

Duckworth shook his head. 
"I still don't like it," he said. 
I was annoyed by his obstinancy and responded by behaving 

childishly. 
"Here," I said. "I'll let you enter any two fourteen bit 

words..." 
Duckworth seems startled at my suggestion, but he complied 

... The Confirm register lit up. 
"What does that mean?" asked Duckworth. 
I bit my lip.** 

The preparation of this paper was supported in part by the 
Office of Naval Research under Grant N00014-75-C-0450 and the 
National Science Foundation under Grant MC576-11460. 

** L. Eisenberg, The Best Laid Schemes,  MacMillan, 1971. 
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I. INTRODUCTION 

Professor Duckworth's canny guess retrieved information from 
a fictitious Federal Investigation Bureau. In this case, fiction 
is paler than life and therein lies a frightening fact. The 
computer is often used (simultaneously) as an excuse for an 
instrument of insensitive and destructive policy. Evidence is 
the maintenance of information in machine-readable form with 
only slight technical guarantees of security. 

Computer security has been an important issue since the first 
computer was developed. However, with the advent of faster and 
more accessible machines used by many users and large quantities 
of shared data, this issue has achieved far greater importance. 
It is no longer sufficient to rely on a system of password 
control through which a user is protected by having a 7-letter 
code known only to himself, since while this may, in the best 
case, prevent other users from directly accessing the users area, 
it does little to prevent indirect access. The potential dangers 
from such indirect access increase manyfold. In this survey, 
we shall discuss protection in two forms. The first involves the 
problems of unauthorized users gaining access to restricted data. 
In this case, it is necessary to discuss access control mechanisms 
that can be brought to bear in order to protect each users 
security. A second and far more subtle method of compromising a 
system is through what is called "statistical inferencing". Here, 
the user obtains information that is available to him legally and 
uses this information to infer information to which he has no 
access privileges. As more secure access-control mechanisms are 
proposed to guard from illegal access to protected data, it is 
this problem which looms as the major important problem of data 
security. And, this problem can never be totally solved since we 
must grant to authorized users access to data of this type. As 
an illustration of this problem, consider a problem faced by the 
census bureau (or any other creator of administrative databases). 
In such a database, sensitive information is collected about a 
group of individuals while guaranteeing each individual that data 
collected about him will not be made available to users at large. 
However, in order to do research on large segments of the popula-
tion, it is necessary for aggregated forms of this data to be 
made available to certain users. Suppose that a sociologist 
wishes to study correlations among a population with respect to 
various characteristics. Then, it might be necessary to give 
this sociologist access to the data. However, in order to 
guarantee each individual's privacy, we will wish to do this in 
a statistical manner. That is, we will refuse to answer questions 
about an individual or small set of individuals, but will make 
available information about larger segments of society in a manner 
that does not give information about any individual. And the 
problem arises as to hoW to insure that no malicious user can use 
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this information in order to determine the characteristics of a 
single individual. A common method that has been proposed is to 
refuse access to information about any set of individuals which 
consists of too few people and in this manner restrict access to 
individual data. When data is given about a set of individuals, 
it will then be given in an aggregated form consisting of mean 
or median characteristics or counts of the number of people 
having a certain characteristic. However, as shown below, such a 
limitation is often not sufficient to guarantee individual 
privacy. Furthermore, refusing to answer a question often gives 
as much information as an aggregated answer since one might be 
able to infer information from the reason for a non-answer. 
Another area where this problem is of great significance is in 
the problem of medical record-keeping. Here, we may wish to 
track a set of people having a certain ailment in their early 
life (or people who have been exposed to certain phenomena) in 
order to determine long range effects of medications or exposures. 
In so doing, we want to make the data as helpful as possible to 
medical researchers while guaranteeing individual privacy. 
Because of the nature of such data, it is of great value to 
malicious users. 

In this survey, we shall study the recent developments in 
these two areas, improved access-control mechanisms and guaran-
teeing statistical confidentiality. We begin with a study of 
the former problem in the next section. The problem of statisti-
cal security, which seems to be a major problem in the area, will 
be studied in detail in the third section. The goal of the 
survey shall be to highlight issues and recent developments in 
those areas. Because of our limited space, we cannot go into 
any issues in any amount of detail. The interested reader is 
referred to Hoffman's book [13] for an elementary survey of these 
issues and remaining papers a [3] for details of the state of 
the art on such problems. It will be clear in what follows that 
the interplay of theoretical and practical research has led us to 
question the limitations which we place in the notion of security 
as well as to create "secure" systems. 

IL ACCESS CONTROL MECHANISMS 

In operating systems, the most common forms of protection 
access-control are the access control mechanisms first introduced 
by Graham and Denning [11]. Access control mechanisms are cap-
able of enforcing rules about who can perform what operation or 
who can access an object containing certain information. For 
example, users may be able to access objects via READ, WRITE, 
SORT, DELETEFILE, or APPEND commands with different users allowed 
restricted access to individual files. Access control may be 
represented by a subject-object matrix through which a subject 



1. 

i's privileges for object j are represented as element ij in the 
matrix. Given such a system, one will wish to determine if it 
defines a secure system: can a subject obtain access to 
restricted objects by combining a set of privileges? In general, 
the problem of determining security is undecidable by a result 
of Harrison, Ruzzo, and Ullman [12]. While this result is of 
theoretical interest, it does not address the problem in a 
practical manner, since for particular access control mechanisms, 
it may be possible for specialized algorithms to solve the 
security problem. Thus, it may still be possible for the design-
er of a given system to determine the security of his system by 
an efficient algorithm, even though no general procedure exists 
for testing the security of arbitrary access control matrices. 

A basic question is whether it is possible to design a 
protection mechanism of sufficient richness so as to be capable 
of admitting a complex variety of sharing relationships, while 
being of a sufficiently simple form to have an efficient algo-
rithm for checking its integrity. One important step toward 
answering this question has been made by Jones, Lipton and 
Synder [15, 16, 26]. Under a restricted model called the Take-
Grant System, there is a linear time algorithm for testing 
subject security [15,16] and hence the system can be regarded as 
having a high degree of integrity. Furthermore, the rich 
instances of this system demonstrated by Snyder [26] suggest that 
this system will also be satisfactory in an environment where 
complex sharing is desired. 

A Take-Grant model can be represented by a finite, directed, 
edge-labelled state graph and a set of rewriting rules to allow 
for state transitions. Vertices are labelled as either subjects 
(representedass.), objects (represented as o

i
) or unknown 

(representedasu i )—Avertexu.nmy be either a subject or an 

object. Edges are labelled with rights consisting of either t 
(for take), g (for grant) or t,g. We have four rewriting rules. 
Rules allow for transitions by allowing subgraph a to be replaced 
by subgraph b if a==>b is one of our rewriting rules. The rules 
are then given as a take rule, a grant rule, a create rule and a 
remove rule which serve to handle sharing and file handling in 
the user environment. 
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Graphically, these rules are: 

(1) Take: 	 u
2 

a 	
3 

allowing subject 1 to take the privilege of u
2 

to u
3 

since 
s
1 

has take rights. 

(2) Grant: s i---.11-4u 2 u3  ==> 

allowing subject 1 to grant his privileges to u
3 

to u
2 

since 
s
1 has grant rights. 

(3) Create: s
1 
 ==> s

l 
a u

2 

allowing s
1 
to grant u

2 
a subset a of his rights. 

b -a
b 

(4) Remove: s
12 

 ==> s1 
	2 

allowing subject 1 to remove rights of a from u 2 . 

We then phrase the security question as a test of whether or not 
x can "a" y. This situation corresponds to being given an initial 
configuration and asking whether we apply a set of rewriting rules 
to obtain a graph containing an edge from x to y containing the 
label a. In contrast to the results of [12], a test is available 
under which security in this model can be determined in linear 
time [15,16]. Furthermore, Snyder [26] demonstrates implementa-
tions of this method in which sufficiently rich user sharing is 
available. 

11I. SECURITY OF STATISTICAL DATA BASES 

While the methods mentioned above are important for securing 
operating systems, they are of limited value in considering the 
data base security problem. Here, we are dealing with an environ-
ment where most users have only READ access to the information 
in the data base. The problem is to determine whether users can 
manipulate this access to compromise the data base. It is no 
longer the case that we may determine whether a user may obtain 
rights which should not he available to him, since every user has 
the same rights and no rights can be taken or granted beyond these 
basic rights. The issues run deeper. Users are granted access to 
information regarding the population served by a database and we 
wish to guarantee that no user may use this information to infer 
data about protected individuals (or groups) served by the data 
base. We are, thus, dealing with nebulous inference mechanisms 
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rather than simple security violations. We must discern whether 
a user can infer information about guarded individuals from the 
information we have made available to him. With the additional 
considerations of inferences, the problem becomes more complex. 
We are still faced with the tradeoff between richness and 
integrity: we wish to produce a system rich enough to supply 
useful information to those using the database while assuring 
the system's integrity in protecting those represented in the 
database. 

A simple example of the subtlty of such a problem was first 
given by Hoffman and Miller [14] who showed that with sufficient 
queries a dossier could be complied on an individual represented 
in a database. Typically, one wishes to be able to ask questions 
of a database of the form: 

"How many people in the database satisfy properties 
PP

2'
...

'
P
k 

 

"What is the mean (or median) value (of a parameter) of 
people satisfying properties P_,P 	P ?" 

1 2' 

Such a parameter might be "salary" or "number of times hospital- 
ized with a certain disease." Typical properties might be "male", 
"over 50", or "having an income greater than $10,000." Such 
questions or queries are necessary in a variety of applications. 
For example, suppose that one wishes to dtermine the incidence of 
cancer among workers in plants using certain types of chemicals 
[25], to track a population having a certain ailment in child-
hood to determine their adjustment to society [18], or to draw 
correlations between salary and standard of living. 

As an example of the ease with which such a database can be 
compromised*, we consider the following example from [7] consist-
ing of the characteristics of a number of persons who have 
contributed to a political campaign. 

* We will say that a data base has been compromised (or cracked) 
if a user may infer from the response to valid queries a 
charactoristic of a person served by the data base. 
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Person Business 
Area 

Party ' Favoritism 
Shown by 

Administration 

Geographic 
Area 

P1 Steel 

A
 f=

4  
1-4  

A
 C=G  

I—
I  
A

 c4  
--1 

High Northeast 
P2 Steel Medium West 
P3 Steel Low South 
P4 Sugar Medium Northeast 
P5 Sugar Low Northeast 
P6 Sugar High West 
P7 Oil Low South 
P8 Oil High South 
P9 Oil I 	Medium West 

Suppose that in order to protec .t individual integrity, we are 
only willing to make available to a user the average contribution 
of people sharing a common attribute, e.g., contributions from 
the steel industry consisting of the average of the contributions 
of the first three people. In this manner, we might hope to 
secure the database. Observe, however, that we may generate a 
system of twelve equations in the variables C 1 ,...,C9  with C

i 
corresponding to the contribution of P i  (e.g., C 1+C 2+C 3  corre- 

sponds to the contribution from people in the steel industry) and 
may then solve these equations to determine the individual values 
of C

1, 
 C 2, ... C

9. 
While this example provides only a simple view 

of the problem in securing a database, it forebodes the diffi-
culties that actually occur in large administrative databases. 
This issue has been previously investigated by [2,9,10] from a 
statistical point of view and [21,22] has considered the impli-
cations of such schemes from a medical point of view. 

We are, therefore, led to consider the techniques that might 
he applied to enhance the integrity of the database. The enhance-
ments are basically of two types both dealing with restricting 
data flow. We might either restrict the number and types of 
queries which a user might be allowed or we might restrict the 
form of the answer given to a query. In both of these instances, 
we must take care to insure that the restrictions we place on 
the model do not sacrifice its richness. Previous studies of this 
problem have appeared in [1,6,4,7,8,19,20,23,24]. In [5], this 
problem is shown to be basic to the study of combinatorial 
inference and is related to a number of well-known combinatorial 
problems including group testing and balance problems. 

We turn now to exposition of the methods which have been 
proposed to handle this problem. For each, we also describe the 
known results concerning its efficiency. 
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Limiting Overlap Between Mean Queries 

In this case, queries are allowed about the mean value of a 
characteristic corresponding to a group of people with the 
restriction that no two queries may overlap in more than r 
positions. To enhance system security, the further restriction 
that all queries involve at least p people may also be added. 
If we define S(p,r) as the minimum number of queries needed to 
compromise the database, then 

S(p,r) < 2p.  
— r 

which is a small number of queries in a database designed to 
provide useful information to its nonmalicious users. 

Only Allowing Median Queries and Not Allowing Mean Queries 

As we have seen, mean queries are too powerful. What if they 
are not allowed and the user is given the median value of a 
characteristic corresponding to a group of p people? This seems 
promising since while the median does actually give the value 
corresponding to one person, it supplies no information about 
other members of the database other than their relationship (or 
about a given value). Indeed, this helps sine - in this model -
it is not possible to determine certain values occurring at the 
tails of those considered in the sample (other than determining 
a lower bound on those values at the top end and an upper bound 
on those values at the bottom end). However, for values situated 
near the median of the original sample, compromise is easily 

arranged. In 0(log
2
p) queries concerning the median value 

associated with a set of p people, a database can be cracked and 
someone's value may be determined exactly. Information regarding 
relative values associated with different people can generally 
be obtained more quickly and this is often sufficient to compro-
mise the database. 

Lying 

If exact information is so dangerous, answers may be dis-
torted slightly while maintaining the integrity of answers given. 
This distortion may be achieved by adding "noise" to all answers 
in a manner that does not vastly change their implications. 
However, if the noise is not of sufficient size to cause signifi-
cant changes in answers given, then it is also not statistically 
sufficient in securing the database. Variant proposals involve 
giving only a "feel for the data". This might be achieved by 
returning the value corresponding to one individual involved in 
the query without either identifying the individual or his 
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ranking (e.g., max, min, median ...) in the set encompassed by 
the query. In the most simple form of this type of lying, we 
allow only queries involving n individuals, restrict to 1 overlap 
among queries and return results at random. By appealing to 

results from matching theory, we can show that n
2
-1 queries can 

be successfully answered without compromising the database. 2 
However, using a simple strategy based on finite geometric, n 

 

well chosen queries generally suffice to compromise. While this 
number is possibly large enough to discourage all but the most 
malicious of users, it is obtained for a model more restrictive 
than is realistic; "real" systems will surely be more vulnerable. 

Distorting the Data 

In implementing this procedure, we must take care to guarantee 
that the data are distorted in such a manner as to make answers 
obtained from the database meaningful. One such method consists 
of having the census taker ask two questions at random with 
certain fixed probabilities in such a manner that the census 
taker does not know which question the person answering the 
question is answering. The questions are chosen so that their 
answers will have similar statistics. For example, if one wishes 
to determine the number of abortions that members of a population 
have had, he might have the subjects choose a card at random from 
a deck such that p% of the questions in the deck ask about 
abortions (e.g., number of births, or visits to a certain place. 
...). In this manner, the system is supposed to be secure 
(assuming 0 50) since even if cracked, we do not know which 
question the compromised individual answered. However, such 
claims of security may be questioned since in our world models, 
we often have sufficient information (or can obtain such informa-
tion) to discern between which of the two questions an individual 
answered. 

Although the procedures for compromising databases when any 
of the security precautions presented above are highly non-
trivial, they must be taken quite seriously because often their 
benefits outweigh even large costs of their implementation. In 
1972, a cadidate for Vice President of the United States was 
forced to resign from the campaign after disclosures that he had 
had electric shock treatment for nervous disorders. It would be 
worth significant probing for an opposition party to obtain such 
information about a leading candidate. The lengths to which 
politicians and their operatives are willing to go in securing 
information was graphically illustrated in the Watergate disclo-
sures. Certainly, all of their administration's efforts were 
sufficiently greater and more dangerous than the efforts they 
would have needed through a scheme of the type mentioned here to 
compromise security in any of the measures we've given. Hence, 
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it is extremely important that database designers of the future 
be aware of the results reported here and use them as a guideline 
in designing their access control and limiting measures. 

One question that arises in any consideration of data 
security is the auditing question. Often if we cannot totally 
secure a system, we at least wish to determine when and how it 
was compromised. To date, most security violations have been 
discovered by accident [17]. In one case, a successful criminal 
told a friend who turned him in. Other computer criminals have 
been caught when others noticed changes in their lifestyles 
brought about by their increased wealth. However, it is very 
dangerous to rely on flaws of human character to guarantee that 
those who violate computer security will be apprehended. In a 
consideration of auditing procedures for detecting security 
violations under the models proposed above, we observe that in 
the case of means, medians and arbitrary selections, procedures 
do exist for checking on security violations. However, all of 
these procedures are far more complex than the actual running of 
the database system and would typically require that the machine 
lie dormant for about two-thirds of every day while checking the 
potential results of answers given during the rest of the day. 
And,-no such procedure has been proposed that can take into 
account the possibilities of collusion among database interroga-
tors or of information obtained from other sources. 

IV. CONCLUSIONS 

Methods do now exist to greatly enhance the security of 
operating systems and databases. While such methods may never be 
unbreakable, significant progress has been made towards such a 
goal. The "foundations" of security research is concerned with 
the exact locations of these dividing lines. It is now the case 
that theory exists sufficient to design a system for which 
illegal access is so difficult or a database for which inferences 
from legal data is so complex, that security violations will be 
beyond the realm of all but the most dedicated and sophisticated 
penetrators. And, the design of systems sufficiently secure with 
respect to such penetrators will perhaps never be achieved. One 
can only hope that the cost of compromise will increase to exceed 
the possible benefits that could be derived from such a compromise. 
In this paper, we have explored recent theoretical developments 
on these problems which greatly increase the cost of compromise. 
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The major open problems remaining include implementing a 
security system based on the Take-Grant model and improving upon 
the methods for enhancing security of data in an administrative 
database. In the latter case, many problems of significant 
theoretical interest remain. A major open problem requires the 
construction of a method of collecting and disseminating 
information to authorized users without compromising the security 
of any individual represented by the database. The remaining 
papers in this volume [3] contain close relations of these 
problems, and address issues whose eventual resolution will help 
guide our policies for the use of computers in sensitive appli-
cations. 
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SECTION F. DATA BASE SECURITY 

A theme of the introductory article in this volume is that 
databases of personal information will continue to be construct-
ed. In addition, this information will be communicated among 
several processing sites, and users at these sites will expect 
to be able to extract usable information. A significant task of 
researchers in database security is to point out "danger spots", 
i.e., sources of possible insecurity in the system before they 
are actually constructed. 

The four papers in Section I address tradeoffs between 
usability and security. Dorothy Denning's survey of statistical 
database security reminds us how far we have come in realizing 
the limits of the notion of database security. The extant 
methods of compromising large statistical almost always involve 
transparent uses of information delivered in response to queries. 
The article by Richard DeMillo, David Dobkin and Richard Lipton 
discusses the more subtle kinds of combinatorial inferences 
which can he formed out of query responses. Compromise in the 
statistical sense is not the only security problem in database 
design. The pragmatic issues stemming from the authorization of 
access to database and data communication systems are outlined 
in the contribution by Don Chamberlin, Jim Gray, Patricia 
Griffiths, Moscheh Mresse, Iry Traiger, and Bradford Wade. The 
final paper of this section by Stephen Reiss returns to statist- 
ical compromise with a detailed technical study of the insecurity 
inherent in databases which allow a certain statistical query 
strategy. 
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A REVIEW OF RESEARCH ON 
STATISTICAL DATA BASE SECURITY* 

Dorothy E. Denning 

Purdue University 

I. INTRODUCTION 

The objective of a statistical data base is providing 
statistical summaries about a population without releasing the 
specifics about any individual. But this objective often cannot 
be met. It is frequently possible to deduce private information 
by correlating summaries. If so, the data base is compromised. 

This paper surveys recent research in the security of 
statistical data bases. We begin with a general model of a 
data base. 

II. DATA BASE MODEL 

Consider a statistical data base containing sensitive 
information about n individuals. Each individual is assigned to 
one or more categories, plus has numerical values in one or more 
classes. At least one individual belongs to each category, and 
no category comprises all individuals. The data base is static; 
i.e., insertions, updates, and deletions do not occur over the 
time period of interest. Summary statistics are requested from 
the data base with queries. Queries use classes as domains but 
apply only to particular individuals or individuals in specified 
categories. 

* Work reported herein was supported in part by NSF Grant 
MCS75-21100. 
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Table 1 shows an automobile insurance data base of size 
n = 12. Each individual belongs to exactly one category in each 
of these sets: 

Sex = {M, F) 
Marital Status MS = fS, M, W) 
Age Group AG = f(16- 25), (26-60), (61- 100)) 

TABLE I. Data Base for Automobile Insurance Company 

Keys 
Numeric Symbolic 

Categories 
Sex Marital 

Classes 
Age Accidents Violations Premium 

Stat. Group 

1 Adams M M 26-60 0 0 100 

2 Boggs M S 	26-60 0 1 112 

3 Cook F M 16-25 1 0 -135 

4 Dodd F M 26-60 0 0 95 

5 Hays M 16-25 0 0 107 

6 Jones F W 61-100 0 0 105 

7 Lynn M M 26-60 0 2 130 

8 Moore M M 26-60 2 0 150 

9 Rose F M 26-60 0 0 95 

10 Smith M S 	16-25 2 1 185 

11 Trip F S 	16-25 0 1 125 

12 Wood M 26-60 0 0 100 

Each individual has values for three classes: Accidents, 
Violations, and Premium. The possible values for each class may 
also be viewed as categories: 

Accidents A = {0, 1, 2} 
Violations V = {0, 1, 2} 
Premium P = f95, 100, ..., 1851 

All examples will refer to this data base. 

Compromise occurs whenever it is possible to deduce from the 
responses of one or more queries information not previously known 
about an individual. The compromise is positive if it reveals 
that the individual belongs to some category or has a particular 
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value in some class. The compromise is negative if it reveals 
only that the individual does not belong to some category or have 
a particular value in some class. For example, learning that 
Lynn had 2 traffic violations is a positive compromise; learning 
that he had at least 1 violation (i.e., "he did not have no 
violations") is a negative compromise. Partial compromise occurs 
when information about a subset of individuals in the data base 
is deduced; complete compromise occurs when everything in the 
data base is deduced. A data base is strongly secure if both 
positive and negative compromise is impossible. 

Researchers have studied two basic forms of queries: 
characteristic-specified and key-specified. Characteristic- 
specified queries request statistics about all individuals in the 
data base who satisfy a given logical formula over the categories. 
The set of individuals satisfying a characteristic (formula) C, 
denoted XC , is called the query set. The query set size is 

denoted IX I. An example of a characteristic is 

C - (Sex = M and AG = (26-60)). The query set for this 
characteristic is X C  = (Adams, Boggs, Lynn, Moore, Wood}. An 

example of a characteristic specified query is "How many 
individuals satisfy C?";'that is, "How many are male and in the 
age group (26-60)?" Another is, "What is the mean number of 
traffic violations among males in the age group (26-60)?" 

Key-specified queries request statistics for a set of m 
individuals identified by a list of keys Z = (z

1m
). The 

keys may be the names of the individuals or, more likely, a set 
of categories uniquely identifying the individuals. Examples of 
key-specified queries are "How many traffic violations were in-
curred by Hays, Jones, and Moore?" and "What was the median 
premium paid by Boggs, Moore, and Smith?" 

We shall review separately the studies made of characteristic-
specified and key-specified queries. 

III. CHARACTERISTIC-SPECIFIED QUERIES 

Research prior to 1976 concentrated on characteristic-specified 
counting queries. Denoted qcount(C), a counting query returns 
the number of individuals satisfying a characteristic C; that is 
qcount(C) = IX I. For example, qcount(AG = (16-25) or 

AG = (26-60)) = 11. 



In one of the first published papers on the inference 
problem, Hoffman and Miller described a simple algorithm for 
compromising a data base responding to counting queries restricted 
to conjunctive characteristic formulae; only the logical operator 
and is allowed in a conjunctive formula [Hom 70]. Their algorithm 
is based on the principle of using queries which return small 
counts to isolate an individual. For example, consider these two 
queries and responses: 

	

qcount(Sex = F and MS = S) 	 = 1 
qcount(Sex = F and MS = S and V = 1) = 1 

If it is known that Trip is female, single, and represented in 
the data base, then the second query reveals that she hnd 1 
traffic violation. In general, if it is known that an individual 
belongs to categories c l ,...,ck  and if qcount(c j  and...and c k ) 

= 1, then the query qcount(c i  and ... and ck  and ck4_ 1 ) reveals 

whether or not the individual also belongs to category c k+1 

 (according to whether or not the response is 1 or 0). 

Haq formalized these concepts [Haq 74,75]. He determined 
conditions (too complex to enumerate here) necessary and suffi-
cient to achieve positive and negative compromise (which he 
called personal disclosure). His conditions take into account 
an intruder's supplementary knowledge about the individuals 
represented in the data base. Although his theorems provide a 
means to check if a data base is secure, it is not clear they can 
be applied in practice since the supplementary knowledge of the 
users is not likely to be known. 

Schlorer investigated whether medical data bases could be 
secured under counting queries using general characteristic 
formulae [Sch 75]. He noted the danger of compromise when queries 
return small counts. Thus, he considered the security of a data 
base of size n whose queries do not respond unless the count is in 
the range [k, n-k], for some k > 0 (the upper bound n-k protects 
against finding the answer to q(C) from n - q(not C)). 

He showed that compromise may be possible even for large 
values of k. To illustrate his "tracker" technique, suppose k=4 
for the automobile insurance company data base -- i.e., no 
responses are given to queries whose count falls outside the 
range [4, 8]. Suppose it is known that Trip is female and single. 
Consider these queries and responses: 

qcount( Sex = F and MS 	S) 	 = 4 
qcount((Sex = F and MS # S) or (Sex = F and V = 0)) = 4 
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# otherwise 

(IX I if k < IXC  I < n-11 
qcount(C) 

Because the responses to both queries are the same, it can be 
concluded that no single female has no traffic violations; 
therefore, Trip must have had a violation. Palme suggested a 
similar technique for queries that compute means [Pal 74]. 

Chin studied data bases whose queries respond with a sum and 
a count of elements in the query set, provided 2 < IXc l < n-2. 

Denoted gsum(C; Y), a summing query returns the sum of the values 
in class Y for all individuals satisfying the characteristic C. 
For example, gsum(Sex = M; Violations) = 4. In general, 

gsum(C; Y) 	= 	Elirc  if k < IXc l < n-k 

0 otherwise 

where Y denotes the set of values in class Y for all individuals 

in Xi, and "0" signifies an unanswerable query. Chin's data bases 

also satisfied the property that no two individuals belong to the 
same categories (this assumption is violated by our sample data 
base -- e.g., Adams and Wood have identical characteristics). 

Using "query graphs" to represent the state of a data base, 
Chin estiblished necessary and sufficient conditions for compro-
mising. A query graph for a data base is an undirected graph 
whose vertices correspond to the individuals represented in the 
data base. If an individual i is identified by characteristic C. 

and an individual j by characteristic C., there is an edge from 

vertex i to vertex j if and only if there is a characteristic C 
that isolates individuals i and j; that is gsum(C; Y) = 
gsum(C,; Y) + eisum(C.; Y) for any value class Y. Chin proved 

that if the characteristic identifying some individual is known, 
then compromise is possible if and only if (a) the query graph 
has at least one odd cycle or (b) there exists a characteristic C 
such that qcount(C) is odd and > 3. 



Schwartz, Denning, and Denning studied data bases which 
respond to queries for counts and sums for arbitrary k [SD2 77, 
Scw 77]. We found that even for large values of k, most data 
bases may be compromised by a "general tracker" technique related 
to Schlorer's tracker. A general tracker provides a means of 
obtaining the answers to queries with small (or large) counts. 
We found further that most data bases satisfy the conditions for 
compromise. Hence, methods much more powerful than simply re-
stricting the range of allowable query responses are needed to 
prevent compromise. 

Three other proposals for preventing compromise include 
modifying the answers to queries, providing answers based on 
random samples of the data base, and partitioning the data base. 
Several studies have been made of rounding schemes for modifying 
the answers to counting queries [Fep 74, Han 71, NaS 72, Pal 74, 
Ree 73, Sch 76]. One such approach is pseudo-random rounding. 
Truly random rounding is not secure since the correct answer to 
any query can always be determined by averaging a sufficient 
number of responses to the same query. With pseudo-random round-
ing, the same query always returns with the same response. A 
second approach is to always round the actual response down to the 
nearest multiple of some integer. Both rounding schemes can be 
reasonably effective against compromise. However, any kind of 
"stochastic error" added to responses is subject to removal by 
well known methods from communication theory. 

The second approach to preventing compromise is apply queries 
only to a random subfile of the data base, but not the complete 
data base [Han 71]. Even if some element of the subfile is 
identified, it may not be possible to learn which individual in 
the data base was selected to be this element. For example, the 
Census Bureau in 1960 provided statistics based on a "1 in 1000" 
sample. This technique is effective only for very large data 
bases. It also breaks down if the use of multiple extracts is 
allowed. 

The third approach to preventing compromise partitions the 
data base into groups. In the Yu and Chin scheme [YuC 77], 
queries must be for characteristics involving entire groups, 
making it impossible to isolate any particular individual. For 
example, the sample data base could be partitioned into 3 groups: 
G1 = "no accidents or violations", G2 = "violations but no 
accidents", and G3 = "accidents". The query "How many males had 
no accidents?" would be modified to "How many males and females 
had no accidents?" before a response would be given since the 
first characteristic is not satisfied by all members of groups Cl. 
and G2. Yu and Chin show that the technique may he effective 
even if the data base is dynamically undergoing insertions, 
('eletions, and updates. 



Several studies have also been made of "threat-monitoring" 
tediniques designed to detect the possible occurrences of compro-
mise. Felligi showed that it is at least theoretically possible 
to determine whether the response to a query, then correlated 
with the responses to earlier queries, could result in compromise 
[Fel 72]. Unfortunately, the method is extremely cumbersome. 
Hoffman and Miller suggested that a log or audit trail of queries 
be kept and inspected for unusual bursts of activity or queries 
returning small counts [Hom 70]. Schlorer suggested that 
frequency counts of categories be used to determine whether or 
not a given query might lead to a compromise because of small 
counts [Sch 76]. Response is not made to any query involving 
categories c" c unless the product of the frequency counts 
qcount(c )/n1 
	.k 
(for 	= 1,...,k) is above some threshold. 

lV. KEY-SPECIFIED QUERIES 

The security of key-specified queries was not investigated 
until 1976. In the first published paper addressing the problem, 
Dobkin, Jones, and Lipton considered summing queries over fixed-
size subgroups of the data base. A key-specified summing query 
denoted qsum(7.; Y), returns the sum of the values in class Y for 
the m individuals identified by the list of keys Z = (z

1" 
..,z

m
). 

For example, gsum((Hays, Jones, Moore); Violations) = 0. Since 
the query set size, m, is known, counting queries are of no 
interest. Dobkin et al. showed that, even if no two query sets 
can overlap by more than a given amount, compromise may be 
achievable in linear time (in m) without prior information, 2 
provided the data base is sufficiently large (roughly at least m 

 

elements). Small data bases are secure. Davida et al. have also 
examined conditions under which compromise may he achieved when 
queries return sums and maximum values [Dav 76]. 

Dobkin, Jones, and Lipton also considered queries for the 
median value of fixed-size subgroups and conditions sufficient 
to compromise in this case. Subsequently, DeMillo, Dobkin, and 
Lipton showed that compromise may be possible even if the data 
base "lies" about the median value -- i.e., responds with some 
randomly chosen value from the set [DDL 76]. 

Schwartz, Denning, and Denning extended these results to 
weighted summing queries over fixed-size subgroups [SD1 77, Scw 
77]. We were surprised to learn that if the weights were unknown, 
compromise is possible (in linear time) provided one value in the 
data base is initially known. But compromise is impossible with-
out initial information -- even if overlap between queries is 
unrestricted. In contrast, as shown by Dobkin et al., compromise 
may be possible without prior information for ordinary summing 



queries (all weights = 1). 

Kam and Ullman considered summing queries over subgroups of 

size 2 P  for some p [Kali 76]. The reason for this unusualy choice 
of allowable query set sizes is their data base model, which 

assumes that the data base comprises n = 2
t 
 individuals, for some 

t. Each individual is identified by a key which is a bit string 
of length t. Exactly one individual corresponds to each possible 
bit string. Query sets are specified by fixing s of the t bits, 
so that the number of individuals in any query set is 

)
t-S 

4 

It is unclear whether this model is applicable in practice. 
For example, we could attempt to put our sample data base in this 

context. Each key would be a bit string s i s 2 ... with s
1 
= 1 if 

Sex = M, 0 if Sex = F, etc. The difficulty is that certain keys 
will not be represented in the data base (e.g., no individual is 
male, single, and in the age group (61-100)). 

Chin commented on this severe limitation of this model. He 
proposed a similar model which allows for the possibility that 
certain keys are not represented in the data base [Chi 77]. In 
this case, the queries are characteristic-specified rather than 
key-specified since the query set size is determined by the number 
of individuals having the characteristic. Chin's results were 
discussed in the previous section. 

The studies of key-specified queries are probably not of 
practical interest. Most, if not all, statistical data bases are 
queried with characteristics involving variable-size subgroups 
rather than fixed-size subgroups. However, the studies have 
theoretical interest in that they provide insight into the nature 
of compromise. 

V. CONCLUSIONS 

Preventing compromise in statistical data bases is difficult; 
possibly impossible without severely restricting the free flow of 
information. The "obvious" techniques for reducing the threat of 
compromise -- e.g., limiting the range of allowable responses or 
restricting the amount of overlap between query sets -- are 
easily circumvented. The fruitful direction of research is in 
security measures that do not return "exact" answers from the 
original data base: rounding responses, modifying the data, 
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extracting random samples of data, partitioning the data, and 
other threat monitoring schemes. Further research is needed in 
dynamic data bases; except for the work by Yu and Chin [YuC 77], 
little is known about safeguards for constantly changing data 
bases. 
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DISCUSSION 

Dobkin: When you say "weights", are those arbitrary weights 
-- or can you show for all weights that can't be done? 

Denning: As long as they are not known. However, if you 
have one piece of information, you can solve for the weights, and 
once you have the weights, you can solve for everything else. 

Harrison: The example with the weights is somewhat amusing. 
You can't do it if you don't know anything. You just add your-
self to the database, that gives you the one point you need ... 
(laughter) 
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I. INTRODUCTION 

We propose a new area of study in theoretical computer 
science: combinatorial inference. The basic problem is as 
follows. 

We have a finite set X = x l ,...,xn  and 

we wish to infer properties of elements 
of X on the basis of sets of "queries" 
regarding subsets of X. 

There is an immediate and apparent distinction between 
combinatorial inferences and the more broadly construed kinds of 
logical inferences also studied in computer science. By 
restricting our attention to a sort of interactive dialog with 
a device which may deliver information concerning a finite set, 
we obtain problems which - a fortiori - concern feasible 
inference. 
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The forms of the allowable queries vary with the particular 
application being considered, but a great many problems in 
computer science, combinatorics, and optimization can be modelled 
in such a manner. In this paper we survey some applications of 
this general problem statement. We then illustrate some of the 
techniques available for dealing with combinatorial inference by 
solving some problems with particular relevance to current issues 
in theoretical computer science. 

We begin by considering the following problems: 

1. Database Security Problem [1,2,3] A database is created 
to contain census information concerning some subset of 
the population of the United States. The information is 
confidential and we wish to respect the privacy of 
individuals represented in the database. However, as the 
census data also contains important aggregate information 
about subsets of the population, we must allow serious 
researchers to access the aggregate information so long 
as no individual's is compromised. 

2. Function Identification Problem [4] It is required to 
determine the structure of a computer program by observing 
selected parameters of its operation. For example, we 
may be given fragments of the coding of a program which 
computes an unknown function and we wish to determine the 
value of the function at a given point. 

3. Group Testing Problem [5] A group of blood samples is to 
be processed as rapidly as possible to identify diseased 
persons. This is accomplished by mixing samples to 
determine whether or not any members of a set of subjects 
is infected, so that he can be identified in future 
samples. However, the disease is such taht sets of 
carriers of different strains can negate each other's 
effects in certain situations. 

4. Physical Search [6] A guessing game is played in which 
the answer can be verified if found, but in which answers 
to queries need not he truthful. 

5. Balance Problems [8,9] These are classical inference 
problems. One has a number of objects of some standard 
weight 8 and two objects (identical in appearance) which 
are defective in the sense that one weighs slightly less 
than 8 while one weighs slightly more than 13 by an 
identical amount. The defective objects are to be iso-
lated by weighings on a three arm balance. 

6. Multidimensional Search [10,11] Given a set of X = 
fx 1 ,...,xn i with geometric structure we wish to determine 

whether or not X "contains" (i.e., determines) a point y. 
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For instance, in the case of binary search, X is a set of 
points on a line and y must be determined to be equal to 
one of the points by simple comparisons. In higher 
dimensions, X may be a set of linear varieties, one of 
which may contain y. 

7. Coin-Weighing Problems [12] X is chosen from fl,...,k1 
and the queries are of the form "what is IS n XI" where 

each S
i 	

(1,...,0, the problem being to insure that 

Sl'. S 	S
k 
 determine X. 

These problems may be studied by varying several parameters. 

(a) Choice of Primitives. Solve the indicated problem by 
using only queries from a suitably restricted set. 

0) Upper Bounds. Determines a general strategy to insure 
that queries Q 	always solve the problem, where k 

(measured as a function of problem size and other para-
meters) is small. 

(y) Lower Bounds. Determine minimal numbers of queries 
needed to infer the required properties. 

(d) Auditing. Prove upper and lower bounds in the complexity 
of determining whether or not a given sequence of queries 
allow inference of a given property. 

(c) Enumeration. Determine the number of "unsafe" problems 
for a given number of queries. 

The references [1-12] consider for instance the problems (la), 
(1f3), (ly), (2a), (20, (33), (413), (5c), (6a), (6(3), (60, (713), 
(7y), and (7c). Each of these is easily seen to be an instance 
of a combinatorial inference problem. More important, each 
problem instance contributes its own special flavor to the general 
problem. These appealing aspects of the problem domains in turn 
contributes to our stock of technical tools for combinatorial 
inference problems. 

In (1), for example, xi  represents the value of some attribute 

of the i
th individual of the census population. A query might ask 

for the arithmetic mean of the attributes for a specified subpopu-
lation. In general, the specification of a subpopulation may be 
rather inhomogeneous so that it may be possible to find, for 
instance, the average salary of the subpopulation composed of 
computer scientists who are either residents of a certain county 
of Idaho or tenured faculty at mid-western colleges. Clearly 
given the average salary of such a group is unlikely to compromise 
the privacy of any individual. Yet, it is not at all obvious that 
some clever sequence of such queries couldn't yield such informa- 



tion. Thus if (la), (113) have feasible solutions, a solution to 
(16) may be required to design an "enforcer" to restrict access 
on questions that might compromise the salary of an individual. 
There are many methods for dealing with such a situation in 
practice. An enforcer could actually keep track of all previous 
queries; alternatively such a mechanism may give out information 
which differs slightly from that which is requested (e.g., a 
value may be given which is only near the true mean). These last 
two suggestions have been considered previously [1,2,3,13,14], 
and shown to be relatively ineffective since the solution to (1 ) 
allows compromise in less than the number of queries typically 
used ty a researcher wishing to obtain legitimate information. 
This leads naturally to consideration of (16). 

To interpret problem 2, let x i  be the value of a function F 

at point i; the problem is to infer from this value F(y) 	X. 
For instance, we might be allowed to calculate residues of 
numbers modulo only certain primes and an allowable query might 
then consist of asking whether or not such a value can be found. 
Thus, for queries of the form "what is the value of n mod any 
number in fm

1".. 
,m t )?" a (213), (2y) problem then might be how 

many such moduli are required to allow the value to be found, if 
it can be found at all. 

The third problem emerges quite naturally in a number of 
contexts. It may be modelled as the database security problem 
was modelled with the proviso that is known that the result of 
certain tests may be incorrect, but that these tests occur with 
probability less than some p, or than these outcomes occur only a 
bounded number of tests. Or perhaps, we can determine the 
conditions under which the test fails and in those cases observe 
that one of a small set of situations can exist. Alternatively, 
we might be able to determine a proper set of linear combinations 
of samples that guarantee success of the test. This might 
correspond to allowing queries to be arbitrary functions of the 
x. in order to find faster schemes for determining whether an 

individual has the given condition. Unfortunately, we can show 
that being allowed to compute any separable function of sets of 
data is no more valuable than being able to compute the mean to 
the same sets. 
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II. A TYPICAL PROBLEM 

All of the problems of the previous section are subsumed by 
the following. A set X is given as the underlying database of 
the problem; a problem is specified by a set of primitives F and 
a set of restrictions R on the allowed queries. The primitives 
of a problem determine the legal operations to be carried out in 
a query while the restrictions place restrictions on the form of 
queries. 

Examples: (i) In (1) let F consist of median fx. . x 
1 , 	m 

m>t while R consists of the conditions 

that g(X 1 ,...,X
m
) is <q% from the true median 

is p. 

(ii) In (3), let F consist of all weighted sums 
of subsets of X and let R consist of failure 
conditions for the tests. 

This is perhaps a good place to point out an interesting 
incerpretation'of problem types ((3) and (y). The problem state-
ments "what is the least number of queries necessary to determine 
which of a set of blood donors is infected?" and "in how few 
queries call this database be compromised?" point out that upper 
and lower bounds can be significant for different reasons. We are 
often interested in worst case upper bounds and best case lower 
bounds. 

In [1,15,3] F consisted of median operations or averages, 
while arbitrary selections from X were treated in [2]. In each of 
these studies surprisingly small upper bounds were obtained, 
causing us to search for restrictions to make the problem more 
difficult. Some apparently reasonable restrictions have been to 
restrict the amount of information transferred between queries 
(i.e., "overlap") and to restrict the number of correct versus 
randomly generated answers to queries. By overlap, we mean that 
we control the number of objects that different queries can have 
in common. For the operations above under various restrictions 
the respective upper bounds are O(R), 0(N), 0(N 2), where N is 
"query size". The second is optimal to within a constant factor 
for the indicated choices of primitives. One of the results of 
this paper is to present a nontrivial lower bound for median 
queries. 
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III. MAIN RESULTS 

We begin by considering the case in which F consists of an 
arbitrary selection function; i.e., for a given set of N elements 
from S, the F-queries select in some (unspecified) fasion one of 
these elements and return its value as the response to the query. 
More exactly, a query is defined by a set of integers

n 
andalegalresponseisanyx.such that j = i

m 
for some 1 m N. 

Note that the response does not identify "j". This type of scheme 
has been proposed as a practical method of ensuring database 
security [13]. The authors have shown [2] that if 1X1 > N 2 , 

0(N
2
) queries are always sufficient to determine x

i 
for some i, 

even if R contains the restriction that queries overlap in at 
most one position. This proof depends on the existence of 
certain finite geometric. 	Now, we ask whether or not this 
number of queries is necessary, i.e., whether a database security 
enforcer can always require that a user ask this number of 
questions in order to make the correct inference. The following 
result answers this question in the affirmative. 

Theorem. If F consists of arbitrary selection operations on 
sets of N>N

o 
indices and 1X1> INI L  queries are required to 

associate i and x i forsome i = 1,...130, and any set of N -1 
2 

 

queries can be answered in such a way that no such inference can 
be made. 

The key argument in this result appeals to results from 
transveral theory [16]. 

Next, we turn to problems of type (0, i.e., we want to audit . 
the set of queries to determine what information may be inferred 
on the basis of the known queries. In a given combinatorial 
inference problem a set of queries may be given and the problem 
posed to determine the strongest valid inference which can be 
made based on the results of the queries. Such problems arise, 
for instance, in the blood sampling problem in which it may be 
desirable to determine if, after a certain set of tests are 
complete, the data thus obtained are sufficient to determine 
which of a set of donors is infected. If not, then further tests 
are required. Such procedures may also be used to guide the 
search for a good "next query". 
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We have been able to reduce inference problems of type 
(d) to certain problems in matching theory as follows. Construct 
a bipartite graph with a vertex i for every x

i 	
X, and a vertex 

r
k 

for every Q that returns r
k 

as an answer. An edge is drawn 

from each i to each r
k 

that is the result of a query containing 

i. In this graph, an edge that belongs to all maximal matchings 
[17] is said to be critical. Criticality turns out to be an 
exact characterization of when a set of queries and results allows 
an inference. Determining criticality is called the offline audit 
problem. 

Theorem. The offline audit problem for any 1X1 = N can be 

solved in time at most 0(N
2.5)

. 

The offline audit problem is only one of an entire class of 
audit problems (6) that can be formed by varying certain of the 
conditions defining the problem; e.g., there is an online (i.e., 
adaptive) problem formed by allowing the results of queries to be 
used in formulating new sets of queries. 

For problems of type (a) there is quite a lot known about the 
behavior of inference strategies with respect to varying choices 
of primitives. One natural choice is to let F be composed of 
median queries; i.e., a query on a set of indices returns the 
median of the values of the indices. In work reported elsewhere, 
it has been shown that there is an algorithm which, when 
restricted to using queries of size N, can make a correct 
inference using only a set of queries of size 0(41). The lower 
bound (problem type i) for this choice of F is not so obvious to 
determine. Indeed, a nontrivial lower bound for median queries 
carries with it a great deal of practical information for the 
case of Problem 1, since it helps to characterize the difficulty 
of securing a statistical database from unwarranted extraction 
of information. The result which follows is established by an 
information-theoretic argument. 

Theorem. If X is a set of rationals and F computes medians 
of sets of size N, then no inference problem (y) can be solved in 
less than clog 2N queries, where c is a suitable constant, 

independent of N. 

The final category of problems considered here contains (7y) 
aspects which run in directions which are, in some sense, 
orthogonal to those considered above. The Coin Weighing Problem 
(7) considered in [12] is treated in several ways. First, 
is solved by information-theoretic arguments. Then it is pointed 
out that (7a) is really composed from two problems: the one in 
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which results of previous queries can be used to influence the 
choice of next query and the one in which all queries must be 
selected before results of queries are announced. Let us call 
the first strategy adaptive and the second nonadaptive. The 
hound (7y) given in [12] holds for both adaptive and nonadaptive 
strategies. We have already remarked on the applicability of 
these concepts to the database security problems and audit 
problems. We turn next to the closely related Balance Problem of 
(5). The previously known results for this problem deal with 
< 6 objects. 

Let us define TA (N), TB (N) to be the minimal number of 

adaptive and non-adaptive queries needed to solve the balance 
problem with IXI = N. We have the following results: 

Theorem. (1) T
A
(N) < 1.23 log

2
N 

(2) T
B
(N) < 2 log

3
N 

(3) T
A
(N) = Q(log

2
N) 

(4) T
B
(N) = Q(log

2
N) 

The lower bounds are established by rate-of-growth arguments. ft 
is noteworthy that the optimal adaptive strategy cited in the 
previous theorem is the only instance of which we are aware in 
which an adaptive upper bound has been shown to asymptotically 
improve a nonadaptive upper bound. 

IV. CONCLUSIONS 

In this paper, we demonstrate a rather broad category of 
problems which appear to have common formulations and which may 
be susceptible to the same methods of attack. The specific 
inferential problems which we consider give some evidence for 
this. In addition, the results we obtain carry some independent 
interest both as combinatorial results, and as results in the 
indicated problem domains. 
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DISCUSSION 

Reiss: Does it effect things much to, rather than give an 
exact answer, give a ball park "lie"? 

Dobkin: That's something that's been suggested: answer and 
perturb it randomly by some percentage less than one percent. 
For that case, we don't have total insight into the problem yet. 
That seems to be much more difficult. A lot of our results are 
based on combinatorial lemmas and physical principles, and you 
can't apply those results when you go to that sort of strategy. 

Shapiro: It is easy to prove that very small "lies" can 
result in very large changes in summary statistical information, 
which could be disasterous to a statistical database user. 

Dobkin: I hadn't realized that. That's good to know. 

Denning: I have a question concerning the results about the 
databases that lie. If you compromise the database, you have no 
way of knowing whether or not the answer you got is a lie. 

Dobkin: In the type of lying I'm talking about, you actually 
do know that if I guessed Dorothy Denning's salary is so many 
dollars, then it's actually Dorothy Denning's salary. In the 
type of lying I was talking about before, where you go a certain 
percent one way or the other, then you don't know the salary that 
you have is the correct one. 

Cohen: I'm concerned that there may be other kinds of 
a priori information; for instance, relationships among elements 
in the database, so that one could compromise without actually 
having compromised in your sense. For instance, it may be more 
important to know one's salary is more than somebody else's or 
that you've compromised the database that with someone's exact 
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salary with a 90% limit of confidence. 

Dobkin: Yes. That just_ means that you have to be more 
rigorous about what it means to compromise the database. You can 
compromise down to the digit or you can compromise in some other 
sense. 
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I. INTRODUCTION 

This paper focuses on the rather specialized topic of 
authorization of access to a Data Base-Data Communication 
system (DB-DC system). Many DB-DC systems currently need little 
authorization beyond that provided by the operating system (e.g. 
in-house or one-person data bases). However, there is a growing 
class of large and sophisticated data management systems which 
require tight controls over the use and dissemination of data. 

The next section discusses how large existing (commercially 
available) systems appear to do authorization. The remaining 
sections suggest improvements to these mechanisms. 



II. A TYPICAL SYSTEM 

A. User Roles 

Large DB-DC systems typically have several roles for users. 
The broad roles are: 

• System Administrator: defines and installs the system. 
Makes policy decisions about the operation of the system. 

• System Operator: handles the operation of the system, 
manages system startup-shutdown, responds to user requests, 
and manages physical plant. 

• System Programmer: installs and maintains the DB-DC code, 
and the underlying operating system. 

• Application Programmer: defines and implements new appli-
cation programs to be used by end users, by the system 
administrator, and by the system operator. 

• End User: uses the system to enter and retrieve data. 

These roles are (typically) further refined into sub-categories 
(e.g. end users include the roles: teller, loan officer, branch 
manager, auditor,...). Over time, a particular user may perform 
several of these roles, but usually a user is authorized to 
perform only one role. 

The concept of role serves the purpose of grouping users of 
the system together, thereby decomposing authorization decisions 
into the two questions: 

• What should the authorization of a role be? 
• Who should be authorized to use the role? 

B. Authentication 

Individuals sign onto the system in a particular role. The 
individual's identity is validated by a combination of 

• Personal identification (key, magnetic stripe, 
password...) 

• Physical location of terminal (teller must be at 
own bank...) 

• Physical security of terminal (it is in a bank...) 

• Time of day (bank teller terminals only work at 
certain hours...) 



This mechanism is usually specified as a decision table so 
that it is easy to understand. In the above instance, the 
decision table would be: 

PERSON X PASSWORD X TERMINAL X TIME -> ROLES 

C. Transactions 

Once a person establishes a role, he is authorized to perform 
certain transactions on the system. There is great variety among 
the transactions available to different roles. Someone on the 
shipping dock will have a different set of transactions than a 
member of the purchasing department. So there is a further table 
which authorizes 

ROLE -> TRANSACTION. 

An installed transaction's definition carries a complete list 
of the objects it accesses (except for objects passed as para-
meters to the transaction such as input and output terminal or 
queue). The transaction is strictly limited to this domain when 
executed. 

When the transaction is invoked, the data management system 
constructs a domain consisting of only these objects and opera-
tions. This domain is usually represented as a set of control 
blocks (one per object) in protected storage. Since these 
control blocks are in prctected storage, they perform the 
functions of capabilities <3>. All operations by the transaction 
name one or more of these objects (control blocks). This limits 
what objects can be touched by the transaction. The control 
blocks further limit what operations may be performed on the 
object (e.g. a file may be read-only). 

D. Authorization Aspects of Roles 

We now discuss authorization as viewed by each generic role. 

End users are usually limited to pushing buttons which cause 
forms to appear on the display screen. After filling in a form, 
another button causes the form to be validated, and if it passes 
the test, to be acted upon by the system. 

The application programmer defines (implements) transactions. 
Depending on the degree of care exercised by the programmer, he 
may be able to prevent the users from doing terrible things to 
the data base. For example, the transaction might refuse to 
handle withdrawals of more than five hundred dollars without the 
branch manager's approval. In general, the application programmer 
seeks only to guard against end user abuses and mistakes. 



The application programmer might be able to protect the 
privacy of his data from the system operator and from the data 
base administrator by encrypting it. Communication over insecure 
lines is often unprotected. Some systems do encryption/decryption 
in order to protect the security of communication data. For 
example, some cash dispensing terminals encrypt customer pass-
words and transaction information when communicating with the 
central host. However, the usefulness of local encryption of 
data residing within a host is doubtful at present because data 
appear in the clear while in main storage (accessible to almost 
anyone reading a dump), and because operational personnel usually 
have a back door to the authorization system. Lastly, there are 
technical problems associated with constructing indices on 
encrypted data and keeping a system log that contains encrypted 
log records. In summary, the application programmer must trust 
the system administrator, system operator, and system programmer. 

The system administrator defines system objects and authorizes 
access to them. The principal system objects are users, terminals, 
transactions, views, and physical files. 

When installing a new transaction, the system administrator is 
careful to validate the program and to narrowly describe the 
subset of the data and terminals available to the transaction. 
Installing a transaction consists of entering its programs and 
descriptors into system catalogs and authorizing one or more 
roles to use the transaction. 

In order to proscribe the domain of a transaction, the system 
administrator: 

Limits the transaction to access a particular set of 
files. 

Within each file, makes only certain record instances 
visible. 

Within a record instance, makes only certain fields 
visible. 

Makes only certain visible fields updatable. 

Continuing the example above, a bank teller transaction might 
be allowed to see only those records from the central ledger which 
pertain to the local branch and be allowed to update only the 
balance field of the teller cash drawer records. 
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Aside from deciding which transactions and files will be 
stored and what access paths will be maintained on files (indices, 
hash chains, sibling pointers, etc), the system administrator 
also installs exits (data base procedures) which enforce the 
integrity of the system. Examples of exits are: 

Exit to encrypt-decrypt objects on secondary storage. 

Exit to validate the reasonableness of the contents of 
records being inserted into the data base. 

Exit to check the authorization of the caller to 
manipulate the objects named in the DB-DC operation. 

These exits allow an installation to tailor the system to 
perform authorization appropriate to its application. 

The system operator is limited to a very special set of 
commands which allow him to manage the physical resources of the 
system, to restart the network and the system, and to reconfigure 
the network and system. In point of fact, the system operator 
has the "keys to the kingdom" and can easily penetrate the system. 

Similarly, the system programmer has a very limited set of 
commands. However, to ease debugging and maintenance, one or 
more of these commands opens almost any door in the system. 

In general, users are not unhappy with the rather primitive 
access control mechanisms outlined above. In general, user 
level authorization is quite application dependent (e.g. only 
the military seems to understand or care about the star property 
<4>). Hence, there seems to be general agreement that this 
authorization should be imbedded in exits or in application code 
rather than being included in a general purpose DB-DC system. 

III. PROBLEMS AND TRENDS 

A. Why We Expect Things to Change 

At present, most "real" systems are doing "operational" 
processing. They are very static applications which have 
automated the "back-office" of some large enterprise. Usually, 
human tasks were directly replaced or augmented with computers. 
These applications are often prescribed by law or accounting 
practice and are reasonably well understood. 



Computers are moving into the "front office" and into smaller 
operational units. At first, these systems will be small and 
isolated (i.e., stand alone mini-computer). But eventually, these 
systems will be integrated with the "back office" system and with 
other front office systems. This implies that networks of 
loosely coupled systems will appear. 

When this happens, one should expect the system to be much 
less static and expect control of the system to be much less 
centralized. 

B. The Case Against a Central System Administrator 

The definition and control of objects (transactions, users, 
queues, data bases, views, catalogs,...) has been a highly 
centralized function residing with a single individual or group 
of individuals (system administrator). Several trends encourage 
the development of a less centralized administrator function. 

The foremost trend is that systems are becoming much 
more dynamic. A large system typically has several 
groups of users. Each group wants to share a central 
pool of data and perhaps share data with some other 
groups. But also it wants to be able to easily create 
and maintain private data and transactions. The 
requirement that all new definitions be funneled through 
a central system administrator is quite restrictive as 
well as inconvenient. 

The existence of a central system administrator also has 
the psychological drawback that the "owner" of the data 
does not control it. Rather, the system administrator 
controls it. 

Independent data management systems are being integrated 
in order to selectively share information among co-
operating organizations. Even if the network is homo-
geneous (similar machines and data management systems), 
each node of the network is an autonomous unit with its 
own management and procedures. This is because networks 
cross organizational lines and yet responsibility for the 
data at a node ultimately rests with the organization 
which maintains that node. 
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C. Sketch of a Decentralized Administrator Function 

Our goal is a simple mechanism to dynamically create and 
share objects among users of a data management system. This 
simplicity is important for a community of individuals who 
control their own data, as well as for a more centrally 
controlled system where authorization is handled by a (human) 
data base administrator. 

We have been able to draw on the experience and techniques 
used in operating systems for authorization to files. 
However, we have had to refine these facilities because more 
semantics are associated with the objects. 

We have been trying to design a decentralized authorization 
mechanism which provides the following functions: The system 
administrator function is distributed among all application 
programmers and even to some end users. The central system 
administrator allocates physical resources (space and time) and 
grants some transactions to particular users thereby delegating 
his authority to others. These objects include views of system 
catalogs and transactions which install new users, new 
terminals, and new space. 

Much as in a traditional operating system, the user has a 
catalog of named objects he can manipulate and use. Objects 
come in three general flavors: 

Data objects: physical files and logical files (views). 

Communication objects: logical ports and message queues. 

Transaction objects: encapsulated (parameterized) 
programs which perform operations on data objects and 
communication objects. 

Each object type has a set of operators defined on it and 
these operators are individually authorized. 

A user with no transactions in his catalog can do nothing. 
The catalog of a minimally privileged user consists of a limited 
set of transactions which may be invoked. The catalog of an 
application programmer might contain transactions (commands) 
which allow him to define new objects and grant them to others. 
Each time a user defines a new object, an authorized entry for 
it is placed in his catalog. 



The authors of the system implement transactions which allow 
the invoker to define system objects. These transactions include: 

DEFINE-USER: enrolls a new user in the system. 

DEFINE-TERMINAL: makes a new terminal known to the 
system. 

DEFINE-FILE: defines a new physical file. 

DEFINE-INDEX: defines an index on some file. 

DEFINE-LINK: defines a N-M mapping from records to 
records. 

DEFINE-VIEW: defines a new view in terms of existing 
files. 

DEFINE-TRANSACTION: defines a new transaction in terms 
of existing data objects. 

Other transactions are available to MODIFY, DROP, GRANT and 
REVOKE objects. 

Each of these transactions may be invoked from the terminal 
or from a program so long as the invoker is authorized to run 
the transaction. Other commands are available to MODIFY defini-
tions and to DROP definitions and their associated objects. 
Currently, we propose that only the creator of an object can 
modify it and only the creator or the person who enrolled him in 
the system can drop an object. 

By selectively granting these transactions to users, the 
system can delegate the function typically thought of as "system 
administrator" to autonomous individuals. 

Once an object is defined, the creator may grant other users 
access to the object (subject to constraints explained below). 
A unique set of authorities is associated with each object type. 
Individual users are granted subsets of these authorities. Each 
authority has two possible modifiers. 

GRANT: the ability to grant another user this authority 
to this object (this is a property of a granted privilege 
to the object rather than being a property of the object 
itself). 

• 	REVOKE: the ability to selectively revoke this authority. 
(only the grantor may revoke access so REVOKE implies 
GRANT). 
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For example, RUN authority for a transaction may be granted in 
the following modes: 

RUN & GRANT & REVOKE 

RUN & GRANT & REVOKE 

RUN & GRANT & REVOKE 

It is not clear that one need distinguish GRANT and REVOKE in 
which case it might be called CONTROL. Chamberlin <2> and 
Griffiths <5> discuss these authorities in greater detail. 

D. Authorization to Data 

Authorization to data objects has traditionally consisted of 
making certain files, records and fields invisible (a subset of 
the database). Much finer control can be obtained if one can, in 
oddition, 

Do value dependent authorization (i.e., only fetch or 
replace record instances whose field values satisfy 
certain criteria). 

Define views (virtual files) which are not physically 
stored but are synthesized from existing stored files. 

Files and view objects have the additional authorities: 

• READ: the ability to read records. 

INSERT: the ability to insert records. 

DELETE: the ability to delete records. 

And for each field of the file or view: 

• UPDATE: the ability to update values in this field. 

The justification for providing update authorization on 
individual fields rather than on the entire view is that some 
Fields within a record are more sensitive than others. For 
example, one might be allowed to read and update the QUANTITY-
ON-HAND but only to read the UNIT-PRICE field. The view as a 
whole carries the authorizations for READ, INSERT, and DELETE. 
As explained in the preceding section, each of these authorities 
potentially has the modifiers GRANT and REVOKE. 



The definer of a file is fully authorized to.the file. The 
definer of a view gets the "intersection" of the authorizations 
he has to its components. For example, if a user has only read 
authorization to a file, then any view he defines based on that 
file will be (at most) read only. 

Each user catalog is really a view of the system catalog file. 
Each user gets a view of his subset of the catalog and some 
transactions which display and modify his view of the catalog 
(DEFINE and GRANT insert entries in the catalog; DROP and REVOKE 
remove entries from the catalog). The user's view is qualified 
in that he cannot directly modify some fields in the catalog 
(e.g. authorization fields). He may be given GRANT authority on 
individual authorities of his view so that he can grant other 
users selective access to his view. If he wants to grant access 
to a subset of his catalog, he can define a new view which sub-
sets his catalog and then grant the subset view to others, or 
he may define a transaction which accesses his catalog and then 
grant that transaction to others. 

Only the system administrator has a view of the entire 
catalog. 

The paper by Chamberlin <2> discusses the virtues and problems 
of views in detail. Stonebraker <6> presents another approach to 
views and proposes an interesting implementation. 

E. Transaction Authorization 

One reason for defining transactions is to encapsulate objects 
so that others may use them without violating the integrity of 
the constituent objects. 

F. Transactions Have the Additional Authority: 

• 	RUN: the ability to run a transaction. 

Just as for views, a transaction RUN authority has the 
modifiers GRANT and REVOKE. If the transaction definition 
consists entirely of objects grantable by the transaction 
definer, then the transaction will be grantable. Otherwise, 
the definer gets the transaction with RUN &1GRANT & -IREVOKE 
authority. 

If a transaction is held RUN & GRANT, the definer can grant 
RUN & 'GRANT authority to others, who can then run the trans-
action. He can also grant others the ability to grant run 
authority by granting RUN & GRANT authority. 



For example, a banking system provides transactions which 
credit and debit accounts (according to certain rules) rather than 
granting direct access to the accounts file. This effectively 
encapsulates the procedures of the bank and insures that all 
users of the data follow these procedures. An application 
programmer would write the transactions and grant run authority 
to the tellers of the bank and grant RUN & GRANT authority to 
the branch managers so that they could authorize new tellers at 
their branches. 

(;. Authorization Times 

The authorization of a transaction can be done at any of 
three times: 

• Definition: The text and environment of the transaction 
is described by the application programmer. 

• Installation: The transaction is made known to the 
system. 

• Invocation: The transaction is "used" by the end user. 

For reasons of efficiency, authorization should be done as 
early as possible in this process. If possible, no authorization 
tests are performed at invocation time (except for validation 
that earlier authorization decisions have not been revoked). 

When defining a transaction, the application programmer has 
some notion of what objects the transaction will touch and what 
operations will be performed on these objects (e.g. get message 
from queue "A", put record in file "B"). Further, he has some 
notion of what is allowed on the data (e.g. one should not debit 
an account to a negative value). The application programmer 
includes these tests in his program and at invocation the trans-
action aborts or takes remedial action if the tests are violated. 

When the transaction is installed, the ability of the author 
to access the objects the transaction references is checked. 
Also the operations themselves are authorized (e.g. read authority 
is required on the account number and balance fields and update 
authority is required on the balance field). This checking is 
done by a program which examines the transaction text, discovering 
what calls the transaction makes. If everything is ok, the 
processor enters the transaction in the system catalog along with 
a descriptor of the transaction domain. 

1 	
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If authorization fails, there are two possible alternatives: 
One can abort the operation, or one can defer the operation, 
giving a warning message. We propose to defer when authorization 
fails at definition or installation time. An attempt to actually 
operate on an unauthorized object fails. This philosophy allows 
programmers to define and install views and transactions which 
make unauthorized calls. These transactions may even be run so 
long as the unauthorized calls are not actually executed. As 
will be seen, the logic for run-time authorization must be present 
anyway so this decision adds little to the system complexity. 
The approach has the virtue that it detects many authorization 
errors rather than only the first. 

When the transaction is invoked, the invoker's authorization 
to invoke the transaction is checked. When the transaction runs, 
both the system and the application program do value dependent 
authorization. For example, if a view is qualified by a selection 
criterion then each record which is fetched or stored via the 
view must satisfy that criterion. As another example, the 
application program may refuse to insert user-provided data 
which does not satisfy application-dependent criteria. 

Given this motivation, it is clear that the authorization of 
the transaction may be different from the authorization of the 
invoker of the transaction. 

H. Authorization Environments 

When an application programmer installs a transaction which is 
to be granted to another user, there is some question as to which 
authorization environment should be used to authorize the trans-
action. Candidate authorization environments are: 

(a) Authorize the transaction in the environment of the definer 
(application programmer). 

(b) Authorize the transaction in the environment of the user. 
(c) Sometimes (a), sometimes (b) and sometimes (a) and (b). 

It might seem obvious that the transaction should be 
authorized in the context of the definer. However, if the 
transaction is parameterized then access to parameters must be 
authorized in the environment of the invoker of the transaction. 
Similarly, if the program is a "shell" which takes in user 
commands and executes them, then certain of its actions should 
be authorized in the context of the user. 
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Perhaps the most extreme example of this is a program called 
User Friendly Interface (UFI) in System R <1>. The UFI is a 
program which accepts data base requests in symbolic form, 
translates them into system calls, and executes them against the 
invoker's data base. It is a combination data-base-editor and 
report generation language. The authors of UFI have no idea what • 
files it will be used with or what operations may be performed on 
these files. All its authorization comes from the user of UFI. 
Clearly, UFT calls to the system must be evaluated entirely in 
the context of the invoker. 

As another example, consider authorization to objects which 
are created by the transaction at run time. In some cases, 
(e.g. an internal scratch file) the invoker should not be able 
to see the object while, in other cases (the report file) the 
invoker should be allowed to see the object. In general, it 
seems best to attribute these transient objects to the definer 
who can then GRANT them to the invoker as part of the transaction 
logic if he so chooses. 

The general rules seem to be: 

Perform authorization tests as soon as possible. 

• Authorization of an operation known at installation 
should be done in the context of the object definer 
at installation time. 

• Authorization to operations not known at installation 
(e.g. parameters) must be done at transaction invocation. 

The transaction runs in a new authorization context which 
is a synthesis of objects granted it by the object 
definer and objects granted by the object invoker. 

I. Revocation and Redefinition 

As explained above, one may grant another user type "x" 
authority to an object if the grantor has a grantable version of 
type "x" authority on the object. Any subset of grantable 
authorities may be granted together. These authorities may then 
be revoked individually. 

The problem of revoking access to objects is very difficult. 
When an object is destroyed, it is deleted from the catalog of 
all users to whom it was granted. This also invalidates all 
objects which derive from that object and authorizations on them, 
recursively. When someone with revoke authority modifies the 
authorization of an object, that modification is propagated to 
all objects derived from it. One may selectively revoke access tc 



the object. For example: 

REVOKE HIRE-EMPLOYEE FROM JONES; 

revokes Jones' access to the HIRE-EMPLOYEE transaction. 

One may imagine objects organized into a dependency hierarchy. 
If one object is defined in terms of another, then changes in the 
parent will affect the child and all its descendants. 

Proper implementation of this notion is very subtle. The 
problem is further discussed and a solution is presented by 
Griffiths <5>. 
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DISCUSSION 

Cohr'n: I wondered whether the system is running and how 
much experience you have with kinds of replication that users do. 

Griffiths: The authorization subsystem is not yet integrated 
into our system; so, we have no data on the depth to which grants 
are typically nested. It appears that people don't expect trees 
of grants to he very deep. However, I disagree with this. Let's 
examine how the president of a company issues a memo to all the 
company's managers down the line. First, the president issues 
the memo to all the managers immediately under him. And, they 
in turn issue copies to managers under them, and so on. I 
believe this analosy holds, that information sharing by granted 
privileges in a data management system tends to propagate along 
organizational lines in "real life". Once a multiple level 
granting mechanism is available in a data management system, I 
suspect we will find that it is used in surprisingly complex 
ways which are similar to the ways that information flows 
between people. 

Harrison: These views are actually something that is stored 
as a relation in the machine. 

Griffiths: Views are not a relation copying mechanism; they 
are not pre-computed and then stored. We store only definitions 
of the views, and use those definitions to provide dynamic 
"windows" on the underlying store relations. If someone else 
is currently examining and changing a relation, then the changes 
are reflected immediately to all views on that relation. For 
example, suppose there is a relation containing all the names 
and salaries of university employees. Then, I can define a view 
PROFS which contains the names and salaries of those employees 
who are professors. If someone gives a professor a raise while 
I am examining the PROFS view, then 1 will see the update the 
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next time I access that professor's record. 

Harrison: Oh well, that may explain what I wanted to say. 
Why do we have all these restrictions on changing one's views? 
If you have a copy in memory you can change it anyway you want. 
But you don't want to do that because it's not efficient? 

Griffiths: Efficiency is not the problem. A view should 
not be a stored copyof data because it should dynamically reflect 
later changes to the data. Also, changes made to the view's data 
should be mapped down to changes on the data of the underlying 
stored relations which were used to synthesize the view. There-
fore, any data modification made to the view will be visible to 
every user of the view, or the underlying relation(s), or other 
views defined on the same relation(s). To implement views as 
copies would require both extensive bookkeeping to keep all 
copies consistent and protocols to avoid simultaneous modifica-
tions. 

Cohen: Is it possible to get your own private copy? 

Griffiths: A person can create his own new relation and copy 
the contents of a view into it. 

Cohen: Is it possible to allow other people's changes to 
filter into your own copy while still reflecting your own 
changes? 

Griffiths: Views do exactly that because of the semantics 
that changes to the view are also made to the underlying data. 
Our system doesn't provide an object with the semantics that a 
user can see other people's changes without letting them see his. 

Fabry: My hunch is that just as in the case of time-sharing 
systems, the real breakthrough is not in the efficient utiliza-
tion of resources, but in giving the user the ability to share 
and build upon the work of others. This suggests that the depth 
to which views are nested will be large and that to interrelation-
ship among views will be quite complex. 

Griffiths: Yes, I think you're right. 

Millen: Would there be a need for replacement without 
revocation? When one makes updates to things, it eventually 
gets to the point where one wants to make a wholesale revision. 
The question is would it be possible to do that to an underlying 
object without destroying the overlying structure? The nice 
thing about a view is that updates in its constituents will 
automatically be reflected at the top level. Could you update 
an object within a view by replacing it with a different object, 
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giving it the same name? 

Griffiths: Currently, when one object is replaced by 
another, all views on the original object must be redefined and 
all grants of privileges must be reissued. More minor changes 
to the object such as expanding a relation by adding a column 
can he done without redefining views or reissuing grants. 

Millen: But, can you delete columns? 

Griffiths: Deleting a column from a store relation is a 
major change to an object because some privileges, such as 
UPDATE, are granted on a column by column basis. Views on that 
object may also reference the deleted column. You can achieve 
the effect of deleting a column C by defining a view which looks 
exactly like the original relation with the column C omitted. 
This gives exactly the semantics you want without changing the 
stored data or invalidating existing views and grants. 
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1. SECURITY IN DATABASES 

Central to the ever-increasing use of computerized databases 
is the notion of database security. With computers becoming 
more powerful and less expensive, the advantages of placing large 
amounts of information in an online computerized database have 
led to an increased number of database systems. Such systems 
allow a group of users to access large quantities of information 
so that both specific pieces of information are rapidly access-
ible and so that large amounts of data can be correlated to gain 
an accurate statistical view. As such, databases are becoming 
increasingly important to corporate and university management, 
to the many government bureaucracies, to police and related 
organizations, as well as to researchers in areas like sociology. 

Along with the many benefits of computerized databases, 
there are several disadvantages, the most important being the 
lack of a guarantee for the security of the stored information. 
It is hard to imagine corporations using databases for confiden-
tial information if they thought that their competitors or even 
their employees would easily gain access to this information. 
Moreover, recent actions in the Congress have shown that the 
citizens of this country are not going to allow the amassing of 
large databases containing privileged information without adequate 
puarantees that the information will be kept private. It is 
because databases are so important that addressing these serious 
concerns about the security of the stored information is such an 
important problem. 



A. Research in Database Security 

Most of the research into this problem of database security 
has focused on the problem of physical security, i.e. guarantee-
ing that only authorized persons have access to the computer, 
the database system, or the data. These problems represent valid 
and important issues in the area but are too crude to handle many 
of the essential questions. In particular, it is often the case 
that there are users who should be able to use most but not all 
of a database. 

This latter type of question is addressed more by research 
that is aimed at maintaining security for specific privileged 
fields of database while allowing general access to the non-
privileged fields. Research here has involved encrypting the 
privileged fields, requiring user passwords, as well as physi-
cally separating the privileged fields from the remainder of the 
database. However, even this approach is still too stringent 
for some applications. In particular, there are cases where the 
specific elements of a field must be safeguarded, while 
statistical access to the same data must he allowed. This is 
especially true for databases used in sociological research and 
for such items as grades in a university database or salaries in 
a corporate database. The problem of allowing such statistical 
access while maintaining the security of the individual items 
has only recently been studied on a large scale. 

B. A Model for Statistical Security 

Much of this recent research into statistical security has 
ben based on the simple formal model of a database proposed by 
Dobkin, Jones and Lipton [DJL] that was specifically designed 
for the purpose. This model considers only the field of the 
database that contains the privileged information. By assuming 
that all the non-privileged information is available to the user 
and that complex queries can be asked to select arbitrary sub-
sets of the privileged data for use in queries, the model allows 
one to address and answer the relevant questions concerning 
statistical security. 

Within this model a database is viewed as a set X of 
elements x...,x

n 
where n is the size of the database. Each of 

these elements represents a privileged datum and thus is assigned 
a value. The database is said to be compromised if it is ' 
possible to determine the value that is associated with some 
element of the database. Similarly, an element is said to he 
compromised if its associated value is known. Queries into such 
a database consists of applying some statistical function, i.e. 
mean, median, max, min, etc, to some subset of the elements. 
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Finally the model assumes that there is a database policy that 
attempts to enforce security by limiting the nature of the 
queries that can be asked. We can determine the effectiveness 
of such a policy by establishing as a measure of its security 
uhe number of queries of the particular type allowed that are 
required to guarantee that the database can be compromised. If 
a large number of queries of a certain type are required before 
the database can be compromised, then the data is relatively 
secure; if only a small number of queries will suffice, the 
database is not secure. 

There are several ways of limiting the types of queries 
that can be allowed. First of all, one generally allows only 
queries involving the same statistical function. Moreover, all 
queries are required to involve some minimal number of elements. 
Clearly, if a query asks for the median or average of a set 
containing a single element, then the value returned is just the 
value of that element. 

C. Our Study 

In this paper, we study one specific type of statistical 
query and show that a database system in which it was allowed 
would not be secure. In particular, we consider queries that 
ask for the median of sets of exactly k elements. We make the 
assumption in this study that the elements of the database have 
unique values, i.e. if elcments x. and x. in the database X both 

1 

have the same value, then i = j. This assumption, while not 
entirely accurate in practice, is probably valid when a small 
random sample is taken from a large database and when the com-
promising is done within this sample [DL]. 

For this model and assumptions, previous results have shown 
that 00/71-0 queries were sufficient to insure that the database 
can be compromised [DLR]. Moreover, it was shown that a specific 
element in the database could be compromised, using an exponen-
tial number of queries [DLR]. In this paper, we first present a 
technique for getting information from median queries in Section 
3. In Section 4 and 5, we use this technique to define two 
methods whereby a database can be compromised using only 

0(Log
2 
k) k-median queries. Moreover, we show in Section 6 how 

a specific element can generally be compromised using 0(k) 
queries and, for the case where something is known about the 
specific element, compromise can often be achieved using 0(Log k) 
or fewer queries. 



II. NOTATION 

The study of statistical security in databases is interest-
ing both because of its relevance to actual database systems and 
because of the mathematics involved. In this paper we apply 
methods from combinatorics, probability and the analysis of 
algorithms to answer questions about the security of databases 
under queries involving the median of sets of exactly k elements. 

Since we deal extensively with sets of elements from the 
database, we use the fairly standard set notations of 

e for set membership; 

c for set inclusion; 

cl) for the null or empty set; 

1 for the size of a set; 

u for set union; 

n for set intersection; 

- for set difference, A-B = fcicEA, cVB1, (BcA); and 

+ for set addition, A+B = AuB, (AnB = (10. 

We only use set difference, A-B, when B c A. Similarly, we only 
use set addition, A+B, when A and B are disjoint. We use the 
notation I 	to both denote the size of a set and the absolute 
value of a numeric expression. It will be clear from the context 
which case is meant. Finally, we call a set of k elements a 
k-set. 

In addition to working with sets, our results involve combi-
natorics, probability and analysis of algorithms. We use the 
following standard notation from these fields: 

binomial coefficient = 
b!(a-b):' 

PrfE1 	the probability of event E; 

Log 	logarithm (base 2); 

fxl 	the smallest integer greater than or equal to x; 

Lx1 	the largest integer less than or equal to x; and 

0(f) 	on the order of f. 



Note here that we use Log consistently throughout this paper to 
mean the base 2 logarithm. 

In addition to these standard notations, we introduce some 
rather specialized notation for dealing with medians. We denote 
the median of a set A by m(A) and call the median of a k-set a 
k-median. Moreover, we often need to refer to the properties of 
a set with respect to some median M. We say that an element is 
negative with respect to a median M, or, if M is understood, 
just negative, if the value of the element is less than M. 
Similarly, a positive element is one whose value is greater than 
M. A set is more negative (positive) than another set if if has 
more negative (positive) elements. Finally, we denote the number 
of negative elements in a set A by N (A) and the number of 

elements less than or equal to M by R
N
(A). When M is understood 

here we omit it, writing N(A) and N(A) respectively. 

Finally, throughout our discussion of security we refer to 
the concept of a random database. Since we are viewing a data-
base as a set of n elements each of which has a unique value, 
and since we are only considering queries involving medians and 
hence only relative values are important, we can assume that 
there is a fixed n-set of values. Then we define a random data- 
base as one in which all of the n! possible assignments of values 
to elements of the database are equally likely. 

TII. BALANCING 

In order to compromise a database using k-median queries, we 
must be able to obtain some information from each query or each 
set of queries. Although several methods have been proposed for 
doing this [DDL1, DJL, R, DLR], the most efficient is that of 
balancing where specific information can be extracted using only 
O(Log(k)) queries. In this section, we consider this technique 
in detail, presenting the relevant algorithms and proving their 
properties. We then illustrate the technique with an algorithm 
that determines if the median of a set is an element of a certain 
subset of that set. We will show in later sections how this 
algorithm can be used to actually compromise a data base. 

The idea behind the technique of balancing is to find a set 
that has a certain distribution of elements with respect to some 
median M, that is, one that has precisely some number of elements 
9, less than M and some number of elements h greater than M. 
Once we have such a set, we can obtain information about specific 
elements very easily. For example, suppose we have a set 
A = A

l 
+ A

2 
with median M, and we have another set B such that 
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1BI = IA 1 and B has the same number of elements less than M _ 

that A
l 
does. Then by computing the median of B + A 2, we can 

easily determine if the element with value M is in Al  or A2 

 since it is in A
2 

if and only if m(B + A
2
) = M. 

In order to find a set with exactly k negative elements with 
respect to some median, we take two sets, one with fewer than 
negative elements and one with more than k negative elements. 
We begin with the first set and successively substitute elements 
of the latter. In this way, it is assured that one of the 
intermediate sets will have the desired distribution or balance 
of negative elements. Assuming that we have some way of check-
ing for this proper balance, we are done. This brute force 
approach is not directly useful however since it requires a 
number of queries proportional to the size of the desired set. 
We make it very efficient by using a binary search technique to 
locate the desired set in such a way that the number of queries 
required is only proportional to the log of the size of the 
desired set. 

A. Definitions 

The object of balancing is to find a set containing a certain 
distribution of elements with respect to some median. In 
particular, we define 

Definition: A set C is balanced with respect to a median M, 

a number 2 and one of the functions N c {N
M' M

} if and only if 

N(G) 

_ 	 - 
We denote this fact by - G, where t, M and N will he clear from 

the context. If Q is an integer here, the number of negative 

elements in G must be precisely k. Moreover, as N(C) must he 

integral, if t is not an integer, then N(G) must be as close to 
R as possible. 

When it is possible to find a balanced set from two given 
sets, we say that the two sets are balanceable. Formally, 

Definition : Two sets G and H where ICI = IHI are balanceable 
with respect to a median M and a number Q if and only if either 

N(C) <C < N(H) 
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Or 

N(G) > 2 > N(H). 	 ❑ 

It is obvious, using the pigeon-hole principle and element-by-
element substitution, that . 

Lemma 3.1 	If G and H are balanceable with respect to M and 
then there is a set S c GuH, ISI = IG1 , such that - S. 	 ❑ 

Finally, to properly balance two sets we must be able to 
test if some set is balanced or not. Because we are going to 
utilize a binary search technique, we do this in such a way that 
we indicate whether the set has too many or too few negative 
elements. To accomplish these goals, we introduce the notion of 
a balancing function. In particular, 

Definition: For equal sized sets G and H, TEST(G,H) is a 
balancing function with respect to a property P, median M, and 
a value 9, if and only if 

1) TEST(G,H) = 0 if and only if P(C,H) holds; 

2) TEST(G,H) = + 1 implies N(G) < 9.; and 

3) TEST(G,H) = - 1 implies N(G) > t. 

Since the object of balancing is to obtain a set with a desired 
distribution, property P here generally says that this distribu-
tion has been achieved and condition 1) insures that this infor-
mation is returned. Moreover, conditions 2) and 3) insure that 
TEST indicates how the actual distribution of the set G relates 
to the desired distribution. We generalize the definition of 
two sets being balanceable by saying that they are balanceable 
with respect to a balancing function if and only if they are 
balanceable with respect to the values of 2, M, and N upon which 
the function is defined. 

B. The Balancing Algorithm 

Rather than presenting a separate algorithm for each 
balancing function, we define an algorithm that uses a binary 
search technique to balance a set with respect to an arbitrary 
balancing function. In this way, we are actually defining a 
whole set of similar algorithms, several of which we will use in 
this and later sections of this paper. The specific algorithm 
is: 

ALGORITHM: 'Balance -- Find a balanced set. 

GIVEN: A Balancing function TEST, with respect to a property P; 
sets C , D , B where ICo I = ID I ,  Bn(C uD ) = (1),IT1 1 -1- 1C 1 = k, 

0 	0 	 0 0 	 0  



and Co 
and D

o 
are balanceable. 

FIND: <G, H, G', H', FG> where FG is a binary flag, G, H, G', 
H' are sets and !GI = !HI = 	= IH'I = IC I, CuH = 	= 
C uD , and 
0 0 

1) FG = TRUE and P(G,H) holds 

2) FG = FALSE and either -G or -G'. 

1) SetC= C,D= Do
,X=C-CnD ,Y=D-CnD , 

0 0 	 0 

v = TEST(C,D). If v = 0 then return <C,D,C,D, TRUE>. 

2) Let X
1 	 /2, be the first n = r Ix( 1 elements of X, X 2 

 = X - X 1 . 

Let Y l  be the first n elements of Y, Y 2  = Y - Y 1 . Let C = 

C - X1  + Y1  and H = D - Y i  + 

3) Set v' = TEST(G,H). If v' = 0 then return <C,H,G,H,TRUE>. 
If IXI < 1 then return <C,D,G,H, FALSE>. 

4) If v = v' then set X,Y,C,D = X 2 , Y2 , G, H; otherwise set 

X,Y,C,D = X1 , Y1 , C, D. Go back to step 2. 	 1 

Throughout this algorithm C is the set to be balanced and 
XcC and YcD are the subsets that are used for this balancing. 
To illustrate why the algorithm works, we note that C and 
C - X + Y are always balanceable. Then for the limiting case 
where IXI = IYI = 1, either. C = G or C - X + Y = G' or both are 
balanced. The details are given by 

Lemma 3.2 	Given balanceable sets C
o 

& D
o 

and a balancing 

function TEST as required for BALANCE, the algorithm works as 

specified and makes only FLogIC 0 1 1+2 calls to TEST. 

Proof: From the specification of the algorithm, the following 
properties are obvious: 

1) X c C, Y c D 

2)ICI = IDI = ! GI = IHI = IC0 1 
3)IX! = IYI 
4) CuD = GuH = Co uD0  
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Thus, any returned value must specify a G, H, G', H' that satisfy 
the necessary constraints. It is also clear from the algorithm 
that FG = TRUE is returned if and only if TEST(G,H) = 0 and, as 
TEST is a balancing function with respect to P, this occurs if 
and only if P(G,H) holds. Thus, it is sufficient to show that 
if TEST = 0 never occurs the algorithm halts, uses at most 
FLogiCo l 1+2 calls to TEST, and that either -G or -C' upon term- 

ination. 

We first note that each time the algorithm executes the 
loop containing steps 2, 3, and 4, the set X is divided in about 
half. As this can occur at most FLogIC 0 1 7 times before 1X1 = 1 

and the algorithm is forced to halt at step 3, and as there is 
only one call to TEST in this loop, it is clear that the algo-
rithm must halt and make at most FLogIC

o
1 1+2 calls to TEST. 

Hence, we need only show that -G or -G' when 1X1 = 1 and 
FC = FALSE is returned. 

We do this by first proving that 

CLAIM: C - X + Y and C are balanceable at all times. 

For the final case where 1X1 = 1Y1 = 1, this easily shows that 

either -G or -(C - X + Y) as either N(G) < k < N(C - X + Y) or 

N(C) > 9. > N(C - X + Y) must hold, and 1N(C) - N(C - X + Y)1 = 1 

implies that either N(C) = 2, or N(C - X) = 2. if A- is integral or 

N(C), N(C - X + Y) c {rn, Lk.j} if R. is not integral. 

To prove this claim, we use induction on the number of times 
through the loop containing steps 2, 3, and 4. Initially, 
X = C -CnD ,Y= D -CnD and C =C,C -X+Y= D o 

and 
0 0 0 	0 	 0 0 0 	 0 0 

the claim holds because C
o 

and D
o 

are balanced by assumption. 

We complete the proof by showing that this property is maintained 
in the new C, X, Y computed in step 4. Let 

C = X
1 
+ X

2 
+ 	C' = Y

1 
+ X

2 
+ = G, C" = Y

1 
+ Y

2 
+ = C-X+Y 

D= Y
1 
+ Y

2 
+ 5, D' = X

1 
+ Y

2 
+ 5 = H, D" = X

1 
+ X

2 
+ 5 = D-Y+X 

and suppose without 
Then it must be the 

hypothesis, N(C") < 

loss of generality 
case that N(C) > 

2- There are then 

that TEST(C,D) = -1. 
and hence by the inductive 

two cases to consider: 

1 



CASE 1: TEST(C',D') = - 1. Here N(C') > 	> N(C") and C' and C" 
are balanceable. 

CASE 2: TEST(C',D') = +1. Here N(C') < Q < N(C) and C and C' 
are balanceable. 

But then the claim and the lemma follow as step 4 defines the 
new sets C, X, and Y properly in both these cases. 

The claim we used to prove this lemma is also interesting in 
itself. In particular, if the algorithm terminates with 
FG = FALSE then G and G' are actually C and C - X + Y and hence 
we note 

COROLLARY 3.3: If BALANCE terminates with FG = FALSE, then C 
and G' are balanceable. 

C. An Example of Balancing -- CHECK 

As a simple illustration of this method of balancing and its 
uses, we show how it can be used to determine if the median of a 
k-set is a member of a specific subset of that set or not. In 
sections 4, 5, and 6, we use this algorithm as a subroutine for 
algorithms that actually compromise databases. In this section 
however, we just present the algorithm and prove that it works. 

Let E be a k-set, m(E) = M, and let x c E be the unique 
element whose value is M. Suppose E can be separated into dis-
joint subsets E = A + B and suppose we are given sets C, D dis-
joint from E such that ICI = IDI = !Al and m(C+B) < m(A+B) = 
M < m(D+B). Then we will define an algorithm CHECK to determine 
if x c A or x c B. This algorithm will operate by balancing C 
and D with respect to M such that the resultant set, 	has 
exactly N(A) negative elements. It is easy to see that 
m(C'+B) = M if and only if x c B and hence by using one addi-
tional query after determining C', we can determine whether 
X c A or x c B. 

We first define a balancing function CHECKBAL that attempts 
to determine if the given set has too many or too few negative 
elements. This function incorporates a predicate to test if the 
median of the given set together with the set B is exactly M and 
hence if x E B. In particular: 

FUNCTION CHECKBAL (G,H): 

GIVEN: Sets G,H.along with implicit sets A,B such that 	. 
!GI = IHI = lAl, m(A+B) = M, Q = N(A), and G+B and H+8 are 
balanceable. 
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1. Compute M
1 
= m(G+B). 

2. If M 1  = M then return 0, if M
1 

> M then return +1, if 

M < M then return -1. 

it is clear that 

1.(!mma 3.4: CHECKBAL (G,H) is a balancing function with respect 
to the property P + {m(G+B) = M}, the median M and the value 
N(A). 

Proof: This follows immediately as m(G+B) > m(A+B) = M if and 

only if N(G) < N(A) and m(G+B) < m(A+B) = M if and only if 

N(G) > N(A). 

We use this balancing function along with the given initial 
sets C and D to define the algorithm CHECK: 

ALGORITHM: CHECK 

GIVEN: Given sets A,B,C,D such that ICI = !DI = IAI, 

(AuB)n(CuD) = (i), and m(C+B) < m(A+B) = M < m(D+B). 

FIND: Whether the unique element x e A+B with value M is in A 
or in B. 

1. Compute BALANCE with CHECKBAL and sets C,D, and A. Let 
FG be the Boolean flag that results. 

2. If FG = TRUE then x e B; if FG = FALSE then x e A. 

We can easily show that this algorithm works and requires only 
0(LogIAI) queries by referring to Lemma 3.2. 

In particular. 

Lemma 3.5: CHECK correctly indicates whether x e A or x E B and 
uses only 0(LogIAI) queries. 

Proof: Since the function CHECKBAL makes only one query, Lemma 
3.2 shows that the algorithm CHECK makes at most rbagIAI 1+2 
queries. Moreover, if FG = TRUE is returned, Lemma 3 shows that 
P = {m(G+B) = M} must hold and hence, by the uniqueness of x, 
x c B. Hence, it is sufficient to show that if FG = FALSE is 
returned, then x c A. From Lemma 3.2, we note that one of the 
returned sets, say G, must be balanced. But then if x e B, 
m(G+B) = M as the median is determined only by the number of 
negative elements in G+B which by assumption is the same as the 
number in A+B. But, this cannot be the case as CHECKBAL(G,H) 
0 and hence x 	B; thus x c A. 	 ❑ 

El 

0 

0 



This example illustrates the usefulness and the power of the 
method of balancing. In the next section of this paper, we use 
the technique first to determine some element of a database both 
probabilistically and deterministically and then to determine 
the value of particular elements of the database. 

IV. COMPROMISING A DATABASE PROBABILISTICALLY 

The technique of balancing and the algorithm CHECK intro-
duced in the previous section can be efficiently used to compro-
mise a database. In particular, if we are given a k-set of 
elements S from the database such that m(S) = M, CHECK can be 
used in a binary search that will isolate the unique element 
x e S whose value is M. To do this, it is first used to deter-
mine which half of S x lies in, then which quarter of S, then 
which eighth, and so on. This approach requires only 0(Log k) 
applications of CHECK, and hence only 0(Log 2  k) queries, to 
compromise a database. 

Unfortunately, this straightforward approach cannot he 
implemented in the obvious way because of the conditions imposed 
by CHECK on the two sets used to do the balancing. It is 
generally difficult to find sets C and D for a given set A 	S 
such that 

m(C+B) < m(A+B) < m(D+B) 

where B = S - A. In this and the next section, we demonstrate 
two methods whereby these sets can be computed at each stage of 
the binary search from the corresponding sets of the previous 
stage. The first method is simpler but is probabilistic in 
nature -- it can use any number of queries, but with probability 
1-E for any E 	0 it will use only 0(Log 2  k) queries. The 
second method is more complex, requiring another application of 
the balancing algorithm, but is guaranteed to always work using 
0(Log2  k) queries. 

A. The General Approach 

Even without specifying exactly how we are going to compute 
the necessary sets, we can present an algorithm to implement 
this divide and conquer approach to compromising a database. We 
begin by computing the median of three sets, A, C, and D, and 
then relabeling them so that for B = (I) and x E A, 

m(C+B) < m(A+8) < m(D+B). 

This provides the basis for a recursive algorithm which contin-
ually splits A in half which maintaining x c A and simultaneously 
splitting C and D so that condition 4.1 still holds. The basic 
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algorithm is: 

ALGORITHM: FINDMEDIAN - compromise a database 

GIVEN: A database X of n > 3k elements. 

FIND: An element X c X with a known value. 

1. {Initialization} Form 3 disjoint k-sets, A, C, D. 
Compute m(A), m(C), m(D). Relabel the 3 sets so that 
m(C) < m(A) < m(D). Let M = m(A) and let x c A be the 
unique element with value M. Let B = cb. 

2. {Splitting} Apply some splitting algorithm to A, B, C, 
D to find A' c A, C' C C, D' c D, B' = B + A - A' such 
that 

2a) IC'l = 1D'I = 1A 1 1 e {LIA1/21 , CIA l /21 } 
2b) m(C'+B') < m(A l +B') = M < m(D' + B'), and 

2c) x c A'. 

3. {Recurse} If IA'l = 1 then return (x has value M). 
Otherwise, set A, B, C, D = A', B', C', D' and go back 
to step 2. 	 ❑ 

From the divide and conquer nature of this algorithm, it is 
easy to note that 

Lemma 4.1: If the splitting algorithm of step 2 requires 0(Log k) 
queries, then FINDMEDIAN will determine the element x using 
0(Log 2  k) queries. 

Proof: Clearly as x r A' is guaranteed at each step, if 
1A'l = 1, A' = {x} and the algorithm determines x correctly. 
Moreover, as A is originally of size k and is about divided in 
half each time the splitting algorithm is executed, this algorithm 
will be executed only 0(Log k) times. Hence at most 0(Log2  k) 
queries will be required. 	 ❑ 

In the next section, we provide a simple splitting algorithm that 
achieves this 0(Log k) bound with any fixed probability 0<a<1. 



B. A Probabilistic Splitting Algorithm 

The splitting required in step 2 of this algorithm can be 
accomplished by randomly choosing the subsets A', C', D' until 
we find one that can be used as input to CHECK to determine if 
x e A'. At each stage, we are given sets A, B, C, D such that 

m(C+B) < m(A+B) < m(D+B) 

and hence, it is reasonable to assume that if we make enough 
random selections of C' .c C, D' c D and A' c A, we will find one 
where 

m(C'+B') < m(A' + B') < m(D' + B') 

and 
m(C' +B") < m(A-A'+B") < m(D'+B") 

for appropriate B' and B e '. Once this situation occurs, we can 
apply CHECK to A', using C' and D', to test if x e A' or 
x c A-A' and hence finish the split. 

The exact algorithm we use here is 

ALGORITHM PROBSPLIT - probabilistic splitting 

GIVEN: Sets C, D, A, B as in FINDMEDIAN step 2. 

FIND: Sets C' c C, D' c D, A' c A, B' = B + A-A' such that 

a) IC I I = ID'I = IA'l E { 	/21, 	I LIA1/ 2.1 }  
b) m(C'+B') < m(A T +B') = M < m(D'+B') 

c) X E A'. 

1. Randomly choose C' c C; D' c D; A', A" c A and sets B' = 
B+A-A', B" = B+A-A" such that 

a) 	1C'1 = ID'I = IA ? ! = IA"' = F1A1/21, 

h) A' u A" = A. 

2. Compute m(C'+B'), m(C'+B"), m(D'+B'), m(D'+B"). If 
m(C'+B') > M or m(C'+B") > M or m(C'+B') < M or m(D'+B") < M 
then repeat step 1. 

3. Apply CHECK to A', B', C', D' to test if x c A'. If so, 
return A', B', C', D'. If not, return A", B", C', D'. 	0 

It is clear that this algorithm correctly splits A,C, and D 
since 
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Lemma 4.2: If PROBSPLIT halts then the values returned satisfy 
the requirements of FINDMEDIAN step 2. 

Proof: Step 2 of PROBSPLIT insures that both 

m(C'+B T ) < m(A'+B') < m(D'+B') 

and 
m(C'+B") < m(A"+B") < m(D r +B") 

hold and hence that either of (A', C', D') or (A", C', D') 
satisfy requirements 2a and 2b of FINDMEDIAN. Moreover, lemma 
3.5 insures that step 3 will correctly determine if x c A' or 
not. If it is then (A', C', D') satisfies the conditions. If 
not, x c A - A' c A" and hence (A", C', D') satisfies the 
condition. 

The number of queries required by this splitting algorithm 
is just 0(Log k) + 4n where n is the number of times that steps 
1 and 2 must be executed. In order to determine the expected 
number of queries required by the algorithm for a random data-
base, we must determine what the expected value is for n. We 
start by showing that the probability of making a proper 
selection in step 1 is greater than some constant co . 

Lemma 4.3: Given that m(C+B) < m(A+B) < m(D+B), the probability 
of choosing C' c C; D' c D; A', A" c A and setting B' = B+A-A', 
B" = B+A-A" such that A'uA" = A, m(C'+B') < m(A'+B') < m(D'+B') 
and m(C'+B") < m(A"+B") < m(D'+B"), is greater than some constant 
c 
0 

Proof: Since m(C+B) < m(A+B) < m(D+B), it follows that N(C) > 
N(A) > N(D). It clearly suffices to show that the probability 
of making a proper selection is > c o  for the case N(C) = N(A) = 

N(D). We define the variation v in each random choice as 

v(X') = IN(X') - N(X - X')I 

for x c {A,C,D}. Then as Iv(A') - v(A")I < 1 we can guarantee 
that a proper choice exists if 

v(C'), v(D') > v(A') > v(A") 

and we choose the "proper" half of C for C' and D for D'. This 
latter probability is at least 1/2 • 1/2 = h and the probability 
that v(A') > v(A") is at least h. Moreover, as A',C' and D' are 
chosen independently, the following cases are equally probable: 



v(C'), v(D') > v(A') 

v(C'), v(A') > v(D') 

v(D'), v(A') > v(C') 

As these span all possible cases, the probability of each must 
be at least 1/3, and as the first case represents a proper 
selection, the probability of step 1 succeeding is at least 

1/3 • 1/4 • 1/2 = 1/24. 

Since the probability of making the proper selection is step 
1 is greater than some constant c 	the expected number of times 
the step will h;.::ve to be repeated

o 
 isat worst 1/c which is 0(1). 

Hence, the expected number of queries required by°PROBSPLIT PROBSPLIT is 
0(Log k) + 0(1) - 0(Log k) and hence that FINDMEDIAN can operate 
with an expected number of queries of 0(Log 2  k). 

This demonstrates that the expected number of k-median 
queries required to compromise a database is 0(Log 2  k), however, 
it gives us no feel for the distribution of the number of 
queries required -- it is theoretically possible that many 
applications will require 0(Log 3  k) or even 0(k) queries to 
compromise a database. We show that this is not the case by 
proving for any constant 0 < a•< 1 that FINDMEDIAN using PROB-
SPLIT will compromise a database using only 0(Log 2  k) queries 
with probability a. In particular, we show 

Lemma 4.4: The number of times that step 1 of PROBSPLIT must he 
executed during the execution of FINDMEDIAN is 0(Log k) with 
probability a for any fixed 0 < a < 1. 

Proof: Let c
o 

be the minimum probability that stage 1 makes a 

successful choice as determined by lemma 4.3. Since this minimum 
probability is independent of previous successes or failures and 
the size of the set being selected, we can view all the executions 
of step 1 of PROBSPLIT during the execution of FINDMEDIAN in a 
worst case sense as a sequence of Bernoulli trials [F], each with 
probability of success c

o 
and probability of failure 1-c

o
. For 

the whole algorithm to succeed, it suffices to show that any 
such sequence of n = 0(Log k) trials will have 'log kl + 2 
successes with probability a. 

Let q = 1-co , r= Log k + 3 > rLog 	+ 2, 13 = 1-a. Let Sn  

be the number of successes in n trials. Then we mpst establish 
that 
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< 1 - a = B. 

It is known [F] that 
(n-r)c 

P
R 

{sn —< r} < (nc -r)2 for r < nc
o 

o 
 

and hence it suffices to show that 

(n-r)c o
2 

< a 
(nc

o
-r) 

for some n > -- which is 0(Log k). 
c
o 

Let 3Log k + 9 	
ac 

 1 
n > 	 0(Log k). 

c
o 	0 

'[lien 
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0  

2ar + 1 + 1 + 4ar(1-c o ) 

2ac
o  

2ar + 1 + ✓1 + 4ar(1-c o ) 	2ar + 1 - ✓1 + 4ar(1-c0 ) 

2 a co  2ac
o  
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or 
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0 	 0 	 0 	0 
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and hence 
(n - 	c

o  
> 2 ' 

(nc
o 

- r) 
 

From this and the preceding lemmas, it is easy to conclude 
that: 

Theorem 4.5: A database 2 can be compromised using n k-median 
queries where n is 0(Log k) with probability 1 - c for any 

> 0. Li 

V. COMPROMISING A DATABASE 

The results of the previous section show that a database can 
be easily compromised using only 0(Log 2  k) queries almost all of 
the time. The question still remains as to how many queries are 
required to guarantee that a database can be compromised. 
Previous results have shown that 0(4) k-median queries are 
sufficient [DLR]. In this section, we improve this bound by 
developing a deterministic splitting algorithm that uses 0(Log k) 
queries. In conjunction with the algorithm FINDMEDIAN of the 
previous section, this allows us to insure compromise with only 

0(Log
2 
k) queries. 

The idea behind this new splitting algorithm is to take an 
arbitrary division of A, C, and D as in the previous section and 
then, rather than discarding it if it is not proper, modifying 
it so that the necessary conditions are met. In the analysis of 
the probabilistic splitting algorithm, we noted that for a random 
split of A, C, and D to be proper, it was enough to insure that 
C' c C and D' c D have greater variance than A' c A and A" C A 

and that this variance is in the proper direction (i.e. C' has 
more negative elements and D' has more positive elements). 
Since we are dividing C and D in half, and since we know that 
one of the halves must have more negative elements and the other 
more positive elements, rather than just choosing one and hoping 
it is correct, we try them both and use the proper one. Thus, 
we need only modify A' and A" until they have smaller variances 
than both halves of C and D. This is accomplished by using 
balancing algorithm of section 3 to modify the two halves of A 
until they both have about the same number of negative and 
positive elements. 

This simple approach is complicated by two factors. First 
of all, there are cases where the C' or D' that are selected 
exhibit little or no variance and the desired relationships 
between C', D', A' and A", 



m(C'+B') < m(A'+B') = M < m(D'+B') 

dild 

m(C'+B") < m(A"+B") = M < m(D'+B"), 

cannot be achieved. We show that this case is easily recognized 
and that when it occurs we can determine which of x c A' or 
x c A" holds and are able to use the proper set recursively. 
The second complication i, that the size of A may be odd and 
hence it is impossible to divide A, C, or D into two equal sets. 
We handle this by splitting each of these sets into either two 
sets that overlap by one element or into two equal sets with an 
extra element. This makes the simple analysis that follows much 
more complex. 

A. The Splitting Algorithm 

Our particular algorithm operates by first dividing each of 
A, C, and D into 3 disjoint sets, X 1 , X2 , X3  for. X c {A,C,D}, 

such that 1X
1
1 = 1X

2 1 = LIX1/21 and IX 3 1 e {OM. We denote 

such a division function by DIVIDE(X) 	<X1 , X2 , X 3>. Using the 

divided sets, we let C be the more negative of C
1 
+ C

3 
and 

C 2' + C 3  and we let D be the more positive of D i  + D3  and D2  + D3 . 

Then, the core of the algorithm consists of balancing A l  and A
2 

until either both satisfy 

m(e + A. + B) < m(A + B) < m(15 + A. + B), i = 1,2 	(5.1) 

or until they have an equal number of negative elements. In the 
first case, we use CHECK to determine which of Ai  + A

3 
contains 

the element x and then return with this set, C and D for the 
next stage of FINDMEDIAN. In the latter case, we show that a 
condition similar to (5.1) must hold for the A i  which contains 
x once A

l 
and A

2 
are balanced. Hence, we apply CHECK to the 

appropriate sets, determine which of x c A i+A 3  or x c A2+A 3 

 holds, and return to FINDMEDIAN correctly. 



f 

The specific algorithm is: 

ALGORITHM SPLIT - deterministic splitting 

GIVEN: Sets C, D, A, B as in FINDMEDIAN step 2. 

FIND: Sets C' c C, D' c D, A' c A, B' c B + A - A' such that 

a) IC'! = ID'I = 1A'! c { FIA! /21 , 	/2j) 

b) m(C'+B') < m(A'+B') = M < m(D'+B') 

c) x c A'. 

1. DIVIDE(A) + <A
l' 
 A2,  A3>; DIVIDE(C) 	<C1,  C2 , C * 

1 , 	2' 	3
>

' 

DIVIDE(D) 	<D
1 ,  D2' 

D
3
>. 

2. BALANCE A l  and A2  yielding A l , A 2 , A1 ', A2 ' until either 

a) m(6-1-A
1
+B) < m(A+B) < m(5)+A

1
+B) and 

m(&-A 9+B) < m(A+B) < m(5+A 2+B) where 

c {C1+C 3 , C2+C 3 }, D e 	D2+D3 1; or 

b) IN(A 1 ) - R(A2 )1 < 1 or 11;i(A1 ') - N(A2 ')J <_ 1 

3. If condition a) holds then apply CHECK to A 2  + A3 , A l  + B, 

C and D to test if x e A2  + B, or x c A l  + B. If 

x c A2 + A3 
then return 	D, A

2 
+ A3, B + A

I 
 

as <C', D', A', B'>. Otherwise, return <C,D,A 1+A 3,  B+A 2 > 
 

as <C',D',A',B'>. 

4. If condition a) fails to hold then if SPLITCHECK 
(A1 ,A2 ,A3 ,B,C1 ,C2 ,C 3 ,D1 ,D2 ,D3 ) is not NIL, return its value. 

Otherwise if SPLITCHECK (A 1 ',A2 ',A3 ,B,C1 ,C 2 ,C3 ,D 1 ,D2 ,03 ) is 

not NIL, return its value. Otherwise, x is A
3 
and we are 

done. 



Here the algorithm SPLITCHECK does the necessary tests to 
determine a new A', C', D' based on the fact that A

l 
and A

2 
(or A

1
' and A

2
') are balanced. It is guaranteed to return a 

satisfactory split if A
l 
and A

2 are balanced and x 
	A

3 
and 

hence, either one of the two calls in step 4 will succeed or we 
will know that x is the unique element in A 3 . 

To show that this algorithm correctly splits A, C, and D and 
uses no more than 0(Log k) queries, we divide our analysis into 
three distinct parts. We first note that if condition a) of 
step 2 holds at any time, the algorithm splits A,C, and D 
correctly. Secondly, we present the appropriate balancing 
algorithm for step 2 and prove its properties. Finally, we show 
that if A i  and A

2 
are balanced by this algorithm so that they 

have about an equal number of negative elements, then the algo-
rithm SPLITCHECK and hence, step 4 of this algorithm yields a 
correct split and uses only 0(Log k) queries. Thus, since CHECK 
in step 3 uses only 0(Log(k)) queries, the whole algorithm must 
correctly split A, C, and I) and use no more than 0(Log k) queries. 

B. The Case Where Step 3 is Executed 

The case where condition a) of step 2 holds is essentially 
the same as the probabilistic splitting algorithm of the previous 
section with C' = C, D' = D', A' = A

l 
+ A3, B' = A

2 
+ B, A" = 

A
2 
+ A3, B" = A

l 
+ B and hence from lemma 4.2 we can conclude that 

Lemma 5.1: If condition a) of step 2 holds, then SPLIT properly 
returns A', B', C', D' and uses at most 0(Log k) queries in 
step 3. 

Proof: Lemma 4.2 and the above discussion demonstrates that 
A', C', and D' represent a proper split of A, C, and D. 
Moreover, since the only queries involved in step 3 come from a 
single execution of CHECK, lemma 3.5 shows that at most 0(Log k) 
queries can be asked. 

C. The Balancing Process 

The previous lemma demonstrates that if condition a) of step 
2 ever holds, then we can easily finish up the splitting process 
in 0(Log k) steps. Our remaining concern regarding the algorithm 
SPLIT is to establish what happens if this condition never holds. 
In particular, we are concerned with the case where the balancing 
algorithm has terminated so that A I  and A

2 
or A

1
' and A

2
' have 

roughly the same number of negative elements and yet have more 
variance than either C

l 
and C

2 
or D

1 
and D

2
. We show that in 
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this case, the splits of C, D, and A have very specific proper- 
ties which we can exploit in order to split A. 

In order to present and prove the algorithm SPLITCHECK, we 
must first establish the balancing algorithm and its properties. 
Essentially, this algorithm balances A

l 
and A

2 
with respect to 

condition a) so that the number of negative elements in A
l 

is 

within one of the number of negative elements in A
2
. The 

algorithm is 

ALGORITHM SPLITBAL - balance Al  and A
2 

for SPLIT 

GIVEN: Divided C
1, 
 C2, C

3 
and D

1 ,  D2' D
3 ; • set B as in algorithm 

SPLIT; sets G and H to balance. 

ACT: as a balancing function with respect to condition a), 
attempting to get the number of negative elements in Al  equal to 
the number in A

2
. 

1. Evaluate the queries 

m(C1+C 3 + G + B) =M1  . 

m(C
2
+C

3 
+ G + B) = M

2 

m(C1+C3 
+ H + B) = M 3 

m(C
2
+C

3 
+ H + B) = M4 

m(D
1 
 +D

3 
 + G + B) = M

5 

m(D2+D 3 
+ G + B) = M6 

m(D
1
+D

3 
+ H + B) = M

7  

m(D
2
+D

3 
+ H + B) = M

8 

2. If ((M
1 
 < M and M3.< < M) or ('4

2
< 1.4 and M

4
< M)) and 

3 

(04
5
> M and M

7
> 10 or (14

6
> M and M

8
> 11)) then return 0. 
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3. If M
1 	

M and M
2 
> M then return +1 

else if M
3 
> M and M

4 > M then return -1 

else if M
5 
< M and M

6 
< M then return -1 

else if M
7 
< M and M

8 
< M then return +1. 

To prove this is a proper balancing function we show that 

Lemma 5.2: SPLITBAL(G,H) returns 

a) 0 iff condition a) of step 2 of SPLIT hold; 

b) +1 iff R(G) < N(G); and 

c) - 1 iff N(H) > 

Proof: Clearly step 2 can cause a_return of zero if only if 
condition a) holds for some C and D. Hence, it suffices to show 
that the tests of step 3 produce a proper result and cover all 
possible cases. 

To show that these tests cover all cases, we assume that no 
condition at step 3 holds and that step 2 fails as well. Step 2 
must fail for either the C's or the D's or both. We assume 
without loss of generality that it fails at least for the C's. 
This means that the following must hold: 

(M
1 
 > M V M 3 > M) r. (A2 

> M v M
4 

> M) 

Then, as no case of step 3 can hold, it must be the case that 
either M

1, 
M
4 

> M and M
2' 

M
3 
<M or M2, M

3 
> M and M

1, 
M
4 
 < M. 

We assume without loss of generality that the first case holds. 
Let a = 1 if x c GuH and a = 0 otherwise. Then

, 
C
1
+C

3
+G+B can 

have at most 
k-1 

 negative elements and C
2
+C

3
+H+B can have at 

most k- 1  negative elements and, if x c G + H one of these must 

have one fewer. But then 

N(C
1 
+ C

2 
+ C

3 
+ C

3 
+G+H+B+ B) < 

2k-2  
2 	

a 

and since N(G + H + B) 
k -1 

a, N(C
3 
 ) > 0, we get 



N(C
1 
+ C

2 
+ C

3 
+ B) < k1 

	

2 	' 

This is a contradiction since m(C+B) < m(A+B) and hence, 

N(C+B) > 
k+1
2  . 

Of the four cases in step 3, the first two and the last two 
are symmetric since one of N(G) > N(H), or N(H) > N(C) must hold. 
We therefore consider only the first and third cases. Suppose 
M
1 

> M and M
2 
> M. Then 

- 
171(C1 + C 3 	G 	B) 

<
k21 

and 	
171(C 2  + C 3  + G + B) < k-2 1 

 and hence 

R(C1 +C2
+C

3
+ C

3 
+G+G+B+B)< 2.1( 

2 

1  
We have established that N(C+B) > k21  and hence 

Ei(C3  + G + G + B) < k-2 3  

or 

isi(G + G + B) < k-2 1  • 

But then R(G) < ITT(H) as otherwise 

N(G + H + B) < 
k-21 	

1 

which is a contradiction as N(G + H + A
3 
+ B) = 

k+1 
 and hence 

2 

R (G+H+B) > k21 
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k+1 
+ 1 

2 

The proof for the other two cases is similar. Suppose that 

M
5 
 < M and M

6 
 < M. Then R(D

1 
 +D

3 
 +G+B) > 16-1  and 

9  

Fl(D
2 
 +D

3 
 +G+B) > kl-1  and hence 

2 

FI(D, + D2  + D 3  +G+G+B+ B) > 
211-2  

- 
Now as N(D+B) 	

k1  
2 

(D+B) < 	, and N(D 3 ) < 1, 
—  

N(G + G + B) > k+1  
2 

But then N(G) > N(H) as otherwise 

R(G + H + B) 

which is a contradiction since N(G + H + A
3 
+ B) = k+1 and hence 

2 

+ H + B) < 1(4-2 1  . 	 0 

This shows that SPLITBAL is indeed a balancing function with 
respect to condition a) of step 2 of SPLIT. Moreover, it is 
clear that it makes only a constant number of queries per 
execution and hence by lemma 3.2 and corollary 3.3, we get 

Lemma 5.3: Let N(A) = Z. Then either we can determine x 
directly or x is in A. and A.' as returned from BALANCE, and 

fN(A i ), N(A. $ )} contains 

a) {R- 1, Id- l} 	if A
3 
is positive or empty; or 

b) { rk-11 1, I 
 2 2 	L 	

- 11. if A
3 

is negative. 

Proof: We first note that cases a) and b) are symmetric there 
arc R negative elements in Al  + A2  if A 3  is positive or empty 

and only Z-1 if A
3 
is negative. Hence, we need only prove 

case a). 



co 	2, 
Clearly, if Q, is even, then {1-1 - 1, [

-2- - 1} = 2 

{-1742.- 	
1 

-llandasoneofA.andA:
3

must be balanced, it must 

satisfy N(X) = 2 and hence N(X) =- 
2 
 - 1. 	If .4, is odd, then the 

four sets that are returned by BALANCE are 

G +X 	H+ Y 

G +Y 	H+ X 

where IX' = IY! = 1, so that 

N(G + X) = N(H + X) = 1-1-1  and N(G + Y) = N(H + Y) - Z 2 1 
 2 

lf x c G, then G + X and G + Y satisfy the lemma while if 

X c H, H + X and H + Y satisfy the lemma. This leaves only the 

case that x c XuY. But, as R(x) = 1, this implies that X={X} 

and, since we can tell which of N(G+X) > N(G+Y) or 

N(G+X) < R(G+Y) holds, we can determine x. 	 fl 

D. The Case Where A
l 

and A
2 

are Balanced 

Having shown in this last lemma what the result of the 
balancing process will be with respect to sets containing x, we 
are now ready to describe and verify the algorithm SPLITCHECK. 
This algorithm takes advantage of the various conditions that 
must be satisfied before step 4 of SPLIT and hence, SPLITCHECK 
can be executed. It considers some of the possible sets that 
might provide proper splits and then uses CHECK to determine 
when a proper split exists. For such a method to succeed, we 
need to insure that CHECK is only called with proper arguments, 
that at least one of the cases for which CHECK is called will 
work, and that CHECK will only he called a constant number of 
times. 

The algorithm we use is 

ALGORITHM SPLITCHECK - test for proper split. 

GIVEN: Al  and A2  possibly balanced, as well as A 3 ,C1 ,C 2 ,C 3 , 

DD
2'

D
3 

from step 4 of SPLIT. 
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FIND: Sets A', C', D' that form a proper split of A, C, D if 
possible, NIL if not. 

1. For (7: e {C
1 
+ C 3, C

2 
+ C

3
}, D c {D

1 
+ D3, D

2 
+ D

3
}, 

A E {A 1  + A3 , A2  + A 3 }, B = 	+ Al  +A2  + A 3  - 	do steps 

2-4. If none of these returns a value, return NIL. 

2. Compute 

M
1 
= m( + B) 

M2 = m(5 + B) 

M
3 
= m(6 - C

3 
+ A

3 
+ E) 

M
4 = m(5 - D3 

+ A
3 
+ E) 

3. If M
1 
e M < M

2 then if CHECK(A,B,C,D) shows x E A, return 

C,D,A as C',D',A'. 

4. If M
3 

< M < M
4 

then if CHECK (A-A
3, El-A3'3' 

5-D
3
) shows 

X c A-A3
, then return C-C 3 , 5-D

3 
and A-A

3 
as C', C', A'. 

It is clear from the specification of SPLITCHECK that the 
number of queries required is 0(Log k) and that, because of the 
nature of CHECK, if a value is returned from SPLITCHECK, it must 
represent a proper split. What remains to be shown is that if 
X / A 3

, then for at least one of the two balanced sets contain-

ing x, one of the calls to SPLITCHECK will return a split. Thus 

LLInina 5.4: If x 	A3 , then for one of A., A.' such that 
J 

xLA
i
nA ', the call to SPLITCHECK involving this set must 

return a value. 

83 



Proof: There are several cases to consider, mainly dependent on 
the values of A3,  C3, and D 3. Let R. = N(A) and let A be one of 

A. + A 3, A'
j 
+ A 3. From lemma 5.3, we note that N(A) will take 

on the values
- - 2 	2 	

1} if A
3 

is empty or positive and 

the values fr 	41, LTjl if A 3  is negative. Hence, it 

suffices to show that for each case as determined by IAI, C 3 , D 3 

 and A3 , that one of these values will cause SPLITCHECK to return 

a split. 

We first note that by simple counting arguments, if we have 
sets R, S, T and U and an element 0 c S such that 	is the median 
element of A + U, then 

N(R) > N(S) > N( T) 

if and only if 

m(R+U) < m(S+U) < m(T+U). 

We make extensive use of this fact in the three cases that 
follow. 

Case 1: 	All 	is even: Then N(D) < C
' 
 31] and N( C ) > T21 for 

some C and D and hence, N(A) =
2 
 - 1 satisfies N(C) > N(A) > 

N (5) . 

Case 2: 	All 	is odd, D 3  is positive: Then N(D) < r2 1] and 

N( C ) > 11 for some C and D and hence N(A) = IZ I - 1 = 1_9.2 1 

satisfies N( C ) > N(A) > N(D). 

Case 3: 	All 	is odd, D 3  is negative: Then N(D-D 3 ) .< L' 2 2j 

N(C-C 3) 41 2 11 and hence N(A-A 3 ) = 1-3] - 1 if A 3  is positive or 

N(A-A3) =  	1 if A 3  is negative satisfy N(-C 3 ) > 

N(A-A3) > N(5-D3 ). 
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This completes the specification and verification of the 
algorithms involved with SPLIT and we can summarize lemmas 5.1 
through 5.4 as 

Theorem 5.5: Algorithm SPLIT compromises a database using 

0(Log
2 
k) k-median queries. CI 

VI. DETERMINING SPECIFIC ELEMENTS 

The previous two sections show that it is relatively easy to 
compromise a database using k-median queries. However, the 
information that was obtained was about some arbitrary element, 
and we are often more concerned with determining the value of 
some specific element. Previous results in this area have shown 
that if the value of a specific element lies in the a-tile, 

0ct.: 12:,(i.e. in a database of size n, at least an elements 

have a smaller value and at least an elements have a larger 
value) then it can be compromised using a probabilistic approach 

with an expected number of queries of 0(k) + a
-k/2

(1-a)
-k/2

. In 

this section, we improve this exponential bound by showing that 
for any a and sufficiently large n, there is a probabilistic 
means of determining the value of any specific element in the 
ct-tile using a expected number of 0(k) queries. Moreover, we 
begin by noting that if a slight amount of extra information is 
available, compromising a specific element can be done using 
0(Log k) or fewer queries. 

A. Using Selector Information 

So far in this paper, we have considered a simplified model 
of a database in which all selector information has been dis-
carded. While this model may be somewhat unrealistic in the 
number and type of queries allowed and hence could make a data-
base seem easier to compromise than it actually is, it also 
ignores a good deal of information that could make compromising 
a database significantly simpler if not trivial. For example, 
suppose we wanted to determine the salary of some employee E. 

Moreover, suppose we know Y other employees who must have 

smaller salaries than E (i.e. they are mail clerks, secretaries, 

or assistant professors) and we know 
12 

employees whose salary 

must he greater than E's. Then by simply asking for the median 
salary of E and these two groups of employees, we can be assured 
that the result is E's salary. Hence, using a single query, we 
can compromise the database. 
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While it might not be easy to find sets all of whose elements 
are greater than or less than the element to be determined, it 
should be considerably easier to find two k-sets, one whose 
median value is less than the element and one whose median value 
is greater than the element. We can use these two sets along 
with the technique of balancing of section 3 to determine the 
specific element using an expected number of 0(Log k) queries 
with probability 1-c for any 0 < c < 1. 

The algorithm we use here is 

ALGORITHM GETVALUE 

GIVEN: An element x, two sets of k elements, A, B such that 

m(A) < x < m(B). 

FIND: The value of X, M. 

1- Randomly choose acA until M(A-{a} + {x}) > M(A). 

2. Randomly choose beB, until m(B-{b} + fxl) < m(B). 

3. Balance A-{a} and B-{b} using the following balancing 
function: 

a) Compute M1  = m(G+{X}), M2  = m(C+fal), M 3  = m(G4410) 

b) If M
1 	

M
2 
and M

1 
	M3, then return 0 

else if M
1 

= M
2 

then return +1 

else return -1. 

4. If BALANCE returned with FC=FALSE, then . m(A) < M < m(B) 
did not hold initially. Otherwise, let A he the balanced 
set that is returned. Then return m(A + { x }) as the 
value of x. 	 ii 

The method used in this algorithm is straightforward. Step 
1 finds an element a in A whose value is < m(A) and hence is 
less than M. Step 2 repeats this process with B to find an 
element b whose value is > m(B) and hence greater than M. 
Finally, the two sets A-{a} and B-{h} balanced so that the 

resultant set A contains 
k1 

 negative elements and hence so that 

m(A + {x}) = M is the value of x. It is clear that steps 3 and 4 
use only 0(Log k) median queries. Moreover, if FG = TRUE is 
returned from BALANCE in step 3, then it must be the case that 
M(G + { x }) = M. Hence, it we can show that the number of queries 
required in steps 1 and 2 is small and that BALANCE must return 
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with N(A) = k1 provided that m(A) < M < m(B), then we can prove 

Theorem 6.1: Let x be an element of a database and let A and B 
he two k-sets of elements, x # AuB. Then, GETVALUE will return 
the value M of x if m(A) < M < m(B) and moreover, for any 
constant 0 < c < 1, will use 0(Log k) queries with probability 
1-c. 

Proof: If m(A) 	 k+1  A) 	M then A must have 	negative elements. 
2 

Hence, as a is negative, N(A-{a)) > k-21 
 . Similarly, as 

m(B) > M, B must contain at least 12.±1- positive elements. Hence 
2 

as h is positive, B-{b} must have at least k-1  positive elements. 

But then A-{a} and B-{b} are balanceable with respect to M and 

k -1 
- 2 2 

To show that the balancing function of step 3 works, we note 
that the value of a is less than the value of x is less than the 
value of b. Hence, if m(G+{X}) < M, then m(G+{x}) = m(G -1- {b}), 
\Mile if m(G+{x}) > M then m(G+{X}) = m(G+{a}). Thus, the 
balancing function returns 0 if and only if m(G+{x}) = M, returns 
+1 if and only if m(G+{x}) > M, and returns -1 if and only if 
m(G-140) < M. But, as m(G+fx}) > M if and only if 

N(G 	
k-1

) < 	, and as m(G+{X}) < M if and only if N(G)> 
k-1  

2 	 2 	' 

Lemma 3.2 shows that one of A and A' returned from BALANCE using 

the balancing function must have 	negative elements. More- 

over, because both these sets are tested by the balancing 
function at some point, this function must return with FG=TRUE. 
Hence, m(A+{x}) = M and the algorithm is guaranteed to return 
the proper value. 

Finally, since N(A) > k
2
+1 and since B has at least 

k
2
+1 

 

positive elements, the probability of choosing a or b correctly 
1 

in steps 1 or 2 is greater than -
f 

. Then, let a
n 

be the 

probability of completing either step 1 or step 2 in n or fewer 

2 
tests. We need to show that a

n 
> 1-c for reasonable n. Let 



c
0 

= -Log(1-/T=7) be a constant dependent on E. Then choosing 

n > c
0 
 is sufficient. Hence, at most 0(c

0 
= 0(l) queries should 

 

he required in steps 1 and 2. 

B. The General Case 

While it may often be the case that enough information is 
known about an element to determine a set of data with a lower 
median and a set with a higher median, such an assumption cannot 
be made in the general case. We next consider the task of comp-
promising a specific element of a random database where no 
selection information is present. Here, we suppose that we are 
given an element 	which lies in some a-tile of the database and 
we are interested in the average number of queries required to 
determine its value. 

We determine this value by choosing a random set of elements 

such that the set is likely to contain at least k21 elements 

both less than and greater to the value of x, M. Once we have 
such a set, we need only isolate the subsets of elements that 
are less than and greater than M to determine the desired value 
using the techniques of section 6.1. To efficiently perform 
this isolation process, we make use of the theorem of [DJL]: 

Lemma: In 3k + 0(1) k-median queries, we can determine the 
median M' of a set of elements Y

1
...Y

k 
of a database; and more- 

over,wecandetermineforeachj,wh 	 M', or 
> M'. Yj  

To use this lemma to isolate the negative and positive sub-
sets, we start with a set of 2,(k-1) elements for some Q, and 
apply this method to R, disjoint sets of (k-1) elements joined 
with the element x in order to determine a set of 

2(k-1) elements that are all less than the respective median of 

the ft, set. We then repeat this process with the resultant 
elements until we find a median whose value is less than the 
given element. This terminating condition can easily he deter-
mined since x is in the set to which we apply the method of the 
lemma. Once a negative subset is found, we can repeat this 
whole process to find a positive subset. This, however, is 
generally not necessary since the original set had to have either 
a larger or smaller median than M and, hence, the process is 
needed only to determine one of the two subsets. Once we have a 



set with a larger median than M and a set with a smaller median 
than M, we can apply the results of the previous section to 
determine the value of x with one extra query. 

The number of times the method of the lemma must be applied 
in the process is at most 

t + 2 + 
4 
 + 	+ 1 - 2t 

and hence, at most 0(2,k) queries are all that is required. 
Moreover, if e is a negative element, then it is easy to see 
that e is always used in the next stage of the algorithm pro-
vided that the test it is used in at the current stage has a 
median greater than M. But this must occur since if the median 
were > M, we would be done. Hence, all elements of the original 

set <M are gathered together by this process and if there were 

more than 
k1
2 
 such elements in the original set, a median must 

eventually be achieved that is <M. Similarly, a median must he 
achieved that is >M. 

• 	Thus, it is sufficient to determine the value of 2, to 
determine the expected number of queries needed to compromise X. 
By assuming that x is in the a-tile for some 0 < a < 1/2, we can 
show 

Lemma 6.2: Let x be in the a-tile for some a. Then, for any 
constant 0 < c < 1, a random set of 

(k-1) 

3c 2  + 1  t) ca 	a 

will have 
k-1 

 negative elements with probability 1-c. 

Proof: We assume that the size of the database is sufficiently 
large that can estimate the probability of an element being 
negative as a even as we have chosen about n elements. Then, 

the probability of choosing fewer than r - 
k-32 negative elements 

in a sample of size n can be estimated as [Fl. 

(n-r)a  
P
R 

{S
n —

< r) 
—
< 

(na-r)
2 for r < na . 

n > 



From the proof of lemma 4.4, when 

n > 
3cr + 1  

ca 

we have P fS < r} < c. 
r n — 

From this lemma, we can conclude 

Theorem 6.3: Let x be in the a-tile of a large database. Then 

we can determine the value of x using 0( -'- queries with 
a 

probability 1-c for any c > O. 

And hence 

COROLLARY 6.4: Let x be in the a-tile of a large database 
for a fixed a. Then, we can determine the value of x using 
0(k) queries with probability 1-c for any c > 0. 	 Li 

VII. CONCLUSION 

This study shows that it is very difficult to insure 
security in a database when queries involving the median are 
allowed. In particular, it is shown that some arbitrary element 
can be compromised with only 0(Log 2  k) queries and that a 
specific element can generally be determined in 0(k) queries 
unless its value is extreme. Moreover, if outside data is known 
about a specific element, then it can often be determined in 
0(Log k) or fewer queries. This suggests the interesting 
problem of what reasonable and enforceable restrictions can be 
placed on a database system so that median queries could be 
allowed while maintaining the privacy of the data. 

Another interesting open problem suggested by our results 
is whether they are the best possible. The best lower bound on 
the number of median queries required is 0(Log k) fDDL21 while 

the upper bound given in this paper is 0(Log
2 
k). It seems 

difficult to insure that a database can be compromised in any-

thing less than 0(Log
2 
k) queries. Moreover, the results of 

section 6 demonstrate that proving a lower bound greater than 
0(Log k) is probably just as difficult. 

1 
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SECTION IT. ENCRYPTION AS A SECURITY MECHANISM 

Of all the security techniques which are currently under 
investigation, encryption and data security has attracted the 
most public attention. Perhaps this is because cryptography has 
been a favorite activity of amateur mathematicians and has 
figured prominently in literature ranging from historical studies 
to the exploits of Sherlock Holmes. Indeed, at the time of the 
assemblage of these papers (October 1977), events reported in 
scientific and public outlets broke so quickly that aspects of 
several of the papers in the section were not known in detail 
until our gathering in Atlanta. 

The five papers presented here are truly representative of 
current research in data encryption. George Davida and John Kam 
propose a type of substitution - permutation encryption network 
design. Their intent is to provide a variant of the NBS data 
encryption standard which obviates several of the objections 
raised by Hellman and Diffie and others. Richard DeMillo, 
Richard Lipton and Larry McNeil raise a novel application for 
encryption research: the protection through encryption of 
commercial software from overt theft. Gerald Popek and Charles 
Kline correctly point out that often times the protocol through 
which encryption algorithms are made available have significant 
impact on their effectiveness. They examine several encryption 
algorithms from this perspective. A surprising probabilistic 
method for creating secure digital signatures is the subject of 
Michael Rabin's article. He presents a method which can be 
based upon any block encoding function that satisfies three 
simple axioms. Ronald Rivest, Len Adelman and Michael Dertouzos 
address a serious defect in current methods of encrypting data: 
coded information must be decoded before it can be manipulated. 
Out of all possible privacy transformations, the authors select 
the privaeg homomorphisms which allow data to be operated upon 
in its encrypted form. 
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I. INTRODUCTION 

The advent of large databases and computer networks has 
created tremendous interest in the area of data security in 
general and the field of cryptography in particular [1-8]. 

Recently, a variant of the substitution-permutation encryp-
tion scheme developed by IBM [9] was adopted by NBS as the data 
encryption standard (DES). However, the DES is considered weak 
by several computer scientists, including Hellman [10-12]. One 
of the main arguments against DES is the smallness of the key 
size. 

We plan to present a method for designing S-P networks which 
will ensure that the designed networks may be arbitrarily large 
and possess certain desirable properties that add more insight to 
the design of secure encryption devices. 

BACKGROUND AND DEFINITIONS 

The model we will use for S-P networks is essentially the 
same as that described by Feistel [13]. In general, each S-P 
network has three parameters: 

(i) n = the number of , input (output) bits of the S-P 
network 

(ii) k E the number of input (output) bits for each 
substitution box 

(iii) 2 7 the number of substitution-permutation stages. 

Figure 1 illustrates an S-P network where n=9, k=3, J2=3. 

In general, each substitution box (S-box) S.. is a logical 
11 

circuit that implements a one-one correspondence f: 0,11
k 

{0,l} , and different S..'s may implement different one-one 

correspondence functions. It is obvious that each S-P network is 
itself a one-one correspondence function g: {OM n , 

fo,o n .  

In actual applications, we have to guard against the possi-
bility that the internal structures of all S-boxes and permutation 
may become known to some cryptanalysts. To obtain security even 
in this situation, we may modify the design of the encryption 
network by allowing two choices of S-boxes for each S.., and by 

including a key register which has as many bits as the number of 
S-boxes in the network. Before a user encrypts a message, he will 
first input a binary key to the key register, so that one of the 
two S-boxes is selected for each S.. according to the values of 

1] 
the corresponding key bit. Figure 2 illustrates an S-P network 
with the modification and key register incorporated. 
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Several people, including Hellman have recently argued that 
when the key size is small, this class of encryption schemes is 
susceptible to attack using exhaustive search of the key values 
[10]. One obvious remedy to this potential weakness is to enlarge 
the key size by increasing the number of S-boxes. 

In this paper, we are going to present a design scheme for 
constructing arbitrarily large S-P networks which will always 
satisfy some desirable properties for all possible key values. 

The following notations are useful in describing the networks: 

Encryption Key: K = k0 ,...,km_ 1  where m=k x (n/k) 

Plaintext: P  = PO''''' Pn-1 
Encrypted Output: C = c0,...,c

n-1 

For brevity, we will denote the encrypted output C of an S-P 
network as related to the first stage input by SP(P). 

III. DESIGN CRITERIA 

Following common practice, we may evaluate the strength of an 
S-P network by its robustness against known plaintext cryptanaly-
tic attacks. The strength of the network is measured by the 
difficulty in determining the key used, assuming 

(i) the internal structure of the S-P network is known to 
the cryptanalyst and 

(ii) the cryptanalyst has obtained some plaintext-cryptogram 
pairs, with all cryptograms obtained for the correspon-
ding plaintexts, using the same key. 

That is, it should be difficult to determine the key directly 
from plaintext-cryptogram pairs even with the knowledge of the 
internal structure of the S-P network. 

Given the known-plaintext cryptanalytic attack, we can see 
intuitively that the following property is desirable for S-P 
networks: 

Property Z: For every possible value of the key, every out-
put bit c i of the S-P network depends on the values of all input 

bits p0. pn-1' not just a proper subset of the input bits. 

The following are some arguments indicating why property Z is 
advantageous. Let us suppose an S-P network does not satisfy the 
property Z, and for some value of the key, some output bits c.'s 

depend only on a few input bits. By observing a significant 



withtheinputbits,becausec.depends on all of them. 
3 

The formal mathematical definition of property Z follows: 

Definition: Give a one-one correspondence f: 10,11 n  + 

{0,1} n , f is said to be complete if, for every i,j c fl,...,n1, 

there exist two n-bit vectors 
X1'X2 

such that X
1 

and X
2 
differ 

only in the i
th 

bit and f(X
1
) differs from f(X 2 ) at least in the 

.th 
bit. 

1 

number of plaintext-cryptogram pairs, the cryptanalysts may be 
able to detect the relations among the c 's and the corresponding 

small subsets of input bits. The cryptanalysts may subsequently 
use this information to facilitate the identification of the key 
value. However, if a network satisfies property Z, it becomes 
hard to identify the relation between a particular output bit c.  

Formally: 	(Vi9j )(axix 2 ,...,x1 ,...,xn)A(sx1x2 ,...,xi ,...,xn ) 

[(f(x x 	x 	x )-- (y n)) A (f(x x ...,x 	) = 

	

1 2" i" n 1 	 1 2' 	i 	n 

(z 1 ,, z 	
JJ 

z
n ))A(Y.=z.)] 

Definition: A substitution box S is said to be complete if 
the function implemented by S is complete. Similarly, an S-P 
network is said to be complete if the function implemented by the 
network is complete. 

IV. AN ALGORITHM FOR CONSTRUCTING COMPLETE S-P NETWORKS 

In this section, we will present a hardware-efficient scheme 
of implementing arbitrarily large complete S-P networks. In 
order to minimize unnecessary details in the presentation and 
proofs, we are going to show only the case where there is only 
one choice for each S

ij
. The generalization of the design to the 

case of two choices for eachS ij  is straightforward. 

Convention 1: The input (output) bits of a single S-box are 
labeled from 0 through k-1 
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k input bits 

• 

0 1 2 .. k-1 
k output bits 

Convention 2: Given the Ath stage of an S-P network as shown 
below, 

SA,0 
S
A,1 ... S

A,b 

th 	 IN 
the j 	input bit of the S

A,b 
box is called the (b,j)

h 
bit of 

At 
 

O the Ath stage. Similarly, we use (b,j)
A
UT 
 to stand for the jth  

output bit of SA,b . 

ALGORITHM COMP 

Purpose: To construct an n-bit complete S-P network using k-bit 

complete substitution boxes, where n is of the form k , with 

k > 1 and k > 3. 

Input: k stages of complete S-boxes where the stages are labeled 

1 through k and each stage has k
k-1 
 S-boxes. 

Output: A complete n-bit S-P network. 

Begin 

Integer 	STAGE#, GROUP OFFSET, 	BOX#, PRESENTBOX#, 

LAST BOX#, LASTBITii, BIT OFFSET; 



Comment: The following will connect the inputs in the STAGE# th 

 stage to the outputs of the (STAGE#-1) st  stage. 

for STAGE# :=2 step 1 until 2, do 

Comment: We partition the S-boxes in the STAGE# th  stage into 

groups of k
STAGE#-1

boxes each. 

for GROUP OFFSET:=O step k
STAGE#-1 

until 0-1 
kSTAGE#-1 do  

Comment: We connect the 0
th 

input bits of the k
STAGE#-1 

S-boxes in each group to the first 
kSTAGE#-1 

output 
bits of the same group of the previous stage, then 

the 1st input bits of the 
kSTAGE#-1 

S-boxes to the 

next k
STAGE#-1 output bits of the group of the 

previous stage, etc., as shown in Figure 3. 

Final Step: 

for 	BIT# :=0 step 1 until k-1 do 

Begin BIT_OFFSET:=BIT# * k
STAGE#-1

• 

STAGE#-1 
BOX#:=0 step 1 until k for 	 - 1 do 

Begin 

PRESENT BOX#:=GROUP OFFSET+BOX#; 

)L] .  LAST BOX#:=GROUpOFFSET+L BOX#+BIT_OFFSET  J 

LAST BIT#:=remainder 
( BOX #)  

connect the (PRESENT BOX#,BIT#) th  input bit of the 

STAGE# stage to the (LAST_BOXCLAST_BITO th  output 

bit of the (STAGE#-1) th  stage. 

END 
END 

END 



Figure 3. An Output From Comp 

n = 3
3 

= 27 
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We will now show that the outputs from algorithm COMP are 
complete S-P networks. 

OUT Definition: Given an arbitrary output hit (a,b) m 	in an S-P 

network produced by COMP, we define AFFECT((a,b)
m
OUT  ) to be the 

set of 2m  input bits in the 1st stage that may affect the value 

of (a,b)
m
OUT 

 . Formally, 

AFFECTP,b) MTAFFECT[(a) °11 

the km  input bits ofS1,p,S1,p+1'''' S  ,p+km-1 -1 

where 

] 
p  = km-1 x 	a  

k
m-1 

 

Similarly, given (a,b)
IN

, we define 

AFFECTI(a,b)IN 
	 OUT , where 

m 
EAFFECT  (a

b
)
m 

rem(  a  ) 

m-1  a
b 

= (km-1) x 	a 
m- 

 .1 	+ b(km-2) + 	k 	 
k 1 

Definition: A pair of m-vectors is said to be i-different if 

they differ only in the i
th 

bit. 

Lemma 1: The value of (a,b)
m
OUT 

 depends only on the value of the 

bits in AFFECT [(a,b).
OUT 

 I. 

Proof: By induction on m. 

Basis 	(m=l) obvious. 

Induction step (m = r > 1): According to algorithm COMP, each 

of (a,o) IN ,...,(a,k-1)
r
IN 
 is connected to an output bit from 

s r-1,a
o'

s r-1
'
a
k-1

, respectively, 

where 	 rem(a:1)) 

a. = kr-1 x 	a 	

kr 

 + (kr-2) 
[kr- 
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By induction hypothesis, any output bit of 
Sr-1,ai 

depends only 

on bits in AFFECT 
[ 
(a )

O  
i r-1 

UT] 
• 
' 
hence, the theorem follows from the 

definition of AFFECT. 

Lemma 2: For every a, 0 < a < Fc  and for every b, 0 < b < k, 

, with 1 	m < 32, there are exactly 2
k -1 k

m-bit vectors that can 

he used to initialize the km  bits of AFFECT (a,b) m
OUT 

 such that 

k
m
-1 (a,b) OUT  will be set to 1. Similarly, the remaining 2 	vectors 

m 
will set (a,b)

m
OUT 

 = O. 

Proof: It is obvious that for any j where 0 < j < m, half of 2
m 

th binary m-vectors have 1 in the j 	bit. 

By definition, any one-one correspondence f:{0,2}
k 

{0,2}
k 

maps the set of.2
k 
k-vectors into the same set of 2

k 
vectors. 

With the preceding two statements and Lemma 1, Lemma 2 follows by 
simple induction. 	 0 

Definition: Let f be a one-one correspondence mapping {0,1} 11  -4 

0,11. 11 .Wedefine Qij  of f to be the set of pairs and vectors 

Qij  = { -1V,V'11(V and V' are i-different)A(f(V) and f(1.0) differ 
th 

in the j 	bit)}. 

We also define the multiplicity of f to be the integer M, 

M = min 	Ni .1 of f. 
0<i,j<n 

Theorem 1: Let SP be an n-bit S-P network constructed by the 

Algorithm COMP, where n = k 	. If the multiplicity of S i 
 > M 
j  - 

for all i and j, 0 < i, j < n/k, then the one-one correspondence 

f: {0,1} n 	{0,1} n  achieved by the S-P network is complete. 

Furthermore, the multiplicity of f > M (Q 70 
2 (k -1)(k-1) 

) = 

M (2
kZ-(k-1)(9,-1)-k

). 
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Proof: We want to prove by induction on m that for each (a,b)
IN 

and for each i, 0 < i < 2m, there is a set Q of at least 
m-1 

(k-1)(k-1) M (J
0  2 
	 ) pairs of i-different 2m-bit vectors such 

that if we pick an{V,V'} c Q and set the bits in AFFECT[(a,b) OUT] 

first according to V and then V', then (a,b) (1)11UT  will have 

distinct values for the two cases. 

Basis 	
(m=1) 

Mm( m-
1 2(ki-1)(k-1)

) = M and the basis follows 
1-20 

directly from the assumption that each S-box in the input to COMP 
is complete. 

Induction step (m = r > 1) 
UT 

Let us pick an arbitrary (a,b)
r
O 
	

and an arbitrary (e,f)
I
1
N 

c 

O 
AFFECT [(a,b)

t
UT 

 1. 

In the proof of Lemma 1, we showed that among the k input 

bits to Sr a , only the (a,z)
r
IN  depends on the value of (e,f)

IN 
1 

where 	e 	 x kr-l) 

z =
kr-2 

Let us pick a particular pair of z-different vectors _ 
V = (v

1
v
2
,...,v
zk

) and V'= (v
1
v
2'

..v
z'

v
k
) which, when used 

as inputs to ((a,O) r
IN 	

(a,k-1)
IN

) will cause (a,b)
OUT 
 to 

change. From Lemma 2, we know that there are 2
k -1 

ways to set 

AFFECT [(a,q)
r
IN 
 s.t. (a,q) r

IN 
 = vq , for (0 < q < k-1) and (q#z). 

Hence, by induction hypothesis, there are at least 

01r-l )f1r:ri
0 2 

 2 (0-1)(k-1) 	k -1 k-1 

	

) x (2 	) 	pairs of n-vectors such that '= 

the vectors W, W' in each pair differ only in the bit correspond- 
I 

ing to (e,f)
N 

and when the bits in AFFECT ((a,b)
OUT 
 ) are set 
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according to W and W', then the values of 

((a,0)
I
r
N 
P. .., a(k-1)

IN
) will become V, V' respectively. 

Finally, the induction hypothesis follows from the assumption 
that S

r,a 
has multiplicity > M. 	 ❑ 

To ensure that our design is meaningful, we must show that a 

complete one-one correspondence function mapping {0,1}
k 

{0,1}
1( 

 exists for some value of k. 

Theorem 2: For each k > 3, there exists a one-one correspondence 

f: {0,1} k  -3- {0,1}k  which is complete. 

Proof: For every k > 1, the 2
k 

binary k-vectors may be partition- 

ed into 2
k-1 

pairs of k-bit vectors of the form 

Y = {{Y i , 111}1(0 < i < 2
k-1

) A (Y1 = Vi )). If we can use 2 k 

 distinct vectors to construct k pairs of k-vectors of the form 

V = {{V ,V'}1(0 < j < k) A (V. and V! are i-different)}, then a 
3 

complete one-one correspondence f can easily be constructed by 
defining a one-one correspondence f with the property that 

(V i 3 O< i<k) 

	

f(V.
1
) = Y. 	where {V . , Vi} 	V and 

	

1 	 i 

f(V!) = 	 {Y.,Y!} r Y 
1 	1 	 1 1 

We are going to show by induction on k that we can always find V. 

Basis 	(k-3) the 3 pairs may be chosen as shown in Figure 4. 

Induction step: (k = r + 1) 

r+1 
We may partition the m 
	

(r+1)-vectors into 2 groups G
0 
 and 

G
1, 

where 

G
o 

= {xlx is an (r+1)-vector with the (v+l)st bit being 0) 

G
1 
= {yly is an (r+1)-vector with the (r+l)st bit being 11 

By induction hypothesis, we can find 2r distinct vectors from G 0 

 to form 
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000 
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110 

010 

Figure 4. The Three Pairs For The Case k = 3. 



Vr=f(vi ,v1)1(1 <i < r) (v i  and vi are i-different)}.  

Since G= (2r+1)/2 
0 	

vectors and V
r may be formed by using only 

2r vectors, there must be vector X G
0  which is not one of the 2r 

vectors used when r > 3. Hence 

Vr+1 = Vr 
 u {X,X l }, where X' c G

1 
is (r+1)-different from X 

forms a V needed for the case m = r+1. 	 0 

It is known [11] that linear or affine encryption functions 
can be broken more easily. In the next theorem, we are going to 
show that a complete one-one correspondence is neither linear 
nor affine. 

Theorem 3: Let f be a one-one correspondence mapping {0,1} n 

 {0,1}n . If f is complete, then f does not satisfy the following 
property: 

(I) Phe(0,1) n)(311xn matrix M)[f(A$B)=((A0)M)Shl for all A, 

Be{0,1} n . 

Proof: We are going to show that f does not satisfy property (I) 
by contradiction. 

Assume f is complete and satisfies (I). By the completeness 
of f, we know that 

(V1,j 1 ,0<i,j 1<n)((,X'E{0,1} n)[(X and X' are i-different) 

A(f(x) and f(x') differ at least in the j
1
st bit)] 

Since f(x) = f(x' 	Y), where Y
. 
has 1 only in the i

th 
position 

x'MS Y.MID h 
i 

This implies the j ist bit of Y iM is 1. 

Since j
1 
 is arbitrarily chosen, we conclude that Y.M = 111 	1. 

n 
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Similarly, we may conclude that Y.M = 111 ... 1 for j 	i. This 

n 

contradicts the assumption that f is a one-one correspondence. 
Hence, f does not satisfy property (I). 	 0 

Corollary 1: Let f be a one-one correspondence mapping 

{0,1}
n 	

{OM
n If f is complete, then f is neither linear nor 

a bit-permutation function. 

In order to increase the key size of a network, we may 
modify the S-P network by allowing the output of each ith stage 
of the network to be exclusive-ored with an arbitrary n-bit 
vector V. In Figure 5, we show a modified version of the S-P 
network in Figure 3 with the inclusion of exclusive or facility. 
Before we encrypt a message using the network in Figure 5, we have 
toinitializethekeyandallV.'s. Our next results show that 

the additional facility does not affect the completeness property. 

Lemma 3: If f is a complete one-one correspondence mapping 

f0,11
k 	

{0,1}
k. Let g be a new function defined as follows 

(hcf0,11 k)(ac{0,1}k)[g(a) = f(a)ft] 

then g is complete and has the same multiplicity as f. 

Proof: The proof is obvious and is omitted. 	 0 

Theorem 4: Let SP be an n-bit S-P network constructed by the 
algorithm COMP. Let SP" be a network obtained from SP by the 
inclusion of exclusive-or facility. SP" is complete and has the 
same multiplicity of SP. 

Proof: It follows directly from Lemma 3. 	 0 

Definition: For a fixed k 
the class of all functions 

i-stages, where each stage 
k-bit input. 

> 3 and n = k, we define (S-P) 1  to be 
realizable by using S-P networks with 

has k S-boxes and each S-box has 

Lemma 4: Let f be in (S-P) 1 , if X and X' are j-differint for 
some 1 < j < n then f(X) and f(X') differ in at most k bit. 

Proof: Simple induction on i. 

Theorem 5: (S-P) 1  c (S-P) 2 	(S-P) 3 ... c (S-P) . 

Proof: To prove that (S-P) 1 c  (S-P) 14-1 , for 1 < i < 11,, we only 

ELI 
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<11 V 2=(vv2,1 ...v2,26 ) 

V
3

(v3,0v3,1 -v3,26 )  I ED 

V
1
=(v

1,0
v
1,1

...v
1,26

)  

Figure 5. The Extension Of An Output From Comp With The 
Exclusive-Or Facility Included. 
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have to show that there exists f (S-P)
i+1 

such that f(X) differs 

from f(X') in more than k
i places for some j-different X and X'. 

The existence of f can be shown by construction a (2. + 1) stage 
S-P network using the algorithm COMP, where all input S-boxes are 
all identical and have the following property: 

Input to S Output to S 

00...00 00...00 
00...01 11...11 

. . 

. . 

. . 

It is easy to show that the function g achieved by the S-P network 
has the property that 

g(00...00) differs from g(00...01) 

n 	 n 

in exactly k1+1 bits. 	 0 

V. CONCLUSION AND OPEN PROBLEMS 

In this paper, we have presented a general scheme which 
enables us to design arbitrarily large complete S-P networks in a 
hardware-efficient manner. We have also investigated some 
ramifications of the completeness property. There are a number 
of open problems that must be examined in order to improve our 
scheme. 

(1) What other properties are implied by completeness? 
(2) What other properties are desirable for S-P networks? 
(3) What properties do the S-boxes used in Algorithm COMP 

satisfy in addition to the completeness property? 
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I. INTRODUCTION 

It is conventional wisdom in academic computer science that 
clearly written, readable programs have demonstrable economic 
benefit in computing. We were, therefore, very surprised to 
learn that the benefits which obviously accrue from good program-
ming practice carry with them problems of such impact that the 
computer "software market" may cease to exist in its current form. 
At issue is the protection of software from theft and the 
establishment of unquestionable proprietary rights on behalf of 
the creators of software products. With the lack of adequate 
protection mechanisms and with current methods of transacting 
business, there is an increased risk associated with the proprie-
tary software market. First, there is the risk that new software 
vendors, in an attempt to expedite their entry into the market 
with a minimum investment of resources, will incorporate key 
concepts from other vendors, either singularly or in combination, 
into a new product. Second, new vendors who through independent 
research and development manage to create products incorporating 
truly original ideas run the risk of having their investments 
usurped by resource-rich competitors. Finally, whenever vendors 
find themselves in competition with one another, there is the 
possibility that one might attempt to recapture a lost market 
share by including other vendor's ideas into his existing product. 
In each of these scenarios, the manner in which the business of 
commercial software is transacted on a day-to-day basis is 
responsible for the creation of an environment that encourages 
software theft attempts. 

In economic terms, such difficulties can tend to affect the 
growth potential of the industry either by influencing investment 
capitol or redirecting the conduct of business. It is not 
difficult to imagine that in order to maintain any sustained 
growth in the commercial software industry, mechanisms must be 
found to protect the proprietary software vendors. Such 
mechanisms could take the form of changes in the manner of con-
ducting day-to-day business, improved legislation, or the develop-
ment of new technology to insure that proprietary rights to 
computer software can be established and maintained. 

In the sequel, we will discuss at more length the origins and 
implications of the proprietary software protection problem and 
outline a strategy which can incorporate technical safeguards 
into new methods of transacting the sale purchase and maintenance 
of proprietary software. 
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Proprietary Software. The true issues dealing with proprie-
tary software arise in the "computer services" portion of the - -
computer industry. The economic dimensions of this industry 
segment are staggering; for instance, in computer services alone, 
the projected 1978 revenues are in the neighborhood of 7.8 
billion dollars [1]. The computer services industry may be 
subdivided along three lines: 

(1) hardware specialists dealing in the sale, leasing 
and maintenance of computer equipment; 

(2) direct service organizations, including data 
processing systems, facilities management, contract 
programming, and consulting; 

(3) proprietary software, the sale or lease of machine-
executable instructions often referred to as a 
software package. 

The term "proprietary software" isolates a specific subset of 
the software market. Specifically, proprietary software refers 
to "a computer program that has wide potential use and also 
reflects a better than average level of industry and/or computer 
expertise, [which is to be sold] at a fraction of the cost it 
would take for any one computer installation to program them-
selves" [2]. 

Within the broad category of proprietary software, it is 
possible to distinguish products which are primarily application-
oriented as opposed to those directed primarily to the operation 
and efficiency of the computer system itself (i.e., systems 
software). A quick survey of the primary sources of uniform 
software product information leads one to the conclusion that 
software products are widely divergent in their scope, purpose, 
potential market and technological sophistication. The products 
range in complexity from single utility programs with limited 
specific intent to systems of hundreds of loosely connected 
programs with broadly defined intent and numerous specific 
features. The range of possible application is similary diverse, 
spanning the spectrum of computer applications from commercial 
computing through scientific applications. 
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Market Advantages. Using a comprehensive source [3] for a 
representative sampling of the market, it is possible to identify-
1,800 software packages, emanating from 600 vendors, which are in 
current circulation in the market place. Of these software 
packages, 1,426 (emanating from 546 vendors) have been classified 
as software package as follows. About one-third of the 
software products can be classified as systems software, and the 
remaining two-thirds fall clearly into application-oriented 
proprietary software. The lure to potential investors and the 
attendant benefits to accrue from competition are enormous: for 
example, the projected 1978 total market for proprietary software 
is in excess of one million dollars and this represents an annual 
sales growth rate of 35% [2]. With the resulting increase in 
pressure brought about by additional competitors comes the hand-
in-glove problem of how to gain advantage in a swelling market 
through a product having an attractive combination of performance 
features. 

Source Distribution. Regardless of the software product 
involved, successful competition in the market place forces a 
number of constraints on current and potential software vendors. 
First, since it is usually desirable that a software product 
should have the wide potential use, restrictions peculiar to a 
narrow sector of potential customers must be designed out of the 
product in the hopes of obtaining a generalized package. Second, 
with the obvious exception of computing machine manufacturers, 
it is seldom desirable that a software product be dependent on 
any specific computer hardware specifications; therefore, to the 
extent that it is technically possible, programs tend to be 
produced using standard high-level languages with transparent 
interfaces to a variety of systems software. Finally - and most 
critically - it is the practice of over 90% of the application-
oriented proprietary software vendors to divulge the contents or 
to actually issue to their clients proprietary product source 
code. 

A variety of factors convolve to make source code distribution 
an advantageous arrangement for both vendors and clients. First, 
when a prospective client weighs the generalized features of a 
software package against his specific needs, the ultimate decision 
is often an economic compromise. That is, a customer may realize 
economic gains in the purchase or lease of a software package, 
but in doing so, he must be able to adjust the package in the 
areas which are most significant to him. While the vendor tends 
to have a broadly based knowledge of the relevant application 
area, the knowledge can be at best only of a very generalized 
sort. A potential customer, on the other hand, has intimate 
day-to-day contact with his application. He knows, in particular, 
his needs and the effects of meeting those needs on his 
organization. Since the customer's specific needs ultimately 
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determine later courses of action, the added degree of flexibility 
given by his ability to modify a generalized software package, is 
often a key factor in helping a customer decide whether to buy 
applications software or to build his own. A proprietary software 
vendor may even use whatever capabilities exist in his products 
for easy modification as an aid in competing with other vendors 
of direct services. It is easy to see that the provision of such 
capabilities might be a determining factor in competition between 
two proprietary software vendors. 

A second consideration that often impacts the decision to 
distribute source code to customers is the issue of the compati-
bility of a software package with the confusion of hardware in 
the typical user community. Since the primary goal of a general 
purpose software package is to be independent of any particular 
computing system configuration, a careful design will segregate 
a software product from any hardware dependency. Thus, in order 
for a vendor to deliver a working software package for a given 
computer system, the vendor would necessarily have had to 
countenance every major combination of computer architecture and 
operating system. Since such development efforts are prohibitive, 
the normal course is for the vendor to insure contractually that 
the software package being sold in source code format performs 
accurately and as advertised. The problems that arise from hard-
ware and software incompatabilities often wind up as negotiable 
contract items which are eventually resolved by relying on the 
customer to correct the problems. 

Even though software vendors often warrant their packages 
against inaccuracies, large computer programs always have errors 
In t.hem, and these errors are of varying degrees of severity. 
Since as part of his warranty, the vendor must correct all source 
code errors within a specific time frame, a method must be 
established to easily communicate to the customer those corrections 
that originate with the vendor. One possibility is that the 
vendor may elect to send a representative to fix problems at 
every installation of their package. When a vendor has thousands 
of versions of his package installed at widely separated sites, 
this is clearly cost prohitive. On the other hand, a client who 
has access to source code, can receive from the vendor only those 
changes to the package source code necessary to correct a specific 
problem. 
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It may even be a concern to some customers that the vendor 
will not continue as a successful, functioning organization. A 

-customer who does not have access to the source code for the 
package in his possession, may find himself with a useless pile 
of code, should the vendor discontinue support of the product or 
fail to adequately support the product. In such event, clearly 
the customer would not have any viable solution that would allow 
continued processing using the software. With the possession of 
source code, if the vendor's support of the package every ceases 
or fails, the vendor can still employ his own resources to fix 
bugs and thus continue using the software. 

The demands to provide customer software source code place 
an additional burden on the proprietary software vendor. Not only 
must the vendor provide source code, he must also provide it in 
such a manner as to identify the inner workings of the program 
through precise, technical documentation in explanatory program 
notes. Obviously, with the current practice of distribution of 
source code, a customer's user and data processing departments 
must have full access to information on the package components in 
order to derive full benefit from the package. 

Trade Secrets. A key assumption in the definition of 
proprietary software is that proprietary software is the result 
of a creative engineering effort and is based in whole (or in 
part) on the originality and the creative intellectual processes 
of the vendor. With the creation of an idea, a process, or a 
computer program comes the issue of the prOprietary rights of 
ownership which are vested in the creator. In the case of comp-
uter software, the process of creation generally involves a non-
trivial expenditure of resources. These resources can take the 
form of computer usage, research and development costs, personnel 
costs, and overhead expenses, which taken together represent a 
significant economic investment on the part of an individual or 
an organization. Such investments are entered into with calcu-
lated risk. The justification for taking such a risk is an 
ultimate or indirect economic benefit to the investor. A 
responsible investor will not take such a risk unless he is 
reasonably certain that what is to be developer' can be protected 
as an investment. 

A rapidly growing market, a highly-competitive environment, 
and the market demands for complete disclosure of product details 
will eventually be in direct confrontation with the risk aversion 
goals of the software developer and his investors. Proprietary 
software is the market segment most directly affected by the 
issue of software protection. Indeed, it is the area most sus-
ceptable to the consequences of the lack of protection. However, 
the goals of software protection must be defined prior to the 
creation of improved protection methods. 
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The creation of proprietary software is an iterative process 
by which expertise and knowledge are applied to achieve specific -
goals. The development cycle generates the concepts and features 
of the package to be marketed. These in turn manifest themselves 
in the algorithms and data structures which the package implements. 
Physically, this logical structure is represented in program 
source code and to a lesser extent in the documentation supporting 
the package. It is this underlying structure that is the true 
result of the investment of expertise and financial resources. 
Accordingly, these items are the target of any useful protection 
mechanisms, even though it is in their physical representation 
where our protection mechanisms are to be found. As software 
systems become more and more complex, the number of separately 
identifiable algorithms increases quite rapidly. Ideally, a 
vendor would like to protect his entire system. However, he will 
usually admit that within the system, there are a few algorithms 
or a series of related algorithms that may be considered to be 
the heart of the system. These critical portions of the system 
may consist of routines within a program or specific programs 
themselves. Ex2mpls of such key components are the depreciation/ 
aging programs c.f a fixed asset system, the taxation routines in 
a generalized pLyroll system, the polling strategy in an on-line 
data management system, or a sorting heuristic to pre-process 
data for a numerical software package. A key concept may even be 
a unique data organization methodology which is included as part 
of every program in the system. 

The current protection methods for a vendor's proprietary 
software do not rely on the underlying logical structure of the 
package, but rather on its physical representation. It is from 
this protection gap that software theft becomes a real threat. 
On the one hand, patent laws are inteded to protect a physical 
entity, such as a machine part, but the prevailing legal interpre-
tation is that ideas are not patentable, only the end result of 
the thought processes. As a result, patent laws offer little 
protection to proprietary software vendors. On the other hand, 
copyright laws provide protection only from blatant reproduction 
of program source code. Thus, copyright protection is limited 
only to the physical aspects of a program, and so, it cannot be 
stretched to encompass the algorithms and data structures on which 
a program is based. 

A third and most widely-used means of software protection 
relies on the concept of "trade secret" protection. In essence, 
trade secret protection derives from the fact that a software 
vendor does not disseminate those key portions of his package to 
the general public, but rather takes whatever means are required 
to restrict this distribution. The legal framework within which 
trade secret protection is applied varies from state to state and 
at the federal level is only loosely unified. Tt is embarrasingly 
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difficult to even formulate a meaningful definition of what con-
stitutes a trade secret. A trade secret is variously defined as 
a "feature" or "concept" embodied in the package or specifically 
as any combination of algorithms and data structures that address 
the specific goals or problems. This, however, makes many of a 
vendor's trade secret tools useless since the variability of laws 
creates a variety of opinion as to how to apply the notion of a 
trade secret to a specific software product. 

The tools available to protect a vendor's trade secrets 
include such devices as the restrictive lease or sale contracts 
that limit distribution and access by the customer, non-disclosure 
agreements between the vendor and a prospective customer which in 
a pre-sales environment clearly define the proprietary rights 
involved, and employee contracts and agreements which stipulate 
in some manner the ownership of items produced as a direct or 
indirect result of the efforts of an employee of the vendor. 

There are, of course, several weaknesses implicit in trade 
secret protection mechanisms. The first and most obvious lies 
in the notion of secrecy. In the current conduct of business in 
the proprietary software market place, secrets are distributed 
to N people, all of whom have specific rights to those secrets 
by virtue of their purchase of software systems. A natural 
question to ask is how large N must become before the secret is 
no longer secret. 

A second weakness is the assumption that trade secrets can be 
isolated for a specific software package. Of course, a reason-
able goal is to define a trade secret as narrowly as possibel so 
as to make it unique and distinguishable in both approach and 
purpose from other trade secrets. There is a problem in the 
deciding and composition of a trade secret; that is, the collect-
ion of algorithms and data structures into trade secret entities. 
If one identifies a trade secret too broadly, it looses its 
uniqueness. For example, every payroll system reads input, 
edits, calculates payroll factors, and produces payroll checks. 
So, these mechanisms cannot be construed as trade secrets. On 
the other hand, too restrictive a definition causes a trade 
secret's characteristics to be indistinguishable from others. 
For instance, in a payroll system, the calculation "ADD A, B 
GIVING C" applies to many functions throughout a payroll system. 

A third weakness in trade secret protection is that vendors 
lack real policing powers, making enforcement of contracts 
difficult. Since policing powers apply directly to corporate 
entities, the vendor is forced to review customer disclosure 
policies from outside the customer's organization. Such review 
may be based on questionable marketing intelligence information 
Since the vendor is at the mercy of its customer's management 
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and their effectiveness in controlling distribution within their 
organization. Furthermore, vendors have very little control over 
what ex-employees of customers take with them upon termination; 
similarly, employees of the vendor carry with them not only 
physical representations of programs that they have written, but 
also an accumulation of expertise gained at the expense of the 
vendor. Of course, in the case of ex-employees of the vendor, 
there is usually no doubt as to the ex-employees' intimacy with 
trade secrets, but demonstrating theft by a former employee will 
gain as a result of his direct experience in the industry. The 
situation is further complicated by the elapsed time between the 
act of theft and the discovery by the vendor that a trade secret 
infringement has occurred. During this time lag, the original 
vendor has no control of the distribution of the trade secret so 
that the once secret idea may have been disseminated to the 
general public. In this case, future enforcement is clouded 
since it introduces the new concept of "public domain" at which 
time the vendor clearly loses his trade secret, his investment, 
and possible competitive advantage to public knowledge. In the 
case of theft by a client's employees, a vendor will tend to be 
cautious of distrupting relationships with his customers by 
forcing the issue of distribution of proprietary software 
materials within the clients' organization or the issue of the 
disposition of proprietary software materials upon the termina-
tion of a customer's employees. Software vendors have marketing 
concerns, and an undisturbed, satisfied client is a source of 
sales references and future sales prospects. A vendor has clear-
ly much to gain by maintaining his distance from the internal 
procedures of his clients. 

A fourth weakness is that trade secret protection is contin-
uous and costly. An organization's overhead expenses rise to 
match the administrative requirements of contract and non-disclo-
sure procedures. But these expenses only represent the continu-
ing fixed cost. Much larger variable expenses come from legal 
actions taken when there is the possibility of a breech of an 
agreement or a trade secret infringement. A single law suit 
based on trade secret infringement can consume many man-years of 
effort on the vendor's part and can result in high costs 
associated with legal services. 

As might he expected, no current protection mechanism totally 
protects trade secrets from a calculating computer software 
thief who employs "hybrid piracy". A hybrid pirate is someone 
who intentionally steals the "heart" of a package (i.e., trade 
secrets, but not the entire package), digests the logic knowledge 
embodied in the trade secrets, and then reintroduces the trade 
secrets as part of a "new", or in addition to an "old" package 
through a transformation of its physical representation. 
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Lacking any strong legal alternatives due to the weaknesses 
in copyright patent, and trade secret legislation, a proprietary-
software vendor must seek additional alternatives to gain 
protection for his products and to protect his investment. 
Although new legislation has been proposed that solidified and 
clarifies federal laws on trade secrets and copyrights for 
proprietary software, the uncertainty over the congressional 
action that may be taken means that the proprietary software 
industry can only look to a possible technological solution to 
the problem. 

Software Encryption. The protection problem for proprietary 
software can be interpreted as either protective protection or 
detective protection. An ideal solution should treat both inter-
pretations. A trade-secret thief is usually able to alter the 
macro and micro structure of a software package: he may consoli-
date and re-order routines within programs and programs within 
packages, he may alter (either manually or by use of a cross-
compiler) the coding of the system, and he may modify the 
internal and external file organizations for systems whose data-
manipulating features are paramount. 

Therefore, an appropriated program may appear quite different 
from the original program in a variety of respects. The overall 
conception of the program may be much changed, and direct 
matching of corresponding lines of source code may not be 
possible. Yet, if theft of trade secrets has really taken place, 
then there should he aspects of the original program that have 
been substantially reproduced in the appropriate version. In 
fact, programmers who are able to examine appropriated versions 
of their own work can frequently detect their unique design 
concepts. Some of this is clearly based on transferral of 
programming style, but a far greater component is attributable 
to a thief's inability to recreate the grade secrets. Without 
completely redesigning a program, it is very difficult to 
mutilate all aspects of the original design. Therefore, a test 
of similarity for programs is their "edit distance". If P and 
P' are programs (say, P' has been obtained from P) then the 
transformations used to create P' from P should be invertible. 
That is, it should be possible to proceed from P' to P by undoing 
the effects of the piracy. Let the distance from P' to P be the 
minimal number of editing transformations needed to identify P 
and P'. Such transformations will surely involve consolidating 
blocks of source code into functionally identifiable units, and 
rearrangement of routines or logically coherent portions of 
routines which have no significance for the application. If the 
shortest identification of P and P' is comparatively long, then 
P and P' are of doubtful similarity. In particular, if P and P' 
are payroll programs and if in order to identify P and P', we 
must abstract from all internal structure beyond reading input, 
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editing, calculating payroll factors, and producing checks, then 
P and P' have not been strongly correlated. If on the other hand 
we find short distances - i.e., if we are able to expose nearly 
identically implemented trade secrets - then, we have established 
positive correlations between P and P'. 

In order to protect P from theft and to detect theft when it 
occurs, we would like to insure that the only way to infer the 
implementation of trade secrets in P is to solve a problem that 
is prohibitively expensive to solve. Therefore, since a potential 
thief cannot understand the implementation of a trade secret, he 
must either: 

(1) redesign the solution to the problem solved by the trade 
secret, or 

(2) copy the implementation with minimal change. 

Option (1) does not constitute theft, while option (2) leads 
to detection by edit distance. Because the protection of 
proprietary software is an economic problem, the thresholds for 
what constitutes "prohibitive" expense can be set somewhat lower 
than, say, the type of "prohibitive expense" required to crack a 
military code. In particular, we need only insure that success-
fully appropriating the trade secrets of P is sufficiently more 
expensive than developing independent solutions that a potential 
thief will be inclined to spend his resources in original product 
development. From a technical point of view, it is no longer 
necessary to encode a protection problem into a problem that is 
provably intractable. 	A secret with n = 1,000 characterizing 
parameters can be encoded into a problem with a tractible 

decision problem of time complexity 0(n
3.5

) to obtain a protected 

secret which involves the analysis of 10
10 

conditions. 

This approach is consonant with distribution of source code 
For P; we want only that P be confusing to a penetrator, not that 
it be an unreadable program. 

Given a program Q, in source form, we want to distribute to 
customers an encrypted program P which has approximately the 
same performance characteristics as Q so that clients will buy 
and use it and which protects Q's trade secrets. "Approximately 
the same performance characteristics" means that P and Q deliver 
the same results to the same input and that the resources demand 
of P and Q (e.g., execution time, storage requirements) are 
comparable. It is not so easy to specify what we mean by pro- 
tecting trade secrets. Again, any reasonably intuitive rendering 
should require that the amount of effort required to unravel the 
details of a trade secret will be so great that a potential thief 
will be disposed to design his own system. 
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It is obviously not useful to consider Q to be a piece of 
data (bit string) and encrypt it using a secure data encryption 
scheme [4]. A program is a dynamic object, and there is nothing 
to insure that data encryption will preserve its dynamic 
characteristics; in particular, a naively encrypted version of Q 
will not even be a well-formed program. This brings up an 
essential difference between encrypting data and programs: since 
data is static its encrypted form does not have to be useful, but 
a program - in any form - is supposed to leak some information, 
namely its output. The key problem is to balance the desired 
information leakage with the undesired leakage. 

Let us illustrate how such an ecryption scheme might work. 

A frequently protected type of program logic consists of 
relatively simple computations linked by many layers of decisions. 
In the case of a general purpose taxing package, for instance, 
tax computations for federal, state and local taxing authorities 
may be driven by decision table logic which tests comparatively 
few conditions; reducing the many taxing contingencies for two 
thousand taxing authorities to 100 or so requires expert tax 
knowledge and the investment of many man-years to verify that the 
simplifications do not violate federal, state, or local laws and 
to maintain the table to reflect recent changes in taxation leg-
islation. This, in fact, qualifies the table as a trade secret, 
and makes it a likely candidate for encryption. 

A decision rule for such a system may be expressed as follows. 
Let us assume that we have N attributes of a given taxing 

situation; the presence of the i
th 

attribute is indicated by the 
setting of a flag x i  = 1 while its absence is indicated by setting 

x. =0.1ftbei th attribliteisirrelevant,thenx.is a "don't 

care" condition. Then a decision rule is completely determined 
by a predicate P(xl ,...,xn) which holds exactly when some 

specified attributes x
i 
= 1 and some specified attributes x . = 0. 

Nowlet.usrepresenteachbooleanflagx.by k-bit words w., 

wi  in which m<< k-bits randomly chosen of w
I 
are set high if 

x. = 1 and m randomly chosen m-bits of w
2 
are set high if x

1 
= 0. 

By using a technique known as "superimposed coding" [5], we then 
form 2 k-bit words A,B by forming the "inclusive or" of each of 

the positive and negative w., W.. Then, by associating a bit 

pattern of each of A,B with P(x l ,...,xn), it is possible to 

select a correct action based on the value of P(x l ,...,xn) with- 
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out ever revealing the method of evaluating the predicate. 
(cf. Appendix). 

Superimposed coding originated as a method of retrieving 
information based on secondary keys; as a result of one choice 
of m bits for wi , wi , we may find that unintended atttributes 

are selected by some A,B. In the searching application, this 
condition is called "false drop", and its occurrence cannot be 
eliminated but it can be controlled statistically. 

Returning now to our example taxation package, let us 
imagine a potential penetrator observing tax computations 
occurring in bit patterns A and B. In order to infer 
P(x...,x

n
) from A,B, he must be able to identify the positive 

and negative contributions of the attributes x. and for even 

small choices of N, k this is prohibitive. The end user on the 
other hand, has no trouble executing the decision table - indeed, 
the superimposed coding scheme can be implemented using full-
word bit vector operations so that the running time is only 
increased negligibly. The user also has the source code in plain 
view, so that changes and updates can be sent directly to the 
client; he will be able to determine that decisions are being 
made properly but will not have access to the internal working 
of the decision-making mechanisms. 

Protection is finally achieved by "padding" the real rules 
with a few false rules. The penetrator now must decide whether 
to infer the proper taxing rules'by either static or dynamic 
analysis. In dynamic analysis, the penetrator must be able to 
distinguish real responses from false ones. A penetrator 
sufficiently expert to make such distinctions will surely be 
inclined to design his own solutions. Static analysis reduces 
to a covering and partition problem as described in the 
appendix. This problem is solvable in polynomial time, but the 
superimposed coding scheme gives a decision table predicate 

with -10
6 
degrees of freedom; this is already the same order of 

magnitude as the number of state, local and federal taxing 
contingencies, so that the economic benefits of theft is doubt-
ful. 
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It is not clear how to extend this idea to other key 
computational pieces of a software package, but the point of 
these methods should be clear. We want to keep tight control 
over the "clear" interpretation of trade secrets, so that a 
potential thief will not be able to use hybrid methods without 
leaving fingerprints. In the case above, he must insure that 
the decision table operates correctly by copying it; since the 
structure of the table is determined by a large number of random 
choices, it may be demonstrated in a court of law that chance 
duplication is statistically impossible. 
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APPENDIX. Superimposed Coding 

Let xl ,...,xN  be boolean variables and let P(x l ,...,xN) be 

the predicate 

	

x. = 1 	Vi E I, and 
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 ) is thus encoded since in order to determine the 

manner in which P depends on its arguments, it is required to 

solve a set partition problem which is solvable in time 0(n
3.5

). 
While this is not intractible, it may be sufficient for protect-
ing proprietary software as described in the text. 

The statistics of false drops for this algorithm is 
discussed in Knuth [5]. 
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DISCUSSION 

Rabin: The problem is really to make it possible for the 
original vendor to prove in court, say, that theft really did 
Occur. 

DeMillo: The problem also is to insure that someone could 
not take the protected program and directly sell it because it's 
not a program that he could modify. It leaves hidden those parts 
which you've protected, those parts which you consider the heart 
or the critical inventions of the program. 

Lipton: Just a follow-up on that point. What we're really 
trying to say is that if you could recover the original program 
which is a clear and understandable structure, you can then 
modify it according to a number of techniques to come up with a 
new program that you could then possibly argue that you built. 
By putting dirty, strange fingerprints throughout the program, 
we can then make it much more difficult for that to happen. 

Millen: There is a story that I think is fairly well-known 
and is relevant to this. It has to do with the days when books 
of mathematical tables were produced manually with a calculator. 
The method for protecting copyrights was to introduce some very 
small error ... perhaps, one decimal place in ten digits. It 
probably would not effect anyone who was using the table, but it 
was a dead give-away to identify copies. 

McNeil: I would prefer for a solution to be preventive. It 
is costly to follow-up a theft. For instance, in one case which 
we're involved with now, we are spending thousands and thousands 
of dollars just in the follow-up. It would be much better for us 
if we had access to a technology in which it was not possible to 
successfully steal the protected components. That's a solution 
that completely solves our problem from the beginning. 
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Minsky: I am intrigued by your remark about the dynamic 
aspect of these things. Do you mean that one may reproduce the 
protected program by simply observing how it behaves? 

DeMillo: No. The purpose of the comment was to underline 
the fact that one cannot directly apply data encryption techniques. 
They may change drastically the dynamic behavior of the program. 
In particular, the program may not in fact even be a program after 
it is encrypted. So, you cannot treat the program as a bit 
string and encrypt it. 

Cohen: Not only must it work, but it must have almost the 
same performance characteristics. 

DeMillo: That's right. It has to be competitive with the 
original. If we can close on a non-technical note, I think it is 
important to emphasize that the world is just not structured to 
handle these problems. Some commercial software people are very 
much at a state of deciding whether or not to abandon traditional 
ways of dealing with users and competitors. 
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T. INTRODUCTION 

There has been considerable interest recently in the develop-
ment of encryption methods for computer networks. Activity 
falls into two major but related areas: the development of strong 
encryption algorithms, and the design of the rules or protocols 
by which an algorithm is actually used in an operating network. 
As an example of the relation between these two areas, public key 
algorithms have been suggested as a superior solution to key 
distribution and digital signatures; issues which, it is claimed, 
would otherwise require additional protocols. Here we concentrate 
on the protocol problems. We examine protocol questions which 
arise at various levels of a system, from the low, detailed level 
at which the various operating systems in a network communicate, 
to the higher, user visible level involving such services as 
digital mail. As a result a rather unique perspective is provided, 
and we are led to some fairly surprising conclusions. 

* This research was supported by the Advanced Research Projects 
Agency of the Department of Defense under Contract MDA 903-77-
C-0211. 
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The paper is written basically in a bottom up fashion. The 
first section considers questions of how encryption "channels" 
interact with network software. The next section outlines a 
basic protocol for the use of encryption in a network, independent 
of the nature of the encryption algorithm (public key, convention-
al, etc). These two sections show how it is possible to build a 
secure network base, on top of which many extensions are directly 
possible. At that point attention turns to some of the higher 
level, user visible issues, such as public key algorithms and 
digital signatures. It is argued that none of the currently 
proposed signature methods is satisfactory. We propose an 
alternative which we believe satisfies the necessary requirements. 
It is based on the existence of the secure lower level protocols 
discussed in the earlier sections. Those readers willing to 
accept the existence of secure lower level network protocols may 
wish to skip to section six, where the discussion of public keys 
and digital signatures can be found. 

II. LEVELS OF INTEGRATION 

Encryption forms the basis for solutions to computer network 
security problems. Basically, a single communications channel can 
be multiplexed into a large number of separately protected, secure 
communication channels by assigning a separate encryption key 
pair for each logical communication channel. When a user requests 
the establishment of a new communication, protection policy checks 
can be performed, and, if successful, a key can be distributed to 
each end of the communication channel. 

Several key distribution methods have been studied [Popek 78b]. 
One method utilizes a key distribution center which receives 
requests for communications, and distributes keys accordingly. 
The keys are transmitted using previously arranged secret keys 
which change only rarely. Other methods allow distributed key 
management, with several, or even all, sites participating in key 
distribution. Recently, public key encryption algorithms [Rivest 
77a] have become available. Originally, such algorithms were 
thought to simplify the key distribution problem, but recent 
research suggests that no savings result [Needham 77]. This issue 
is discussed at length in section six. 

One problem which must be resolved in designing a secure net-
work encryption mechanism, regardless of the nature of the 
encryption algorithm or the key distribution method, is the level 
of integration of the encryption facility. There are many 
possible choices for the endpoints of the encryption channel in a 
computer network, each with its own tradeoffs. In a packet 
switched network, one could encrypt each line between two switches 
separately from all other lines. This is a low level choice, and 
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is often called link encryption. Instead, the endpoints of the 
encryption channels could be chosen at a higher architectural 
level: at the computer systems, referred to as hosts, which are 
connected to the network. Thus, the encryption system would 
support host-host channels, and a message would be encrypted only 
once as it was sent through the network rather than being decryp-
ted and reencrypted a number of times, as implied by the low level 
choice. In fact, one could even choose a higher architectural 
level. Endpoints could be individual processes within the 
operating systems of the machines that are attached to the net-
work. If the user were employing an intelligent terminal, then 
the terminal is a candidate for an endpoint, too. This view 
envisions a single encryption channel from the user directly to 
the program with which he is interacting, even though that program 
might be running on a site other than the one to which the 
terminal is connected. This high level choice is endpoints is 
sometimes called end-end encryption. 

The choice of architectural level in which the encryption is 
to be integrated has many ramifications for the overall archi-
tecture. One of the more important is the combinatorics of key 
control versus the amount of trusted software. 

In general, as one considers higher and higher levels in most 
systems, the number of identifiable and separately protected 
entities in the system tends to increase, sometimes dramatically. 
For example, while there are less than a hundred hosts attached 
to the ARPANET, at a higher level there often are over a thousand 
processes concurrently operating, each one separately protected 
and controlled. The number of terminals and users is of course 
also high. This numerical increase means that the number of 
secure channels -- that is the number of separately distributed 
matched key pairs required -- is correspondingly larger. Also, 
the rate at which keys must be generated and distributed can be 
dramatically increased. 

In return for the additional cost and complexity which may 
result, there can be significant reduction in the amount of soft-
ware whose correct functioning must be assured for the protection 
of the communication channel. This issue is very important and 
must•be carefully considered. It arises in the following way. 
When the lowest level is chosen, the data being communicated 
exists in cleartext form as it is passed from one encrypted link 
to the next by the switch. Therefore, the software in the switch 
must be trusted not to intermix packets of different channels. 
If a•higher level is selected, from host to host for example, then 
errors in the switches are of no consequence. However, operating 
system failures are still serious, since the data exists as 
cleartext while it is system resident. 
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In principle then, the highest level integration of 
encryption is most secure. However, it is still the case that 
the data must be maintained in clear form in the machine upon 
which processing is done. Therefore, the more classical methods 
of protection within individual machines are still quite necessary, 
and the value of very high level end-end encryption may be some-
what lessened. A rather appealing choice of level that integrates 
effectively with kernel structured operating system architectures 
is outlined in section four. 

Another small but nontrivial drawback to high level encryption 
should be pointed out. Once the data is encrypted, it is diffi-
cult to perform meaningful operations on it. Many front end 
systems provide such functions as packing, character erasures, 
transmission on end of line or control character detect, etc. If 
the data is encrypted before it reaches the front end, then these 
functions cannot be performed. That is, any processing of data 
flowing through the channel must be done above the level at which 
encryption takes place. 

III. ENCRYPTION PROTOCOLS 

Network communication protocols concern the discipline 
imposed on messages sent throughout the network to control 
virtually all aspects of data traffic, both in amount and 
direction. It is well recognized that choice of protocol has 
dramatic impacts on the utility, flexibility and bandwidth 
provided by the network. Since encryption facilities essentially 
provide a potentially large set of logical channels, the protocols 
by which the operation of those channels is managed also can have 
significant impact. 

There are several important questions which any encryption 
protocol must answer: 

(1) How is the initial cleartext/ciphertext/cleartext channel 
from sender to receiver and back established? 
(2) How are cleartext addresses passed by the sender around the 
encryption facilities to the network without providing a path by 
which cleartext data can be inadvertently or intentionally leaked 
by the same means? 
(3) What facilities are provided for error recovery and 
resynchronization of the protocol? 
(4) How is flow control performed? 
(5) How are channels closed? 
(6) How do the encryption protocols interact with the rest of the 
network protocols? 
(7) How much software is needed to implement the encryption 
protocols? Does the security of the network depend on this 
software? 
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One wishes a protocol which permits channels to be dynamically 
opened and closed, allows the traffic flow rate to be controlled 
(by the receiver presumably), provides reasonable error handling, 
and all with a minimum of mechanism upon which the security of 
the network depends. Clearly the more software is involved, the 
more one must be concerned about the safety of the overall net-
work. The performance resulting from use of the protocol must 
compare favorably with the attainable performance of the network 
using other suitable protocols without encryption. Lastly, one 
would prefer a general protocol which could also be added to 
existing networks, disturbing the transmission mechanisms already 
in place as little as possible. Each of these issues must be 
settled independent of the level of integration of encryption 
which is selected, the method of key distribution, or the nature 
of the encryption algorithms employed. 

To illustrate the ways in which these considerations interact, 
in the next section we outline a complete protocol. The case 
considered employs an end to end architecture in a way that can 
be added to an existing network. 

IV. NETWORK ENCRYPTION PROTOCOL CASE STUDY: PROCESS-PROCESS 
ENCRYPTION 

We outline here a general encryption protocol that operates 
at the relatively high level of process to process communication. 
A major goal is the minimization of the software on which the 
security of the system depends. Network communication protocols 
often involve fairly large and complex parts of the operating 
system, sometimes the primary source of complexity and amount of 
code. This fact results from the variety of tasks which the 
network protocol must perform, such as connection establishment, 
flow control, error detection and correction. Thus, this design 
attempts to eliminate as much as possible the necessity of 
trusting that software for secure operation. 

The design presented here utilizes process-process encryption. 
In process-process encryption, encoding is performed as data 
moves from the source process to the system's network software. 
This approach minimizes the points where data exists in cleartext 
form, and thus the mechanism which needs to be trusted. While a 
higher level choice could he made, for example allowing the 
processes to perform their own encryption within themselves, such 
a choice does not assure that all data sent over the network is 
encrypted. Thus, process-process encryption seems to he the 
highest safe 'choice. The details of the protocol are applicable 
either to public key based or conventional algorithms. Any of 
the key distribution methods discussed in [Popek 78b] can be 
supported. 
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It is assumed that the reader is familiar with the ideas of 
operating system security kernels [Popek 78c]. Briefly, 
security kernel based systems attempt to isolate the security 
relevant parts of the system and place them in a nucleus, running 
on the bare hardware. In that way, the secure operation of the 
system depends only on that software. By careful design and 
implementation of a security kernel, it is possible to formally 
verify the security properties of the system [Popek 78a]. 

Overview 

In this protocol, when a user attempts to send data, a system 
encrypt function encrypts that data and passes it to the network 
management software, which is logically part of the local opera-
ting system. The network software then attaches headers or other 
information required by the network protocols and sends the data 
to the communications facility. Upon reception by the remote 
network software, the headers and other protocol information are 
removed from the data and the data is passed, via a system de-
crypt function, to the appropriate user process. 

Initial establishment of the communication channel is also 
provided in a secure way. When a user process attempts to 
establish communication, the local network software is informer' 
by the system. The network software then communicates with the 
network software at the remote site. When the two network soft-
ware packages have arranged for the new communication, the system 
at each site is informed. At this point in time, the system 
software attempts to obtain encryption keys for this communication. 
This key distribution is accomplished either with local key 
management software, or via a key distribution center. If a 
conventional encryption algorithm was employed, then new keys 
would be chosen and distributed. If a public key encryption 
algorithm was utilized, then the public key of the recipient and 
the private key of the sender would be retrieved. 

In the public key case, an additional authentication sequence 
is required, since the public keys may have been used before. 
This authentication sequence effectively establishes a sequence 
number to be included in each message to guarantee that previous 
messages cannot be recorded by an imposter and replayed. The 
authentication sequence is not required in the conventional 
encryption case since the new keys effectively form an authenti-
cation and prevent any prior messages from being useful. 

After the keys have been chosen and distributed (using a 
previously established secure key distribution channel), the 
user processes are given capabilities to send and receive data. 
The operating system calls employed should automatically encrypt 
and decrypt the data with the appropriate keys. Thus, the 
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communication channel is established. 

The above design allows existing network protocols in many 
cases to be largely left undisturbed, and preserves much existing 
network software. If desired, user processes can be blocked, in 
a reliable way, from communicating with any other user processes 
anywhere in the network unless the protection policy involved in 
setting up the keys permits it. Each user's communication is 
protected from every other user's communication. Perhaps most 
important, the amount of trusted mechanism required in the system 
nucleus, as we shall see, is quite limited. 

The Encyption Connection Protocol 

The details of secure communication establishment, briefly 
described above, are now presented in more detail. To outline 
this procedure, we first view the operation from the vantage 
point of the operating system nucleus, or kernel, and then see 
how host network protocol software operates making use of the 
kernel facilities. For brevity, in this discussion, a logical 
communication channel between two processes will be known as a 
connection. The host network software will be referred to as 
the network protocol manager (NPM). In general purpose networks, 
the role of the NPM is quite sophisticated and requires consid-
erable code to implement the necessary protocols, an important 
reason not to have security depend on the NPM. 

In the discussion below, it will be understood that a pair of 
matching encryption keys, one held by each of the two hosts 
involved, defines a secure, one way (simplex) channel. A bi-
directional (duplex) channel between two hosts therefore employs 
two pairs of keys [1]. Each kernel of each host in normal 
operational mode has a secure full duplex channel established 
with each other kernel in the network. How these channels are 
established concerns the method by which hosts are intialized, 
and is discussed later. The kernel-kernel channels are used for 
exchanging keys that will be used for other channels between the 
two hosts and for kernel-kernel control messages [2]. The need 
for these will become apparent as the protocol is outlined. If 
it is desired, the protocols can be trivially altered to keep the 
cleartext form of keys only within the encryption units of the 
hosts. For simplicity of explanation, that requirement is not 
used here. 

[1] The same key could be used for both directions in convention-
al encryption, but for conceptual clarity here it is not 

[2] In a centralized key distribution version, these kernel-
kernel secure channels would be replaced by kernel-key 
distribution center secure channels. 
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A connection will get established in the following way. 
When hosts are initialized, their NPMs will establish connections 
through a procedure analogous to the one we outline here, and 
described in more detail later. Then, when a user process wishes 
to connect to a foreign site, the process executes an "establish 
connection" system call which informs the NPM of the request. 
The NPM exchanges messages with the foreign NPM using their 
already existing channel. This exchange will include any host-
host protocol for establishing communications in the network. 
Presumably the NPMs eventually agree that a connection has been 
established. At that point the user processes are still unable 
to communicate, since so far as the kernel is concerned, nothing 
has been done. The content of NPM exchanges is invisible to the 
kernel. Rather, at this point, the NPMs must ask the kernel to 
establish the channel for the processes. This action is performed 
with kernel function calls. Those calls grant capabilities to 
the user process so that subsequent requests can be made directly 
by the process. 

In order to explain in more detail, the following four proto-
type kernel calls are described. The first two are involved in 
setting up the encryption channel, and presumably would be issued 
only by the NPMs. The second two are the means by which user 
processes send and receive data over the connection. 

GID (foreign-host, connection-id, process-id, state) Give-id. 
This call supplies to the kernel an id which the caller would 
like to be used as the name of a channel to be established. The 
kernel checks it for uniqueness before accepting it, and also 
makes relevant protection checks. If state = "init", the kernel 
chooses the encryption key to be associated with the id (or 
queries key controller for key). The entry <connection-id, key, 
process-id, state> is made in the kernel Key Table. Using its 
secure channel, the kernel sends <connection-id, key, policy-info> 
to the foreign host. The policy-info can be anything, but in the 
military case, it should be the security level of the local 
process identified by process-id. In a commercial case it might 
he the organization by which the user was employed. It might 
also be a network-wide global name of the user associated with 
the process. If state = "complete", then there should already be 
an entry in the Key Table (caused by the other host having 
executed a GID) so a check for match is made before sending out 
the kernel-kernel message and a key is not included. The NPM 
process is notified when an id is received from a foreign kernel. 



CID ( connection-id) Close id. The NPM and the appropriate 
process at the local site are both notified that the call has 
been issued. The corresponding entry in the Key Table is deleted. 
Over the secure kernel-kernel channel, a message is sent telling 
the other kernel to delete its corresponding Key Table entry. 
This call should be executable only by NPMs or by the process 
whose Key Table entry indicates that it is the process associated 
with this id, to block potential denial of service problems. 

Encrypt (connection-id, data) Encrypt data and buffer for 
NPM. This call adds integrity information, such as sequence 
numbers, to the data, encrypts the data using the key correspond-
ing to the supplied id (fails unless the process-id associated 
with the connection-id matches that of the caller) and places the 
data in an internal buffer. The NPM is informed of the awaiting 
data. 

Decrypt (connection-id, user-buffer). Decrypt data. This call 
decrypts the data from the system buffer belonging to the connec-
tion-id supplied using the appropriate key. The data is moved 
into the user's buffer. The call fails unless the process-id 
stored in the Key Table matches the caller and all data integrity 
checks succeed (such as sequence numbers). 

An important new kernel table is the Key Table [1]. It contains 
some number of entries, each of which have the following 
information: 

<foreign-host, connection-id, key, sequence-no, local-process-id> 

There is one additional kernel entry point besides the calls 
listed above, namely the one caused by control messages from the 
foreign kernel. There are two types of such messages: one 
corresponding to the foreign GID call and the other corresponding 
to a foreign CID. The first makes an incomplete entry in the 
receiving kernel's Key Table, and the second deletes the 
appropriate entry. 

The following sequence of steps illustrates how a connection 
would be established using the encryption connection protocol. 
The host processors involved are numbered 1 and 2. Process A at 
host 1 wishes to connect to process B at host 2. 

[1] In some hardware encryption implementations, the keys are 
kept internal to the hardware unit. In that case, the key 
entry in the Key Table can merely be an index into the 
encryption unit's key table. 
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(1) Process A executes an establish connection call which informs 
NPM@1, saying "connect from A to B@2". This message can be sent 
locally in the clear. If confinement is important, other methods 
can be employed to limit the bandwidth between A and the NPM. 
(2) NPW1 sends control messages to NPM@2 including whatever 
Host-Host protocol required [2]. 
(3) NPM@2 receives an indication of message arrival, does an I/O 
call to retrieve it, examines header, determines that it is 
recipient and processes the message. 
(4) NPM@2 initiates step 2 at site 2, leading to step 3 being 
executed at site 1 in response. This exchange continues until 
NPM@1 and NPM@2 open the connection, having established whatever 
internal local name mappings are required. 
(5) NPW1 executes GID (connection-id, process-id, "init"), where 
connection-id is an agreed upon connection id between the two 
NPMs, and process-id is the local name of the process that 
requested the connection. 
(6) In executing the GID, the kernel@l generates or obtains a -
key, makes an entry in its Key Table, and sends a message over 
its secure channel to Kernel@2, who makes corresponding entry in 
its table and interrupts NPM@2, giving it connection-id. 
(7) NPM@2 issues corresponding GID (connection-id, process-id', 
"complete") where connection-id is the same and process-id' is 
the one local to host 2. This call interrupts process-id', and 
eventually causes the appropriate entry to be made in the kernel 
table at host 1. The making of that entry interrupts NPM@1 and 
process-id@l. 
(8) Process-id and process-id' can now use the channel by issu-
ing successive Encrypt and Decrypt calls. 

There are a number of places in the mechanisms just described 
where failure can occur. If the network software in either of the 
hosts fails or decides not to open the connection, no kernel calls 
are involved, and standard protocols operate. A GID may fail 
because the id supplied was already in use, a protection policy 
check was not successful or because the kernel table was full. 
The caller is notified. He may try again. In the case of failure 
of a GID, it may be necessary for the kernel to execute most of 
the actions of CID to avoid race conditions that can result from 
other methods of indicating failure to the foreign site. 

[2] The host-host protocol messages would normally be sent 
encrypted using the NPM-NPM key in most implementations. 
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Discussion 

The encryption mechanism just outlined contains no error 
correction facilities. If messages are lost, or sequence numbers 
are out of order or duplicated, the kernel merely notifies the 
user and network software of the error and renders the channel 
unusable. This action is taken on all channels, including the 
kernel-kernel channels. For every case but the last, CIDs must 
be issued and a new channel created via GIDs. In the last case, 
the procedures for bringing up the network must be used. 

This simple minded view is acceptable in part because the 
expected error rate on most networks is quite low. Otherwise, it 
would be too expensive to reestablish the channel for each error. 
However, it should be noted that any higher level protocol errors 
are still handled by that protocol software, so that most 
failures can be managed by the NPM without affecting the encryp- 
tion channel. On highly error prone channels, additional protocol 
at the encryption level may still be necessary. See Kent [Kent 
76] for a discusion of resynchronization of the sequencing 
supported by the encryption channel. 

From the protection viewpoint, one can consider the collection 
of NPMs across the network as forming a single (distributed) 
domain. They may exchange information freely among them. No 
user process can send or receive data directly to or from an NPM, 
except via narrow bandwidth channels through which control infor-
mation is sent to the NPM and status and error information is 
returned. These channels can be limited by adding parameterized 
calls to the kernel to pass the minimum amount of data to the 
NPMs, and having the kernel post, as much as possible, status 
reports directly to the processes involved. The channel band-
width cannot be zero, however. 

System Initialization Procedures 

The task of bringing up the network software is composed of 
two important parts. First, it is necessary to establish keys 
for the secure kernel-kernel channels and the NPM-NPM channels. 
Next, the NPM can initialize itself and its communications with 
other NPMs. Finally, the kernel can initialize its communications 
with other kernels. This latter problem is essentially one of 
mutual authentication, of each kernel with the other member of 
the pair, and appropriate solutions depend upon the expected 
threats against which protection is desired. 

The initialization of the kernel-kernel channel and NPM-NPM 
channel key table entries will require that the kernel maintain 
initial keys for this purpose. The kernel cannot obtain these 
keys using the above mechanisms at initialization because they 
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require the prior existence of the NPM-NPM and kernel-kernel 
channels. Thus, this circularity requires the kernel to maintain 
at least two key pairs [1]. However, such keys could be kept in 
read only memory of the encryption unit if desired. 

The initialization of the NPM-NPM communications then proceeds 
as it would if encryption were not present. In most networks, 
some form of host-host reset command would be sent (encrypted 
with the proper NPM-NPM key). Once this NPM-NPM initialization 
is complete, the kernel-kernel connections could be established 
by the NPM. At this point, the system would be ready for new 
connection establishment. It should be noted that, if desired, 
the kernels could then set up new keys for the kernel-kernel and 
NPM-NPM channels, thus only using the initialization keys for a 
short time. To avoid overhead at initialization time, and to 
limit the sizes of kernel Key Tables, NPMs probably should only 
establish channels with other NPMs when a user wants to connect 
to that particular foreign site, and perhaps close the NPM-NPM 
channel after all user channels are closed. 

Symmetry 

The case study just presented portrayed a basically symmetric 
protocol suitable for use by intelligent nodes, a fairly general 
case. However, in some instances, one of the pair lacks 
algorithmic capacity, as illustrated by simple hardware terminals 
or simple microprocessors. Then a strongly asymmetric protocol 
is required, where the burden falls on the more powerful of the 
pair. 

A form of this problem might also occur if encryption is not 
handled by the system, but rather by the user processes them-
selves. Then for certain operations, such as sending mail, the 
receiving user process might not even be present. (Note that 
such an approach may not guarantee the encryption of all network 
traffic). Schroeder and Needham have sketched protocols that are 
similar in spirit to those presented here to deal with such 
cases. 

[1] In a centralized key distribution version, the only keys 
which would be needed would be those for the key distributor 
NPM-host NPM channel and for the key distributor kernel-host 
kernel channel. In a distributed key management system, 
keys would be needed for each key manager. 
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V. DATAGRAMS 

The case of electronic mail illustrates an important variation 
to the protocols presented earlier. Assume that a user at one 
site wishes to send mail to a user at another site. 

Using conventional encryption algorithms, the first user 
would request a connection to the second user, and a new key 
would be chosen and distributed by the key controller for use•in 
the communication. That key is sent using the secret keys of the 
two users. 

However, since the second user may not be signed on at the 
time, a daemon process is used to receive the mail and deliver it 
to the user's "mailbox" file for his later inspection. It is 
desirable that the daemon process not need to access the 
cleartext form of the mail, for that would require the mail 
receiver mechanism to be trusted. This feat can be accomplished 
by sending the mail to the daemon process in encrypted form and 
having the daemon put that encrypted data directly into the 
mailbox file. The user can decrypt it when he signs on to read 
his mail. In that way, the daemon only needs the ability to 
append to a user's mailbox file. 

In order for the user to know the new key used for this mail, 
however, the key distribution algorithm used earlier must be 
modified. Rather than sending the key for this connection to both 
the sender and the receiver, the key controller sends the key 
twice to the sender, one copy encrypted with the sender's secret 
key and one copy encrypted with the receiver's. The sender can 
prepend the copy of the key encrypted in the receiver's secret key 
to the mail before transmission. When the recipient signs on, 
his own mail program will examine the mailbox file, find the key 
message, decrypt it using his secret key, and then use the new 
key to decrypt the remaining text. 

In the case of the public key encryption algorithms, the mail 
problem is somewhat simplified since the recipient knows what key 
to use in decryption (his secret key). However, authentication 
is not possible since the recipient is not present when the 
message is received. Thus, it may be a replay of a previously 
sent message. This problem can be prevented in the conventional 
encryption algorithm case via various protocols with the key 
managers, for example, by timestamping the mail and having the 
recipient keep track of recently used mail keys. 

Both mechanisms outlined above do guarantee that only the 
desired recipient of a message will be able to read it. However, 
as pointed out, they don't guarantee to the recipient the identity 
of the sender. This problem is essentially that of digital 
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signatures, and is discussed in the next section. 

VI. PUBLIC KEY ALGORITHMS AND DIGITAL SIGNATURES 

The development of public key based encryption was greeted by 
a great deal of interest, since the method appears to present 
considerable advantages over conventional encryption methods, 
especially with respect to key distribution and digital mail 
signatures. 

However, on closer examination, it seems that public key 
algorithms possess no particular advantages over conventional 
algorithms. The reasons for this conclusion are readily seen and 
are outlined below. 

Key Distribution 

Let us examine each of the advantages claimed for public key 
algorithms. The first is key distribution. Simply put, public 
key advocates argue that an automated "telephone book" of public 
keys can generally be made available, and therefore whenever user 
x wishes to communicate with user y, x merely must look up y's 
public key in the book, encrypt the message with that key, and 
send it to y [Diffie 76]. Therefore, there is no key distribution 
problem at all. Further, no central authority is required 
initially to set up the channel between x and y. 

Needham and Schroeder point out however that this viewpoint 
is incorrect: some form of a central authority is needed and the 
protocol involved is no simpler nor any more efficient than one 
based on conventional algorithms [Needham 77]. Their argument may 
be summarized as follows. First, the safety of the public key 
scheme depends critically on the correct public key being 
selected by the sender. If the key listed with a name in the 
"telephone book" is the wrong one, then there is no security. 
Furthermore, maintenance of the (by necessity machine supported) 
book is non-trivial because keys will change; either because of 
the natural desire to replace a key pair which has been used for 
high amounts of data transmission, or because a key has been 
compromised through a variety of ways. There must be some source 
of carefully maintained "books" with the responsibility of care- 
fully authenticating any changes and correctly sending out public 
keys (or entire copies of the book) upon request. 
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Needham and Schroeder also exhibit protocols to provide the 
desired properties for public key systems, and show that there 
are equivalent protocols for conventional algorithms. The proto-
cols are equivalent both in terms of numbers of messages required 
as well as in the mechanisms which must be trusted. The only 
observable difference is that the central authority in the 
conventional case, in addition to being trusted, must also keep 
its collection of (conventional) keys secret. Based on the work 
at UCLA on secure operating systems, it appears that the task of 
constructing a secure central authority is no harder than 
building the correct one needed for public key systems. 

Digital Signatures 

The second area in which public key methods are often thought 
to be superior to conventional ones is digital message signatures. 
The method, assuming a suitable public key algorithm, is for the 
sender to encode the mail by "decrypting" it with his private key 
and then send it. The receiver decodes the message by "encrypting" 
with the sender's public key. The usual view is that this 
procedure does not require a central authority, except to adjudi-
cate an authorship challenge. However, two points should be 
noted. First, a central authority is needed by the recipient for 
aid in deciphering the first message received from any given 
author (to get the corresponding public key, as above). Second, 
the central authority must keep all old values of public keys in 
a reliable way to properly adjudicate conflicts over old signa-
tures (consider the relevant lifetime of a signature on a real 
estate deed for example) [Needham 77]. 

Further, and more serious, the unadorned public key signature 
protocol just described has an important flaw. The author of 
signed messages can effectively disavow and repudiate his signa-
tures at any time, merely by causing his secret key to be made 
public, or "compromised". When such an event occurs, either by 
accident or intention, all messages previously "signed" using the 
given private key are invalidated, since the only proof of 
validity has been destroyed. Because the private key is now 
known, anyone could have created any of the messages sent earlier 
by the given author. None of the signatures can be relied upon. 

Hence, the validity of a signature on a message is only as 
safe as the entire future history of protection of the private 
key. Further, the ability to remove the protection resides in 
precisely the individual (the author) who should not hold that 
right. That is, one important purpose of a signature is to 
indicate responsibility for the content of the accompanying 
message in z! way that cannot be later disavowed. 
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Some people may argue that this concern is overly conservative; 
that existing signature methods are not very reliable, that 
individuals have considerable incentive not to repudiate their 
signatures, and so one is justified in constructing a flawed 
solution. However, in our view this characteristic is clearly 
unsatisfactory, especially if it is possible to devise suitable 
digital signature methods which do not suffer from this problem. 

The situation with respect to signatures using conventional 
algorithms initially appears slightly better. Rabin [Rabin 78] 
proposes elsewhere in this volume a method of digital signatures 
based on any strong conventional algorithm. Like public key 
methods, it too requires either a central authority or an explicit 
agreement between the two parties involved to get matters going 
[1]. Similarly, an adjudicator is required for challenges. 
Rabin's method, however, uses a large number of keys, with keys 
not being reused from message to message. As a result, if a few 
keys are compromised, other signatures based on other keys are - 
still safe. However, that is not a real advantage over public 
key methods, since one could easily add a layer of protocol over 
the public key method to change keys for each message as Rabin 
does for conventional methods. One could even use a variant of 
Rabin's scheme itself with public keys, although it is easy to 
develop a simpler one. 

However, all of the digital signature methods described or 
suggested above suffer from the problem of repudiation of signa-
ture via key compromise. Rabin's protocol or analogoues to it 
merely limit the damage (or, equivalently, provide selectivity!). 
It appears that the problem is intrinsic to any approach in which 
the validity of an author's signature depends on secret 
information, which can potentially be revealed, either by the 
author or other interested parties. Surely improvement would be 
desirable. 

[1] In his paper, Rabin describes an initialization method which 
involves an explicit contract between each pair of parties 
that wish to communicate with digitally signed messages. 
One can easily instead add a central authority to play this 
role, using suitable authentication protocols, thus' 
obviating any need for two parties to make specific arrange-
ments prior to exchanging signed correspondence. 
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A Reliable Digital Signature Method 

A simple, obvious solution is to interpose some trusted 
interpretive layer between the author and his signature keys, 
whatever their form. For example, suppose the list of keys in 
Rabin's algorithm were not known to the author, but instead were 
contained in a secure Unit (hardware or software). Whenever the 
author wished to send a signed message, he merely submitted the 
message to the Unit, which selected the appropriate keys and 
then used the standard algorithm. Each author has access to such 
a Unit. 

The loading of each Unit requires some examination. In 
particular, the means which are used to select keys and insert 
them into each Unit must be correct if mail challenges are to be 
handled satisfactorily. That is, there must be some trusted 
Source of keys (and matching "standard message" in the Rabin 
protocol), and the key list for each author/recipient pair must 
be deliverable in a correct, secret way to the appropriate Units. 
We will call the collection of Units and the Source(s), together 
with their internal communication protocols, a Network Registry 
(NR). Such an NR appears required to solve the problems raised 
earlier. Note that some secure communication protocol among the 
components of the Network Registry is required. However, it can 
be very simple; low level link encryption would suffice. 

For safety and efficiency, the NR functions presumably should 
be decomposed and distributed throughout the network. In particu-
lar, the failure or compromise of a local NR would then only have 
local consequences. One can even construct local NR components 
of the Network Registry in a decentralized way so that compromise 
of more than one component would be required before a message 
signature was affected [1]. The NR architecture issue, while 
important, is to some degree a digression here and so we put it 
aside. 

The Registry concept is quite common in the paper world. A 
local government's real estate recorder's office is probably the 
most commonly known example. 

[1] See section 6.6. 
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Authentication 

We now make an important observation. It is still necessary 
that there exist a guaranteed authentication mechanism by which 
an individual is authenticated to the NR (presumably directly to 
the local Unit). Any reasonable communication system of course 
ultimately requires such a facility, for if one user can 
masquerade as another, all signature systems will fail. What is 
required is some reliable way to identify a user sitting at a 
terminal -- some method stronger than the password schemes used 
today. Perhaps an unforgeable mechanism based on fingerprints 
or other personal characteristics will emerge. 

Simplification of the Proposed Signature Architecture: 
Specialized Digital Signature Protocols Unnecessary 

Once the necessity of a Network Registry is recognized, 
including a guaranteed authentication mechanism, it appears that 
simplifications in the mechanisms required for digital signatures 
can be made that seem to remove the need for specialized digital 
signature protocols. Instead, any of a collection of simple 
methods will suffice. 

In particular, in order for the Network Registry to operate 
satisfactorily (including performing user authentication), it 
clearly must be distributed, and clearly must be able to 
communicate securely internally among the distributed components. 
Given that such facilities exist, then the following is an example 
of a simple implementation of digital signatures which does not 
require a specialized protocol or encryption algorithm: 

(1) The author authenticates with a local Network Registry 
component, creates a message, and hands the message to the NR 
together with the recipient identifier and an indication that a 
registered signature is desired. 
(2) A Network Registry (not necessarily the local component) 
computes a simple characteristic function of the message, author, 
recipient, and current time, encrypts the result with a key known 
only to the Network Registry, and forwards the resulting 
"signature block" to the recipient. The NR only retains the 
encryption key employed. 
(3) The recipient, when the message is received, can ask the NR 
if the message was indeed signed by the claimed author by present-
ing the signature block and message. Subsequent challenges are 
handled in the same way. 
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This simple protocol involves little additional mechanism 
beyond that which was needed by the Network Registry anyway. It 
does require that the Network Registry be involved in every 
message signature and validation. However, recall that all of the 
unadorned signature methods reviewed earlier require involvement 
of some form of a Network Registry for at least the first message 
between any two parties. Public key protocols must check the 
"telephone book", and Rabin's method requires either a contract 
or a Network Registry. Furthermore, when one adds a more complete 
Network Registry on top of those other signature methods to 
correct their repudiation problem, all methods involve the NR for 
each message. Note that this protocol also does not require the 
NR to maintain any significant storage for signature blocks. 

Performance and Safety 

Certain elementary precautions should be taken in the design 
of the Network Registry to avoid unnecessary internal message 
exchanges and to assure safety of the keys used to encrypt the 
signature blocks. Performance enhancements presumably would 
involve distributing the signature block calculation. Safety 
enhancements could include the use of different keys at each 
distributed site, replicating sites, and employing a signature 
block computation which requires the cooperation of multiple sites. 
Each of these facilities is straightforward to build and so they 
are not discussed further here. 

From the preceding discussion, we conclude that the digital 
signature algorithms proposed heretofore are unsatisfactory, and 
the improvements required to correct their inadequacies make the 
use of a specialized digital signature algorithm unnecessary. 

We note here that the safety of signatures in this proposal 
also depends on the future history of protection of keys as 
before, in this case those held by the Network Registry. However, 
there are several crucial differences between this case and 
previous proposals. First, the authors of messages do not retain 
the ability to repudiate signatures at will. Second, the Network 
Registry can be structured so that failure or compromise of 
several of the components is necessary before signature validity 
is lost. In the previous methods, a single failure could lead to 
compromise. 
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VI. CONCLUSIONS 

We draw a number of specific conclusions, as well as more 
general perspectives from the preceding discussions. The 
specifics are as follows. First, public key encryption systems, 
viewed in the context of the network protocols by which they 
must be used, do not seem to provide any significant advantages 
over conventional encryption algorithms. Each important function 
that has been recognized can be performed at least as easily by 
conventional methods with, it appears, no more supporting 
mechanism. Therefore, if strong conventional algorithms are 
easier to develop, as has been speculated [Rivest 77b], research 
would be better devoted to that area rather than public key 
systems. 

Second, it seems that the digital signature methods which 
have been proposed, both public key and conventional algorithm 
based, do not adequately protect recipients of signed documents - 
from repudiation of signatures by the author revealing the secret 
key(s) employed. The difficulty appears intrinsic to the 
approaches being taken. An alternative is available which over-
comes this problem, however, that involves a small amount of 
trusted software. 

Third, the necessary underlying mechanism required to support 
improved digital signature methods, as well as other user visible 
secure network communication protocols, is relatively well under-
stood, and an example is presented in this paper. The example 
takes account of the important requirements that the amount of 
trusted mechanism involved be minimized for the sake of safety. 

In more global terms, this discussion of network security has 
been intended to illustrate the current state of the art. It 
suggests the following general perspectives. 

If one's view of security of data in networks is basically a 
common carrier philosophy, then general principles by which 
secure, common carrier based, point to point communication can be 
provided are reasonably well in hand. Of course, as in any 
sophisticated implementation, there will surely be considerable 
careful engineering to be done. 

However, this conclusion rests on one important assumption 
that is not universally valid. Either there exist secure 
operating systems to support the individual processes and the 
required encryption protocol facilities, or each machine operates 
as a single protection domain. A secure implementation of a Key 
Distribution Center or Registry is necessary in any case. 
Fortunately, reasonably secure operating systems are well on their 
way, so that this intrinsic dependency of network security on an 
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appropriate operating system base should not seriously delay 
common carrier security. 

One could however take a rather different view of the nature 
of the network security problem: the goal might be to provide a 
high level extended machine for the user, in which no explicit 
awareness of the network is required. The underlying facility is 
trusted to securely move data from site to site as necessary to 
support whatever data types and operations that are relevant to 
the user. The facility operates securely and with integrity in 
the face of unplanned crashes of any nodes in the network. 
Synchronization of operations on user meaningful objects (such as 
Withdrawal on Checking Account) is reliably maintained. If one 
takes such a high level view of the goal of network security, 
then the simple common carrier solutions respond only to part of 
the network security problem and more work remains. 
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DIGITALIZED SIGNATURES* 

Michael 0. Rabin 

Hebrew University of Jerusalem 
Massachusetts Institute of Technology 

INTRODUCTION 

In many business transactions an essential role is played by 
signed messages and by cerification of messages received. A 
party to a contract or the issuer of a binding document in 
question. The signature, which is assumed to be unique to the 
signatory or signer, serves as proof that he was a party to the 
document, or that he was its sole originator. If the document 
spells out certain obligations for the signer then his signature 
signals his agreement to undertake these obligations. The 
certification of receipt of a message is effected by the receiver 
or some intermediary agent, signing a statement to the effect 
that the message was in fact received by him. 

Thus signature and certification nowadays involve the pro-
duction, transfer, and eventual storage of a physical document. 

We are moving towards an era of electronic correspondence 
when a large bulk of business correspondence will be conducted, 
even when humanly generated, from computer to computer. When 
corresponding in this mode, there arises the problem of how to 
affix a binding signature to a message when this is deemed 
necessary. 

* This work was done while the author was visiting the IBM 
Thomas J. Watson Laboratory during July of 1976, and prepared 
for publication during a visit to MIT. 
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The problem of digitalized signatures is by no means simple. 
For example, a telegram bearing somebody's name, cannot by it- 
self serve as full legal proof that it originated with the named 
sender. The alleged sender can disown the message, claiming 
that somebody else, maybe even the recipient or his agent, has 
sent it using a false name. The adjudication of such a dispute 
is time consuming and costly. 

The difficulty may be summed up by noting that in electronic 
communications a message is just information, i.e., a string of 
bits devoid of unique physical characteristics. Consequently 
what will serve as signature must also be information. 

In this paper we propose a signature system employing any 
block-encoding device and based, in one essential aspect, on 
probabilistic logic. A different signature system can be based 
on the Diffie-Hellman proposal [1] of public-key cipher systems. 
An algorithm for such a public key-system employing large prime 
numbers was discovered by the author (unpublished) and indepen-
dently by Rivest, Adleman and Shamir [3]. 

The properties of the encoding function which are needed for 
rendering the signature system secure are stated in Section 3 in 
axiomatic form. This enables us to establish properties of the 
system as provable consequences from the axioms. The advantage 
of this approach is that in the absence of explicitly stated 
assumptions and deductions, discussions concerning viability of 
a security system tend to degenerate into hand waiving non-
convergent arguments. 

The axioms themselves are assumptions about the intract-
ability of certain computations involving the encoding function. 
The notion of intractability required for ensuring the soundness 
of an encoding function is different from and stronger than the 
existing concept in complexity theory. In Section 10 we briefly 
touch on the methodological questions pertaining to secure 
communications and signatures. We introduce the notion of uni-
versal intractability required for a sound theoretical founda-
tion of this field. 

I. Signatures and Their Properties 

Denote by .M a message such as a contract and by a p (M) the 

signature on M by a person P (who may be signing on behalf of a 
legal entity). This signature must have the following proper-
ties: 

Property (a): Only P can produce any pairs, M, a (4). 
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Property (b): 	The recipient of a pair M, W claimed to be 
signed by P, can check that indeed W = a (M). 

Note that property (a) is stronger than the assumption that 
only P can sign a given message. Property (a) entails that the 
signature a (M) is characteristic not only of P but also of the 

entire message M. If when given a signed message N, a (N) an 

adversary could effectively find a message M # N such that 

(M) = 	(N), then the adversary could produce a signed message 

M, a (M) not authored by P. This would contradict (a). Ordinary 

signatures do not enjoy this important property of immutability 
of the message. 

II. The Encoding Function 

Let k be some fixed word length. 

Definition 1: An encoding function is a mapping E: 

{0,1} k  x {0,1}k  -+ {0,1} k . For x, w ci0,11 k  denote the function 
value E w  and call it the encoding of w by use of the key x. 

Such encoding functions are used in block-ciphers for secure 
commercial communications. One existing commercial device uses 
k = 64. To serve for encryption E must be supplemented by the 
decoding function D which satisfies DxExw = w. For the con- 

struction of our signature system, however, only the encoding 
function is required. 

A message is a sequence of words 

M = wiw2 ...wm , i(wi ) = k. 

The encoding function E can be extended to a mapping 

E:({0,1}
k
)* x {0,1} k 4- {0,1}

k employing messages as keys, by 
defining 

E
m
w = E E ...Ew w . 

wl w2 	m  

Note that we are using parenthesis-free notation. Thus 
E 
x  E  y 

 u = E x  (E  y 
 (u)) = E xyu. 
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III. Assumptions Concerning E 

In the spirit of basing the development on a small number of 
explicitly stated assumptions (axioms) from which subsequent 
statements are logically derivable, we now proceed to list our 
assumptions concerning E. 

Assumption 1. The function E
x
w is rapidly calculable. 

Assumption 2. For every key x, and any given list 
(1) w 	Exw...,wn , E

x
wn  , 

it is intractably hard to produce a pair w, u = Exw such that 

w0w
i
; 1 < i < n . 
 — — 

The intractable computation is Assumption 2 has as input the 
sequence (1) (but not x) and the required output is a new pair 
w, Exw. Note that from these assumptions follows the intract- 

ability of computing a key x from the sequence (1). For if it 
were possible to compute x, then one could choose a 
w # w1 , 1 < i < n, and by Assumption 1 compute u = E

x
w. 

— — 

Assumption 3. 	Given any word w it is intractable to compute 
two messages N # M such that ENw = EMw. 

For a fixed w the mapping M EMw is a hashing-function, 

mapping messages into words (of length k). Counting arguments 
imply that there must exist M N so that EMw = ENw. Assumption 

3 just claims that it is computationally hard to find such pairs. 
The reader can check for himself that even if there exists an 
easy way to compute the decoding function D, the obvious 
attempts at finding such a pair M, N, run afoul of Assumption 2. 
But we need Assumption 3 to rule out all possible algorithms. 

IV. Exchange of Keys 

If A and B want to conduct digitalized signed correspondence 
they get together once for exchanging keys by the following 
procedure. 

A chooses, say, 120 keys x1
,...,x120  which he does not 

devulge. Similarly B chooses v 
- 1''''' Y120' 

Let M
0 
 = 0

k 
be the standard message which will be employed 

by all users of the system. If i is an integer we shall under-
stand M0 

 (i) to be the word obtained by writing i = c
e-1e-2

...e
0 
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in binary notation and setting MO (i) = 0
k-e

ce-1 ...c
0
' Thus if 

i = 5 then MO (i) = 0
k-3

101, so that 12,(M
o
(0) = k. 

Using the encoding function, A produces the ordered list 

(2) 	a = E M (1) 	E 	M0 (120) = a
1'

a
120

. Ex 0 	
x120 

Similarly for B: 

(3) 	S = E M (1),...,E 	MO (1 20) = 131'—'13120. y1  0 Y120 u 	 1 

A and B then sign (by ordinary legal procedure) an agreement 
stating that a is an encoding of the standard message using A's 
keys and similarly for B with respect to B. 

V. Verification of Keys 

Let B or any other party be presented with a word x claimed 

to be the A's ith key x.. He can verify the claim by computing 

E 
x  M0 

 (i) and comparing with a
i 
in the list a. Similarly for B's 

keys. 

VI. Production and Acceptance of Signatures 

When signing a message M, A starts by compressing M. Namely, 
he forms 

(4) 	 C(M) =EMMO  

The signature is defined as follows. 

Definition 2. 	A's signature on message M using the first 
block (of 40) keys is 

aA
(M) = E C(M),...,E

x40
C(M). 

x1  

Each E
x 
 C(M) = Ex 

ri  l0 
 will be called a marking so that the 

signature oA (M) is a sequence of 40 markings. Using 40 markings 

is, of course, arbitrary. The number of markings employed in an 
actual implementation depends on security considerations spelled 
out in Section 8. 
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Signing the next message, A will employ the second block of 
keys x41 ,...,x

80
, etc. Each block of 40 keys is used only once 

and an onward moving marker is kept in the list of keys, or a 
signature count is maintained, to ensure strict adherence to 
this rule. 

For a purely technical reason A checks, after compressing M, 

whether C(M) = M
0 
 (i) for some i < 10

7
, i.e., whether C(M) is 

mostly zeros. In the unlikely event that this occurs, he 
slightly modifies M before signing it. As a practical matter 
this contingency never arises. But we impose this restriction 
that C(M) # M

0 
 (i) so that markings E

x 
 C(M) will not unintention- 
1 

ally coincide with key encryptions Ex  Mo (i). See Section 8. 

When B receives the sequence M,u1" u40 from A he verifies 

that indeed (u
1 ,  • ' 

. . u
40 

 ) = a
A 
 (M) by the following procedure. 

(i) B randomly chooses 20 different numbers 1 < i. < 40, 
J 

1 < j < 20. 

(ii) Upon request from B, A devulges to him the actual keys 
x . ,...,x. 	. 
1
1 	

120 

(iii) B verifies by the method in Section 5 that these are 
indeed the i

1
th,...,i

20
th keys of A. 

(iv) B checks that u i. = Ex.  C(M) 1 < j < 20. 
1. 

(v) B accepts the signed message if and only if all the tests 
in (iii), (iv) resulted positively. 

VII. Adjudication of Disputes 

It is inevitable that occasionally a participant A in a 
signature-system may want to challenge or disown a message 
claimed to be signed by him. In this situation, B presents a 
message (contract) 

M,vv40' 
claiming that A signed it 

using, say, the first block of keys; A denies this claim. 

Settlement of such a dispute requires the supervision of an 
adjudicator or judge. Adjudication, however, is not a process 
of examination of witnesses and evidence but rather the imple-
mentation of a certain algorithm. 
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The adjudicator requests A to reveal his keys x
1
,...,x

40 
which allegedly were employed in producing the markings 
v
1
,...,v

40 . He then proceeds to 

(i) Verify these keys, i.e., check whether 

M  Ex 	M0(40) = a40. 
(1)  = al"." x40 ° x 0 1 

If not all keys are verified, the adjudicator right away upholds 
B's claim that the signature is valid. 

(ii) After all keys are verified, the adjudicator tests for 
each marking v i , 1 < i < 40, whether E

x 
 C(M) = v.. 

— —  

(iii) If 20 or fewer of these equalities are true the adjudica-
tor upholds A's challenge. If 21 or more equalities are true, 
the adjudicator upholds B's claim. 

The fact that A challenged the message M, v 1 ,...,v40  and in 

doing so revealed keys x1 ,...,x40  is recorded. In the future, 

if A's challenge was upheld then no message presented by B as 
signed by use of the first block of keys will be accepted. If 
B was upheld, then only the message M will be accepted as 
signed by A using the first block of keys. 

VIII. Validity of the System 

We now proceed to show that this signature system does 
satisfy Properties (a) - (b) of Section 1. 

Consider the possibility of somebody other than A producing 
a signed message N, v 1 ,...,v

40 
employing the mth block of keys, 

xi+1Xi+40
, i = 40(m-1). To make it easier on the counter-

feiter, assume that this block was already used to produce the 
signed message 

	

M,u1 ,...,u40 , uj 	
+j 

= E 
xi

C(M), 1 < j < 40. 

Of course, M N for otherwise N is not a forgery. The counter-
feiter knows twenty of the keys x i+1 ,...,xi+40 , namely, those 

revealed by A, so that he can correctly produce the markings v t 
corresponding to these keys. To produce a signature which will 
stand up when challenged by A, counterfeiter must produce one 
correct marking v = E 	C(M) employing a key xi +p 

not among 
p 	xi+p  
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those revealed. 

At this stage the only available information involving x
i+p 

are the pairs M
0 
 (i+p), E 	M

0 
 (i+p)(=a

i+p ) and C(M), 
Ex 

 

EC(M)(=u ). For vp  to be a proper marking on N we must have 
x
i+p 

 v = E C(N). By the stipulation about signatures, 
p 	xi +p 

C(N) # M0 (i+p). Now, if C(N) # C(M) then the counterfeiter was 

able to compute a third pair C(N), E 	C(N) contrary to Assump- 
xi+p 

tion 2 in Section 3. If C(N) = C(M) the counterfeiter was able 
to find an N # M with ENMO  = C(N) = C(M) = EmMo , contrary to 
Assumption 3. 

Thus A is protected, nobody can forge messages signed by 
him. Next we show that Property (b) of signatures holds, i.e., 
that B can verify that a message was signed by A in a way which 
bars A from later on disowing his signature. 

The only way for A to produce a seemingly signed message 
M,u...,u

40 
which B will accept and which A can later success-

fully challenge, is to produce exactly twenty markings 
u. ,...,u, 	which are proper, i.e., u = E C(M). (We again 

-320 	
xj 

assume that A informs B that the first block of keys was used.) 
For if fewer than 20 markings are proper, then by steps (iv) -
(v) of the acceptance procedure B, will never accept 
M, u1" u40' And if 21 or more markings are proper then, 

because of the rule (iii) of the adjudication procedure, A 
cannot successfully challenge this signed message. 

Thus assume that A has prepared M, u 1 ,...,u40  so that just 

u 4  ,...,u, 	are proper. Now, B will accept the message only if 
J 1 	3 20 
in his random choice of 20 indices 

1il'''''i20 	
40 he picks 

exactly the indices i1"'"j20' 
 The probability of this occur- 

- 

ring is 1/( 20
40  

) 	/201/2
40 

< 10
-11

. Thus B can be cheated on the 

average no more than once in 10
11 

times that he accepts a signed 
message. For all practical purposes this is an ample margin of 
safety. 

162 



Actually the margin of safety is even larger because in 
general the correspondents will not try to cheat. This is 
especially true since it is almost certain 

(probability > 1 - 10
-11

) that if A tries to cheat he will be 
caught and there may be a penalty involved. 

Assume that we use only 16 markings. In this case B will 
ask for 8 randomly chosen keys. The probability of B accepting 

an improperly signed message is 1/( 16
) q,  13000

-1 . We may reason- 
8 

ably assume that even in extensive correspondence, attempts to 
cheat B will be fewer than once a day. Consequently 13000 days, 
i.e., 36 years, will pass on the average before B will acept an 
improperly signed message. We see that the number of markings 
in the signature depends on the desired level of confidence, and 
as a partical matter can be chosen to be quite small. 

IV. Implementation 

The signature system is, of course, implemented by machine. 
Thus when we say that A chooses keys x l , x2 ,..., or that B 

randomly selects 20 indices 1 
<"i20 

 40 and A reveals to 

, etc. we intend all these steps to be 
1 1  

120 
executed by machine. 

From a practical point of view the best arrangement may be 
,1 combination of a signature-machine (SIM) completely controll-
able by A, with a general computer available to many users. 

SIMA 
will contain a random number generator (RNG) for pro-

ducing the keys x l , x2 ,..., used by A, and for the randomized 

key requests when checking signatures on messages received. For 
added security it may be preferable to use a physical device as 
RNG rather than a pseudo-random number generator. 

It is preferable not to allow A's keys xl , x2 ,..., to be 

present in the general computer. To this end, assume that the 
encoding function E is decodable by D. (Alternatively, if E is 
not decodable, another pair E, D may be used for the purpose at 
hand.) A uses a key a stored only in SIM A

. After the keys 

x
1
, x2 ,..., are generated inside SIMA

, their coded version 

E 
a 
(x

1  ) ' 
E 
a 
 (x

2  )" .' 
. 	is stored in the general computer. When 
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keys are needed by A, he calls into SIM
A 

a block 

E 
a 
 (xi 

 ),...,E a (x.+40 ) and decodes it using D. 

The initially exchanged lists a and (3 need not be short. 
They can involve tens of thousands of keys x x

2' x
40p, 

y
1,

...,y
40p 

so that a = E M (1),...,E
x4Op

M
0
(40p) and similarly Ex 0 

for B. Treating a and a as messages, C(a) and C(s) are formed. 
A and B now exchange the lists a and P, computer to computer, and 
sign (by ordinary legal procedure) an agreement identifying C(a) 
and C(B) as the compressed forms of a and Q. 

When the original lists a, R are about to be exhausted, 
additional keys can be exchanged by the system itself in the 
form of signed message using the now established protocol. In 
order to avoid backtracking of challenged signatures, the 
signatures on keylist extensions should involve only keys from 
the lists orginally exchanged. 

If the system is widely used within some commercial domain 
such as banking or stock brokerage, then the bilateral agreement 
can be replaced by establishing a central "trustee" with whom 
each of the participants deposits lists of the form a. 

The legal viability of such a digitalized signature system 
does not depend on new laws pertaining to signatures. The 
initial agreement between A and B (Section 4) will state that 
the participants undertake to correspond and sign by the method 
proposed in this paper, specify the dispute adjudication pro-
cedure and the (commercial) legal obligations and penalties 
involved. Thus the initial agreement becomes a contract gover-
ning the digitalized signature procedure. 

X. Universal Intractability 

As explained in [2], the viability of a digitalized signa- 
ture system requires that the relevant system-breaking computa-
tions be intractable in a sense stronger than the one usually 
defined in complexity theory. Even if the problem were proved 
to be exponentially complex (no such result was proved to date) 
this would only be a worst case or average complexity result. 
It does not preclude the possibility that for one key in a 
thousand the system can be broken by an algorithm not known to 
the user. This level of hazard is not acceptable in the context 
of signatures. 
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We want the encoding function to have the necessary proper- 
ties without exception. This is, of course, too much to ask for 
becaule an algorithm (program) may, for example, list certain 
keys x, y,..., which are tried as a guess. In rare cases the 
key used for the signature happens to be the one guessed at in 
the algorithm, and forgery becomes possible. We thus want to 
capture the idea that the encoding function E is strongly 
randomizing and that any conceivable attack works no better than 
a random guess at keys. 

Take n = 2 in Assumption 2. The problem to be solved for 
signature forgery is: Given (u 1 , Exul ), (u 2 , Exu2), find a 

third pair (v, Exv), v # ul , u2 . The intractability of this 

special n = 2 case of Assumption 2 suffices for the proof of 

validity of the signature system. Denote by P ti 2
3k the total 

number of instances of the problem (k is the key and word 

length). A given key x is involved in 2 kP problem instances. 
If AL is an algorithm for solving the problem then AL can list 
at most Q(AL) keys. If AL runs N steps it can generate and try 
at most N keys. Thus saying that given (u 1 , w1 ), ) (u2 

 ,w
2 
 ), no 

algorithm is better than "guessing" at keys x, trying if 
w. = E

x
u
i
, i = 1, 2, and if yes encoding a word v to produce 

v, E
x
v, is elucidated by 

Definition 3. 	The list-extension problem of Assumption 2 
is called universally intractable for an encoding function E if 
any algorithm AL running N steps solves no more than 

(2,(AL)+N)2 kP instances. 

For example, if k = 100, we restrict ourselves to algorithms 

of size at most 10
12 , and run on each instance at most 10

12 

steps, the fraction of instances solved is 2-10
12

-2
-100 . Thus 

the likelihood that for any given instance the problem will be 
solvable in practical time is negligible. From the practical 
point of view the problem can indeed be considered universally 
intractable. 

XI. Discussion 

A comparison between the method proposed here and other 
systems is in order. 

One possibility which is considered is the digitalization, 
by analogue to digital converstion, of paper and ink signatures. 
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This process is reported to have an about 95% reliability in 
terms of reproducibility and resistence to forgery. Once a 
physical signature was digitalized and affixed to a message, it 
can be lifted off and affixed to any other message. Thus a 
method employing physical signatures affords little protection 
in digitalized correspondence. 

Signatures based on public-key ciphers (PKC) have some 
obvious advantages in terms of simplicity of protocol and 
avodicence of storage of lists of keys. In detailed comparison, 
the following points come up. 

The signature protocol proposed here is implemented machine 
to machine so that the "work" involved is not a serious issue. 
In fact, the one-way functions used in PKC are considerably 
slower to compute than the encoding functions which can serve in 
this system. 

Compared to the total volume of messages such as letters, 
contracts, etc., the total length of keys used in signatures is 
not large. Also, messages requiring signatures can often be 
batched and signed together. 

The one-time use of a block of keys in the SIM system has 
advantages over the public-key. If the security of the public 
key is breached through some error or accident, then an 
avalanche of pre-dated counterfeit documents can ensue. The SIM 
system is much more stable under the effect of inadvertent 
disclosure of a block of keys. 

Finally and most importantly, the PKC System is completely 
dependent on two or three known one-way functions having very 
special properties. If an algorithm for the decoding of the 
function in question is found, then the users of signatures 
based on PKC will have no substitute. The method proposed here 
can employ any block-encoding function as soon as it satisfies 
Assumptions 1 - 3. Thus unless a method is found to break all 
block-encoding devices, which would mean that secure communica-
tions other than by one time pads is impossible, our signature 
system is always implementable. 
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DISCUSSION 

Shapiro: I'd like to comment on the simplicity and elegance 
of your solution. The core of it is the idea to randomize. It's 
not unlike a technique of probabilistic mathematical proof in 
which you allow a receiver to select one of two cases. 

Rabin: Yes, you're right. B is, in fact, proving that the 
message came from A. And, in a way, similar to what occurs in my 
algorithm for testing primality, the proof is not a complete 
proof, but the residue of doubt is provably, negligibly small. 
The adversary, A in this case, cannot arrange things so that B's 
security is less than 1 - 1/2000. Or, if he wants to be safer, 
he does a little more and gets even a smaller number. The real 
assumption about these encoding systems is that they randomize in 
a very complete way. That is supported by experimental evidence, 
but only by experimental evidence. This sort of randomness says 
that there is no discernable connection between the w's and the 
u's, and that should really hold for all keys. One could try to 
do it for a subset of the keys; but, however, the state of the 
science here is that we really know nothing about this. We don't 
even know whether P = NP is true, but of course, if it is solvable 
then all of these keys are not good. A point I want to make is 
that even if we know that NP is provably exponential, then we are 
still not in the clear because we need a much stronger concept of 
complexity. 

Cohen: Do you have a name for it? 

Rabin: No, but that is a good question. Maybe I'll try to 
coin a name. 

Rivest: I think it's worth pointing out that your system has 
an advantage with respect to key lossage over public key systems. 
In a public key system, if you've lost your key, you've lost it 
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with respect to everyone using the system; whereas, in this 
system, if you lose your key, you've only lost it with respect to 
the particular person that you are doing business with. 

Rabin: Now, there are some final remarks on physical 
security. This can be worked out by various obvious devices. 
For example, keys are never stored in raw form; rathern encoded 
forms of the keys are stored. Then, of course, you use another 
key to discipher it, but you do that within the confines of a 
secure area. 
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I. INTRODUCTION 

Encryption is a well-known technique for preserving the 
privacy of sensitive information. One of the basic, apparently 
inherent, limitations of this technique is that an information 
system working with encrypted data can at most store or retrieve 
the data for the user; any more complicated operations seem to 
require that the data he decrypted before being operated on. 
This limitation follows from the choice of encryption functions 
used, however, and although there are some truly inherent 
limitations on what can be accomplished, we shall see that it 
appears likely that there exist encryption functions which permit 
encrypted data to be operated on without preliminary decryption 
of the operands, for mny sets of interesting operations. These 
special encryption functions we call "privacy homomorphisms"; 
they form an interesting subset of arbitrary encryption schemes 
(called "privacy transformations"). 

As a sample application, consider a small loan company which 
uses a commercial time-sharing service to store its records. The 
loan company's "data bank" obviously contains sensitive informa-
tion which should be kept private. On the other hand, suppose 
that the information protection techniques employed by the time-
sharing service are not considered adequate by the loan company. 
In particular, the systems programmers would presumably have 
access to the sensitive information. The loan company therefore 
decides to encrypt all of its data kept in the data bank and to 
maintain a policy of only decrypting data at the home office --
data will never be decrypted by the time-shared computer. The 
situation is thus that of Figure 1, where the wavy line encircles 
the physically secure premises of the loan company. 
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Figure 1 

This organization permits the loan company to utilize the 
storage facilities of the time-sharing service, but generally 
makes it difficult to utilize the computational facilities 
without compromising the privacy of the stored data. The loan 
company, however, wishes to be able to answer such questions as: 

• What is the size of the average loan outstanding? 

• How much income from loan payments is expected next month? 

• How many loans over $5,000 have been granted? 

These questions require computation for their answers. 

There are four possibilities that the loan company may pursue: 

(1) Give up the idea of using the time-shared service and 
purchase an in-house computer system. 

(2) Use the storage facilities of the time-sharing service 
only to store the encrypted data, and use an "intelligent 
terminal" at the loan company office to do the necessary decryp-
tion and computation. 

(3) Persuade the time-sharing company to make hardware 
modifications to its computer allowing the data to exist in 
decrypted form for brief moments inside its CPU, but such that 
the decrypted data is not externally accessable. 

(4) Use a special privacy homomorphism to encrypt its data 
so that the time-shared computer can operate on the data without 
the necessity of decrypting it first. 

Option (1) can be very expensive, and does not necessarily 
solve the problem -- some form of encryption may be desired to 
protect the stored information against theft or malicious tamper-
ing by the in-house systems programmers. Option (2) will work, 
but entails rather large communications costs in general. Option 
(3) is also workable, but requires the cooperation of the time-
sharing company. In section 2, we discuss this solution briefly. 
Option (4) requires only that a suitable privacy homomorphism 
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exist and that the loan company obtain an encryption/decryption 
device implementing this homomorphism. In sections 3 to 5, we 
examine the mathematical requirements for such a solution, some 
limitations on its applicability, and some potentially useful 
privacy homomorphisms, respectively. 

II. SOLUTION BY HARDWARE MODIFICATION 

In figure 2, we present a sketch of how a computer system 
might be modified to solve the problem of performing operations 
on encrypted data securely. In addition to the standard register 
set and ALU (A,B), a physically secure register set and ALU (C,D) 
are added. All communication of data between main memory and the 
physically secure register set passes through an encoder-decoder 
(E) supplied with the user's key, so that unencrypted data can 
exist only within the physically secure register set. All sensi-
tive data in main memory, in the data bank files, in the ordinary 
register set, and on the communications channel will be encrypted. 
Dr'ring operation, a load/store instruction between main memory 
and the secure register set will automatically cause the appro-
priate decryption/encryption operations to be performed. 

'Data Bank Files 

A 
I/O Main Memory) 

   

Standard Register Set 

   

     

B 

Standard ALU 

encrypted data 
ES  (K) 

F 

 

decoder system key S 

unencrypted data 

physically secure 

Figure 2 

Secure ALU 
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An obvious problem is getting the encoder/decoder (E) loaded 
with the user's key K without compromising the security of the 
user's key. One possible approach is to keep the user's key 
encrypted under control of a system key S. The encrypted form of 
K, Es (K), can be transmitted over the insecure channel to the 
system, decrypted by the physically secure decoder (F), and 
loaded into the encoder-decoder (E). The user knows K and E

S 
 (K)- 

	

. 	' 
the latter is obtained during a visit to the time-shared services 
manager, who is the only one who knows the system key S. 

Besides the problems of key management, there are questions 
of the speed degradation caused by invoking the encryption/ 
decryption with every load or store. However, it appears that 
suitably secure encryption (e.g. DES) can be performed on a time 
scale comparable to that of the instruction execution of many 
machines (e.g. 10 m sec). 

The most severe restriction on this solution, however, is one 
that will turn out to be a restriction on any solution to the 
problem (even privacy homomorphisms): it is not possible to 
simultaneously preserve security and give the system the operation 
of performing comparisons against known constants. That is, we 
may not give the computer system a means of performing operations 
sufficiently powerful to enable someone who knows only E s (K) to 
decrypt the data. The ability to perform comparisons against 
constants would allow someone to perform a simple binary search 
procedure to determine the decoded value of any datum. We 
examine this restriction in more detail in section 4. 

III. PRIVACY HOMOMORPHISMS 

One might prefer a solution which did not require decryption 
of the user's data (except of course at the user's terminal). 
That is, the hardware configuration will be that of Fi,:,,ure 1, but 
the encryption function used will permit the computer system to 
operate on the data without decrypting it. 

The unencoded data and the operations to be performed on it, 
we assume to be drawn from some algebraic system. An algebraic 
system consists of a set S, some operations f l , f 2 , 	, some 

predicates p 1 , p 2 , ..., and some distinguished constants s l , s 2 , 

. We denote this system by <S; fl , f 2 , 	; p l , p 2 , 	; 

s l , s 2 , 	>. For example, the system consisting of the integers 

under the usual set of operations might be denoted 
<Z; +, 	x, 	<; 0, 1>; where Z is the set of integers.. 
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In addition to the algebraic system of the user (let's call 
it U), we shall need another algebraic system C to be used by 
the computer system. Encoding and decoding shall then mean 
mapping elements from U to C or vice versa, respectively. More 
formally, if 

U = <S; f
1 ' 	

f
k' 
• p 	. .. 

'P's 1 '  • 	' Sm>  

then 

C = <S ; f
1

, 	f'
k

; p1 1 ,P' • , 
	2 

s
' 	1 ' 	

, s'
m
> 

and we must have a decoding function 1: S' 	S and its inverse, 

the encoding function it.
-1
: S 	S t . 

In operation, the user gives the computer system a description 
of the algebraic system C; in practice this means that the system 
has a subroutine to compute each of the operations f.' and predi-

cates p i ', as well as representations of the distinguished 

constants s'. The users actual data base we denote as the 

sequence d i , d 2 , 	, each d1  is an element of S. However, the 

user encodes each datum before giving it to the system; 

the encoded data base 4
-1

(d
1), 4

-1
(d

2
), 

In order for the system to be able to operate on the (encoded) 
data base without decrypting it, the decoding function cp. must be 
a homomorphism from C onto U. Formally, this means that 

(Vi)( a,b,c,...) [f'(a,b,...) = c => 	f (4)(a)4(b),...)=4)(c)], 

(Vi)( a,b,...) p l (a,b,...) E p(cp(a), 

and 

(Vi) cl)(s i ') = s i  ; 

4) carries each operation in C into the corresponding operation in 
U. Suppose now that the user wants to know the value of 

f 1 (d 1 , d
2
). He asks the system to compute f

1
'(4

-1
(d

1
), 4

-1
(d

2
)). 

Since 4) is a homomorphism, 

4)(f 1
'0)-1 (d

1
)

'  4
-1 (d

2
))) = f 1 (d1 , d

2
) 

so that the system arrives at the encrypted form of the answer 
without having to decrypt the intermediate results. In general, 
an arbitrary computer program using the operations of U to compute 
some function of the user's data base can be transformed into 
another computer program suitable for operation on the encoded 
data merely by changing all 	 . 	all p. 's to p'. 's, 
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and all s. 's to 
1 	 1 

The requirements on the choice of the algebraic system C and 

the functions (p ., 4)
-I 

are: 

(1) 4) and 4)
-1

, the decoding and encoding functions, should 
be easy to compute. 

(2)Theoperationsr.and predicates p.' in C should be 

efficiently computable. 
(3)Arterlcodeciversionofaclatmd.,4) -4 (d.), should not 

require much more space to represent than a representation of d.. 

-1  (4)Rnowledgeof4(d.)for many data d
i 

should not be 

sufficient to reveal 4. (Ciphertext only only attack). 

(5) Knowledge of d. and (I)
-1

(d) for several values of d
i 

should not reveal 4>. (Chosen plaintext attack). 
(6) The operations and predicates in C should not be 

sufficient to yield an efficient computation of 4. (This relates 
primarily to the use of comparisons). 

IV. SOME SIMPLE OBSERVATIONS 

Some inherent restrictions limit the utility of privacy homo-
morphisms as we have described. The most severe is probably the 
following. 

Fact. If the operations available in C allow the computer system 
to determine the encoded version of arbitrary constants, and a 
predicate "<" for a total order is available, then there is no 
secure privacy homomorphism from C to U. 

This follows from a simple "binary search" strategy. For 
example, for the system of natural numbers 

U = <N; +; <; 0, 1> 

and 

C = <W; +'; <'; 0', 1'> 

for some set W, the malicious systems programmer on the computer 

system can decode 4,
-1

(d) by computing 4)
-1

(1) = 	4)
-1

(2) = 

1' +'1', 4)
-1

(4) =4
-1

(2)+'
-1

(2), and so on until he finds a k 

such that 95
-1

(2
k
) > '4)-1 (d 

1
). Continuing, similar strategy 

enables him to compute d i  exactly. 
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Other facts about the ability of one system to simulate 
another are not quite so easy to see, but can be found. For 
example, we have the following. 

Fact. If C is over the natural numbers and has the operations of 
addition, multiplication, and a binary equality predicate and a 
unary predicate "equal" to zero, then it has the capability to 
test for equality to an arbitrary constant. 

The proof follows from x=k <=> (x 	0) A (x
2 

= x+•••+x) . 

k times 

Lynch [1] gives an excellent study of the relationships 
between one algebraic system and another which simulates +. 

V. SOME SAMPLE PRIVACY HOMOMORPHISMS 

We give here four sample privacy homomorphisms. These are 
intended primarily as examples to support the hypothesis that 
useful privacy homomorphisms may exist for many applications. 
Some of them are rather weak cryptographically; a "chosen plain-
text attack" may break them. We list them anyway to illustrate 
the kinds of privacy homomorphisms that may exist. 

Example 1. 	Suppose U = <Z
p-1

; +
p-1

,  -
p-1

>, the system of 

integers modulo p-1 with the operations of addition and subtrac-

tion, wliere p is a prime number. We may choose C = <Z
n
;x
n

, 4

n

>, 

the integers modulo n where n = p•q, the product of p and a large 
prime q. Let g be a generator modulo p. Then we choose 

(P-1 (x) E gx (modulo n) 

and the decoding function is the inverse "mod(p) logarithm, base 
g" function. by the laws of exponents, (I) is a homomorphism. If 
n is difficult to factor (both p and q are large) and the prime p 
is such that logarithms modulo p can be efficiently computed 
(see [2]), then the computer system can be given both g and n 
without fear of compromising the security of the data. 

Example 2. 	Suppose U = <Z P ; x P 
	P 
;E >, the integers modulo p 

with multiplication and test for equality. Again, letting n=p•q, 
where q is a large prime and supposing that n is difficult to 
factor, we may take 

(x) = x
e
(mod n). 
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Since (x
e
)(y

e
) = (xy)

e
, this is a homomorphism. This is, in fact, 

the encoding function used by Rivest, Shamir, and Adleman in 
their method of implementing public-key cryptosystems [3]. The 
security of this system should be very good, even if the computer 
system is given both e and n. 

Example 3. 	U = <Z
n
; +

n
, -

n
, x

n
>, where n is again the product 

of two large primes p and q such that n is difficult to factor. 
We choose to represent each element of Z

n 
by a pair of numbers: 

4)
-1

(x) = (x mod p, x mod q). 

The computer system forms the sum, difference, or product of two 
encodings by performing the operations componentwise, modulo n. 
Without knowing p and q, the system is not able to.decode any 
numbers. Since there are several possible encodings of a given 
number, test for equality is not possible. 

Example 4. 	Suppose U = <Z; +, 	x>, the system of integers 
under the usual operations of addition, subtraction, and multi-
plication. The user chooses an integer n and represents all of 
his data in radix-n notation. The computer system can operate on 
these values without knowing n (and thus without knowing the 
unencoded data) by allowing individual coordinate positions to 
exceed n. For example, if n = 17, we have 

4)
-1 

-1 

(23) 

(44) 

= 

= 

(1,4) 

(2,10) 

-1 	 -1 
4) (1012) = 	(23•44) = (2,18,40). 

Again, test for equality are not possible since a given number 
might have several representations. The computer system can also 
find an encoding of any given constant by just using that constant 
in the units position. 

By combining two systems of the above sort, one can implement 
the rational numbers using "fractions". This system is not 
really secure against a "chosen plaintext attack", although it 
has many good properties otherwise. 

Example 5. 	Suppose we again have U = <Z; +, 	x>, the systm 
of integers under the operations of addition, subtraction, and 
multiplication. Let k be chosen so tha.k.  all intermediate results 
used in any calculation are less than 2 , and let a

0
, a

1
, 	, 

a
k-1 

be k randomly chosen integers. The encoding of the integer,  

x, where x = x
k-1 	

x
1  x0 

 inbillarynotation(eachx.As 0 or 1) 
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is the k-tuple (fx (a0 ), fx (a 1 ), 	.' f x (ak-1 )) where 

k-1 

fx (Z)  = E 
	

x.'Z 1  . 

i=0 

The encoded representations can be operated upon componentwise. 
Decoding means interpolating a polynomial through the given 
values and then evaluating that polynomial at the point Z=2. 
This privacy homomorphism is not very space efficient. The 
security of the system, even against a chosen plaintext attack, 
looks like it involves solving high-order nonlinear equations 
for the ,a. 's, but there are possibly cryptanalytic shortcuts. 

VI. CONCLUSIONS 

Privacy homomorphisms provide a novel way of ensuring the 
privacy of data which must be operated on. They are of 
inherently limited applicability, since comparisons may not in 
general be included in the set of operations to be used. In 
addition, it remains to be seen whether it is possible to have 
a privacy homomorphism with a large set of operations which is 
highly secure. The results presented here give a basis for some 
optimism about finding useful privacy homomorphisms; the examples 
given here are suggestive if not very practical. The open 
questions are 

• Does this approach have enough utility to make it 
worthwhile in practice? 

• For what algebraic systems U does a useful privacy 
homomorphism exist? 
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DISCUSSION 

Rabin: I would like to mention an additional consideration 
concerning safety. One of the most attractive proposals here was 
really doing the arithmetic modulo. When n is the product of p 
and q and when you do the component-wise modular arithmetic, you 
don't do it modulo p and q separately, you do it in modulo n 
arithmetic. That looks pretty good because we don't know how to 
factor numbers. However, a possibility for cracking any of these 
systems, is that the adversary has a special knowledge. Sometimes 
the adversary has under his control, part of the input data. He 
is the depositor in a bank which is manipulating his bank account. 
So, he actually knows the values of A, B, C and so on which are 
being encoded. Now, one would have to consider the possibility 
of looking at the encoding, one might be able to find the factor-
ization of n in this particular case. 

Rivest: It's quite plausible that one might be able to break 
it, then. 

Rabin: Yes, and there are similar considerations of challen- 
ging the system by feeding it known information and following its 
course within the encrypted version, feeding it encrypted infor-
mation and following its course must be taken into account when 
we're evaluating its safety. 

Gaines: Maybe I misunderstood, but I thought that p and q 
would be chosen outside the system. Separately for each 
individual. So that no one would have the opportunity to do 
what you said. 
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Rabin: May I add a remark? If you then propose to have 
different p and q for each customer, which is quite difficult and 
impractical, sometimes a non-innocent by-stander has knowledge of 
how much money you deposited. The other problem again exists. 
You must assume at least spotty partial information about the 
data which is going tc, be protected. 

Rivest: All the systems I've presented, I think, are 
susceptible to variations of that kind of attack. I do not 
consider any of them very satisfactory for precisely those kinds 
of reasons. 
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SECTION III. DESIGN-ORIENTED MODELS 
OF OPERATING SYSTEM SECURITY 

By its very nature, system software is mostly hidden from 
users. This creates a special problem in security, for if the 
"invisible" operating system of a computer system is not secure, 
all of the remaining security measures may be of little use. 
Operating system security is a world of authorization and access, 
rights and privileges, a world where theoreticians and the 
pragmatic designers are -- if they are not the same people -- in 
constant dialog. They must be convinced that their theoretical 
models are at least consistent with reality. On the other hand, 
reality is so complex that frequently the only way to study a 
security issue is to abstract away from the inessential detail, 
to carry out a theoretical analysis. In this section and in 
section IV, the interplay between the practical and the theoret-
ical is apparent. 

In Robert Fabry's article, we see a designer struggling to 
come to grips with the real-world implications of a theoretical 
result: the Harrison-Ruzzo-Ullman decidability theorem. The 
two-part paper by Frederick Furtek and Jonathan Millen attempts 
a simplification of several design concepts; they represent a 
system as "prime constraints", a concept similar to prime 
implicants of switching theory. Stockton Gaines and Norman 
Shapiro take a step back from detailed considerations to give us 
an overview. They provide us with some general perspective on 
the state of security research based on some fairly pragmatic 
insights. The contribution by Anita Jones is indicative of the 
fertile interplay of theory and practice in security research; 
her article is the outcome of a designer assessing the usefulness 
of the take-grant system which has been the object of extensive 
theoretical analysis. In the final paper of this section, 
Naftaly Minsky addresses Peter Denning's "principle of attenua-
tion of privilege" and presents an authorization scheme which 
satisfies the principle. 





ONE PERSPECTIVE ON THE RESULTS 
ABOUT THE DECIDABILITY OF SYSTEM SAFETY 

R. S. Fabry 

University of California 
Berkeley, California 

On the one hand, we have the fact that we have produced 
systems whose security properties are hard to understand. On the 
other hand, we have the Harrison, Ruzzo, and Ullman decidability 
result about system safety [1]. It would be useful to know how 
these two things are related, if at all. 

One refinement is that if the original six primitive 
operations (enter right, delete right, create subject, destroy 
subject, create object, and destroy object) are reduced to three 
by eliminating the delete and destroy operations, the resulting 
system, which is said to be monotonic, is still not decidable. 
This result corresponds to my intuition concerning the difficul-
ties we have with real systems: leaving out the delete and 
destroy operations in a real system would not simplify the job of 
understanding the protection it provides. In fact, the opposite 
is more likely; by leaving objects and rights which are no 
longer required, we make it more difficult to understand the 
protection situation. 

The effect in real systems is related to the amount of 
information in the protection matrix, however, and brings to mind 
the result that if the protection matrix is constrained to be 
finite the safety question is decidable. 
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Another refinement to the basic decidability result is that 
if each command contains but a single primitive operation, the 
resulting system, said to be mono-operational, has decidable 
safety. This is an intriguing result because it might be taken 
to be analogous to the generally believed notion that a system 
composed of small modules is easier to understand than a system 
composed of larger modules. It is often said that the fine 
grained protection provided by capability systems such as Hydra 
and Cap allows the construction of systems which are easier to 
understand than a monolithic supervisor/user system. 

These analogies are at best tenuous, and rather than suggest- 
ing they are true, I suggest merely that such relationships would 
make the decidability results useful to a designer of real 
systems. 

A second way to approach the question of the relevance of the 
decidability results to real systems is to look at real systems 
that are understood and to try to argue that various interesting 
safety questions are decidable for those systems. 

In fact, it is my hunch that in all well designed projection 
systems, the simple safety questions are trivially decidable, at 
least for users who follow certain reasonable and normal 
conventions. This has happened because designers have intuitively 
considered safety in choosing the set of commands they provide. 

Two well understood cases which are often used as test cases 
for modern protection systems are a file system and a type 
manager. 

Looking first at a file system, it is natural to ask about 
the safety of some particular file. For example, suppose I trust 
some of the users and do not trust the rest and I want to make 
sure that none of the users I do not trust can ever get access 
rights for a certain file. I must make sure that: 

There are no access rights which will allow direct 
access to the file by any user I do not trust. 

There are no access rights which will allow any user 
I do not trust to directly change the access rights 
for the file. 

There are no access rights which allow a trusted user 
to directly change the access rights for the file 
unless he or she has agreed to abide by the same 
three constraints. 



I believe one could easily show that these three constraints 
imply safety. There is a simple linear algorithm for determining 
whether or not the constraints hold for a given protection matrix. 

Turning to the case of a type manager, a vital safety issue 
is whether or not a subject other than the type manager can 
access directly the implementation objects. Again, such a 
question is clearly decidable so long as the type manager follows 
certain reasonable guidelines: Never give away access rights for 
implementation objects and never give away the right to give away 
rights to implementation objects. 

In considering the file system and a type manager, I have not 
been specific about formal meaning, but I believe it would be 
simple to fill in the formalism. 
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DISCUSSION 

Ruzzo: I think you've made a fair statement of the results 
to some extent, but I would like to amplify a few points. The 
first concerns your comment about decidability in the finite 
case. I think you said that systems, although they are finite, 
tend to be so large and complex that you can't understand them 
anyway. I would like to add that although the finite cases are 
decidable, the computational complexity turns out to be enormous, 
probably requiring exponential time for the types of things we 
have looked at. Again, this supports the idea that you can't 
understand things just because they are finite. 

Fabry: Good point. 

Ruzzo: The second point I wanted to make is about the 
decidability of the mono-operation case and your comments about 
that. You are right in stating that the decidability of these 
systems stems from the fact that the commands we're using are 
simple. However, the threshold between where those commands are 
simple enough to be decidable, and where they slip over to being 
undecidable, is very low. For instance, syst-ms with one 
operation per command are decidable, but I think that allowing 
two or three operations per command is enough to make the systems 
undecidable. It is not that the modules be simple. Even though 
they are simple and individually very transparent, they can 
interact in complicated ways. I agree with modularization. You 
do want modular systems with simple modules. But our results 
show that having simple modules is not sufficient. 

Lipton: I'd like to follow-up on both of these comments. 
I think that all of the undecidability results point to danger 
spots and, therefore, are interesting. I'd just like to know if 
anybody has ever looked at the kinds of access mechanisms that 
people actually use in real systems. I would be curious to know 
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if the dangers signaled by these results are real. If one runs 
naive algorithms, does one unravel things well or do they fail 
miserably? One is reminded of Knuth's analysis of Fortran 
programs. He explained how he was always thinking about very 
complicated arithmetic expressions and about parsing them, and 
he was surprised to see that "a <- b" was the most common. 

Gaines: I'd like to comment about that. I can think of two 
kinds of exploitation of the results. One can exploit the un-
decidability to cause information to flow where because of the 
initial state of control, you would hope that it would not. I 
don't think that there's any evidence that anybody has ever 
tried to do that. My point is it could easily happen by accident. 
In the course of the normal functioning of the systems, somebody 
will find suddenly that they have access where they didn't or 
shouldn't. Through some complicated sequence of actions, some 
user may find a path by which he can get access to data. The 
manager of the system will have a hard time deciding whether he 
is putting the system in a good initial state, or a bad one. 

Jones: I have a number of observations. First, these access-
control mechansims are nothing but little databases with a set 
of commands. Those commands were designed to be a protection 
mechanism, and not a vehicle by which I could get an undecid-
ability result.. It's just not cler that real mechanisms are 
undecidable. A second point is one that I made in my talk: 
that for every new access right gained in a real system, there 
is some subject that caused that to happen. You can build an 
arc from a to b, so that a can perform an operation on b. That 
takes the collusion of everybody in the system, and that's just 
not realistic. So, when I look at the finiteness result, I say, 
"that's neat", because most questions I want to answer only 
involve a few users and lost of subjects. But, all of those 
subjects were, in fact, programs invoked by just these couple of 
users that were in collusion. In fact, the access matrix may be 
not only finite, but small and finite. Maybe the only kinds of 
questions in real systems that I want to answer involve only a 
very restricted piece of protected database. And, you just 
don't care whether the general problem is decidable or not. 

Minsky: One may construct a system (set of commands) which 
is decidable and easy to analyze even if it is not mono-
operational. On the other hand, mono-operational systems, which 
by the HRU result are decidable, may be nevertheless very hard 
to analyze. In short, I do not think that the HRU result has 
much to say about the simplicity, or undecidability of any 
specific system. 
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Fabry: If it turns out that all existing systems are 
special cases, which are decidable, then I will lose interest in 
all of this theory. The theory is useful for me as a practitioner 
only if it helps me understand that there are some systems that I 
can build that will get me into trouble, other systems I can 
build that won't get me into trouble, and which are which. 

Jones: Let me just comment on another sort of gulf between 
theory and practitioners. I have difficulty in mapping the 
theoretician's definitions of safety into things that I see in 
real systems. I don't know whether or not the model is asking 
the same question that I ask of a real system. 

Gaines: One of the important things about this work is that 
it points out a particular problem area which previously was 
completely ignored: You could have a well-functioning access 
control system and still have problems as to whether or not the 
system was secure. 
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PART I 

CONSTRAINTS AND COMPROMISE 

Frederick C. Furtek 

I. INTRODUCTION 

A new concept is proposed for dealing with the logical 
dependencies inherent in system behavior. The prime constraints 
of a system are derived from, and provide an alternative to, the 
traditional state-vector representation of a system. There are 
several reasons for being interested in prime constraints. 

1. They provide a compact and transparent representation for 
a system. 

2. They are especially well suited to systems exhibiting 
either concurrency or nondeterminacy, or both. 

3. They appear to be closely related to intuitive ideas of 
information flow. 

4. They have the potential of providing a practical repre-
sentation for the 'external behavior' of a system. 

5. They provide a simple condition that is both necessary 
and sufficient for the ability to make a deduction about 
the values assumed by a collection of variables. 

II. CONDITIONS, VARIABLES, STATES, AND SIMULATIONS 

Although the concepts of 'value' and 'variable' are taken as 
the basic elements of many theories, they do not quite suit our 
purposes. We will instead be dealing with 'conditions'. A 
condition may be viewed as the assignment of a value to a variable. 
Thus, a condition is associated with a unique variable, a useful 
property not shared by values. 

Postulate. Associated with a system is a finite set of primi-
tive objects called conditions and a partition on t 

 this set, the blocks of which are called variables. 

t  We have taken the liberty of referring to the set of conditions 
associated with a variable as the variable itself. 
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(Distinct conditions belonging to the same 
variables are said to be alternative.) 

In the theory developed below, conditions are the only primitive 
objects we deal with -- all other objects being constructed from 
them. 

Our requirement that each value belong to a unique variable 
permits us to formalize the notion of state in a simple way. 

Definition: A system state is any set of conditions containing 
exactly one representative from each variable. 

To obtain the condition that a state assigns to a variable it is 
only necessary to intersect the state with the variable. Note 
that because a condition never belongs to more than one variable 
there is a one-to-one correspondence between the conditions in a 
state and the system variables. 

The behavior of a system is embodied in the set of allowable 
state sequences for that system. In what follows, we shall 
assume that these system 'simulations' can be characterized by a 
finite set of 'state transitions'. 

Postulate: 	A system has associated with it a set of ordered 
state pairs called (state) transitions. 

Definition: A system simulation is any finite state sequence in 
which every ordered pair of consecutive states is a state transi-
tion. 

These ideas are easier to visualize when the states and state 
transitions are interpreted as the nodes and arcs, respectively, 
of a graph. The set of simulations is then just the set of finite 
paths (including the null path) in this 'state graph'. Note that 
any state can serve as an 'initial state'. (The question of 
initialization will be considered in a subsequent paper). 
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Example: Consider the following system. (Do not be put off by 
its apparent complexity. As we shall see later, the system is 
nothing more than a three-stage shift register). 

conditions = fa
0'

a
l'

b
0'
bc

0'
c
1
} 

variables = {{a 0 ,a 1 }, {b0 ,b 1 }, {c 0 ,c 1 }} 

transitions = {<{a0,130,c0},{a0,b0,c0}>, <{a0,b0,c0}, {al,b0,c0}›, 

<{a
0
,b 0 ,c 1 },{a0 ,b 0 ,c0 }>, <{a

0
,b 0 ,c 1 }, fa l ,b 0 ,c 0 l>, 

<{ a0  b 1 c0 },{ a0  b 0  c l }>, <{a°  b l  c0},  Cal  b0  cl l>, 

<Lao  b
1  c i l,fao  b0  cd>, <{a0  b1  cd, {al  b0  c l }›, 

<Ca l  bo  c0},{a0  bl c0 }>, <{al  b0  c0 }, {a l  b 1  c0 }>, 

<{a l  b0  c i },{ao  b l  c0}>,  <{al  b0  c 1 }, Cal  b l c0 }>, 

<{al  b l c0 },{ a0  b 1  cd>, <{a l  b 1 c0 }, { al  b 1  c 1 )>, 

<{ai_  bl  ci },{a0  b l  c 1 }>, <{al  b l  c 1 }, Cal  b1  c 1 }>} 

As a notational convenience we will often associate a lower 
case letter with each variable and distinguish between alterna- 
tive values with subscripts. It must be emphasized that there 
is no formal significance to the fact that two values may share 
the same letter or the same subscript. 
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i 

The state-transition graph for this system is: 

{a b c 
l' 0' 0 

fal' b l' c0 

a ,b
0
,c

1
} 

a ,b1 ,c1 ) 

{a
l'

b
l' c 1 }  

State Graph 
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Any path in this graph is a simulation. A few of these simula-
tions are represented here in a convenient tabular form: 

a0 
 

 

C o 
 

   

a
l 

b
0 

c
l 

a
l 

b
l 

c
0 

a
0 

b
1 

c
1 

a0  b
0 

c
1 

a
l 

b
l 

c
l 

a
l 

b
l 

c
l 

al  b
1 

c
1 

Simulations 

III. TERMS AND CLAUSES 

An objective of this work is to develop mathematical tools 
for characterizing and analyzing system behavior. So far, the 
only finite characterization we have for system behavior is the 
set of state transitions, from which we can generate the set of 
system simulations. However, it is not practical to deal direct- 
ly with transitions. Besides the obvious problem of complexity 
(the number of states and the number of transitions are usually 
astonomical), there is the problem of transparency. This is the 
problem of presenting in as clear and as compact a way as possible 
the principles governing a system's behavior. The set of state 
transitions, unfortunately, tends to obscure these principles. 
We shall describe an approach that offers a major improvement in 
reducing complexity and increasing transparency -- without 
sacrificing any generality. 

Rather than dealing directly with states, transitions, and 
simulations, we shall be dealing with 'terms' and 'clauses'. A 
term will be used to represent a set of states, and a clause a 
set of state sequences. (Note that a transition is a state 
sequence). 

Definition: A term is any set of conditions not containing an 
• entire variable. 



Example: Consider a system in which, 

conditions = {a a b b b } 
0' l' 0' l' 2 

variables = {{a
0' a1 }, {b0'bb2 }}  

The terms that we get are: 

{0, {a0 }, {a l }, {bo}, {b 1 }, {b 2 }, {b0 ,13 1 }, {b 0 ,b 2 }, {b1 ,b 2 }, 

{a0 ,130 }, {a0 ,13 1 }, {a0 ,b 2 }, {a1 ,b0 }, {al ,b 1 }, {a1 ,b 2 }, {a0 ,b 0 , 13 1 }, 

{a b b }, { a 0 ,b 1, b }, {a b b }, {a b b }, {a b b }} 0' 0' 2 	0' l' 2 	l' 0' 1 	l' 0' 2 	l' l' 2 

We now present a method for associating a set of states with 
a term. It is this mapping that provides the bridge between the 
constructs of our theory and system behavior. 

Notation: 
which 

In what follows we shall be considering a system in 

C denotes the set of conditions, 
V denotes the set of variables, 
S denotes the set of states, 
T denotes the set of terms, and 
S denotes the set of simulations. 

Definition: For t E T, 

7(0 = {s C S!VveV: (tnv#)=> (snvctnv)} 

'7(t) consists of those states s such that every 
variable having conditions in t is assigned one of 
those conditions by s.' 

We list here some of the basic properties of 7. 

Property 3.1: 7(0 = S 

Tr applied to the empty set yields the state set.' 

Property 3.2: VseS: 7(s) = {s} 

'7 applied to a state yields the singleton set containing 
that state.' 

Property 3.3: Vt1 ,t 2eT: 

7(t1  )c7- (t 2  ) 
	<=> VveV: (t 2 nvOcp) =>(t i nvi¢,  n t 1nvct 2 nv) 

198 



199 

1 

'7(t i)c7i(t 2) if and only if for each variable v with 

conditions in t 2,  t 1 nv is nonempty and t 1 nvct 2nv.' 

Property 3.4: Vt 1 ,t 2ET: 7r(t 1 )=71(t 2 )=>t 1=t 2  

'11 is one-to-one.' 

Ekample: For a system in which, 

conditions = {a
0'

a
1'

a
2'

b
0' b1) 2 } 

variables = {{a
0 ,al' a

2
}, {h0'1 ,b

2
}  

we have, 

71 ({a0 }) = fseSlaoesl = ffao ,bo l, {a0 ,b 1 }, {a0 ,b 2 }} 

7({b0 ,b 1 }) = IscsIb oes v b 1Es} = {{a0 ,b0 }, {a1 ,b0 }, {a 2 ,b0 } 

fa0 ,13 1 1, fa l ,b i l, fa2 ,b 1 ll 

71 ({a0 ,b 2 }) = {scSCa0Es A b 2cs} = ffa0 ,b 2 11 

7T({a0 ,a 2 ,13 0 ,b 2 1) = fsEs1(a0Es v a les) n (b0cs 	b 2cs)} 

= {{a0 ,b0 }, {a0 ,b 2 }, {a2,b0},  {a2 ,b 2 }} 

Notice that Tr(fa0 ,b 2 1) c Tr({ao }) and 7r({a0 ,b 2 1)c7i({a0 ,av h0 ,b 2 }), 

in accordance with Property 3.3. 

We turn now to clauses. 

Definition: A clause is a sequence of terms. 

A clause is used to generate a set of state sequences by 
first applying 71-  to each of the terms in the clause and then 
taking the Cartesian product of the resulting sets of states. 

Notation: For a sequence a, we use Ill  to denote the length of 
a, and a(i) to denote the i'th component of a. 



Definition: For acT*: t 

lal 
Tr(a) = X 	Tr(a(i)) 

i=1 

Property 3.5: VwES4: n(w) = {w} 

'n applied to a state sequence yields the singleton set 
containing that state sequence.' 

Property 3.6: For clauses a and R  of the same length, 

Tr(a) c 11- (R) <=> Vi: n(a(i)) c n(f3(i)) 

n(a) c n(R) if and only if for each pair of corresponding 
terms a(i) and Ui), n(a(i)) c n([3(i)). 

Property 3.7: Va,flET*: 

ff(a)=7T(R) => a=f3 

'The extension of n to clauses is also one-to-one.' 

Example: Consider a system in which: 

conditions = {a
0'

a
l'

b
0'
bb2 } 

variables = {{a0' a1 }, {b0'bb2
}}  

Let a = <{a b b } {a b } 	b }> l' 0' 2 ' 	0' 1 ' 	l' 2 

	

Then n(a)={{a 1 ,b0 }, 	{a1 ,b 2 }} X {{a0 ,13 1 }} 

	

{a 1 ,b 1 }, 	{a1 ,b 2 }} 

X{{a0 ,13 1 }, 	{a0 ,b 2 }, 

={<fa 1 ,b 0 1, {a0 ,b 1 }, {a0 ,b 1 }>, <{a1 ,b 0},{a0 ,b 1 },{a0 ,b 2 }>, 

‹{a 1 ,b0 }, {a0 ,b 1 }, {al ,b 1 }>, <{a 1 ,b 0 },{a0 ,b 1 },{a 1 ,13 2 }>, 

<{a1 ,b 2 }, fa0 ,13 1 1, {a0 ,11 1 }>, <{a1 ,b 2 },{a 0 ,b 1 },{a0 ,b 2 }>, 

<{a1 ,b 2 }, {a0 ,13 1 }, {a 1 ,b 1 }>, <{a 1 ,b 2 },{a0 ,b 1 },{a1 ,b 2 }>} 

1-  If A is a set, then A* denotes the set of finite sequences 
over A. 
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IV. CONSTRAINTS 

The function 7 introduced in the preceding section maps a 
clause into a set of state sequences. We now focus our attention 
on those clauses that map only into 'nonsimulations'. 

Definition: C = fet c T* 1 7(a) n S = 

'C is the set of those clauses a such that 7(a) contains no 
simulations.' 

C is the set of constraints. 	A constraint of length n is 
called an n-place constraint. 

Our choice for the definition of a constraint is motivated in 
paft by a useful property of non-simulations. 

Property 4.1: VRcS*: 

RnS=q) => (S*RS*)n S --(/) 

'Any extension of a nonsimulation is also a nonsimulation.' 

Let us now introduce a relationship on the set of clauses. 

Definition: For a, 	T*, 

a<•f3 	(S*7(a)S*) c (S*7(0S*) 

'a<.3 if and only if every extension of a state sequence in 
Tr(a) is also an extension of a state sequence in Tr((3).' 

The clause S is said to cover the clause a if and only if a<-13. 

The next result follows from Property 4.1, and it provides us 
with the justification for considering just a special subset of 
constraints. 

Property 4.2: VaCT*: vf3eC: 

a<.13 => a E C 

'Every clause covered by a constraint must itself be a 
constraint.' 

To help us better understand the nature of the relation <•, 
we provide a formulation that is equivalent to the definition 
above. 

201 



Property 4.3: Va,acT*: 

<=> Yca: IY1=10 A 7T(Y) c 'IT(B) t  

'a<.f3, if and only if a contains a subsequence y the same 
length as S such that 71- (y) c 7(R). 1  

From the definition of <• it follows immediately that <• is 
reflexive and transitive. From Properties 3.7 and 4.3 it follows 
that <• is also antisymmetric and, therefore, a partial order. 

Now in order to take advantage of Property 4.2, we must first 
establish that a clause has only a finite number of superiors 
with respect to <•. 

Property 4.4: 	c, 3 	a<.(3 

'Every superior of the clause a is either shorter than or the 
same length as a.' 

This last result means that the set of 'maximal constraints' is 
well-defined. 

Definition: C T  = max ‹• (C) 

C' is the set of prime constraints. 

From Property 4.2 we see that the set of prime constraints 
determines the set of all constraints. 

Example: Consider the system whose state graph is given in 
Section II. 

Although there are an infinite number of constraints for this 
system (which is the usual case), there are just six prime 
constraints. 

C' = f<{a0}, fly>, <{a1 }, {b 0 }>, 

<030 1, {c1}>, <{b 1}, { c0 }>, 

<fad' (1), 
{c1}>, <{a

l }, (1) ' fc
0
l>1  

For sequences p
1 
 and U2 , p

1 
 cp

2 
 indicates that p

1 
is a 

—  
(consecutive) subsequence of p

2' 
If < is a partial order on a set Q and if P c Q, then 

max < (P) = rCPi7Pc P: P> r} 
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(A method for constructing prime constraints will be given in a 
subsequent paper). 

With these prime constraints, we now see that the state graph 
describes nothing more than a three-stage shirt register. For 
example, the prime constraint <{ao }, fly> tells us that if a 

particular state in a simulation contains an a 0 , then the next 

state -- if there is any -- cannot contain a b l . In other words, 

the next state must contain a h 0 . (Otherwise, we would have a 

nonsimulation). The prime constraint <{a 0 }, 0, {c
1
}> says that 

if a state contains an a 0 , then two states later we cannot have 

a c l  -- we must have a c 0 . (We might note that the prime 

constraint <{a0 }, 0, {c
1
}> is a direct consequence of the prime 

constraints <{a0 }, fb
1
1> and <{b0 }, {c 1 }>). Although we're 

discussing prime constraints in terms of their 'predicative' 
abilities, it should be clear from symmetry that prime con-
straints can also be used for 'postdiction'. For example, the 
prime constraint <{a0 }, } fb

1
1> tells us that if a particular 

state in a simulation contains a b
1, 

then the preceding state, 

if any, cannot contain an a 0  and must, therefore, contain an al . 

In the preceding example there were an infinite number of 
constraints but only a finite number of prime constraints. So it 
might be supposed that the number of prime constraints is always 
finite. However, this is not the case as the next example shows. 

Example: Consider this system, 

values = { a0, a1 } 

variables = {fa0' a
1 
 1} 

state graph: 	{a0} 

In spite of its simplicity, this system has an infinite number 
„L n 	r of prime constraints. Each one is of the form <{a 0}, w , {a1 }> 

where n>0. There are two ways to interpret this set of prime 
conbtraints, 

1. Once we have an a0 , we will always have an a 0 . 

2. If we have an a l , then we must always have had an al. 
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The following two results establish the equivalence of the 
set of two-place prime constraints and the set of state transi-
tions. 

Theorem 4.1: S 2 = fweS
2
RaeC 1

2
: w<•a} fi 
 — 

'A state transition is any ordered pair of states not covered 
by a two-place prime constraint.' 

Theorem 4.2: C2 = max <• (facr
2 Iff(c)nS

2 = 

'A two-place prime constraint is a maximal clause of length 
two that does not cover any state transitions.' 

V. DEDUCTION 

To illustrate the utility of prime constraints, we shall show 
how they can be used to provide a necessary and sufficient 
condition for the ability to access a set of variables. 

Consider the following problem: We are given two disjoint 
subset 	of variables for some system. We assume that an agent 
knows the values taken on by the variables in one of those 
subsets. We would like to know under what circumstances this 
knowledge can be used to deduce something about the values taken 
on by the variables in the other subset. 

To help formulate the problem a littler better, let the two 
subsets of variables be denoted A and B, with A the set of 
variables to which our mythical agent has access. We shall assume 
that this agent knows the constraints of the system. On the 
basis of this particular knowledge, the agent is able to determine 
a priori that only certain patterns of values are possible for 
the variables in B. We shall say that the agent is able to deduce 
something about Set B using Set A if and only if there exists a 
simulation in which the pattern of values for the variables in A 
can be used to further restrict the set of possible patterns in 
that simulation for the variables in B. Thus, a deduction about 
B based on A can occur if and only if there exist two patterns, 
one restricted to A and the other to B, that are possible 
separately, but not together. The presence of one pattern ex-
cludes the other. These ideas are formalized as follows. 

If A is a set of sequence and n a non-negative integer, then 
I
n 

denotes the set of those sequences in A of length n. 
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Definition: A pattern is a clause in which each term contains 
no more than one value per variable. 

Notation: If a and a are sequences of sets of the same length, 
then a.u3 is the componentwise union of a and a and a.nR the 
componentwise intersection of a and 13. 

Definition: Two patterns a and 13 are said to be mutually-
exclusive if and only if, 

1. a and 13 are the same length 
2. a.t.43 is a constraint 
3. neither a nor a is a constraint by itself. 

Definition: If a is a clause and A a set of variables, then a
A

, 
the restriction of a to A, is the clause obtained by 
deleting from each term of a all conditions not belonging to 
a variable in A. We say that a is restricted to A if and 
only if a=aisk . 

Lemma 5.1: If a and R are clauses of the same length, then, 

a<•13<=> n(a)cn(s) 

Lemma 5.2: If a and a are clauses of the same length, then, 
a<=• 	a‹• a. n R <• 3 

Lemma 5.3: If a and R are clauses and A a set of variables, then, 

ar=c1A 
	

0.<•13 => 13=13A 

Theorem 5.1: If A and B are disjoint sets of variables, then: 
There exists two mutually-exclusive patterns, one restricted to 
A and the other to B. 

if and only if 

There exists a prime constraint restricted to AuB that is not 
restricted to either A or B individually. 

Proof: 'If' Let 6 be a prime constraint satisfying the 
indicated properties. From Properties 3.3 and 3.6 and Lemma 5.1 
it follows that, 

0<•0
A and 

0<.0 
— B 

But because 0 is not restricted to either A or B individually, we 
know that 0 ¢ 6

A 
and 6

B
. Thus, 

6<•0
A 

and 0<•6
B 
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These two relationships together with the 
constraint mean that neither 0

A 
nor 0

B 
is 

must exist, therefore, two simulations wA  

w
A 
	7r(OA) and w

B c Tr(0B ) 

fact that 0 is a prime 
a constraint. There 

and w
B 

such that, 

(a) 

Now let, 

p
A 

= w
A
.n0

A 
and p

B 
= w

B
.n0

B 

Because wA  and wB  are both simulations, 	and ps  are both 

patterns. And because 0A  is restricted to A and OB  to B, pA  is 

restricted to A and p
B 

to B. Now from Line (a) it follows that 

w
A 

0
A and wB B. 

Applying Lemma 5.2 to these two relation- 

ships and using the definitions of 	and p
B' 

we get, 

WA 
—
<•

A 
and w

B —<• uB 
	

(b) 

p
A

<•0
A 

and p
B

•O
B 
	 (c) 

Line (b) tells us that neither p
A 

nor p
B 

is a constraint (since 

wA and wB are simulations). From Line (c) and the fact that 

0 =0A' uO
B 
 we have (by Properties 3.3 and 3.6 and Lemma 5.1), 

p
A' 

u p
B 	

0 

Since 0 is a constraint it follows that p
A' 

u p
B 

is also 

(Property 4.2). Hence, 	and 	are mutually-exclusive patterns. 

'Only If' Let a and 8 be two mutually-exclusive patterns, a 
being restricted to A and 8 to B. Thus, a.u8 is a 
constraint, and so there must exist a prime con-
straint 0 such that 

a.u8 ‹• 0 

This relationship means that there is a subsequence 
6 of a.03 such that 161 = 101 and 6<•0 (Property 
4.3). We then have 6 = 6

A  .u6 B 
 and, 

6
A .u6B  
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Because A' u5
B 

is restricted to AuB, it follows that 

0 is also restricted to AuB (Lemma 5.3). Suppose 

now that 0 is restricted to A. Then 

(dA .uc.ne = dA .ne, and by Lemma 5.2. 

d n0<.0 	Furthermore, since
A 

is a pattern, 

6
A 

<•(S
A'

ne (Properties 3.3 and 3.6 and Lemma 5.1). 

Thus,
A

-0, and by Property 4.2
A 

must be a 

constraint. And, so too must be 	since (5
A 

is a 

subsequence of pA . But this contradicts our 

initial assumption that PA  and PB  are mutually-

exclusive patterns. We must conclude that 0 is 

not restricted to A. A similar argument shows that 

0 is not restricted to B. 	 0 

Example: Consider the following system, 

variables = {a, b, c} 

where a = {a 0 ,a1 }, b = {b0 ,13 1 }, and c = {c0 ,c 1 } 

two-place prime constraints = {<{a0 ,13 0 }, {c0}>, 

‹{cb1} ' {a
l'

b
0
}>} 

Now let A = {a} and B = {b}. Question: Can anything 
ever be deduced about the values assumed by Variable b 
by observing the values assumed by Variable a. Answer: 
Yes, because there is a prime constraint restricted to 
{a,b} but not to either {a} or {b} individually. That 
prime constraint is, 

<{a
0' b0' 

} {b
1' 

 } {a b0 }> 

From Theorem 5.1 we know that there must exist two 
mutually-exclusive patterns, one restricted to {a} and 
the other to {b}. They are, 
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a a b 

a0 

al 

b
0  

b
l  

b
0  

With Theorem 5.1 we've attempted to show that prime 
constraints can be used in formulating and answering an important 
question about system behavior. We, of course, are not done 
since we must now provide an effective (and efficient) procedure 
for determining whether a prime constraint of the prescribed type 
exists t. Work is now progressing in that area, and in other 
areas related to answering a broad class of questions about 
system behavior using prime constraints. 
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PART II 

CONSTRAINTS AND MULTILEVEL SECURITY 

Jonathan K. Millen 

I. INTRODUCTION 

In its early days, the theory of information security in 
computer systems was regarded solely as a matter of access 
control. Subjects had a natural interpretation in a manual data-
processing environment as people, and objects as documents. When 
this philosophy was transferred to computer systems, subjects 
became processes and objects became files. The process/file 
level of granularity was acceptable for ordinary user programs, 
but turned out to be too coarse for system programs where 
efficiency is of great importance. The operating system software 
that handles access requests, and changes in access authorization, 
was found to be a prime source of the need to work at a finer-
grained level. The subject/object approach is awkward at this 
level because there is no natural interpretation for subjects. 

The reason that processes no longer suffice as subjects can 
be illustrated with an example. Consider a program with the two 
assignment statements: 

U2 := Ul; 
S2 := Sl; 

and let us assume that information flow from SI to U2 is not 
authorized. The process evidently needs read access to S1 and 
write access to U2. From a subject-object-access point of view, 
the situation is insecure. What makes the difference here is the 
fact that we know what the program is, and we can see that it 
causes no information flow from S1 to U2. How can we formalize 
this argument? 

One way is to introduce new, more abstract, subjects, and say 
that the two statements could, in principle, be executed by two 
distinct subjects. When subjects are reinterpreted, however, 
access also has to be viewed differently, and there is less 
intuitive assurance that read and write accesses are being inter-
preted appropriately in any but the simplest situations. 



If the primary objective of the analysis is to detect un-
authorized disclosure of information, an appealing alternative 
is to formalize the notion of information flow from one object 
or variable to another. 

Shannon's theory of communication does not seem to be direct-
ly applicable here, primarily because it deals with a single 
communication channel. In a computer or computer program, there 
is potentially a channel between any pair of variables, and the 
usefulness of the channel often depends on the current values of 
other variables. In this context, also, probability distributions 
are usually not known. 

There have recently been several papers that have taken infor- 
mation flow approaches to computer security. Their common setting 
is a deterministic abstract machine whose current state is 
embodied in a set of state variables. Information flow from each 
state variable to others may result from each transition of the 
machine. 

Jones and Lipton [1] consider a transition as the result of 
invoking a program. A program is a function from its inputs --
which include global variables and data structures as well as 
arguments -- to its outputs, which can be stored in global 
variables or just viewed. If an output can be determined from 
some proper subset of the inputs, then there is no information 
flow from the inputs not in that subset to that output. 

D. Denning and P. Denning [2] classify program statements 
according to the information flows that can occur between the 
variables that participate in the statement. An assignment 
statement potentially transfers information from its right hand 
variables to its left hand variable. A conditional statement 
potentially transfers information from the condition variables 
to any variables that can be modified in its sequel. The flow 
characteristics or "certification semantics" of a wide variety of 
statements are given. 

Feiertag, et al [3] has a functional definition like Jones 
and Lipton, but considers the flow only from the past succession 
of external inputs to a given external output. This yields the 
most immediate application to multilevel computer security, since 
levels are known a priori only for external variables. It is 
then shown that a per-transition policy based on assigning 
security levels to internal state variables is sufficient to 
protect against unauthorized disclosure. 



Cohen [4] gives a sufficient as well as necessary condition 
for information flow, suggested by Shannon's probabilistic theory. 
A variable B is "strongly dependent" on a variable A over 
execution of an operation if variety in the value of A beforehand 
forces variety in the value of B afterward. This definition 
satisfies the requirement of a functional approach: if an output 
is determined by a certain set of variables, it is not strongly 
dependent on any variables not in that set, with the exception 
of those linked by some relation or invariant to a variable in 
the set. 

Our approach uses a particular static representation of a 
system in terms of "prime constraints", which are analogous to 
prime implicants in switching theory. A prime constraint 
characterization: 

1. describes the system as a whole, rather than single 
operations, programs, or statements; 

2. exhibits security compromises transparently; 
3. exists for nondeterministic systems. 

The prime constraints of a system are derivable from non-
procedural transition specifications such as those introduced by 
Parnas and used by MITRE and SRI in security verifications. A 
way to generate a set of prime constraints sufficient for 
security analysis will be suggested. 

The main result in this paper is the proof that a certain 
condition on transitions, similar to the *-property, is sufficient 
to guarantee security against unauthorized disclosure. 

II. PRELIMINARIES 

Notation. In what follows, we shall be dealing with only one 
system at a time and we shall use fixed symbols for the state 
set, variables, etc., as indicated in this section. 

A is the finite set of variables (or objects). V(a) is the 
finite set of possible values (or local states) for a variable a. 
The set of all states is denoted by unity, 1. Each state is a 
function q assigning a value to each variable. Thus, q(a) cv(a). 

T is the set of transitions; it is a relation on 1. If 
(q,q') c T, we write q -)-q' and say that there is a transition from 
q to q', in which q is the old state and q' is the new state. We 
require that every state must have at least one transition from 
it. 



F is the set of free variables, those whose value in the new 
state after any transition is unconstrained by the old state. F 
is determined from T by: 

F = falif q -3- q' and e(b) = q"(b) for all b 	a then 
q 	q"}. 

X and Y are the input and output sets, respectively. They 
are of no significance structurally, but they play a necessary 
part in the definition of security. Inputs are required to be 
free.* 

A causal (discrete) system can be described completely by its 
set of transitions. A sequence of states is a simulation if and 
only if each state is followed by one to which there is a transi-
tion, except the last. 

Constraints. The concept of "constraint" in this paper is 
essentially the same as in the paper by F. C. Furtek in this 
volume. There are some technical differences, however, of which 
two stand out: the characterization of constraints as sets of 
state sequences of a given length, and the limitation of one 
value per variable per state position. 

This section introduces some preliminary definitions in a 
version of switching theory based on state sequences instead of 
states, and which deals with variables that are not necessarily 
binary. Constraints are like implicants, except that they are 
sets of state sequences that are not simulations. ' 

Constraints are built up from conditions. A condition is the 
set of states assigning the same value to a particular variable. 
The condition fixing the value v for the variable a is denoted a

v
. 

Thus, q E a
v 

if and only if q(a) = v. 

A term is a nonempty intersection of conditions. Terms are 
written multiplicatively, like a 1b

1
c
0
. The set of all terms is 

denoted P. By convention, the set 1 of all states is considered 
a term. 

* Free variables are unconstrained by even their own past values. 
Hence, a free variable that is not an input must get its value 
from some process that is unpredictable except perhaps prob-
abilistically. We assume that probability distributions of 
such variables are not known to prospective penetrators. 
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So far, we have only been talking about sets of states. A 
cartesian product of terms is a set of state sequences. These 
are just called products. Let P

n 
be the set of n-place products. 

P
n 

= {p
1 	

x p
n 
 I  p

i 	
P for all i}. 

A constraint is a product that contains no simulations. Let 
C
n be the set of n-place constraints. An n-place constraint is 

prime if it is maximal in C
n

. 

As an example, consider the system with two binary variables 
whose transition set is described by the assignment statement 

b := a 

with the understanding that a is free. The system has four 
possible states: 

q0  E a0b 
0 	0 0 

a0b 1 

q
2 

a
l
b
° 

q
3 	

a
l
b
l 

1 

Each of the terms above, because it has a condition from every 
variable, contains exactly one state; it is often convenient to 
use such terms to represent states. 

The product 
a
0
b
1 

x  a
l
b
l' 

which contains just one state pair, is a constraint because 
a0b 1 a

1
b
1
. It is not prime, however, because 

a0 x b l 

is also a constraint, and, being a product of a proper subset of 
the conditions in each term of the former constraint, it properly 
includes it. In fact

, 
a
0 

x b
1 

is prime. 

III. DEFINITION OF SECURITY 

One can use a constraint, plus knowledge of the values of all 
but one of the variables appearing in it, to deduce something 
about the value of the remaining variable. For example, the 
constraint 

a
0
b
1 

x c
0 

together with the knowledge that q(b) = 1 in state q and q'(c) = 0 
in the next state q', permits the deduction that q(a) 	O. 
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Knowledge about b and c has led to a conclusion about a. 

If the constraint is prime, we can guarantee that the events 
q(b) = 1, q 1 (c) = 0 are possible, since 

b
1 

x c0 
 

cannot be a constraint. Thus, a prime constraint is sufficient 
to make a deduction about any one of the variables occuring in 
it, if one can control or observe the others. 

Prime constraints are also necessary for a deduction of this 
type. Suppose that one observes and/or causes a series of events 
expressed by the product 

p X 
1 

X pn  . 

We shall say that one can "deduce something about" a variable a 
if he can exclude at least one possible value u for a at some 
time i (relative to the series of events). If the deduction 
about a concerns its value at some time before the first event or 
after the last, one can extend the product with x l's to ensure 
that i is between 1 and n. The conclusion that a cannot have 
value u at time i implies that 

p
1 

x 	x p
i
a
u 

x 	x P
n 

is a constraint. This constraint might not be prime, but there 
is some prime constraint covering it. Furthermore, any prime 
constraint covering it still contains the occurence of au , since 
p
1 

x 
	

x p
n 

is not a constraint -- it expresses events that 

have occured in some simulation. 

In summary, a necessary and sufficient condition to deduce 
something about the value of a variable on the basis of access to 
other variables is the existence of a prime constraint with an 
occurence of the variable in question, such that all other 
variables occuring in it are accessible. (This statement would 
have to be refined somewhat to take into consideration access 
capabilities that change in time). 

In defining security, we consider only those constraints 
involving solely input and output variables. Any control or 
observation of system variables by a user must be managed via 
inputs and outputs, and those are the only variables for which 
security levels are given. 
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Although a user can directly observe outputs only at his own 
level or lower, he can sometimes control inputs at higher or 
incomparable levels. One way to do so is by introducing a "Trojan 
Horse" into the system software. This higher-level control 
ability can be limited or eliminated in some environments, but 
only the worst case of unlimited ability to control all inputs is 
treated below. 

Of course, it does not help a penetrator to control all the 
inputs to a system, since he will learn nothing he did not already 
know, but we do not exclude the possibility that he will control 
all but one, or as many as he needs, to learn something about one 
particular input still controlled by a high level user. 

Security compromises are not limited to deductions involving 
two consecutive states. A value entered in some input at the 
"Secret" level should not predictably reappear as the value of an 
"Unclassified" output at any later time. The definition of 
security, therefore, involves n-place rather than just two-place 
constraints. 

Security levels are defined for inputs and outputs only, and, 
in this paper, are assumed constant in time. Security levels do 
change in real systems, but it is possible to regard a variable 
as a collection of "virtual" variables of constant security 
level, and then prove later that the virtual variables are multi-
plexed correctly into the single real one. The ability to 
virtualize away certain complexities for purposes of security 
analysis is one of the advantages of using a high level, formal 
transition specification [5]. 

We define an external security level assignment as a function 

A: XuY± L 

where L is a finite lattice of security levels. 

A system is secure against unauthorized disclosure in a 
Trojan Horse environment if no user at level s e L can deduce 
something about the value of an input of a higher or incomparable 
level, on the basis of observations of external variables at 
level s or lower and/or control of inputs at any level. By the 
above arguments, a system is secure in this sense if and only if 
the following situation is impossible: 

1. p
1 

x 	x p
i
a
u 

x 	x p
n 

is a prime constraint 

2.pi  cb
v 
 implies b c X u Y 

3. (pi  c by 
and b 4  X) implies A(b) < s 

4. a E X 
5. X(a) 	s. 
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IV. A SUFFICIENT CONDITION FOR SECURITY 

Covers. In practice, it is desirable to draw conclusions 
about security by analyzing some small-as-possible presentation 
of a system, such as a program listing or a formal specification. 
In more abstract terms, we wish to analyze the transition set of 
a system without having to generate simulations (or constraints) 
of greater length than two. Rather than look at the transition 
set directly, we shall work with some set of two-place prime 
constraints called a cover, whose union is the set of all non-
transitions. That is, R c C

2 
is a cover if 

(1 x I) - T = u R. 

A cover consisting of prime constraints is called a prime 
cover. 

Covers, even prime covers, are not unique, but one can always 
produce a cover simply by listing all state pairs that are not 
transitions, representing each state by the intersection of the 
conditions that contain it. Then a prime cover can be found by 
replacing each constraint by a prime constraint that covers it. 

The results in this paper apply to systems coverable by 
constraints of a restricted form: those with single conditions 
on the right. We call a constraint simple if it is of the form 

p x a
y

. 

A simple system is one possessing a simple cover (a cover con- 
sisting of simple constraints). This category of systems includes 
all systems that would be considered deterministic. Let us 
define a system to be structurally deterministic if the value of 
every non-free variable is determined by the previous state. 
That is, 

	

if q 	q' and q -4- q" 

and q 1 (a) # q"(a) 

then a c F. 

The unqualified term "deterministic" should probably be 
reserved, in a security context, for structurally deterministic 
systems whose free variables are all inputs. A structurally 
deterministic system has the following simple prime cover: 

R = {p x av la 	F and p is maximal in {p' c Pip' c  1 --•av }} 

where •a
v 

is the inverse image of a
v
, namely, 

	

-a
v 

= {qi 	for some q', q -4- q' c a
v
}. 
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This cover works because, if (q,q') is not a transition, there 
must be some non-input a such that q ft 

-aq(a). 
 Otherwise, any 

state q" such that q 	q" would have to match q' on all non- 
inputs, and hence q 	q' since inputs can be changed freely. 

Further evidence that simple constraints are an "interesting" 
category, is the fact that there is a close connection between 
simple two-place constraints and strong dependency. To be precise, 
the following two statements are equivalent: 

1. There exist q,q' C 1 such that q(c) = e(c) for all c 	a 
and {q"(b)I q 	q"} 	{q"(b)I q' 	q"}; 

2. There is a prime constraint p X b
y 

C C
2 

such that p c a
u 

for some u E V(a). 

Statement 1 is Cohen's definition of strong dependency of b 
on a, modified somewhat to be applicable to nondeterministic 
systems. 

The Monotonicity Condition. The Bell-LaPadula *-property [6] 
required that if a subject has read access to an object a and 
write access to an object b in the same state, the security level 
of a must be dominated by the level of b. The idea is that no 
information could be transferred from a to b in a single transi-
tion without the accesses indicated. 

The nearest equivalent in the present context is the following 
monotonicity condition. Given an external security level assign-
ment X, an extension 	of X to A is monotone with respect to a 
simple cover R if, for all generators a u  and constraints 
p x b

y 
c R, 

It is shown below that a system is secure if there exists a mono-
tone extension of the external level assignment. 

The argument will proceed roughly as follows, in three steps. 
First, it is shown easily that any prime constraint p 1 	pn  

is generated by the two-place constraints in a cover. Second, 
there is a major result, called the Factor Lemma, that there is 
a chain of variables, joined by constraints in the generating set, 
between any free variable in each p

i 
and some non-free variable in 

a LaterP i  .. Finally, the monotonicity condition applied in a 

trivial induction to the chain establishes the desired inequality 
in security levels. 

if p c au  

then 1(a) < (b). 
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Generation of Prime Constraints from a Cover. If p is a 
product, 1 x p and p x I are called extensions of p, as are 

1 x 1 x p, 1 x p x 1, and in general l i x p x lj
. If R is a 

cover, any n-place constraint is covered by extensions to length 
n of elements of R. For, if p is a constraint, any state sequence 
in p is a non-simulation, and must contain at least one non- 
transition, which is included in some element of R. That element 
can be extended to a constraint that contains the state sequence. 

Given a prime constraint p, let Z be a minimal set of exten-
sions of a cover R such that 

p c u Z. 

The inclusion is irredundant on the right in the sense that Z is 
minimal, and irredundant on the left in the sense that no 
conditions can be removed from p because p is prime. In this 
situation, p is called the extended consensus of Z, and we write 

p c u Z (irr.) 
after Tison [7]. Thus, any prime constraint is an extended con-
sensus of elements of a cover. 

It can be shown that every condition in p appears, in the 
corresponding state position, in some element of Z. In fact, p 
is exactly the product of conditions whose variables appear only 
once in each state position among the elements of Z. Other 
variables appear with all possible values and get "cancelled" as 
in this example, assuming b is binary: 

ilao  x b0c 1  x 1 
lxbd xa 

1 0 	0 

p = a0  x c d x a 0 1 0 a0 

The Factor Lemma. The two-place constraints in R are like 
links that can be chained together to form any prime constraint. 
There are, in general, several links in each position along such 
a chain, as suggested below. 

218 



A link is coupled with a link in the following position by 
sharing a variable. The right-hand variable in each "link" 
appears as a left-hand variable in one of the links in the next 
position, except when it "drops out" and appears in the final 
prime constraint. This is stated formally and proved below as 
the Factor Lemma. The Factor Lemma serves essentially the same 
purpose as Cohen's Theorem 4-1 and Feiertag's proof of the 
sufficiency of "strong security properties". 

Consider an n-place prime constraint pl  X 	X pn  and a 

classical prime cover R. There is, as we have seen, a collection 
Z of constraints from R, which we shall exhibit in the form 

f ..  X g ..  
13 	1 .3 

for i = 1,...,n-1 and various j, such that the extensions 

h 	li-1  x f x 	x 1n- i-1  ij 	
ij 	5ij 

cover pi  x . 	x pn  irredundantly. See the accompanying figure. 

Suppose that gij  = av , and that p i +1 	an  for any u. 
.o o 	 0 

• 
In this situation, the Factor Lemma asserts that there exist j 
and u such that 

c a
u 

f
i
o
+1, j 

The proof will make repeated use of the argument that, if p 
is a term that contains a state q but not q', then p c a

v 
for 

some condition a
v 

such that q 6 a
v 

but q' 4  av
. We say in this 

case that p distinguishes q from q', and that p is a-dependent. 
Thus,theFactorLemmasaysthatif_is a-dependent and 

o o 
pi +1  is not a-dependent then f i +1 j  is a-dependent, for some j. ,  

0 	 0 

The proof begins by noting that, by irredundancy of the 
inclusion p C u Z, there is a state sequence 

s = (q1,...,q
n

) 



such that 

and 

but 

S e p 1  x 

s c h . 
i 
0 0 

x 
pn 

s 	h. j  for any (i,j) 	(1 ,j 0
). 

0  

Since sCh
ij

, we have q
i +1 

c g
1 
 . . = a . That is, 

 0 0 	 0 	 0
J 
 0 

qi +1 	 o 
(a) = v. Now, let q'

i +1 
be the state identical to q

i+1 
o 

 

except that q' i +1 (a) = u 
	v, where u is found as follows. 

Produce a state q" such that q i  + q", and let u = q"(a). This 

u# v because q 	6 f i j  , and fi j  x a
v 

is a constraint. 
0 0 	 0 0 

Let s' be identical to s except that q i +1  is replaced by 

q' 1.41. Since p 
+1 

is not a-dependent, it cannot distinguish 0   

ql i+1 from q i +1 , so 
o 

 

s' c pl 
x 

pn 

But s' 	h
i

, because q' i +1 
I[ a

v
, hence 

0 0 

s' cfor some (i,j) 	(1 ,j o ). hij 	
0 0 

sinces w hil doesdistinguish cC 14.1 froni qi in  position o   

+1,hencepositionio+lofh..ilmst be a-dependent; in fact, 
1 J 

it must be included in a
u

. 
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Factor Lemma Illustration. l's have been omitted 
from h..'s for clarity. The box encloses the i +1 

23 	 o  
position. 



If a
u 
appears on the left, in, then i = i

o 
+ 1 and we are fij  

done.Ifall appearsintheright,in,then i = i
o 

and 
gij 

.3 
f..
ij x g1

.. = f
1 
,. x 	au. 	But cl l.  c f. . (since s'ell.

1
.)and 

o
j 

o 	
1
o 	

jj 

qi 
+ q" C au,  so fi 	

x a
u 

cannot be a constraint, yielding a 
o 	 of 

 

contradiction. This completes the proof. 

Security Theorem. Now, consider a prime constraint p as in 
the definition of security, in which a condition a

u 
of some input 

a appears. By using the Factor Lemma and the monotonicity condi-
tion, we shall find in p a condition of some non-input which 
dominates a in level. Assume that p C u Z (irr.), where Z is a 
subset of extensions of elements of R, a simple prime cover. 

We know that a
u 
appears in some element of Z. Inputs appear 

only on the left (in the original two-place prime constraint). A 
condition b

v
, which cannot be an input, appears on the right of 

that constraint. Note that b dominates a in level, by the mono- 
tonicity condition. If b appears in the final prime constraint, 
we are done. Otherwise, by the Factor lemma, a condition of b 
appears in the same state position on the left: of a constraint in 
Z. Now apply the same argument to the condition on the right of 
that constraint, etc. (See figure below). Eventually, a non-
input condition dominating a in level will be found in p. This 
proves the sufficiency of the monotonicity condition when there 
is a simple prime cover. 

a f x b 
u 	v 

bf' x c 
v 	w 

• • • 

= • 
	x a  x 	x c  x 

V. CONCLUSIONS 

Application. To test a system for security using the mono-
tonicity condition, a simple prime cover must be found. While a 
"constructive" proof of the existence of such a cover was given 
for structurally deterministic systems, a practical technique for 
producing them has not yet been developed. The prospects for 
doing so are not bad, as this section will try to show. 
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Constraints can be viewed as a means of expressing the 
semantics of other, more convenient, specification languages. 
Formal transition specifications, like some of those suggested 
by Parnas, lend themselves to this treatment. 

A simple, but not untypical, transition specification for an 
operation to copy one element of an array into another with a 
greater or equal index is given below: 

0-function copy (i,j) 

exception 

i > j 

effect 

m(j) := m(i) 

The first step in translating this type of specification into 
a simple prime cover is to identify the variables. First, the 
arguments i and j are stored in some variables, say a and b. The 
array m is composed of the variables m(1), m(2) 

The assignment statement in the effect, considered in isola-
tion, suggests the constraints 

m(i) u  x m(i) v  • (u # v) 	 (1) 

where u E V(m(i)) and v E V(m(j)) is understood, and it is 
assumed that m(k) exists for all k 6 V(a) = V(b). 

The constraints specified by (1) apply only when i and j are 
the argument values, and the exception condition does not hold. 
Hence, the function as a whole has constraints 

a.h.m(i) ii 
x m(j) v 	(u 	v,i < j) 	 (2) 

j 

When the exception condition holds, m(j) is not modified. 
Hence, we have also: 

aib.m(j) u x  m(j) v 	(u # v, i > j) 	 (3) 

Finally, no element of m other than m(j) is ever modified; 
this gives 

b,m(k) x m(k)
v 	

(u 	v, k 	j) 	 (4) 



There are no constraints with a or b on the right because a 
and b, which hold arguments of the call, are inputs, and could 
change arbitrarily for the next call. 

The fact that a constraint cover is for a whole system, while 
formal specifications are presented function by function, is not 
an obstacle. Assume that we have a collection of covers 
R
1,Rn

, each of which specifies one function. Let us intro- 

duce a new variable e with values 1,...,n to "choose" the function. 
Replace each constraint f x g in R, by e.f x g. The collection 

of all of the new constraints is a cover for a system in which 
any one of the n functions may be chosen freely. 

The copy example above also provides an easy demonstration 
of a security validation. Suppose that a and b are at the 
minimum security level and that the level of m(k) is k. The 
monotonicity condition can be verified by inspection of (2)-(4). 

Summary. A system comprises variables, whose combined values 
express the system state, and transitions. Systems are not 
necessarily deterministic or even structurally deterministic. 
Products have been defined as certain sets of state sequences. 
A constraint is a product containing no simulations. The transi-
tion set of a system can be expressed with a cover, a set of two-
place constraints. A cover of simple prime constraints', which 
express strong dependencies, can be found for structurally 
deterministic systems. A prime constraint of any length is the 
extended consensus of extensions of elements of a cover. 

Security is defined in terms of prime constraints, regardless 
of length, involving inputs and outputs, relative to a given 
constant external security level assignment. A monotonicity 
condition for any extension of the level assignment, applied to 
a simple prime cover, is sufficient for security. The proof 
rests mainly on the Factor Lemma. 

A possible way of constructing simple prime covers in 
practice starts with a formal transition specification. 

Extensions. Three simplifying assumptions were made that 
could be relaxed to extend the theory in natural directions. 

Nothing was assumed known about the initial state of a system. 
In practice, however, there are typically some "invariants" of 
the system state that are guaranteed initially and preserved by 
every transition. As Cohen points out, this additional knowledge 
can affect information flow, and hence security, since it makes 
certain observations unnecessary. Invariants could be expressed 
as constraints of length one, i.e., boolean products containing 
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only "illegal" states. Such constraints would have to be 
included in a cover, and the monotonicity condition would 
probably have to insist that variables in the same one-place 
constraint have the same level. Actual validations have not used 
such invariants to estimate information flow, but have used them 
in connection with non-constant security level assignments. 

Non-constant security level assignments allow the security 
level of a variable to be a function of the current state. They 
can be handled by defining security in terms of simulations, and 
expressing the monotonicity condition in terms of transitions. 
High level specifications can be used to trade this complication 
for a proof of correct implementation, but such proofs can be 
very difficult if the system has not been designed to facilitate 
them. 

The worst-case assumption of complete control of arbitrarily 
high level inputs by uncleared users can be relaxed by weakening 
the definition of security. If there were no Trojan Horses, for 
example, one could admit a compromise of an input variable only 
when all other variables in a prime constraint, rather than just 
all. non-inputs, are bounded by a lower or incomparable security 
level. The monotonicity condition would then still be sufficient, 
but one might look for a weaker condition of comparable simplicity. 
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SOME SECURITY PRINCIPLES 
AND THEIR APPLICATION 
TO COMPUTER SECURITY* 

R. Stockton Gaines 
Norman Z. Shapiro 

The Rand Corporation 
Santa Monica, California 

I. INTRODUCTION 

This study examines some of the general concepts which apply 
to security. It is motivated by a desire to place ideas relevant 
to the protection of information stored in a computer system in 
the context of other concepts about the protection of physical 
objects and of information. An examination of the literature on 
protection and security reveals little other than ad hoc ideas 
about how to provide protection in various contexts. We document 
here our attempts to identify the underlying concepts of security 
by generalizing from specific pragmatic ideas, and to relate 
these concepts to each other. We then show how they synergisti- 
cally combine to result in security greater than that of separate 
specific techniques. Since our motivation is the application of 
these ideas to computer security, we will emphasize those security 
aspects that particularly pertain to it. 

* This research was supported by the National Science Foundation 
under Grant No. MCS76-00720. 
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As a preliminary matter, it is necessary to point out that 
the notion of security is fundamentally one of judgment rather 
then measurement. Security is achieved by means of procedures, 
mechanisms and computer programs. While for some specific 
techniques a "work factor" (a quantitative estimate of the effort 
needed to defeat a protection mechanism or procedure) or some 
other quantitative measure may be meaningful, many aspects of 
security depend on qualitative judgments for which quantitative 
measures probably cannot be obtained. For example, we do not 
know how to estimate the likelihood that a new, clever attack 
which defeats a particular security measure will be developed, 
much less measure the amount of effort it would involve. 

Generally, security is a system problem. That is, it is rare 
to find that a single security mechanism or procedure is used in 
isolation. Instead, several different elements working together 
usually compose a security system to protect something. Any 
judgment regarding the degree of protection or security afforded 
by a particular security system involves a fairly complex set of 
interrelated factors. These include the relations among the 
security measures and procedures, consideration of factors con- 
cerning the violator* of a security system, and the properties of 
the thing being protected. First, we will discuss a number of 
mechanisms and procedures for achieving security, identifying 
what we believe to be some underlying principles concerning 
security measures. We then show the interrelationship among 
various elements in a security system when the violator and the 
object being protected are taken into account. 

II. GENERAL SECURITY CONCEPTS 

The first notion that comes to most people's minds When they 
think of security is a barrier, which is some sort of a physically 
strong system that resists penetration. This can range from a 
strongbox or a safe to a fortress and includes ideas such as 
making automobiles with good locks. A comparable idea in computer 
systems is that access control mechanisms can be built into 
computer systems which cannot be defeated, thereby providing a 
logical barrier which restricts access to information stored in 
the computer. Both physical barriers and computer access control 
mechanisms share two properties: they attempt to prevent some-
thing from happening directly, and they are passive. 

* No single term satisfactorily describes the person who defeats 
the security of a system; we will use the term "violator" 
throughout this discussion and intend it to apply in the case of 
accidental as well as deliberate actions. 
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The second central notion is that a violator may be detected 
in his activities. Detection may be obtained by direct surveil-
lance, by the use of alarms, or by the use of accounting or 
auditing procedures. Detection alone is often considered a 
sufficient security measure. Sensitive papers may be left on a 
desk if the office is under surveillance. The defense against a 
person walking into a bank and taking money from a teller's drawer 
is based on detection. 

The value of detection depends on its consequences. In the 
case of alarms and the forms of surveillance which provide 
immediate evidence of a violation, one immediate consequence may 
be apprehension. Other potential consequences are identification 
of the violator, and, at the other end of the spectrum, initiation 
of a search for the violator. 

A concept having some overlap with the notions we have already 
discussed is that of a guard. A guard is far more than just a 
means of detection or apprehension, although a guard can carry out 
these functions. Two other aspects of a guard are particularly 
important. One is that he can use counterforce to actively resist 
a violator. The other is that a guard has reasoning and deductive 
powers and is an active observer. He may notice that something is 
wrong (i.e., perform detection) in ways that may be difficult to 
predict ahead of time. This aspect of the guard is what lead to 
the detection of the Watergate burglars. The weaknesses of a 
guard must also be considered. For example, he may be overcome 
by force (as can a barrier), or be defeated by trickery. 

The above concepts constitute what we may call direct protec-
tion mechanisms. In addition, there are some useful indirect 
protection concepts. One of these is concealment, which applies 
both to physical and abstract objects. One may hide money, or 
encrypt data. The protection mechanisms themselves may be con-
cealed or kept secret. The object here is to keep information 
needed by a violator from him, so that he will not know all he 
needs to know to mount an attack. 

In summary, we have introduced the notions of a barrier, 
detection, concealment, and a guard to achieve security, and 
mentioned the ancillary notions of identification, apprehension 
and couterforce. There are a wide variety of techniques and 
mechanisms which embody some or all of these principles. Further-
more, in many systems a degree of security can be achieved by 
using several mechanisms, which provides much greater security 
than that provided by the individual mechanisms used alone. One 
of the best examples is that of a safe in an area that is under 
surveillance. The combination of surveillance and a safe 
provides a much greater degree of security than either alone would 
provide. The opportunity for detection is greatly enhanced by the 
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presence of the safe since the time it takes to break into the 
safe increases the opportunity for detection. On the other hand, 
the fact that the safe is, or may be, under surveillance limits 
the attacks that can be mounted on it since the violator no longer 
has undisturbed access to it. 

People are often an integral part of the protection mechanisms 
in a security system. There is a class of vulnerabilities 
associated with people; they are subject to physical attack by 
the violator, and they can be subverted or deceived. In addition, 
a person who is involved in security can himself become a violator 
of the system. Special precautions are often taken to insure 
that the people in the system will function correctly. A part- 
icularly good example of this is the design of systems so that for 
critical elements two people must be involved in any attempt to 
defeat the system. Some vaults, for instance, require both a key 
and a combination, both of which are not possessed by the same 
individual. It is intended that a conspiracy be required to 
defeat the system, on the grounds that a conspiracy is much less 
likely than an attempted violation on the part of a single 
individual. 

It is important to consider security from the point of view 
of the potential violator. He may seek to obtain information of 
value to him or to modify information that somebody else will use 
because there is some expected value to him as a consequence of 
the modification. He may be dissuaded from doing so because he 
estimates that the costs are unacceptable. The first cost is the 
direct cost in time, effort, and money of carrying out his plans. 
Both strong protection mechanisms and concealment mechanisms, such 
as cryptography, may impose unacceptable costs in one or more of 
these measures. In addition, detection and apprehension may have 
costs associated with them that are uncertain to the violator but 
whose deterrence value may be substantial. The violator may 
be deterred by the social stigma associated with the detection 
or by the penalties which may follow as a consequence of 
detection. 

Detection may occur while the violation of security is in 
progress or afterwards. If detection does occur, it can cause 
the violator to fail to achieve his objective even if he is not 
identified. Because the penalties we mentioned above occur only 
if the violator is correctly identified, identification itself 
becomes an important topic. In addition, if the violation is 
detected, it may have other consequences for the violator. For 
example, the detection of a violation or attempted violation may 
cause the security and protection measures to be increased so 
that the violator will find it more costly to attempt future 
violations of the system. 
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Another class of problems which the violator must take into 
account under certain circumstances is detection involving an 
immediate col,t, such as physical harm. For instance, if a person 
tries to open a vault at an incorrect time, it may explode. The 
idea behind this is that anybody opening the vault at that time 
is attempting an unauthorized entry. The identification of a 
particular violator is not important; the detection of the 
violation is sufficient evidence to warrant harmful actions 
directed at the violator. 

The possible motivations of the violator are relevant, and 
involve the incentives or disincentives which may affect human 
behavior. Such issues as morale, patriotism, and loyalty play a 
role. Banks, for example, do not normally allow tellers who have 
recently received termination notices to handle money, even though 
security procedures theoretically provide protection against dis-
honest tellers. 

An important notion in security is that of premeditation. 
The individual who, on the spur of the moment, decides to violate 
the security of a system generally has far fewer such opportuni-
ties than the person who plans in advance to do it. The lead 
time which the premeditating violator provides himself can be 
very important. Suppose, for instance, that a building is to be 
built with security alarms in it. A violator who knows at the 
time the building is being built that he will want to penetrate 
the security of the system may more easily interfere with the 
alarms than he will be able to when the building is complete. 
This does not erode our confidence in alarms in buildings because 
th:'t degree of premeditation appears to be quite rare, and 
correspondingly, the probability of loss associated with it 
becomes very small. 

The possibility of a premeditated attack involving a component 
of a security system substantially decreases when that component 
is designed and constructed before its use has been decided upon. 
For instance, during construction it is very easy to plant bugs 
in buildings. But if the use of that building has not been 
decided upon until after it has been completed, it is extremely 
unlikely to contain any listening devices. The only reason to 
plant any would he the vague hope that the building might be 
occupied by tenants against whom the bugs might be useful. 

In forming a judgment concerning security, one must take into 
account not only the protection mechanisms and the attributes of 
the potential violator but also the attributes of the object being 
protected. This may be a physical object or information. 
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The most important characteristic of an object is its value. 
The value to the potential violator may come from possession of 
the object (knowledge of the information), or because the violator 
can use the object. It may be of value to the violator to modify 
or destroy the object. 

Value may be quantifiable, generally in monetary terms, or it 
may be determined subjectively and thus be difficult to quantify. 
If the value is well understood, then some sort of cost benefit 
analysis may be made to decide what effort and expense is 
warranted for protection. For objects of unquantifiable value, 
only a subjective estimate of the required degree of protection 
can be made. 

The value of an object may be relatively constant or it may 
be a function of time or other parameters. For instance, a theatre 
ticket or information about the stock market is usually only 
valuable for a short time. Value may be based on scarcity; the 
value of a postage stamp printed in error is a function of the 
number of such stamps which fall into public hands. Sometimes the 
results of a violation are only valuable to the violator if it is 
not known that he succeeded in violating the system. For instance, 
if a violator obtains information through his violation it may 
only be of value to him if it is not known that he has obtained 
the information. When information is being protected, it may be 
of more value to the violator to obtain only a portion of the 
information or to find out something about the information. 
Sometimes all of the information may be required before anything 
of value is obtained. 

The value of an object to its protector may be different from 
its value to a potential violator. 

In the foregoing, we have examined a number of security 
concepts. The need for security and the effort one is willing to 
expend to achieve it depend on several other factors as well. 
Basically, security is a state of mind. The degree of security 
that exists cannot be proved, although evidence of a breach of 
security provides a kind of negative estimate of it. The measures 
that one will take to provide security depend on a complex 
balancing of judgments. These include effectiveness of the pro-
tection mechanisms, estimation of the value of what is being 
protected, and judgments concerning the existence, intentions, 
motives, values, and capabilities of violators. 
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TTI. COMPUTEk SECURITY 

The main problem in computer security is that of controlling 
access to data stored in a computer. Occasionally, it is of 
interest to guarantee the reliable performance of the system and 
to provide protection against sabotage and physical disaster; 
these problems will not concern us here. One can, of course, 
obtain security by limiting physical access to the computer, but 
the difficult case arises when users who are not authorized access 
to all the information in the computer are allowed direct access 
to the computer. The problem is the control of access so that a 
user or his programs only access authorized data. 

One might hope that many of the same principles and techniques 
(or analogs of the techniques) which apply to other areas would 
also apply to computer security. Surprisingly, there is very 
little use of most of these concepts. The main idea in computer 
security has been the computer version of a barrier: logically 
correct access control mechanisms in the operating system soft-
ware. This might be termed the Maginot Line approach to computer 
security. 

To understand the state of computer security today and how it 
might be enhanced, we first analyze computer systems from a 
system point of view. A person attempting to use a computer 
system either by submitting a job or accessing the computer 
through a terminal must identify himself to the computer and then 
be authenticated. Once authenticated, the user or his program 
may attempt to access data stored in the system. Such access must 
be appropriately restricted by the access control mechanisms of 
the operating system. The rights of the user or his programs are 
determined by the security policies enforced in the computer and 
the data describing the security aspects of users and objects 
being protected. Other aspects of a computer system which are 
relevant to security are the hardware itself and the operating 
and management procedures for the computer. 

This broad view of the nature of a computer system and the 
security problems associated with it is not what has motivated 
most of the research on computer security. Rather, this work was 
motivated by the narrower question: Can a program access an 
object in the system it is not supposed to have access to? In 
this latter form, the question of computer security appears to be 
a question of the correctness of the access control mechanismm in 
the operating system. When the question of the security of 
information stored in a computer system was first raised, over a 
decade ago, it was immediately discovered that from a security 
point of view operating systems were full of flaws (and many of 
them still are today). In some systems, these flaws were so 
serious that it was possible for a user to gain control of the 
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operating system, that is, to have code prepared by the user 
executed as if it were the supervisor code. Furthermore, flaws 
in the operating system, once discovered, turned out to be easy 
to exploit. Given the power that resulted from exploitation of 
flaws in the operating sytem and the ease of exploiting them once 
they were discovered, it is easy to see why this became a prime 
focus for computer security research. 

The initial reaction to the discovery of the weakness of 
computer system security was to try to correct the flaws. This 
meant rewriting the access control code so that it would work 
correctly and trying to rework those parts of systems for which 
flaws were due to bad design. Such efforts did not work out well; 
systems so enhanced were shown to have many flaws remaining. 
Because these flaws were easy to exploit, covering up only a few 
of them did not appear to be very advantageous. As a result of 
these failures, recent research has been directed to finding new 
operating system designs which take security into account in a 
fundamental way during the design process (e.g., see [1-3]). It 
seems likely that this research will have more success than 
previous efforts to enhance systems by repairing flaws. 

The current attempts to provide new operating system designs 
which are secure will be helpful but will still leave many 
substantial computer security problems. These problems remain 
because (1) the correct functioning of the operating system it-
self takes care of only part of the problem of security in computer 
systems and (2) most current and future systems will not be based 
on these designs (at least for a considerable time), and thus 
effective means for achieving security in systems not based on 
such designs is still badly needed. 

The first point above -- that even if the operating system 
access control mechanisms work correctly, a high degree of 
security is not necessarily achieved in the computer system -- is 
worth further elaboration. We have mentioned that one aspect of 
computer security is the authentication process. If this process 
fails, and a violator manages to log into a system with incorrect 
identity, the correct functioning of the access control mechanisms 
cannot prevent a violation of the security of the system. We 
have no means of detecting the activities of a violator under 
these circumstances, or any way of making it difficult for him to 
proceed with his violation. This points out how critical the 
authentication process is. It also shows that even a good barrier 
is not sufficient by itself. 
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A second difficulty concerns the hardware in the computer 
system. Correct functioning of the access control software 
depends on correct operation of the hardware. The exact charac-
teristics of the hardware must be taken into account in verifying 
the correctness of the software composing the security kernel or 
other access control mechanisms. No reasonable methods for 
verifying that the computer system hardware is functioning 
correctly are known. It appears to be a relatively straight-
forward matter to modify the hardware so as to invalidate the 
access control mechanisms of a computer system. We are, there-
fore, dependent upon whatever restraints we may feel are in 
operation that prevent a violator from modifying the computer. 
Even the possibility of a violator or his programs systematically 
searching for and awaiting hardware malfunctions cannot be ignored. 

Another difficulty is that while the access control mechanisms 
of the system may be correct, they may not be used properly. The 
mechanisms depend, for their correct functioning, on access 
control data in the system. The data may not define a correct 
security policy. That is, when the access controls are applied, 
certain sequences of requests for access to data may result in 
information being accessible by a user who is not supposed to 
access that information. (For example, see Harrison [4]). If 
only very simple policies are embodied in the access control data 
and these policies are followed rigorously, then the possibility 
of this kind of flaw is minimized. For instance, if we suppose 
that there are only four categories of information (let us say 
unclassified, confidential, secret, and top secret) and that no 
flow of information between these categories is ever possible, 
then the access control mechanism might operate correctly. The 
user would be required to log in at the appropriate security 
level, do all his work at that level, and if he wishes to work at 
another level, log off and log in again at the new security level. 
If, however, the user is allowed to decide that some of the 
information that is stored in the system as "confidential" is, 
in fact, unclassified and mechanisms are provided by which he can 
change the designation or copy that information into an unclassi-
fied file, then the opportunity exists for violations of the 
security of the system in spite of the access control mechanisms. 

Compared with the research which has gone into the problem of 
constructing highly secure operating systems, relatively little 
work has been done on most other aspects of computer security. 
We want to mention two areas in particular. One is the assess-
ment of security in computer systems, and the other is the 
enhancement of security. 
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It is difficult to assess security, whether we are talking 
about computers, buildings, or other situations in which security 
is required. The language used often implies that security is a 
binary-valued attribute -- we say that something is secure or that 
it is not. The fact that there are degrees of security is often 
ignored, in part because it is hard to find meaningful measures. 
The problem is particularly acute in the computer security area, 
perhaps as a result of the common fixation on highly secure 
operating systems. In the previous section, we pointed out that 
security judgments are, or should be, a complex weighing of many 
factors involving the protection mechanisms that apply, the 
potential violator, and the assets being protected. Through long 
(and often painful) experience some ad hoc ideas and rules of 
thumb have been developed in a few areas, but it is fair to say 
that the art of assessing the security of computer systems is in 
its infancy. 

The enchancement of security in computer systems has, 
undeservingly, come to be viewed rather negatively by those 
working in the field, probably because one particular way of 
enhancing security failed rather badly in the early stages of 
work in this area. These were the attempts, discussed above, to 
find and remove flaws in operating systems. However, other 
methods of enhancing security may produce better results. In 
particular, we wish to recommend that efforts be made to enhance 
security in computers in ways analogous to those used in other 
areas. The concepts discussed in the previous section, and 
others not mentioned, may be sources of ideas for enhancing 
computer system security. It would seem worthwhile, for example, 
to try and find security mechanisms which offer some opportunity 
for detection of a violation, rather than depending exclusively 
on the passive barriers of the access control mechanisms. It is 
worth noting that in many situations detection seems to be 
depended upon more heavily than barriers, especially where assets 
of considerable value are being protected. 

There are currently few examples of the use of detection in 
computers. One that is frequently used in systems providing 
remote access via terminals is to report to the user at each 
log-in the time of his previous log-in. Thus providing him the 
opportunity to notice if this report differs from what he 
remembers. This technique may cause the detection of unauthorized 
use of the account. There are some weaknesses. For instance, 
users who repeatedly see the log-in message reporting time of 
last use soon fail to read this information. Weak though this 
technique may be, it is one of the best that can be found, thus 
indicating the paucity of ideas that exist in this area. 
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We can give an example of the suggested approach that illu-
strates that there can be an advantage to security enhancements 
which are theoretically easy to defeat, but which in practice can 
cause difficulty for a violator. Some years ago Conway, Maxwell, 
and Morgan [5] suggested the following approach to achieving 
security in a database system. They designed a system which in-
corporated encryption and decryption routines. This system was 
intended to run in a batch processing environment in which only 
the data was stored in the computer between runs of the program. 
Decks were submitted containing the program (including the 
encryption and decryption routines) and jobs were flushed from the 
system at the end of each run. Therefore, during normal operation 
the encryption and decryption algorithms were not available 
inside the system. In addition, the keys controlling the encryp-
tion and decryption routines were known only to the user and were 
supplied as a parameter to the job. The idea was that data would 
always be stored in encrypted form on the disk and information 
about the encryption algorithm that would be useful to a violator 
was not available to others using the system who might try to 
access the data stored on the disk. 

At the time the suggestion was made, it was vigorously 
attacked by many working in the computer security area. It was 
pointed out that given the extensive nature of flaws in computer 
systems, it would be a relatively simple matter for somebody who 
wished to defeat this defense to break into the operating sytem, 
trap the database job when it ran, and then either remove the 
decrypted data directly or pick up the encryption algorithm and 
its keys from the job. This is, however, analogous to claiming 
tliat a safe is completely insecure because somebody with the 
proper tools can break into it with no trouble. In fact, it may 
take some effort to carry out the plan described. The violator 
must know when the program he is interested in is being run, 
which may require adding something to the system that will check 
for this (possibly exposing him to some risk of detection), and 
he must be able to analyze the object form of the program 
sufficiently well to pick out the information that he is 
interested in. The point is not that it cannot be done, but that 
in fact the amount of work is not negligible. Furthermore, if 
the system were designed to have some capability of detecting 
those who manage to get their own code executed in supervisor 
mode, then there would be an additional deterrent to the 
potential exploiter of this attack. 



It seems likely that once some attention is devoted to the 
subject, we may be able to develop a reasonable set of ideas 
concerning how to enhance the security of systems and how to use 
detection and its consequences to increase security. Such 
methods need not be impossible to defeat; instead they must have 
the property that even if they can be defeated, nevertheless they 
serve, to some degree, as a deterrent to a potential violator. 

We have already remarked that the notion of detection has 
received very little attention. As an example of the kinds of 
techniques that might be used, we will consider one idea -- that 
a record be maintained of all accesses to a file owned by an 
individual that are made by others, or of only those accesses 
that are made by others when he is not logged into the system, 
and that this information be reported to him. Ultimately, the 
user may provide a list of those he expects to access his files 
and the report may consist of information concerning all accesses 
by those not on that list. If such information is stored in a 
way that a violator cannot get at it, then the information can be 
relied upon a great deal of the time. One way of recording 
information so that it cannot be destroyed is to write it on a 
tape that has no backspace provisions. The violator who wishes 
to defeat this mechanism must do so by preventing the information 
from being recorded, which may involve substantial effort on his 
part and there may be opportunities to detect an attempt to do 
so. It is not our purpose here to work such ideas out completely; 
rather we intend only to illustrate the possibility of develop-
ments along this line. 
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DISCUSSION 

Fabry: One of the points that you made was that one need 
not strive for perfect software since no system is ever perfect. 
Is that a good characterization of what you are saying? 

Gaines: Yes, I guess that is a good characterization. 

Fabry: There is a difference between breaking into software 
and breaking into a safe. In the case of the safe, you can look 
at the safe and see how many ways there are to get in, how long 
each of them will take, and what's involved: manipulate the 
dial, blow up the safe, whatever the possibilities are: But, 
when you are dealing with a program that is assumed to be 
imperfect, you do not have any handle on the imperfections. 
You cannot know how many ways there are to break in, how hard 
each way is, and so on. It seems to me that we're driven to 
make programs perfect. 

Gaines: We want to use reasonable efforts to try to 
make programs correct; there is no argument about that. But, 
unreasonable efforts are another matter. You picked about the 
only area where we can have enough detailed knowledge about how 
successful penetration attepmts are. We know what tools are 
avaiable to seomeone who wants to crack a safe, and through long 
experience, we have some information about how to manipulate 
combination locks. But, that knowledge is not available in 
other areas. For instance, if we were worried about frauds in 
a bank, we do not know how to go about looking for frauds that 
have occurred before. We've no way of estimating the likelihood 
that someone will discover a cleaver way of defrauding a bank. 
The disadvantage of guards is that they are easily conned so 
we do not necessarily try to cover all of the bets. So, the 
question is not really whether or not you need perfect software, 
but how far you go in getting correct software. 
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Shapiro: I'd question whether or not you can get perfect 
software. It must function in the rea] world, not in a mere 
model of perfect software. I'm sure your model would not 
necessarily include magnetic tapes that fail or sleepers that 
can be in programs waiting for magnetic tapes to fail. 

Dobkin: I like to think back to college when people did not 
buy bicycle chains that were big enough to protect their bikes, 
but were big enough so that you would have to carry around a 
pretty large set of wire cutters to break them. Michael Rabin 
is talking about a set of wire cutters that would take many, 
many lifetimes to build. How big are the wire cutters that you 
plan on using? You're saying that it won't be perfect, so 
presumably, there will be wire cutters, but will they be big? 

Gaines: There have been two security kernels that have been 
produced. One by Charlie Kline and the other by the Mitre 
people. Contractors are looking at both these security kernels 
to decide which, if either of these two, approaches to adopt. 
They will proceed to reimplement if necessary those two kernels 
and do the right things to prepare for generating assertions 
about relevant security properties and have those verified. Or, 
at least be verifiable. It's funny, but we have been reduced to 
talk about terms like verifiable and that is supposed to mean 
that we're supposed to have more confidence than if the program 
wasn't produced to be verifiable. We're on shaky ground here, 
hoping that all of this effort is a kind of good engineering 
practice that makes it less likely that there will be exploitable 
flaws in the software. 

DeMillo: I'd just like to add that it might be the case 
that being verified or verifiable actually indicates a lack of 
good engineering practice and good sense. As Norman Shapiro 
pointed out, correctness is not with respect to the real world, 
but to a model. Being verified or even verifiable may 
unreasonably raise your expectations about the performance of a 
piece of software in the real world. As a result, you may fail 
to include either in the software or in the physical protocols 
the kinds of remedial security measures that it would take to 
make sure that the system was really secure. 
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I. INTRODUCTION 

Attempts to formally and precisely express the notions of 
security and protection are of recent vintage. Though designers 
of programmed systems have been concerned with making their 
systems impervious to misuse, it is only recently that researchers 
have attempted to precisely define the phenomena of information 
flow, security policies which govern how information can flow, 
and the requisite protection mechanisms used to enforce security 
policies. 

There are two sources of knowledge being brought to bear in 
the quest to understand security and protection in the context of 
computer systems. The first source is the experience of pragmatic 
system designers, who have experimented with the implementation 
and the application of a range of protection mechanisms. The 
second source is the experience of theoreticians, who have 
developed tools and techniques for abstraction in an attempt to 
understand the essence of many different kinds of phenomena. 

The research reported in the paper was supported under 
National Science Foundation grant MCS78-00717. 
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Knowledge from both sources is required to understand 
information flow and to design both security policies and the 
protection mechanisms to enforce them. One question is essential 
to bridging the gulf between those interested primarily in 
theoretical analysis, and those whose main objective is to design 
and build programmed systems to solve the "real world" problems. 
That question is, "Are the abstract models of security and 
protection useful?". Do they accurately and productively 
represent the problems it is necessary for computer science to 
solve? An elegant, aesthetically pleasing theory can be beautiful 
to behold; but, in the case of security, it should also be 
accurate and consequently useful. In what follows, I ask this 
question of usefulness about a particular, restricted model called 
the Take-Grant system [4]. 

II. THE TAKE-GRANT SYSTEM 

The Take-Grant system is interpreted to model a class of 
access control protection mechanisms in which each entity is 
protected independently of all others. The technical term for 
such an entity is object. Objects are of interest because they 
"contain information". Some objects are active (for example, 
objects that are interpreted to represent a human beings or 
executing computer programs). These objects are called subjects 
and are notated with filled circles,40. Objects may be passive 
(for example, objects interpreted only to contain information 
such as a file). Passive objects are notated by unfilled 
circles,(). Objects not known to be either active or passive are 
notated with slashed circles,O. In the Take-Grant system a 
nrotection state is the set of privileges, or rights, that each 
object has. Graphically, a right is notated by a directed edge, 
labeled with a name. It is interpreted to mean that the object 
at the tail of the edge has the named right to the object at the 
head of the edge. Passive, as well as active, objects may have 
rights to objects. The protection state of a collection of 
objects is represented as a finite graph constructed of objects 
connected by labeled edges; the graph is called a protection 
graph. 

The following graph models a protection state in which subject 
A has the right to perform operation a on subject B, which in 
turn has the right to perform (3 on passive objects X and Y. In 
addition, B has X right to Y. 

A  
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Arcs can be labeled with multiple labels. The distinction 
between a singleton label and a set of labels should be clear by 
context. In particular, if a directed edge is to be added 
between two objects for which an edge with the same direction 
already exists, I use a single edge labeled with the union of 
the existing label(s) and the new label(s). 

The Take-Grant system is intended to model the access control 
protection mechanisms that are found in existing programmed 
systems. In such systems, the protection state changes only when 
some subject invokes an operation that is defined as part of the 
protection mechanism. In the Take-Grant system, these operations 
are modeled by a set of rewriting rules for protection graph 
transitions. Because the protection state changes only by action 
of a subject, I will speak of a subject exercising its rights or 
privileges. Consequently, in the model any graph rewriting rules 
will always require at least the presence of a subject; usually a 
subject must have a particular right to some object as a pre-
requisite for a graph transition. 

Graph rewrite rules have the form r: 	where r is the 
name of the rule. A graph transition is defined as follows. If 
a matches some subgraph of a protection graph G, then rule r can 
be applied to G, yielding a new graph G'. The shorthand for 
applying rule r is G 1.-- G'. 

Protection graphs are quite general, and could be used to 
model many different access control mechanisms. The Take-Grant 
system is made specific by its rewrite rules, but it is but 
representative of mechanisms commonly found in operating systems 
and file systems. For the purposes of defining the Take-Grant 
rewriting rules, I distinguish two rights "take", denoted by the 
label "t", and "grant", denoted by the label "g". The Take-Grant 
system has four rewrite rules. For defining the rules, let A, X, 
and Y be three distinct vertices in a protection graph, such that 
A is a subject. 

Take: Let there be an edge from A to X with at least a label 
t and an edge from X to Y with any label or set of 
labels a. Then applying the Take rule adds an edge 
from A to Y having label a. Graphically, 

----Net,  
..‘,.._t,0  a ,0 	==> 	t >

--- 	a 's1  0 	)0 
A 	X 	Y 	 A 	X 	Y 
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Intuitively, A takes the right to perform a to Y 
from X. 

Grant: Let there be an edge from A to X with at least a 
label g, and an edge from A to Y labeled a. Then 
applying the Grant rule adds an edge from X to Y 
having label a. Graphically, 

a 	 a 

	

g „),  0 	0 =,e> • >0 a 
A 	X 	Y 	A 	X 

Intuitively, A grants the right to perform a to Y 
to X. 

Create: Let A be a subject and a be a subset of rights. 
Applying the Create Rule adds a new vertex N such 
that a labels the edge from A to N. Graphically, 

	

• 
	

r0 

	

A 
	

A 

Intuitively, A creates the subject or object N with 
a rights. 

Remove: Let there be an edge labeled y from subject A to X. 
Let a be any subset of rights. Applying the Remove 
rule causes deletion of the a labels from y. If 
y = a, then the edge itself is . deleted. 
Graphically, 

- - 

A 	X 
40-2:11-() 
A 	.X 

Intuitively, A removes its right to a X. 
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This concludes the basic definition of the Take-Grant system. 
We have used the simplified formulation of the system exhibited 
in [11] 

The possibilities for rewriting a protection graph are amply 
illustrated in [4], [11], so only a single illustration will be 
presented here. The kind of question that one might ask about a 
given protection state, modeled by a protection graph is the 
following. Can some subject, A -- interpreted to be some user 
or alternatively some program acting on behalf of a user or 
class of users -- get access to a particular object. If A can do 
so, it may compromise the information encoded in that object. In 
the Take-Grant system such a question is modeled as: Given the 
protection graph G: 

4._eat 

A 

can a sequence of rewrite rules be applied to reach a new state 
in which A can perform a on B? In this example, the answer is 
"yes". Using dotted lines to indicate the most recently added 
edge in a graph, the rewrite sequence is 

t 

G 1.272±-1L G 	 e t G 
1 	1 .  

A 

t 
14' G  I Take G  

G : t > 	4-*•-0 4-0 
t (at 4 

1 4 	2 

g 

/ 	N 

G 3 : 40C) 	 
A 

Take 

G  I Grant G  
3 1' 	4 	

G
4

: 
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G4 
Take 	 G5 

G
5
: A{1, 

a / 

In the final protection Graph G 5  subject A does, indeed, have a 
access to object B. 

Having a model that permits one to ask the question "given a 
certain protection state, can a subject ever obtain a certain 
access to an object" is useful. Using it one can ask whether a 
change to the protection state yields a new state for which a 
desired security policy still holds. For example, a system 
manager might model his system. Then, before granting a right he 
possesses, the manager consults his model to determine if giving 
out the right will have some unexpected and undesirable 
consequences. In particular, he can determine if there is a way 
for some user to then gain a right to access an object that he 
should not be able to access. Security policies are generally 
formulated as predicates relating the subjects and passive objects 
of a protection state. In contrast, most protection mechanisms, 
and the Take-Grant system, are phrased in a procedural, not a . 
predicate, form. Though procedural definitions make individual 
system state transitions easy to understand and to implement, 
they combine to form a system that exhibits complex behavior. 
It is difficult to intuit and to express the behavior of a 
procedurally defined system. Models, such as the Take-Grant 
system, provide the basis for determining whether the procedurally 
described system exhibits behavior defined by a predicate -- and 
in this case the predicate defines a security policy. Thus, we 
bridge the gap between mechanism and policy. 

Now, I have defined the Take-Grant system and illustrated one 
administrative use to which it may be put. Before exploring the 
Take-Grant further, I will define some criteria for the usefulness 
of a model. 
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III. A USEFUL MODEL 

As an operating system designer and implementor, I am only 
interested in a model if it helps me with the design, implementa-
tion or the administration of a system. I will define a model to 
be useful if it 

(1) accurately and concisely expresses the essence of the 
phenomena of interest, and 

(2) tells a system designer or user something he did not 
know or understand without the model. 

The first property ensures that phenomena of interest is captured 
by the model. The second property ensures that modeling is not 
just an empty exercise; it produces new information. Certainly, 
subjective judgement is required to determine if the second use- 
fulness property holds. So, there may be room for debate in some 
cases; yet in other cases, the second property should eliminate 
aesthetic, but useless models. In the remainder of this paper, I 
will consider whether the Take-Grant System meets the criteria 
for a useful model. 

First, consider the accuracy with which the model represents 
protection mechanisms found in extant systems. I have already 
claimed that the Take-Grant system is accurate. Now, I want to 
demonstrate that it is. The protection mechanisms in operating 
and file systems such as those found in Multics [9], CAL-TSS [6], 
Hydra [12], StarOS [3], SRI Secure System [8] and OS/370 [2] are 
object-oriented. Protected entities are distinguishable, usually 
separately nameable and assumed to have non-overlapping physical 
representations. Protection of each object is performed 
independently of other objects. These attributes are all reflect-
ed in the model. The distinction between active subjects (for 
example, users, processes, or even programs executing on a user's 
behalf) and passive objects (for example, files) is found in real 
systems. 

Information can flow between two objects as a result of an 
operation. For example, information flows between two file 
objects if a subject copies the data from one to the other. 
Similarly, information flows from a file object to a subject if 
the subject is a program that branches, depending on the value 
of a datum read from the file. For the purpose of controlling 
information flow, operations are partitioned into mutually 
exclusive classes. In a simple case, there may only be two 
classes; a "read" class and an "alter" class. Operations in the 
" read" class only permit information to flow from the object that 
is read to the reading subject; operations in the "alter" class 
permit information flow in both directions. The writing subject 
may acquire information from the object being written as well as 
transmit information to it. A typical example is the file 
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system's update program. One might believe it only writes the 
file to be updated. In reality, most file update programs first 
read the most recent date-of-update, and perhaps even the 
redundantly written file name that is placed in the file to 
enhance file system reliability. Thus, information is transmitted 
in both directions. If the security policy to be enforced is 
confinement of information, even such seemingly innocuous 
information transmissions are relevant. 

Both the systems cited above and the Take-Grant system use 
rights to control information flow. In addition, both use rights 
to control what protection operations a particular subject can 
exercise. In the Take-Grant system, only "take" and "grant" 
rights have been used. Most systems use four or less such 
rights. Some capability-based systems, such as Hydra, use many 
more. Note that rewrite rules would have to be devised for each 
different operating system to be modeled. 

There are two types of protection mechanisms found in today's 
systems. One is called an authority list or access control list 
mechanism [9]; the other is a capability-based mechanism [5]. 
Both are used to control access to objects. The mechanisms differ 
in where data that records permissible accesses is stored. For 
the authority list mechanism, the access information is stored 
with the object being protected. In contrast, the capability-
based protection mechanism relies on the protection information 
being stored with the accessor, not the accessed object. 
Theoretically, the two mechanisms have identical functionality. 
Graph models, like the Take-Grant system, can be used to model 
both. 

In reality, the two mechanisms are used differently because 
of cost considerations. 	For example, it is useful to know what 
objects a subject can access so that memory can be managed in 
such a way that the representation of these objects is readily 
available, perhaps in primary memory. For this purpose, the 
capability-based systems are convenient. In constrast, it is 
sometimes useful to know if any subject can access a particular 
object. The authority list mechanism is more convenient; in lieu 
of interrogating the protection state of every subject, one need 
only scan the protection data associated with the object. Graph 
models may be used for computing the cost of certain protection 
operations. I do not consider such issues here. 

Hopefully, the above arguments are sufficient to convince the 
reader that the Take-Grant system accurately reflects the basic 
attributes of extant protection mechanisms. The next issue is to 
determine whether the modeled phenomena is that which we want to 
understand better. To investigate this, consider how security 
models have been used to date. 
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IV. APPLICATION OF THE TAKE-GRANT MODEL 

The original formulation of the Take-Grant system modeled 
only active entities, say users, or the programs executing on the 
behalf of users [7]. Actual systems designs do differ in how one 
user or process may access or control another, but the variety of 
possible relations is not rich. Said differently, there are very 
few different security policies that can be investigated in a 
subject-only model. Managers and users of computer installations 
have used and understood such policies and their implementation 
for a long time. For example, a system manager may decree a 
policy that each user may 

• create, read and write private files, 
• read files created by others in the same project, and 
• read system files. 

In a subject-only graph model of this system each node would 
represent a user; and each user would be associated with one or 
more projects. The only operations defined would be CreateSubject 
and DeleteSubject to introduce new subjects and remove them from 
the systems. Only the system-subject would be able to perform 
these two operations. Each user would have "read" access to the 
system-subject and to other subjects in the same project. A user 
would have no access to subjects outside his project(s). Such a 
system is so simple, a model of it does not add to one's under-
standing. 

It is distinguishing between passive, information-containing 
objects and subjects that introduces a richer variety of 
phenomena. Consequently, the Take-Grant system was extended [4]. 
For example, compare the model of a catalog system to the subject-
only model of the file system discussed above. A catalog is a 
passive object containing name mapping information and rights to 
access files and other catalogs. In contrast to the subject-only 
file system, catalog system users have protection operations 

. defined for them. They explicitly give access to individual 
files or catalogs to other subjects in the system. It is such 
contexts that questions like "Can subject A obtain a access to 
object X?" become interesting. The ramifications of granting 
access to a catalog may not be clear, because the catalog may in 
turn contain rights to access yet other catalogs and files. Using 
the model, the ramifications can be investigated. Indeed, the 
question can be answered in linear time. Note that this linear 
time result contrasts with the results of Harrison, Ruzzo and 
Ullman [l]. They showed that a very general formulation of the 
access control protection mechanisms is undecidable. In contrast, 
by modeling a much less rich class of protection mechanisms, yet 
yet mechanisms that accurately reflect those used in practice, we 
have shown that some questions about security policy enforcement 
can be answered in linear time. 
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Another application of the Take-Grant system appears in [11]. 
Snyder synthesizes a couple of example protection and communica-
tion structures: 

(1) a supervisor that creates one communication object for 
each user, grants that user "read" rights to the object, 
but maintains "write" rights to the object and copies 
data between pairs of communication objects as requested 
by the users, 

(2) a supervisor that creates a communication object for 
each pair of communicating users (on demand or automat-
ically), and grants the pair of users "read" and "write" 
rights to the communication object, then divests itself 
of all rights to access the communication object. 

His models satisfy the first usefulness criterion; they are 
accurate and, indeed, they provide a terse expression of the 
system protection and communication relations under consideration. 
But, operating systems designers have been building such structures 
into systems for many years. And teachers have successfully, and 
easily I believe, conveyed such structures to their students 
without benefit of abstract models. These commonly understood 
examples of subject interconnections do not argue sufficiently 
well that the Take-Grant system meets the second criterion for 
usefulness. 

V. A USEFUL EXTENSION 

In this section I explore an extension to the Take-Grant 
system that I believe is useful. It can be used to model system 
behavior that was demonstrably not understood until many years 
after the development of a particular system. The system was 
Multics [9]. Its design contains a security flaw that is due to 
the way a user was forced to use certain I/O devices, such as the 
card reader. The flaw was first recognized by its designers [10]. 
To model the attributes of the Multics design with enough accuracy 
to make the security flaw discernable, I first extend the Take-
Grant system. 

The extension is based on the observation that subjects do not 
act erratically. Users do not grant the right to destroy their 
files to arbitrary other users, though they may have the right to 
do so. Processes executing on behalf of a user follow their 
programs. With the emergence of verification technology, one may 
expect to see programs routinely characterized by properties that 
describe actions taken at execution time. The accuracy with 
which a model reflects the "real world" is enhanced if we can 
state the properties that characterize a subject's actions. Of 
course, if nothing is known about the actions of a subject, one 
must assume that any permissible action might be taken. 



Recall the first substantive example in which a subject A 
could acquire a rights to an object. But, A could gain those 
rights only with the assistance of another subject, C. We can 
say that C acted in collusion with A. However, in some cases 
programs and people will not act in collusion to achieve some 
objective. We can often prove, or assume, that a subject will 
not act in collusion to help a particular class of subjects gain 
a new right. It is this restraint in the behavior of subjects 
that I wish to express. 

I will associate an (unordered) set of behavioral properties 
with each subject. Properties are described by naming the 
protection operations the subject may invoke together with some 
indication of parameters, if any: 

• Grant X --a--)Y 

• Take X -- 	Y 

• Remove X—a----?Y 

• Create Y. 

The associated semantics are (respectively); 

• subject may grant to object X the a access to object Y 

• subject may take from object X the a access to object Y 

• subject may remove its a access to object Y 

• subject may create a new object named Y such that subject 
has all access to this new object 

Note that to exercise a right a subject must have that right. 
The property set does not contain rights; it specifies intended 
behavior. The property set will be elided for subjects whose 
activity is unknown. It must be assumed that such subjects may 
perform any protection action for which they have appropriate 
rights. I will use "?" in place of an object name when the name 
is not bound to a particular object. An example use of the 
property set is 

X 	 read 
{Grant? 

append
--File F } 

destroy 
read 
write 
append 

c) File F 
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This protection graph is to be interpreted to mean that subject 
X may possibly grant "read" or "append" access to File F to any 
object. The "?" notation is used because the receiver of a Grant 
is unspecified. One observation that can be made from this 
property set is that the subject, who may be thought of as owning 
File F, will not give "write" or "destroy" rights to any other 
object under any circumstances. Because subjects are assumed to 
be autonomous, it is reasonable to expect the subject to exercise 
only the protection operations as specified in their property 
set, no matter what other subjects may be doing. Note that if a 
system administrator, subject SA, can Take rights from X, then 
SA might "forceably" wrest "destroy" rights to File F from X. 

{....} 

destroy 	 t 	SA 
read 
write 
append 

0 File F 

The system administrator might do this if X is vastly over quota 
in file space usage and stubbornly refuses to release file space. 
If the system administrator has such powers, we would have to 
consider both the above graph models of the situation. 

Subjects that represent executing programs also do not act 
arbitrarily; they are constrained by the programs they execute. 
I introduce a passive object called a procedure, notated by D. 
A procedure may have a single formal parameter. It is specified 
within the procedure symbol in the following form: 
where a is a set of rights and X is the formal name by which the 
actual parameter can be named in the property set. By convention 
the formal parameter names will never be names of graph nodes. 
I introduce a new right called "fork", and notated as "f" that is 
used for procedure invocation. To illustrate the use of proce-
dures, I define a procedure object, Sort. It accepts one argu-
ment to which "readfile" access is required, and whose property 
set indicates that only "readfile" operations are performed on 
the parameter object. The invoker of Sort should be wary, 
because Sort may Grant "readfile" access to X to another object. 

Sort 

—readfile -+ X {Grant ? —readfile-4 X} 
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A P 	{C} 
f 

The Take-Grant system is augmented by extending the notion of 
object creation to include procedure creating using the CreateP 
operation and adding a new operation, Fork. For defining these 
rewrite rules, let A, X and P be three distinct vertices in a 
protection graph such that A is a subject and P is a procedure. 

CreateP: Let A be a subject and C be a property set, and S 
be a parameter specification. Applying the CreateP 
rule adds a new procedure vertex N such that S is 
N's parameter specification, C is its property set 
and "f" labels the edge from A to N. Graphically, 

• 	 S 
	{C} 

A 	 A 
N 

Fork: Let there be an edge from subject A to procedure P 
that is labeled f, and an edge from A to X labeled 
R. Let P have a property set C and a parameter 
specification of the form —a-Y such that a is a 
subset of R. Then, applying the Fork rule adds a 
new vertex N with an edge from N to X labeled a. 
N's property set is the same as C, except that the 
formal parameter name Y is systematically replaced 
by X. This is notated as GIX 

Y 

{c} P 

0X 

N V t 
 {Cr} 

Intuitively, A invokes a procedure P causing 
creation of a subject N whose behavio is delimited 
by properties specified in C with Y replaced by the 
name X. 

I will also extend the notion of removal of rights. Using 
the RemoveI rewrite rule defined below, a subject can delete 
rights from passive objects. The right "r" meaning "remove" is 
used to control rights removal. 
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Removel: Let there be an edge from subject A to object X 
that is labeled r, and an edge from X to Y labeled 
13. Let a be any subset of rights. Applying the 
Removel rule causes deletion of the a labels from 
(. If a = (3, then the edge itself is deleted. 
Graphically, 

	

Lvo  (3 ,0 	 4)__L),  (3-c  co  
A 	X 	Y 	A 	X 	Y 

Intuitively, A removes the right to a Y from X. 

The Multics Card Reader Daemon Problem 

Now I will use the property set extension to describe the 
Multics security flaw. First, I describe the flaw intuitively: 
The card reader device is permanently allocated to a process 
called the Card Reader daemon. It is responsible for reading 
card decks, creating files containing the read-in data and then 
cataloging the files in the appropriate user catalog. To catalog 
a file, the Card Reader daemon requires access to the user's 
catalog. In particular, the Card Reader daemon needs "grant" 
access to the user's catalog object. Herein lies the problem, 
although it may not be obvious. 

To render this scenario in the extended Take-Grant system, 
let A be a (user) subject with f access to a (procedure) object 
CD, as well as to A's catalog object, C. Note that C is the long-
term repository for all the rights to the files A can access. 
Let procedure CD have a parameter specification --t,r--4Y and a' 
property set {Grant Y--?-4, CreateP}. 

If A invokes CD with its catalog C as a parameter, the 
resulting protection state is modeled by the following graph, 

CD 
	{Grant Y--?--0?,CreateP} 

--t,r 

{Grant C 

0 File 1 

0 File n 

?--*?,CreateP} 
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Consider what N might do. It might create a new procedure 
with the name EDIT. That new procedure has one parameter 
specified --t,r-4 Y, and the property set {Grant Y--?-->?, 
Create, Remover Y--?-4 ?, CreateP}. Note that EDIT can Grant 
and Removel rights from the parameter object formally known as Y. 

Then, N completes execution by including the right to invoke 
EDIT into the caller's catalog, C. Sometime later A invokes EDIT 
with actual parameter —t,r-4 C, intending to invoke the system 
editor. The parameter permitting "take" and "remove" rights to 
the user's catalog is appropriate; an editor, of course, needs to 
be able to obtain access to files in a user's catalog and to 
remove temporary files built during an editing session. The 
Multics name resolution algorithm first attempts to resolve the 
name "EDIT" using the local catalog; only later is the system 
catalog consulted. In this example, the invoked EDIT procedure 
is found in the user catalog, C. The scene is complete. EDIT, 
now has the ability to grant to others the content of the user 
catalog, or to destroy user files at will. Meanwhile, the user 
believes that the editing program is the system editor. Indeed, 
it may appear to be the system editor because it invokes the 
system editor after causing the havoc designed into it by its 
creator. 

Using an abstracted model of subject interactions, the power 
invested in the Card Reader daemon is apparent. It gained control 
over the user's catalog and thus his file naming space. Thus, it 
could add programs at will to the user's catalog. These programs 
might exhibit any behavior. For example, they may masquerade as 
system utilities while acting with the full power of the user 
(because of the rights to the user catalog). 

VI. SUMMARY 

In this paper, I have tried to place the abstract modeling of 
protection mechanisms in a pragmatic light to ascertain whether 
it is useful. My conclusion is that to date the Take-Grant model 
has been used in too simple a fashion to produce any new informa-
tion that could affect the design, implementation or administra-
tion of actual systems. The model is accurate in that it is 
faithful to the major attributes of extant protection mechanisms. 
But, the model must be extended to be powerful enough to satisfy 
the criteria of usefulness defined in this paper. I suggest one 
extension to the Take-Grant model. It enables one to model a 

security flaw that went unnoticed in the Multics system for a long 
time after the system had been built. To model the desired 
system behavior, I extended the Take-Grant model so that property 
sets could be associated with subjects and with passive procedure 
objects that act as templates for subject creation. These 
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property sets characterize the behavior of subjects. I believe 
that this extension is only one of a number of extensions that 
can be used to increase the sensitivity with which the Take-Grant 
system models protection mechanisms. 
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DISCUSSION 

Budd: One nice feature about the Take/Grant system was that, 
given an arbitrary graph, one could decide in linear time whether 
or not a right can pass from any one of the vertices to any other. 
It is not clear that this holds true when you add these new 
rewriting rules. ,Does the same result apply to your system? 

Jones: I do not know whether it's still linear. Certainly, 
in the example I gave, I think that one can argue that it's still 
very easy, but I haven't proven the extended system is linear. 

Rabin: I have a question about the nature of the T and G 
operators. They seem to be operators whereby a given node can 
take any subsets of the sets of all privileges or capabilities 
from another node, or grant any subset of the capabilities that a 
given node may grant. Have you considered the possibility of 
having restricted T and G operators so that a given node has, 
for instance, a G operator, and that he himself is restricted to 
granting a certain subset of all possible privileges; and 
similarly, for the T operator? It may be that using the extended 
model, you could simulate, or implement, any such restricted T 
and G operator, matters may be simplified and you may eliminate 
the need for using some of these predicates and procedures. 

Jones: Using that extension, a subject or procedure cannot 
differentiate between two different subjects that might be 
recipients of a Grant, for example. With my extension using 
property sets, I can. 

Gaines: Anita, something I hope we all are thinking about as 
we go through this conference is how accurately the models and 
theories we develop affect "real world" situations. Can you say 
in what respects you have tried to choose certain aspects of real 
world situations? 
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Jones: I'd be very grateful if we could get anywhere near 
the "real world". I think that introducing property sets in the 
model takes it away from being a toy in which things are so 
general that it's not possible to talk about real problems. 

Gaines: When can we start believing real world conclusions 
from abstract models? We would like to be able to make some 
inferences about security in ' the real world based on observations 
we make on our models. 

Jones: That is the very issue I am addressing. 
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THE PRINCIPLE OF ATTENUATION 
OF PRIVILEGES 

AND ITS RAMIFICATIONS* 

Naftaly Minsky 

Rutgers University 
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1. INTRODUCTION 

Authorization in computer systems is a discipline under which 
it is possible to impose restrictions on the kind of action which 
can be carried out by the various subjects (actors) of a system. 
Such a discipline serves as the basis for any protection 
mechanism, and is vital for our ability to produce large scale 
reliable software. One can distinguish between the "statics" and 
the "dynamics" of an authorization scheme. By the term statics 
we mean the method used for the representation of the authority 
of the various subjects, as well as the technique for the enforce-
ment of such authority. What we call the dynamics of an authori-
zation scheme is the technique used for the manipulation of the 
"authority-state" of a system. It has to do with the flow of 
"privileges" between the various components of a system. 

One of the objectives of research in authorization . should be 
to identify a type of dynamics which is restrictive enough to 
allow for the verification of various properties of a given 
authority-state, and yet is flexible enough to support a desired 
class of policies and authority-structures. The need to restrict 
the dynamics of authorization as much as possible has been 
recently emphasized by the undecidability of the "Safety Problem" 
in the context of the Harrison, Ruzzo and Ullman model of 
protection [Har 76]. A step in this direction is the "principle 
of attentuation of privileges" recently proposed by Peter Denning 
[Den 76]. Informally speaking, this principle states that 

* This work was partially supported by Grant DANCIS-73-G6 of the 
Advanced Research Project Agency. 
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privileges should not be allowed to grow when they are transported 
from one place in the system to another. In spite of the intuitive 
appeal of this principle and the benefits which seem to accrue 
from it, it is not widely accepted. In particular, the Hydra 
system [Wul 74] allows for amplification of privileges, in direct 
violation of the principle of attenuation. In responding to 
Denning's proposal, Levin, who is one of the designers of Hydra, 
writes [Lev 77]: "The existence of amplification in Hydra derives 
....from a fundamental protection philosophy that happens to be in 
conflict with the attenuation of privileges notion". What Levin 
has in mind, in particular, is the important concept of type-
extension for which, he claims, amplification of privileges is 
crucial. 

In this paper we argue that the difficulty to satisfy the 
principle of attenuation of privileges in Hydra (and in related 
systems) is not due to a conflict between this principle and the 
type of authority structures which Hydra wishes to support, but 
due to a fundamental deficiency in the access-control (AC) scheme 
on which Hydra is based. Indeed, we will show that the recently 
proposed operation-control (0C) scheme for authorization [Min 77] 
does satisfy the principle of attenuation without losing the 
ability to represent extended-types. The new scheme is based on 
an improved technique for representation of privileges which seems 
to provide a better approximation to real-life authority structures. 

In the next section, the capability-based version of the AC 
scheme is described. The principle of attenuation is formally 
defined, in the context of this scheme, and the inability to 
satisfy it is demonstrated. The underlying reasons for the 
incompatibility of the access-control scheme with the principle 
of attenuation is discussed in Section 3. In Section 4, some 
aspects of the OC (operation-control) scheme are introduced; just 
enough to show its compatibility with the principle of attenuation. 
A comparison between the OC scheme and the scheme used in the 
Hydra system is made in Section 5, and the implementation of 
"type extension" under the two schemes is discussed in Section 6. 

2. THE ACCESS-CONTROL (AC) SCHEME 

The access-control approach to authorization is well documented 
in the literature. In particular, the reader is referred to the 
work of Lampson [Lam 69, Lam 71], Graham and Denning [Gra 72], and 
to recent review articles by Saltzer [Sal 75], and Linden [Lin 76]. 
Here we outline the main features of a class of AC schemes called 
"capability-based", using a somewhat non-standard terminology 
which is more suitable for the rest of the paper. (The scheme to 
be described here differs in an essential way from the scheme 
used in Hydra. Hydra itself is discussed in Section 5). 
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The objects to be protected by the AC scheme are classified 
into types. An object of type T is called a T-object. (For the 
moment, we assume that every object belongs to a unique type). 
For every type T there is a fixed set of operators (procedures) 

op(T) = Pi 

called the T-operators. It is assumed that the T-operators are 
the only subjects(*) in the system which can directly manipulate 
and observe T-objects. For all other subjects, the only way to 
manipulate or observe T-objects is indirectly, by applying to 
them T-operators. (We will see later how this rule can be 
enforced by the authorization scheme itself, for all but a fixed 
set of primitive types). 

Also, for every type T there is a fixed set of symbols 

rt(T) = fril 

called T-rights, or simply rights. Objects of type T (T-objects) 
are addressed by special kind of objects called tickets(**) which 
have the form 

(b;R) 

where b is the identifier of a T-object, and R is a subset of 
rt(T). There may be several tickets in the system with the same 
component b, they are called b-tickets. The right-symbols con-
tained in a b-ticket t serve to determine which T-operators can 
be applied(***) to b, when the ticket t is used to address it. 
It is in this sense that a ticket represents privileges with 
respect to the object addressed by it. For example, one may have 
the following one to one correspondence between T-rights and the 
T-operators which they authorize: 

The T-operator Pi can be applied to a ticket (b;R) of a 
T-object b, only if R contains the right-symbol ri. 

In such a case ri may be called "the right for Pi". Although, in 
general, the correspondence between rights and operators may be 
more complex than that, it is always monotone in the following 
sense: 

(*) Note that a subject may be either a procedure (operator) 
built into the system, or a user of the system. 
(**) We are using the term "ticket" for what is more commonly 
called "capability". The reason for this deviation from the, 
more or less, standard terminology will be clarified later. 
(***) Since objects are always addressed by their tickets, we will 
frequently use the phrase "application of an operator to a 
ticket", to mean the application of the operator to the object 
which is addressed by the ticket. 
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If an operator can be applied to a ticket t=(b;R), then 
it can be applied to any ticket t'=(b;R') such that R' 
includes R. 

This monotone property suggests the following relation, which 
defines a partial order, between tickets. 

Definition: A ticket t=(b;R) is weaker than t=(b;R'), if R' 
includes R. 

Clearly, a weaker ticket carries fewer privileges. 

Now, every subject (actor) in the system is associated with a 
special kind of object which we call domain. The domain D of a 
subject S contains tickets of various objects in the system, and 
it is assumed that a subject can operate only on tickets in his 
domain. In this way, the domain of a subject determines his 
authority. The distribution of tickets throughout the system is 
called the authority state of the system. 

2.1: On the Dynamics of the AC Scheme. Although there is no 
general agreement as to the ways in which the authority state of 
the system is to be changed, the dynamics of most AC schemes is 
governed by the following rules. 

Rule 1: An existing ticket cannot be modified. 
Rule 2: When a T-object b is created, a ticket (b;R) is 

created with it, with all its possible rights. 
(Namely R=rt(T)). We call it the primary b-ticket. 

Rule 3: There is an operator, transport, which when applied 
to a b-ticket t, creates another b-ticket t' in some 
other place in the system. t' is called a direct 
derivative of t. (We will use the term "derivative" 
of a ticket t for a direct or indirect derivative of 
t.) 

To these, practically standard rules, we now add another rule 
which is essentially Denning's principle of attenuation of 
privileges: 

Rule 4: The direct derivative of a ticket t cannot be 
stronger than t. 
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A.s has already been pointed out this principle is not satis-
fied by a number of AC schemes, notably by Hydra [Wul 74, Coh 75]. 
One of the main features of Hydra is an operator amplify which 
when applied to a ticket t, creates a ticket t' which is stronger 
than t(*). Even Denning who was the first to suggest explicitly 
the principle of attenuation, qualifies himself by requiring it 
only "under normal circumstances" [Den 76, p. 372]. Indeed, it 
turns out that the principle of attenuation is compatible with 
the AC scheme. To see this consider the following example. 

Example 1: Let P1, P2 be T-operators for a given type T, and 
let rl, r2 be the corresponding rights. Namely, Pi can be applied 
only to a ticket with the right ri, for i=1,2. Now, consider 
Si, S2 and a T-object b. 

Ul: The subject S1 is allowed to apply only P1 to b, and he 
is the only one who has any privilege with respect to b. 

U2: The subject S2 is allowed to apply P2 to b. 

The question is, can there be a transition of the system from 
state Ul to U2? In other words, can Si authorize S2 to apply the 
operator P2 to b, which S1 himself is not allowed to do? As we 
will see next, under the AC scheme the answer to this question is 
negative, if this scheme is to satisfy the principle of attenua-
tion. 

Indeed, in the state Ul, Si must have the ticket t = (b;rl) 
in his domain. The ticket t cannot contain the right r2, because 
this would enable S1 to apply P2 to b. Moreover, in Ul nobody 
else has any right for b. In the state U2, on the other hand, 
S2 must have a ticket t' = (b;r2) in his domain, but under the 
rules 1 to 4 there is no way to generate such a ticket. 

Since this kind of transition from one authority state to 
another turns out to be essential for many applications (see 
example 2 below) one may conclude that the AC scheme is incompat-
ible with the principle of attenuation of privileges. Hydra's 
response to this situation has been to introduce the amplification 
operator, which can add a right to a ticket, thus violating the 
principle of attenuation. We take the opposite approach: using 
the attenuation of privileges as a fundamental principle of 
authorization, we conclude that the AC scheme itself is 
unsatisfactory and should be replaced by a scheme which is 
compatible with this principle. To see how this can be done we 
must gain a deeper understanding of the reason for the incompati-
bility between the AC scheme and the principle of attenuation. 

(*) Actually, Hydra allows only a restricted use of the operator 
amplify. We will discuss Hydra specifically in a later section. 
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3. PRIVILEGES VERSUS ABILITIES 

Authority transformations such as in Example 1 are very 
common in the real world, and it would be instructive to see how 
they are handled there. Let us consider one such real-life 
example. 

Example 2: When buying a car one automatically gets the 
right to drive and to sell it. Suppose that these rights are 
formally represented by a ticket-like structure (c;drive,sell) 
which stands for the ownership document for the car c. Now, 
consider a subject S1 who owns a car c, but who does not have a 
driving license. This person cannot exercise his right to drive 
his own car. However, Si can hire a driver, who does have a 
driving license, authorizing him to drive the car c by granting 
him his own right to drive it. Such authorization may be formally 
represented by the ticket-like structure (c;drive) to be given to 
S2. No process which even remotely resembles amplification is 
taking place in this real-life situation. The driver S2 can 
drive the car owned by S1 not because he has more privileges for 
it than its owner, but because he has another independent 
privilege, a driving license. 

The crux of the matter is that in the real world, there is a 
distinction between the concept of privilege, or right, and the 
concept of ability. The ability to perform a certain action may 
depend on the availability of several privileges(*). In this 
case: the ability to drive a car is formed by the availability 
of a driving license as well as of the right to drive this 
particular car. The problem with the access-control scheme is its 
failure to recognize this difference between privileges and 
abilities. Under this scheme, the availability of a b-ticket 
with the right rl in it is sufficient to give a subject the ability 
to apply the operator P1 to b. Thus, rights are being equated 
with abilities. 

We maintain that to satisfy the principle of attenuation of 
privileges one must distinguish between privileges and abilities. 
Such a distinction is being made by the operation-control (0C) 
scheme to be discussed next. In fact, the Hydra system [Wul 74] 
also makes such a distinction, but in a less fundamental and not 
quite satisfactory way, as we will see in Section 5. 

(*) In the real world, the ability of a subject to perform a 
certain action may also depend on such things as his skill and 
stamina, which we have no intention to model. 
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4. THE OPERATION-CONTROL (OC) SCHEME 

Under the OC scheme, [Min 77] the ability to perform an 
operation P(q1,...,qk) is formed by the availability of two kinds 
of privileges: a privilege with respect to the operator P, and 
compatible privileges(*) with respect to the operands ql,...,qk. 
Privileges with respect to operands are represented by means of 
tickets, just as under the AC scheme. However, to represent 
privileges with respect to operators, the OC scheme is using a 
new device called activator. In this paper, only a simplified 
version of the activator is described. 

An activator is a (k+1) tuple 

where P is an identifier of a k-ary operator, and ci, for 
i = 1,...,k, is a condition defined on the i-th operand of P. 
The conditions ci are called the operand-patterns of the activator. 
The existence of such activator in a domain D(S) serves as a 
permission for the subject S to apply operator P to a sequence of 
objects ql,...,qk in D(S), which "match" the respective activation 
patterns (or satisfy the conditions) cl,...,ck. As a notational 
devise, we may give a name, say "A", to an activator by writing 

A = CP,c1,...,ck> 

When an activator A is used to authorize the operation 
P(q1,...,qk) we say that the activator A is applied to the objects 
ql,...,qk, denoting such an application by A(q1,...,qk). 

An operand-pattern has the form(**) 

[T;R] 

where T is a type and R is a set of T-rights. This pattern 
matches (is satisfied by) any ticket (b;Rl) where b is a T-object 
and R1 includes R. 

In order to illustrate the authorization role of the activa-
tors, and their relevance to our subject matter, we show next how 
the authority structure of example 2 can be represented under the 
OC scheme. 

(*) The phrase "compatible privileges" will be clarified later. 
(**)This is a simplified form of the operand-patterns introduced 
in [Min 77]. 
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Example 2': Consider a type CAR. Let op(CAR) be {SELL,DRIVE}, 
representing the action of selling and driving a car, and let 
rt(CAR) = {sell,drive}. Let the primary activators of the CAR-
operators be: 

< SELL, [CAR; sell ],,) 

( DRIVE , [ CAR; drive]> 

This means, in particular, that in order to drive a car (by 
applying the operator DRIVE to it) one needs a ticket with the 
"drive" right for it. Now, consider the subjects S1 and S2 
whose domains Dl, D2 are described in Figure 1. Si who owns the 
car bl has the ticket tl = (b1;sell,drive) for it. However, since 
S1 has no DRIVE-activator in his domain he is unable to drive his 
own car in spite of the fact that he has all the possible right-
symbols for it. The inability of S1 to drive his own car does 
not make the "drive" right that he has for it useless. This 
right can be used by S1 to authorize somebody else, S2 in this 
case, to drive his car. This is done by giving S2 a derivative 
tl' = (bl;drive) of his ticket tl. S2 who has the DRIVE-activator 
<DRIVE,[CAR:drive]), representing a driving license, would now be 
able to drive the car bl. Thus, the requirements of example 2 
are satisfied, without amplification. 

Note also that although both subjects have the SELL-activator 
<SELL, [CAR;sell]>, which means that both are allowed in 
principle to sell cars, the driver S2 is unable to sell the car 
bl because his bl-ticket does not contain the "sell" right. 
[End-of-example]. 

Just as there may be several different b-tickets which 
represent different privileges with respect to a given object b, 
we allow for several different P-activators which represent 
different privileges with respect to a given operator P. In order 
to compare different P-activators with each other, we introduce 
the following concepts: 

Let A be an activator of order k (with k operand-patterns). 
We define range(A) to be the set of all possible k-tuples 
(q1,...,qk) of objects, which can be matched with the correspond-
ing activation-patterns of A. 

Let A and A' be two P-activators for a given operator P. We 
say that A' is weaker than A (or, equivalently, A is stronger 
than A') if range(A) includes range(A'). Such an A' is also 
called a reduction of A. 



1 

D2=domain(S2) 	 D1=domain(S1) 

<SELL,[CAR;sell]) 

<DRIVE, [CAR; drive ]> 

tl'=(b1;drive) 

<SELL,[CAR;se11]> 

t1=(b1;sell,drive) 

(b1;drive) 

Fig. 1 



Clearly, the relation weaker between activators defines a 
partial order, which is analogous to the partial order defined by 
the relation weaker between tickets. Due to this and other 
similarities between tickets and activators, we sometimes refer 
to both kinds of objects by the common name "control-objects", or 
"cobjects", for short. Every cobject represents privileges with 
respect to the object addressed by it, which may be either an 
operator (in the case of an activator) or a "passive object" (in 
the case of a ticket). 

Note that the two types of cobjects play complementary roles 
in our scheme. Neither a ticket nor an activator alone represents 
an ability to perform any action. Such an ability is formed by 
the availability of an activator, and one or more matching tickets. 
To emphasize this complementarity we will use the following 
terminology. 

Let D(S) be the domain of a given subject S. We will use the 
phrase "ower of S" for the set of activators in D(S), and the 
phrase "range of S" for the set of tickets in D(S). 

Thus, the ability of a subject depends on its range, which 
defines his access rights to various objects, as well as on his 
power which defines the kind of operations which he can use. 

In spite of the (hopefully) intuitive appeal of these terms, 
they do not mean much without specifying the dynamic behavior of 
the control objects. This issue is discussed next. 

4.1: On the Dynamics of the Operation-Control Scheme. Here are 
the rules which govern the transport of cobjects, which are a 
generalization of the rules previously formulated for tickets. 

Rule 1: An existing cobject cannot be modified. 
Rule 2: Whenever an object o is created, a cobject is created 

for it, to he called the primary o-cobject. (It 
would be the primary b-ticket if o is a passive 
object b, or the primary P-activator, if o is an 
operator P). 

Rule 3: There is an operator "transport" which, when applied 
to a cobject c creates another cobject c' in some 
other place in the system. c' is called a direct 
derivative of c. (By the phrase "derivative of c" 
we mean direct or indirect derivative of c). 

Rule 4: The derivative c' of a cobject c is weaker than or 
identical to c. 

The last rule is the principle of attenuation of privileges, now 
extended to activators. An important corollary of this principle 
is that a cobject is stronger than, or identical to, every one of 
its derivatives. In particular, the primary o-cobject is the 
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strongest o-cobject, for any object o. 

Note that the above rules do not define completely the 
dynamics of our authorization scheme. In particular, one must 
define the operator "transport" and its activators. This is done 
in [Min 77] but not repeated here. To facilitate the following 
discussion, we will make the simplifying assumption that the set 
of activators in a given domain is fixed. In other words: the 
"power"of a subject is assumed to be fixed while its range may 
vary. Although this assumption cannot be strictly correct for 
all the domains in a aystem, it is likely to be correct in many 
if not most cases (see [Min 77]). In particular, the "power" of 
a procedure is likely to be fixed while its range varies from one 
invocation to another. 

4.2: The Privileges Carried by the Right-Symbols. The privileges 
carried by a given right symbol r are best defined in terms of 
the affect that the absence of r from a ticket t has on one's 
ability to apply operators to the object addressed by t. We will 
see in this section that this effect depends on the principle of 
attenuation. To facilitate our discussion we start with an 
example. 

Example 3: Sharing Memoranda 

Let MEMO by a type of objects which carry memoranda in an 
information system. Let 

op(MEMO) = {READ, UPDATE, DELETE} 
rt(MEMO) = {d,rl,r2} 

Let the following be the primary activators of the MEMO-operators: 

(READ, [MEM0]> 

(UPDATE, [MEMO], [TEXT]1(*) 

<DELETE, [MEMO;d]> 

Note that the rights rl and r2 are not used by any of these 
activators. The significance of this will be clarified later. 

Now, consider a group of subjects G = {S,S1,S2,S3} who are 
working on the same project but have different responsibilities 
and authority. They communicate with each other by means of a 
pool of memoranda whose tickets are contained in a file f. A 
ticket of a memo may be stored in f by members of the group G as 
well as by other subjects in the system, such as S'. It is also 
assumed that every member of G can transport tickets from the 
file f to its own domain. Now all the subjects in G are to be 

(*) The second operand of the operator UPDATE should be a TEXT-
object which serves to update the memo. 
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S ' 

(m) 
(m1;r1) 
(m2;r2) 

(m3;rl,r2) 
(m4;d,r1) 

file f 

D=domain(S) 

 

Dl=domain(S1) 

<READ, [MEMO]) 

< UPDATE, [MEMO ] > 
4 DELETE , [MEMO; d ] > 

 

<READ, [MEMO ] > 

< UPDATE , [MEMO ; rl]> 

   

<READ, [MEMO ]> 

<UPDATE, [MEMO; r21) 

 

< READ, [MEMO] > 

(UPDATE, [MEMO ; rl , r2 ]> 

   

D2=domain(S2) 

 

D3=domain(S3) 



allowed to read all the memos in f (namely, all the memos whose 
tickets are stored in f). However, not every subject is to be 
allowed to update all the memos, or to delete them. Figure 2 
describes part(*) of the domains of the subjects in G as well as 
a sample of the file f. 

Now, note that all the subjects in G have a copy of the 
primary READ-activator. This enables them to read all memos in f. 
However, they have different versions of the UPDATE-activator: 
The UPDATE-activator of S does not require any rights in the MEMO-
ticket it is applied to. thus, S can update all the memos in f. 
On the other hand, the UPDATE-activator of S1 can be applied only 
to tickets with the right rl, which means that, given the current 
content of f, S1 can update only the memos ml,m3,m4. Similarly, 
S2 can update only m2 and m3, for which the tickets in f have the 
right r2. Finally, S3 whose UPDATE-activator requires the rights 
rl and r2, can update only the memo m3. 

Note also that only S has a DELETE-activator, so that he is 
the only one who can delete memoranda. Not all of them, however. 
Given the content of the file f described in Figure 2, S can 
delete only m4 whose ticket has the d right. 

Thus, the four subjects in group G have different "power" 
with respect to the MEMO-tickets, due to the different activators 
in their domains. Knowing about the power of the various subjects 
in G, the originator S' of a memo can control its disposition, as 
follows: When S' creates a new memo m', he gets the primary 
ticket t = (m';d,rl,r2) for it. If, for example, he wants to 
allow everybody in group G to update m' but he does not want them 
to delete it, he would insert the reduction (m';r1,r2) of t in the 
file f. If he wants only S and S1 to update m', then he would 
insert (110;r1) into f, etc. [end-of-example]. 

Among other things, this example demonstrates that a right-
symbol might have different meaning for different subjects, which 
allows our four subjects to share the same pool of MEMO-tickets 
and still have different abilities with respect to the memos. In 
order to formalize this phenomena, we will define the concept of 
the "privilege content" of a right-symbol. In fact, two related 
concepts of privilege-content will be defined. 

(*) The description of the domain in Figure 2 is incomplete in 
the following sense. We did not try to account for the assumed 
ability of the four subjects in G to transport MEMO-tickets from 
f into their own domains. (This ability can be properly formu-
lated only by means of the complete OC scheme [Min 77]). 
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Definition: The absolute privilege content of a given right-
symbol r, to be denoted by U(r), is the set of operators whose 
primary-activators require r. 

For instance, in Example 3 	U(d) = {DELETE}, while U(rl) and 
U(r2) are empty. 

The significance of U(r) is due to the principle of attenua-
tion: First, due to the attenuation of activators, if the 
primary P-activator, for a given operator P, has a pattern which 
requires r, then all P-activators in the system would require r. 
Thus, the absence of r from a ticket t inhibits the application 
of P to this ticket. Moreover, because of the attenuation of 
tickets, if t does not contain r then no derivative of t would 
contain r. Therefore, we can make the following statement, which 
we introduce as a corollary of the principle of attenuation: 

Corollary 1: The absence of a right r from a ticket t 
inhibits the application of operators in U(r) to t itself as well 
as to all its derivatives. 

For example, consider a MEMO-object m and an m-ticket t which does 
not have the right d. One can put t in the public domain and 
remain confident that this ticket cannot be used to delete the 
memo m, neither directly or indirectly. Such is not the case 
under the AC scheme where there is the danger of somebody adding 
a right to t by amplification. 

Note that by the above definition, the MEMO-rights rl,r2 does 
not carry any privileges. Indeed, the absence of R1 from a MEMO-
ticket t cannot inhibit the application of any MEMO-operator to 
it. Yet, it is the existence of rl which allows S1 to apply 
UPDATE to a ticket. In order to account for this phenomena, we 
now introduce the concept of relative privilege content of a 
right-symbol. 

Definition: The privilege-content of a right symbol r, 
relative to a domain D, to be denoted by U(r/D), is the set of 
operators for which there is an activator in D which requires r. 

For example, U(rl/Dl) = {UPDATE}, although U(rl) is empty. The 
meaning of the concept of relative-privilege-content is summarized 
by the following statement: 

Corollary 2: The absence of r from a ticket t = (b;R) in 
D = domain(S) inhibits S from applying the operators in the set 
U(r/D) to t and to its derivatives. 

To understand the significance of this statement, note the 
following: First, suppose that P belongs to U(r/D) but not to 
U(r). Let t = (b;R) be a ticket in D = domain(S) which does not 
contain the right r. It is clear that S himself cannot apply P 
to t. However, S may be able to cause the application of P to 
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the object b, by giving a derivative of t to some other domain D' 
such that P is not contained in U(r/D'). 

Secondly, consider an operator P which belongs to U(r) but 
not to U(r/D) (which, due to the attenuation of activators, can 
happen only if D contains no P-activators). Obviously, the 
absence of r from a ticket t = (b;R) in D = domain(S) has no 
effect on the ability of S to apply P to object b, because anyway 
D has no P-activators. However, this absence does prevent S from 
causing the application of P to b by giving a derivative of t to 
a subject which does have a P-activator. For example, suppose 
that the domain D1 of Example 3 contains the tickets tl = (ml;d), 
t2 = (m2). Since U(d/D1) is empty, the right d does not provide 
S1 with any direct ability. Indeed, exactly the same set of 
operators can be applied by Si to tl and t2. However, S1 can 
enable S to delete ml, by placing tl in the file f, which he can 
not do for m2. 

In conclusion, the main benefit which accrues from the 
principle of attenuation is that it provides us with a definite 
measure for the privileges represented by a given control-object, 
privileges which can never be increased. In particular, the 
concept of the privilege-content of a right-symbol is of utmost 
importance. Another, indirect, consequence of the principle and 
of the scheme which we used to realize it, is the concept of 
relative-privilege-content which allows for more economical 
utilization of tickets. In Example 3, for instance, all the 
subjects in G were able to use the same directory file. To im-
plement a similar authority structure under the AC scheme one 
would need four separate directory files, one for each subject in 
G, which would result in larger number of tickets and additional 
complexity in their distribution (see also [Min 77, Section 4]). 

5. AMPLIFICATION IN HYDRA 

Although the authorization scheme of the Hydra system 
[Wul 74, Coh 75] is usually considered to be an access-control 
scheme, it differs from the AC-scheme outlined in Section 2 in 
one important way: Under Hydra, the availability of a ticket 
(capability) for an object is not, by itself, sufficient for the 
application of an operator to it. One must also have the per-
mission to call the operator. In Hydra, this permission is 
represented by a ticket for the operator with the "call" right in 
it. In fact, a ticket (P;call) for the operator P, together with 
the formal-parameter-specification (FPS) in P itself is equivalent 
to the primary P-activator under the OC scheme. Thus, as under 
the OC scheme, abilities in Hydra are formed by the availability 
of privileges with respect to both operands and operators. 
However, Hydra lacks the formal means to represent varying degree 
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of privileges with respect to one operator P, which, under the OC 
scheme, can be represented by different P-activators. We maintain 
that the ability to represent different privileges with respect to 
one operator is necessary if an authorization scheme is to satisfy 
the principle of attenuation. In particular, as we will see in 
Section 6, it is crucial for the implementation of type-extensions 
without the use of amplification. 

It should be pointed out that in some sense the effect of 
having different P-activators for the same operator P can be • 
simulated in Hydra, as follows: Let Al...Ak be a set of P-
activators. One can form in Hydra a corresponding set of operators 
Pl...Pk, which are identical to P in all but their formal-
parameter-specifications. The FPC of Pi should impose the same 
condition on its arguments that are imposed by the corresponding 
activator Ai. However, for this facility to be used as part of 
an authorization scheme, one must impose a discipline on the 
formation of the operators Pi from the original operator P, 
similar to our rules concerning the generation of activators. 
Since Hydra does not feature any such discipline, there is a 
genuine need for amplification in it. 

Recognizing the harmful effects of amplification, Hydra 
restricted its use to the subsystems which implement type-exten-
sion [Coh 75]. Unfortunately, this restriction is not satisfac-
tory, on two accounts: 

a) In the context of Hydra, amplification is necessary in 
other circumstances besides type-extension. Thus, the restricted 
use of amplification in Hydra leaves a class of policies 
unsupported. 

b) The Hydra's restriction on the use of amplification does 
not eliminate all its harmful effects. 

The second claim will be discussed in the next section where we 
also show that under the OC scheme type-extension can be imple-
mented without amplifications. To substantiate our first claim, 
let us return to Example 2. We will show that although the 
authority structure of Example 2 can be supported in Hydra, 
without amplification, a simple modification of it cannot be so 
supported. 

The owner-driver situation of Example 2 can be implemented in 
Hydra simply by representing a driving license by a ticket 
(DRIVE;call) for the operator DRIVE. This ticket should be given 
to the driver S2 but not to Sl. What makes this case manageable 
in Hydra is the fact that Sl is not allowed to drive at all. But 
what about a situation where S1 is allowed to drive some car, but 
not his own? For example, suppose that S1 is a disabled person 
who needs a special permission to drive any specific car, 
permission which may be based on the safety features of that car. 
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The Hydra solution for Example 2 would not work here because both 
subjects must have the right to call the operator DRIVE. 

Under the DC-scheme, this authority structure can be repre-
sented as follows: Supposed that S1 has the following DRIVE-
activator 

<DRIVE, [CAR;drive,sd]),  

which means that S1 can drive only such a car c' for which it has 
a ticket (c';drive,sd...), "sd" being this special driving 
permission. If S1 does not have the "sd" right for his own car c 
he cannot drive it. The driver, S2, on the other hand, not being 
disabled, has the more powerful DRIVE-activator(DRIVE,[CAR;drive]). 
Thus, if Si gives a ticket (c;drive) to S2, the latter would be 
able to drive the car c. A similar effect can be achieved in 
Hydra only by amplification, unless one gives the two subjects two 
different operators for driving cars. 

6. THE ISSUE OF TYPE-EXTENSION 

In this section, we show how type-extension can be achieved 
under the DC-scheme, without violating the principle of attenua-
tion. ,Moreover, we will argue that the Hydra implementation of 
type-extension has some drawbacks dur to the amplifications on 
which it is based. But first, let us define the concept of type-
extension. 

Definition: Consider a type T' such that op(T')--Nil and 
rt(T')={si}. Let T be a type with op(T)={Pi}, T is called an 
extension of T' if the following conditions are satisfied. 

1) Every T-object is also a T'-object. (Note that this 
partially removes the restriction made in Section 2 that every 
object belongs to a unique type). 

2) The only subjects which are able to apply T'-operators to 
a T-object are the T-operators Pi. For any other subject, the only 
way to manipulate and observe T-objects is indirectly by means of 
the T-operators, which have the exclusive ability to "see the bare 
representation of T-objects". 

3) The set of T-rights is 

rt(T)=rt(T')U{ri} 

We refer to T' as the representation type of T, and to the set 
op(T') as the representation -operators. Note that every T-ticket 
may carry T'-rights, to be called representation-rights, as well 
as the symbols ri which we call the intrinsic T-rights. 



In Hydra [Coh 75], all extended types are extensions of a 
single primitive type T'=SEGMENT. The SEGMENT-operators in Hydra 
are called "generic operators", which include such operators as 
GETDATA and PUTDATA. The rights rt(SEGMENT) are called "generic 
rights". The module which contains the definition of op(T) and 
rt(T), for a given type T, is called the T-subsystem. 

The main difficulty in the implementation of type-extension 
is requirement (2) of its definition. Here is how the designers 
of Hydra see this problem ([Coh 75] p. 147). 

"Hydra must somehow guarantee that ordinary users 
cannot access or manipulate an object's represen-
tation...This implies that ordinary users do not 
have capabilities [tickets] containing the various 
generic rights...Yet a subsystem procedure must be 
able to gain these rights when a capability for an 
object of the type it supports is passed to it as 
an argument". 

Hydra's solution to this dilemma is an exclusive ability of the 
representation-operators of a type T to amplify T-tickets (or 
capabilities, in Hydra's terminology) by adding to them desired 
representation-rights. Under the OC scheme this dilemma does not 
arise in the first place, because rights are not identical to 
abilities. Indeed, if the ordinary users do not have activators 
for the representation operators, then they may have tickets which 
contain representation-rights without being able to invoke the 
corresponding operators. Moreover, we will see below that in most 
cases, there is no need to carry representation-rights in the 
tickets of extended-type objects. 

6.1: The Implementation of Type-Extension Under the OC Scheme. 
Consider a type T' which, like the type SEGMENT in Hydra, serves 
as a representation-type for a number of extended types. Let 

AQ =<Q,[T']) 

be the primary Q-activator of an arbitrary T'-operators Q. AQ is 
very powerful as it can be applied to any T'-object, regardless of 
the extended type it hosts. We assume, however, that these 
powerful primary Q-activators exist only in the module which 
generates new type-subsystems. Appropriate reductions of these 
activators are distributed among the various type-subsystems, as 
follows: 

Let T be an extension of T' and let P be a T-operator which 
needs to apply a representation-operator Q to its argument. We 
insert in the domain of P the following reduction of AQ: 

AQT=<Q,[T], 
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AQT is weaker than AQ because it can be applied only to T-objects. 
Namely, only to such a T'-object which hosts a T-object. 

Now, since the activators AQT exist only in the domains of 
T-operators, no other subject would be able to apply T-operators 
to T-objects, as is required by the definition of type-extension. 

Of course, the invocation of the T-operators themselves should 
be controlled by their own activators, using the intrinsic T-rights 
ri. For example, the primary P-activator for a T-operator P may 
be: 

(P,[T;r]> 

where r is one of the T-rights. This means that one needs the 
right r in a ticket in order to apply T to it. 

Note that this suggests that there is no need to have the 
representation rights {si} in T-tickets. Because, the only way 
for ordinary users to cause the invocation of T 
invoking T-operators, and such invocation is controlled by the 
intrinsic T-rights. The representation operators, in turn, do not 
need any representation-rights for their arguments, because the 
representation-activators which they have, such as AQT, do not 
require any. And yet, as we will see below, there is a role to be 
played by the representation rights in T-tickets. 

6.2: The Role of the Representation-Rights. Consider a T-operator 
P whose primary activator is <P,[T;r]>. Suppose that P is 
designed to use a certain T'-operator Q only on some of its invo-
cations. For example, let the type T be FILE and let P be the 
operator DELETE, which deletes a record from a file. Suppose 
that normally the operator DELETE only marks the record to be 
deleted as an "inactive" record, without actually removing it from 
the file. Occasionally, however, DELETE performs garbage 
collection returning the space occupied by inactive records to the 
free-storage pool. To do this, DELETE has to use the representa-
tion-operator RETURN-STORAGE. In this case, one may want to allow 
a subject S to apply DELETE to a file f provided that such an 
application does not cause physical loss of information which 
would result from garbage collection. In general, one would like 
to be able to restrict a T-operator, as to which representation-
operators it can apply to its arguments, once it is called. We 
propose to use the representation-rights for this purpose, as is 
explained below. 

Recall that previously we assumed that a T-operator P would 
have in its domain an activator <Q,[T]) for every T'-operator Q. 
We now suggest that if an operator Q does not have to be used by 
P on every invocation, then P should have the following activator 
for it 
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<Q 1 [T;s]> 

where s belongs to rt(T'). This means that P cannot apply Q to 
its argument unless it has a ticket for it with the representation-
right s. 

As before, the primary P-activator is 

AP =<P,[T;r]> 

so that the representation-right s is not required in the ticket 
t=(b;R) in order to apply P to it. However, P itself cannot apply 
Q to its argument unless R contains s as well. 

In general, the T'-rights can be used in the tickets of T-
object as a means to control the internal operation of T-operators. 
In the sense that the absence of such a right can prevent a T- -- 
operator from applying a certain T' operator to its argument. 

Note that this important use of the representation-rights 
would be disabled by amplification. If an operator P has the 
ability to amplify its argument by adding representation-rights 
to it, as is the case in Hydra, then it does not matter if the 
operand ticket did not have such a right originally. It should 
be pointed out that the designers of Hydra recognized this 
problem, but only with respect to certain representation-
operators (see [Coh 75] p. 152). Indeed, their solution has been 
to, effectively, cancel the amplificatoin for the representation-
rights which control these operators. However,, they failed to 
see the more general nature of the problem which requires the 
complete elimination of amplification. 

7. CONCLUSION 

The primary result of this paper is the demonstration that an 
authorization scheme can be based on the principle of attenuation 
of privileges. The obvious advantage of this principle is that 
it makes it easier to foresee the consequences of the act of 
granting somebody a certain privilege, due to the assurance given 
by the principle of attenuation that this privilege cannot be 
amplified. Moreover, the need to satisfy the principle of 
attenuation gave as an insight into the general problem of 
authorization, which may be more valuable than the original 
principle itself. 

First, the analysis of the incompatibility between the access-
control scheme and the principle of attenuation revealed a need 
to make a distinction between "privileges" and "abilities". This 
distinction has an intrinsic importance since it seems to be 
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essential for many real-life authority-structures that have to be 
built into computer systems. Secondly, the fundamental difference 
between privileges and abilities led us to the two complementary 
types of control-objects which represent privileges with respect 
to operators and their operands. This complementary of privileges 
has a number of important implications which are farther discussed 
in [Min 77, Min 77a]. Finally, it should be pointed out that the 
operation-control scheme has been originally introduced for a 
number of different reasons, including the principle of attenua-
tion, and that it is much more general than the version introduced 
in this paper. 
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DISCUSSION 

Lipton: I've always had very strong reservations about 
Take/Grant Systems. If you formally change your words, substi-
tuting for example colors for the rights, then to the formal 
machinery, it makes no difference. That clearly means that 
something is missing in these theorems. We are reading in the 
semantics of the situation. Do you think that is justified on 
the basis of the model? 

Minsky: I don't know. But maybe someone else has something 
to add. 

Rabin: Yes, my question is also concerned with semantics. 
If you consider the system that was previously presented by Anita 
Jones and now what you are doing, there is something which is 
lacking. We are treating the alphas, betas and gammas as sets of 
tokens of the sort. But, when Naftaly Minsky's presentation 
came, we saw that the meaning of these tokens play a role. But 
actually, I think that the basic issue is the issue of semantics. 
Take, for example, the business of the right to drive and the 
right to sell. Now the main problem there was the semantic 
meaning of drive is not completely explicated. You really have 
the right to drive and the right to grant the right to drive. 
Now, I don't want to carry it on, but that is still different 
from the right to grant the right to grant the right to drive; 
and, these are entirely different situations. You must have 
semantics for the token, semantics of which abilities and which 
privileges of which these are special cases. For example, we 
would have the ability to drive and the privilege of the right to 
grant the right to drive. But, that is just an instance of 
semantics, and I think that for full ramifications, they 
necessarily would become much more complicated, as all real life 
situations are. 
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Minsky: I first don't have any real hope that we can model 
all real life situations. My own interest in this model comes 
not from operating systems, but from information systems, which 
are much more complex. However, I don't believe that you can 
approximate very well that sort of complexity. 
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SECTION IV. THEORETICAL MODELS OF OPERATING 
SYSTEM SECURITY 

All of the issues addressed here can be traced to the 
concepts discussed in section III. If the point of a design is 
a system, the point of a theoretical study is insight; the kind 
of insight that flows from answering questions that are very 
carefully posed. In this section, there are four papers 
treating theoretical issues; they pose questions concerning 
security in computing systems and give some rigorous answers. 
As we saw in section III, the theoretical answers are not always 
what our practical intuitions say they should be. But then, 
intuition is often faulty, and that's what helps to make the 
theory so interesting. 

In this final section, Richard Lipton and Timothy Budd open 
the selection of theoretical contributions by showing us that 
there is an efficient way to decide safety for a wide variety 
of protection systems. The requirement is that the systems must 
be related in certain ways. Ellis Cohen notes the various 
'possibilities for information flow in sequential programs and 
gives an elegant formal treatment of his ideas. Michael Harrison 
and Larry Ruzzo extend their well-known investigations into a 
particular security model by giving a characterization of the 
relative "power" of different operations allowed in, the model. 
In the final paper, Richard Lipton and Larry Snyder prove the 
surprising equivalence of a well-studied security model and an 
apparently unrelated model for synchronizing parallel processes. 





I 

ON CLASSES OF PROTECTION SYSTEMS 

Richard J. Lipton 
Timothy A. Budd 

Yale University 
New Haven, Connecticut 

I. INTRODUCTION 

Interest in the modeling and formal analysis of operating 
system protection mechanisms has increased in the last few years 
[2-7, 11-14]. In [7], it was shown that for arbitrary systems 
the sort of questions we are interested in asking, such as whether 
rights can be passed to unauthorized persons, are generally 
undecidable. On the other hand, in [12] it was shown that for a 
system which had previously been proposed in the literature 
[4,11], such questions could be decided in linear time. 

In this paper, we will show that the ability to decide the 
safety question quickly can be proved for a very large class of 
operating system protection models. 

Ii. THE MODEL 

Our paradigm of a protection system will he as follows: 

We are given V objects in the system (X 1 ,...,Xv). In a 

specific instantiation of the model each object could represent, 
for example, a file or a process; however, we abstract this idea 
by simply stating that each X. is of type T

i
, which is an element 

of some finite alphabet T. 

Between any two objects, there may be an arbitrary number 
(possibly empty) of rights, where each right is indicated by an 
element from some finite alphabet E. 
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At any time, we indicate the current status of the system by 
a graph G where each object is represented by a vertex and each 
right by a labeled directed arc. 

The differences we will emphasize in classifying protection 
systems will be in the rules they use for adding or deleting arcs 
from an existing graph. These we will call the transition rules. 

If starting from initial configuration by a finite number of 
applications of the transition rules, we can connect a vertex X 
to a vertex Y by an arc labeled a, we will say that in the initial 
configuration X can a Y. 

We will not consider systems which have rules roughly equiva-
lent to "If I have a right to something, I can give it to anyone 
I choose", or graphically, 

• 

_> rAr 

Such systems we can refer to as "loose". For these systems, 
the safety question tends to be either trivial or nonsensical. 
For example, if I can obtain the a right to Z, then anybody can 
obtain the a right to Z. 

The hazardous effects of having a loose protection system 
have generally not been recognized; for instance, all the examples 
given in [4,7] suffer from being loose. 

Notice that there is a simple isomorphism between systems 
represented in this graphical format and systems represented in 
the access matrix format of [4,6,7]. 

III. SAFETY 

There are two questions we can ask with respect to protection 
system [7]. 

Question 1: The safety question. 

Given a protection system G and two objects X i  and X. in that 
system, if we introduce the right of Xi to a X, what otter 

objects can thereby obtain the rights to a Xj . 
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Question 2: The extended safety question. 

Given a protection system G and two objects X. and X. in 
1 	J 

that system, if we introduce the right of X. to a X., what 
i 	J 

potential changes will this produce in the entire system. 

In [7] it was shown that for arbitrary protection systems 
these problems are undecidable. For certain restricted types of 
systems they were able to give decision procedures for the safety 
problem, however their procedures worked in exponential time. 

On the other hand, in [12] a specific system is described for 
which these questions can be decided very quickly. 

The remainder of this paper will be devoted to the classifi-
cations of differing protection systems, indicating some classes 
for which polynomial or linear time results can be shown for the 
above-mentioned problems. 

IV. GRAMMATICAL PROTECTION SYSTEMS 

We will call a protection system grammatical if for each 
right act, there is a grammar L and start symbol S such that 
given two vertices X and Y, X can a Y iff X and Y are connected 
by a path such that the concatenation of the right symbols on 
that path form a word in L(S). 

We will illustrate this concept by demonstrating a class of 
protection and showing them to be grammatical, from this we can 
obtain a polynomial time solution to the extended safety question. 

Working within the model described previously, we will define 
a General Arc Moving system to be a protection system with 
transition rules of the following form. 

a 

—7;N\  .> 	 )  

Ti 	T. 	T
k 	

T
1 	

T. 	T
k 

	

3 	 j 

Figure 1 
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where the types of T
i
, T

j 
and T

k 
indicate the necessary types 

for the vertices and a, 13 and y are rights. The directionality 
on the arcs must be specified, but they are here omitted for 
generality. 

We obtain a grammar L by defining a new production for each 
rewriting rule. For each rule such as that in figure 1, we define 
a production of L as follows. If they do not already exist, we 
introduce three nonterminals, A, B and C 6 TxRxT such that A 
corresponds to an arc labeled a between vertices of type T i  and 

T
k , and in a similar fashion, B and C are defined. We then have 

the production 	
A ± BC 

Note that the nonterminals A, B and C encode both the nature 
of the right and the type of vertices that the right connects. 
For each nonterminal A, we create its terminal counterpart a and 
add the production A a. 

We then have the following lemma: 

Lemma 1: Given two vertices P and Q of types T and T , 

respectively, P can a Q iff there exists a path between P and Q 
in L((T ,a, T )). 

Proof: If P and Q are connected by a path with word in 
L((T ,a, T )), then the derivation of that word gives us a con- 

struction method by which we can join P to Q by an arc labeled 
a, hence P can a Q. 

The proof the other way will be by induction on the number 
of applications of the transition rules which lead to P being able 
to a Q. 

If this number is zero, that is, P had the rights to a Q in 
the original graph, then we trivially have our result. Hence, we 
assume P did not originally have the rights to Q, and that it 
took n applications of the transition rules for P to obtain that 
right. 

The very last application of a transition rule must have been 
for P to get the ability to a Q from some vertex X (see figure 2). 
This must have been permitted in virtue of some right (3 between 
P and X and some right y between X and Q and there being a tran-
sition rule as shown in figure 1. 
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a 

S  • 	• 	-> 	  
P 	X 	Q 	P 	X 	Q 

Figure 2 

Now it took less than n applications of the transition to 
form the arcs between Q and X and between X and P, hence by the 
induction hypothesis there must have been a path between P and X 
in L(T ,8, T

x
) and between X and Q in L(T ,y, T ). But associated 

with the transition rule shown in figure 2 is the production 
(T ,a, T ) 	(T

P' 
 8, T 

x 
 )(T 

x
,y, T ). Hence, it must be the case 

that Q and P were connected by a path with word in (T ,a, T ). 

We can note the similarity between grammars in this form and 
context-free grammars in Chomsky Normal Form [9]. In view of 
this, and the relationship between parsing and protection systems 
demonstrated by lemma 1, it is too much to expect the safety 
question for arbitrary arc passing systems to be answered in 
linear time. However, we can demonstrate a polynomial time 
result as shown by the following theorem. 

Theorem 1: The extended safety question can be answered for 

a general arc moving protection system in 0(V
2.81

). 

Proof: For this example, we assume the protection network is 
kept in a V by V matrix (call it M), similar to the access matrix 
of [3,6,5]. We then define a matrix "multiplication" operation 
by substituting production reduction (BC = A iff A+BC) for scalar 
multiplication and set union for scalar addition in the standard 
matrix multiplication algorithm. 

We next observe that since the lower triangular portion of M 
is the inverse of the upper triangular part, by suitably adding 
production rules, we can just work with the upper triangular part 
of M. Hence, we have reduced the problem to that of finding the 
transitive closure of an upper triangular matrix with respect to 
our matrix multiplication operation. Valiant [15] has shown how 

2.81 
this can be accomplished in 0(V) operations. 

To give a solution to the extended safety question, we 
simply perform this operation twice, once with and once without 
the additional arcs. Comparing the results then gives us our 
answer. 
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Example 1: A non-regular Arc Passing System. 

In this example, we are just concerned with the movement of 
read privileges. Assume we have a right called the indirect 
right to Y, and Y can read Z, then in effect X can read Z. Next, 
there is the request right, which says that if X can request of 
Y, and Y has indirect rights to Z, then X can obtain indirect 
rights to Z. (Notice here, as in the take grant system [12], we 
take the worst case approach by assuming requests are always 
granted). Finally, if X has read rights to Y, and Y has request 
rights to Z, X can obtain request rights to Z. 

The transition rules are shown in Figure 3. If we let A 
represent read, B indirect and C, we obtain the following grammar: 

A BA 

B CB 

C AC 

This obviously is an arc passing grammar, hence theorem 7 
gives us a method for solving the safety question. Furthermore, 
it can be shown [8] that this grammar is not regular, hence the 
2.81 

V 	is asymptotically the best upper bound we have on the 
safety question for this system. 

	  = a 	> 	• 

• 	 q 

 

	 • => 

 

 

Figure 3 
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V. REGULAR GRAMMATICAL SYSTEMS 

If it happens that for each right the language generated by 
the grammar associated with a grammatical protection system is 
regular, we will say the system is a regular grammatical system. 

Regular grammatical systems are important on account of the 
following theorem. 

Theorem 2: For regular grammatical systems, the safety 
question can be answered in linear time in the size of the pro-
tection graph. 

Proof: We prove this result by appealing to the fact that 
regular grammars can be recognized by finite state automata. 
Assume for a given G, we have an automata with U states that 
recognize L(G). We then construct a new graph with UxV vertices, 
where there is an arc from (X.,U.) to (Xk ,U ) iff there was an 

arc from X
i 

to Xk  in the original graph, and if we were in state 

U.
3 
 at the point X. that arc would carry us to state U . 

Starting from the vertex X and using depth first search on 
the original graph, we see we can construct this new graph in 
0(E) operations. Again, using a depth first search on the new 
graph, we mark those vertices we encounter which are in designated 
final states for the automata. These are then the only vertices 
which can obtain rights to X. Again, we have a complexity of 
0(E) operations. 

We wish then to characterize protection systems which have 
regular languages. 

A class of grammars which seem to arise quite frequently are 
what we call non-discriminating grammars. Informally, we will 
say a protection system is non-discriminating if all the transi-
tion rules are of the form "If X and Y are connected by an arc 
With some right y, and Y has any right to Z, then X can obtain 
that right to Z." 

The name is meant to imply the fact that we don't discriminate 
between rights in the second context. 

Formally, we will say a protection system is non-discriminating 
if it has a non-discriminating grammar. We define a non-
discriminating grammar as follows. 

There are five types of nonterminals, A1 ,...,Aka ,B1 ,..., 

B
kb'

C...,C
kc
,D...,D

kd 
and Z. We allow productions of the 
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following forms (greek letters represent strings of terminal 
symbols). 

Any nonterminals of type A, B, C or D can produce a finite 
string of terminal symbols. 

	

Al-0- a .. 	B. -4- a 	. 	C. 	a .. 	D. 	a .. 1 	aij 	1 	bij 	1 	cij 	1 	dij 

A's, B's, C's and D's are allowed productions of the follow- 
ing forms: 

Ai 	BA. 	B. -■ B.y 

	

1 	 1 	3 

C. 4  ZA. 	C. ± ZB. 

	

1 	J 	1 	.3 

C. ±A. 	C. 4  B. 

	

1 	3 	i 	3 

D. -0- A.Z 	D. ± B.Z 

	

i 	3 	1 	3 

D. -■ A. 	D. -■ B. 

	

i 	3 	1 	j 

For Z, we allow productions of the following form: 

Z -0- A. 	Z -0- B. 

Z 	C. 	Z 	D. 
1 

Z 	C
i 
 D. 

Z 	ZZ 

A A 

Theorem 3: Non-discriminating grammars are regular. 

Proof: We wish to show that starting from any nonterminal, 
the language produced from this grammar is a regular event. The 
proof for nonterminal of the first four classes quickly reduces 
to showing the language produced from Z is a regular event, 
hence we show only this case. 

Notice first, that the nonterminals A (B) form by themselves 
a right linear (left linear) language and hence associated with 
every nonterminal A. or B

i
, we have a regular event which repre- 
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sents the language that can be generated from that start symbol. 

Let us consider first the set of sentential forms that can be 
generated from Z using only productions of the type 
Z 4 A., Z 4 B., Z 4 C. and Z 4  D.. 

1 	1 	1 	 1 

Let us construct a regular event L as follows. If there are 
productions Z -; 

1
A
j
Z or 1 

then both w and v are in L, and nothing else is in L. We can do 
a similar trick with C. to form a regular event R; finally, we 

can define a regular event F as follows: If there are productions 
Z 4 A.

1  and Ai 	 1 , 
 => w then w is in F, similarly for B. C. 
	1 
and D.. 

It should be obvious that the set of sentential forms Z can 

generate is L (Z!F)R . That is, everything in this form can be 
generated from Z (using only the productions we have indicated) 
and nothing else can. 

Now assume we have a production Z 4 ZZ (the proof in the case 
where we don't have this production is easier and won't be given 
here). Consider what can happen with one application of this 
rule. 

* * 
Z => L ZR 

* * 
=> L ZZR 

* * 	* 	* 	* * 
=> L (L (Z!F)R )(L (Z!F)R )R 

* * 
=> (L (Z!F)R )(L (Z!F)R ) 

A simple induction argument can be used to show that the set 
of sentential forms Z can generate is then (L* (Z!F)R* ) * . 

We now wish to add the productions Z 4 C.B. 
1 

Let us look at what we can generate with one application of 
this rule. 
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* * * * * 	* * 
Z => (L (Z!F)R ) L ZR (L (Z!F)R ) 

* * * 	* * 	* * 
=> (L (Z!F)R ) L C.Dj  R (L (Z!F)R ) 

* * * 	* * 	* * 
=> (L (Z!F)R ) L ZN

1
N
2
ZR (L (Z!F)R ) 

* * * 	* * * * * 	* * 
=> (L (Z!F)R ) (L (Z!F)R ) N

1
N
2
(L* (Z!F)R ) (L (Z!F)R ) 

=> (L (Z!F)R* ) *N
1
N
2
(L (Z!F)R* )*  

Associated with each nonterminal pair N1N2  is a regular event. 

Let us call the union of all such regular events W. Hence, we 
have that the set of sentential forms Z can generate with one 
application of a production Z + C iDj  is simply 

(L (Z!F)R
* 

)
* 
W(L

* 
 (Z!F)R

* 
) * 

Let Ar be A repeated r times, with A0  = A. We now want to 
show that the set of sentential forms generated by Z using n 
applications of productions of the form Z + C.B. is 

((L
*
(Z!F)R

*
)
*
W)

n
(L

*
(Z!F)R* )*  

Which is equal to 

= (L (Z!F)R* )* (W(L(Z!F)R
*

)
*

)
n 

The proof is by induction. We have just shown it true for 1, 
hence we assume it is true for n and show it is true for n+1. 

First, we note that if P,Q <= n then the set of sentential 
forms we can derive from 

* * * * 
(L ZR )(L ZR ) 

where the left Z is expanded using p applications of the rule 
and question and the right Z using q, is just 

* * 	* * 	* 	* * p * * * 	* * 	* 	* * * 
L (L (Z!F)R ) 	(Z!F)R ) ) R L (L (Z!F)R ) (W(L (Z!F)R ) ) R 

= ((L (Z!F)R* )* W)
p 
 (L

* 
 (ZIF)R* )* (W(L

* 
 (Z!F)R* )

* 
)' 

= (L (Z!F)R* )* (W(L
* 
 (Z!F)R* )

* 
)r 
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From this we see that the set of sentential forms that can be 
generated using n applications of the productions starting from 

* * 	 * * * * (L (Z!F)R ) is just (L (Z!F)R ) (W(L (Z!F)R)) n 

To show the induction step, we note that there must be a 
first time a production Z + C.D. is applied. Following this, as 

we previously observed, we will have a sentential form in 

Z => (L (Z!F)R
* 

)
* 
W(L

* 
 (Z!F)R

* 
) * 

Now let us assume there are p applications of the productions 
in question to the left of the W and q to the right and p+q=n. 
From what we have seen before, this means the set of sentential 
forms we can generate is 

* * 	* * 	* 	* * p * * 	* 	* * 	* 	* * n * * 
L (L (Z!F)R ) (W(L (Z!F)R ) ) R ) W(L (Z!F)R ) (W(L (Z!F)R ) )'R ) 

* 	* *n * 	* 	* 	* * 	* 	* * n 
= ((L (Z!F)R ) W)r(L (Z!F)R )W(L (Z!F)R ) (W(L (Z!F)R ) )" 

* * * 	 * * ,-, * 	* * 
= ((L (Z!F)R)W)

p+1 	* 
((L (Z!F)R ) Wr(L (Z!F)R ) 

p+q+1, * 	* * (L (Z!F)R ) = ((L
*
(Z!F)R* )* W) 

Hence, the hypothesis holds. 

Since we cannot bound the number of times productions of the 
form Z + C.B. will be used, we replace the exponent by a star. 

Adding the final production Z + A, we then have that the set of 
words which Z can produce lie in the regular expression 

((L (A!F)R* )* W)
* 
 (L

* 
 (A!F)R* )*  

We note that L's, F's, R's and W's can be computed in any 
quantity in any order, hence the regular event we derive is just 

(L!F!R!W) *  

Example 2: The grammar associated with the subject/object take 
and grant system [12] is an example of a nondiscriminating grammar. 
Given the definition of the nonterminals shown in figure 6, it can 
be demonstrated that we have the grammar shown in figure 7. If 
we assume A is our starting symbol, we can eliminate productions 
3, 4, 6, 8, 11, 12, 14 and 16, thereby giving us a nondiscrimina-
ting grammar. 
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Following the mechanical transformations used in the proof 
of the theorem, we see the regular expression associated with A 
is as follows: 

(bd p ! bd
* 
 ph

* 
 g ! jh g ! bd ih*g 	! 	e ! bd c 	! 	e 	! 	fh g 	! j 	! 

* 	* 
bd k ! m ! nh g) 	(a ! bd c) 

These methods provide us with a means for giving an alterna-
tive proof of the theorem 2 in [12]. 

A = 	(S,r,S) B = 	(S,r,O) C = 	(O,r,S) D = (O,r,O) 

E = 	(S,r,S) F = 	(S,r,O) G = 	(O,r,S) H = 	(O,r,O) 

I = 	(S,w,S) J = 	(S,w,O) K = (0,w,S) L = (00,7,0) 

M = 	(S,w,S) N = 	(S,w,O) 0 = 	(0,w,S) P = (0,w,0) 

Figure 6 

1. A 	ZR
a 

R
a 

4-a 	R
a 

4- Rb c 

2. B 	ZRb  Rb  4- Rbd 	Rb 	b 

3. C 4- OA 

4. D -0- OB 

5. E 	Le
Z L

e 
4- e 	Le 	

fL 
g 

6. F 	EJ 

7. G->L2 
g 

L' ->hL 	L 	g 
g 	g 	g 

8. H 	GJ 

9. I -0- ZRi  Ri 	i Ri 	Rbk 

10-34-z11R-3--"-÷Rb t  

11. K OT 

12. L 	OJ 

1 

296 



13. M4LZ L --m L
m 

-4- nL 

	

m 	m g 

14. N 4  MJ 

15. 0-4-LZ L 	L
o 
4  pL 

	

o 	o g 

16. P 4  OJ 

17. Z-4- ZZ 	Z+E 	Z÷M Z-4- JG Z--BO Z 4  A 

Figure 7 

Non-Grammatical Protection Systems 

As useful as the concept of grammatical protection systems is 
to obtain linear time results to the safety question, a great 
many systems described in the literature fail to possess this 
property [2,5,13]. 

In this section, we wish to show that certain systems, while 
failing to be truly grammatical, are sufficiently close to 
grammatical systems to enable us to utilize the results of the 
last section. 

We will say a protection systems is near-grammatical if for 
each right a there is some regular expression E a  such that a 

necessary condition for a vertex X to a a vertex Y is that they 
be connected by a path with word in E a ; furthermore, this condi-

tion becomes sufificient if at certain identifiable points in the 
regular expression we check that certain more global conditions 
are satisfied. We assume these conditions do not involve the 
vertex X, and they can be verified in constant time (i.e., 
independent of the number of edges in the graph). 

Theorem 4: The safety question for Near-Grammatical systems 
can be answered in linear time in the size of the protection 
graph. 

Proof: This theorem is proved in a similar fashion to the 
previous theorem 8. We place "finger" symbols in the places in 
the regular expression where the conditions are to be verified. 
Again, we assume to have a finite state automaton with T states 
and a protection graph with B vertices. Again, we construct a 
new graph with BxT vertices, only this time we connect an arc 
from (G.,T.) to (G

k'
T ) iff 

J 
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1) there was an arc from G
i 

to G
k 

in the original graph, and if 

we were in state T. at the point G that arc would carry us to 
3 

state T
2., 

or, 

2) one of the "finger conditions" is true for G,. In this case, 
k = i and T t is the state we would transfer to having accepted 

that "finger" in the state T.. 

Again, having constructed the graph the result is then a 
standard reachability argument from automata theory. 

Example 3: In many current protection systems having a right to 
an object does not, as we have been assuming, automatically allow 
you to pass that right on to another individual. For instance, 
in the Multics system an individual can have access to a file 
only if his name is written on a list of individuals who are 
permitted to have that right. Therefore, if X has certain access 
privileges, another vertex Y, no matter what relationship it may 
have with X, cannot obtain those privileges . without somehow 
getting its name on the list of permitted individuals. 

We model this situation by means of a special right called 
control [2]. Having control rights over X could, for instance, 
mean having the ability to write on the list of people who can 
access X. 

We will use the subject-only take and grant transition rules 
of [12], only we include the concept of control. The control 
privilege cannot be passed. The rules are shown in Figure 8. 

That the system is not grammatical can be easily demonstrated. 
In the first graph in Figure 9, X can obtain the read rights to 
Z, but it cannot do so in either of the two following graphs, 
thereby demonstrating that the ability to obtain rights does not 
depend solely upon the nature of the path between the two vertices. 

We can observe that for a c (r,w), X can obtain a rights to Y 
iff 
1) X and Y are connected by a path in (r!w) and 
2) every vertex on that path has control rights to Y. 

This system is obviously near-grammatical. Hence, the safety 
question can be answered in linear time. 
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a 

r,c 	a
=> 	

r,c 	a 

a 

w I c „ a 	 w c 	a K 	 ) => 

Figure 8 

r 	r 	r,c 
x • 	 ). z 

r 	r 	r,c 
x •  

r 
x 	 c 	z 

Figure 9 

CONCLUSIONS 

The security of computer systems is a topic which appears will 
be of increasing concern in the near future. We feel that true 
understanding and trust in access privilege mechanisms which are 
proposed can only be achieved by formal analysis of the capabili-
ties of these systems. 

We have attempted to form a basis for the study of protection 
systems by classifying transformation rules which allow for formal 
analysis. In doing so, we are trying to fill in the gap between 
a specific system for which linear time results can be demon-
strated [12], and very general systems for which problems are 
known to be undecidable [7]. 

We hope that further research will bear out the utility of 
these studies by allowing us to model protection systems which are 
actually being used today. We feel the concept of a grammatical 
or near-grammatical system is natural and justified, since, 
disregarding those systems which we are labeling "loose", if I 
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have a right and I wish to give it to you, I can only do so in a 
sense by passing it from hand to hand until it reaches you. 
Hence, to a certain extent, my ability to pass rights must 
depend upon the nature of the path between us. 

It appears that further research along these lines will have 
important consequences not only for the formal analysis of 
abstract protection system models, but also for the practitioner 
who must design and implement actual access privilege mechanisms. 
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I. INTRODUCTION 

As the result of exeuting a sequential program, information 
can be transmitted from certain variables to other variables. A 
number of authors have considered the problem of determining the 
information paths in a program. Their methods have largely been 
intuitionist. This paper provides a formal approach to informa-
tion transmission so that information paths can be determined 
precisely given the formal semantics of a program. 

More importantly, the formal approach permits us to answer 
more selective questions about information transmission. For 
example, we may not care if output variable b reflects whether 
input variable a is odd or even. However, we might like to show 
that b depends upon a in no other way. To show this, we assume 
first that a is even - and then, that a is odd - and show that 
under neither assumption is information transmitted from a to b. 
This requires a formal method for describing information trans-
mission given an initial constraint (assumption) concerning the 
value of the input. 

Actually, this paper describes two such formal approaches. 
The first, Strong Dependency, is based on classical information 
theory, and has been used [Cohen 76, 78] to show that undesirable 
information paths can be eliminated (e.g. enforcement of confine-
ment [Lampson 73]) in multi-access computer utilities. 

The Strong Dependency approach considers whether variety can 
be conveyed as the result of program execution. For example, in 
executing the program P 

P: b t  a div 10 (integer division) 
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information is transmitted from a to b since variety (i.e. 
possible different values) in a (e.g. 17 or 34) is conveyed 
(i.e. resulting in different values) to b (e.g. 1 or 3, respect-
ively). 

The second approach is a deductive one. To determine whether 
P transmits information from a to b, we ask whether an observer 
of b (seeing the resulting value) of b after P's execution can, 
armed with a listing of P, deduce anything about the initial 
value of a. In the example above, if b's result is observed to 
be 3, it can be deduced that a initially lies between 30 and 39. 
Given an appropriate definition of what it means to deduce some-
thing about a's initial value (a point to which I will return 
below), strong dependency and the deductive approach can be shown 
to be formally equivalent. 

The appendix is concerned with proof rules for proving the 
absence of information paths in sequential programs. Such rules 
have previously been discussed by Denning and Denning [77], 
however, as noted above, these have been derived intuitively. 
Many of their ideas have impacted the development of the proof 
rules in this paper. However, the proof ru1e4 discussed here 
have been derived formally from the basic definition of strong 
dependency. Moreover, the proof rules take into account the fact 
that statements may be executed in contexts where certain con-
straints are known to hold. 

Millen [76] has previously noted that assertions can eliminate 
certain information paths. In particular, if an assertion 
guarantees that the Boolean test in a conditional statement always 
evaluates to the same truth value, then possible information 
transmission corresponding to the branch that will never be taken 
can safely be ignored. This rule is formally derived from strong 
dependency in this paper, and in fact, can easily be incorporated 
in the Dennings' system as well. 

But, this paper shows that assertions may eliminate informa-
tion paths in a more general way. A variable, actually accessed, 
may be ignored as an information source, if the constraint imposed 
by the assertion ensures that its value will have no effect on 
some result. For example, execution of [ b 	a*m ] cannot trans- 
mit information from a to b if m is constrained to be zero. The 
proof rules discussed in this paper allow such information sources . 
to be eliminated. 

302 



The strong dependency formalism yields a theory that is 
mathematically tractable and can be used to derive the intuition-
istic axioms used by Millen and Denning and Denning. 
Unfortunately, the theory has a number of drawbacks. When certain 
sorts of initial constraints are used (those formally described as 
relatively non-autonomous) - strong dependency indicates an 
absence of information transmission when our intuition indicates 
that information is indeed transmitted. We'll find that the 
difficulty is inherent in the information theoretic approach -
however, it is possible to produce an alternate deductive 
approach based on projective logic that eliminates the difficulty. 

A closer look at the deductive approach raises additional 
questions and forces us to distinguish between definitive and 
contingent information transmission. An observation of b may 
permit a definitive deduction concerning a. In the example 
above, the observation that b was 3 permitted the deduction that 
30 < a < 39 which does indicate something definitive about a's 
value. However, the program 

P: if a = m then h -4-- 3 else b 	0 fi 

the observation that b is 3 only allows the deduction that [a = m] 
which does not give any definitive information about a, but it 
only gives information about a's relationship to other variables 
(in particular, m). Any information discovered about a alone 
must be contingent on additional knowledge about other variables 
(e.g. 30 < m < 39 would allow the definitive deduction that 
30 < a < 39). This paper will formalize the notions of definitive 
and contingent information transmission and will show that in 
instances where strong dependency can be appropriately applied 
(i.e. with relatively autonomous constraints), its definition is 
equivalent to one based on contingent information transmission. 

The paper closes by considering deductions based on partial or 
incomplete information and by reflecting briefly on the diffi- 

• culties of measuring information transmission. 

II. SYNTAX AND SEMANTICS 

This paper is concerned with defining information transmission 
in sequential programs, based on formal semantic methods. The 
semantics are based on a denotational model, following the style 
to Scott and Strachey [71]. In particular, the entity a is used 
to represent the entire data state; execution of a statement is 
modelled by application of a function operating on a to yield a 
new state. 
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A very simple programming language will be defined. It uses 
integer variables only, though expressions may yield Boolean 
values for use in Boolean tests. Constructs are provided for 
assignment, sequencing, conditional evaluation and for while loops. 
There are no procedures. 

Since the naming context cannot change, variable names always 
refer to the same object. As a result, the state may be divided 
into components, each representing a variable. c.a represents the 
value of variable a in state c, and we write of = c2 to mean that 

a 

states of and a2 are identical except possibly for the value of a 
(a similar notation may be found in Hoare and Lauer [74]). 

More generally, if A is a set of variables, then o.A is a 
list of the values of each variable a e A, (according to some 
fixed ordering - e.g. lexicographically by variable name) so that 

al.A = a2.A iff (VasA)(al.a = c2.a) 

Also of = A a2 indicates that of and c2 are identical except 

possibly for the values of any number of the 'variables named in 
the set A. Formally 

Definition 2 - 1 	al x a2 

(VaVA)(al.a = 02.a) 

Given two states of and a2, we will find it useful to define a 
state a*, very much like al, except that its value for variable 
a (or more generally some set of variables A) is taken from a2. 
Formally 

Definition 2 -2 	al /R.  a2 

a* where a* = A of & a*.A = a2.A 

We will ignore issues of handling exceptions such as overflow 
(for example, by assuming modulo arithmetic). Their effects on 
information transmission are discussed in Denning & Denning [77] 
and Denning, Denning & Graham [74]. 
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The syntax of our simple programming language is: 

<program> ::= <sequence> 

<sequence> ::= <statement> 

<statement> ; <sequence> 

<statement> ::= <assignment> 

<conditional> 

<loop> 

<assignment> ::= <variable> 	<intexpr> 

<conditional> ::= if <boolexpr> then <sequence> fi 

if <boolexpr> then <sequence>else<sequence>fi 

<loop> ::= while <boolexpr> do <sequence> od 

We won't explain the semantics of evaluating integer and 
Boolean expressions in detail. Their evaluation is presumed to 
involve no side effects which alter the state. We write [E](a) 
to mean the value of expression E in state a, so for example, 

> a+3](a) = a.b > a.a + 3 

If P is a program, the [P] is the corresponding function 
whose application to an initial state a results in the final 
state [P](a) resulting from P's execution. The brackets will be 
elided where no confusion will result. P(a) may be determined by 
the following rules: 

[S1; S2] = [S2] o [S1] 

("o" is ordinary function composition) 

[v t  E](a) = ar.  [E](a) 

[if t then S1 else S2 fi](a) = 

[t](a) -4-  [Sl](a), [S2](a) 

[if t then S fi](a) = 

[t](a) 	[S](0), a 

Intuitively, execution of while t do S od is equivalent to 
sequentially executing if t then S fi as long as t evaluates true. 
Subsequent (even infinite) execution of if t then S fi will have 
no further effect on the state. Thus, we can define while . t do S 
od to be the optimal fixed point [Manna & Shamir 76] of 

T(f) <= [if t then S Li] o f 
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(Note: The optimal fixed point is required since the least fixed 
point is undefined. The more usual least fixed point definition 
can be written as 

r(f) <= A0.([0( 0 ) 	(f0[S])(0), a) 	 •) 

Finally, we note that if an assertion 0 (e.g.[b > a + 3]) is 
to be satisfied after execution of statement S, then 00S must be 
satisfied prior to execution of S. This follows since, for an 
initial state a, 0(S(0)) (equivalently (00S)(0)) means that 
holds after S is execution. OS is thus the corresponding con- 
straint on the initial state and is the weakest precondition that 
permits 0 to hold after execution of S. As a result, Hoare's 
notation [Hoare 69], 01 {S} 62, may be written as 01 D 4)2oS. 

III. STRONG DEPENDENCY 

In information theory, information can be transmitted from a 

source a to a destination b if variety can be conveyed from a to 
b. If a may initially take on a number of different values, 
resulting in a number of different values in b after execution of 
P, then variety is conveyed from a to b as a result of P's 
execution. 

To show that information transmission is possible, we need 
only find two different values of a that yield different values 
for b after execution of P. We find the different values by 
finding two states al and 02 that differ at a alone, that is, 
al a = 02. If they differed elsewhere, we could not be sure that 

any resulting difference in b after execution of P was due to a. 

b takes on different values after execution of P if 
P(a1).b # P(a2).b. Formally we say b strongly depends on a over 
execution of P, writing it as 

Definition 3- 1 	a >b 

(401, 02)(01 : 02 	P(01)%b # P(02).b) 

More generally, we may be concerned whether information can 
be transmitted from a set of variables A to b. In this case, ws 
will look for two states whose values may differ at one or more 
of the variables in A. Formally 

Definition 3- 2 	A El> 

(R01, 02)(01 7  02 A P(o1) .b # P(ct2) .b) 



Programs may be guaranteed to execute in an environment in 
which some entry assertion is known to initially hold true. We 
have noted that such a guarantee may eliminate certain informa-
tion paths. For example, consider the program 

P: if al > a2 then b 	a fi 

Information can be transmitted from a to b. However, if the entry 
assertion [al < a2] is known to hold, the "then" part can never 
be executed and information from a to b is prevented. Formally, 
we define 

Definition 3 - 3 al A  u2 

(al) A (c11 = 
A 

u2) 	0(u2) 

0:5 Definition 3-4 	A 	b 

ct' 

(631, (12)(01 I u2 	P(a1).b # P(a2).b) 

The difference between this definition and the previous one 
is that in looking for two states that initially differ at A and 
produce different results in b, we only consider states that 
satisfy the entry assertion 0. • 

In the example 

P: if al > a2 then b a fi 

0: al < a2 

we can show al 

even though 

Adding an entry assertion reduced the information transmitted. 
In general, any addition or strengthening of an entry assertion 
may reduce (and can never increase) information transmission. 
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Formally 

Theorem 3 -1: 

If 41 D 4)2 

Then A 0), b 	A 

4>1 

A. Selective Dependency 

Often, we are not concerned if information can be transmitted 
from one object to another as long as specific "portions" of the 
information are protected. Consider the program 

P: b f  x + (a mod 4) 

Note that b does depend on a (a b), but only upon the low 

order two bits of a. We can prove that the rest of a is protected 
from b by using strong dependency with a constraint. 

Suppose we fix the value of the 2 low order bits of a, for 
example, to 3. Formally, assert 

4): (a mod 4) = 3 

We can show that'—i a 

 

4> 

Even though P does convey variety from a to b, 4) eliminates all 
the variety that is conveyed. 

There are four possible values that may be taken by the 2 

lower order bits of a - 0,1,2 and 3 - and this expresses the 
total variety in these 2 low order bits. To show that this is 
all the variety in a that is transmitted to b, we must show that 
no matter how this variety is eliminated (i.e. by constraining 
the two lower bits of a to be any one of these 4 values), no 
information can be transmitted from a to b. The four possible 
values correspond to four constraints 

: 	(a mod 4) = i 	 (i - 0,1,2,3) 
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We have to show that 

(Vi)( -lap" b ) 

4i 

In general, {O} might represent a set of constraints that 

cover the variety in some portion of a source a. Over execution 
of P, b is selectively independent of A given {0

i
} if 

-1A 	b for each O.. There are two requirements for 

selective independence which can be formalized. First, the 4. 's 

must cover all the variety in the selected portion of the source 
(just as in the example above, (a mod 4) ranged from 0 to 3). 
A way of guaranteeing this is to ensure that given any system 
state, the value of the selected portion in that state must be 
covered by one of the 4.'s. Formally 

Definition 3 - 5 	{y is a cover 

(Va g  1)0 i (u)) 

Second, if A is an information source, and if {4)
i
1 covers 

the variety in some portion of A, then each of the O i 's must only 

namevariablesinA.Intheexampleabove,theWs only con- 

strained the value of a, not the value of any other variables. 
Formally 

Definition 3-6 	p is A-strict 

(Val, 02)(al.A = 02.A 	p(al) = p(02)) 

That is, p is A-strict if changing the value of variables not in 
A (ol.A = a2.A) has no effect on the truth value of p. 
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Finally we define 

Definition 3-7 	b is selectively independent of 
A over P wrt iy. 

(1) 4.} is a cover 

(2) ( 11i)(43. i.  is A-strict) 

(3) (Vi)(-1A l'■; b) 

B. Separation of Variety 

As the example above illustrated, b may be selectively 
independent of A wrt {(1)} even though 

A ]2> b - in effect, because the (1) i 's eliminate the variety in 

A. If the 4.'s did not eliminate any variety in A, then 

(Vi )( -1A 112>  b) should guarantee -1A 02> b. This argument is 

11)i 

made more forcefully in [Cohen 76] and is the basis of a tech-
nique called Separation of Variety. 

If the 4 1 's do not eliminate any variety in A, then we can 

say that they are A-independent. Formally 

Definition 3- 8 	p is A-independent 

(Val, a2)(al x a2 	p(al) = p(a2)) 

In other words, p is A-independent if changing the value of 
A in any state (al x a2) has no effect on the truth value of p. 
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Now we can state 

Theorem 3-2: (Separation of Variety) 

If 10.1 is a cover 

and (Vi)(0 i  is A-independent) 

then (Vi) ("1 A -1 A 	b 

[A more general version of this theorem would replace the last 
line with 

(vi )( --1A 	 b ) 	A 	b 

This theorem will prove useful in analyzing information 
transmission in programs with sequential control constructs 
(Section 4b). 

C. Relative Autonomy 

The strong dependency formalism is not appropriate for certain 
classes of constraints. In particular, consider the program 

P: b<-al 

constrained by the entry assertion 

0: al = a2 

Formally,-1(al 	b). By definition 3-3, two states of and o2 

must be found which both satisfy 0, yet differ only at al. This 
condition cannot be met since 0 requires that a difference in al 
must be mirrored in a2 as well. Thus, b does not strongly depend 
upon al. And yet, intuitively, information is transmitted from 
al to b. What's the problem? 

If we had constrained al to be a particular constant, for 
example 

0: al = 8 
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we would have similarly found that no information is transmitted 
from al to b, that is, 

P b). And with good reason. (Remembering our dis- 

cussion about selective dependency). Once al has been constrained 
to be 8, there is no other information that can be squeezed out 
of al to be transmitted to b. 

Now, in asking about al E> b, we are implicitly creating a 

view of a system having al as a source and b as a destination. 
a2 is wholly outside the system. So, constraining al to be the 
same as a2 is, with respect to the system where al is sole source, 
just like constraining al to be constant. 

If we want to get the "intuitively" right answer about 
information transmission, we had better include a2 in the system 
as well, and in fact, we do find that 

(al, a2} 

More generally, we have to make sure in determining A 
4) 

that 0 does not relate the values of variables in A to the value 
of variables outside of A. Formally, we tequirVe 0 to be 
A-autonomous, defining 

Definition 3- 9 	0 is A-autonomous 

(Val, a2)(4)(al) 	N 	4)(o2) 	3 	gal/ Aa2)) 

It can be shown [Cohen 76] that this definition requires 	to be 
of the form 01 n02 (either 01 or 02 may be absent) where 01 only 
concerns variables in A (that is, 01 is A-strict), and 02 only 
concerns variables outside of A (that is, 02 is A-independent). 

By matching the sources autonomously to the initial 
constraint, strong dependency can be used to accurately reflect 
information transmission. However, in the latter part of the 
paper, we will see how the insistance on relatively autonomous 
constraints can be eliminated through use of a different 
formalism. 
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IV. THE DEDUCTIVE VIEWPOINT 

The last section concentrated on an information theoretic 
(in the classical sense) approach to information transmission. 
From this section on, the focus switches to a deductive view-
point. This section shows that a particular deductive approach 
is equivalent to the approach based on strong dependency. 

The deductive viewpoint argues that information can be 
transmitted from A to b over execution of program P if a value 
of b after execution of P can be used to deduce properties of 
the initial values of variables in A. For example, if P is the 
program 

P: 	b "4- 	4 

and b's final value is 12, then we can deduce that a's initial 
value was 8. In effect, we have taken the exit assertion [b=12] 
and have backsubstituted it through P to obtain the weakest 
precondition 

[b=12]oP = 	[a=8] 

It is not the case that every final value of b must provide 
information about a. Consider 

P: if m > O'then b 	abs(a) 

else 4 f -1fi 

If b's final value is observed to be -1, then no information 
can be deduced about a, only about m, since [b = -1]oP = [m < 0]. 
We only require that some final value of b yield information 
about a in order to demonstrate the possibility of information 
transmission from a to b. In this case 

[b = 7]oP = 	> 0 n (a = 7 v a = -7)] 

We may say that information can be transmitted from A to b 
over execution of P if 

(3v)( [b = v]oP "says something about" A ) 

We shall find that different deductive approaches crucially 
differ, depending upon the interpretation of: an assertion p 
"says something about" A. 



We might choose a syntactic definition - looking to see 
whether any variable in A appears in p [or any equivalent pre-
dicate - which eliminates the problem of [a = a]]. Fortunately, 
there is an equivalent semantic definition. 

If variables in A are used in determining the truth value of 
p, then some change in the values of A must affect the truth 
value of p. Formally, 

Definition 4 -1 	p is A-independent 

(acrl, a2)(al x a2 A p(al) t  p(a2)) 

Formally then, we can say that information can be transmitted 
from A to b if 

(av)( [b = v]oP is A-dependedt ) 

Next, we consider the effect of an entry assertion. Consider 
the example 

P: b + b + a*m 

with the assertion 0: [m = 0]. Clearly, no inforntation can be 
transmitted from a to b since b's value never changes if 0 holds. 

For any final value v to b, 

[b = v]oP = [a*m = (b-v)] 

which is a-dependent. However, if this precondition is evaluated 
only for those states satisfying 0, then changing the value of a 
has no effect on the resulting truth value (since a*m is always 
0). Formally, [b =v]oP is a-independent given 0. We define 

Definition 4 - 2 	p is A-dependent given • 

0 
001, a2) (al x a2 A p(al) # p(c2)) 

Thus, in the presence of an initial constraint 0, the 
definition for deductive information transmission from A to b 
over execution of P is 

(av)( [b = v]oP is A-dependent given 0 ) 

It is very easy to prove that this definition is equivalent 
to the one for strong dependency. 
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Theorem 4-1 

A 
	

b iff (av)( [b=v]oP is A-dependent given 0) 

Consider the example 

P: b< al 

0: al = 8 

According to strong dependency, al b, for 0 eliminates 

variety from al - none remains to be transmitted to b. This 
situation is analyzed in terms of the deductive viewpoint in the 
following way: 

After execution of P, b will be observed to have the value 8. 
The weakest precondition of [b=8] for P is, of course, [a1=8]. 
This is not al-dependent given 0. Essentially it provides no 
more information about al than 0 already provides. 

In essence, the deductive viewpoint argues, that if P is 
executed in an environment known to be constrained by 0, then 
information can be transmitted from A to b only if some observa-
tion of b permits a deduction that provides more information than 
0 about A's initial value. 

In discussing separation of variety, we noted that information 
might be transmitted from a to b even though all but a portion of 
a was protected. A similar phenomena is illustrated by the 
following program 

P: b 	abs(b)*sign(a) 

( sign(x) <= if x < 0 then -1 else 1 fi ) 

Information from a is transmitted to b, a b, but only 

a portion of b is affected - in this case, b's sign. Imagine if 
an observer of b could only observe b's absolute value and not 
b's sign. That is, after P's execution, one could only assert 
[abs(b)=k]. Note that its precondition is the same. 

[abs(b) = k]oP = [abs(b) = k] 

which is certainly not a-dependent. 

In general, suppose 7b is some post-condition that involves 

b alone (that is, (T b  is b-strict) which characterizes an observa- 
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tion of b - for example 

abs(b) = k 

The example above illustrates that A 

ensure that 

b does not necessarily 

b
oP is A-dependent given 4 

(71; b may need to be stricter to ensure that the precondition is 

A-dependent. In particular, it may have to be of the form 

(1)
b

: 	b = v 

Theorem 4-1 guarantees that some such (1) 13  can always be found, if 

information is transmitted from A to b. 

V. PROJECTIVE INFERENCE 

Since the deductive viewpoint (as described in the previous 
section) is equivalent to the strong dependency formalism, it 
naturally has the same difficulties when used with non-autonomous 
constraints. This section shows how these difficulties can be 
eliminated by basing the deductive definition of information 
transmission on a formalism derived from projective logic. 

Consider the program 

P: b 	al 

cl): 	al = a2 

Suppose that execution of P results in a value of 8 for b. 
Then we can deduce [b=8]oP = [a1=8]. Intuitively, this provides 
us with more information about al than [al=a2] and yet, [a1=8] is 
not al-dependent given [al=a2]. 

The reason is similar to that described in Section 3c - asking 
about al-dependence is akin to treating the system as though a2 
were outside of it - and therefore treats a2 as containing a value 
that might as well be constant. In that case, the example reduces 
to the one following theorem 4-1 (for if a2 is constant, it must 
be 8) and no information is transmitted from al to b. 

In this section, we will pursue another approach and find a 
formal way of expressing the fact that [a1=8] is more informative 
about al than [al=a2]. The formalism is based on projective logic. 
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A. Projective Logic 

In this section, we will answer the following question: 
Given an arbitrary predicate p constraining the values of vari-
ables both in and out of the set A, what is the strongest 
deduction that can be made constraining variables in A alone? 
That deduction will be written as p

A
. 

Consider the predicate 

P: al = 2%,/ (al = 3 A a2 = 3) 

The strongest thing that can be said about al is that 

p
A
: al = 2 v al = 3 

This can best be illustrated by the diagram below that graphs 
possible values of al and a2. 

In the left graph, the X's represent possible values of 
<al, a2> pairs. A value of al can occur if some <al, a2> value 
can occur. The strongest deduction that constrains al alone 
describes the possible values of al. The diagram indicates that 
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it is just the projection of p onto al. Formally, it can be 
defined as 

Definition 5-1 
	

PA (cr) 

(ao' )( p( a' 	a) ) 

Similarly, it is possible to consider the strongest deduction, 
given , that can be made about variables not in A. I write this 
as p/

A. It can be defined as 

Definition 5- 2 	p/A  

(aa')(P( a /e a')) 

The following table presents some examples. 

P al 	 P/al 

true 	 true 	 true 

false 	 false 	 false 

al = 9 	 al = 9 	 true 

al = 9 A a2 = 4 	al = 9 	 a2 = 4 

al = 9 v a2 = 4 	true 	 true 

al = a2 	 true 	 true 

2*al = 3*a2 	 al E 0 (mod 3) 	Even(a2) 

(al,a2 are integers) 

The fact that [al = a2] al  is true follows from the fact that 

[al = a2] constrains the particular value of al in no way. No 
matter what value of al is chosen, a value of a2 can be chosen 
(i.e. equal to al) that makes the predicate hold. The projection 
of the graph of [al = a2] onto al illustrates this fact 
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It should be clear that p A  is always A-strict and that p/ A  is 

always A-independent. And, in fact 

Theorem 5- 1 

p 	p
A 
A p/

A 
iff p is A-autonomous as is illustrated by the 

example of 

[al = 9 h a2 = 4] 

The use of projections allows an elegant alternate definition 
of strong dependency based on the discussion at the end of 

Section 4. It was noted that A 

b-strict post-condition, 

(if)
b
oP is A-dependent given 0 

ensured that for some 

In general, (1)
b 

can be thought of as the projection onto b of 

a broader post-condition q, and we can define strong dependency 
as 

Definition 5 - 3 	A 
0 

(30)aboP is A-dependent given 0) 
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B. Definitive Dependency 

We can now return to the question of whether [al = 8] provides 
more information about al than [al = a2] - or more generally, 
whether p provides more information about A than 0. 

Whether or not we know p, we know 0, thus, we really ask -
does p A (1) provide more information about A than 0 alone? The 
last section indicates that a predicate provides information 
about A if it (or more precisely, its projection onto A) determines 
the values that A might have taken. The more precisely A's values 
can be determined, the more information about A is provided. 
P A 4 provides more information about A than 0 if (p A 0)

A 

determines A's possible value more precisely than 0
A 

- that is -
if 

(p 	c (PA 

(Interpret "C" as proper set inclusion, relating the sets 
characterized by the predicates (p A OA  and 0A). 

In the example above, where p: [al = 8] and 0: [al = a2], 

A: true 

Therefore 

(p 	()A 	(PA, 

S O, 

(p A 0) A  : [al = 8]. 

p does provide more information about al than 0. 

Before supplying a formal definition, there is one last 
difficulty to be avoided - that of using preconditions, derived 
from impossible observations. 

Consider the system 

P: bE a 

0: a = 8 

Obviously, no information can be transmitted from a to b. 
However, suppose (ignoring for a moment the fact that 4,  initially 
is guaranteed to hold) that b is observed to be 37 after execu-
tion of P. The precondition p is [b = 37]oP = [a = 37]. 
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Now, p A 4>  is false, so 

(p N4)a=  false c 0 a  = [a = 8] 

Obviously, we have to exclude illegal observations by requiring 
that (p A (0) A  not be false. We formally define 

Definition 5-4 	p is A-definitive given 0 

false c (p A 0) A  c (1)A.  

If no initial constraint is given, 0 can be taken as true and 
we define 

Definition 5•5 	p is A-definitive 

false c p
A 

c true 

We can now use A-definitive-ness to replace A-dependence (in 
Definition 5-3) to produce a new formalism for information trans-
mission - definitive dependency. 

Definition 5•6 	b definitively depends on A over P given 

(HCI>)aboP is A-definitive given 0) 

Definition 5-7 	b definitively depends on A over P 

(3(T)ab oP is A-definitive) 

VI. CONTINGENT DEPENDENCY 

The previous section closed with a new definition of informa-
tion transmission - definitive dependency. This section will 
show how it differs from strong dependency. In addition, a new 
variant, contingent dependency, will be defined. For autonomous 
constraints, it is shown to be equivalent to strong dependency. 

Consider the program 

P: 	if al 'I a2 then b 	0 else b 	1 fi 



Is information transmitted from al to b? Strong dependency would 
indicate that the answer is yes - it is easy to show that 

al 
	

b. Definitive dependency indicates that the answer is 

no. 

If b is observed to be 1, then we obtain the precondition 

[b=l]oP = [al=a2] 

But its projection onto al is true; [al=a2] is hardly al-
definitive. In effect, an observation of b can tell us whether 
or not al equals a2, but indicates nothing definitive about the 
value of al. 

Consider another example 

P: b<- (al + a2) mod 2
16 

It is easy to see that al 17 b. However, the observation 

[b=k] leads to the precondition [ (al + a2) mod 2
16 

= k ]. Its 
projection onto al is also true; it is not al-definitive. Given 
any value of al, a value of a2 can be found such that the sum 

(modulo 2 16 ) is k. 

In both of the cases above, b does not definitively depend 
upon either al or a2, though it does depend on the set {al, a2}. 
That is 

al does not definitively depend on b over P, though {al, a2} 
does definitively depend on b over P. 

Should b depend upon al or not? The hard line answer is no. 
But let's pursue the alternative for a bit. 

The predicate [al=a2], while not al-definitive does give some 
information about al, but only contingent on some (perhaps fuzzy) 
information about a2. For example, if we know something about the 
distribution of values that a2 takes, [al = a2] provides the same 
distribution information about al, and that can be considered to 
be definitive information about al. 

Consider another example: [a1=4 v a2=7] is not al-definitive 
its projection onto al yields true. But given additional infor-
mation that implies that a2 is not 7, we can determine that al 
must be 4. It is more likely that we might know that a2 is (only) 
probably not 7, and thus that al is probably 4. In a sense, 
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contingency pushes the probability to the limit. 

In general, we can say that a predicate is A-contingent if 
given additional information, not concerning A (i.e. A-indepen-
dent), we can determine that the predicate is A-definitive. 
0/A can indicate the additional information (it represents a 

broader assertion 0 that has constraints concerning A removed 
from it (Section 5A) - and is therefore A-independent) and we can 
define 

Definition 6-1 	p is A-contingent 

(4)(p is A-definitive given 0/ A) 

In the example above, p was [al = 4 	a2 = 7] and we chose 
0 =

al 
= [a2 0 7] to show that p was al-contingent. 

Next, taking an initial constraint into account, define 

Definition 6 - 2 	p is A-contingent given 0 

(4)(p is A-definitive given /0% /A  A lb 

Using these definitions, we can define contingent dependency as 

Definition 6- 3 	A 
b 

(4)(0
b
oP is A-contingent) 

P 

Definition 6- 4 	A b 

(ai)(01, 013 is A-contingent given 0) 

The good news is that in the absence of a constraint, or given a 
relatively autonomous constraint, contingent dependency and strong 
dependency are equivalent. The crucial theorem is 

Theorem 6-1 

If 	is A-autonomous 
then 

p is A-dependent given 0 

iff p is A-contingent given 



It follows directly that 

Theorem 6-2 

If 0 is A-autonomous 

then A b iff A b 

Contingent dependency thus has all of the advantages of 
strong dependency yet it deals with non-autonomous constraints as 
well. Consider a final example 

P: b + al + a2 

0: al = a3 

Using either strong, definitive or contingent dependency, we 
can show that execution of P given 4  transmits information from 
{al, a2, a3} to b. We might, however, like to show that informa-
tion is transmitted from al (alone) to b. Only contingent 
dependency indicates that such transmission takes place. 

Strong dependency fails immediately, since in a system with 
al as sole potential source, a3 is treated as a constant (Section 
5), and 0 therefore effectively eliminates all variety from al. 

An observation of b yields the precondition p: fal+a2=k] for 
some observed value k. It provides no definitive information 
about al, even given 0, and thus definitive dependency fails'as 
well. However, p is al-contingent, and thus 

al b. 

In general, whenever information is transmitted from a set A 
to b, information to b is transmitted from at least one object in 
A. Formally 

Theorem 6- 3 

A 
‘.2)3  

b 	(3AcA)(a 

0 

No such theorem holds for either strong or definitive dependency 
as past examples have indicated. 
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VII. CONCLUDING NOTES 

Ordinarily, questions of information transmission are quanti-
tative rather than qualitative. This paper (and previous formal 
work in this area) has concentrated on purely qualitative results 
- has information been transmitted from a to b at all? This 
section briefly touches on qualitative questions - how much infor-
mation is transmitted, and what is its value? 

Consider the ;grogram 

P: if a > 0 then b m else b f  -m fi 

According to definitive dependency, information cannot be trans- 
mitted from a to b. If b is observed to be 27, a might be greater 
than 0 (if m were 27), but might equally likely be less than or 
equal to 0 (if m were -27). According to contingent dependency, 
information can be transmitted from a to b, contingent, or course, 
on information about m - its sign. 

If m's sign is known with certainty, information can certainly 
be transmitted from a to b; our conclusions are less certain if we 
know less about m. If, we are only 70% certain that m is (say) 
positive, then we can be 70% certain about the sign of a. 

In information theoretic terms, we can argue that complete , 
uncertainty of m's sign means that zero bits of information are 
transmitted from a to b; complete knowledge of m's sign allows one 
bit of information (representing a's sign) to be transmitted; 
partial or probabilistic knowledge permits an intermediate amount 
of information transmission. More generally, by using the weakest 
precondition derived from a final observation, in conjunction with 
statistical information, an information theoretic measure of the 
information transmitted can be determined. The presumption is 
that arbitrary contingent information can be replaced by more 
precise statistical information regarding what is already known. 

Information theoretic computations will presumably be useful 
in statistical data bases. For example, as part of a census, a 
respondent may supply his/her sex. Presumably the information 
will only be used for statistical purposes. However, the potential 
for misuse is certainly present. 

Legitimate use of the data should provide very little oppor-
tunity for information to be gained about the respondent's sex. 
A secure system might only allow a history of queries that trans-
mitted at most .1 bits of information from data about any 
respondent's sex. More interestingly, a respondent might have 
the option of determining the level of information that could be 
discovered about data he/she provided. 
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Except for very simple sorts of data, a strict information 
theoretic measure may not be appropriate; all bits are not equal. 
For example, the high order bits of a variable containing salary 
information is likely to be more valuable than the low order bits, 
and a suitable measure might be weighted accordingly. 
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A. Appendix. Proof Rules for Sequential Programs 

Section 2 described a programming language with four constructs 
- assignment, sequential execution, conditionals and loops. This 
appendix will develop proof rules for each construct, derived from 
the definition of strong dependency, so that absence of information 
paths can be determined by incrementally considering each construct 
of a program. 

A. Assignment 

In general, an assignment changes the value of its target 
variable. As a result, information may be transmitted from 
variables appearing in the source expression to the target 
variable. However, entry assertions may eliminate information 
paths. Consider the example 

P: b 	a*m 	8 

With the entry assertion [m=01, no information can be transmitted 
from a to b. In fact, execution of P will always result in an 
assignment of the value 8 to b. In general, if every execution 
of a program P (satisfying an entry assertion 0 sets b to the 
same constant value, then no information from any source is tran-
smitted to it. 

Definition A-1 	P makes b constant given 11) 

(avVa)(4)(a) D P(a).b = v) 

Theorem A-1 

If P makes b constant given cp 

then (VA) (-1 A 
(1) 

b) 

  

If a variable is not the target of an assignment, it retains 
its original value. Its useful to think that the information it 
contains is retransmitted to it so that in execution of 

P: b 4- a 

ITC 5)  
m for every m, m # b. 

Even the target of an assignment may have information 
"retransmitted" to it if it appears in the source expression as 
well, so that in 
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P: b t  b + a*m 

we find that b as well as a b. 

Note that if the above program were executed in an environment 
where [m=0], no information could be transmitted from a to b. No 
matter what a's value were, b's value would not change as the 
result of P's execution. In general, some execution of P 
(satisfying an entry assertion (1)) must change the value of a 
variable if information is to be transmitted to it from any other 
variables. Formally 

Definition A-2 	P changes b given 4) 

(3b- )(4)(a) A a.b # P(a).b) 

Theorem A-2 

If Ab (b e A) 
(1) 

then P changes b given (1) 

B. Sequential Execution 

The proof fules for sequential execution are based on the 
idea of accumulating the set of variables to which information 
from some source may be transmitted after execution of the initial 
part of a sequence of statements - and then determining whether 
information can be transmitted from this set to some final target 
as the result of executing the remainder of the sequence (whew -
an example illustrating this will be found below). Jones and 
Lipton [75] used this idea as part of a dynamic mechanism for 
preventing information transmission. In this section, a static 
version is derived from the definition of strong dependency, and 
which takes initial and intermediate assertions into account. 

Consider the two programs 

Pl: m 4-  a; b 4-- m 

P2: m -4- a; b 4- a 

Both programs transmit information from a to b. In both cases, 
the initial statement of the sequence is [m 	a], and its 
execution results in transmission of information from a to m and 
also in "retransmission of information" from a to a. Information 
originally in a is now held in both a and m. If we define 
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Definition A-3 	A 

{mIA 11:5 m} 

>* 

then, if S is [m 	a], a = {a, m } 

Now, take S1 and S2 respectively, as 

Si: 	b 4-- m 

S2: bra 

These are the respective remainders of the programs P1 and P2. 
P1 or P2 transmits information from a to b if information from the 
intermediate accumulated set {a, m} is transmitted to b by 
execution of S1 or S2 respectively. And in fact, we do find that 
both 

{a, m} b and {a, m} fr\ b. 

S2 
More precisely, m 	b and a 	b. However, if infor- 

mation is transmitted from a subset or element (e.g. m) of a set 
(e.g. {a, m}), then information is transmitted from the whole set 
as well. Formally 

Theorem A - 3 

If Al c A2 

[1  then Al >3 b D A2 	b 
(1) 	 (I) 

The example above suggests the following rule: If P is [S;S'] 

and A lc), * = M, then 

S' 
M 	b iff A 
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Unfortunately, this does not hold. The forward implication 
is not true - an example will be discussed below. The reverse 
implication does hold, and is the more important part since we 
are usually more concerned with showing the absence rather than 
the presence of an information path. Formally 

Theorem A-4 

If P is [S, S t ] 

and M = A N 
LK' 

then -1 M rN b D .1A 

Next we consider the effect of initial constraints. In 
particular, initial constraints may give rise to intermediate 
assertions which prevent information transmission in the remain-
der of a sequence as the next example indicates. Consider the 
program P: [S; S'] where 

S: if ml > 4 then m2 -4- ml fi 

S': if ml # m2 then b -4- 1 fi 

with the entry assertion 

4: ml > 19 

After execution of S, the intermediate assertion 41' holds, where 

4: ml = m2 

that is, cp D 4 9  OS, or in Hoare's notation, cP{S}cp'. Since S' is 
executed in an environment in which 4' holds, then "then" part 
of S' is not executed and 

(a 
S' 

b). The earlier theorem can be extended in the 

following way: 

Definition A-4 	ADj * 

{ m lA 	m } 
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Theorem A-5 

If P is S; S' 

and 0 	cj'oS 

and M = A 11› * 

then 0  1A 

The use of intermediate assertions allows for some sloppiness 
(overestimation) in determining 

A 
U//"-

* . Consider the program 

P = [S; S'], where 

S: ml 	a; m2 -4- ml; if a > 0 then ml F  0 fi 

S': b 	ml 	and 

0: a > 0 

We might guess that A 	* is {a, ml, m2}. Actually, it is 

just {a, m2} by theorem A-1, since 0 guarantees that ml is always 
set to zero. However, picking 0' to be [m1=0](0 D (P I OS), we can 
immediately show that 

{a, ml, m2} 	b which also follows from theorem A-1 

0' 

since S' makes b constant (i.e. zero) given 0'. 

I indicated earlier that the converse of theorem A-4 does not 
hold. More generally, there exist programs P of the form [S; S'] 

S 

b even though A 

0' 

S. if q 	0 then m a fi 

S': if q = 0 then b 	m if 

where M = A 

b. For example, consider 

, such that for any 0' such that 	D 0 1 0S, 
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with 0 taken as the always true predicate. The strictest possible 
choice for 0' is 

[q = 0 n m = a], yet 

= {a, m) and {a, b even though -la 

This example is discussed more fullyin [Cohen 76,77], where 
it is shown that the technique of Separation of Variety 
(Section 3B) can be used in conjunction with (the equivalent of) 
theorem A-5 to prove the absence of an information path. 

Define 01: [q = 0] and 02: [q # 0]. {01, 02) form a cover 

and are both independent of a. By separation of variety 

(theorem 3-2), -, a 	b follows from -taand --I a [1>P  b . 

Considering 01 first, note that 

(a 	*) = {a} and -i{a} 
Considering 02 then, pick 02': [q 	0] (note 02 n(1)2' oS) 

*) = {a, m}, -1{a, m} 	b. 
02 	 02' 

In both cases, theorem A-5 can be applied to show 

-la 	b (i = 1, 2). By Separation of Variety (Theorem A-5) 
i>

P 
 

n f>7' a 	b. 

C. Conditionals 

In earlier examples, we saw that an entry assertion 4 could 
guarantee that the Boolean test t in the conditional 

P: if t then 5' fl 

might never be satisfied and as a result, S' would never be 
executed. More generally, S' is executed only in states in 
which 0 and t both hold. Information transmission due to P 

(I) 1 

and though ( 
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(with entry assertion 4) can be determined by considering trans-
mission due to S' with entry conditions derived from both 4) and 
t. 

The general case is demonstrated by the program 

P: if m = ml then b a*(ml = m2) fi 

The "then" part is only executed when [m - ml] holds. If the 
entry assertion 	is [m = m2], the "then" part is executed when 
both [m - ml] and ]m = m2] hold, thus [ml = m2] holds. In that 
case, ml - m2 = 0, and b is always assigned the constant value 0, 
so by theorem A-1 no information about a can be transmitted to b. 

We might like to show that if P were 

P: if t then S' fi 

and 4) A t D 

then n (A (A 

However, as noted elsewhere [Cohen 76, Denning & Denning 77, 
Jones & Lipton 75], information can be transmitted in other ways. 
For example, in the program 

P: if a > 0 then b 4- 8 fi 

information can he transmitted from a to b. 

The value in b resulting from execution of P does carry 
information about a's initial value. Suppose b is initially 17. 
If b remains 17 after P executes, then initially [a = 0], if 
h is 8, initially [a 7 0]. to Prevent information transmission 
from a to h, in executing 

P: if t then S' fi 

we must further guarantee that either t does not depend upon the 
value of a or that S' does not make any assignment to b. In fact, 
consideration of the relevant assertions allows a weakening of 
these conditions. 

First consider the program 

P: if a = 0 v m = 4 then b f 8 fi 
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with entry assertion 0: [a = 9]. Even though the test does 
depend upon a, the entry assertion effectively nullifies that 
dependency. While [a = 0 v m = 4] is a-dependent, information 
is not transmitted from a to b because the condition is not 
a-dependent given [a = 9]. 

Formally define 

Definition A - 5 	p is A-independent given 

(Vol, a2)(al 
1 

o2 D 0(01) = p(02)) 

This definition is much like definition 3-8, except only those 
states are considered which satisfy the entry assertion 0. 

Next consider the program 

P: if a = 0 then b + b + m fi 

with the entry assertion 

0: m = 0 

Even though an assignment is made to b, the value of b does not 
change and as a result, again no information can be transmitted 
from a to b. Formally, we require that S does not change b 
given 4)(the negation of definition A-2). 

We can now state the theorem for conditionals as 

Theorem A - 6 

If P is if t then S' fi 

and 0 A t D 4 1  then 

(t is A-independent given 0 

S' does not change b given 0 1 ) 

( 'I (A ll S1 
 b) D -1  (A 	b)) 

This theorem can be easily extended to handle conditionals 
with two branches by simple noting that the "else" part is 
executed only for states satisfying both 4,  and -It. Formally 
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Theorem A-7 

If P is if t then Si else S2 fi 

and 4> A t D 01 

and Nntp 02 	then 

(t is A-independent given 

(S1 does not change b given 01 v 

S2 does not change b given 02) ) 

Si ( -1(A II> b v A b) 	) 

This proof rule cannot be guaranteed to demonstrate absence 
of information transmission. For example, consider the program 

P: if a > 0 then b 	8 else b m fi 

with the entry assertion 

0: m = 8 

b is assigned the value 8 regardless of the value of a and it can 
be shown directly (by Theorem A-1) that 

-1 (A g› P  (1) b). Yet Theorem A-7 cannot be usefully applied because 
[a > 0] is not a-independent given ¢ and both assignments change 
b. 

As yther researchers have noted [Denning & Denning 77, Jones 
& 	75], there is no way to generally resolve this difficulty 
without transforming the program to an equivalent one - in this 
case, the program 

P: b 	8 

D. Loops 

Information transmission in the program 

P: while t do S od 

is analyzed by considering the equivalent program (in the sense 
of Section 2), the infinite sequence of statements of the form 
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S*: if t then S fi 

Let A = M
o 

and define 

M
i+1 

= M
i 

u (M
i  

In effect, Mi is the set of variables to which information 

initially in A could be transmitted after i or fewer iterations 
of the loop. If the loop terminates after k iterations, then 
McM.k+1 = kM.... +z =....Thus,theM:s converge to some M" 

with the property. that 

M* = M* u (M* 	S* *) 

from which we can see that 

(M* 

In fact, M* is the smallest set that satisfies that formula 
having the property (since Mo  = A) that 

A c M* 

Now, to demonstrate that information cannot be transmitted to b 
over execution of P, we need only show that b M*. Formally, 

Theorem A- 8 

If P is while t do S od 
and S* is if t then S fi then 

 

S* *) c 1,1* A b / m*) (aM*)(A c 	A (M* 

b (A 	b)  

 

If an entry assertion 0 holds, then there is some (perhaps 
weaker) inductive assertion 0* which holds at the beginning of 
each iteration of the loop - that is - on entry to S. Naturally, 
this may restrict the growth of M*. Formally, we extend the 
theorem to show 



Theorem A-9 

If P is while t do S od 

and S* is if t then S fi 

and D 0* 

and 0* D 	o S 	then 

(HM*)( A c M* A (M* *) c M.* A b e M* ) 

	

D 	(A 11 	b)>P  (1)  

As an example, consider the program P 

P: 1±0; 

b F 1; 

mult 4- al; 

while i < a2 do 

b 	b* mult; 

	

mult F  mult 	a* a3; 

i F  i 1 

od 

with entry assertion 

01: a2 = 0 

11%.■ 

	

Now, we will prove -1 (a 	b) . First, represent P as 

V01 

P: Si; S2 

	

Si: i 	0; b 	1; mult 4- al 
S2: while i < a2 do S3 od 
S3: b 	b*mult; tult 	mult 4. a* a3; i 	i 	1 
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( i = 0 D ( mult = al A b = 1 )) ]. Now, 
S1 

* ) = a. So 
1 
S2 

b ). 
02 

by theorem A-5, we only need to show that —1( 

P 
b when 

1 

and 

S2*: if i < a2 then S3 fi 

First, take 02, where 01D02oS1, as [ a2 = 0Ai<0A 

Pick 02* = 02, noting that 02* D 02* o S2*. By theorem A-9, 
we need to find an M* such that 

a E M* N (M* S2* 
*) c M* A b M* 

02* 

Such an M* is {a, mult}. Syntactically, it appears that 

(M* 
02* 

*) might be {a, mult, b}. We need to show that 
02* 

(1471N 2*  b). 
11/12* 

Take 03 as [mult = al A b = 1], noting that (1)2* A 

[l. < a2] D 03, and that [i < a2] is M*-independent. By theorem 

A-6, we need only show that -1 M* 	S3  b. II> 
Well, by direct substitution of 03 in S3, it's easy to see 

that 03(a) D S3(a).b = .al. So, for any al and a2 such that 

1.3  al 	02, S3(a1).b = S3(a2).b. Thus, directly by the definition 

of strong dependency, —IMIT›
3 

b. 

It is just as easy (sic) to show that -1 
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Ol: a3 = 0 

For this proof, we can pick 03 = 02* = 02 = 01 and M* = {a}. 

And, we have to prove that -1 a S2* mult. This follows 
02* 

directly from theorem A-2, since 

03(o) D a.mult = S3(a).mult 





MONOTONIC ,PROTECTION SYSTEMS* 

M. A. Harrison' 
W. L. Ruzzot 
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I. INTRODUCTION 

In recent years, it has become widely accepted that many of 
the important issues concerning protection in operating systems 
can best be viewed abstractly. A variety of different models 
have been proposed for abstracting the essential features under 
study. Cf. [Har 75, HRU 76, LiS 77, LiS 78, and Sny 77]. We 
shall concentrate in this paper on the model introduced in 
[HRU 76] because this model is very general and contains a 
number of the other models as special cases. It is also true 
that this model over-simplifies a number of important practical 
considerations which are very hard to abstract mathematically. 
Nonetheless, the theorems which will be proven here will also be 
true in more elaborate models as the constructions that we shall 
give will still work. 

* This research was sponsored by the National Science Foundation 
Grant GJ-43332 and MCS74-07636-A01. 

t Present address: Department of Computer Science, University 
of Washington, Seattle, WA 98195. 
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Our main concern in the present paper is the comparative 
power of the operations which form part of the basic model of 
[HRU 76]. Crudely speaking, a protection system is a set of 
simple procedures for modifying an access matrix which records 
who can get what access to which objects. The basic operations 
are as follows: 

enter r into (X ,X ) 

	

..... 	 s o 

create subject X 
_______ s 

create object X0  

delete r from (X ,X ) 

	

... 	 s o 

destroy subject X 

destroy object X
o 

One might surmise that the last three operations are very 
important and powerful. For example, destroying a subject means 
that an entire row and column are lost from a protection matrix. 
As the matrix can grow without limit, an unbounded amount of 
information can be lost. In fact, we shall show that no loss of 
computational power occurs if we have protection systems in 
which these last three commands do not occur. 

In preparation for the results to come, we recall the formal 
definition of a protection system. 

Definition. A protection system consists of the following 
parts: 
(1) a finite set of generic rights R, 
(2) a finite set C of commands of the form: 

command a(X1 ,X2 ,...,Xk ) 

if r
1 
 in (X ,X ) , r in (X

s 
 ,X ),..., and s 

	
o
1 
 ' 2 

2 0 2 

r
m 
in (X ,X ) 

s 	o 
m m 

then ---- 

o P1 

op 
n 

end 
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or if m is zero, simply 

command a(X ... X.) 
------- 	1"—k 

°Pi 

• • • 

op 
n 

end 

In our definition, a is a name and X 1 ,...,Xic  are formal 

parameters. Each opi  is one of the primitive operations mentioned 

earlier. By convention r,r 1 ,r 2 ,...,rk  denote generic rights and 

s,s 1 ,s 2 ,...,sm  and 0,0 1 ,0 2 ,...,0m  are integers between 1 and k. 

The expression "r 1  in (X ,X ), r in ..." will be 
s
1  o1 	

2 

referred to as the command's conditions, and "op
1 

• • .op
n 
" as the 

command's body. The number of conditions is m. We also need to 
discuss the "configurations" of a protection system. 

Definition. A configuration of a protection system is a 
triple (S,O,P), where S is the set of current subjects, 0 is the 
set of current objects, S C 0, and P is an access matrix, which 
has a row for each subject in S and a column for each object in 
0. P[s,o] is a subset of R, the set of generic rights, and gives 
the rights that s enjoys with respect to o. A number of examples 
may be found in [HRU 76] which indicate the use of protection 
systems. It is our contention that this type of formal system is 
conceptually simple and natural. It can be used to describe 
protection policies in real operating systems.t 

Next, we need the rules for changing configurations in a 
protection system. 

t See the UNIX example in [HRU 76] or the work on MULTICS in 
(ScA 77]. 
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Definition. Let (S,O,P) and (S',0',P') be configurations of 
a protection system, and let op be one of the six primitive 
operations. We shall say that: 

(S,O,P) =>
op 
 (S',0 1 1") 

(which is read (S,O,P) yields (S',0',1°) under op) if either: 

(1) op = enter r into (s,o) and S = S', 0 = 0', s e S, o e 0, 

P'[s 1 ,o 1] = P[s
1
,o

1
] if (so

1
) 	(s,o) and P'[s,o] = P[s,o]u{r}, 

or 

(2) op = delete r from (s,o) and S = SI, 0 = 0', seS, oe0, ---- 

P t [s i ,o 1 ]=P[sv ol ] if (s i ,o1 )O(s,o) and P l [s,o]=P[s,o]-{r), or 

(3) op = create subject s', where s' is a new symbol not in 0, 

S'=Su{s'}, 0'=Ou{s 1 }, P'[s,o]=P[s,o] for all (s,o) in Sx0, 

P v [s t ,o]=0 for all oe0', and P[s,s']=O for all seS', or 

(4) op = create object o', where o' is a new symbol not in 0, ------ 

S'=S, 0'=0u{o'}, P'[s,o]=P[s,o] for all (s,o)ESx0 and 

P'[s,o'] = 0 for all s E S, or 

(5) op = destroy subject s', where seS, S'=S-{s'}, 0 1 =0-{s'}, _______ ------- 

and P'[s,o]=P[s,o] for all (s,o) E S'x0', or 

(6) op=destroy object o', where o'e0-S, S 1 =S,0 1 =0-{o'}, 

and P'[s,o] = P[s,o] for all (s,o) e Slx0'. 

Next, we need to recall how protection systems execute 
commands. 

Definition. Let Q = (S,O,P) be a configuration of a protect-
ion system containing: 
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command a(X1 ,...,X0 

if r1  in (X ,X ) and 
S i 	1 

• • 	• 

r in (X ,X ) 
m s 	o 

in 	m 
then ---- 

op 1 
• • • 

op 
n 

end 

Then we say that 

777x 1 ,...,xk) Q1  

where Q' is the configuration defined as follows: 

(1) If a's conditions are not satisfied, i.e., if there is 
some i, 1 < i < m such that r i  is not P[xs  ,x0  ], then Q = Q'. 

	

i 	i 
(2) Otherwise, i.e., if for all i between 1 and m, 

r
i c P[xs 

 ,x
o 
 ], then if there exist configurations Q

0'
Q

'
Q
n 

such that 

= Qo => 01 	
0 => 	=> 

op*'n  opt 	op*
2  

whereoptdenotestheprimitiveoperationop.1.7ith the actual 

parameters xl ,...,xk  replacing all occurences of the formal 

parameters X1 ,...,Xk , respectively, then Q' = Q. 

We simplify the notation by writing 	Q' if there exist 

parameters xl ,...,xk  such that 

Q1-70[1,-- -ock)Q1 



Also, we write Q1- Q' when there exists a command a such that 

Qla Q'. 

1* 	 ,* 
It is also useful to write 	Q', where 	is the 

* 
reflexive-transitive closure of 	

r 
That is 	represents some 

finite number of occurrences of ft possibly none at all. 

In [HRU 76], we devoted a great deal of our attention to 
trying to find algorithms for deciding if a protection system is 
"safe" or not in the following sense. 

Definition. Given a protection system, we say command 
a(X . . X_

k
) leaks generic right r from configuration Q = (S,O,P) 

if a, when run on Q, can execute a primitive operation which 
enters r into a cell of the access matrix which did not previously 
contain r. More formally, there is some assignment of actual 
parameters x

1
, ...,xk  such that a(xl ,...,xk ) 

(1) has its conditions satisfied'in Q, i.e., for each clause 

"r in (X.,X.)" in a's conditions we have r 6 P[xi ,xj ], and 

(2) if a's body is op i ,...,opn , then there exists an m, 

1 < m < n, and configurations Q=Q0 ,Q1 ,...,Q 1.--(S',0',P'), and 

gm  = (S",0",P"), such that 

Q0 	Q1 	. => 	
=> Qm 0 opt 1 oil 	op* m-1 op* m-1 

where opt denotes op i  after substitution of x l ,...,xk  for 

X1 ,...,Xk , and moreover, there exist some s and o such that 

r Ft P'[s,o] but r 6 P"[s,o] 

(Of course, opm must be enter r into (s,o)). 

The term "leak" sounds pejorative. However, leaks are in 
fact the way in which sharing takes place. The term assumes its 
usual negative significance only when applied to some configura-
tion, most likely modified to eliminate "reliable" subjects, and 
to some right which we hope cannot be passed around. 
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Definition. Given a particular protection system and generic 
right r, we say that the initial configuration Q 0  is unsafe for r 

(or leaks r) if there is a configuration Q and a command a such 
that 

(1) Q, and 

(2) a leaks r from Q. 

We say Q0  is safe for r if Q0  is not unsafe for r. 

In [HRU 76), we investigated the decidability of the safety 
question. In the special case of "mono-operational systems", 
there is an algorithm to solve the safety problem. First, we 
need the definition of such a system. 

Definition. A protection system is mono-operational if each 
command's body is a single primitive operation. 

Theorem 1. There is an algorithm which decides whether or 
not a given mono-operational protection system and initial 
configuration is unsafe for a given generic right r. 

If, on the other hand, there are no restrictions placed on a 
protection system, we get the following result. 

Theorem 2 (from [HRU 76]). It is undecidable whether a given 
configuration of a given protection system is safe for a given 
generic right. 

Straightforward techniques show that this situation is 
"robust" and the class of theorems one gets would not change under 
different variations in the definition of safety. 

Theorems 1 and 2 indicate that the power of these systems is 
not completely clear. What other special cases are there which 
are interesting? Exactly where is the line between decidability 
and undecidability of the safety question? 

One natural restriction would be to make certain that the systems 
do not grow. In that case, a result of [HRU 76] tells us that 
the safety problem is decidable but is not something we would 
like to compute. 

Theorem 3 (from [HRU 76]). The question of safety for 
protection systems without create commands is complete in 
polynomial space. 



The proof techniques that were employed in [HRU 76] all make 
use of the diagonal of the access matrix in an essential way. 
What would happen if there were only a finite number of subjects? 
Would the safety problem then become "tractable"? Lipton and 
Snyder [LiS 78] have provided an answer. 

Theorem 4 (from [LiS 78]). The safety problem for protection 
systems with a finite number of subjects is decidable. 

Moreover, it is shown that such protection systems are 
recursively equivalent to vector addition systems and a connection 
between the safety question for the former and the covering 
problem for the latter is obtained. Although the safety question 
is decidable, it is again not something one would care to compute. 

These results have implications to proving systems to be safe 
as well. Cf. [DDGHR 77]. 

II. MONOTONIC SYSTEMS 

In an attempt to better understand wherein lies the 
computational power of protection systems, we shall now consider 
systems which can only increase in both size and in the entries 
in the matrix. 

Definition. A protection system is monotonic if no command 
contains a primitive operation of the form 

destroy subject s 

destroy object o 
------- 
delete r from (s,o) 

A number of our colleagues who are familiar with operating 
systems conjectured that monotonicity would reduce the computing 
power of protection systems. We shall show that it does not do 
so. It merely requires a different kind of proof which is more 
intricate and hence more interesting. 

Theorem 5. It is undecidable whether a given configuration 
of a given monotonic protection system is safe for a given 
generic right. 

Proof. The idea of the proof would be to encode an instance 
of the Post Correspondence Problem [Pos 46] on the main diagonal 
of the access matrix. We would like to be able to grow an x-list 
and a y-list and at a suitable point in time, to compare them. 
Because of the monotonic restriction, the x and y lists must be 
"interlaced" and the check for equality is done by "pointer- 
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chasing." 

Formally, suppose we have an instance of the Post Correspond-
ence Problem given by 

x = (x1 ,...,xn ) and y = (y 1 ,...,yn) 

where xi , y
i 	

{0,1} * . It is convenient to define 

xi  = 	 and yi  = yii ,...,y im.  
1 	 1 

where 
x1., 

 yik E 0,11 for all i, j, k such that 1 < i < n, 

1 < j <
i' 

and 1 < k < m.. 
— — 1 

We shall construct a protection system which has the follow-
ing set of generic rights 

R = f0,1,1ink,start,match,yx-end,leak) 

and the following commands: For each i, 1 < i < n, we have a 
procedure 

command START (X ... X 	Y 	Y
mi

) 
1 

end 

for j:=1 to Q. do create subject X. 
-- 1 	  J 

	

for j:=1 to Q do enter x 	into (X ,X ) 

	

ij 	j j 
for j:=1 to R, -1 do enter link into (X.,X. ) 

	

----- 	 3 3+1 
for j:=1 to m.1  do create subject Y. --  
for j:=1 to m do enter y.. into (Y.,Y.) 

	

i ----- 13  	j  
for j:=1 to mi  -1 do enter link into (Y.,Yj+1  ) 

	

----- 	 3  

	

enter yx-end into (Y m 	) 
i 	i 

ft enter match into (Y
m

,X
Z

) if y
m.

= x 
Z 

	

i 	i 	1 	
i 

enter start into (Y 1 ,X1 ) 

t This notation is a shorthand for create subject X 1 

create subject X 

fit The notation means that this primitive operation is included 
in the command if ym  = xt  . 
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For each i, 1 < i < n, we have a procedure 

command GROW (YEND,XEND X ,... X Y 	Y ) 
' 1 '' 1" m

i  
if yx-end c (YEND,XEND) 

then 

for j:=1 to Z. do create subject X -- 1 	  
for j:=1 to Z. do enter x.. into (X.,X.) -- 1 	_____ -13 	 
for j:=1 to 2, i-1 do enter link into (X

j  ,X. 3+1 ) -----  
for j:=1 t 52  mi  do create subject Y

j 
for j :=1  Lc) mi 1? enter yij  into (Yi,Yi) 
for j:=1 to m.-1 do enter link into (Y ,Y +1) -- 1 	----- 	 3 j 
enter yx-end into (Y ,X, ) 

mi  ki  

enter match into (Y '  X ) if y = x ----- 

	

mi Zi 	mi 	Qi 

enter link into (XEND,X1 ) 

enter link into (YEND,Y
1 

 ) -----  
end 
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For each b e {0,1}, we have a procedure 

command MATCH
b  (Y" 

X AY AX) 

if 

match E (Y,X) and ----- 
link 6 (AY,Y) and 

link c (AX,X) and 

b t (AX,AX) and 

b 6 (AY,AY) 

then 

enter match into (AY,AX) 

end 

Lastly, 

command LEAK(Y,X) ------- 
if 

start c (Y,X) and 

match E (Y,X) 

then 

enter leak into (Y,X) 

end 

Intuitively, this protection system "computes", starting with 
an empty configuration, as follows: Each command START i  encodes 

strings of x. and y
i 
into the protection matrix. The location of 

the first pair of symbols, (x ii ,yil ), is marked by start while 

the last pair, (x. ,y 	), is marked by yx-end. 
ik. im. 

EachcommandGMNI.z1dds x. and y. to the end of some sequence 

of x's and y's which have been previously entered into the matrix. 
The locations of the ends of such a sequence are indicated by the 
yx-end right. Similarly, GROW, marks the end of the new sequence 

with yx-end- 



Notice that GROW
i 

is conditional only upon some yx-end, which 

is never deleted. Thus, several different GROW
i 

commands may be 

applied to the same yx-end. Each GROW i  may then be thought of as 

growing a new branch on each of two trees -- one in which paths 

from the root represent sequences of x's, the other representing 
corresponding sequences of y's. The start right associates the 
roots of the two trees while the lipellitts associate ancestors 
and descendents, and finally the yx-end rights indicate ends of 
corresponding paths. Moreover, the START

i 
commands are uncondi- 

tional so that we may actually get a forest of these pairs of 
trees. 

Before starting the formal proof, an intuitive example will 
be worked. Suppose 

x = (01,1) and y = (0,11) 

Imagine that the following sequence of commands is executed. 

START
1
(X

l'
X
2'

Y
1

)  

GROW (Y X X X Y ) 
1 l' 2' 3' 4' 2 

GROW 2 (Y1 ,X2 ,X5 ,Y 3 ,Y4 ) 

MATCH
1
(Y

4'
X
5'
Y
3'
X
2

)  

MATCH0 (Y 3 ,X 2 ,Y 1 ,X1 ) 

LEAK(Y
1'

X
1
) 

Figure 1 displays the matrix after this sequence has been 
executed. 

We attempt to match corresponding x and y sequences by working 
from the bottom of the tree to the top. This seems easier than 
working down from the root, since there is a unique chain of 
links to follow from any node to the root in each tree, whereas 
working down from the root, it is not clear how to arrange to 
follow corresponding paths through the two trees. The START i  and 

GROW
i 

commands start matching two corresponding sequences by 

matching their last symbols. The MATCH
b 

commands then compare 

the two prececessors (i.e., ancestors in the tree) of any pair of 
matched nodes. 
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X1 
X2 Y 1 	X3 X4 Y 2 	X5 Y3 	Y4 

i 

o
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link 
---- 

? 

.1 

link 
---- 

link 
---- 

start 
'6a-fa __-- 	 
leak 
---- 

yx-en , 

o
r
 

link 
---- 

link 
---- 

o
r 

link 
---- 

■-
■

 ? 

yx-en 

o
r 

? 

match 

•-
■

 ? 

link 
---- 

yx-en6 

r-1
? 	

1  

Figure 1 
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The leak right can be entered if and only if matching proceeds 

all the way up to the root nodes. Next, we show that this can 
happen if and only if the Post Correspondence Problem has a 
solution; this is known to be a recursively unsolvable problem 
[Pos 46]. Thus, we will have shown that it is recursively 
unsolvable whether or not this protection system is safe for the 
right leak and the empty initial configuration. 

Notation. Let 0 be the empty configuration (0,0,0).  For any 
configuration (S,O,P), and any X E S, let A(X) = 
(Y e Sllink e P[Y,X]}. (In our tree interpretation, A(x) is the 

parent of node (X,X).) We may extend this notation by defining 

A
i+1

(X) = A(A 1 (X)). Let C(X) be the contents of P[X,X]. 

Lemma 1. If 	Q = (S,O,P), then for all X c S we have 

(1) P[X,X] = CO} or {1} 

(2) IA(X)1 < 1 

(3) A(X) = 0 if and only if there is a Y such that start e P 

(X,Y) or start sP(Y,X). Furthermore, any such Y is unique. 

(4) For each Y e S, if yx-end cIo(Y,X) then there exist m > 1, 

i l ,...,im eachbetweenlandnsuchthatx=x.... x.
1 
 = 

	

1 	
1 	

m 

C(Alg(x)-1 (X))... C(A(X))C(X), t y = y ...y 
i 	im  

= C(Alg(Y)-1 (Y))... C(A(Y))C(Y), and start EP(A"'"
i 
 g ( 

 
Y ' -- (Y), 

Alg(x)-1 (x)).  

(5) For each Y e S, if match EP(Y,X) then there exist m > 1, 

X', Y' E S such that yx-end e (Y',X'), Y = Am-1 (Y'), 

X = Am-1 (X'), and for each j, 0 < j < m, we have C(A3 (X')) = 

C(Ai (Y')). 

fi There is a natural identification taking place here. If we 
concatenate the contents of the appropriate cells of the matrix, 
this line becomes something like x = x ix2  = 011 = "0""1""1". 
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Q 	Qt 

where Q' = (S',O',P') implies that Q' does also. 

If a = START S , it is clear that all the rights entered are 

placed into created entries so that thet "old portion" of P' is 
unchanged. Moreover, the "new portion" of P' satisfies conditions 
(1) through (5) by construction. There is no possible connection 
between the old and new portions of P' because 

This claim formalizes the discussion above. In (1), it is 
shown how strings are encoded on the diagonal. In parts (2) and 
(3) every node has a unique parent, except the root. In part (3), 
the root and only the root of every tree is paired with some 
other tree, and that tree is uniquely determined. yx-end joins 

the ends of corresponding sequences in paired trees according to 
part (1). Finally, in (5), matching proceeds along corresponding 
sequences. 

We are now ready to do the proof. 

The argument is an induction on the length of the computation 

of 44- Q. 

Basis: The argument is trivial for 

10 Or-- 

Induction Step: Assume that Q = (S,O,P) satisfies the 
conditions. We will show that 

P'[X,X'] = P'[x',x] 	0 

14WIXES,VEV-S.Thusl 
la 
—TAThereot=STAR.T.preserves (1) 

through (5). 

We prefer to say "old portion" of P' rather than P'n(Sx0x2
R) 

and "new portion" of P' instead of P'n(S'-S) x (0 1 -0) x 2
R

. 
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If a = GROW
i' 

it is clear that one of 0 and 1 is entered in 

each new diagonal element, and all other entries are made off the 
diagonal, so condition (1), P[X,X] = {0} or {0, will still hold. 

The link right is never entered in an old object, and only 

entered once in each new object, so condition (2) (IA(X)! < 1) 

still holds. The start right is not entered so (3) still holds. 

If yx-end 6 P'[Y,X] with Y, X E S (not S'-S), then (4) holds in 

P' since (1)-(3) hold in P' and (4) held in P. If yx-end c 

P'[Y,X] witht Y, X E S' - S, then it is easy to see that (4) holds 

with xi  and y. continuing the sequence ending at (YEND,XEND). 

That is, we have vx-end  6 (YEND, XEND) and there exist m > 1, 
such that 

(i) x = x 	x 	= C(Alg(x)-1 (XEND))•••C(XEND) 
m 1 

(ii) y = y, 	yi = C(A
18(y)-1 (YEND))...C(YE Nu

) 	and 
±1 

(iii) start E (A
lg(y)-1

(YEND), A
lg(x)-1(

XEND )). 

Finally, (5) is not affected at all in the old portion of P' and 
moreover it holds vacuously in the new portion of P' except 
possibly for (Y

m 
 ,X

k 
 ) in the case where y

m i 
= x

k i
. In that case 

. 	. 

itholdswithm=1.Thus,l—wherea=GROW.preserves proper- ,  
ties (1) through (5). 

If a is MATCHb, we see that the link right is not entered 

anywhere so conditions (2) through (4) are not affected. The 
other rights are entered by this command off the main diagonal so 
property (1) is also unaffected. If 	is 

MATCHb (Y,X,AY,AX) 

then we must have had match in P[Y,X]. Then, by property (5), 
there must have been m > 1, X', Y' c S such that 

yx-end E P[Y',X 1 ] 

Y = Am-1 (V), X = Am-1 (X') 

t Assume that the command GROWi  is called with actual parameters 
(YEND,XEND); the Y and X here are formal parameters. 
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and 
C(Ai (X')) = C(A 3 (Y 1 )) 

for each j, 0 < j < m. It is clear that after the MATCH
b 

command 

is executed, similar conditions hold in P', since 

AY = A(Y), 	AX = A(X), 

C(AY) = C(AX) , 

and the other entries are unchanged, so (5) is satisfied by 
1n+1, X', and Y I . 

If a is LEAK, then no rights are entered on the diagonal so 
property 
(1) still holds and link, start and match are not entered, so 

properties (2)-(5) are unaffected. 

Thus, the induction is extended, and we see that Lemma 1 is 
true. 

We are now ready to prove Theorem 5. Suppose the Post 
Correspondence Problem has a solution, say

m
). Then 

commandsSTART.,GROL,... , GROW. could be executed with 
1
1 	

1
2 	 1m 

appropriate parameters so that the indicated solution is con-
structed. Since a solution ends with i

m
, we certainly must have 

the"entermatch— n commandin"GROW.", so execution of ----- 	 1m 
several "MATCHb" commands with appropriate parameters would 

result in placing the match right in the same position as the 

start right, thus allowing the LEAK command to enter the leak 

right. Conversely, if leak is ever entered, it must be because 

start and match appear in the same position of the matrix. By 

property (5) of Lemma 1, we see that there must be some Y', X' 

such that yx-end c P[Y',X'], and their predecessors match. But 

then by property (4) for Y', X', we see that their predecessors 

must be corresponding sequences of x
i
's and y's, i.e., the Post 

Correspondence Problem must have a solution. Thus, the protection 
system is safe for the right leak and the initial configuration 

41. if and only if the Post Correspondence Problem has no solution, 
and hence safety is recursively unsolvable. Q.E.D. 
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It is possible to improve this result somewhat. 

Theorem 7. The safety question for monotonic protection 
systems is undecidable even when each command has at most two 
conditions. 

Proof. The construction is similar to the one used in the 
proof of the precedin theorem, except that a more complex 
sequence of commands must be used for the matching. The set of 
generic rights is 

R = (0,1,1ink,start,match,yx-end,leak,my,myx,myx0,myx1) 

ThesetofcommandsincludestheSTAn i ,GROW,and LEAK commands 

of the previous proof. Note that these commands all have only 
one or two conditions. The MATCHb  commands, which had five 

conditions, are replaced by the following six commands having two 
conditions each. 

command FOLLOWY (Y ,X,AY) 

if match c (Y,X) and link c (AY,Y) 
••■■ •••• _____ 
then 

enter my into (AY,X) 

end 

command FOLLOWX(AY,X,AX) 

if my c (AY,X) and link E (AX,X) 

then 

enter myx into (AY,AX) 

end 

For each b c {0,1}, we have 

command GETYb ' (AY AX) 

if myx c (AY,AX) and b c (AY,AY) 

then 

enter myxb into (AY,AX)t 

end 

t If b = 0 then myx0 is to be entered. 
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For each b E {0,1}, we have 

command MATCHXb (AY,AX) 

if myxb c (AY,AX) and b 6 (AX,AX) 

then 

enter match into (AY,AX) 

end 

Next, we need a result which characterizes computation in the 
new system. 

Lemma 2. If I— Q = (S,O,P), then for each X E S, we have 

(1)-(5) of Lemma 1 as well as the following conditions. 

(6) If my cP(Y,X) then there exists Y' c S such that 

Y = A(Y') and match cP(Y',X). 

(7) If myx cP(Y,X) then there exists X' c S such that --- 

X = A(X') and my cP(Y,X'). 

(8) If myxb cP(Y,X) with b = 0, 1 then myx cP(Y,X) and 

h cP(Y,Y). 

Proof. Since (1) through (4) of Lemma 1 were unaffected by 
the MATCH

b 
command in the previous construction, the absence of 

that command does not matter. Similarly, the six new commands 

don't enter the start, link, or yx-end rights so (2)-(4) are not 

affected. Since these commands don't enter rights on the 
diagonal, they preserve property (1) also. Since the original 
commands do not use any of the rights my, myx, myx0 or myxl, they 

will not effect (6)-(8). Thus (6)-(8) just reflect the conditions 
and actions of the commands FOLLOWY, FOLLOWX, and GETY

b 
respectively, so they will hold. Finally, looking at the 
MATCHXb  commands, and combining its conditions with properties 

(8), (7) and (6) we see that MATCHXb  enters the match right in 

(Y,X) just in case there exist Y', X' c S such that 

Y = A(Y'), X = A(X'), C(Y) = C(X), and match c (Y',X'). These 

are precisely the conditions which allow us to inductively extend 
property (5). Hence the claim is proven. 
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Now to complete the proof of Theorem 6. 

Proof of the Theorem. The argument parallels the proof of 
Theorem 5 but uses Lemma 2 instead of Lemma 1. 

III. MONOCONDITIONAL MONOTONIC SYSTEMS 

Theorem 7 shows that the safety question for monotonic 
protection systems is undecidable, even if each command has at 
most two conditions. However, in many important practical situa-
tions, commands need only one condition. For example, a 
procedure for updating a file may only need to check that the user 
has the "update" right to the file. Similarly, to execute some 
program, the user may only need to have the "call" right to the 
program. Other examples abound. In contrast to the undecid-
ability of the cases discussed in the preceding section, the 
safety question is decidable if each command of a monotonic 
protection system has at most one condition. This result will 
now be established. 

Definition. A monoconditional protection system is one in 
which each command has at most one condition. 

Monoconditional protection systems are much more complicated 
than one might anticipate. It is still not known whether or not 
the safety problem is solvable for such systems. 

Before stating our next result, there are some useful 
observations which can be made. 

In any protection system, if a command can execute in some 
configuration Q, then it can execute similarly in any "super" 
configuration Q' obtained from Q by adding rights and/or objects. 
Also, objects in Q' may be renamed, so long as the pattern of 
rights in the access matrix is not disturbed. 

Definition. Let Q = (S,O,P) and Q' = (S',0',P') be configu-
rations of an arbitrary protection system. We say that Q' 
covers Q (symbolically Q c Q') if there exists a one-to-one 
mapping p from 0 into 0' which preserves subjects and objects 
(i.e., p: S 	5' and p: (0-S) 4 (0'-S')) such that 

P[s,o] c P'[ps, po] 

for each s c S, o e  0. 

Now we prove a simple lemma about covers. 



Lemma 3. Let Q
1 ,  1 

Q', and Q
2 
be configurations of an arbitrary 

protection system such that Q1  c Qi. If Q1  h-- Q
2 

then there 

exists Q2 such that 

(1) Q 2  E c 2  

and 	(ii) Q1 	Q2- 
In addition, if command a leaks right I= from Q 2  then a leaks is 

 from Q. 

Proof. 	A command sequence which demonstrates (ii) may be 
easily obtained from one for 

Q1 1:1- Q 2 	 ( * ) 
by systematically renaming all actual parameters occurring in 
(*) in accordance with the covering map p. The details are 
omitted. 

In a monotonic protection system, a similar result may be 
proven for a weaker notion of covering. Here Q' may be formed 
from Q as before, and/or by merging the rows and columns 
corresponding to two or more objects (including subjects). More 
precisely, we say Q' = (S', 0', P') weakly covers Q = (S,O,P) 
(Q 	Q') if there is a many-to-one map p from 0 to 0' which 

preserves subjects (i.e., p: S 	S'; although p may take 
o 6 0- S into S') such that P[s,o] c P'[ps,po] for all s 6 S, 
o C 0. 

Lemma 4. Let Q1 , Q1, and Q 2  be configurations of a mono- 
* 

tonic protection system such that 
Q1 
 c wQ,

4
. If 	

. 	
Q 2  then 

there exists Q2 such that Q 2  5_14  W2  and Q1 	Q. In addition, 
if a leaks r from Q 2 , then a leaks i from Q. 

Proof. The argument is quite similar to the proof of Lemma 3 
and is omitted. 

It will sharpen the reader's intuition if we explain why 
Lemma 4 does not hold for general protection systems. Suppose at 
some point in the computation sequence Q 1 

FL- Q 2 
a state is 

reached where the right r occurs in two places in the access 
matrix. Further, suppose a subsequent destroy or delete operation 
removes one copy of r and that a still later command uses the 
remaining r to help satisfy its condition. If Q' covers Q 1 

then 
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of course a similar sequence of actions can take place in some 
computation Q 1 1= Q2. However, suppose Q' only weakly covers 

1  
Q1 . In particular, suppose Q' is formed from Q

1 
by merging rows/ 

1 
columns so that both r's will end up in the same cell. Then the 
delete or destroy operation will remove "both" r's, and the 
subsequent command may not find any other r to satisfy its 
condition. Thus the computation sequence starting from Q' may 

"block" before reaching any configuration Q22  Q2 . 

We are now ready to begin the argument that monoconditional 
monotonic protection systems have a decidable safety problem. 

Theorem 8. The safety question is decidable for monotonic 
monoconditional protection systems. 

Proof. Suppose we have a mcnoconditional monotonic protection 
system. A computationt 

0 	1 	a k 	
f 

1 	 k 
	

k+1 

is called a chain from r E (x,y) if al 's condition is ift  

r e (x,y) then ...., and for each i > 1, every command a i+1 
has 

its conditions satisfied by some right which was entered by a i' 
That is, if Q. = (S0.,P.) and a i+1 

has the condition "ift  

r
i+1 

E (X
1+1'

y
i+1

rthen  r
1+1 

E 
P[xi+1,y1+11 

 but 

ri+1 	Pi-l lxi+l' Yi+1 1 ' 

t By convention, we denote the statement "a, leaks r from 0" by 
Q E-- r. By the definition of a leak, this is not equivalent 

to "there exists Q' such that QI-3- Q' and r is in Q". 
ttHere x,y (respectively x

i+1 ,  yi+1
) represent the actual para-

meters passed to a
l 

(respectively a) in the call which gives 

0 h- 0 (respectively Q. 	0, ). 
'0 a

1 
/ 	 / 	

1+1 
II,/ 

(1) 
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0
1 

({s 1}{so1
}s

1  f  r 

Claim 1. If we have a chain of the form (1) and if Q; is any 

configuration with r C P; [x,y] there is a similar chain starting 

from 

Proof. This is trivial since r C P;[x,y] implies that a l 's 

condition is satisfied and hence a1 enters the right which 

satisfies a2 's condition, etc. An obvious induction proof is 

omitted. 

Now, define for any configuration Q = (S,O,P) and any 
s C S, o E 0 and generic right r a new configuration 
Qrs° 

as follows. 

s
l 

({s1},{s1 }, 
sl if s=o  

) if s#o and oCS 

if o e 0 

Qrso 

Note, for future reference, that there are only three possible 

configurations Q
rso  per generic right r. If g is the number of 

generic rights, there is a total of 3g such configurations. 

Claim 2. For each chain from r E (x,y) of the form (1), 

there is a similar chain starting from Qrxy  
0 

Proof. From Q(')  form Q0  by deleting all rights except 

r E P[x,y]. By Claim 1, there is a similar chain from Q;, and 

_ w 0 Q
0 
 L Q

rxy 
, so by Lemma 4 there is also a similar chain starting 

- 

from Q
o
rxy 

• 
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We are now ready for the main claim. 

Claim 3. Suppose that in our protection system, all commands 
have one condition, and that Q0 

 = (S
0' 00' P0 

 ) with IS0  1 > 1. 

Further, suppose that 

Q 	Q 	Q 2 	• • • 

	

0 a l 1 a 2 2 	 a
n 

n a
n+1 

(2) 

is a computation of minimal length among all computations which 

leaki- frortiQ0 .LetQ.=(Si3 Oi ,Pi ) and suppose that a.'s 

condition is "if r. e (x y
i 
 ) then ...". Then 

(1) Sequence (2) is a chain from r
1 
c ( 	). 

(2) For all i, 1 < i < n+1, 

rixiYi  (a) Q i-1 	-w '1-1 ,  

(b) but for each j < 	Qi_i
rixiyi iw 

(3) We have n < 3g where g is the number of generic rights 
in the system. 

Proof. Clearly sequence (2) must be a chain because of the 
minimality condition. If not, let i be the greatest integer 

< n+1 such that a
i 
is conditional upon the presence of a right 

entered into Q j  with j < i-l. Thus, Q. 	17- Q i  
an+1 

is a chain, so by Claim 1 we would have a shorter computation 
equivalent to sequence (2) in which Q

j i-1 
were 

omitted, contradicting the minimality condition. This proves 
part (1). 

Next we consider (2a). Note that 

(or Qn 	2.), where ai 's condition is if r i  E (xi ,y i), so that 
n+1 

r x y. 
ri Pi-1[xy].  Clearly then Q i Ew Q

i-1 
for we may merge 
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all of Q i_ i 's objects (other than y i) into xi . Then (2a) holds. 

Assume, for the sake of contradiction, that (2b) does not 
hold. Let i, 1 < i < n+1 be the largest integer for which the 
statement is false and let j be some integer < i-1 such that 

rixiyi  

Qi-1 	c —w  Q  j 

We have that 

Q 	Q I-- • 	1- Q 	 (3) i -1 a. i 	a n an+1 

	

1 	 n  

is a chain from r
i 
e (x.,y.) by our assumption about sequence (2) 

and part (1) of this claim. Moreover 

r
i  xi 

 y. 

	

Qi- 1 	cw Qj 

from above so by Claim 2 and Lemma 4 there is a similar computa-
tion 

Q 	Q , 	 F__ Q , 	2  

	

a i i 	 an n an+1 
(4) 

Thus 

Q 	Q 	• .. Q 	• • • 	Qn' 1—ct 	C' (5) 0 a 1 
1  n+1 

By assumption j < i-1, so (5) contradicts the minimality of (2) 
which establishes all of part (2) of the claim. 

Now (3) is easily obtained. From (2), each Q i , 1 < i < n, 

covers some configuration Q
rso  which isn't covered by any of 

Q0 ,...,Q i_
1
. Since there are only 3g distinct configurations 

Qrso ,  
n must be < 3g. This completes the proof of Claim 4. 



We will complete the proof of the theorem by arguing that 
there was no loss of generality in Claim 3 by (a) assuming that 
all commands had conditions or (b) that Q

0 
 has one subject. For 

(a) we note that we can make sure that all commands have 
conditions by adding a new right r

0 
 to the system, entering it at 

some position in the initial configuration, and giving all 
unconditional commands two new parameters X and Y and a condition 
"if r

0 
 c (X,Y) ...". There is an obvious one-to-one correspon- 

dence between computations in the modified and unmodified systems. 
For (b), when Q

0 
has no subjects, simply test whether there is any 

a such that Q0 
a 
E-- 	 0 

or whether there is any Q' having at least 

one subject such that Q0 
a 
E-- Q' where Q' is unsafe for r (which 

0 	0 
is decidable by Claim 3). Q.E.D. 

We should remark that the decision procedure given in the 

above theorem ist  in NP, but it's not hard to see that a poly-
nomial time procedure is possible. Construct a (3g x 3g) 

rso 	t S 0 	rso 
relation "->" where Q

1 
 -0-Q2 
	

if Q
1 	

H Q
2 
where 

rs V 0 1 

4 2 	c Q2 
(note: not c

w 
 ). The transitive closure of the 

relation gives all necessary information about which rights may 
be entered by some chain of commands. This will give a decision 

procedure whose running time is 0(p + q
0 
 + g

2.81
) where p is the 

size of the protection system, q 0  is the size of the initial 

configuration, and g is the number of generic rights. 

This result can also be generalized to prove the following. 

Theorem 9. Safety of monoconditional systems with create, 
enter, and delete (but without destroy) commands is 

decidable. 

The proof is beyond the scope of this paper. 

The decidability of safety for arbitrary monoconditional 
systems (i.e., with destroy commands) is still open. 

Details about basic concepts of modern complexity theory may be 
found in PIHU 74]. 
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DISCUSSION 

Minsky: In the cOntext of you model, the principle of 
attenuation of privileges means that rights can move only along 
the subject rows. My question is how would you model this 
discipline in your scheme? 

Harrison: Let me comment on that. There are things in our 
model which are not completely obvious. One of these things is 
the parameter mechanism. Although types were considered in some 
detail in Anita's thesis, it was our intention to omit them from 
our model. Much to our surprise, we found out that we had some 
type conventions and even a form of type checker built into the 
model. The type checker appears in the formal description of the 
"move relation". If you have a command which expects a certain 
kind of parameter and a different type is provided, the command 
does not execute. For example, the command 

delete subject s 

cannot execute if s is not a subject name. The principle of 
attenuation could be implemented by augmenting the model to have 
additional checking which controlled where rights were entered. 

Cohen: A way of doing what Naftaly Minsky suggested is 
putting some restrictions on the form of the commands themselves. 
For example, the name of an object could not appear on one side 
of the statement unless one of your conditions specified it. In 
other words, you could not add something to a column unless you 
checked to see that that right should be in the column, but in a 
different row in that column. You could just switch rows in the 
column. 
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Harrison: The present formalism is not set up for that sort 
of condition but would be easy to modify. In my talk, I didn't 
really discuss the use of the formalism to model protection in 
real operating systems. In our original paper [1], we described 
most (but not all) of the aspects of the protection mechansims 
in UNIX. In [2], Schneider and Akkoyunlu indicate modifications 
to the model which make it more useful for dealing with real 
operating systems. 

1. Harrison, M. A., Ruzzo, Walter L. and Ullman, J. D., 
"Protection in Operating Systems", Communications of the 
ACM, Vol. 19, pp. 461-471, 1976. 

2. Schneider, F. B. and Akkoyunlu, E. A., "Use of a Formal-
lism for Modeling the Protection Aspects of Operating 
Systems", Technical Report 74, Dept. of Comp. Sci., State 
Univ. of New York at Stony Brook, July 1977. 





ON SYNCHRONIZATION AND SECURITY* 

Richard J. Lipton 
Lawrence Snyder 

Department of Computer Science 
Yale Universuty 

New Haven, Connecticut 

I. INTRODUCTION 

In this paper, we will demonstrate that the synchronization 
structure of systems of parallel processes, as represented by 
Karp and Miller's vector addition systems [1], and the capability 
maintenance structure of security systems, as represented by a 
restricted form of the Harrison, Ruzzo and Ullman protection 
system [2], are recursively equivalent. Our interest in this 
unexpected similarity flows from several sources. 

At the highest level, the discovery of a common structure 
among a wide variety of problem areas usually suggests the 
presence of a "fundamental" phenomenon. For example, the 
recursively enumerable sets and the NP-complete problems are 
phenomena that occur in a wide variety of circumstances and it is 
this fact that accounts in large measure for the intensity of our 
interest in them. Vector addition systems have previously been 
shown to be equivalent to Petri nets [4], matrix grammars [5] and 
other computational models, so our result can be seen as further 
evidence of the importance of these elegant systems. 

* This research was funded in part by the Office of Naval Research 
under Grant N00014-75-C-0752. 
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Viewed at a different level, the equivalence provides insight 
into the Harrison, Ruzzo, Ullman (HRU) security model. In their 
original paper, the safety problem, i.e., the problem of deciding 
whether a particular system leaked information, was shown to be 
undecidable. In an effort to establish more positive results, we 
have restricted their system in such a way that the safety 
problem is recursively equivalent to the "covering" problem for 
vector addition systems. The decidability of this problem, then 
resolves the question and solves an open problem for subject 
restricted HRU systems. However, complexity results indicate 
that even for this restricted protection system, safety is an 
intractable problem (see section 5). 

On yet another level, we note that theoretical analysis of 
protection systems is in its infancy and the Harrison, Ruzzo and 
Ullman model is one of the first attempts at formalizing the 
problem. We anticipate that other efforts will refine or 
supplant their model. Our success at embedding vector addition 
systems in the model suggests a paradigm for analyzing the 
complexity of alternatives. Systems capable of simulating vector 
addition systems are likely to have a complex safety problem. 
Models incapable of such simulation might hold more promise. 

The remainder of this paper is organized as follows: section 
2 gives definitions and preliminaries. In section 3, we show how 
the protection system simulates vector addition systems. Section 
4 shows the opposite. In section 5 we combine these two results 
with known facts from the literature to establish our main 
results. The complexity issues are also discussed in section 5. 

II. DEFINITIONS 

In this section we introduce the formal models for protection 
[2] and vector additions systems [1]. The reader who is not 
familiar with these models is encouraged to consult the references 
for motivation, and examples. The reader already familiar with 
these models may skip this section. 

A protection system P = (R,C) consists of finite set R of 
generic rights and a finite set C of commands. Commands have 
the form 

command I:(X 1 , 	, X ): 

when r
1 
E (X

s
, X

ol
) A ... A rq  c (X

s 
, X

o 
) 

l 
 

do b • ... ; b
t 
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where D is the command name, X 	... , X are its formal para- 

meters, the (X , X) are subject -object pairs (see below) and 
S i 	

of 

b l
, 

b
t 
 are operations chosen from the following set of 

'  
primitive operations: 

enter r into (x , X ) s 	o 

delete r from (Xs , X0 ) 

create subject X
s 

create object X0  

destroy subject Xs 

 destroy object X0  

and r,r 1 '...,r E R; 1 < s s 
' 	

P. 

A configuration of P = (R,C) is a triple (S,O,P) where S is 
the set of current subjects, 0 is the set of current objects, 
S c 0 and P is an access matrix with a row for every subject in 

S and a column for every object in 0. For s e S and o C 0, 
P[s,o] c R and defines the rights to object o possessed by 
subject s. 

Let (S,O,P) and (S',0 1 ,P I ) be configurations and b be a 
primitive operation, then 

(S,O,P) => (S',0',P') 
b 

provided one of the following holds for actual parameters s and o: 

(i) b is enter r into (s,o) and 

s C S, o C 0, S = S I , 0 = 0 1  , 

P I [S,0] = P[s,o] U {r} , 

Pc[si,o 1 ] = P[s',o'] for (s',o') # (s,o) 

(ii) b is delete r from (s,o) and 

s E S, o C 0, S = S I , 0 = 0' , 

P I [S,0] = P[s,o] - {r} , 

P'[s',o'] = P[s',o'] for (s',o') # (s,o) 
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(iii)b is create subject s, and 

s e 0, s ,  = S u {s}, 0' = 0 u {s} 

P'[s,o'] = (I) for all o' c 0' 

P'[s',s] = (I) for all s' c S' 

P'[s',o'] = P[s',o'] for all (s',o') c Sx0 

(iv) b is create object o, and 

o f 0, S= S', 0' = 0 u {o} 

P'[s',o] = 11) for all s' 6 S 

P'[s',o'] = P[s',o'] for all (s',o') E Sx0 

(v) b is destroy subject s, and 

S E S, S' = S - {s}, 0' = 0 - fsl 
Pits',o'l = P[s',o'] for all (s',o') c S'x0' 

(vi) b is destroy object o, and 

o e 0 - s, S' = s, 0' = 0 - {o} 

1,1 [s',0"] = P[s',o'] for all (s,o) E S i x0 1  

Let P = (R,C), Q = (S,O,P) be a configuration and 

command D(X1 ,...,Xp ): 

when r c (X ,X )1\ ...A r q 	(Xs  ,X ) 
1 
	s 

	431 	
0 

q 

do b 
1" t 

be a command in C, then 

Q I 	 Q' 
p(x 	) 

p 

whereWisaconfigurationprovidedforl<i<p,X.=x.and 
either 	

1 	1 

(i) r1  c (Xs  ,X0  ) A ...A r q  6 (Xs  ,X0  ) is false and Q'=Q 
1 1 	 q q 

Or 
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(ii) r 6 (X ,X ) A ... A r 6 (X ,X 	is true or q = 0 
1 	sl  ol 	 s 	o 

q 

and there exist configurations Q 0 ,...,Qt  such that 

	

= Q0 => Q1 => 	=> Qt = Q' ' 
b
1 	

b2 	
b
t 

* 
I We write - for the reflexive transitive closure for 1- . 

Given a protection system, we say that a command D(x 1
,...,xk) 

leaks generic right r from configuration Q = (S,O,P) if D when 
run on Q can execute a primitive operation which enters r into a 
cell of the access matrix which did not previously contain r. 
Further, we say that an initial configuration Q0  is unsafe for r 

■ * 
if there is a configuration Q with Q 0  I- Q and some command leaks 
r from Q. Configuration Qois said to be safe if it is not 
unsafe. 

The model just defined is essentially that of Harrison, Ruzzo 
and Ullman [2]. In [2] the safety problem (i.e., deciding for a 
particular right r whether or not the system is safe for r) is 
shown to be undecidable. The proof of this result involves 
encoding the tape of a Turing Machine along the diagonal of the 
matrix. Thus, the creation of subjects is essential to the 
result. But what if subjects cannot be created? The resulting 
system is not finite since the objects can grow. We will study 
protection systems with this restriction throughout the remainder 
of this paper. 

A protection system P = (R,C) is said to be subject-restricted 
(S-R protection system) if for no command D c C is it the case 
that b

i 
is create subject x

s
, 1 < i < t. (For simplicity and 

without loss we assume that there are no destroy subject x
s 

operations either.) 

A v-dimensional vector addition system V = (I,W) consists of 

an initial vector I c N il  and a finite set of transition vectors 

W = V1m where  V
i 
c Z

v
, 1 < i < m.t A computation is a set 

of indices 
i1"."  ik 

 defining the state S c N
v 
where 

t N is the sot of nonnegative integers, Z is the set of integers. 
Superscripts index vectors, subscripts refer to coordinate 
positions. 
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S = I + 	Vii  
j =1 

provided for all t < k, 

0 < I + l Vii  . 

.1=1 

A vector addition system V = (1,w) is called a binary vector 

addition system provided for all i, 1 < i < 'WI, -1 < v
i 

< 1. 

Hence, each coordinate position is either 0 or + 1. 

III. VECTOR ADDITION SYSTEMS REDUCE TO PROTECTION SYSTEMS 

Our objective in this section is to show first that V.A. 
systems can be simulated by S-R protection systems. Then we 
demonstrate that the simulation has the property that the 
coverability problem reduces to the safety problem. These two 
lemmas will then be used later (section 5) to prove our main 
results. 

The problem at hand is to show how an S-R protection system 
is to be interpreted as a vector addition system. The easiest 
way to do this would be to dedicate one right per coordinate 
position. Then the value of a coordinate of the state of the 
VAS would be given by the number of occurences of the correspond-
ing right in the access matrix. This method solves the problem, 
but we seek a more efficient encoding. Therefore, instead of 
using single rights, we use sets of rights to correspond to a 
coordinate position. The sets will be chosen to be incomparable 
so that no collision will result. 

A configuration Q = (S,O,P) of a S-R protection system 

P = (R,C) is said to correspond to a vector V c NI)  provided there 

exists an injective function* f: 	 -4 2
R such that for 

1 < j < v 

V. = 1{(s,o) c Sx0 I P[s,o]=f(j)}1 

* 2R R drinotes the set of all subsets of R. 
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Therefore, a configuration corresponds to a state vector V, when 
the number of access matrix entries equal to f(j) equals the 
value of the jth coordinate of V. If Q corresponds to V, by f, 
we write Q >

f 
V. 

A S-R protection system P = (R,C) and configuration Q 0  

simulates a vector addition system V = (I,W) provided there 
exists an f such that 

(i) Q0 > f 

and 

(ii)
n 

is a computation for T
n 	

R(V) t if and only if 

Q0 1- QI I- ...I- Qn  and for all j, 1 < j < n, D
i 	Di 	

D. 
1 	2n 

Q. >
f 
 T j . 

We can now define f. For any position integer v let k be the 

least integer such that v < (k/2)' Let R k  be a finite set of k 

generic rights. Define 
f: 	 2 k  

such that 1 < i, j < v and i # j implies f(i) 0 f(j). This fact 

is referred to as "the incomparability of f." 

R(V) is the reachability set of the VAS V and is the set of all 
states definable by V. 
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Construction 3.1: Let V = (I,W) be a v-dimensional binary VAS 

withlWi=m.ForeachVi eWdefineaconmiandEl.as follows. 

If al ,...,at  are coordinate indices such that V al  = 1, 

(1 < j < 2) and b l ,...,bn  are coordinate indices such that 

V. = -1, (-1 < j < n), then define 

command Di (X0 ,X1 ,...,Xn): 

when r E (X0 ,X0 ) 	El  A ... AEn  

do 13 1 ;...;Bn ;A1 ;...;At  

where 

r e Rk  
Ej  = (b.) E (X0' Xj ) 	1 < j < n 

B. is destroy object 3C.
3 	

1 < j < n 

and 

A. is create object Y.; 

enter f(aj ) into (X0 , 11j ) 	1 < j < Q. 

We abbreviate 

by 

and similarly, 

means 

r 1  E (Xi ,Xj ) 	... It rt  E (X ,X.) 

{ri ,...,r t } E (Xi ,Xj ) 

enter {r 1 ,...,rt } into (Xi ,Xj ) 

enter r1  into (X i ,Xj ) 

enter r t into (Xi 
 ,X,) j 



(We remark that the access matrix position P[S i ,S i ] will always 

contain r and hence X
0 
 will always be bound to S

1 
by the first 

term in the when portion of the command. We do this for technical 
reasons -- first constants are not allowed and second since the 
state vector T could have all coordinates equal to zero, the 
corresponding access matrix could become null and thus introduce 
complications.) Define C = {D .  11 < i < m}, R = {r} u Rk  and the 

- 

S-R protection system Pv  = (R,C). 	 ❑ 

Lemma 3.1: For any binary VAS V = (I,W) of v dimensions, there 
is a 1-S-R protection system Pv  = (R,C) of k+1 generic rights 

such that Pv simulates V. 

Proof: Define P
v 
= (R,C) by construction 3.1. (Basis) Define 

the initial configuration 

Q0 = ({s 1 } ' {s l°1" . " °11 ) ' P)  

where 
v 

U = 

P[s i ,s 1 ] = r 

and P[s 1 ,o 1 ],...,P[s 1 ,o u ] are assigned such that 

I. = y iff y = 1(o c 0-{s 1}1P[s i ,o]=f(j)11 

Therefore Q0  > f  I. 

(Induction) We take as the hypothesis that T i  c R(V), 

01 
0 -Qi  > f  T

i .moreover,werequirethatifQ.=(S,O,P) and 

S = (s 1 }, then P[s 1 ,s 1 ] = r. We then establish 
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T
1+1

=Ti+Vj c R(V) implies 4i1-  Qi4.1  and Qi+ef T
1+1 

D. 

in steps (i) - (iv) and 

Q
i 

1Q implies T1+1  = T i+Vj  c R(V) and Qi+1> f 
J 

(3.1) 

(3.2) 

in steps (v) - (vii). 

By hypothesis, T
i 

c R(V), Q
0  ! Q1, 

 Q. >
f  T

i  and is Qi  = (S,O,P) 

then r e P[s 1 ,s 1 ] where fs
1
1 = S. Let Vj  e W be such that 

T+V
j = Ti+1 	R(V). 

(i) The when condition of D. is satisfied. Suppose not, 

then because r e P[ss
1
] the failure is due to the 

falsity of Eu  for some u. But E u  false implies 

f(b
u

) 	P[s 1 ,o] for all o 6 0. By construction then, 

T
i
b 
 = 0 contradicting T

i+Vj 
c R(V). Hence the when 

u 

conditionofThis satisfied. 
J 

(ii) Qi D.Qi+l by (i) and the construction since no 
J 

operations are delete, none fails to apply. Let 

Qi 

	

> QB => 	> Q  => QA => 	=> = Q  = Q  B
2- 	

B
n 

B 
 n Al 1 A

2 B 1 
	

A
t 	

At 	Q. 

and Q. 	= (S',0',P'). Clearly S = S'. 
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(iii) Suppose it is not the case that Q
1+1 

>
f 

T
1+1

, and let z 

be such that 

T
i+1 

0 1{P'[s i ,o] = f(z)lo E 0 7 )1. (3.3) 

If Vj  = 0, then either not QB > f  T i  or not Q
A > f T i  

u 
 

for any u or w contradicting the incomparability of f. 

If Vi  = -I then not Q
B 

>
f T

i 
for b

u 
< z or not 

QB >
f  Ti+1 for b

u > z or not QA > f T
i+1 contradicting 

u f 

the incomparability of f. If V! = 1 then not QB  > f  Ti 

 for any u or not Q
A 

>
f 

T i for a
w 

> z or not QA > f T
i+1 

w 

 

fora
w 

> z contradicting the incomparability of f. 

	

Hence (3.3) is false and Q 	> T
i+1 

	

Q, 
	f 

(iv) It is immediate that P[ss
1
] is not changed and thus 

P'[s i ,s 1. ] = r. 

Thus, (3.1) is established. 

By hypothesis, Ti  c  R(V), Q
0 

I- QQ > T and if Q = (S,O,P) 

thenreP[sv ywherefy=S.Letrl.cC and Qi  !B .  Qi4.1 . 
J 



(v) T
1+1 

= T
i
+V

j 	R(V). Suppose not and let z be such that 

VZ = -1 and Ti  = O. Since Q
i I5.Q1+1 

the when condition 

is satisfied and this implies by construction that for 

some u, b
u 
= z and E

u 
is true. But this means f(b

u
) = 

P[so] for some o 	0 contradicting Q. >
f  T

i
. 

(vi) Q
i+1  > f 

T1+1 by an argument similar to (iii). 

(vii) It is immediate that if Q i4.1  = (S,0',P') then 

P'[ss
1
] = r. 

Thus (3.2) is established and the lemma follows. 	 ❑ 

IV. ENCODING PROTECTION SYSTEMS INTO VAS 

In this section we accomplish the encoding of protection 
systems into VAS. First, we show that k-subject-restricted 
protection systems can be encoded into 1-subject restricted. 
Next, we show that 1-subject restricted protection systems can 
be encoded in vector addition systems. 

The following development is simplified considerably if we 
observe that a bound of k > 1 on the number of subjects is 
recursively equivalent to a bound of 1 on the number of subjects. 
Specifically, there are only finitely many different entries in 
any array position and there are only k positions in a column, 
so by expanding the alphabet and modifying the instructions, a 
one subject system can be found that is equivalent to the k 
subject system. 

Intuitively, the commands will be changed so that the SxS 
portion of P can be represented by a single position and the 
Sx(0-S) portion will have its columns represented by single calls: 



• • • • • • 

1 	 

SxS 
	

Sx(0-S) 

1  

1 	1 	1 • • • 

The alphabet will use triples, (row, column, right), as "expanded" 
rights for describing the SxS portion of P while pairs, (rows, 
rights), will be used to specify the information in a column of 
Sx(0-S). 

Lemma 4.1: Let P = (R,C) be a k-subject protection system, then 
there exists a 1-subject protection P' = (R',C') and a function 
f: Qk  > Q i  mapping k-subject configurations to 1-subject config- 

* 
urations such that Q0 1p Q implies f(%) 	f(Qn). 

Proof. To construct P' from P, follow the steps: 

1. Define R' ={(i,j,r z)11<i,j<k,r 2,ER) u 

{(1,y11<i<k,riER) u {(0,0)} 

2. Find for each command D E C with formal parameters 
X1 ,...,Xp , the subset of formal parameters X' 1 ,...,X'

x 
that must be subjects, i.e., those parameters that occur 
as the first term in a subject-object pair in the 
definition. Denote the remaining parameters X' x+1" . " 
X' 

p
. 

Remark: The must-be-subject parameters X' ,...,X'
x 

may be 

assigned subjects from s l ,...,sk  in any manner while the may-be- 
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subjects-or-objects parameters 
X'x+1" 

 .. X'
p 
 may be assigned 

subjects or objects in any manner. From the viewpoint of the 
construction all objects o c 0-S behave the same. Note that in 
all but the most trivial systems, x 0. 

3. For each D define D 1 ,...,Dn  to be n = kx (k+1)
p-x 
 copies 

of D such that each one corresponds to a different 
assignment of the formal parameters X 1 ,...,X : the 

must-be-subject elements X' 1 ,...,X'
x 

are assigned from 

is
l'

s
k
} while X' 1 ,.. . X'

p 
are chosen from 

fs 1 ,..,sk ,ol, where o represents an arbitrary non-subject 

object. 

4. For each D 9,  (1<k<k
x
(k+1) P-  x) add, if p ¢ x, the predicate 

(0,0) E (X v i ,X l i) to the when clause for x+1 < i < p. 

In addition, effect the following replacements. 

replace  

r
ac(X' b' X' c )  

by 

(i,j,ra)E(V w X' 13 ) 

if X' b  corresponds to s. 

and X'
c corresponds to. 

sj  

enter r into (X'
b'

X'
c

) 	enter (i,j,r) into (X' b ,X' h ) 

delete r from (X 1 17. ,X'd 	delete (i,j,r) from (X' b ,X' b ) 

r
a
c(X'

b'
X'

c
) 	 (i,r

a
)c(X'

b'
X'

c
) 

if X' 10  corresponds to s i 

 and X'c corresponds to o 
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enter r into (X'
b
,X 1

c
) enter (i,r) into (X'

b
,X'

c
) 

delete r from (X' 1) ,X' d 	delete (i,r) from (X I I) ,X l c ) 

create object X' 	 create  create object X' 

enter (0,0) into (X' 1 ,X0 ) 

Remark: 	The role of (0,0) is to mark all non-subject objects. 
The proper definition of f is now clear. It maps configurations 
from (ts l ,...,s

k
1

'
Is

'
s
k
1 u 0,P) into ({s},{s} u 0,P') such 

that 

= {(i,j,rdireP[s i ,si ]} 

P'[s,o.] 

1<i,j<k 

1<i<k 

f(i,rdlreP[s i ,oi ]}. 

The result now follows by a laborious induction which is left to 
the reader. 	 ❑ 

We will now show how to use a VAS to simulate a k-subject 
protection system. By the previous result, it is sufficient to 
consider the case when k = 1. Now, intuitively, the VAS V will 
do this simulation by using its counters to keep track of the 
contents of each cell. If R is the set of generic rights, then 

there are m = 2 1R 
possible cells. V will therefore have m 

counters which will keep track of the number of each type of cell. 
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Let P = (R,C) be a 1-subject protection system. We will now 
describe a VAS V = (I,W) by the following construction. (As in 

[3] we will view V, as having a set of counters that it can 
increment and decrement but cannot test for zero.) 

Let V have counters (in the sense just described) 

v ...,vm where m = 2
I R ' 

. Also let S
1" Sm 

be the subsets of R 

in some order. Initially, v i  is set to the number of cells with 

contentsexactlyequaltoS.(i=1,... ,m) . Now V operates as 
follows: 

(1) First it guesses a command D from C nondeterministically. 

(2) It then simulates this command, say (s = only subject) 

command D (xl ,...,xn): 

whe
n 

E
1 	

E
t  

do A *...-A 
1" . 

as follows. First let us assume that x l ,...,xn  are all 

objects.Foreachcellx1  xi  we can collect into T i 
those 

rights that must lie in x i  in order for D to execute. 

Now we nondeterministically guess a S. (1=1,...,n) such 
J i  

that T. c  S. c  R. Then V executes the instructions 
1 — j t  — P 

v. 	v. 	- 1 	(i = 1,...,n) 
J.
1 	

j i  

and then 

v. + v. + 1 
J. 	J. 

By induction, these will be successful if and only if 
there are cells which contain S 	 . Now VP  is 

jl 	jn 

ready to update the cell contents. It does this in a 
similar manner. There are several cases. 
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(i) enter r into (s,Xi ). 

This is done by v. 4 v. 	- 1 and 

	

J i 	J i 

v. 4 v. 	+ 1 

	

3 k 	Jk 

where S 	u frl = S 
jk 

(ii) delete r from (s,X i ). 

This is done by v F  v 	- 1 and 

v + v. 	+1 
ik 3 k 

where S. - {r} = S. 
ji 	Jk 

(iii) destroy object Xi . 

This is done by v. 4  v. 	- 1. 

	

j i 	J i 

(iv) create object Xi . 

This is done by v 4  v. 	- 1 
J i 

where S. 	= c. 
J i  

It only remains to consider the case where some of the cells 
X 	..,Xn are subjects. Since, however, there is only one 

subject, we can handle this by having Vp encode into its finite 

state control the contents of the cell (s,$), i.e. which of the 

2 IRI values it has at any one time. 

It follows that 



1 

Lemma 4.2: Let P = (R,C) be a 1-subject protection system and 
let V

, 
= (I,W) be the VAS that corresponds to the above construc- 

tion. Then there is a recursive function f from vectors of VP  to 
configurations of P such that 

{QlQo  l Q} = f(R(Vp)) 

where Q
o 

is the initial configuration used in the construction of 
V P 

Proof: This follows by an easy induction and is omitted. 	❑ 

V. MAIN RESULTS 

In section 3 it was established that S-R protection systems 
can simulate binary vector addition systems, and from the result 
of Karp and Miller [1], that an arbitrary VAS can be "simulated" 
by a binary VAS, we conclude, 

Theorem 5.1: Every vector addition system can be simulated by a 
binary vector addition system. 

Corollary 5.3: Vector addition systems and subject-restricted 
protection systems are recursively equivalent. 

The primary consequence of these results can now be indicated. 

For any vector T c N
v 

and VAS V, the covering predicate C(T,V) is 
true iff there exists T' E R(V) such that T < T'. 

The task of determining whether or not the covering predicate 
is true for given T and V is called the covering problem. 
Another useful result from [1] is 

Lemma 5.4: [1] The covering problem is decidable 

We are now able to prove 

Theorem 5.5: The safety problem for k-subject restricted 
protection systems is decidable. 
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Proof: Let V be the v-dimensional vector addition system 
(constructed in section 4) that simulates P = (R,C), the k-subject 
restricted protection system for which safety is to be tested. 
Let r be the right for which safety is to be tested, and let co-
ordinate i be the "counter" in V that keeps track of the 
instances of r in any protection array. For every vector v of V 
that was constructed to increment coordinate i to effect an 
enter r into (s,X

o
) instruction (when r wasn't already in 

(s,X
o
)), add an additional + 1 to a new coordinate v+1. All 

other vectors of V should have 0 in coordinate v+1 and the 
result will be V'. For any initial configuration Q

o' 
then the 

predicate C(0
v
1,V') is true iff Q

o 
is unsafe for r with respect 

to P. 
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CONVERSATIONS ON SECURE COMPUTATION 

On Tuesday afternoon, October 4, the authors of the papers 
in this volume met for three hours to discuss issues that had 
crystalized during the previous formal presentations and the 
informal discussions. 

The editors prepared the agenda of leading questions. The 
conversations were taped and edited and appear on the following 
pages in excerpted form. 

Lipton: In protection, we've looked at a lot of different 
problems and a lot of complicated mechanisms. Many interesting, 
practical and mathematical problems have arisen. One question 
that I would like to ask both the practitioners and theoreticians 
is what is the utility of these problems? Do they correspond at 
all to the kinds of things that people like to do? If I had a 
UNIX system today that handled very complicated kinds of access 
controls, would it be easier at all on the mini-UNIX system? Or, 
is read/write protection sufficient for most real computation? 
What kind of computing requires very complicated and sophisticat-
ed protection mechanisms? 

Gaines: I'll start by remarking that simple read/write 
conventions are just not sufficient. In using them now, we're 
already up against certain kinds of limits. Just how far in the 
other direction you should go, I just don't know. 

Jones: I would like to comment. If you look at evolution 
in programming languages, you will find that programming languages 
are being designed so that a programmer builds his program by 
defining objects, then defining the operations that are applicable 
to those kinds of objects. The two together are what Fabry was 
referring to as a type manager. One can make the argument that 
in languages we use basically the same kinds of techniques that 
we're using for the capability-based access-control systems. 
The languages can do most of the checking statically. I think 
that the issue is broader than just the dynamic protection 
mechanisms that we spent most of our time on here. So, I think 
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that these protection mechanisms are going to have a fairly large 
pay-off. But, I believe most of the pay-off comes not from 
securing yourself against the malicious acts of an adversary, but 
from building programs in which one program doesn't do something 
that is inconsistent with respect to another program. You are, 
in some sense, defending yourself against yourself. 

Cohen: I'd like to second that. I like to think in terms 
of what you might call the paranoia model versus what you might 
call the reliability model. For example, a system like Hydra 
guarantees that a particular capability cannot be passed out of 
a certain domain, and that seems to be useful pragmatically. 
But, in terms of a programming language, it is certainly import-
ant to guarantee that the particular capabilities will stay 
within certain types of objects. That's starting to become a 
widely applicable principle in programming languages. And, I 
perceive that it's going to be even more useful later, just for 
reliability. 

Gaines: I'm not sure that either of these remarks answered 
Lipton's question. The question was, "What is the need?" Not, 
"How nice are they?" In other words, can we use them at all? 

clones: i was giving you an answer to that, I thought. I 
was making a point that I thought that the protection mechanisms 
were extremely useful for complementing the programming method-
ology for building modular programs. And, in fact, that's just 
how Hydra is being used at CMU right now. The way that people 
tend to program is that they define a new type manager. Using 
protection mechanisms, they ensure the integrity of the service 
one program provides to another. This use of the protection 
mechanism was not one of the motivations for the Hydra design. 
During the design, we mainly thought about the ability to protect 
data from malicious users. But, in fact, this other serendipidow 
use of it has been tremendously productive. Can I give you an 
example of the read/write kind of protection and why it doesn't 
always work? I'd like to build an object containing data, and I 
want to share that data with you. If what I do is to build a 
type manager and the way that we share the object is by always 
calling this type manager who in fact is the only one that can 
read and write implementations, we have much more a controlled 
and disciplined system. And we will also have a lot more pro-
tection. 

Gaines: I think we're still avoiding the question. Are 
there substantial cases where something of the complexity of the 
bibliographic system in Hydra is actually needed? 



Harrison: There is a computer application that nobody has 
talked about so far. One estimate has suggested that its value 
could exceed all other applications combined. This is the area 
of office automation. One of the vital aspects of such systems 
is protection and security. I'd like to give an example of this 
type of application, but first, let me remind you that digital 
computers do one operation absolutely perfectly. When they copy 
a discrete object, it is a perfect copy down to the last bit. 
For example, consider an automated office in which requests for 
travel funds are processed. There must be sophisticated mechan-
isms built into such a system so that an employee's request is 
processed by a superior with the proper authority. Moreover, 
his "signature" should not be forgeable. In the absence of any 
protection mechanisms, signatures could be copied perfectly, 
employees can authorize their own travel, etc. The omission of 
such protection features in current systems is quite striking. 

Shapiro: Granted that the issue is "does that kind of 
application require the complex kinds of methodologies"?, are 
there much simpler strategies to accomplish the same task? 

Harrison: There are certainly some simple and ingenious 
solutions that go part of the way, but not all of the way. If an 
inappropriate individual attempts to authorize a request for 
which he does not have the proper authority, a "form" can destroy 
itself or send an alarm, etc. 

Fabry: Ultimately, I foresee a network of systems having 
the complexity of all of society. The proper implementation of 
such a network will require us to understand access-control much 
better than we do today. If we had such a network in which the 
protection were almost trivial, we could automate much of what 
we do manually today. If each user had some information which 
was private and if there were some way to make information public, 
people could make information available to each other. Select-
ivity could be achieved by encryption. Access-control decisions 
could be made by applications programs at the nodes. 

********** 

Dobkin: The next thing we might consider is whether we should 
pursue more database results than, say, that compromise is easy. 
in general, what types of problems should we be working on? 
What directions should we be going in terms of databases and 
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security in general? 

Shapiro: There are two directives that contradict each 
other. One is that privacy be protected database information. 
This is a directive that has come down to us from institutions. 
Another directive is that society has been managed in such a way 
that databases will be maintained and accessed. The results 
that we've seen about database compromise address themselves to 
relatively simple extractions from the databases, such as means 
or medians. These may be questions of the kind that are not 
socially necessary to be able to ask. Asking very general 
policy-type questions of a database doesn't necessarily involve 
making available means or medians or any other type of summaries 
or statistical information about the database. It means making 
available far-higher order statistics. So that brings into 
question what happens to results about database compromise when 
the interrogations involved are not nearly as direct and as 
simple. 

Minsky: In addition to the question of how do we restrict 
what one can get from the database, there is the problem of how 
does one ensure the correctness of the contents of a database, 
and by implication, the correctness of responses to user's 
queries. Errors in data may be introduced either inadvertantly 
or maliciously and it is the responsibility of the system to 
protect itself against such errors. Failure to do this would 
have grave consequences both to , the privacy of individuals about 
whom misinformation is distributed, and to the society at large, 
if wrong information serves as a basis for social decisions. 

Gaines: The issue of databases of credit information and the 
passing of that information around people who you don't want to 
see it or who you haven't authorized to see it, seems to be 
indicative of the larger social question. There just is 
information that people can use to their own benefit and you may 
want to keep that information away from them for that reason. 

Minsky: But, there still is the question of how one ensures 
the correctness of large masses of information for long periods 
of time. 

Gaines: But if somebody doesn't gain anything by modifying 
it, they just won't bother. We know of more cases where somebody 
gained just by learning the information. 

Minsky: Then there's also the problem of people sneaking 
into the system and deliberately making mistakes. 
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DeMillo: 	These are all public policy issues. They're not 
necessarily security issues. 

Dobkin: Yes, these things seem to be issues that do not 
have so much to do with computers as with, let's say, collection 
agencies. 

Kline: I think that the issues are not going to be whether 
information can be kept private, but whether or not it is kept 
private. Will someone enforce the personnel policies in order 
to secure the information? Since it takes statutes to do that, 
I agree these are public policy issues and not technical issues. 

Budd: Getting back to the original question about whether 
or not we need any more papers on database security, it seems 
theoretical computer scientists are always running up against 
these situations. The problem cannot be modelled in it's full 
generality, and so we abstract certain pieces of it and study 
restricted kinds of database cracking. I think we are at the 
point now where we should go back and look at these results we 
have concerning these restricted classes and ask whether or not 
they carry over into the real world. That is, can I go out and 
obtain information about an individual from the Census Bureau 
just using the Reiss median strategy? To cite an example of when 
I think we are not being realistic, most models that are studied 
only allow queries of fixed sign. There are other assumptions 
made that I think cannot be justified in practice. I think 
there is a need now for more empirical study, in which people 
look at databases in the real world rather than at mathematical 
database models. 

Lipton: There are also questions that DeMillo, Dobkin and I 
have called inference questions. There may be some very interes-
ting interplay between them and database questions. If I use 
some of Ron Rivest's ideas for encrypting a file and give the 
user only certain restricted operations, it may be quite diffi-
cult to see whether the user can put together restricted pre-
dicates to determine what he would really like to know. So, I'm 
very positive that there are some directions that we should go. 
It may not be exactly a database model, but it is related I think. 

Gaines: First of all, I'd like to comment about this termi-
nology, "crack a database". It implies a binary choice and that 
is one of the difficulties here. We're not just concerned that 
you get or don't get one bit of information, but whether or not 
useful information is transmitted; and if so, how much? A 
secondary question is to study how information flows out of it. 
The goal is to get far less than what you want up to certain 
special circumstances. 
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Dobkin: You're saying that if I get some piece of informa-
tion, say the salary of some person that I don't know then that 
is not a piece of useful information and who should care? But, 
what about the person whose salary I got? He'll care. Even 
if I can't use it today, I may be able to use it some day, and 
that is certainly an issue. 

Cohen: Yes, I am concerned about the kind of work that's 
been done in compromising databases. It seems to me to be 
concerned with the selling of security, and I think that that's 
probably a dangerous thing to do -- both for technical reasons 
and for realistic reasons. In terms of the kinds of things that 
has happened technically, I think one thing that we have not 
taken into account technically with any of these models is the 
extent of a priori information. That's going to be very hard to 
model. Realistically, it's clear that the most dangerous thing 
about databases is not the security mechanism, but that there 
are other ways of getting into the system. If we keep op doing 
this kind of work, then we just have to be very clear that it's 
just a game. We're really not protecting anything. What's 
happening is that large databases still get built and it is 
exceedingly dangerous for people to perceive these results as 
saying that we can protect your database and that it's okay if 
you stick that piece of sensitive information in it, because 
nobody is going to be able to get it out with a certain prob-
ability. I think that what is important to consider is not the 
techniques for guaranteeing that a compromise can't occur, but 
to build systems that involve the dismantling of databases 
instead. 

DeMillo: I would tend to agree with you if the results that 
we're talking about went that way, but they go the other way. 
They say you can compromise; therefore, you should not assume 
that something is secure. This might limit the kinds of things 
that you try to do. 

Cohen: Sure. I think that negative results are useful. 
But keep in mind that it's always just a game. All of these 
results have nothing to do with the security of information. 
My discussion about the dismantling of databases is irrelevant 
to the discussion of whether or not we should de research in the 
area. In fact, what I'm saying is that the realities of data- 
bases are totally distinct from the issues of mathematics basis. 

DeMillo: Does anybody know of any human information process-
ing results that say that an expert who knows a good strategy 
does well in actually getting information out of the databases? 
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Fabry: I can't answer that question. But, I think that what 
I'm going to say is relevant. I came to this conference not 
having looked at the question of whether or not you can get 
sensitive information out of the databases by asking tricky 
questions. I naively assumed that there were simple strategies 
that would be fairly effective in keeping people from figuring 
out specific information. I suspect that is a common misconcep-
tion. I think that it is going to fall to us over the next few 
years to call the attention of the public to the fact that no 
simple strategy works. This is particularly true, as Ellis Cohen 
mentioned, when you cannot know what kinds of information a pene-
trator may have obtained outside the system. Over the next few 
years, databases will become increasingly important. They will 
be pushed by institutions for whom they will be extremely cost-
effective. Companies producing such systems will be under 
pressure to make assurances to the public about the non-penetra-
bility of their systems. We may have quite a job on our hands 
trying to keep making sure that the appropriate agencies and the 
public are - aware of the limitations on such assurances. The 
conclusion that I would draw is that there must be legal respons-
ibility and human judgement invoked on a fine-grained basis 
wherever these systems are employed. And, that's not an obvious 
conclusion. Many who install database systems will be hoping to 
reduce such factors. 

Minsky: I would like to try to correct what seems to me a 
misconception about the nature of database systems and of the 
interaction with them. People seem to consider a database system 
as a mechanism which answers mostly statistical types of quest-
ions. The fact of the matter is that an information system, 
which is based on a database, contains large numbers of programs 
which have to navigate through the database, and update parts of 
it. An important security problem is how to control the inter-
action of these programs with the database interaction that is 
not "statistical". 

Dobkin: It seems to me that what you are saying is that 
there is first the issue of running a database then there is the 
issue of security. I've been more interested in the security. 
Assuming that the database is totally correct and totally perfect 
and did what it was told in every way possible, then is it secure? 

Minsky: But there is no sharp distinction between the 
programs that are part of the database, and the "application 
programs" that interact with it. I contend that for the sake of 
security, we must control the interaction of every subject with 
the database, be it a human user, one of his programs, or a 
program built into the system itself. 
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Cohen: I have a general question. Even though we know that 
it is going to be enormously difficult to protect the databases 
against compromise, there are those of us here who still advocate 
the building of large databases. How do we guarantee individuals 
that databases are not going to be misused? 

Gaines: A sobering thought for all of us might be there's a 
whole legal question of who is liable when things are stolen. 
(nervous laughter) It is entirely possible that those computer 
scientists who have said that the system is secure may be liable 
when the code is broken, even those of us who say here's the 
probability .000002 that the system is secure. I was recently 
at a meeting on computer security and was amazed because over 
half of the people in the audience were lawyers. They were 
getting their feet wet in this whole question of liability. And, 
I think that it was brought up in that meeting that billions of 
dollars are being transferred electronically all around the 
country. And if that's stolen, who's responsible? 

Kline: There aren't big incentives to crack a database for 
the personal reason of reading somebody's file. There may be 
institutions that would want to do that, but T think the average 
person is not going to have that in mind. But the electronic 
funds transfer is going to bring us into a whole new game. In 
that case, there's going to be a big pay-off for being undetected. 

Dobkin: One of the things about electronic funds transfer is 
that someone can go into the system and see who bought an 
electric lawnmower from Sears, so that he can knock on their door 
to sell them grass seed. Presumably, Sears is going to protect 
people from that. Suppose that I can go in and ask what was the 
average purchase of people who spent over a hundred dollars at 
Sears last month? What is the average address? (laughter) Now 
maybe we can't compromise the census data, but maybe we can 
compromise the electronic funds data. And that will start 
being a nuisance to people. 

Kline: I think that what you're talking about is at a very 
different level. Most large corporations would rather go out 
and buy your medical history than try to crack it in a large 
database. I think the damage that's likely to occur in that way 
is relatively small. 



Fabry: I think that we're really underestimating the 
problem. Information is power. The need for computer databases 
is tremendous. It is too easy to underestimate the potential 
for abuse, the potential for economic exploitation, and the 
potential for invading people's privacy. 

Kline: I just have to reemphasize that I do not think that 
the statistical access is the way databases will be compromised. 
I do not think that that's the place right now where we should 
be spending alot of our resources. 

Rivest: It seems that the models we have available for 
authorization and access-control are still very simple in 
comparison to what we might need. You can imagine in a large 
corporation the complexity of the patterns of not just accessing 
information, but who is authorized to authorize someone else to 
access the information, etc. I'm thinking back to the comments_ 
such as those made by Rabin this morning about different kinds 
of authorization. These patterns can become very complex, and 
I suggest that we need to study more complicated ways of sharing 
information and sharing authorization, particularly in passing 
the ability to authorize an access. I would also like to 
suggest that the objectives of creating systems that are decid-
able and modelling what really happens in a typical information 
system may be contradictory. 

****** *** * 

Harrison: Just a question to the technologists among us. 
Some years ago, all I heard about was the information utility. 
Now with hardware costs dropping, the utility system's much less 
interesting. Since we can now give people an 11/70 on a chip 
in their own home, maybe we'll have safer computations because 
we won't share. Does anybody have any comments on what this new 
technology is likely to bring? 
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Rabin: Maybe I'll start with the last question first. I 
think you will have computers within the home. But, at the same 
time, you will also have very large data banks because there are 
some things which you don't want to store in your home. Now, 
since Ron Rivest has generalized the discussion to future 
directions of research, I would just like to very briefly raise 
one point. Namely, that all of the considerations here are 
almost exclusively centered around software. We talked about 
operating systems with certain take/grant features which make 
them secure according to some definition. However, the consider-
ation of hardware has to enter somewhere. Suppose you were using 
various keys, there arises the question as to where these keys 
are stored. Unless you want to have some sort of circular 
argument, you won't be able to solve it unless you stipulate that 
the system will contain some hardware security features which are 
going to be secure places in which you can construct everything 
else. Let's consider other questions. We are talking about an__ 
operating system being constructed so that you can't gain access 
to certain places. But, who's going to secure the cop? Nothing 
was said about the possibility of just starting to introduce a 
portion of the operating system which is different and alien and 
which does what the interloper would like it to do. Who is going 
to protect his operating system from that type of intrusion? 
These questions of security are important because so much will 
depend on computers. So if you have computers controlling some 
critical systems, then even though the probability of some 
malicious or stupid act will be small, the penalty would be so 
enormous that the expectation of damage would still be large. 
Thus, it is incumbent upon us to make provisions for secure 
operation. We should not disregard the question of certain types 
of secure hardware which in certain senses cannot be tampered 
with. How can we minimize the danger of tampering with the 
hardware? The answer lies in a strategy of duplication. These 
components are small and inexpensive. By extensive duplication, 
you can ensure that tampering with the system will require an 
enormous amount of work, literally getting into remote corners, 
and so on. So, there is really a potential for safety which 
emenates from secure hardware. If we intend to explore this 
direction, then our thinking should involve a merger of secure 
hardware with secure software. For example, to create models 
where you are talking not only about procedures and restrictions 
on various operations, but along the way you postulate certain 
hardware guards that are unalterable. 

Jones: I don't think that the distinction is between hard-
ware and software. I think that there are a number of security 
procedures and then there is implementation. Someone will see 
that these are quite appropriately implemented in hardware or in 
software. In some cases, software running on a stand-along 
machine achieves the same effects as a hardware implementation. 
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Rabin: Can I add something to that? I think that the point 
that 1 made was diametrically opposed to the point that you just 
made. Namely, if you talk about safeguards which are implemented 
in software, then we have to realize that computers operate with 
enormous speed. One approximately placed instruction may change 
things in a very radical way. You can wipe out, for instance, a 
whole memory. What I was talking about was the design of hard- 
ware which has certain built-in features rendering it immutable. 
So it is not some program which behaves like hardware, but 
certain pieces of machinery which are there and which cannot be 
altered. We even consider components having the property that 
any attempt to fool with them will result in some sort of self-
destruct wipeout. The idea is that hardware is hard and cannot 
be changed, while programs are soft and can be easily altered. 

Jones: I think there is still a spectrum and we can build 
software with some of the properties that you outlined. 

Snyder: Let me just add a point to what Michael Rabin said. 
We still much grapple with problems like machines going down 
from time to time. The operator can put up a program that is not 
one that you wrote and he can do what he wants to do regardless 
of how clever you have been in your program. In Rabin's view, 
you would have had the machine operating with some kind of hard-
wired protection to avoid that. We still have the problem that 
one has a very direct route to the machine simply by bribing the 
operator. 

Dobkin: Well, I still think that he would have the same 
problem in hardware. What about the guy who interchanges boards? 
What kind of system are you going to have to monitor the guy who 
has his hands on the hardwware? 

Snyder: Sure, you're pushing the problem a little further 
along. There you get into the situation that we were talking 
about earlier today. How long an interval do you have to ob-
serve the system? That is perhaps a different time frame. 

Furtek: I do agree that these hardware traps are extremely 
desirable, and I agree that hardware is essentially different 
than software, but there's one regard in which hardware is very 
similar to software. And that is that it needs to be verified 
for security properties in the same way that software has to be 
verified. As far as I can tell, at least at this conference, 
nobody is addressing that problem. 



DeMillo: I think that the case can be made that neither 
hardware nor software should or could be verified. If you are 
thinking of processes like verification and security together 
then there is something inconsistent. If you have a verified 
piece of software and you are certain that it is correct and 
secure, then you are going to abandon all of those safeguards 
that you would have built in if you had not been quite so sure 
that it wasn't going to fail. There is a tongue and cheek 
phenomenon called the Titantic Effect which says simply that 
the severity with which a system fails is directly proportional 
to the degree of confidence with which you believe the s,stem 
won't fail. So, I think there is by no means any concensus in 
this group that verification is desirable. 

Furtek: I thought that that's what you did in order to gain 
some confidence that your system is secure. What is the process 
that you go through to make your systems secure? Ar-n 

DeMillo: It's not verification. 

Davida: Yes, DeMillo was getting into what I wanted to get 
into later. I noticed that there is a distinct lack of work in 
what I call testing rather than verification. If you go back to 
look at what hardware people do, they don't bother proving that 
their chips work, they just test them. And what they do is run 
diagnostic routines which tend to run in the background. And, 
they report any errors that they find so that someone can go in 
later and fix them. By the same token, I don't think we should 
be running some kind of background diagnostics continuously 
challenging and testing the systems and perhaps reporting the 
compromise whenever it does occur. Just because the finite 
access-matrix is decidable doesn't mean that security can be 
proven in practice. It may just be too complex and you might 
have to resort to adhoc methods. 

DeMillo: I think all too often we apologize for adhoc 
techniques. Often times, adhoc techniques are the only ones that 
we know work. 

Davida: I don't mean that adhoc means necessarily badly 
chosen. We can have very carefully chosen heuristics. 

Kline: I think that there's some chip designs that are 
proven by verification. 

Lipton: What chip design? 
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Kline: Certain kinds of gates, but most chips done by 
testing. In many cases, they completely exhaustively test. You 
get a thorough verification by exhaustion. That is a form of 
verification. There are alot of cases in chips where you can get 
it by induction of some sort. But, I'm not convinced that adhoc 
testing methods are adequate. 

********** 

Jones: I'd like to get back to the issues of what kinds of 
research we should see in the areas of secure computation. If 
you look back five years, the action was in designing protection 
mechanisms for operating systems. Looking ahead, what I see is 
an "information revolution". And I don't see ways of building 
mechanisms that guarantee privacy. I suspect that what we will 
see are what might be called "threshold mechanisms". They are 
the same kinds of checks that we build into society: different 
semi-autonomous entities that check each other. The reason that 
a guard happens to be a very good protection mechanism is that 
he has all kinds of threshold tests that he's constantly per- 
forming, because he's a human being. He will notice that certain 
things are out of the ordinary. There is no absolute mechanism 
that prevents failure - in our case the leakage of information. 
Instead, you have all these scattered mechanisms that raise , 

 warnings. That is, what we do in society. We do not have any 
guarantees that information doesn't leak; we just have a lot of 
mechanisms that check thresholds. 

Millen: I think that there is an assumption there that you 
can put your fingers on something like the granting of a certain 
capability which would be the only time a compromise could occur. 
That idea is based on using a model that may or may not apply. 
There are questions about whether or not access control models 
really address all of the questions about software channels for 
compromising information. 

Ruzzo: I'd like to make a comment about that approach to 
systems security. That was used in an earlier version of 0S360 
and when the operating system itself violated those security 
constraints, the system crashed. 
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Kline: Every security system I know of that's been built 
has reasonable checks to see whether or not what we are doing is 
something that should be done. And, you could prove a priori 
that nothing bad will ever be done or you can do the run-time 
check, if there is a reasonably short definition of security. 
Now, the issue therefore becomes how complex are your safety 
criteria? 

Fabry: There is some implication in the way that we got 
started on this conversation that because of the HRU t  results, 
we should be scared away from our present protection systems. 
I have unsuccessfully tried to find any practical implication of 
the HRU results. I think it would be premature for people to 
be scared away from conventional approaches to systems security, 
or to feel that such systems were in some way inadequate, based 
on the HRU results. One avenue for future research is to 
understand the relationship of those results to real systems. 
I am convinced that all interesting safety questions are decid-
able for the protection systems which I use and design. 

Cohen: One of the things that I said earlier was that un-
decidability is only a relative issue. Theoretical results 
assume a particular arbitrary configuration. The problem is to 
determine whether or not a particular security violation can 
occur. No real problem I've seen has had that flavor to it. 
I'd be interested if anybody could generate one. Real problems 
generally have the flavor of writing a specification for the set 
of safety configurations to guarantee that you could never have 
a security violation. Does anybody have any ideas when you have 
arbitrary configuration? 

Lipton: I didn't understand your question. It seems that if 
you have an ongoing system in which people are being added and 
deleted in arbitrarily complicated mechanisms, then it would 
seem that you are coming in the middle of something very compli-
cated. 

Cohen: I do not think that I buy that completely. It seems 
to me what happens is that you initiate some request for service 
with another user. What is really going on is that you set up 
the initial configuration. You set up communication, and all 
you have to do is to guarantee that communication is set up 
properly. Then, you guarantee that if your system has perfect 
mechanisms, you'll never get into the situation where the 
policy you want to enforce will ever be violated. There are 

t i.e., the Harrison-Ruzzo -Ullman decidability theorem (eds.) 
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alot of instances where that happens. For example, if you want 
to guarantee that confinement is enforced, you begin by calling 
the program in a certain way. Then you have to guarantee that 
no matter what happens afterwards, e.g., the program that's 
supposed to be confined goes off and calls another program, that 
transitivity holds and the other program is going to be confined 
also. So, the point is that as long as you set up the initial 
configuration properly, you guarantee that the program that you 
are calling cannot act maliciously. So, it seems to me that to 
ask that given an arbitrary configuration, whether or not it can 
be violated is really a moot issue. What you are really asking 

. is can you set up an initial configuration or is there a class 
of initial configurations that guarantee that confinement will 
be enforced? And, the answer to that.is our mechanisms are 
exactly an embodiment of that idea. It would be surprising if 
these mechanisms would allow violation in that way. So, the 
undecidability results are really unrelated. 

Lipton: I think there are really two questions. One is 
that you can set up a policy and then check to see whether or 
not that policy is ever violated. Another is to have lots of 
commands that have to ask "may I" at many places. In the latter 
case, I'll prove a little theorem to myself to see if the 
sequence of "may I"'s will ever get me in trouble. There is 
probably a whole spectrum of tradeoffs in which you could prove 
smaller and simpler theorems, and those would be tractible. 
I'm just suggesting that there must be a very wide spectrum 
and that we not lock ourselves in. 

Tittaw: Let me make another point about the relevance of 
the initial configuration. Given a particular system such as 
Hydra, it may or may not be trivial to decide whether there is 
some configuration from which confinement can be guaranteed. 
But, given .:11 arbitrary protection system - that's undecidable. 
I think that this is an example of a kind of tradeoff we have 
between our general results and results about any particular 
operating system. 

:_;nyde .v?: Let me try to just reiterate in a different 
language Larry Ruzzo's results. When you look at results 
referring to any formal model, you must be very careful about 
the quantifiers. That is, you must be very careful about what 
is allowed to vary and what remains fixed. In particular, what 
things are you allowed to choose a priori and what things once 
chosen are allowed to be modified over time? I think that the 
controversy we are having here over the undecidability results 
is a matter of quantification. You're saying that for Hydra, a 
particular choice was made, including a particular choice of 
initial states. And the Harrison-Ruzzo-Ullman result is 
quantified differently. There is no inconsistency here. The 
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Take/Grant system, for example, is restrictive, it has a particu-
lar set of commands, too. 

Jones: I have just been told, in effect, that the HRU 
results are irrelevant. 

Lipton: You've misquantified the statement (laughter). 

Jones: Not at all. We produce ten operating systems a 
year in the world. Therefore, it is uninteresting to me to 
quantify across all possible operating system protection 
mechanisms. There are only ten new ones of interest every year, 
so I'll just go out and check those ten. 

********** 

DeMillo: I have a final question. What shall we tell the 
reader of this book who wants to know what's happened in security 
in the last five years and what is likely to happen next year? 

Kline: There are approaches to network security. Encryption 
chips are being developed, as are public key systems and signa-
ture systems. These all have happened in the last five years 
and are going to have significant impact. 

Fabry: Be careful not to equate encryption chips, public 
key systems and signature systems to security. These are merely 
tools which are available for implementing desired security 
policies. At best, their existence allows us to focus on the 
remaining issues more clearly. 

Lipton: It's interesting that Kline said "secure" and not 
usable and secure. 

Cohen: I'd like Bob Fabry to relate some things that he 
thinks will result in open problems in operating systems. 

Fabry: Security, at the operating level, with a realistic 
definition of security. We ignored confinement at this workshop; 
the hard part of confinement is the treatment of covert channels. 
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Lipton: Secure will presumably mean that you will have 
reasonable confidence that your operating system will do certain 
things and won't do others. But, it will simply be an information 
processing tool. It will be used with a lot of applications on 
top of it and that are subject to mistakes and errors. I think 
that calling it "secure" is very misleading. Really, what we're 
saying is that we'll have some very nice property, though it is 
not even clear that it will. You can't legislate that people 
don't use a general purpose operating system incorrectly. As 
long as you call it secure, it sounds very dangerous. 

Kline: But the point is that the security mechanisms that 
you enforce will, in fact, work. 

Lipton: So, in some sense, you have passed the buck. In 
another ten years, we will have things built called security 
applications kernels and then we'll say, let's pass the buck to 
x. 

Kline: That's right. And at each point, we'll hopefully 
have gained something. 

Lipton: The point is now that you cannot write an applica-
tion program that's safe. Why should we believe that it is any 
easier in principle using take/grant, when before we had to do 
it in machine language? You are doing everything at'a higher 
level, but you are more ambitious today than you were five years 
ago, anyway. People are going to become increasingly ambitious 
and you will probably be lagging just that far behind all the 
time. 

Kline: You are saying you can never achieve security. 

Lipton: I think that what's happening in the secure kernel 
area and related areas, is that you're looking at systems as 
they were many years ago. So that by looking at the same system 
many, many times and resolving the same problem over and over 
again, you will be able to say something. What you get may have 
a much higher chance of being correct. But I'm still skeptical 
about whether or not it will be right. But, that's not what we 
want. What we want is, as Mike Harrison points out, office 
information systems and other systems of very complicated types 
that weren't being built ten years ago. And, those systems are 
so much more ambitious than compared to the very simple kinds of 
services that you're going to apply, that it's not clear that 
you really will help. And, indeed, it may mean that we will 
have to go to other techniques. 
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Jones: Let me make an analogy. You're saying that if the 
office automation system is the moon and the operating system is 
the tree, then climbing it is not going to help. But, both of 
those things are software products. And, if you understand one, 
you will hopefully glean a few things that will help you under-
stand the other. 

Harrison: I'm optimistic. Systems are getting better and 
theoretical techniques have exposed some fundamental concepts 
and limitations. It concerns me that some of the more theoretical 
results such as our undecidability theorems appear to be mis-
understood and misinterpreted. It would be very unfortunate if 
such results inhibited a designer from making some improvements 
in a future system. Such theorems should rather be a guide to 
which problems can be realistically attempted. 

Cohen: I'd like to raise an issue that we haven't looked at 
at all. And, that is that as we allow people more freedom with 
these systems, they are going to want to build their own policies 
and their own ways of using the system securely. They're going 
to be inevitable conflicts between users. We don't know how to 
deal with that. I suspect that within the next five years, as 
larger systems with multiple policies get built, that there will 
be more and more work on this. 

Fabry: You are getting to the root of my discomfort with 
Charlie Kline's point of view. The definition of the security 
policies we will be called upon to implement, will ultimately 
derive from our social and legal systems. We cannot choose 
policies. We know how to implement, and then equate those 
policies with security. Not only will security policies evolve 
over time, in response to our increasing ability to process 
information, but the ground rules for expressing security 
policies will change as our society and our legal system become 
more attuned to the increasing potential for abuse. From this 
prespective, what we know how to do today is surely very crude. 

DeMillo: I think that's a challenging note on which to 
close the discussion. Thank you, all. 
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Final Report on ONR Grant #N00014-76-0030  

The point of the meetings funded under this grant was to collect 
together the major researchers in the theoretical and practical areas of 
computer security. It was our initial hope that a dialogue between 
theoreticians and practitioners would result, that many results would 
flow from the meeting. It was also our hope that the papers resulting 
from the meeting would receive the widest possible dissemination. A 
collection of new research contributions from the major researchers in 
computer security should be influential as a textbook and as a reference 
work in the area. As I will discuss below, the meeting exceeded our 
expectations in the areas cited in our proposal, and provided a number 
of unexpected dividends. 

On October 3, 4, and 5, 1977 the "Foundations of Secure Computation" 
workshop was held at the Atlanta Townhouse Hotel across from the Georgia 
Tech campus. In attendance were the following invited participants: 

Timothy Budd, Yale University 
James Burns, Georgia Tech 
Ellis Cohen, University of Newcastle 
George Davida, University of Wisconsin 
Richard DeMillo, Georgia Tech 
Dorothy Denning, Purdue University 
David Dobkin, University of Arizona 
Robert Fabry, University of California, Berkeley 
Fredrick Furtek, Mitre Corporation 
Stockton Gaines, Rand Corporation 
Robert Grafton, ONR 
Leonard Haines, ONR 
Michael Harrison, University of California, Berkeley 
Anita Jones, Carnegie-Mellon University 
John Kam, Columbia University 
Charles Kline, University of California, L.A. 
Richard Lipton, Yale University 
Nancy Lynch, Georgia Tech 
Leonard McNeil, Management Science America 
Jonathan Millen, Mitre Corporation 
Naftaly Minsky, Rutgers University 
Michael Rabin, Hebrew University and MIT 
Steven Reiss, Brown University 
Ronald Rivest, MIT 
Walter Ruzzo, University of Washington 
Norman Shapiro, Rand Corporation 
Lawrence Snyder, Yale University 

All attendees who requested travel funds were supplied with grants 
which at least partially subsidized their expenses in attending the 
meeting. No additional honoraria were given to the attendees. 
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Workshop participants were asked to distribute preliminary drafts 
of their contributions prior to the meeting. At the time of the 
workshop, we had the opportunity to review the written summaries pro-
vided by the attendees. 

The logistics of the meeting's technical sessions proved to be 
remarkably simple to arrange. Although the papers fall naturally into 
four categories -- we will use these natural divisions in discussing 
the papers -- we made an early decision not to segregate the papers at 
the workshop. Since a major point of the meetings was to have been 
the cross fertilization between adjacent fields, we thought that a 
random interleaving of the papers would help promote this attitude. 
This technique seemed to work very well. The common situation in a 
conference or a workshop in which topics are segregated is that an 
attendee who does not perceive himself as having a specific research 
interest in a particular topic elects to not attend that session or 
attends as a mere observer. With our technique, attendees are kept 
"off guard". The topics shift as the session goes on and there is a 
tendency to participate uniformly throughout the sessions. The struc-
ture of the workshop was that attendees would be allocated each a half 
hour for informal presentation of his paper. Following these presen-
tations was a fifteen minute discussion session. The responsibility 
of the session chairperson was to record the text of the discussion 
and attempt to guide its course. During the three days of the 
meeting, ample time was allowed for informal discussion groups, each 
devoted to specialized topics, and this aspect appeared to be enormously 
successful. 

The afternoon of October 4th was devoted to a round table discussion 
covering topics raised in informal and formal discussion sessions. This 
round table lasted approximately three hours and was also recorded. All 
discussion topics were edited, condensed, reviewed by the attendees, 
and appear in the conference volume. The response of the attendees 
appears to be that the discussion sessions and their subsequent record-
ing was the most successful aspect of the meeting. 

The papers presented at the meeting fall naturally into those 
dealing with database security, encryption, practical aspects of oper-
ating systems security, and theoretical aspects of operating systems 
security. I will give a brief description of what resulted in each of 
these four areas. 

I. Database Security  

1. "A View of Research and Statistical Database Security" by 
Dorothy Denning 

2. "Combinatorial Inference" by Richard DeMillo, David Dobkin 
and Richard Lipton 

3. "Database System Authorization" by Don Chamberlain, Jim Graves 
Patricia Griffiths, Moishe Miesse, Iry Traiger, Bradford Wade 
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4. "Mediams in Database Security" by Steven Reiss 

The four papers concerning database security addressed tradeoffs 
between usability and security. Dorothy Denn -ing's survey of statis-
tical database security reminds us how far we have come in realizing 
the limits of the notion of database security. The usual methods of 
compromising large statistical databases almost always involve trans-
parent uses of information delivered in responses to queries. The 
article by Richard DeMillo, David Dobkin and Richard Lipton discusses 
the more subtle kinds of combinatorial inferences which can be formed 
out of query responses. Compromising the statistical sense is not the 
only security problem in database design. The pragmatic issues stemming 
from the authorization of access to database and database communication 
systems are outlined in the contribution by Chamberlain, Gray, Griffeths, 
Mresse, Traiger and Wade. The final paper of this section by Steven 
Reiss returns to statistical compromise with a detailed study of the 
insecurity inherent in databases which allow a certain statistical query 
strategy. 

II. Encryption as a Security Mechanism  

1. "A Structure Design of Substitution Permutation Encryption 
Networks" by John Kam and George Davida 

2. "Proprietory Software Protection" by Richard DeMillo, Richard 
Lipton and Leonard McNeil 

3. "Encryption Protocols, Public Key Algorithms and Digital 
Signatures in Computer Networks" by Gerald Popek and Charles 
Kline 

4. "Digital Signatures" by Michael Rabin 

5. "On Data Banks and Privacy Homomorphisms" by Ronald Rivest, 
Leonard Adleman and Michael Dertouzos 

The five papers presented here are truly representative of current 
research in data encryption. George Davida and John Kam proposed the 
type of substitution-permutation encryption design. Their intent is 
to provide a variant of the NBS Data Encryption standard which obviate 
several of the difficulties raised by Hellman and Diffie and others. 
Richard DeMillo, Leonard McNeil and Richard Lipton raised a novel 
application for encryption research: the protection by encryption of 
commercial software from overt theft. Gerald Popek and Charles Kline 
correctly point out that oftentimes the protocol through which 
encryption algorithms are made available have significant impact on 
their effectiveness. They examine several encryption methods from this 
perspective. A surprising probabilistic method for creating secure 
digital signatures is the subject of Michael Rabin's article. He pre-
sents a method which can be based upon any block encoding function 
that satisfies two simple axioms. Ronald Rivest, Len Adleman and 
Michael Dertouzos address the serious defect of current methods for 



encrypting data: coded information must be decoded before it can be 
manipulated. Out of all possible privacy transformations, the 
authors select the privacy homomorphisms which allow data to be operated 
upon in its encrypted form. 

III. Design Oriented Models of Operating Systems Security  

1. "One Perspective on the Results About the Decidibility of 
Systems Security" by Robert Fabry 

2. "Constraints" by F. Furtek and J. Millen 

3. "Some Security Principles in the Application of Computer 
Security" by Stockton Gaines and Norman Shapiro 

4. "Protection Mechanism Models: Their Usefulness" by Anita Jones 

5. "The Principle of the Attenuation of Privilege and Its Ram-
ifications" by Naftaly Minsky 

In Robert Fabry's article we see a designer struggling to come to 
grips with the real world implications and with theoretical results: 
the Harrison, Ruzzo, Ullman Decidibility Theorem. The two part paper 
by F. Furtek and J. Millen attempts a simplification of several design 
concepts; they represent a system of "prime constraints", a concept 
similar to prime implicants of switching theory. Stockton Gaines and 
Norman Shapiro take a step back from detailed considerations to give 
us an overview. They provide us with some general perspectives and 
the state of security research based on some fairly pragmatic insights. 
The contribution by Anita Jones is indicative of the fertile interplay 
of theory and practice in security research; her article was the out-
come of a designer assessing the usefulness of the take-grant system 
which has been the subject of extensive theoretical analysis. In the 
final paper of this section, Naftaly Minsky addresses Peter Denning's 
principle of "Attenuation of Privilege" and presents an authorization 
scheme which satisfies the principle. 

IV. Theoretical Models of Operating Systems Security  

1. "On Classes of Protection Systems" by R. Lipton and T. Budd 

2. "Information Transmission in Sequential Programs" by Ellis Cohen 

3. "Monotonic Protection Systems" by Michael Harrison and Walter 
Ruzzo 

4. "On Synchronization and Security" by Richard Lipton and L. 
Snyder 

In this final section, Richard Lipton and Timothy Budd open the 
selection in theoretical contributions by showing us that there is an 



efficient way to decide safety for a wide variety of protection systems. 
The requirement is that the systems must be related in certain ways. 
Ellis Cohen notes that the various possibilities for information flow 
in sequential programs and gives an elegant form of treatment of his 
ideas. Michael Harrison and Walter Ruzzo extend their well-known 
investigation into a particular security model by giving a character-
ization of the relative "power" of different operations allowed in the 
model. In the final paper, Richard Lipton and Larry Snyder proved the 
surprising equivalent of a well studied security model with an apparently 
unrelated model for synchronizing parallel processes. 

The papers described above and the edited text of the panel dis-
cussions and informal discussions appear in a volume entitled "Foundations 
of Secure Computation" edited by Richard DeMillo, David Dobkin, Anita 
Jones and Richard Lipton which was published in late 1978 by Academic 
Press. 

The attendees and other reviewers of the book have been enthusiastic 
about the outcome. Not only did we obtain a collection of first rate 
contributions to security research, but upon reviewing the contents of 
the contributions we found an unexpectedly large number of survey papers. 
Therefore, with minimal supplement by an instructor, the book could 
make an excellent text for a graduate course in security. 

Meetings of this sort are rare. We had an advantage in that 
security was being covered rather heavily by the National Press at the 
time of our meeting and this lent an air of excitement to the gathering, 
but a meeting of active researchers in an area in which there is grow-
ing interest clearly can have beneficial impact upon the future develop-
ment of the area. Therefore, as a final personal note I should like to 
add not only my thanks to the Office of Naval Research and the U.S. 
Army Research Office for their generaous support of our meeting but 
would like to strongly recommend that similar projects be funded in the 
future. As Michael Rabin told me at the close of our meeting, such 
gatherings can be a "great service to science." 
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