
Defense Priority Rating: none

Assigned to:
	InicoAmation and Computer. Science 	 (School/Laboratory)

COPIES TO:

Project Director
Division Chief (EES)
School/Laboratory Director -.-‘ 4,4
Dean/Director—EES
Accounting Office
Procurement Office
Security Coordinator IOCA)
Reports Coordinator

Library. Technical Reports Section
Office of Computing Services
Director, Physical Plant
EES information Office
Project File IOCAI
Project Code (GTRI)
Other 	

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT INITIATION

Date: Maitch 2, 1977

Project Title: 	Foundatioms ob Secuxe Computation

Project No:
	

G-36-619

Project Director:
	

Vt. R. A. Demilto

Sponsor:
	 U.S. Army Reiseatch Mice, Rueatch Pliangte Faith, N.C.

Agreement Period: From 	3/1177 Until 	2/28/78

Type Agreement:

Amount:,

Conttact NQ. DAAG729-777474086

$5,000 ARO
5,419 GIT

$10,419 TOTAL

Reports Required: 	
Con6eicence Pitoceedingz

Sponsor Contact Person (s):

Technical Matters

Dn. Jagdizit ChandAa
Mathematilca Diviaion
U.S. Army Re4each ()Wee
P.O. Box 12211
Reaeartch Trtiangte Path, NC 27709

Contractual Matters
(thru OCA)

Mn. Sam Rennehen
ONR RR
Ctohing AdminiztAation Only

GEORGIA INSTITUTE OF TECHNOLOGY
OFFICE OF CONTRACT ADMINISTRATION

SPONSORED PROJECT TERMINATION

Project Title: Foundations of Secure Computation

Project No: 	G-36-619

Project Director: Dr. R. A. Demillo

Date: 	2/14/79

Sponsor: U. S. Army Research Office, Research Triangle Park, NC

Effective Termination Date:

7/1/78 (End Fcrf. Period)

Clearance of Accounting Charges:

N/A - Fixed price

Grant/Contract Closeout Actions Remaining:

Final Invoice and Closing Documents

Final Fiscal Report

Final Report of Inventions

Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other 	OCA/SSD transmit final documentation

Assigned to: 	Information & Computer Science 	(School/Laboratory)

COPIES TO:

Project Director

Division Chief (EES)

School/Laboratory Director

Deen/Director—EES

Accounting Office

Procurement Office

Security Coordinator COCA)

Reports Coordinator COCA)

Library, Technical Reports Section

EES Information Office

Project File COCA)

Project Code (GTRI)

Other

CA-4 (1/78)

Workshop Proceedings
Contract DAA6-29-77—M-0086
ONR Grant N00014-77-0-0030
GT Projects 636-619 and 636-622

FOUNDATIONS OF SECURE COMPUTATIONS

Richard A. DeMillo, Project Director

December 1978

GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OR INFORMATION AND COMPUTER SCIENCE
ATLANTA, GEORGIA 30332

Pt*

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

2

FOUNDATIONS OF SECURE COMPUTATION

EDITED BY

Richard A. DeMillo

Georgia Institute of Technology
Atlanta, Georgia

David P. Dobkin

University of Arizona
Tucson, Arizona

. Anita K. Jones

Carnegie-Mellon University
Pittsburgh, Pennsylvania

Richard J. Lipton

Yale University
New Haven, Connecticut

This work was supported by Army
Contract DAA6-29-77M-0086 and
ONR Grant N00014-77—G-0030. The
United States Government has a royalty-
free license throughout the world in all
copyrightable material contained herein.

The findings of this report are not to be
construed as an official opinion of either
the Departments of Army or Navy.

PREFACE

The present book started as a four way debate concerning the interaction

of theory and design in computer security. To fix the discussion, let us note

that many computational processes proceed on the assumption that a naive or a

malicious user may attempt to disrupt the process or to make undesirable

inferences from observing aspects of the computation. Security is concerned

with avoiding this sort of penetration. On one hand, we saw that, over several

generations of systems, designers had addressed security issues with varying

degrees of success, and in the process, a considerable body of folklore and

genuine technology developed. On the other hand, we knew of theoretical work

with models simple enough to permit rigorous analysis, and we wondered about

the real world implications of these theoretical results.

Fortunately, we found support among our colleagues. The papers collected

herein all lie near the "crack" between theory and practice; they all address

issues at the foundations of security.

The contributing authors met in October 1977 in Atlanta, Georgia for a three

day workshop. During this time, most of the technical details of the contribu-

tions were reviewed and discussed in informal presentations. We also met for

an extensive round table discussion concerning the history, current state and

prospects of research in secure computation. Many of these discussions were

taped and edited. They appear sprinkled throughout the volume.

The atmosphere of our meeting in Atlanta was charged by an external (and

unexpected) sequence of events. In the summer of 1977, the national news

media began to release a series of stories concerning aspects of security

research -- these developments concerned results in which the interaction

between theory and practice figured prominently. Even at this writing, the

news carries reports concerning security research. Clearly, the ideas dis-

cussed in these pages will have public impact. In a fashion, this is a

resolution of our debate: theory and practice do interact visibly.

A few words about the level of the nineteen papers contained in the sequel

may help the reader. We anticipated that a considerable body of new technical

results would issue from our meeting. We were pleasantly surprised to ,find

ample survey material scattered among the research papers. Therefore, in

addition to being a timely collection of research contributions, we offer the

current collection as a book suitable for collateral readings in a seminar or

an advanced course in computer security.

This project was given generous support from a number of sources. The

Office of Naval Research and the U. S. Army Research Office each provided grants

to support travel to Atlanta and the assemblage of these papers. t
Gordon

Goldstein, Marvin Dennicoff, Robert Grafton, and Lenny Haynes of the Office of

Naval Research, and Paul Boggs and Jimmy Suttle of the U. S. Army Research Office

were particularly valuable in bringing about the meeting. Support was also

provided by the Computer Science Departments of Carnegie-Mellon University and

Yale University. In addition, the School of Information anci Computer Science at

the Georgia Institute of Technology cordially extended its considerable resources

to us in holding the meeting and in providing the administrative support needed

to assemble the papers into their final form.

ONR grant no. N00014-76-G-0030, ARO grant no. DAAG29-77-M-0086.

ii

Michael Fola and David Swanson of Academic Press gave us many valuable

helping hands in putting the volume together. Finally, Brandy Bryant deserves

special thanks. She not only typed and retyped all of these papers, but she

ran herd on the project. She made sure that we did not miss our deadlines by

more than a month or two, and she insisted that we do things right.

Richard A. DeMillo, Atlanta, Georgia

David P. Dobkin, Tucson, Arizona

Anita K. Jones, Pittsburgh, Pennsylvania

Richard J. Lipton, New Haven, Connecticut
	

June, 1978

iii

CONTENTS

Preface

Contents 	iv

Foundations of Secure Computation 	 1
R. DeMillo, D. Dobkin

Section I. Data Base Security 	 13

A Review of Research on Statistical Data Base Security 	 15
D. Denning

Combinatorial Inference 	 27
R. DeMillo, D. Dobkin, R. Lipton

Data Base System Authorization 	 39
D. Chamberlin, J. Gray, P. Griffiths, M. Mresse,
I. Traiger, B. Wade

Medians and Database Security 	 57
S. Reiss

Section II. Encryption as a Security Mechanism 	 93

A Structured Design of Substitution-Permutation
Encryption Network 	 95

J. Kam, G. Davida

Proprietary Software Protection 	 115
R. DeMillo, R. Lipton, L. McNeil

Encryption Protocols, Public Key Algorithms
and Digital Signatures in Computer Networks 	 133

G. Popek, C. Kline

Digitalized Signatures 	 155
M. Rabin

On Data Banks and Privacy Homomorphisms 	 171
R. Rivest, L. Adleman, M. Dertouzos

Section III. Design-Oriented Models of Operating System Security 	183

One Perspective on the Results about the Decidability
of System Safety 	 185

Constraints 	 191

Part I. Constraints and Compromise 	 193
F. Furtek

Part II. Constraints and Multilevel Security 	 209
J. Millen

Some Security Principles and their Application to
Computer Security 	 227

S. Gaines, N. Shapiro

Protection Mechanism Models: Their Usefulness 	 241
A. Jones

The Principle of Attenuation of Privileges
and its Ramifications 	 259

N. Minsky

Section IV. Theoretical Models of Operating System Security 	283

On Classes of Protection Systems 	 285
R. Lipton, T. Budd

Information Transmission in Sequential Programs 	 301
E. Cohen

Monotonic Protection Systems 	 341
M. Harrison, W. Ruzzo

On Synchronization and Security 	 371
R. Lipton, L. Snyder

Conversations on Secure Computation 	 391

List of Participants 	 409

THE FOUNDATIONS OF SECURE COMPUTATION*

Richard A. DeMillo

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia

David Dobkin

Department of Computer Science
Yale University

New Haven, Connecticut

"How do you insure privacy?"
"By coding," I said. "A two-word signature is required to

gain entry to a section of the memory bank. Each word is made
up of fourteen bits, making a total of twenty-eight bits."

"Then the odds are about one hundred million to one against
a chance guess" ... "What if I entered someone else's code by
mistake?" ...

"Nothing would happen. A countersign is necessary which
requires another fourteen bits ..."

Duckworth shook his head.
"I still don't like it," he said.
I was annoyed by his obstinancy and responded by behaving

childishly.
"Here," I said. "I'll let you enter any two fourteen bit

words..."
Duckworth seems startled at my suggestion, but he complied

... The Confirm register lit up.
"What does that mean?" asked Duckworth.
I bit my lip.**

The preparation of this paper was supported in part by the
Office of Naval Research under Grant N00014-75-C-0450 and the
National Science Foundation under Grant MC576-11460.

** L. Eisenberg, The Best Laid Schemes, MacMillan, 1971.

1

I. INTRODUCTION

Professor Duckworth's canny guess retrieved information from
a fictitious Federal Investigation Bureau. In this case, fiction
is paler than life and therein lies a frightening fact. The
computer is often used (simultaneously) as an excuse for an
instrument of insensitive and destructive policy. Evidence is
the maintenance of information in machine-readable form with
only slight technical guarantees of security.

Computer security has been an important issue since the first
computer was developed. However, with the advent of faster and
more accessible machines used by many users and large quantities
of shared data, this issue has achieved far greater importance.
It is no longer sufficient to rely on a system of password
control through which a user is protected by having a 7-letter
code known only to himself, since while this may, in the best
case, prevent other users from directly accessing the users area,
it does little to prevent indirect access. The potential dangers
from such indirect access increase manyfold. In this survey,
we shall discuss protection in two forms. The first involves the
problems of unauthorized users gaining access to restricted data.
In this case, it is necessary to discuss access control mechanisms
that can be brought to bear in order to protect each users
security. A second and far more subtle method of compromising a
system is through what is called "statistical inferencing". Here,
the user obtains information that is available to him legally and
uses this information to infer information to which he has no
access privileges. As more secure access-control mechanisms are
proposed to guard from illegal access to protected data, it is
this problem which looms as the major important problem of data
security. And, this problem can never be totally solved since we
must grant to authorized users access to data of this type. As
an illustration of this problem, consider a problem faced by the
census bureau (or any other creator of administrative databases).
In such a database, sensitive information is collected about a
group of individuals while guaranteeing each individual that data
collected about him will not be made available to users at large.
However, in order to do research on large segments of the popula-
tion, it is necessary for aggregated forms of this data to be
made available to certain users. Suppose that a sociologist
wishes to study correlations among a population with respect to
various characteristics. Then, it might be necessary to give
this sociologist access to the data. However, in order to
guarantee each individual's privacy, we will wish to do this in
a statistical manner. That is, we will refuse to answer questions
about an individual or small set of individuals, but will make
available information about larger segments of society in a manner
that does not give information about any individual. And the
problem arises as to hoW to insure that no malicious user can use

2

this information in order to determine the characteristics of a
single individual. A common method that has been proposed is to
refuse access to information about any set of individuals which
consists of too few people and in this manner restrict access to
individual data. When data is given about a set of individuals,
it will then be given in an aggregated form consisting of mean
or median characteristics or counts of the number of people
having a certain characteristic. However, as shown below, such a
limitation is often not sufficient to guarantee individual
privacy. Furthermore, refusing to answer a question often gives
as much information as an aggregated answer since one might be
able to infer information from the reason for a non-answer.
Another area where this problem is of great significance is in
the problem of medical record-keeping. Here, we may wish to
track a set of people having a certain ailment in their early
life (or people who have been exposed to certain phenomena) in
order to determine long range effects of medications or exposures.
In so doing, we want to make the data as helpful as possible to
medical researchers while guaranteeing individual privacy.
Because of the nature of such data, it is of great value to
malicious users.

In this survey, we shall study the recent developments in
these two areas, improved access-control mechanisms and guaran-
teeing statistical confidentiality. We begin with a study of
the former problem in the next section. The problem of statisti-
cal security, which seems to be a major problem in the area, will
be studied in detail in the third section. The goal of the
survey shall be to highlight issues and recent developments in
those areas. Because of our limited space, we cannot go into
any issues in any amount of detail. The interested reader is
referred to Hoffman's book [13] for an elementary survey of these
issues and remaining papers a [3] for details of the state of
the art on such problems. It will be clear in what follows that
the interplay of theoretical and practical research has led us to
question the limitations which we place in the notion of security
as well as to create "secure" systems.

IL ACCESS CONTROL MECHANISMS

In operating systems, the most common forms of protection
access-control are the access control mechanisms first introduced
by Graham and Denning [11]. Access control mechanisms are cap-
able of enforcing rules about who can perform what operation or
who can access an object containing certain information. For
example, users may be able to access objects via READ, WRITE,
SORT, DELETEFILE, or APPEND commands with different users allowed
restricted access to individual files. Access control may be
represented by a subject-object matrix through which a subject

1.

i's privileges for object j are represented as element ij in the
matrix. Given such a system, one will wish to determine if it
defines a secure system: can a subject obtain access to
restricted objects by combining a set of privileges? In general,
the problem of determining security is undecidable by a result
of Harrison, Ruzzo, and Ullman [12]. While this result is of
theoretical interest, it does not address the problem in a
practical manner, since for particular access control mechanisms,
it may be possible for specialized algorithms to solve the
security problem. Thus, it may still be possible for the design-
er of a given system to determine the security of his system by
an efficient algorithm, even though no general procedure exists
for testing the security of arbitrary access control matrices.

A basic question is whether it is possible to design a
protection mechanism of sufficient richness so as to be capable
of admitting a complex variety of sharing relationships, while
being of a sufficiently simple form to have an efficient algo-
rithm for checking its integrity. One important step toward
answering this question has been made by Jones, Lipton and
Synder [15, 16, 26]. Under a restricted model called the Take-
Grant System, there is a linear time algorithm for testing
subject security [15,16] and hence the system can be regarded as
having a high degree of integrity. Furthermore, the rich
instances of this system demonstrated by Snyder [26] suggest that
this system will also be satisfactory in an environment where
complex sharing is desired.

A Take-Grant model can be represented by a finite, directed,
edge-labelled state graph and a set of rewriting rules to allow
for state transitions. Vertices are labelled as either subjects
(representedass.), objects (represented as o

i
) or unknown

(representedasu i)—Avertexu.nmy be either a subject or an

object. Edges are labelled with rights consisting of either t
(for take), g (for grant) or t,g. We have four rewriting rules.
Rules allow for transitions by allowing subgraph a to be replaced
by subgraph b if a==>b is one of our rewriting rules. The rules
are then given as a take rule, a grant rule, a create rule and a
remove rule which serve to handle sharing and file handling in
the user environment.

4

Graphically, these rules are:

(1) Take: 	 u
2

a 	
3

allowing subject 1 to take the privilege of u
2

to u
3

since
s
1

has take rights.

(2) Grant: s i---.11-4u 2 u3 ==>

allowing subject 1 to grant his privileges to u
3

to u
2

since
s
1 has grant rights.

(3) Create: s
1
 ==> s

l
a u

2

allowing s
1
to grant u

2
a subset a of his rights.

b -a
b

(4) Remove: s
12

 ==> s1
	2

allowing subject 1 to remove rights of a from u 2 .

We then phrase the security question as a test of whether or not
x can "a" y. This situation corresponds to being given an initial
configuration and asking whether we apply a set of rewriting rules
to obtain a graph containing an edge from x to y containing the
label a. In contrast to the results of [12], a test is available
under which security in this model can be determined in linear
time [15,16]. Furthermore, Snyder [26] demonstrates implementa-
tions of this method in which sufficiently rich user sharing is
available.

11I. SECURITY OF STATISTICAL DATA BASES

While the methods mentioned above are important for securing
operating systems, they are of limited value in considering the
data base security problem. Here, we are dealing with an environ-
ment where most users have only READ access to the information
in the data base. The problem is to determine whether users can
manipulate this access to compromise the data base. It is no
longer the case that we may determine whether a user may obtain
rights which should not he available to him, since every user has
the same rights and no rights can be taken or granted beyond these
basic rights. The issues run deeper. Users are granted access to
information regarding the population served by a database and we
wish to guarantee that no user may use this information to infer
data about protected individuals (or groups) served by the data
base. We are, thus, dealing with nebulous inference mechanisms

5

rather than simple security violations. We must discern whether
a user can infer information about guarded individuals from the
information we have made available to him. With the additional
considerations of inferences, the problem becomes more complex.
We are still faced with the tradeoff between richness and
integrity: we wish to produce a system rich enough to supply
useful information to those using the database while assuring
the system's integrity in protecting those represented in the
database.

A simple example of the subtlty of such a problem was first
given by Hoffman and Miller [14] who showed that with sufficient
queries a dossier could be complied on an individual represented
in a database. Typically, one wishes to be able to ask questions
of a database of the form:

"How many people in the database satisfy properties
PP

2'
...

'
P
k

"What is the mean (or median) value (of a parameter) of
people satisfying properties P_,P 	P ?"

1 2'

Such a parameter might be "salary" or "number of times hospital-
ized with a certain disease." Typical properties might be "male",
"over 50", or "having an income greater than $10,000." Such
questions or queries are necessary in a variety of applications.
For example, suppose that one wishes to dtermine the incidence of
cancer among workers in plants using certain types of chemicals
[25], to track a population having a certain ailment in child-
hood to determine their adjustment to society [18], or to draw
correlations between salary and standard of living.

As an example of the ease with which such a database can be
compromised*, we consider the following example from [7] consist-
ing of the characteristics of a number of persons who have
contributed to a political campaign.

* We will say that a data base has been compromised (or cracked)
if a user may infer from the response to valid queries a
charactoristic of a person served by the data base.

6

Person Business
Area

Party ' Favoritism
Shown by

Administration

Geographic
Area

P1 Steel

A
 f=

4
1-4

A
 C=G

I—
I
A

 c4
--1

High Northeast
P2 Steel Medium West
P3 Steel Low South
P4 Sugar Medium Northeast
P5 Sugar Low Northeast
P6 Sugar High West
P7 Oil Low South
P8 Oil High South
P9 Oil I 	Medium West

Suppose that in order to protec .t individual integrity, we are
only willing to make available to a user the average contribution
of people sharing a common attribute, e.g., contributions from
the steel industry consisting of the average of the contributions
of the first three people. In this manner, we might hope to
secure the database. Observe, however, that we may generate a
system of twelve equations in the variables C 1 ,...,C9 with C

i
corresponding to the contribution of P i (e.g., C 1+C 2+C 3 corre-

sponds to the contribution from people in the steel industry) and
may then solve these equations to determine the individual values
of C

1,
 C 2, ... C

9.
While this example provides only a simple view

of the problem in securing a database, it forebodes the diffi-
culties that actually occur in large administrative databases.
This issue has been previously investigated by [2,9,10] from a
statistical point of view and [21,22] has considered the impli-
cations of such schemes from a medical point of view.

We are, therefore, led to consider the techniques that might
he applied to enhance the integrity of the database. The enhance-
ments are basically of two types both dealing with restricting
data flow. We might either restrict the number and types of
queries which a user might be allowed or we might restrict the
form of the answer given to a query. In both of these instances,
we must take care to insure that the restrictions we place on
the model do not sacrifice its richness. Previous studies of this
problem have appeared in [1,6,4,7,8,19,20,23,24]. In [5], this
problem is shown to be basic to the study of combinatorial
inference and is related to a number of well-known combinatorial
problems including group testing and balance problems.

We turn now to exposition of the methods which have been
proposed to handle this problem. For each, we also describe the
known results concerning its efficiency.

7

Limiting Overlap Between Mean Queries

In this case, queries are allowed about the mean value of a
characteristic corresponding to a group of people with the
restriction that no two queries may overlap in more than r
positions. To enhance system security, the further restriction
that all queries involve at least p people may also be added.
If we define S(p,r) as the minimum number of queries needed to
compromise the database, then

S(p,r) < 2p.
— r

which is a small number of queries in a database designed to
provide useful information to its nonmalicious users.

Only Allowing Median Queries and Not Allowing Mean Queries

As we have seen, mean queries are too powerful. What if they
are not allowed and the user is given the median value of a
characteristic corresponding to a group of p people? This seems
promising since while the median does actually give the value
corresponding to one person, it supplies no information about
other members of the database other than their relationship (or
about a given value). Indeed, this helps sine - in this model -
it is not possible to determine certain values occurring at the
tails of those considered in the sample (other than determining
a lower bound on those values at the top end and an upper bound
on those values at the bottom end). However, for values situated
near the median of the original sample, compromise is easily

arranged. In 0(log
2
p) queries concerning the median value

associated with a set of p people, a database can be cracked and
someone's value may be determined exactly. Information regarding
relative values associated with different people can generally
be obtained more quickly and this is often sufficient to compro-
mise the database.

Lying

If exact information is so dangerous, answers may be dis-
torted slightly while maintaining the integrity of answers given.
This distortion may be achieved by adding "noise" to all answers
in a manner that does not vastly change their implications.
However, if the noise is not of sufficient size to cause signifi-
cant changes in answers given, then it is also not statistically
sufficient in securing the database. Variant proposals involve
giving only a "feel for the data". This might be achieved by
returning the value corresponding to one individual involved in
the query without either identifying the individual or his

8

ranking (e.g., max, min, median ...) in the set encompassed by
the query. In the most simple form of this type of lying, we
allow only queries involving n individuals, restrict to 1 overlap
among queries and return results at random. By appealing to

results from matching theory, we can show that n
2
-1 queries can

be successfully answered without compromising the database. 2
However, using a simple strategy based on finite geometric, n

well chosen queries generally suffice to compromise. While this
number is possibly large enough to discourage all but the most
malicious of users, it is obtained for a model more restrictive
than is realistic; "real" systems will surely be more vulnerable.

Distorting the Data

In implementing this procedure, we must take care to guarantee
that the data are distorted in such a manner as to make answers
obtained from the database meaningful. One such method consists
of having the census taker ask two questions at random with
certain fixed probabilities in such a manner that the census
taker does not know which question the person answering the
question is answering. The questions are chosen so that their
answers will have similar statistics. For example, if one wishes
to determine the number of abortions that members of a population
have had, he might have the subjects choose a card at random from
a deck such that p% of the questions in the deck ask about
abortions (e.g., number of births, or visits to a certain place.
...). In this manner, the system is supposed to be secure
(assuming 0 50) since even if cracked, we do not know which
question the compromised individual answered. However, such
claims of security may be questioned since in our world models,
we often have sufficient information (or can obtain such informa-
tion) to discern between which of the two questions an individual
answered.

Although the procedures for compromising databases when any
of the security precautions presented above are highly non-
trivial, they must be taken quite seriously because often their
benefits outweigh even large costs of their implementation. In
1972, a cadidate for Vice President of the United States was
forced to resign from the campaign after disclosures that he had
had electric shock treatment for nervous disorders. It would be
worth significant probing for an opposition party to obtain such
information about a leading candidate. The lengths to which
politicians and their operatives are willing to go in securing
information was graphically illustrated in the Watergate disclo-
sures. Certainly, all of their administration's efforts were
sufficiently greater and more dangerous than the efforts they
would have needed through a scheme of the type mentioned here to
compromise security in any of the measures we've given. Hence,

9

it is extremely important that database designers of the future
be aware of the results reported here and use them as a guideline
in designing their access control and limiting measures.

One question that arises in any consideration of data
security is the auditing question. Often if we cannot totally
secure a system, we at least wish to determine when and how it
was compromised. To date, most security violations have been
discovered by accident [17]. In one case, a successful criminal
told a friend who turned him in. Other computer criminals have
been caught when others noticed changes in their lifestyles
brought about by their increased wealth. However, it is very
dangerous to rely on flaws of human character to guarantee that
those who violate computer security will be apprehended. In a
consideration of auditing procedures for detecting security
violations under the models proposed above, we observe that in
the case of means, medians and arbitrary selections, procedures
do exist for checking on security violations. However, all of
these procedures are far more complex than the actual running of
the database system and would typically require that the machine
lie dormant for about two-thirds of every day while checking the
potential results of answers given during the rest of the day.
And,-no such procedure has been proposed that can take into
account the possibilities of collusion among database interroga-
tors or of information obtained from other sources.

IV. CONCLUSIONS

Methods do now exist to greatly enhance the security of
operating systems and databases. While such methods may never be
unbreakable, significant progress has been made towards such a
goal. The "foundations" of security research is concerned with
the exact locations of these dividing lines. It is now the case
that theory exists sufficient to design a system for which
illegal access is so difficult or a database for which inferences
from legal data is so complex, that security violations will be
beyond the realm of all but the most dedicated and sophisticated
penetrators. And, the design of systems sufficiently secure with
respect to such penetrators will perhaps never be achieved. One
can only hope that the cost of compromise will increase to exceed
the possible benefits that could be derived from such a compromise.
In this paper, we have explored recent theoretical developments
on these problems which greatly increase the cost of compromise.

10

1

The major open problems remaining include implementing a
security system based on the Take-Grant model and improving upon
the methods for enhancing security of data in an administrative
database. In the latter case, many problems of significant
theoretical interest remain. A major open problem requires the
construction of a method of collecting and disseminating
information to authorized users without compromising the security
of any individual represented by the database. The remaining
papers in this volume [3] contain close relations of these
problems, and address issues whose eventual resolution will help
guide our policies for the use of computers in sensitive appli-
cations.

REFERENCES

[1] Budd, T., "Databases That Are Hard To Compromise", unpub-
lished manuscript.

[2] Dalenius, T., "Privacy Transformations for Statistical
Information Systems", JOurnal of Statistical Planning and
Inference, 1, (1977), pp. 73-86.

[3] DeMillo, R. A., Dobkin, D., Jones, A. K., and Lipton, R. J.,
this volume.

[4] DeMillo, R. A., Dobkin, D., and Lipton, R. J., "Even Data
Bases That Lie Can Be Compromised", IEEE Transactions on
Software Engineering.

[5] DeMillo, R. A., Dobkin, D., and Lipton, R. J., "Combinator-
ial Inference", this volume.

[6] Denning, D. E., "A Review of Research on Statistical Data
Base Security", this volume.

[7] Dobkin, D., Jones, A. K., and Lipton, R. J., "Secure Data
Bases: Protection Against User Inference", Research Report
No. 65, Dept. of Comp. Sc., Yale Univ., April 1976, also ACM
Transactions on Data Base Systems (to appear)

[8] Dobkin, D., Lipton, R. J., and Reiss, S. P., "Aspects of
the Data Base Security Problem", pp. 262-274, Proceedings of
a Conference on Theoretical Computer Science, Waterloo,
Canada, 1977.

Fellegi, I. P., "On the Question of Statistical Confident-
iality," Journal of American Stat. Assoc., 67, 337, March
1972, pp. 7-18.

[10] Fellegi, I. P., and Phillips, J. L., "Statistical Confiden-
tiality: Some Theory and Applications to Data Dissemination",
Annals Econ. Soc'l Measurement, 3, 2, (April 1972), pp. 399-
409.

[11] Graham, G. S., and Denning, P. J., "Protection - Principles
and Practice", Proceedings 1972 SJCC, 40, pp. 417-429, AFIPS
Press, 1972.

[12] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D., "Protect-
ion in Operating Systems", CACM, 19:8, (1976).

[13] Hoffman, L., Modern Methods for Computer Security and
Privacy, Prentice-Hall, Englewood Cliffs, New Jersey, 1 . 977.

[14] Hoffman, L. J., and Miller, W. F., "Getting a Personal
Dossier From a Statistical Data Bank", Datamation, 16, 5,
(May 1970), Pp. 74-75.

[15] Jones, A. K., Lipton, R. J., and Snyder, L., "A Linear Time
Algorithm for Deciding Security", Proceedings of the 17th
FOCS, Houston, Texas, October 1976.

[16] Lipton, R. J., and Snyder, L., "A Linear Time Algorithm for
Deciding Subject Security", JACM, 24:3, 1977.

[17] Parker, D., Crime By Computers, Scribbners, New York, 1976.
[18] Roughman, K., private communication, November 1977.
[19] Reiss, S. P., "A Combinatorial Model of Data Base Security",

Technical Report, Yale University, Dept. of Comp. Sci., 1976,
also JACM, (to appear)

[20] Reiss, S. P., "Medians and Data Base Security", this
volume.

[21] Schlorer, J., "Identification and Retrieval of Personal
Records from a Statistical Data Bank", Methods of Information
in Medicine, 14, 1, January 1975, pp. 7-13.

[22] Schlorer, J., "Confidentiality of Statistical Records: A
Threat Monitoring Scheme for On-Line Dialogue", Methods of

- Information in Medicine, 14, 1, (January 1976), pp. 36-42.
[23] Schwartz, M. D., Denning, D. E., and Denning, P. J.,

"Securing Data Bases Under Linear Queries", Proc. AFIPS 1977,
pp. 395-398.

[24] Schwartz, M. D., Denning, D. E., and Denning, P. J.,
Compromising a Statistical Data Base", Dept. of Comp. Sci.,
Purdue Univ., 1977.

[25] Science Magazine, October 28, 1977, pp. 382.
[26] Snyder, L., "On the Synthesis and Analysis of Protection

Systems", Proc. 6th ACM Symposium on Operating Systems
Principles, November 1977, pp. 141-150.

12

SECTION F. DATA BASE SECURITY

A theme of the introductory article in this volume is that
databases of personal information will continue to be construct-
ed. In addition, this information will be communicated among
several processing sites, and users at these sites will expect
to be able to extract usable information. A significant task of
researchers in database security is to point out "danger spots",
i.e., sources of possible insecurity in the system before they
are actually constructed.

The four papers in Section I address tradeoffs between
usability and security. Dorothy Denning's survey of statistical
database security reminds us how far we have come in realizing
the limits of the notion of database security. The extant
methods of compromising large statistical almost always involve
transparent uses of information delivered in response to queries.
The article by Richard DeMillo, David Dobkin and Richard Lipton
discusses the more subtle kinds of combinatorial inferences
which can he formed out of query responses. Compromise in the
statistical sense is not the only security problem in database
design. The pragmatic issues stemming from the authorization of
access to database and data communication systems are outlined
in the contribution by Don Chamberlin, Jim Gray, Patricia
Griffiths, Moscheh Mresse, Iry Traiger, and Bradford Wade. The
final paper of this section by Stephen Reiss returns to statist-
ical compromise with a detailed technical study of the insecurity
inherent in databases which allow a certain statistical query
strategy.

13

A REVIEW OF RESEARCH ON
STATISTICAL DATA BASE SECURITY*

Dorothy E. Denning

Purdue University

I. INTRODUCTION

The objective of a statistical data base is providing
statistical summaries about a population without releasing the
specifics about any individual. But this objective often cannot
be met. It is frequently possible to deduce private information
by correlating summaries. If so, the data base is compromised.

This paper surveys recent research in the security of
statistical data bases. We begin with a general model of a
data base.

II. DATA BASE MODEL

Consider a statistical data base containing sensitive
information about n individuals. Each individual is assigned to
one or more categories, plus has numerical values in one or more
classes. At least one individual belongs to each category, and
no category comprises all individuals. The data base is static;
i.e., insertions, updates, and deletions do not occur over the
time period of interest. Summary statistics are requested from
the data base with queries. Queries use classes as domains but
apply only to particular individuals or individuals in specified
categories.

* Work reported herein was supported in part by NSF Grant
MCS75-21100.

15

Table 1 shows an automobile insurance data base of size
n = 12. Each individual belongs to exactly one category in each
of these sets:

Sex = {M, F)
Marital Status MS = fS, M, W)
Age Group AG = f(16- 25), (26-60), (61- 100))

TABLE I. Data Base for Automobile Insurance Company

Keys
Numeric Symbolic

Categories
Sex Marital

Classes
Age Accidents Violations Premium

Stat. Group

1 Adams M M 26-60 0 0 100

2 Boggs M S 	26-60 0 1 112

3 Cook F M 16-25 1 0 -135

4 Dodd F M 26-60 0 0 95

5 Hays M 16-25 0 0 107

6 Jones F W 61-100 0 0 105

7 Lynn M M 26-60 0 2 130

8 Moore M M 26-60 2 0 150

9 Rose F M 26-60 0 0 95

10 Smith M S 	16-25 2 1 185

11 Trip F S 	16-25 0 1 125

12 Wood M 26-60 0 0 100

Each individual has values for three classes: Accidents,
Violations, and Premium. The possible values for each class may
also be viewed as categories:

Accidents A = {0, 1, 2}
Violations V = {0, 1, 2}
Premium P = f95, 100, ..., 1851

All examples will refer to this data base.

Compromise occurs whenever it is possible to deduce from the
responses of one or more queries information not previously known
about an individual. The compromise is positive if it reveals
that the individual belongs to some category or has a particular

16

value in some class. The compromise is negative if it reveals
only that the individual does not belong to some category or have
a particular value in some class. For example, learning that
Lynn had 2 traffic violations is a positive compromise; learning
that he had at least 1 violation (i.e., "he did not have no
violations") is a negative compromise. Partial compromise occurs
when information about a subset of individuals in the data base
is deduced; complete compromise occurs when everything in the
data base is deduced. A data base is strongly secure if both
positive and negative compromise is impossible.

Researchers have studied two basic forms of queries:
characteristic-specified and key-specified. Characteristic-
specified queries request statistics about all individuals in the
data base who satisfy a given logical formula over the categories.
The set of individuals satisfying a characteristic (formula) C,
denoted XC , is called the query set. The query set size is

denoted IX I. An example of a characteristic is

C - (Sex = M and AG = (26-60)). The query set for this
characteristic is X C = (Adams, Boggs, Lynn, Moore, Wood}. An

example of a characteristic specified query is "How many
individuals satisfy C?";'that is, "How many are male and in the
age group (26-60)?" Another is, "What is the mean number of
traffic violations among males in the age group (26-60)?"

Key-specified queries request statistics for a set of m
individuals identified by a list of keys Z = (z

1m
). The

keys may be the names of the individuals or, more likely, a set
of categories uniquely identifying the individuals. Examples of
key-specified queries are "How many traffic violations were in-
curred by Hays, Jones, and Moore?" and "What was the median
premium paid by Boggs, Moore, and Smith?"

We shall review separately the studies made of characteristic-
specified and key-specified queries.

III. CHARACTERISTIC-SPECIFIED QUERIES

Research prior to 1976 concentrated on characteristic-specified
counting queries. Denoted qcount(C), a counting query returns
the number of individuals satisfying a characteristic C; that is
qcount(C) = IX I. For example, qcount(AG = (16-25) or

AG = (26-60)) = 11.

In one of the first published papers on the inference
problem, Hoffman and Miller described a simple algorithm for
compromising a data base responding to counting queries restricted
to conjunctive characteristic formulae; only the logical operator
and is allowed in a conjunctive formula [Hom 70]. Their algorithm
is based on the principle of using queries which return small
counts to isolate an individual. For example, consider these two
queries and responses:

	

qcount(Sex = F and MS = S) 	 = 1
qcount(Sex = F and MS = S and V = 1) = 1

If it is known that Trip is female, single, and represented in
the data base, then the second query reveals that she hnd 1
traffic violation. In general, if it is known that an individual
belongs to categories c l ,...,ck and if qcount(c j and...and c k)

= 1, then the query qcount(c i and ... and ck and ck4_ 1) reveals

whether or not the individual also belongs to category c k+1

 (according to whether or not the response is 1 or 0).

Haq formalized these concepts [Haq 74,75]. He determined
conditions (too complex to enumerate here) necessary and suffi-
cient to achieve positive and negative compromise (which he
called personal disclosure). His conditions take into account
an intruder's supplementary knowledge about the individuals
represented in the data base. Although his theorems provide a
means to check if a data base is secure, it is not clear they can
be applied in practice since the supplementary knowledge of the
users is not likely to be known.

Schlorer investigated whether medical data bases could be
secured under counting queries using general characteristic
formulae [Sch 75]. He noted the danger of compromise when queries
return small counts. Thus, he considered the security of a data
base of size n whose queries do not respond unless the count is in
the range [k, n-k], for some k > 0 (the upper bound n-k protects
against finding the answer to q(C) from n - q(not C)).

He showed that compromise may be possible even for large
values of k. To illustrate his "tracker" technique, suppose k=4
for the automobile insurance company data base -- i.e., no
responses are given to queries whose count falls outside the
range [4, 8]. Suppose it is known that Trip is female and single.
Consider these queries and responses:

qcount(Sex = F and MS 	S) 	 = 4
qcount((Sex = F and MS # S) or (Sex = F and V = 0)) = 4

18

otherwise

(IX I if k < IXC I < n-11
qcount(C)

Because the responses to both queries are the same, it can be
concluded that no single female has no traffic violations;
therefore, Trip must have had a violation. Palme suggested a
similar technique for queries that compute means [Pal 74].

Chin studied data bases whose queries respond with a sum and
a count of elements in the query set, provided 2 < IXc l < n-2.

Denoted gsum(C; Y), a summing query returns the sum of the values
in class Y for all individuals satisfying the characteristic C.
For example, gsum(Sex = M; Violations) = 4. In general,

gsum(C; Y) 	= 	Elirc if k < IXc l < n-k

0 otherwise

where Y denotes the set of values in class Y for all individuals

in Xi, and "0" signifies an unanswerable query. Chin's data bases

also satisfied the property that no two individuals belong to the
same categories (this assumption is violated by our sample data
base -- e.g., Adams and Wood have identical characteristics).

Using "query graphs" to represent the state of a data base,
Chin estiblished necessary and sufficient conditions for compro-
mising. A query graph for a data base is an undirected graph
whose vertices correspond to the individuals represented in the
data base. If an individual i is identified by characteristic C.

and an individual j by characteristic C., there is an edge from

vertex i to vertex j if and only if there is a characteristic C
that isolates individuals i and j; that is gsum(C; Y) =
gsum(C,; Y) + eisum(C.; Y) for any value class Y. Chin proved

that if the characteristic identifying some individual is known,
then compromise is possible if and only if (a) the query graph
has at least one odd cycle or (b) there exists a characteristic C
such that qcount(C) is odd and > 3.

Schwartz, Denning, and Denning studied data bases which
respond to queries for counts and sums for arbitrary k [SD2 77,
Scw 77]. We found that even for large values of k, most data
bases may be compromised by a "general tracker" technique related
to Schlorer's tracker. A general tracker provides a means of
obtaining the answers to queries with small (or large) counts.
We found further that most data bases satisfy the conditions for
compromise. Hence, methods much more powerful than simply re-
stricting the range of allowable query responses are needed to
prevent compromise.

Three other proposals for preventing compromise include
modifying the answers to queries, providing answers based on
random samples of the data base, and partitioning the data base.
Several studies have been made of rounding schemes for modifying
the answers to counting queries [Fep 74, Han 71, NaS 72, Pal 74,
Ree 73, Sch 76]. One such approach is pseudo-random rounding.
Truly random rounding is not secure since the correct answer to
any query can always be determined by averaging a sufficient
number of responses to the same query. With pseudo-random round-
ing, the same query always returns with the same response. A
second approach is to always round the actual response down to the
nearest multiple of some integer. Both rounding schemes can be
reasonably effective against compromise. However, any kind of
"stochastic error" added to responses is subject to removal by
well known methods from communication theory.

The second approach to preventing compromise is apply queries
only to a random subfile of the data base, but not the complete
data base [Han 71]. Even if some element of the subfile is
identified, it may not be possible to learn which individual in
the data base was selected to be this element. For example, the
Census Bureau in 1960 provided statistics based on a "1 in 1000"
sample. This technique is effective only for very large data
bases. It also breaks down if the use of multiple extracts is
allowed.

The third approach to preventing compromise partitions the
data base into groups. In the Yu and Chin scheme [YuC 77],
queries must be for characteristics involving entire groups,
making it impossible to isolate any particular individual. For
example, the sample data base could be partitioned into 3 groups:
G1 = "no accidents or violations", G2 = "violations but no
accidents", and G3 = "accidents". The query "How many males had
no accidents?" would be modified to "How many males and females
had no accidents?" before a response would be given since the
first characteristic is not satisfied by all members of groups Cl.
and G2. Yu and Chin show that the technique may he effective
even if the data base is dynamically undergoing insertions,
('eletions, and updates.

Several studies have also been made of "threat-monitoring"
tediniques designed to detect the possible occurrences of compro-
mise. Felligi showed that it is at least theoretically possible
to determine whether the response to a query, then correlated
with the responses to earlier queries, could result in compromise
[Fel 72]. Unfortunately, the method is extremely cumbersome.
Hoffman and Miller suggested that a log or audit trail of queries
be kept and inspected for unusual bursts of activity or queries
returning small counts [Hom 70]. Schlorer suggested that
frequency counts of categories be used to determine whether or
not a given query might lead to a compromise because of small
counts [Sch 76]. Response is not made to any query involving
categories c" c unless the product of the frequency counts
qcount(c)/n1
	.k
(for 	= 1,...,k) is above some threshold.

lV. KEY-SPECIFIED QUERIES

The security of key-specified queries was not investigated
until 1976. In the first published paper addressing the problem,
Dobkin, Jones, and Lipton considered summing queries over fixed-
size subgroups of the data base. A key-specified summing query
denoted qsum(7.; Y), returns the sum of the values in class Y for
the m individuals identified by the list of keys Z = (z

1"
..,z

m
).

For example, gsum((Hays, Jones, Moore); Violations) = 0. Since
the query set size, m, is known, counting queries are of no
interest. Dobkin et al. showed that, even if no two query sets
can overlap by more than a given amount, compromise may be
achievable in linear time (in m) without prior information, 2
provided the data base is sufficiently large (roughly at least m

elements). Small data bases are secure. Davida et al. have also
examined conditions under which compromise may he achieved when
queries return sums and maximum values [Dav 76].

Dobkin, Jones, and Lipton also considered queries for the
median value of fixed-size subgroups and conditions sufficient
to compromise in this case. Subsequently, DeMillo, Dobkin, and
Lipton showed that compromise may be possible even if the data
base "lies" about the median value -- i.e., responds with some
randomly chosen value from the set [DDL 76].

Schwartz, Denning, and Denning extended these results to
weighted summing queries over fixed-size subgroups [SD1 77, Scw
77]. We were surprised to learn that if the weights were unknown,
compromise is possible (in linear time) provided one value in the
data base is initially known. But compromise is impossible with-
out initial information -- even if overlap between queries is
unrestricted. In contrast, as shown by Dobkin et al., compromise
may be possible without prior information for ordinary summing

queries (all weights = 1).

Kam and Ullman considered summing queries over subgroups of

size 2 P for some p [Kali 76]. The reason for this unusualy choice
of allowable query set sizes is their data base model, which

assumes that the data base comprises n = 2
t
 individuals, for some

t. Each individual is identified by a key which is a bit string
of length t. Exactly one individual corresponds to each possible
bit string. Query sets are specified by fixing s of the t bits,
so that the number of individuals in any query set is

)
t-S

4

It is unclear whether this model is applicable in practice.
For example, we could attempt to put our sample data base in this

context. Each key would be a bit string s i s 2 ... with s
1
= 1 if

Sex = M, 0 if Sex = F, etc. The difficulty is that certain keys
will not be represented in the data base (e.g., no individual is
male, single, and in the age group (61-100)).

Chin commented on this severe limitation of this model. He
proposed a similar model which allows for the possibility that
certain keys are not represented in the data base [Chi 77]. In
this case, the queries are characteristic-specified rather than
key-specified since the query set size is determined by the number
of individuals having the characteristic. Chin's results were
discussed in the previous section.

The studies of key-specified queries are probably not of
practical interest. Most, if not all, statistical data bases are
queried with characteristics involving variable-size subgroups
rather than fixed-size subgroups. However, the studies have
theoretical interest in that they provide insight into the nature
of compromise.

V. CONCLUSIONS

Preventing compromise in statistical data bases is difficult;
possibly impossible without severely restricting the free flow of
information. The "obvious" techniques for reducing the threat of
compromise -- e.g., limiting the range of allowable responses or
restricting the amount of overlap between query sets -- are
easily circumvented. The fruitful direction of research is in
security measures that do not return "exact" answers from the
original data base: rounding responses, modifying the data,

22

extracting random samples of data, partitioning the data, and
other threat monitoring schemes. Further research is needed in
dynamic data bases; except for the work by Yu and Chin [YuC 77],
little is known about safeguards for constantly changing data
bases.

ACKNOWLEDGMENTS

It is especially a pleasure to thank Mayer Schwartz whose
ideas and perceptions strongly influenced this paper. It is also
a pleasure to thank Peter Denning for his suggestions on an
earlier version of this paper.

REFERENCES

Chi77 Chin, F. Y., "Security in Statistical Data Bases for
Queries with Small Counts", Dept. of Comp. Sci., University
of Alberta, 1977.

Dav76 Davida, B. I. et al., "Data Base Security", TR-CS-76-14,
Dept. of EE and Comp. Sci., University of Wisconsin, July_
1976.

DDL76 DeMillo, R. A., Dobkin, D., and Lipton, R. J., "Even Data
Bases That Lie Can Be Compromised", Research Report #67,
Dept. of Comp. Sci., Yale University, May 1976.

DJL76 Dobkin, D., Jones, A. K., and Lipton, R. J., "Secure Data
Bases: Protection Against User Inference", Research Report
#65, Dept. of Comp. Sci , Yale Unit., April 1976.

Fe172 Fellegi, I. P., "On the Question of Statistical Confiden-
tiality", J. Amer. Stat. Assoc., 67, 337 (Mar 1972), pp.
7-18.

FeP74 Fellegi, I. P. and Phillips, J. L., "Statistical Con-
fidentiality: Some Theory and Applications To Data
Dissemination", Annals Econ. Soc'.l Measurement, 3, 2,
(April 1974), pp. 399-409.

Han71 Hansen, M. H. "Insuring Confidentiality of Individual
Records in Data Storage and Retrieval for Statistical
Purposes", Proc. AFIPS FJCC, 39, (1971), pp. 579-585.

Haq74 Haq, M. I., "Security in a Statistical Data Base", Proc.
Amer. Soc. Info. Sci., 11, (1974), pp. 33 - 39.

Ilaq75 Haq, M. I., "Insuring Individual's Privacy From Statistical
Data Base Users", Proc. AFIPS NCC, 44, (1975), pp. 941-946.

HoM70 Hoffman, L. J. and Miller, W. F., "Getting a Personal
Dossier From a Statistical Data Bank", Datamation, 16, 5,

(May 1970), pp. 74-75.
KaU76 Kam, J. B. and Ullman, J. D., "A Model of Statistical Data

Bases and Their Security", TR-207, Dept. of EECS, Princeton
Univ., June 1976.

NaS72 Nargundkar, M. S. and Saveland, W., "Random-Rounding To
Prevent Statistical Disclosure", Proc. Amer. Stat. Ass.,
Soc. Stat. Sec., (1972), pp. 382-385.

Pa174 	'alme, J., "Software Security", Datamation, 20, 1 (Jan.
1974), pp. 51-55.

Ree74 Reed, I. S., "Information Theory and Privacy in Data Banks,

Proc. AFIPS, 42, (1973), pp. 581-587.
Sch75 Schlorer, J., "Identificaticn and Retrieval of Personal

Records From a Statistical Data Bank", Methods ()f Info. in
Medicine, 14, 1, (Jan 1975), pp. 7-13.

Sch76 Schlorer, J., "Confidentiality of Statistical Records: A
Threat Monitoring Scheme For On-Line Dialogue", Methods of
Info. in Medicine, 15, 1, (Jan 1976), pp. 36-42.

Scw77 Schwartz, M. D., "Inference From Statistical Data Bases",
Ph.D. Thesis, Purdue University, August 1977.

24

SD177 Schwartz, M. D., Denning, D. E., and Denning, P. J.,
"Securing Data Bases Under Linear Queries", Proc. IFIPS 77,
(1977), PP. 395-398.

SD277 Denning, D. E., Denning, P. J., and Schwartz, M. D.,
"The Tracker: A Threat to Statistical Data Base Security",
Computer Science Dept., Purdue University, CSD-TR250, Oct.
1977.

YuC77 Yu, C. T. and Chin, F. Y., "A Study on the Protection of
Statistical Data Bases", Dept. of Computer Science, Univ. of
Alberta, 1977.

DISCUSSION

Dobkin: When you say "weights", are those arbitrary weights
-- or can you show for all weights that can't be done?

Denning: As long as they are not known. However, if you
have one piece of information, you can solve for the weights, and
once you have the weights, you can solve for everything else.

Harrison: The example with the weights is somewhat amusing.
You can't do it if you don't know anything. You just add your-
self to the database, that gives you the one point you need ...
(laughter)

26

COMBINATORIAL INFERENCE*

Richard DeMillo

Georgia Institute of Technology
Atlanta, Georgia

David Dobkin
Richard Lipton

Yale University
New Haven, Connecticut

I. INTRODUCTION

We propose a new area of study in theoretical computer
science: combinatorial inference. The basic problem is as
follows.

We have a finite set X = x l ,...,xn and

we wish to infer properties of elements
of X on the basis of sets of "queries"
regarding subsets of X.

There is an immediate and apparent distinction between
combinatorial inferences and the more broadly construed kinds of
logical inferences also studied in computer science. By
restricting our attention to a sort of interactive dialog with
a device which may deliver information concerning a finite set,
we obtain problems which - a fortiori - concern feasible
inference.

Supported in part by ONR Contract number N00014-75-C-0752,
and ARO Grant number DAAG29-76-G-0338.

The forms of the allowable queries vary with the particular
application being considered, but a great many problems in
computer science, combinatorics, and optimization can be modelled
in such a manner. In this paper we survey some applications of
this general problem statement. We then illustrate some of the
techniques available for dealing with combinatorial inference by
solving some problems with particular relevance to current issues
in theoretical computer science.

We begin by considering the following problems:

1. Database Security Problem [1,2,3] A database is created
to contain census information concerning some subset of
the population of the United States. The information is
confidential and we wish to respect the privacy of
individuals represented in the database. However, as the
census data also contains important aggregate information
about subsets of the population, we must allow serious
researchers to access the aggregate information so long
as no individual's is compromised.

2. Function Identification Problem [4] It is required to
determine the structure of a computer program by observing
selected parameters of its operation. For example, we
may be given fragments of the coding of a program which
computes an unknown function and we wish to determine the
value of the function at a given point.

3. Group Testing Problem [5] A group of blood samples is to
be processed as rapidly as possible to identify diseased
persons. This is accomplished by mixing samples to
determine whether or not any members of a set of subjects
is infected, so that he can be identified in future
samples. However, the disease is such taht sets of
carriers of different strains can negate each other's
effects in certain situations.

4. Physical Search [6] A guessing game is played in which
the answer can be verified if found, but in which answers
to queries need not he truthful.

5. Balance Problems [8,9] These are classical inference
problems. One has a number of objects of some standard
weight 8 and two objects (identical in appearance) which
are defective in the sense that one weighs slightly less
than 8 while one weighs slightly more than 13 by an
identical amount. The defective objects are to be iso-
lated by weighings on a three arm balance.

6. Multidimensional Search [10,11] Given a set of X =
fx 1 ,...,xn i with geometric structure we wish to determine

whether or not X "contains" (i.e., determines) a point y.

28

For instance, in the case of binary search, X is a set of
points on a line and y must be determined to be equal to
one of the points by simple comparisons. In higher
dimensions, X may be a set of linear varieties, one of
which may contain y.

7. Coin-Weighing Problems [12] X is chosen from fl,...,k1
and the queries are of the form "what is IS n XI" where

each S
i 	

(1,...,0, the problem being to insure that

Sl'. S 	S
k
 determine X.

These problems may be studied by varying several parameters.

(a) Choice of Primitives. Solve the indicated problem by
using only queries from a suitably restricted set.

0) Upper Bounds. Determines a general strategy to insure
that queries Q 	always solve the problem, where k

(measured as a function of problem size and other para-
meters) is small.

(y) Lower Bounds. Determine minimal numbers of queries
needed to infer the required properties.

(d) Auditing. Prove upper and lower bounds in the complexity
of determining whether or not a given sequence of queries
allow inference of a given property.

(c) Enumeration. Determine the number of "unsafe" problems
for a given number of queries.

The references [1-12] consider for instance the problems (la),
(1f3), (ly), (2a), (20, (33), (413), (5c), (6a), (6(3), (60, (713),
(7y), and (7c). Each of these is easily seen to be an instance
of a combinatorial inference problem. More important, each
problem instance contributes its own special flavor to the general
problem. These appealing aspects of the problem domains in turn
contributes to our stock of technical tools for combinatorial
inference problems.

In (1), for example, xi represents the value of some attribute

of the i
th individual of the census population. A query might ask

for the arithmetic mean of the attributes for a specified subpopu-
lation. In general, the specification of a subpopulation may be
rather inhomogeneous so that it may be possible to find, for
instance, the average salary of the subpopulation composed of
computer scientists who are either residents of a certain county
of Idaho or tenured faculty at mid-western colleges. Clearly
given the average salary of such a group is unlikely to compromise
the privacy of any individual. Yet, it is not at all obvious that
some clever sequence of such queries couldn't yield such informa-

tion. Thus if (la), (113) have feasible solutions, a solution to
(16) may be required to design an "enforcer" to restrict access
on questions that might compromise the salary of an individual.
There are many methods for dealing with such a situation in
practice. An enforcer could actually keep track of all previous
queries; alternatively such a mechanism may give out information
which differs slightly from that which is requested (e.g., a
value may be given which is only near the true mean). These last
two suggestions have been considered previously [1,2,3,13,14],
and shown to be relatively ineffective since the solution to (1)
allows compromise in less than the number of queries typically
used ty a researcher wishing to obtain legitimate information.
This leads naturally to consideration of (16).

To interpret problem 2, let x i be the value of a function F

at point i; the problem is to infer from this value F(y) 	X.
For instance, we might be allowed to calculate residues of
numbers modulo only certain primes and an allowable query might
then consist of asking whether or not such a value can be found.
Thus, for queries of the form "what is the value of n mod any
number in fm

1"..
,m t)?" a (213), (2y) problem then might be how

many such moduli are required to allow the value to be found, if
it can be found at all.

The third problem emerges quite naturally in a number of
contexts. It may be modelled as the database security problem
was modelled with the proviso that is known that the result of
certain tests may be incorrect, but that these tests occur with
probability less than some p, or than these outcomes occur only a
bounded number of tests. Or perhaps, we can determine the
conditions under which the test fails and in those cases observe
that one of a small set of situations can exist. Alternatively,
we might be able to determine a proper set of linear combinations
of samples that guarantee success of the test. This might
correspond to allowing queries to be arbitrary functions of the
x. in order to find faster schemes for determining whether an

individual has the given condition. Unfortunately, we can show
that being allowed to compute any separable function of sets of
data is no more valuable than being able to compute the mean to
the same sets.

30

II. A TYPICAL PROBLEM

All of the problems of the previous section are subsumed by
the following. A set X is given as the underlying database of
the problem; a problem is specified by a set of primitives F and
a set of restrictions R on the allowed queries. The primitives
of a problem determine the legal operations to be carried out in
a query while the restrictions place restrictions on the form of
queries.

Examples: (i) In (1) let F consist of median fx. . x
1 , 	m

m>t while R consists of the conditions

that g(X 1 ,...,X
m
) is <q% from the true median

is p.

(ii) In (3), let F consist of all weighted sums
of subsets of X and let R consist of failure
conditions for the tests.

This is perhaps a good place to point out an interesting
incerpretation'of problem types ((3) and (y). The problem state-
ments "what is the least number of queries necessary to determine
which of a set of blood donors is infected?" and "in how few
queries call this database be compromised?" point out that upper
and lower bounds can be significant for different reasons. We are
often interested in worst case upper bounds and best case lower
bounds.

In [1,15,3] F consisted of median operations or averages,
while arbitrary selections from X were treated in [2]. In each of
these studies surprisingly small upper bounds were obtained,
causing us to search for restrictions to make the problem more
difficult. Some apparently reasonable restrictions have been to
restrict the amount of information transferred between queries
(i.e., "overlap") and to restrict the number of correct versus
randomly generated answers to queries. By overlap, we mean that
we control the number of objects that different queries can have
in common. For the operations above under various restrictions
the respective upper bounds are O(R), 0(N), 0(N 2), where N is
"query size". The second is optimal to within a constant factor
for the indicated choices of primitives. One of the results of
this paper is to present a nontrivial lower bound for median
queries.

31

III. MAIN RESULTS

We begin by considering the case in which F consists of an
arbitrary selection function; i.e., for a given set of N elements
from S, the F-queries select in some (unspecified) fasion one of
these elements and return its value as the response to the query.
More exactly, a query is defined by a set of integers

n
andalegalresponseisanyx.such that j = i

m
for some 1 m N.

Note that the response does not identify "j". This type of scheme
has been proposed as a practical method of ensuring database
security [13]. The authors have shown [2] that if 1X1 > N 2 ,

0(N
2
) queries are always sufficient to determine x

i
for some i,

even if R contains the restriction that queries overlap in at
most one position. This proof depends on the existence of
certain finite geometric. 	Now, we ask whether or not this
number of queries is necessary, i.e., whether a database security
enforcer can always require that a user ask this number of
questions in order to make the correct inference. The following
result answers this question in the affirmative.

Theorem. If F consists of arbitrary selection operations on
sets of N>N

o
indices and 1X1> INI L queries are required to

associate i and x i forsome i = 1,...130, and any set of N -1
2

queries can be answered in such a way that no such inference can
be made.

The key argument in this result appeals to results from
transveral theory [16].

Next, we turn to problems of type (0, i.e., we want to audit .
the set of queries to determine what information may be inferred
on the basis of the known queries. In a given combinatorial
inference problem a set of queries may be given and the problem
posed to determine the strongest valid inference which can be
made based on the results of the queries. Such problems arise,
for instance, in the blood sampling problem in which it may be
desirable to determine if, after a certain set of tests are
complete, the data thus obtained are sufficient to determine
which of a set of donors is infected. If not, then further tests
are required. Such procedures may also be used to guide the
search for a good "next query".

32

We have been able to reduce inference problems of type
(d) to certain problems in matching theory as follows. Construct
a bipartite graph with a vertex i for every x

i 	
X, and a vertex

r
k

for every Q that returns r
k

as an answer. An edge is drawn

from each i to each r
k

that is the result of a query containing

i. In this graph, an edge that belongs to all maximal matchings
[17] is said to be critical. Criticality turns out to be an
exact characterization of when a set of queries and results allows
an inference. Determining criticality is called the offline audit
problem.

Theorem. The offline audit problem for any 1X1 = N can be

solved in time at most 0(N
2.5)

.

The offline audit problem is only one of an entire class of
audit problems (6) that can be formed by varying certain of the
conditions defining the problem; e.g., there is an online (i.e.,
adaptive) problem formed by allowing the results of queries to be
used in formulating new sets of queries.

For problems of type (a) there is quite a lot known about the
behavior of inference strategies with respect to varying choices
of primitives. One natural choice is to let F be composed of
median queries; i.e., a query on a set of indices returns the
median of the values of the indices. In work reported elsewhere,
it has been shown that there is an algorithm which, when
restricted to using queries of size N, can make a correct
inference using only a set of queries of size 0(41). The lower
bound (problem type i) for this choice of F is not so obvious to
determine. Indeed, a nontrivial lower bound for median queries
carries with it a great deal of practical information for the
case of Problem 1, since it helps to characterize the difficulty
of securing a statistical database from unwarranted extraction
of information. The result which follows is established by an
information-theoretic argument.

Theorem. If X is a set of rationals and F computes medians
of sets of size N, then no inference problem (y) can be solved in
less than clog 2N queries, where c is a suitable constant,

independent of N.

The final category of problems considered here contains (7y)
aspects which run in directions which are, in some sense,
orthogonal to those considered above. The Coin Weighing Problem
(7) considered in [12] is treated in several ways. First,
is solved by information-theoretic arguments. Then it is pointed
out that (7a) is really composed from two problems: the one in

33

which results of previous queries can be used to influence the
choice of next query and the one in which all queries must be
selected before results of queries are announced. Let us call
the first strategy adaptive and the second nonadaptive. The
hound (7y) given in [12] holds for both adaptive and nonadaptive
strategies. We have already remarked on the applicability of
these concepts to the database security problems and audit
problems. We turn next to the closely related Balance Problem of
(5). The previously known results for this problem deal with
< 6 objects.

Let us define TA (N), TB (N) to be the minimal number of

adaptive and non-adaptive queries needed to solve the balance
problem with IXI = N. We have the following results:

Theorem. (1) T
A
(N) < 1.23 log

2
N

(2) T
B
(N) < 2 log

3
N

(3) T
A
(N) = Q(log

2
N)

(4) T
B
(N) = Q(log

2
N)

The lower bounds are established by rate-of-growth arguments. ft
is noteworthy that the optimal adaptive strategy cited in the
previous theorem is the only instance of which we are aware in
which an adaptive upper bound has been shown to asymptotically
improve a nonadaptive upper bound.

IV. CONCLUSIONS

In this paper, we demonstrate a rather broad category of
problems which appear to have common formulations and which may
be susceptible to the same methods of attack. The specific
inferential problems which we consider give some evidence for
this. In addition, the results we obtain carry some independent
interest both as combinatorial results, and as results in the
indicated problem domains.

REFERENCES

[1] Dobkin, D., Jones, A. and Lipton, R., (to appear in ACM
TODS), "Protection Against User Inference".

[2] DeMillo, R., Dobkin, D. and Lipton, R., "Even Data Bases
That Lie Can Be Compromised", IEEE Transactions on Software
Design, Jan. 1977, Vol. SE-4 (1): 73-75.

13] Reiss, S., (1976), "A Combinatorial Model of Data Base
Security", Technical Report, Yale University, Department of
Computer Science.

[4] Feldman, J. A. and Shields, P. C., (April 1972), "Total
Complexity and the Inference of Best Programs", Stanford
AIM-159.

[5] Pippenger, N., (1976), "Group Testing", IBM Watson Research
Center Technical Report.

[6] Ulam, S., (1976), Adventures of a Mathematician, Scribners.
[7] Katona, G. O. H., (1973), "Combinatorial Search Problems",

A Survey of Combinatorial Theory, (j.N. Srivastava, Ed.),
North Holland, pp. 285-308.

[8] "Shades of E 712", (November 1973), American Mathematical
Monthly, Vol. 80, No. 9, pp. 1064-1065.

[9] Vilenkin, N., (1972), Combinatorial Mathematics, MIR
Publishers, Moscow.

[10] Dobkin, D. and Lipton, R., (June 1976), "Multidimensional
Searching Problems", SIAM Computing, Vol. 5, No. 2, pp.
181-186.

[11] Knuth, D. F., (April 1977), "Algorithms", Scientific
American, pp. 63-80.

[12] Erdiis, P. and Spencer, J., (1974), Probabilistic Methods
in Combinatorics, Academic Press.

113] Conway, R. and Strip, D., (Oct. 1976), "Selective Partial
Access to a Data Base", Proceedings of the ACM 76 National
Conference.

[14] Denning, D. and Denning, P., Private Communication.
[15] Dobkin, D., Lipton, R and Reiss, S., "Aspects of the Data

Base Security Problem", proceedings of a conference on
Theoretical Computer Science, Waterloo, Canada, 1977.

[16] Mirsky, L., (1971), Transversal Theory, Academic Press.
[17] Hall, M., (1967), Combinatorial Theory, Ginn and Blaisdell.

DISCUSSION

Reiss: Does it effect things much to, rather than give an
exact answer, give a ball park "lie"?

Dobkin: That's something that's been suggested: answer and
perturb it randomly by some percentage less than one percent.
For that case, we don't have total insight into the problem yet.
That seems to be much more difficult. A lot of our results are
based on combinatorial lemmas and physical principles, and you
can't apply those results when you go to that sort of strategy.

Shapiro: It is easy to prove that very small "lies" can
result in very large changes in summary statistical information,
which could be disasterous to a statistical database user.

Dobkin: I hadn't realized that. That's good to know.

Denning: I have a question concerning the results about the
databases that lie. If you compromise the database, you have no
way of knowing whether or not the answer you got is a lie.

Dobkin: In the type of lying I'm talking about, you actually
do know that if I guessed Dorothy Denning's salary is so many
dollars, then it's actually Dorothy Denning's salary. In the
type of lying I was talking about before, where you go a certain
percent one way or the other, then you don't know the salary that
you have is the correct one.

Cohen: I'm concerned that there may be other kinds of
a priori information; for instance, relationships among elements
in the database, so that one could compromise without actually
having compromised in your sense. For instance, it may be more
important to know one's salary is more than somebody else's or
that you've compromised the database that with someone's exact

1 	
36

37

salary with a 90% limit of confidence.

Dobkin: Yes. That just_ means that you have to be more
rigorous about what it means to compromise the database. You can
compromise down to the digit or you can compromise in some other
sense.

DATA BASE SYSTEM AUTHORIZATION

D. D. Chamberlin
J. N. Gray

P. P. Griffiths
M. Mresse

I. L. Traiger
B. W. Wade

IBM Research Laboratory
San Jose, California

I. INTRODUCTION

This paper focuses on the rather specialized topic of
authorization of access to a Data Base-Data Communication
system (DB-DC system). Many DB-DC systems currently need little
authorization beyond that provided by the operating system (e.g.
in-house or one-person data bases). However, there is a growing
class of large and sophisticated data management systems which
require tight controls over the use and dissemination of data.

The next section discusses how large existing (commercially
available) systems appear to do authorization. The remaining
sections suggest improvements to these mechanisms.

II. A TYPICAL SYSTEM

A. User Roles

Large DB-DC systems typically have several roles for users.
The broad roles are:

• System Administrator: defines and installs the system.
Makes policy decisions about the operation of the system.

• System Operator: handles the operation of the system,
manages system startup-shutdown, responds to user requests,
and manages physical plant.

• System Programmer: installs and maintains the DB-DC code,
and the underlying operating system.

• Application Programmer: defines and implements new appli-
cation programs to be used by end users, by the system
administrator, and by the system operator.

• End User: uses the system to enter and retrieve data.

These roles are (typically) further refined into sub-categories
(e.g. end users include the roles: teller, loan officer, branch
manager, auditor,...). Over time, a particular user may perform
several of these roles, but usually a user is authorized to
perform only one role.

The concept of role serves the purpose of grouping users of
the system together, thereby decomposing authorization decisions
into the two questions:

• What should the authorization of a role be?
• Who should be authorized to use the role?

B. Authentication

Individuals sign onto the system in a particular role. The
individual's identity is validated by a combination of

• Personal identification (key, magnetic stripe,
password...)

• Physical location of terminal (teller must be at
own bank...)

• Physical security of terminal (it is in a bank...)

• Time of day (bank teller terminals only work at
certain hours...)

This mechanism is usually specified as a decision table so
that it is easy to understand. In the above instance, the
decision table would be:

PERSON X PASSWORD X TERMINAL X TIME -> ROLES

C. Transactions

Once a person establishes a role, he is authorized to perform
certain transactions on the system. There is great variety among
the transactions available to different roles. Someone on the
shipping dock will have a different set of transactions than a
member of the purchasing department. So there is a further table
which authorizes

ROLE -> TRANSACTION.

An installed transaction's definition carries a complete list
of the objects it accesses (except for objects passed as para-
meters to the transaction such as input and output terminal or
queue). The transaction is strictly limited to this domain when
executed.

When the transaction is invoked, the data management system
constructs a domain consisting of only these objects and opera-
tions. This domain is usually represented as a set of control
blocks (one per object) in protected storage. Since these
control blocks are in prctected storage, they perform the
functions of capabilities <3>. All operations by the transaction
name one or more of these objects (control blocks). This limits
what objects can be touched by the transaction. The control
blocks further limit what operations may be performed on the
object (e.g. a file may be read-only).

D. Authorization Aspects of Roles

We now discuss authorization as viewed by each generic role.

End users are usually limited to pushing buttons which cause
forms to appear on the display screen. After filling in a form,
another button causes the form to be validated, and if it passes
the test, to be acted upon by the system.

The application programmer defines (implements) transactions.
Depending on the degree of care exercised by the programmer, he
may be able to prevent the users from doing terrible things to
the data base. For example, the transaction might refuse to
handle withdrawals of more than five hundred dollars without the
branch manager's approval. In general, the application programmer
seeks only to guard against end user abuses and mistakes.

The application programmer might be able to protect the
privacy of his data from the system operator and from the data
base administrator by encrypting it. Communication over insecure
lines is often unprotected. Some systems do encryption/decryption
in order to protect the security of communication data. For
example, some cash dispensing terminals encrypt customer pass-
words and transaction information when communicating with the
central host. However, the usefulness of local encryption of
data residing within a host is doubtful at present because data
appear in the clear while in main storage (accessible to almost
anyone reading a dump), and because operational personnel usually
have a back door to the authorization system. Lastly, there are
technical problems associated with constructing indices on
encrypted data and keeping a system log that contains encrypted
log records. In summary, the application programmer must trust
the system administrator, system operator, and system programmer.

The system administrator defines system objects and authorizes
access to them. The principal system objects are users, terminals,
transactions, views, and physical files.

When installing a new transaction, the system administrator is
careful to validate the program and to narrowly describe the
subset of the data and terminals available to the transaction.
Installing a transaction consists of entering its programs and
descriptors into system catalogs and authorizing one or more
roles to use the transaction.

In order to proscribe the domain of a transaction, the system
administrator:

Limits the transaction to access a particular set of
files.

Within each file, makes only certain record instances
visible.

Within a record instance, makes only certain fields
visible.

Makes only certain visible fields updatable.

Continuing the example above, a bank teller transaction might
be allowed to see only those records from the central ledger which
pertain to the local branch and be allowed to update only the
balance field of the teller cash drawer records.

42

Aside from deciding which transactions and files will be
stored and what access paths will be maintained on files (indices,
hash chains, sibling pointers, etc), the system administrator
also installs exits (data base procedures) which enforce the
integrity of the system. Examples of exits are:

Exit to encrypt-decrypt objects on secondary storage.

Exit to validate the reasonableness of the contents of
records being inserted into the data base.

Exit to check the authorization of the caller to
manipulate the objects named in the DB-DC operation.

These exits allow an installation to tailor the system to
perform authorization appropriate to its application.

The system operator is limited to a very special set of
commands which allow him to manage the physical resources of the
system, to restart the network and the system, and to reconfigure
the network and system. In point of fact, the system operator
has the "keys to the kingdom" and can easily penetrate the system.

Similarly, the system programmer has a very limited set of
commands. However, to ease debugging and maintenance, one or
more of these commands opens almost any door in the system.

In general, users are not unhappy with the rather primitive
access control mechanisms outlined above. In general, user
level authorization is quite application dependent (e.g. only
the military seems to understand or care about the star property
<4>). Hence, there seems to be general agreement that this
authorization should be imbedded in exits or in application code
rather than being included in a general purpose DB-DC system.

III. PROBLEMS AND TRENDS

A. Why We Expect Things to Change

At present, most "real" systems are doing "operational"
processing. They are very static applications which have
automated the "back-office" of some large enterprise. Usually,
human tasks were directly replaced or augmented with computers.
These applications are often prescribed by law or accounting
practice and are reasonably well understood.

Computers are moving into the "front office" and into smaller
operational units. At first, these systems will be small and
isolated (i.e., stand alone mini-computer). But eventually, these
systems will be integrated with the "back office" system and with
other front office systems. This implies that networks of
loosely coupled systems will appear.

When this happens, one should expect the system to be much
less static and expect control of the system to be much less
centralized.

B. The Case Against a Central System Administrator

The definition and control of objects (transactions, users,
queues, data bases, views, catalogs,...) has been a highly
centralized function residing with a single individual or group
of individuals (system administrator). Several trends encourage
the development of a less centralized administrator function.

The foremost trend is that systems are becoming much
more dynamic. A large system typically has several
groups of users. Each group wants to share a central
pool of data and perhaps share data with some other
groups. But also it wants to be able to easily create
and maintain private data and transactions. The
requirement that all new definitions be funneled through
a central system administrator is quite restrictive as
well as inconvenient.

The existence of a central system administrator also has
the psychological drawback that the "owner" of the data
does not control it. Rather, the system administrator
controls it.

Independent data management systems are being integrated
in order to selectively share information among co-
operating organizations. Even if the network is homo-
geneous (similar machines and data management systems),
each node of the network is an autonomous unit with its
own management and procedures. This is because networks
cross organizational lines and yet responsibility for the
data at a node ultimately rests with the organization
which maintains that node.

44

C. Sketch of a Decentralized Administrator Function

Our goal is a simple mechanism to dynamically create and
share objects among users of a data management system. This
simplicity is important for a community of individuals who
control their own data, as well as for a more centrally
controlled system where authorization is handled by a (human)
data base administrator.

We have been able to draw on the experience and techniques
used in operating systems for authorization to files.
However, we have had to refine these facilities because more
semantics are associated with the objects.

We have been trying to design a decentralized authorization
mechanism which provides the following functions: The system
administrator function is distributed among all application
programmers and even to some end users. The central system
administrator allocates physical resources (space and time) and
grants some transactions to particular users thereby delegating
his authority to others. These objects include views of system
catalogs and transactions which install new users, new
terminals, and new space.

Much as in a traditional operating system, the user has a
catalog of named objects he can manipulate and use. Objects
come in three general flavors:

Data objects: physical files and logical files (views).

Communication objects: logical ports and message queues.

Transaction objects: encapsulated (parameterized)
programs which perform operations on data objects and
communication objects.

Each object type has a set of operators defined on it and
these operators are individually authorized.

A user with no transactions in his catalog can do nothing.
The catalog of a minimally privileged user consists of a limited
set of transactions which may be invoked. The catalog of an
application programmer might contain transactions (commands)
which allow him to define new objects and grant them to others.
Each time a user defines a new object, an authorized entry for
it is placed in his catalog.

The authors of the system implement transactions which allow
the invoker to define system objects. These transactions include:

DEFINE-USER: enrolls a new user in the system.

DEFINE-TERMINAL: makes a new terminal known to the
system.

DEFINE-FILE: defines a new physical file.

DEFINE-INDEX: defines an index on some file.

DEFINE-LINK: defines a N-M mapping from records to
records.

DEFINE-VIEW: defines a new view in terms of existing
files.

DEFINE-TRANSACTION: defines a new transaction in terms
of existing data objects.

Other transactions are available to MODIFY, DROP, GRANT and
REVOKE objects.

Each of these transactions may be invoked from the terminal
or from a program so long as the invoker is authorized to run
the transaction. Other commands are available to MODIFY defini-
tions and to DROP definitions and their associated objects.
Currently, we propose that only the creator of an object can
modify it and only the creator or the person who enrolled him in
the system can drop an object.

By selectively granting these transactions to users, the
system can delegate the function typically thought of as "system
administrator" to autonomous individuals.

Once an object is defined, the creator may grant other users
access to the object (subject to constraints explained below).
A unique set of authorities is associated with each object type.
Individual users are granted subsets of these authorities. Each
authority has two possible modifiers.

GRANT: the ability to grant another user this authority
to this object (this is a property of a granted privilege
to the object rather than being a property of the object
itself).

• 	REVOKE: the ability to selectively revoke this authority.
(only the grantor may revoke access so REVOKE implies
GRANT).

46

For example, RUN authority for a transaction may be granted in
the following modes:

RUN & GRANT & REVOKE

RUN & GRANT & REVOKE

RUN & GRANT & REVOKE

It is not clear that one need distinguish GRANT and REVOKE in
which case it might be called CONTROL. Chamberlin <2> and
Griffiths <5> discuss these authorities in greater detail.

D. Authorization to Data

Authorization to data objects has traditionally consisted of
making certain files, records and fields invisible (a subset of
the database). Much finer control can be obtained if one can, in
oddition,

Do value dependent authorization (i.e., only fetch or
replace record instances whose field values satisfy
certain criteria).

Define views (virtual files) which are not physically
stored but are synthesized from existing stored files.

Files and view objects have the additional authorities:

• READ: the ability to read records.

INSERT: the ability to insert records.

DELETE: the ability to delete records.

And for each field of the file or view:

• UPDATE: the ability to update values in this field.

The justification for providing update authorization on
individual fields rather than on the entire view is that some
Fields within a record are more sensitive than others. For
example, one might be allowed to read and update the QUANTITY-
ON-HAND but only to read the UNIT-PRICE field. The view as a
whole carries the authorizations for READ, INSERT, and DELETE.
As explained in the preceding section, each of these authorities
potentially has the modifiers GRANT and REVOKE.

The definer of a file is fully authorized to.the file. The
definer of a view gets the "intersection" of the authorizations
he has to its components. For example, if a user has only read
authorization to a file, then any view he defines based on that
file will be (at most) read only.

Each user catalog is really a view of the system catalog file.
Each user gets a view of his subset of the catalog and some
transactions which display and modify his view of the catalog
(DEFINE and GRANT insert entries in the catalog; DROP and REVOKE
remove entries from the catalog). The user's view is qualified
in that he cannot directly modify some fields in the catalog
(e.g. authorization fields). He may be given GRANT authority on
individual authorities of his view so that he can grant other
users selective access to his view. If he wants to grant access
to a subset of his catalog, he can define a new view which sub-
sets his catalog and then grant the subset view to others, or
he may define a transaction which accesses his catalog and then
grant that transaction to others.

Only the system administrator has a view of the entire
catalog.

The paper by Chamberlin <2> discusses the virtues and problems
of views in detail. Stonebraker <6> presents another approach to
views and proposes an interesting implementation.

E. Transaction Authorization

One reason for defining transactions is to encapsulate objects
so that others may use them without violating the integrity of
the constituent objects.

F. Transactions Have the Additional Authority:

• 	RUN: the ability to run a transaction.

Just as for views, a transaction RUN authority has the
modifiers GRANT and REVOKE. If the transaction definition
consists entirely of objects grantable by the transaction
definer, then the transaction will be grantable. Otherwise,
the definer gets the transaction with RUN &1GRANT & -IREVOKE
authority.

If a transaction is held RUN & GRANT, the definer can grant
RUN & 'GRANT authority to others, who can then run the trans-
action. He can also grant others the ability to grant run
authority by granting RUN & GRANT authority.

For example, a banking system provides transactions which
credit and debit accounts (according to certain rules) rather than
granting direct access to the accounts file. This effectively
encapsulates the procedures of the bank and insures that all
users of the data follow these procedures. An application
programmer would write the transactions and grant run authority
to the tellers of the bank and grant RUN & GRANT authority to
the branch managers so that they could authorize new tellers at
their branches.

(;. Authorization Times

The authorization of a transaction can be done at any of
three times:

• Definition: The text and environment of the transaction
is described by the application programmer.

• Installation: The transaction is made known to the
system.

• Invocation: The transaction is "used" by the end user.

For reasons of efficiency, authorization should be done as
early as possible in this process. If possible, no authorization
tests are performed at invocation time (except for validation
that earlier authorization decisions have not been revoked).

When defining a transaction, the application programmer has
some notion of what objects the transaction will touch and what
operations will be performed on these objects (e.g. get message
from queue "A", put record in file "B"). Further, he has some
notion of what is allowed on the data (e.g. one should not debit
an account to a negative value). The application programmer
includes these tests in his program and at invocation the trans-
action aborts or takes remedial action if the tests are violated.

When the transaction is installed, the ability of the author
to access the objects the transaction references is checked.
Also the operations themselves are authorized (e.g. read authority
is required on the account number and balance fields and update
authority is required on the balance field). This checking is
done by a program which examines the transaction text, discovering
what calls the transaction makes. If everything is ok, the
processor enters the transaction in the system catalog along with
a descriptor of the transaction domain.

1 	

49

If authorization fails, there are two possible alternatives:
One can abort the operation, or one can defer the operation,
giving a warning message. We propose to defer when authorization
fails at definition or installation time. An attempt to actually
operate on an unauthorized object fails. This philosophy allows
programmers to define and install views and transactions which
make unauthorized calls. These transactions may even be run so
long as the unauthorized calls are not actually executed. As
will be seen, the logic for run-time authorization must be present
anyway so this decision adds little to the system complexity.
The approach has the virtue that it detects many authorization
errors rather than only the first.

When the transaction is invoked, the invoker's authorization
to invoke the transaction is checked. When the transaction runs,
both the system and the application program do value dependent
authorization. For example, if a view is qualified by a selection
criterion then each record which is fetched or stored via the
view must satisfy that criterion. As another example, the
application program may refuse to insert user-provided data
which does not satisfy application-dependent criteria.

Given this motivation, it is clear that the authorization of
the transaction may be different from the authorization of the
invoker of the transaction.

H. Authorization Environments

When an application programmer installs a transaction which is
to be granted to another user, there is some question as to which
authorization environment should be used to authorize the trans-
action. Candidate authorization environments are:

(a) Authorize the transaction in the environment of the definer
(application programmer).

(b) Authorize the transaction in the environment of the user.
(c) Sometimes (a), sometimes (b) and sometimes (a) and (b).

It might seem obvious that the transaction should be
authorized in the context of the definer. However, if the
transaction is parameterized then access to parameters must be
authorized in the environment of the invoker of the transaction.
Similarly, if the program is a "shell" which takes in user
commands and executes them, then certain of its actions should
be authorized in the context of the user.

50

Perhaps the most extreme example of this is a program called
User Friendly Interface (UFI) in System R <1>. The UFI is a
program which accepts data base requests in symbolic form,
translates them into system calls, and executes them against the
invoker's data base. It is a combination data-base-editor and
report generation language. The authors of UFI have no idea what •
files it will be used with or what operations may be performed on
these files. All its authorization comes from the user of UFI.
Clearly, UFT calls to the system must be evaluated entirely in
the context of the invoker.

As another example, consider authorization to objects which
are created by the transaction at run time. In some cases,
(e.g. an internal scratch file) the invoker should not be able
to see the object while, in other cases (the report file) the
invoker should be allowed to see the object. In general, it
seems best to attribute these transient objects to the definer
who can then GRANT them to the invoker as part of the transaction
logic if he so chooses.

The general rules seem to be:

Perform authorization tests as soon as possible.

• Authorization of an operation known at installation
should be done in the context of the object definer
at installation time.

• Authorization to operations not known at installation
(e.g. parameters) must be done at transaction invocation.

The transaction runs in a new authorization context which
is a synthesis of objects granted it by the object
definer and objects granted by the object invoker.

I. Revocation and Redefinition

As explained above, one may grant another user type "x"
authority to an object if the grantor has a grantable version of
type "x" authority on the object. Any subset of grantable
authorities may be granted together. These authorities may then
be revoked individually.

The problem of revoking access to objects is very difficult.
When an object is destroyed, it is deleted from the catalog of
all users to whom it was granted. This also invalidates all
objects which derive from that object and authorizations on them,
recursively. When someone with revoke authority modifies the
authorization of an object, that modification is propagated to
all objects derived from it. One may selectively revoke access tc

the object. For example:

REVOKE HIRE-EMPLOYEE FROM JONES;

revokes Jones' access to the HIRE-EMPLOYEE transaction.

One may imagine objects organized into a dependency hierarchy.
If one object is defined in terms of another, then changes in the
parent will affect the child and all its descendants.

Proper implementation of this notion is very subtle. The
problem is further discussed and a solution is presented by
Griffiths <5>.

References

<1> Astrahan, Blasgen, Chamberlin, Eswaran, Gray, Griffiths,
King, Lorie, McJones, Mehl, Putzolu, Traiger, Wade, Watson.
System R: Relational Approach to Database Management, ACM
TODS, Vol. 1, No. 2, June 1976, pp. 97-137.

<2> Chamberlin, Gray, Traiger. Views, Authorization and
Locking in a Relational Data Base System. ACM National
Computer Conference Proceedings, 1975, pp. 425-430.

<3> Dennis, and Van Horn. Programming Semantics for Multi-
programmed Computations. CACM Vol. 9, No. 7, July 1977,
pp. 145-155.

<4> Bell, LaPadula. Secure Computer Systems. ESD-TR-73-278.
(AD 770768, 771543, and 780528). MITRE, Bedford Mass.,
Nov. 1973.

<5> Griffiths, and Wade. An Authorization Mechanism for a
Relational Database System. ACM TODS, Vol. 1, No. 3, Sept.
1976, pp. 242-255.

<6> Stonebraker. Implementation of Integrity Constraints and
View by Query Modification. ACM SIGMOD Conference. May 1975,
pp. 554-556.

52

DISCUSSION

Cohr'n: I wondered whether the system is running and how
much experience you have with kinds of replication that users do.

Griffiths: The authorization subsystem is not yet integrated
into our system; so, we have no data on the depth to which grants
are typically nested. It appears that people don't expect trees
of grants to he very deep. However, I disagree with this. Let's
examine how the president of a company issues a memo to all the
company's managers down the line. First, the president issues
the memo to all the managers immediately under him. And, they
in turn issue copies to managers under them, and so on. I
believe this analosy holds, that information sharing by granted
privileges in a data management system tends to propagate along
organizational lines in "real life". Once a multiple level
granting mechanism is available in a data management system, I
suspect we will find that it is used in surprisingly complex
ways which are similar to the ways that information flows
between people.

Harrison: These views are actually something that is stored
as a relation in the machine.

Griffiths: Views are not a relation copying mechanism; they
are not pre-computed and then stored. We store only definitions
of the views, and use those definitions to provide dynamic
"windows" on the underlying store relations. If someone else
is currently examining and changing a relation, then the changes
are reflected immediately to all views on that relation. For
example, suppose there is a relation containing all the names
and salaries of university employees. Then, I can define a view
PROFS which contains the names and salaries of those employees
who are professors. If someone gives a professor a raise while
I am examining the PROFS view, then 1 will see the update the

53

next time I access that professor's record.

Harrison: Oh well, that may explain what I wanted to say.
Why do we have all these restrictions on changing one's views?
If you have a copy in memory you can change it anyway you want.
But you don't want to do that because it's not efficient?

Griffiths: Efficiency is not the problem. A view should
not be a stored copyof data because it should dynamically reflect
later changes to the data. Also, changes made to the view's data
should be mapped down to changes on the data of the underlying
stored relations which were used to synthesize the view. There-
fore, any data modification made to the view will be visible to
every user of the view, or the underlying relation(s), or other
views defined on the same relation(s). To implement views as
copies would require both extensive bookkeeping to keep all
copies consistent and protocols to avoid simultaneous modifica-
tions.

Cohen: Is it possible to get your own private copy?

Griffiths: A person can create his own new relation and copy
the contents of a view into it.

Cohen: Is it possible to allow other people's changes to
filter into your own copy while still reflecting your own
changes?

Griffiths: Views do exactly that because of the semantics
that changes to the view are also made to the underlying data.
Our system doesn't provide an object with the semantics that a
user can see other people's changes without letting them see his.

Fabry: My hunch is that just as in the case of time-sharing
systems, the real breakthrough is not in the efficient utiliza-
tion of resources, but in giving the user the ability to share
and build upon the work of others. This suggests that the depth
to which views are nested will be large and that to interrelation-
ship among views will be quite complex.

Griffiths: Yes, I think you're right.

Millen: Would there be a need for replacement without
revocation? When one makes updates to things, it eventually
gets to the point where one wants to make a wholesale revision.
The question is would it be possible to do that to an underlying
object without destroying the overlying structure? The nice
thing about a view is that updates in its constituents will
automatically be reflected at the top level. Could you update
an object within a view by replacing it with a different object,

54

giving it the same name?

Griffiths: Currently, when one object is replaced by
another, all views on the original object must be redefined and
all grants of privileges must be reissued. More minor changes
to the object such as expanding a relation by adding a column
can he done without redefining views or reissuing grants.

Millen: But, can you delete columns?

Griffiths: Deleting a column from a store relation is a
major change to an object because some privileges, such as
UPDATE, are granted on a column by column basis. Views on that
object may also reference the deleted column. You can achieve
the effect of deleting a column C by defining a view which looks
exactly like the original relation with the column C omitted.
This gives exactly the semantics you want without changing the
stored data or invalidating existing views and grants.

55

MEDIANS AND DATABASE SECURITY

Steven P. Reiss

Brown University
Providence, Rhode Island

1. SECURITY IN DATABASES

Central to the ever-increasing use of computerized databases
is the notion of database security. With computers becoming
more powerful and less expensive, the advantages of placing large
amounts of information in an online computerized database have
led to an increased number of database systems. Such systems
allow a group of users to access large quantities of information
so that both specific pieces of information are rapidly access-
ible and so that large amounts of data can be correlated to gain
an accurate statistical view. As such, databases are becoming
increasingly important to corporate and university management,
to the many government bureaucracies, to police and related
organizations, as well as to researchers in areas like sociology.

Along with the many benefits of computerized databases,
there are several disadvantages, the most important being the
lack of a guarantee for the security of the stored information.
It is hard to imagine corporations using databases for confiden-
tial information if they thought that their competitors or even
their employees would easily gain access to this information.
Moreover, recent actions in the Congress have shown that the
citizens of this country are not going to allow the amassing of
large databases containing privileged information without adequate
puarantees that the information will be kept private. It is
because databases are so important that addressing these serious
concerns about the security of the stored information is such an
important problem.

A. Research in Database Security

Most of the research into this problem of database security
has focused on the problem of physical security, i.e. guarantee-
ing that only authorized persons have access to the computer,
the database system, or the data. These problems represent valid
and important issues in the area but are too crude to handle many
of the essential questions. In particular, it is often the case
that there are users who should be able to use most but not all
of a database.

This latter type of question is addressed more by research
that is aimed at maintaining security for specific privileged
fields of database while allowing general access to the non-
privileged fields. Research here has involved encrypting the
privileged fields, requiring user passwords, as well as physi-
cally separating the privileged fields from the remainder of the
database. However, even this approach is still too stringent
for some applications. In particular, there are cases where the
specific elements of a field must be safeguarded, while
statistical access to the same data must he allowed. This is
especially true for databases used in sociological research and
for such items as grades in a university database or salaries in
a corporate database. The problem of allowing such statistical
access while maintaining the security of the individual items
has only recently been studied on a large scale.

B. A Model for Statistical Security

Much of this recent research into statistical security has
ben based on the simple formal model of a database proposed by
Dobkin, Jones and Lipton [DJL] that was specifically designed
for the purpose. This model considers only the field of the
database that contains the privileged information. By assuming
that all the non-privileged information is available to the user
and that complex queries can be asked to select arbitrary sub-
sets of the privileged data for use in queries, the model allows
one to address and answer the relevant questions concerning
statistical security.

Within this model a database is viewed as a set X of
elements x...,x

n
where n is the size of the database. Each of

these elements represents a privileged datum and thus is assigned
a value. The database is said to be compromised if it is '
possible to determine the value that is associated with some
element of the database. Similarly, an element is said to he
compromised if its associated value is known. Queries into such
a database consists of applying some statistical function, i.e.
mean, median, max, min, etc, to some subset of the elements.

58

Finally the model assumes that there is a database policy that
attempts to enforce security by limiting the nature of the
queries that can be asked. We can determine the effectiveness
of such a policy by establishing as a measure of its security
uhe number of queries of the particular type allowed that are
required to guarantee that the database can be compromised. If
a large number of queries of a certain type are required before
the database can be compromised, then the data is relatively
secure; if only a small number of queries will suffice, the
database is not secure.

There are several ways of limiting the types of queries
that can be allowed. First of all, one generally allows only
queries involving the same statistical function. Moreover, all
queries are required to involve some minimal number of elements.
Clearly, if a query asks for the median or average of a set
containing a single element, then the value returned is just the
value of that element.

C. Our Study

In this paper, we study one specific type of statistical
query and show that a database system in which it was allowed
would not be secure. In particular, we consider queries that
ask for the median of sets of exactly k elements. We make the
assumption in this study that the elements of the database have
unique values, i.e. if elcments x. and x. in the database X both

1

have the same value, then i = j. This assumption, while not
entirely accurate in practice, is probably valid when a small
random sample is taken from a large database and when the com-
promising is done within this sample [DL].

For this model and assumptions, previous results have shown
that 00/71-0 queries were sufficient to insure that the database
can be compromised [DLR]. Moreover, it was shown that a specific
element in the database could be compromised, using an exponen-
tial number of queries [DLR]. In this paper, we first present a
technique for getting information from median queries in Section
3. In Section 4 and 5, we use this technique to define two
methods whereby a database can be compromised using only

0(Log
2
k) k-median queries. Moreover, we show in Section 6 how

a specific element can generally be compromised using 0(k)
queries and, for the case where something is known about the
specific element, compromise can often be achieved using 0(Log k)
or fewer queries.

II. NOTATION

The study of statistical security in databases is interest-
ing both because of its relevance to actual database systems and
because of the mathematics involved. In this paper we apply
methods from combinatorics, probability and the analysis of
algorithms to answer questions about the security of databases
under queries involving the median of sets of exactly k elements.

Since we deal extensively with sets of elements from the
database, we use the fairly standard set notations of

e for set membership;

c for set inclusion;

cl) for the null or empty set;

1 for the size of a set;

u for set union;

n for set intersection;

- for set difference, A-B = fcicEA, cVB1, (BcA); and

+ for set addition, A+B = AuB, (AnB = (10.

We only use set difference, A-B, when B c A. Similarly, we only
use set addition, A+B, when A and B are disjoint. We use the
notation I 	to both denote the size of a set and the absolute
value of a numeric expression. It will be clear from the context
which case is meant. Finally, we call a set of k elements a
k-set.

In addition to working with sets, our results involve combi-
natorics, probability and analysis of algorithms. We use the
following standard notation from these fields:

binomial coefficient =
b!(a-b):'

PrfE1 	the probability of event E;

Log 	logarithm (base 2);

fxl 	the smallest integer greater than or equal to x;

Lx1 	the largest integer less than or equal to x; and

0(f) 	on the order of f.

Note here that we use Log consistently throughout this paper to
mean the base 2 logarithm.

In addition to these standard notations, we introduce some
rather specialized notation for dealing with medians. We denote
the median of a set A by m(A) and call the median of a k-set a
k-median. Moreover, we often need to refer to the properties of
a set with respect to some median M. We say that an element is
negative with respect to a median M, or, if M is understood,
just negative, if the value of the element is less than M.
Similarly, a positive element is one whose value is greater than
M. A set is more negative (positive) than another set if if has
more negative (positive) elements. Finally, we denote the number
of negative elements in a set A by N (A) and the number of

elements less than or equal to M by R
N
(A). When M is understood

here we omit it, writing N(A) and N(A) respectively.

Finally, throughout our discussion of security we refer to
the concept of a random database. Since we are viewing a data-
base as a set of n elements each of which has a unique value,
and since we are only considering queries involving medians and
hence only relative values are important, we can assume that
there is a fixed n-set of values. Then we define a random data-
base as one in which all of the n! possible assignments of values
to elements of the database are equally likely.

TII. BALANCING

In order to compromise a database using k-median queries, we
must be able to obtain some information from each query or each
set of queries. Although several methods have been proposed for
doing this [DDL1, DJL, R, DLR], the most efficient is that of
balancing where specific information can be extracted using only
O(Log(k)) queries. In this section, we consider this technique
in detail, presenting the relevant algorithms and proving their
properties. We then illustrate the technique with an algorithm
that determines if the median of a set is an element of a certain
subset of that set. We will show in later sections how this
algorithm can be used to actually compromise a data base.

The idea behind the technique of balancing is to find a set
that has a certain distribution of elements with respect to some
median M, that is, one that has precisely some number of elements
9, less than M and some number of elements h greater than M.
Once we have such a set, we can obtain information about specific
elements very easily. For example, suppose we have a set
A = A

l
+ A

2
with median M, and we have another set B such that

61

1BI = IA 1 and B has the same number of elements less than M _

that A
l
does. Then by computing the median of B + A 2, we can

easily determine if the element with value M is in Al or A2

 since it is in A
2

if and only if m(B + A
2
) = M.

In order to find a set with exactly k negative elements with
respect to some median, we take two sets, one with fewer than
negative elements and one with more than k negative elements.
We begin with the first set and successively substitute elements
of the latter. In this way, it is assured that one of the
intermediate sets will have the desired distribution or balance
of negative elements. Assuming that we have some way of check-
ing for this proper balance, we are done. This brute force
approach is not directly useful however since it requires a
number of queries proportional to the size of the desired set.
We make it very efficient by using a binary search technique to
locate the desired set in such a way that the number of queries
required is only proportional to the log of the size of the
desired set.

A. Definitions

The object of balancing is to find a set containing a certain
distribution of elements with respect to some median. In
particular, we define

Definition: A set C is balanced with respect to a median M,

a number 2 and one of the functions N c {N
M' M

} if and only if

N(G)

_ 	 -
We denote this fact by - G, where t, M and N will he clear from

the context. If Q is an integer here, the number of negative

elements in G must be precisely k. Moreover, as N(C) must he

integral, if t is not an integer, then N(G) must be as close to
R as possible.

When it is possible to find a balanced set from two given
sets, we say that the two sets are balanceable. Formally,

Definition : Two sets G and H where ICI = IHI are balanceable
with respect to a median M and a number Q if and only if either

N(C) <C < N(H)

62

Or

N(G) > 2 > N(H). 	 ❑

It is obvious, using the pigeon-hole principle and element-by-
element substitution, that .

Lemma 3.1 	If G and H are balanceable with respect to M and
then there is a set S c GuH, ISI = IG1 , such that - S. 	 ❑

Finally, to properly balance two sets we must be able to
test if some set is balanced or not. Because we are going to
utilize a binary search technique, we do this in such a way that
we indicate whether the set has too many or too few negative
elements. To accomplish these goals, we introduce the notion of
a balancing function. In particular,

Definition: For equal sized sets G and H, TEST(G,H) is a
balancing function with respect to a property P, median M, and
a value 9, if and only if

1) TEST(G,H) = 0 if and only if P(C,H) holds;

2) TEST(G,H) = + 1 implies N(G) < 9.; and

3) TEST(G,H) = - 1 implies N(G) > t.

Since the object of balancing is to obtain a set with a desired
distribution, property P here generally says that this distribu-
tion has been achieved and condition 1) insures that this infor-
mation is returned. Moreover, conditions 2) and 3) insure that
TEST indicates how the actual distribution of the set G relates
to the desired distribution. We generalize the definition of
two sets being balanceable by saying that they are balanceable
with respect to a balancing function if and only if they are
balanceable with respect to the values of 2, M, and N upon which
the function is defined.

B. The Balancing Algorithm

Rather than presenting a separate algorithm for each
balancing function, we define an algorithm that uses a binary
search technique to balance a set with respect to an arbitrary
balancing function. In this way, we are actually defining a
whole set of similar algorithms, several of which we will use in
this and later sections of this paper. The specific algorithm
is:

ALGORITHM: 'Balance -- Find a balanced set.

GIVEN: A Balancing function TEST, with respect to a property P;
sets C , D , B where ICo I = ID I , Bn(C uD) = (1),IT1 1 -1- 1C 1 = k,

0 	0 	 0 0 	 0

and Co
and D

o
are balanceable.

FIND: <G, H, G', H', FG> where FG is a binary flag, G, H, G',
H' are sets and !GI = !HI = 	= IH'I = IC I, CuH = 	=
C uD , and
0 0

1) FG = TRUE and P(G,H) holds

2) FG = FALSE and either -G or -G'.

1) SetC= C,D= Do
,X=C-CnD ,Y=D-CnD ,

0 0 	 0

v = TEST(C,D). If v = 0 then return <C,D,C,D, TRUE>.

2) Let X
1 	 /2, be the first n = r Ix(1 elements of X, X 2

 = X - X 1 .

Let Y l be the first n elements of Y, Y 2 = Y - Y 1 . Let C =

C - X1 + Y1 and H = D - Y i +

3) Set v' = TEST(G,H). If v' = 0 then return <C,H,G,H,TRUE>.
If IXI < 1 then return <C,D,G,H, FALSE>.

4) If v = v' then set X,Y,C,D = X 2 , Y2 , G, H; otherwise set

X,Y,C,D = X1 , Y1 , C, D. Go back to step 2. 	 1

Throughout this algorithm C is the set to be balanced and
XcC and YcD are the subsets that are used for this balancing.
To illustrate why the algorithm works, we note that C and
C - X + Y are always balanceable. Then for the limiting case
where IXI = IYI = 1, either. C = G or C - X + Y = G' or both are
balanced. The details are given by

Lemma 3.2 	Given balanceable sets C
o

& D
o

and a balancing

function TEST as required for BALANCE, the algorithm works as

specified and makes only FLogIC 0 1 1+2 calls to TEST.

Proof: From the specification of the algorithm, the following
properties are obvious:

1) X c C, Y c D

2)ICI = IDI = ! GI = IHI = IC0 1
3)IX! = IYI
4) CuD = GuH = Co uD0

64

Thus, any returned value must specify a G, H, G', H' that satisfy
the necessary constraints. It is also clear from the algorithm
that FG = TRUE is returned if and only if TEST(G,H) = 0 and, as
TEST is a balancing function with respect to P, this occurs if
and only if P(G,H) holds. Thus, it is sufficient to show that
if TEST = 0 never occurs the algorithm halts, uses at most
FLogiCo l 1+2 calls to TEST, and that either -G or -C' upon term-

ination.

We first note that each time the algorithm executes the
loop containing steps 2, 3, and 4, the set X is divided in about
half. As this can occur at most FLogIC 0 1 7 times before 1X1 = 1

and the algorithm is forced to halt at step 3, and as there is
only one call to TEST in this loop, it is clear that the algo-
rithm must halt and make at most FLogIC

o
1 1+2 calls to TEST.

Hence, we need only show that -G or -G' when 1X1 = 1 and
FC = FALSE is returned.

We do this by first proving that

CLAIM: C - X + Y and C are balanceable at all times.

For the final case where 1X1 = 1Y1 = 1, this easily shows that

either -G or -(C - X + Y) as either N(G) < k < N(C - X + Y) or

N(C) > 9. > N(C - X + Y) must hold, and 1N(C) - N(C - X + Y)1 = 1

implies that either N(C) = 2, or N(C - X) = 2. if A- is integral or

N(C), N(C - X + Y) c {rn, Lk.j} if R. is not integral.

To prove this claim, we use induction on the number of times
through the loop containing steps 2, 3, and 4. Initially,
X = C -CnD ,Y= D -CnD and C =C,C -X+Y= D o

and
0 0 0 	0 	 0 0 0 	 0 0

the claim holds because C
o

and D
o

are balanced by assumption.

We complete the proof by showing that this property is maintained
in the new C, X, Y computed in step 4. Let

C = X
1
+ X

2
+ 	C' = Y

1
+ X

2
+ = G, C" = Y

1
+ Y

2
+ = C-X+Y

D= Y
1
+ Y

2
+ 5, D' = X

1
+ Y

2
+ 5 = H, D" = X

1
+ X

2
+ 5 = D-Y+X

and suppose without
Then it must be the

hypothesis, N(C") <

loss of generality
case that N(C) >

2- There are then

that TEST(C,D) = -1.
and hence by the inductive

two cases to consider:

1

CASE 1: TEST(C',D') = - 1. Here N(C') > 	> N(C") and C' and C"
are balanceable.

CASE 2: TEST(C',D') = +1. Here N(C') < Q < N(C) and C and C'
are balanceable.

But then the claim and the lemma follow as step 4 defines the
new sets C, X, and Y properly in both these cases.

The claim we used to prove this lemma is also interesting in
itself. In particular, if the algorithm terminates with
FG = FALSE then G and G' are actually C and C - X + Y and hence
we note

COROLLARY 3.3: If BALANCE terminates with FG = FALSE, then C
and G' are balanceable.

C. An Example of Balancing -- CHECK

As a simple illustration of this method of balancing and its
uses, we show how it can be used to determine if the median of a
k-set is a member of a specific subset of that set or not. In
sections 4, 5, and 6, we use this algorithm as a subroutine for
algorithms that actually compromise databases. In this section
however, we just present the algorithm and prove that it works.

Let E be a k-set, m(E) = M, and let x c E be the unique
element whose value is M. Suppose E can be separated into dis-
joint subsets E = A + B and suppose we are given sets C, D dis-
joint from E such that ICI = IDI = !Al and m(C+B) < m(A+B) =
M < m(D+B). Then we will define an algorithm CHECK to determine
if x c A or x c B. This algorithm will operate by balancing C
and D with respect to M such that the resultant set, 	has
exactly N(A) negative elements. It is easy to see that
m(C'+B) = M if and only if x c B and hence by using one addi-
tional query after determining C', we can determine whether
X c A or x c B.

We first define a balancing function CHECKBAL that attempts
to determine if the given set has too many or too few negative
elements. This function incorporates a predicate to test if the
median of the given set together with the set B is exactly M and
hence if x E B. In particular:

FUNCTION CHECKBAL (G,H):

GIVEN: Sets G,H.along with implicit sets A,B such that 	.
!GI = IHI = lAl, m(A+B) = M, Q = N(A), and G+B and H+8 are
balanceable.

66

67

1. Compute M
1
= m(G+B).

2. If M 1 = M then return 0, if M
1

> M then return +1, if

M < M then return -1.

it is clear that

1.(!mma 3.4: CHECKBAL (G,H) is a balancing function with respect
to the property P + {m(G+B) = M}, the median M and the value
N(A).

Proof: This follows immediately as m(G+B) > m(A+B) = M if and

only if N(G) < N(A) and m(G+B) < m(A+B) = M if and only if

N(G) > N(A).

We use this balancing function along with the given initial
sets C and D to define the algorithm CHECK:

ALGORITHM: CHECK

GIVEN: Given sets A,B,C,D such that ICI = !DI = IAI,

(AuB)n(CuD) = (i), and m(C+B) < m(A+B) = M < m(D+B).

FIND: Whether the unique element x e A+B with value M is in A
or in B.

1. Compute BALANCE with CHECKBAL and sets C,D, and A. Let
FG be the Boolean flag that results.

2. If FG = TRUE then x e B; if FG = FALSE then x e A.

We can easily show that this algorithm works and requires only
0(LogIAI) queries by referring to Lemma 3.2.

In particular.

Lemma 3.5: CHECK correctly indicates whether x e A or x E B and
uses only 0(LogIAI) queries.

Proof: Since the function CHECKBAL makes only one query, Lemma
3.2 shows that the algorithm CHECK makes at most rbagIAI 1+2
queries. Moreover, if FG = TRUE is returned, Lemma 3 shows that
P = {m(G+B) = M} must hold and hence, by the uniqueness of x,
x c B. Hence, it is sufficient to show that if FG = FALSE is
returned, then x c A. From Lemma 3.2, we note that one of the
returned sets, say G, must be balanced. But then if x e B,
m(G+B) = M as the median is determined only by the number of
negative elements in G+B which by assumption is the same as the
number in A+B. But, this cannot be the case as CHECKBAL(G,H)
0 and hence x 	B; thus x c A. 	 ❑

El

0

0

This example illustrates the usefulness and the power of the
method of balancing. In the next section of this paper, we use
the technique first to determine some element of a database both
probabilistically and deterministically and then to determine
the value of particular elements of the database.

IV. COMPROMISING A DATABASE PROBABILISTICALLY

The technique of balancing and the algorithm CHECK intro-
duced in the previous section can be efficiently used to compro-
mise a database. In particular, if we are given a k-set of
elements S from the database such that m(S) = M, CHECK can be
used in a binary search that will isolate the unique element
x e S whose value is M. To do this, it is first used to deter-
mine which half of S x lies in, then which quarter of S, then
which eighth, and so on. This approach requires only 0(Log k)
applications of CHECK, and hence only 0(Log 2 k) queries, to
compromise a database.

Unfortunately, this straightforward approach cannot he
implemented in the obvious way because of the conditions imposed
by CHECK on the two sets used to do the balancing. It is
generally difficult to find sets C and D for a given set A 	S
such that

m(C+B) < m(A+B) < m(D+B)

where B = S - A. In this and the next section, we demonstrate
two methods whereby these sets can be computed at each stage of
the binary search from the corresponding sets of the previous
stage. The first method is simpler but is probabilistic in
nature -- it can use any number of queries, but with probability
1-E for any E 	0 it will use only 0(Log 2 k) queries. The
second method is more complex, requiring another application of
the balancing algorithm, but is guaranteed to always work using
0(Log2 k) queries.

A. The General Approach

Even without specifying exactly how we are going to compute
the necessary sets, we can present an algorithm to implement
this divide and conquer approach to compromising a database. We
begin by computing the median of three sets, A, C, and D, and
then relabeling them so that for B = (I) and x E A,

m(C+B) < m(A+8) < m(D+B).

This provides the basis for a recursive algorithm which contin-
ually splits A in half which maintaining x c A and simultaneously
splitting C and D so that condition 4.1 still holds. The basic

68

algorithm is:

ALGORITHM: FINDMEDIAN - compromise a database

GIVEN: A database X of n > 3k elements.

FIND: An element X c X with a known value.

1. {Initialization} Form 3 disjoint k-sets, A, C, D.
Compute m(A), m(C), m(D). Relabel the 3 sets so that
m(C) < m(A) < m(D). Let M = m(A) and let x c A be the
unique element with value M. Let B = cb.

2. {Splitting} Apply some splitting algorithm to A, B, C,
D to find A' c A, C' C C, D' c D, B' = B + A - A' such
that

2a) IC'l = 1D'I = 1A 1 1 e {LIA1/21 , CIA l /21 }
2b) m(C'+B') < m(A l +B') = M < m(D' + B'), and

2c) x c A'.

3. {Recurse} If IA'l = 1 then return (x has value M).
Otherwise, set A, B, C, D = A', B', C', D' and go back
to step 2. 	 ❑

From the divide and conquer nature of this algorithm, it is
easy to note that

Lemma 4.1: If the splitting algorithm of step 2 requires 0(Log k)
queries, then FINDMEDIAN will determine the element x using
0(Log 2 k) queries.

Proof: Clearly as x r A' is guaranteed at each step, if
1A'l = 1, A' = {x} and the algorithm determines x correctly.
Moreover, as A is originally of size k and is about divided in
half each time the splitting algorithm is executed, this algorithm
will be executed only 0(Log k) times. Hence at most 0(Log2 k)
queries will be required. 	 ❑

In the next section, we provide a simple splitting algorithm that
achieves this 0(Log k) bound with any fixed probability 0<a<1.

B. A Probabilistic Splitting Algorithm

The splitting required in step 2 of this algorithm can be
accomplished by randomly choosing the subsets A', C', D' until
we find one that can be used as input to CHECK to determine if
x e A'. At each stage, we are given sets A, B, C, D such that

m(C+B) < m(A+B) < m(D+B)

and hence, it is reasonable to assume that if we make enough
random selections of C' .c C, D' c D and A' c A, we will find one
where

m(C'+B') < m(A' + B') < m(D' + B')

and
m(C' +B") < m(A-A'+B") < m(D'+B")

for appropriate B' and B e '. Once this situation occurs, we can
apply CHECK to A', using C' and D', to test if x e A' or
x c A-A' and hence finish the split.

The exact algorithm we use here is

ALGORITHM PROBSPLIT - probabilistic splitting

GIVEN: Sets C, D, A, B as in FINDMEDIAN step 2.

FIND: Sets C' c C, D' c D, A' c A, B' = B + A-A' such that

a) IC I I = ID'I = IA'l E { 	/21, 	I LIA1/ 2.1 }
b) m(C'+B') < m(A T +B') = M < m(D'+B')

c) X E A'.

1. Randomly choose C' c C; D' c D; A', A" c A and sets B' =
B+A-A', B" = B+A-A" such that

a) 	1C'1 = ID'I = IA ? ! = IA"' = F1A1/21,

h) A' u A" = A.

2. Compute m(C'+B'), m(C'+B"), m(D'+B'), m(D'+B"). If
m(C'+B') > M or m(C'+B") > M or m(C'+B') < M or m(D'+B") < M
then repeat step 1.

3. Apply CHECK to A', B', C', D' to test if x c A'. If so,
return A', B', C', D'. If not, return A", B", C', D'. 	0

It is clear that this algorithm correctly splits A,C, and D
since

70

Lemma 4.2: If PROBSPLIT halts then the values returned satisfy
the requirements of FINDMEDIAN step 2.

Proof: Step 2 of PROBSPLIT insures that both

m(C'+B T) < m(A'+B') < m(D'+B')

and
m(C'+B") < m(A"+B") < m(D r +B")

hold and hence that either of (A', C', D') or (A", C', D')
satisfy requirements 2a and 2b of FINDMEDIAN. Moreover, lemma
3.5 insures that step 3 will correctly determine if x c A' or
not. If it is then (A', C', D') satisfies the conditions. If
not, x c A - A' c A" and hence (A", C', D') satisfies the
condition.

The number of queries required by this splitting algorithm
is just 0(Log k) + 4n where n is the number of times that steps
1 and 2 must be executed. In order to determine the expected
number of queries required by the algorithm for a random data-
base, we must determine what the expected value is for n. We
start by showing that the probability of making a proper
selection in step 1 is greater than some constant co .

Lemma 4.3: Given that m(C+B) < m(A+B) < m(D+B), the probability
of choosing C' c C; D' c D; A', A" c A and setting B' = B+A-A',
B" = B+A-A" such that A'uA" = A, m(C'+B') < m(A'+B') < m(D'+B')
and m(C'+B") < m(A"+B") < m(D'+B"), is greater than some constant
c
0

Proof: Since m(C+B) < m(A+B) < m(D+B), it follows that N(C) >
N(A) > N(D). It clearly suffices to show that the probability
of making a proper selection is > c o for the case N(C) = N(A) =

N(D). We define the variation v in each random choice as

v(X') = IN(X') - N(X - X')I

for x c {A,C,D}. Then as Iv(A') - v(A")I < 1 we can guarantee
that a proper choice exists if

v(C'), v(D') > v(A') > v(A")

and we choose the "proper" half of C for C' and D for D'. This
latter probability is at least 1/2 • 1/2 = h and the probability
that v(A') > v(A") is at least h. Moreover, as A',C' and D' are
chosen independently, the following cases are equally probable:

v(C'), v(D') > v(A')

v(C'), v(A') > v(D')

v(D'), v(A') > v(C')

As these span all possible cases, the probability of each must
be at least 1/3, and as the first case represents a proper
selection, the probability of step 1 succeeding is at least

1/3 • 1/4 • 1/2 = 1/24.

Since the probability of making the proper selection is step
1 is greater than some constant c 	the expected number of times
the step will h;.::ve to be repeated

o
 isat worst 1/c which is 0(1).

Hence, the expected number of queries required by°PROBSPLIT PROBSPLIT is
0(Log k) + 0(1) - 0(Log k) and hence that FINDMEDIAN can operate
with an expected number of queries of 0(Log 2 k).

This demonstrates that the expected number of k-median
queries required to compromise a database is 0(Log 2 k), however,
it gives us no feel for the distribution of the number of
queries required -- it is theoretically possible that many
applications will require 0(Log 3 k) or even 0(k) queries to
compromise a database. We show that this is not the case by
proving for any constant 0 < a•< 1 that FINDMEDIAN using PROB-
SPLIT will compromise a database using only 0(Log 2 k) queries
with probability a. In particular, we show

Lemma 4.4: The number of times that step 1 of PROBSPLIT must he
executed during the execution of FINDMEDIAN is 0(Log k) with
probability a for any fixed 0 < a < 1.

Proof: Let c
o

be the minimum probability that stage 1 makes a

successful choice as determined by lemma 4.3. Since this minimum
probability is independent of previous successes or failures and
the size of the set being selected, we can view all the executions
of step 1 of PROBSPLIT during the execution of FINDMEDIAN in a
worst case sense as a sequence of Bernoulli trials [F], each with
probability of success c

o
and probability of failure 1-c

o
. For

the whole algorithm to succeed, it suffices to show that any
such sequence of n = 0(Log k) trials will have 'log kl + 2
successes with probability a.

Let q = 1-co , r= Log k + 3 > rLog 	+ 2, 13 = 1-a. Let Sn

be the number of successes in n trials. Then we mpst establish
that

72

P
R
 {S

n —< r}

—

< 1 - a = B.

It is known [F] that
(n-r)c

P
R

{sn —< r} < (nc -r)2 for r < nc
o

o

and hence it suffices to show that

(n-r)c o
2

< a
(nc

o
-r)

for some n > -- which is 0(Log k).
c
o

Let 3Log k + 9 	
ac

 1
n > 	 0(Log k).

c
o 	0

'[lien
6ar + 2 - 4arc0

3ar + I 	6ar + 2
n > -

13co 	2ac
o —
	2ac

0

2ar + 1 + 1 + 4ar(1-c o)

2ac
o

2ar + 1 + ✓1 + 4ar(1-c o) 	2ar + 1 - ✓1 + 4ar(1-c0)

2 a co 2ac
o

But then

) >

	

c 	
o 	

0 4)

nIr + 1 + ✓1 + 4ft- a- co
 	n 	

2a

) 	2ar + 1 - 1/1 + 4ara-c o)

or
ac 2n- 28c rn - nco +

2 + rc > 0
0 	 0

 o —

a(c
2
n
2

- 2crn + r
2
) > nc - rc

0 	 0 	 0 	0

(n
213c o

and hence
(n - 	c

o
> 2 '

(nc
o

- r)

From this and the preceding lemmas, it is easy to conclude
that:

Theorem 4.5: A database 2 can be compromised using n k-median
queries where n is 0(Log k) with probability 1 - c for any

> 0. Li

V. COMPROMISING A DATABASE

The results of the previous section show that a database can
be easily compromised using only 0(Log 2 k) queries almost all of
the time. The question still remains as to how many queries are
required to guarantee that a database can be compromised.
Previous results have shown that 0(4) k-median queries are
sufficient [DLR]. In this section, we improve this bound by
developing a deterministic splitting algorithm that uses 0(Log k)
queries. In conjunction with the algorithm FINDMEDIAN of the
previous section, this allows us to insure compromise with only

0(Log
2
k) queries.

The idea behind this new splitting algorithm is to take an
arbitrary division of A, C, and D as in the previous section and
then, rather than discarding it if it is not proper, modifying
it so that the necessary conditions are met. In the analysis of
the probabilistic splitting algorithm, we noted that for a random
split of A, C, and D to be proper, it was enough to insure that
C' c C and D' c D have greater variance than A' c A and A" C A

and that this variance is in the proper direction (i.e. C' has
more negative elements and D' has more positive elements).
Since we are dividing C and D in half, and since we know that
one of the halves must have more negative elements and the other
more positive elements, rather than just choosing one and hoping
it is correct, we try them both and use the proper one. Thus,
we need only modify A' and A" until they have smaller variances
than both halves of C and D. This is accomplished by using
balancing algorithm of section 3 to modify the two halves of A
until they both have about the same number of negative and
positive elements.

This simple approach is complicated by two factors. First
of all, there are cases where the C' or D' that are selected
exhibit little or no variance and the desired relationships
between C', D', A' and A",

m(C'+B') < m(A'+B') = M < m(D'+B')

dild

m(C'+B") < m(A"+B") = M < m(D'+B"),

cannot be achieved. We show that this case is easily recognized
and that when it occurs we can determine which of x c A' or
x c A" holds and are able to use the proper set recursively.
The second complication i, that the size of A may be odd and
hence it is impossible to divide A, C, or D into two equal sets.
We handle this by splitting each of these sets into either two
sets that overlap by one element or into two equal sets with an
extra element. This makes the simple analysis that follows much
more complex.

A. The Splitting Algorithm

Our particular algorithm operates by first dividing each of
A, C, and D into 3 disjoint sets, X 1 , X2 , X3 for. X c {A,C,D},

such that 1X
1
1 = 1X

2 1 = LIX1/21 and IX 3 1 e {OM. We denote

such a division function by DIVIDE(X) 	<X1 , X2 , X 3>. Using the

divided sets, we let C be the more negative of C
1
+ C

3
and

C 2' + C 3 and we let D be the more positive of D i + D3 and D2 + D3 .

Then, the core of the algorithm consists of balancing A l and A
2

until either both satisfy

m(e + A. + B) < m(A + B) < m(15 + A. + B), i = 1,2 	(5.1)

or until they have an equal number of negative elements. In the
first case, we use CHECK to determine which of Ai + A

3
contains

the element x and then return with this set, C and D for the
next stage of FINDMEDIAN. In the latter case, we show that a
condition similar to (5.1) must hold for the A i which contains
x once A

l
and A

2
are balanced. Hence, we apply CHECK to the

appropriate sets, determine which of x c A i+A 3 or x c A2+A 3

 holds, and return to FINDMEDIAN correctly.

f

The specific algorithm is:

ALGORITHM SPLIT - deterministic splitting

GIVEN: Sets C, D, A, B as in FINDMEDIAN step 2.

FIND: Sets C' c C, D' c D, A' c A, B' c B + A - A' such that

a) IC'! = ID'I = 1A'! c { FIA! /21 , 	/2j)

b) m(C'+B') < m(A'+B') = M < m(D'+B')

c) x c A'.

1. DIVIDE(A) + <A
l'
 A2, A3>; DIVIDE(C) 	<C1, C2 , C *

1 , 	2' 	3
>

'

DIVIDE(D) 	<D
1 , D2'

D
3
>.

2. BALANCE A l and A2 yielding A l , A 2 , A1 ', A2 ' until either

a) m(6-1-A
1
+B) < m(A+B) < m(5)+A

1
+B) and

m(&-A 9+B) < m(A+B) < m(5+A 2+B) where

c {C1+C 3 , C2+C 3 }, D e 	D2+D3 1; or

b) IN(A 1) - R(A2)1 < 1 or 11;i(A1 ') - N(A2 ')J <_ 1

3. If condition a) holds then apply CHECK to A 2 + A3 , A l + B,

C and D to test if x e A2 + B, or x c A l + B. If

x c A2 + A3
then return 	D, A

2
+ A3, B + A

I

as <C', D', A', B'>. Otherwise, return <C,D,A 1+A 3, B+A 2 >

as <C',D',A',B'>.

4. If condition a) fails to hold then if SPLITCHECK
(A1 ,A2 ,A3 ,B,C1 ,C2 ,C 3 ,D1 ,D2 ,D3) is not NIL, return its value.

Otherwise if SPLITCHECK (A 1 ',A2 ',A3 ,B,C1 ,C 2 ,C3 ,D 1 ,D2 ,03) is

not NIL, return its value. Otherwise, x is A
3
and we are

done.

Here the algorithm SPLITCHECK does the necessary tests to
determine a new A', C', D' based on the fact that A

l
and A

2
(or A

1
' and A

2
') are balanced. It is guaranteed to return a

satisfactory split if A
l
and A

2 are balanced and x
	A

3
and

hence, either one of the two calls in step 4 will succeed or we
will know that x is the unique element in A 3 .

To show that this algorithm correctly splits A, C, and D and
uses no more than 0(Log k) queries, we divide our analysis into
three distinct parts. We first note that if condition a) of
step 2 holds at any time, the algorithm splits A,C, and D
correctly. Secondly, we present the appropriate balancing
algorithm for step 2 and prove its properties. Finally, we show
that if A i and A

2
are balanced by this algorithm so that they

have about an equal number of negative elements, then the algo-
rithm SPLITCHECK and hence, step 4 of this algorithm yields a
correct split and uses only 0(Log k) queries. Thus, since CHECK
in step 3 uses only 0(Log(k)) queries, the whole algorithm must
correctly split A, C, and I) and use no more than 0(Log k) queries.

B. The Case Where Step 3 is Executed

The case where condition a) of step 2 holds is essentially
the same as the probabilistic splitting algorithm of the previous
section with C' = C, D' = D', A' = A

l
+ A3, B' = A

2
+ B, A" =

A
2
+ A3, B" = A

l
+ B and hence from lemma 4.2 we can conclude that

Lemma 5.1: If condition a) of step 2 holds, then SPLIT properly
returns A', B', C', D' and uses at most 0(Log k) queries in
step 3.

Proof: Lemma 4.2 and the above discussion demonstrates that
A', C', and D' represent a proper split of A, C, and D.
Moreover, since the only queries involved in step 3 come from a
single execution of CHECK, lemma 3.5 shows that at most 0(Log k)
queries can be asked.

C. The Balancing Process

The previous lemma demonstrates that if condition a) of step
2 ever holds, then we can easily finish up the splitting process
in 0(Log k) steps. Our remaining concern regarding the algorithm
SPLIT is to establish what happens if this condition never holds.
In particular, we are concerned with the case where the balancing
algorithm has terminated so that A I and A

2
or A

1
' and A

2
' have

roughly the same number of negative elements and yet have more
variance than either C

l
and C

2
or D

1
and D

2
. We show that in

77

this case, the splits of C, D, and A have very specific proper-
ties which we can exploit in order to split A.

In order to present and prove the algorithm SPLITCHECK, we
must first establish the balancing algorithm and its properties.
Essentially, this algorithm balances A

l
and A

2
with respect to

condition a) so that the number of negative elements in A
l

is

within one of the number of negative elements in A
2
. The

algorithm is

ALGORITHM SPLITBAL - balance Al and A
2

for SPLIT

GIVEN: Divided C
1,
 C2, C

3
and D

1 , D2' D
3 ; • set B as in algorithm

SPLIT; sets G and H to balance.

ACT: as a balancing function with respect to condition a),
attempting to get the number of negative elements in Al equal to
the number in A

2
.

1. Evaluate the queries

m(C1+C 3 + G + B) =M1 .

m(C
2
+C

3
+ G + B) = M

2

m(C1+C3
+ H + B) = M 3

m(C
2
+C

3
+ H + B) = M4

m(D
1
 +D

3
 + G + B) = M

5

m(D2+D 3
+ G + B) = M6

m(D
1
+D

3
+ H + B) = M

7

m(D
2
+D

3
+ H + B) = M

8

2. If ((M
1
 < M and M3.< < M) or ('4

2
< 1.4 and M

4
< M)) and

3

(04
5
> M and M

7
> 10 or (14

6
> M and M

8
> 11)) then return 0.

78

3. If M
1 	

M and M
2
> M then return +1

else if M
3
> M and M

4 > M then return -1

else if M
5
< M and M

6
< M then return -1

else if M
7
< M and M

8
< M then return +1.

To prove this is a proper balancing function we show that

Lemma 5.2: SPLITBAL(G,H) returns

a) 0 iff condition a) of step 2 of SPLIT hold;

b) +1 iff R(G) < N(G); and

c) - 1 iff N(H) >

Proof: Clearly step 2 can cause a_return of zero if only if
condition a) holds for some C and D. Hence, it suffices to show
that the tests of step 3 produce a proper result and cover all
possible cases.

To show that these tests cover all cases, we assume that no
condition at step 3 holds and that step 2 fails as well. Step 2
must fail for either the C's or the D's or both. We assume
without loss of generality that it fails at least for the C's.
This means that the following must hold:

(M
1
 > M V M 3 > M) r. (A2

> M v M
4

> M)

Then, as no case of step 3 can hold, it must be the case that
either M

1,
M
4

> M and M
2'

M
3
<M or M2, M

3
> M and M

1,
M
4
 < M.

We assume without loss of generality that the first case holds.
Let a = 1 if x c GuH and a = 0 otherwise. Then

,
C
1
+C

3
+G+B can

have at most
k-1

 negative elements and C
2
+C

3
+H+B can have at

most k- 1 negative elements and, if x c G + H one of these must

have one fewer. But then

N(C
1
+ C

2
+ C

3
+ C

3
+G+H+B+ B) <

2k-2
2 	

a

and since N(G + H + B)
k -1

a, N(C
3
) > 0, we get

N(C
1
+ C

2
+ C

3
+ B) < k1

	

2 	'

This is a contradiction since m(C+B) < m(A+B) and hence,

N(C+B) >
k+1
2 .

Of the four cases in step 3, the first two and the last two
are symmetric since one of N(G) > N(H), or N(H) > N(C) must hold.
We therefore consider only the first and third cases. Suppose
M
1

> M and M
2
> M. Then

-
171(C1 + C 3 	G 	B)

<
k21

and 	
171(C 2 + C 3 + G + B) < k-2 1

 and hence

R(C1 +C2
+C

3
+ C

3
+G+G+B+B)< 2.1(

2

1
We have established that N(C+B) > k21 and hence

Ei(C3 + G + G + B) < k-2 3

or

isi(G + G + B) < k-2 1 •

But then R(G) < ITT(H) as otherwise

N(G + H + B) <
k-21 	

1

which is a contradiction as N(G + H + A
3
+ B) =

k+1
 and hence

2

R (G+H+B) > k21

80

k+1
+ 1

2

The proof for the other two cases is similar. Suppose that

M
5
 < M and M

6
 < M. Then R(D

1
 +D

3
 +G+B) > 16-1 and

9

Fl(D
2
 +D

3
 +G+B) > kl-1 and hence

2

FI(D, + D2 + D 3 +G+G+B+ B) >
211-2

-
Now as N(D+B) 	

k1
2

(D+B) < 	, and N(D 3) < 1,
—

N(G + G + B) > k+1
2

But then N(G) > N(H) as otherwise

R(G + H + B)

which is a contradiction since N(G + H + A
3
+ B) = k+1 and hence

2

+ H + B) < 1(4-2 1 . 	 0

This shows that SPLITBAL is indeed a balancing function with
respect to condition a) of step 2 of SPLIT. Moreover, it is
clear that it makes only a constant number of queries per
execution and hence by lemma 3.2 and corollary 3.3, we get

Lemma 5.3: Let N(A) = Z. Then either we can determine x
directly or x is in A. and A.' as returned from BALANCE, and

fN(A i), N(A. $)} contains

a) {R- 1, Id- l} 	if A
3
is positive or empty; or

b) { rk-11 1, I
 2 2 	L 	

- 11. if A
3

is negative.

Proof: We first note that cases a) and b) are symmetric there
arc R negative elements in Al + A2 if A 3 is positive or empty

and only Z-1 if A
3
is negative. Hence, we need only prove

case a).

co 	2,
Clearly, if Q, is even, then {1-1 - 1, [

-2- - 1} = 2

{-1742.- 	
1

-llandasoneofA.andA:
3

must be balanced, it must

satisfy N(X) = 2 and hence N(X) =-
2
 - 1. 	If .4, is odd, then the

four sets that are returned by BALANCE are

G +X 	H+ Y

G +Y 	H+ X

where IX' = IY! = 1, so that

N(G + X) = N(H + X) = 1-1-1 and N(G + Y) = N(H + Y) - Z 2 1
 2

lf x c G, then G + X and G + Y satisfy the lemma while if

X c H, H + X and H + Y satisfy the lemma. This leaves only the

case that x c XuY. But, as R(x) = 1, this implies that X={X}

and, since we can tell which of N(G+X) > N(G+Y) or

N(G+X) < R(G+Y) holds, we can determine x. 	 fl

D. The Case Where A
l

and A
2

are Balanced

Having shown in this last lemma what the result of the
balancing process will be with respect to sets containing x, we
are now ready to describe and verify the algorithm SPLITCHECK.
This algorithm takes advantage of the various conditions that
must be satisfied before step 4 of SPLIT and hence, SPLITCHECK
can be executed. It considers some of the possible sets that
might provide proper splits and then uses CHECK to determine
when a proper split exists. For such a method to succeed, we
need to insure that CHECK is only called with proper arguments,
that at least one of the cases for which CHECK is called will
work, and that CHECK will only he called a constant number of
times.

The algorithm we use is

ALGORITHM SPLITCHECK - test for proper split.

GIVEN: Al and A2 possibly balanced, as well as A 3 ,C1 ,C 2 ,C 3 ,

DD
2'

D
3

from step 4 of SPLIT.

82

FIND: Sets A', C', D' that form a proper split of A, C, D if
possible, NIL if not.

1. For (7: e {C
1
+ C 3, C

2
+ C

3
}, D c {D

1
+ D3, D

2
+ D

3
},

A E {A 1 + A3 , A2 + A 3 }, B = 	+ Al +A2 + A 3 - 	do steps

2-4. If none of these returns a value, return NIL.

2. Compute

M
1
= m(+ B)

M2 = m(5 + B)

M
3
= m(6 - C

3
+ A

3
+ E)

M
4 = m(5 - D3

+ A
3
+ E)

3. If M
1
e M < M

2 then if CHECK(A,B,C,D) shows x E A, return

C,D,A as C',D',A'.

4. If M
3

< M < M
4

then if CHECK (A-A
3, El-A3'3'

5-D
3
) shows

X c A-A3
, then return C-C 3 , 5-D

3
and A-A

3
as C', C', A'.

It is clear from the specification of SPLITCHECK that the
number of queries required is 0(Log k) and that, because of the
nature of CHECK, if a value is returned from SPLITCHECK, it must
represent a proper split. What remains to be shown is that if
X / A 3

, then for at least one of the two balanced sets contain-

ing x, one of the calls to SPLITCHECK will return a split. Thus

LLInina 5.4: If x 	A3 , then for one of A., A.' such that
J

xLA
i
nA ', the call to SPLITCHECK involving this set must

return a value.

83

Proof: There are several cases to consider, mainly dependent on
the values of A3, C3, and D 3. Let R. = N(A) and let A be one of

A. + A 3, A'
j
+ A 3. From lemma 5.3, we note that N(A) will take

on the values
- - 2 	2 	

1} if A
3

is empty or positive and

the values fr 	41, LTjl if A 3 is negative. Hence, it

suffices to show that for each case as determined by IAI, C 3 , D 3

 and A3 , that one of these values will cause SPLITCHECK to return

a split.

We first note that by simple counting arguments, if we have
sets R, S, T and U and an element 0 c S such that 	is the median
element of A + U, then

N(R) > N(S) > N(T)

if and only if

m(R+U) < m(S+U) < m(T+U).

We make extensive use of this fact in the three cases that
follow.

Case 1: 	All 	is even: Then N(D) < C
'
 31] and N(C) > T21 for

some C and D and hence, N(A) =
2
 - 1 satisfies N(C) > N(A) >

N (5) .

Case 2: 	All 	is odd, D 3 is positive: Then N(D) < r2 1] and

N(C) > 11 for some C and D and hence N(A) = IZ I - 1 = 1_9.2 1

satisfies N(C) > N(A) > N(D).

Case 3: 	All 	is odd, D 3 is negative: Then N(D-D 3) .< L' 2 2j

N(C-C 3) 41 2 11 and hence N(A-A 3) = 1-3] - 1 if A 3 is positive or

N(A-A3) = 	1 if A 3 is negative satisfy N(-C 3) >

N(A-A3) > N(5-D3).

84

This completes the specification and verification of the
algorithms involved with SPLIT and we can summarize lemmas 5.1
through 5.4 as

Theorem 5.5: Algorithm SPLIT compromises a database using

0(Log
2
k) k-median queries. CI

VI. DETERMINING SPECIFIC ELEMENTS

The previous two sections show that it is relatively easy to
compromise a database using k-median queries. However, the
information that was obtained was about some arbitrary element,
and we are often more concerned with determining the value of
some specific element. Previous results in this area have shown
that if the value of a specific element lies in the a-tile,

0ct.: 12:,(i.e. in a database of size n, at least an elements

have a smaller value and at least an elements have a larger
value) then it can be compromised using a probabilistic approach

with an expected number of queries of 0(k) + a
-k/2

(1-a)
-k/2

. In

this section, we improve this exponential bound by showing that
for any a and sufficiently large n, there is a probabilistic
means of determining the value of any specific element in the
ct-tile using a expected number of 0(k) queries. Moreover, we
begin by noting that if a slight amount of extra information is
available, compromising a specific element can be done using
0(Log k) or fewer queries.

A. Using Selector Information

So far in this paper, we have considered a simplified model
of a database in which all selector information has been dis-
carded. While this model may be somewhat unrealistic in the
number and type of queries allowed and hence could make a data-
base seem easier to compromise than it actually is, it also
ignores a good deal of information that could make compromising
a database significantly simpler if not trivial. For example,
suppose we wanted to determine the salary of some employee E.

Moreover, suppose we know Y other employees who must have

smaller salaries than E (i.e. they are mail clerks, secretaries,

or assistant professors) and we know
12

employees whose salary

must he greater than E's. Then by simply asking for the median
salary of E and these two groups of employees, we can be assured
that the result is E's salary. Hence, using a single query, we
can compromise the database.

85

While it might not be easy to find sets all of whose elements
are greater than or less than the element to be determined, it
should be considerably easier to find two k-sets, one whose
median value is less than the element and one whose median value
is greater than the element. We can use these two sets along
with the technique of balancing of section 3 to determine the
specific element using an expected number of 0(Log k) queries
with probability 1-c for any 0 < c < 1.

The algorithm we use here is

ALGORITHM GETVALUE

GIVEN: An element x, two sets of k elements, A, B such that

m(A) < x < m(B).

FIND: The value of X, M.

1- Randomly choose acA until M(A-{a} + {x}) > M(A).

2. Randomly choose beB, until m(B-{b} + fxl) < m(B).

3. Balance A-{a} and B-{b} using the following balancing
function:

a) Compute M1 = m(G+{X}), M2 = m(C+fal), M 3 = m(G4410)

b) If M
1 	

M
2
and M

1
	M3, then return 0

else if M
1

= M
2

then return +1

else return -1.

4. If BALANCE returned with FC=FALSE, then . m(A) < M < m(B)
did not hold initially. Otherwise, let A he the balanced
set that is returned. Then return m(A + { x }) as the
value of x. 	 ii

The method used in this algorithm is straightforward. Step
1 finds an element a in A whose value is < m(A) and hence is
less than M. Step 2 repeats this process with B to find an
element b whose value is > m(B) and hence greater than M.
Finally, the two sets A-{a} and B-{h} balanced so that the

resultant set A contains
k1

 negative elements and hence so that

m(A + {x}) = M is the value of x. It is clear that steps 3 and 4
use only 0(Log k) median queries. Moreover, if FG = TRUE is
returned from BALANCE in step 3, then it must be the case that
M(G + { x }) = M. Hence, it we can show that the number of queries
required in steps 1 and 2 is small and that BALANCE must return

86

with N(A) = k1 provided that m(A) < M < m(B), then we can prove

Theorem 6.1: Let x be an element of a database and let A and B
he two k-sets of elements, x # AuB. Then, GETVALUE will return
the value M of x if m(A) < M < m(B) and moreover, for any
constant 0 < c < 1, will use 0(Log k) queries with probability
1-c.

Proof: If m(A) 	 k+1 A) 	M then A must have 	negative elements.
2

Hence, as a is negative, N(A-{a)) > k-21
 . Similarly, as

m(B) > M, B must contain at least 12.±1- positive elements. Hence
2

as h is positive, B-{b} must have at least k-1 positive elements.

But then A-{a} and B-{b} are balanceable with respect to M and

k -1
- 2 2

To show that the balancing function of step 3 works, we note
that the value of a is less than the value of x is less than the
value of b. Hence, if m(G+{X}) < M, then m(G+{x}) = m(G -1- {b}),
\Mile if m(G+{x}) > M then m(G+{X}) = m(G+{a}). Thus, the
balancing function returns 0 if and only if m(G+{x}) = M, returns
+1 if and only if m(G+{x}) > M, and returns -1 if and only if
m(G-140) < M. But, as m(G+fx}) > M if and only if

N(G 	
k-1

) < 	, and as m(G+{X}) < M if and only if N(G)>
k-1

2 	 2 	'

Lemma 3.2 shows that one of A and A' returned from BALANCE using

the balancing function must have 	negative elements. More-

over, because both these sets are tested by the balancing
function at some point, this function must return with FG=TRUE.
Hence, m(A+{x}) = M and the algorithm is guaranteed to return
the proper value.

Finally, since N(A) > k
2
+1 and since B has at least

k
2
+1

positive elements, the probability of choosing a or b correctly
1

in steps 1 or 2 is greater than -
f

. Then, let a
n

be the

probability of completing either step 1 or step 2 in n or fewer

2
tests. We need to show that a

n
> 1-c for reasonable n. Let

c
0

= -Log(1-/T=7) be a constant dependent on E. Then choosing

n > c
0
 is sufficient. Hence, at most 0(c

0
= 0(l) queries should

he required in steps 1 and 2.

B. The General Case

While it may often be the case that enough information is
known about an element to determine a set of data with a lower
median and a set with a higher median, such an assumption cannot
be made in the general case. We next consider the task of comp-
promising a specific element of a random database where no
selection information is present. Here, we suppose that we are
given an element 	which lies in some a-tile of the database and
we are interested in the average number of queries required to
determine its value.

We determine this value by choosing a random set of elements

such that the set is likely to contain at least k21 elements

both less than and greater to the value of x, M. Once we have
such a set, we need only isolate the subsets of elements that
are less than and greater than M to determine the desired value
using the techniques of section 6.1. To efficiently perform
this isolation process, we make use of the theorem of [DJL]:

Lemma: In 3k + 0(1) k-median queries, we can determine the
median M' of a set of elements Y

1
...Y

k
of a database; and more-

over,wecandetermineforeachj,wh 	 M', or
> M'. Yj

To use this lemma to isolate the negative and positive sub-
sets, we start with a set of 2,(k-1) elements for some Q, and
apply this method to R, disjoint sets of (k-1) elements joined
with the element x in order to determine a set of

2(k-1) elements that are all less than the respective median of

the ft, set. We then repeat this process with the resultant
elements until we find a median whose value is less than the
given element. This terminating condition can easily he deter-
mined since x is in the set to which we apply the method of the
lemma. Once a negative subset is found, we can repeat this
whole process to find a positive subset. This, however, is
generally not necessary since the original set had to have either
a larger or smaller median than M and, hence, the process is
needed only to determine one of the two subsets. Once we have a

set with a larger median than M and a set with a smaller median
than M, we can apply the results of the previous section to
determine the value of x with one extra query.

The number of times the method of the lemma must be applied
in the process is at most

t + 2 +
4
 + 	+ 1 - 2t

and hence, at most 0(2,k) queries are all that is required.
Moreover, if e is a negative element, then it is easy to see
that e is always used in the next stage of the algorithm pro-
vided that the test it is used in at the current stage has a
median greater than M. But this must occur since if the median
were > M, we would be done. Hence, all elements of the original

set <M are gathered together by this process and if there were

more than
k1
2
 such elements in the original set, a median must

eventually be achieved that is <M. Similarly, a median must he
achieved that is >M.

• 	Thus, it is sufficient to determine the value of 2, to
determine the expected number of queries needed to compromise X.
By assuming that x is in the a-tile for some 0 < a < 1/2, we can
show

Lemma 6.2: Let x be in the a-tile for some a. Then, for any
constant 0 < c < 1, a random set of

(k-1)

3c 2 + 1 t) ca 	a

will have
k-1

 negative elements with probability 1-c.

Proof: We assume that the size of the database is sufficiently
large that can estimate the probability of an element being
negative as a even as we have chosen about n elements. Then,

the probability of choosing fewer than r -
k-32 negative elements

in a sample of size n can be estimated as [Fl.

(n-r)a
P
R

{S
n —

< r)
—
<

(na-r)
2 for r < na .

n >

From the proof of lemma 4.4, when

n >
3cr + 1

ca

we have P fS < r} < c.
r n —

From this lemma, we can conclude

Theorem 6.3: Let x be in the a-tile of a large database. Then

we can determine the value of x using 0(-'- queries with
a

probability 1-c for any c > O.

And hence

COROLLARY 6.4: Let x be in the a-tile of a large database
for a fixed a. Then, we can determine the value of x using
0(k) queries with probability 1-c for any c > 0. 	 Li

VII. CONCLUSION

This study shows that it is very difficult to insure
security in a database when queries involving the median are
allowed. In particular, it is shown that some arbitrary element
can be compromised with only 0(Log 2 k) queries and that a
specific element can generally be determined in 0(k) queries
unless its value is extreme. Moreover, if outside data is known
about a specific element, then it can often be determined in
0(Log k) or fewer queries. This suggests the interesting
problem of what reasonable and enforceable restrictions can be
placed on a database system so that median queries could be
allowed while maintaining the privacy of the data.

Another interesting open problem suggested by our results
is whether they are the best possible. The best lower bound on
the number of median queries required is 0(Log k) fDDL21 while

the upper bound given in this paper is 0(Log
2
k). It seems

difficult to insure that a database can be compromised in any-

thing less than 0(Log
2
k) queries. Moreover, the results of

section 6 demonstrate that proving a lower bound greater than
0(Log k) is probably just as difficult.

1

90

REFERENCES

[DDL1] R. DeMillo, D. Dobkin, and R. Lipton, "Even Databases
Thai_ Lie Can Be Compromised", IEEE Transactions on Software
Engineering, Vol. SE-4, No. 1, pp. 73-74.

[DDL2] R. DeMil]o, D. Dobkin, and R. Lipton, "Combinatorial
Inference," this volume.

[DJL] D. Dobkin, A. Johns, and R. Lipton, "Secure Databases:
Protection Against User Inference," (submitted for pulica-
tion).

[DL] D. Dobkin and R. Lipton, "Complexity Aspects of Database
Security," (unpublished manuscript).

[DLR] D. Dobkin, R. Lipton, and S. Reiss, "Aspects of the
Database Security Problem," Proceedings of a Conference on
Theoretical Computer Science, pp. 262-274, University of
Waterloo, 1977.

[F] William Feller, An Introduction to Probability Theory and
Its Applications, Vol. I. John Wiley & Sons, Inc., 1960.

[R] S. Reiss, "Security in Databases: A Combinatorial Study,"
(submitted for publication).

SECTION IT. ENCRYPTION AS A SECURITY MECHANISM

Of all the security techniques which are currently under
investigation, encryption and data security has attracted the
most public attention. Perhaps this is because cryptography has
been a favorite activity of amateur mathematicians and has
figured prominently in literature ranging from historical studies
to the exploits of Sherlock Holmes. Indeed, at the time of the
assemblage of these papers (October 1977), events reported in
scientific and public outlets broke so quickly that aspects of
several of the papers in the section were not known in detail
until our gathering in Atlanta.

The five papers presented here are truly representative of
current research in data encryption. George Davida and John Kam
propose a type of substitution - permutation encryption network
design. Their intent is to provide a variant of the NBS data
encryption standard which obviates several of the objections
raised by Hellman and Diffie and others. Richard DeMillo,
Richard Lipton and Larry McNeil raise a novel application for
encryption research: the protection through encryption of
commercial software from overt theft. Gerald Popek and Charles
Kline correctly point out that often times the protocol through
which encryption algorithms are made available have significant
impact on their effectiveness. They examine several encryption
algorithms from this perspective. A surprising probabilistic
method for creating secure digital signatures is the subject of
Michael Rabin's article. He presents a method which can be
based upon any block encoding function that satisfies three
simple axioms. Ronald Rivest, Len Adelman and Michael Dertouzos
address a serious defect in current methods of encrypting data:
coded information must be decoded before it can be manipulated.
Out of all possible privacy transformations, the authors select
the privaeg homomorphisms which allow data to be operated upon
in its encrypted form.

93

A STRUCTURED DESIGN OF SUBSTITUTION-
PERMUTATION ENCRYPTION NETWORK*

John B. Kam

Department of Electrical Engineering & Computer Science
Columbia University
New York, New York

George I. Davida

Department of Electrical Engineering & Computer Science
University of Wisconsin-Milwuakee

Milwaukee, Wisconsin

* The research reported in this paper was supported in part by
the National Science Foundation under Grant No. MCS 77-02156.
It was also presented at the Workshop on Foundations of Secure
Computations, October 3-5, 1977, Atlanta, GA.

95

I. INTRODUCTION

The advent of large databases and computer networks has
created tremendous interest in the area of data security in
general and the field of cryptography in particular [1-8].

Recently, a variant of the substitution-permutation encryp-
tion scheme developed by IBM [9] was adopted by NBS as the data
encryption standard (DES). However, the DES is considered weak
by several computer scientists, including Hellman [10-12]. One
of the main arguments against DES is the smallness of the key
size.

We plan to present a method for designing S-P networks which
will ensure that the designed networks may be arbitrarily large
and possess certain desirable properties that add more insight to
the design of secure encryption devices.

BACKGROUND AND DEFINITIONS

The model we will use for S-P networks is essentially the
same as that described by Feistel [13]. In general, each S-P
network has three parameters:

(i) n = the number of , input (output) bits of the S-P
network

(ii) k E the number of input (output) bits for each
substitution box

(iii) 2 7 the number of substitution-permutation stages.

Figure 1 illustrates an S-P network where n=9, k=3, J2=3.

In general, each substitution box (S-box) S.. is a logical
11

circuit that implements a one-one correspondence f: 0,11
k

{0,l} , and different S..'s may implement different one-one

correspondence functions. It is obvious that each S-P network is
itself a one-one correspondence function g: {OM n ,

fo,o n .

In actual applications, we have to guard against the possi-
bility that the internal structures of all S-boxes and permutation
may become known to some cryptanalysts. To obtain security even
in this situation, we may modify the design of the encryption
network by allowing two choices of S-boxes for each S.., and by

including a key register which has as many bits as the number of
S-boxes in the network. Before a user encrypts a message, he will
first input a binary key to the key register, so that one of the
two S-boxes is selected for each S.. according to the values of

1]
the corresponding key bit. Figure 2 illustrates an S-P network
with the modification and key register incorporated.

Plaintext= P0P 1P 2P 3P4P 5P 6P 7P 8)

S
10

S
11

S
12

. -

S S S
20 21 22

- - 	- - -

S S S
30 31 32

.

Ciphered Output
=(c

0
c
1
c
2
c
3
c
4
c
5
c
6
c
7
c
8
)

Figure 1. 	A Sample S-P Network

i

97

Pla intext=(P 0P 1 P 2 P 3P 4 P5 P 6 P 7 P 8)

i 	' r ,
S

11 S 1 2
1 1 11

10 11 12

H

1

S 20
It

:
S
21

I/

/
S
2

//
S S S

20 21 22

1 1 1

S 30 S 31
S
32

I t

30 31 32

Figure 2. A Sample S-P Network With Two Choices Of S-Boxes
For Each S.—

1J

98

Several people, including Hellman have recently argued that
when the key size is small, this class of encryption schemes is
susceptible to attack using exhaustive search of the key values
[10]. One obvious remedy to this potential weakness is to enlarge
the key size by increasing the number of S-boxes.

In this paper, we are going to present a design scheme for
constructing arbitrarily large S-P networks which will always
satisfy some desirable properties for all possible key values.

The following notations are useful in describing the networks:

Encryption Key: K = k0 ,...,km_ 1 where m=k x (n/k)

Plaintext: P = PO''''' Pn-1
Encrypted Output: C = c0,...,c

n-1

For brevity, we will denote the encrypted output C of an S-P
network as related to the first stage input by SP(P).

III. DESIGN CRITERIA

Following common practice, we may evaluate the strength of an
S-P network by its robustness against known plaintext cryptanaly-
tic attacks. The strength of the network is measured by the
difficulty in determining the key used, assuming

(i) the internal structure of the S-P network is known to
the cryptanalyst and

(ii) the cryptanalyst has obtained some plaintext-cryptogram
pairs, with all cryptograms obtained for the correspon-
ding plaintexts, using the same key.

That is, it should be difficult to determine the key directly
from plaintext-cryptogram pairs even with the knowledge of the
internal structure of the S-P network.

Given the known-plaintext cryptanalytic attack, we can see
intuitively that the following property is desirable for S-P
networks:

Property Z: For every possible value of the key, every out-
put bit c i of the S-P network depends on the values of all input

bits p0. pn-1' not just a proper subset of the input bits.

The following are some arguments indicating why property Z is
advantageous. Let us suppose an S-P network does not satisfy the
property Z, and for some value of the key, some output bits c.'s

depend only on a few input bits. By observing a significant

withtheinputbits,becausec.depends on all of them.
3

The formal mathematical definition of property Z follows:

Definition: Give a one-one correspondence f: 10,11 n +

{0,1} n , f is said to be complete if, for every i,j c fl,...,n1,

there exist two n-bit vectors
X1'X2

such that X
1

and X
2
differ

only in the i
th

bit and f(X
1
) differs from f(X 2) at least in the

.th
bit.

1

number of plaintext-cryptogram pairs, the cryptanalysts may be
able to detect the relations among the c 's and the corresponding

small subsets of input bits. The cryptanalysts may subsequently
use this information to facilitate the identification of the key
value. However, if a network satisfies property Z, it becomes
hard to identify the relation between a particular output bit c.

Formally: 	(Vi9j)(axix 2 ,...,x1 ,...,xn)A(sx1x2 ,...,xi ,...,xn)

[(f(x x 	x 	x)-- (y n)) A (f(x x ...,x) =

	

1 2" i" n 1 	 1 2' 	i 	n

(z 1 ,, z 	
JJ

z
n))A(Y.=z.)]

Definition: A substitution box S is said to be complete if
the function implemented by S is complete. Similarly, an S-P
network is said to be complete if the function implemented by the
network is complete.

IV. AN ALGORITHM FOR CONSTRUCTING COMPLETE S-P NETWORKS

In this section, we will present a hardware-efficient scheme
of implementing arbitrarily large complete S-P networks. In
order to minimize unnecessary details in the presentation and
proofs, we are going to show only the case where there is only
one choice for each S

ij
. The generalization of the design to the

case of two choices for eachS ij is straightforward.

Convention 1: The input (output) bits of a single S-box are
labeled from 0 through k-1

100

k input bits

•

0 1 2 .. k-1
k output bits

Convention 2: Given the Ath stage of an S-P network as shown
below,

SA,0
S
A,1 ... S

A,b

th 	 IN
the j 	input bit of the S

A,b
box is called the (b,j)

h
bit of

At

O the Ath stage. Similarly, we use (b,j)
A
UT
 to stand for the jth

output bit of SA,b .

ALGORITHM COMP

Purpose: To construct an n-bit complete S-P network using k-bit

complete substitution boxes, where n is of the form k , with

k > 1 and k > 3.

Input: k stages of complete S-boxes where the stages are labeled

1 through k and each stage has k
k-1
 S-boxes.

Output: A complete n-bit S-P network.

Begin

Integer 	STAGE#, GROUP OFFSET, 	BOX#, PRESENTBOX#,

LAST BOX#, LASTBITii, BIT OFFSET;

Comment: The following will connect the inputs in the STAGE# th

 stage to the outputs of the (STAGE#-1) st stage.

for STAGE# :=2 step 1 until 2, do

Comment: We partition the S-boxes in the STAGE# th stage into

groups of k
STAGE#-1

boxes each.

for GROUP OFFSET:=O step k
STAGE#-1

until 0-1
kSTAGE#-1 do

Comment: We connect the 0
th

input bits of the k
STAGE#-1

S-boxes in each group to the first
kSTAGE#-1

output
bits of the same group of the previous stage, then

the 1st input bits of the
kSTAGE#-1

S-boxes to the

next k
STAGE#-1 output bits of the group of the

previous stage, etc., as shown in Figure 3.

Final Step:

for 	BIT# :=0 step 1 until k-1 do

Begin BIT_OFFSET:=BIT# * k
STAGE#-1

•

STAGE#-1
BOX#:=0 step 1 until k for 	 - 1 do

Begin

PRESENT BOX#:=GROUP OFFSET+BOX#;

)L] . LAST BOX#:=GROUpOFFSET+L BOX#+BIT_OFFSET J

LAST BIT#:=remainder
(BOX #)

connect the (PRESENT BOX#,BIT#) th input bit of the

STAGE# stage to the (LAST_BOXCLAST_BITO th output

bit of the (STAGE#-1) th stage.

END
END

END

Figure 3. An Output From Comp

n = 3
3

= 27

103

We will now show that the outputs from algorithm COMP are
complete S-P networks.

OUT Definition: Given an arbitrary output hit (a,b) m 	in an S-P

network produced by COMP, we define AFFECT((a,b)
m
OUT) to be the

set of 2m input bits in the 1st stage that may affect the value

of (a,b)
m
OUT

 . Formally,

AFFECTP,b) MTAFFECT[(a) °11

the km input bits ofS1,p,S1,p+1'''' S ,p+km-1 -1

where

]
p = km-1 x 	a

k
m-1

Similarly, given (a,b)
IN

, we define

AFFECTI(a,b)IN
	 OUT , where

m
EAFFECT (a

b
)
m

rem(a)

m-1 a
b

= (km-1) x 	a
m-

 .1 	+ b(km-2) + 	k 	
k 1

Definition: A pair of m-vectors is said to be i-different if

they differ only in the i
th

bit.

Lemma 1: The value of (a,b)
m
OUT

 depends only on the value of the

bits in AFFECT [(a,b).
OUT

 I.

Proof: By induction on m.

Basis 	(m=l) obvious.

Induction step (m = r > 1): According to algorithm COMP, each

of (a,o) IN ,...,(a,k-1)
r
IN
 is connected to an output bit from

s r-1,a
o'

s r-1
'
a
k-1

, respectively,

where 	 rem(a:1))

a. = kr-1 x 	a 	

kr

 + (kr-2)
[kr-

104

By induction hypothesis, any output bit of
Sr-1,ai

depends only

on bits in AFFECT
[
(a)

O
i r-1

UT]
•
'
hence, the theorem follows from the

definition of AFFECT.

Lemma 2: For every a, 0 < a < Fc and for every b, 0 < b < k,

, with 1 	m < 32, there are exactly 2
k -1 k

m-bit vectors that can

he used to initialize the km bits of AFFECT (a,b) m
OUT

 such that

k
m
-1 (a,b) OUT will be set to 1. Similarly, the remaining 2 	vectors

m
will set (a,b)

m
OUT

 = O.

Proof: It is obvious that for any j where 0 < j < m, half of 2
m

th binary m-vectors have 1 in the j 	bit.

By definition, any one-one correspondence f:{0,2}
k

{0,2}
k

maps the set of.2
k
k-vectors into the same set of 2

k
vectors.

With the preceding two statements and Lemma 1, Lemma 2 follows by
simple induction. 	 0

Definition: Let f be a one-one correspondence mapping {0,1} 11 -4

0,11. 11 .Wedefine Qij of f to be the set of pairs and vectors

Qij = { -1V,V'11(V and V' are i-different)A(f(V) and f(1.0) differ
th

in the j 	bit)}.

We also define the multiplicity of f to be the integer M,

M = min 	Ni .1 of f.
0<i,j<n

Theorem 1: Let SP be an n-bit S-P network constructed by the

Algorithm COMP, where n = k 	. If the multiplicity of S i
 > M
j -

for all i and j, 0 < i, j < n/k, then the one-one correspondence

f: {0,1} n 	{0,1} n achieved by the S-P network is complete.

Furthermore, the multiplicity of f > M (Q 70
2 (k -1)(k-1)

) =

M (2
kZ-(k-1)(9,-1)-k

).

105

Proof: We want to prove by induction on m that for each (a,b)
IN

and for each i, 0 < i < 2m, there is a set Q of at least
m-1

(k-1)(k-1) M (J
0 2
) pairs of i-different 2m-bit vectors such

that if we pick an{V,V'} c Q and set the bits in AFFECT[(a,b) OUT]

first according to V and then V', then (a,b) (1)11UT will have

distinct values for the two cases.

Basis 	
(m=1)

Mm(m-
1 2(ki-1)(k-1)

) = M and the basis follows
1-20

directly from the assumption that each S-box in the input to COMP
is complete.

Induction step (m = r > 1)
UT

Let us pick an arbitrary (a,b)
r
O
	

and an arbitrary (e,f)
I
1
N

c

O
AFFECT [(a,b)

t
UT

 1.

In the proof of Lemma 1, we showed that among the k input

bits to Sr a , only the (a,z)
r
IN depends on the value of (e,f)

IN
1

where 	e 	 x kr-l)

z =
kr-2

Let us pick a particular pair of z-different vectors _
V = (v

1
v
2
,...,v
zk

) and V'= (v
1
v
2'

..v
z'

v
k
) which, when used

as inputs to ((a,O) r
IN 	

(a,k-1)
IN

) will cause (a,b)
OUT
 to

change. From Lemma 2, we know that there are 2
k -1

ways to set

AFFECT [(a,q)
r
IN
 s.t. (a,q) r

IN
 = vq , for (0 < q < k-1) and (q#z).

Hence, by induction hypothesis, there are at least

01r-l)f1r:ri
0 2

 2 (0-1)(k-1) 	k -1 k-1

	

) x (2) 	pairs of n-vectors such that '=

the vectors W, W' in each pair differ only in the bit correspond-
I

ing to (e,f)
N

and when the bits in AFFECT ((a,b)
OUT
) are set

106

according to W and W', then the values of

((a,0)
I
r
N
P. .., a(k-1)

IN
) will become V, V' respectively.

Finally, the induction hypothesis follows from the assumption
that S

r,a
has multiplicity > M. 	 ❑

To ensure that our design is meaningful, we must show that a

complete one-one correspondence function mapping {0,1}
k

{0,1}
1(

 exists for some value of k.

Theorem 2: For each k > 3, there exists a one-one correspondence

f: {0,1} k -3- {0,1}k which is complete.

Proof: For every k > 1, the 2
k

binary k-vectors may be partition-

ed into 2
k-1

pairs of k-bit vectors of the form

Y = {{Y i , 111}1(0 < i < 2
k-1

) A (Y1 = Vi)). If we can use 2 k

 distinct vectors to construct k pairs of k-vectors of the form

V = {{V ,V'}1(0 < j < k) A (V. and V! are i-different)}, then a
3

complete one-one correspondence f can easily be constructed by
defining a one-one correspondence f with the property that

(V i 3 O< i<k)

	

f(V.
1
) = Y. 	where {V . , Vi} 	V and

	

1 	 i

f(V!) = 	 {Y.,Y!} r Y
1 	1 	 1 1

We are going to show by induction on k that we can always find V.

Basis 	(k-3) the 3 pairs may be chosen as shown in Figure 4.

Induction step: (k = r + 1)

r+1
We may partition the m
	

(r+1)-vectors into 2 groups G
0
 and

G
1,

where

G
o

= {xlx is an (r+1)-vector with the (v+l)st bit being 0)

G
1
= {yly is an (r+1)-vector with the (r+l)st bit being 11

By induction hypothesis, we can find 2r distinct vectors from G 0

 to form

107

100

000

I

110

010

Figure 4. The Three Pairs For The Case k = 3.

Vr=f(vi ,v1)1(1 <i < r) (v i and vi are i-different)}.

Since G= (2r+1)/2
0 	

vectors and V
r may be formed by using only

2r vectors, there must be vector X G
0 which is not one of the 2r

vectors used when r > 3. Hence

Vr+1 = Vr
 u {X,X l }, where X' c G

1
is (r+1)-different from X

forms a V needed for the case m = r+1. 	 0

It is known [11] that linear or affine encryption functions
can be broken more easily. In the next theorem, we are going to
show that a complete one-one correspondence is neither linear
nor affine.

Theorem 3: Let f be a one-one correspondence mapping {0,1} n

 {0,1}n . If f is complete, then f does not satisfy the following
property:

(I) Phe(0,1) n)(311xn matrix M)[f(A$B)=((A0)M)Shl for all A,

Be{0,1} n .

Proof: We are going to show that f does not satisfy property (I)
by contradiction.

Assume f is complete and satisfies (I). By the completeness
of f, we know that

(V1,j 1 ,0<i,j 1<n)((,X'E{0,1} n)[(X and X' are i-different)

A(f(x) and f(x') differ at least in the j
1
st bit)]

Since f(x) = f(x' 	Y), where Y
.
has 1 only in the i

th
position

x'MS Y.MID h
i

This implies the j ist bit of Y iM is 1.

Since j
1
 is arbitrarily chosen, we conclude that Y.M = 111 	1.

n

109

Similarly, we may conclude that Y.M = 111 ... 1 for j 	i. This

n

contradicts the assumption that f is a one-one correspondence.
Hence, f does not satisfy property (I). 	 0

Corollary 1: Let f be a one-one correspondence mapping

{0,1}
n 	

{OM
n If f is complete, then f is neither linear nor

a bit-permutation function.

In order to increase the key size of a network, we may
modify the S-P network by allowing the output of each ith stage
of the network to be exclusive-ored with an arbitrary n-bit
vector V. In Figure 5, we show a modified version of the S-P
network in Figure 3 with the inclusion of exclusive or facility.
Before we encrypt a message using the network in Figure 5, we have
toinitializethekeyandallV.'s. Our next results show that

the additional facility does not affect the completeness property.

Lemma 3: If f is a complete one-one correspondence mapping

f0,11
k 	

{0,1}
k. Let g be a new function defined as follows

(hcf0,11 k)(ac{0,1}k)[g(a) = f(a)ft]

then g is complete and has the same multiplicity as f.

Proof: The proof is obvious and is omitted. 	 0

Theorem 4: Let SP be an n-bit S-P network constructed by the
algorithm COMP. Let SP" be a network obtained from SP by the
inclusion of exclusive-or facility. SP" is complete and has the
same multiplicity of SP.

Proof: It follows directly from Lemma 3. 	 0

Definition: For a fixed k
the class of all functions

i-stages, where each stage
k-bit input.

> 3 and n = k, we define (S-P) 1 to be
realizable by using S-P networks with

has k S-boxes and each S-box has

Lemma 4: Let f be in (S-P) 1 , if X and X' are j-differint for
some 1 < j < n then f(X) and f(X') differ in at most k bit.

Proof: Simple induction on i.

Theorem 5: (S-P) 1 c (S-P) 2 	(S-P) 3 ... c (S-P) .

Proof: To prove that (S-P) 1 c (S-P) 14-1 , for 1 < i < 11,, we only

ELI

110

<11 V 2=(vv2,1 ...v2,26)

V
3

(v3,0v3,1 -v3,26) I ED

V
1
=(v

1,0
v
1,1

...v
1,26

)

Figure 5. The Extension Of An Output From Comp With The
Exclusive-Or Facility Included.

111

have to show that there exists f (S-P)
i+1

such that f(X) differs

from f(X') in more than k
i places for some j-different X and X'.

The existence of f can be shown by construction a (2. + 1) stage
S-P network using the algorithm COMP, where all input S-boxes are
all identical and have the following property:

Input to S Output to S

00...00 00...00
00...01 11...11

. .

. .

. .

It is easy to show that the function g achieved by the S-P network
has the property that

g(00...00) differs from g(00...01)

n 	 n

in exactly k1+1 bits. 	 0

V. CONCLUSION AND OPEN PROBLEMS

In this paper, we have presented a general scheme which
enables us to design arbitrarily large complete S-P networks in a
hardware-efficient manner. We have also investigated some
ramifications of the completeness property. There are a number
of open problems that must be examined in order to improve our
scheme.

(1) What other properties are implied by completeness?
(2) What other properties are desirable for S-P networks?
(3) What properties do the S-boxes used in Algorithm COMP

satisfy in addition to the completeness property?

112

REFERENCES

[1] Shannon, C., "Communiation Theory of Secrecy Systems,"
Bell System Technical Journal, Vol. 28, pp. 656- 715,
October 1949.

[2] Diffie, W. and Hellman, M., "New Directions in Cryptog-
raphy," IEEE Transaction on Information Theory, pp. 644-654,
November 1976.

[3] Davida, G., Mahar, T. and Kam, J., "Design and Analysis of
a Class of Cipher," IEEE International Symposium on Informa-
tion Theory, 1975, Ronneby, Sweden.

[4] Wyner, A., "The Wiretap Channel," Bell System Technical
Journal, Vol. 54, pp. 1355-1387, October 1975.

[5] Kam, J. and Ullman, J., "A Model of Statistical Databases
and Their Security," ACM Transaction on Database Systems,
March, 1977.

[6] Hoffman, L. and Miller, W., "Getting a Personal Dossier
from a Statistical Databank," Datamation, pp. 74-75, May 1970.

[7] DeMillo, R., Dobkin, D. and Lipton, R., "Even Databases
That Lie Can Be Compromised," Research Report #67, Department
of Computer Science, Yale University, April 1976.

[8] Rivest, R., Shamir, A. and Adleman, L., "On Digital
Signatures Public Key Cryptosystems," MIT-LCS-TM-82, April
1977.

[9] Federal Register, Vol. 40, No. 149, August 1, 1975.
[]01 Diffie, W. and Hellman, M., "Exhaustive Cryptanalysis of

the NBS Data Encryption Standard," Computer, pp. 74-84, 1977.
[11] Hellman, M. and Diffie, W., "Results of an Initial Attempt

to Cryptanalyze the NBS Data Encryption Standard," Information
System Laboratory Report, Stanford University, November 1976.

[12] Morris, R., Sloane, N. and Wyner, A., "Assessment of the
National Bureau of Standards Proposed Federal Data Encryption
Standard," Bell Telephone Laboratories Memo, December 1976.

[13] Feistel, H., "Cryptography and Computer Privacy,"
Scientific American, May 1973.

113

PROPRIETARY SOFTWARE PROTECTION

Richard DeMillo

Georgia Institute of Technology
and

Management Science America, Inc.

Richard Lipton

Computer Science Department
Yale University

Leonard McNeil

Management Science America, Inc.

115

I. INTRODUCTION

It is conventional wisdom in academic computer science that
clearly written, readable programs have demonstrable economic
benefit in computing. We were, therefore, very surprised to
learn that the benefits which obviously accrue from good program-
ming practice carry with them problems of such impact that the
computer "software market" may cease to exist in its current form.
At issue is the protection of software from theft and the
establishment of unquestionable proprietary rights on behalf of
the creators of software products. With the lack of adequate
protection mechanisms and with current methods of transacting
business, there is an increased risk associated with the proprie-
tary software market. First, there is the risk that new software
vendors, in an attempt to expedite their entry into the market
with a minimum investment of resources, will incorporate key
concepts from other vendors, either singularly or in combination,
into a new product. Second, new vendors who through independent
research and development manage to create products incorporating
truly original ideas run the risk of having their investments
usurped by resource-rich competitors. Finally, whenever vendors
find themselves in competition with one another, there is the
possibility that one might attempt to recapture a lost market
share by including other vendor's ideas into his existing product.
In each of these scenarios, the manner in which the business of
commercial software is transacted on a day-to-day basis is
responsible for the creation of an environment that encourages
software theft attempts.

In economic terms, such difficulties can tend to affect the
growth potential of the industry either by influencing investment
capitol or redirecting the conduct of business. It is not
difficult to imagine that in order to maintain any sustained
growth in the commercial software industry, mechanisms must be
found to protect the proprietary software vendors. Such
mechanisms could take the form of changes in the manner of con-
ducting day-to-day business, improved legislation, or the develop-
ment of new technology to insure that proprietary rights to
computer software can be established and maintained.

In the sequel, we will discuss at more length the origins and
implications of the proprietary software protection problem and
outline a strategy which can incorporate technical safeguards
into new methods of transacting the sale purchase and maintenance
of proprietary software.

116

Proprietary Software. The true issues dealing with proprie-
tary software arise in the "computer services" portion of the - -
computer industry. The economic dimensions of this industry
segment are staggering; for instance, in computer services alone,
the projected 1978 revenues are in the neighborhood of 7.8
billion dollars [1]. The computer services industry may be
subdivided along three lines:

(1) hardware specialists dealing in the sale, leasing
and maintenance of computer equipment;

(2) direct service organizations, including data
processing systems, facilities management, contract
programming, and consulting;

(3) proprietary software, the sale or lease of machine-
executable instructions often referred to as a
software package.

The term "proprietary software" isolates a specific subset of
the software market. Specifically, proprietary software refers
to "a computer program that has wide potential use and also
reflects a better than average level of industry and/or computer
expertise, [which is to be sold] at a fraction of the cost it
would take for any one computer installation to program them-
selves" [2].

Within the broad category of proprietary software, it is
possible to distinguish products which are primarily application-
oriented as opposed to those directed primarily to the operation
and efficiency of the computer system itself (i.e., systems
software). A quick survey of the primary sources of uniform
software product information leads one to the conclusion that
software products are widely divergent in their scope, purpose,
potential market and technological sophistication. The products
range in complexity from single utility programs with limited
specific intent to systems of hundreds of loosely connected
programs with broadly defined intent and numerous specific
features. The range of possible application is similary diverse,
spanning the spectrum of computer applications from commercial
computing through scientific applications.

117

Market Advantages. Using a comprehensive source [3] for a
representative sampling of the market, it is possible to identify-
1,800 software packages, emanating from 600 vendors, which are in
current circulation in the market place. Of these software
packages, 1,426 (emanating from 546 vendors) have been classified
as software package as follows. About one-third of the
software products can be classified as systems software, and the
remaining two-thirds fall clearly into application-oriented
proprietary software. The lure to potential investors and the
attendant benefits to accrue from competition are enormous: for
example, the projected 1978 total market for proprietary software
is in excess of one million dollars and this represents an annual
sales growth rate of 35% [2]. With the resulting increase in
pressure brought about by additional competitors comes the hand-
in-glove problem of how to gain advantage in a swelling market
through a product having an attractive combination of performance
features.

Source Distribution. Regardless of the software product
involved, successful competition in the market place forces a
number of constraints on current and potential software vendors.
First, since it is usually desirable that a software product
should have the wide potential use, restrictions peculiar to a
narrow sector of potential customers must be designed out of the
product in the hopes of obtaining a generalized package. Second,
with the obvious exception of computing machine manufacturers,
it is seldom desirable that a software product be dependent on
any specific computer hardware specifications; therefore, to the
extent that it is technically possible, programs tend to be
produced using standard high-level languages with transparent
interfaces to a variety of systems software. Finally - and most
critically - it is the practice of over 90% of the application-
oriented proprietary software vendors to divulge the contents or
to actually issue to their clients proprietary product source
code.

A variety of factors convolve to make source code distribution
an advantageous arrangement for both vendors and clients. First,
when a prospective client weighs the generalized features of a
software package against his specific needs, the ultimate decision
is often an economic compromise. That is, a customer may realize
economic gains in the purchase or lease of a software package,
but in doing so, he must be able to adjust the package in the
areas which are most significant to him. While the vendor tends
to have a broadly based knowledge of the relevant application
area, the knowledge can be at best only of a very generalized
sort. A potential customer, on the other hand, has intimate
day-to-day contact with his application. He knows, in particular,
his needs and the effects of meeting those needs on his
organization. Since the customer's specific needs ultimately

118

determine later courses of action, the added degree of flexibility
given by his ability to modify a generalized software package, is
often a key factor in helping a customer decide whether to buy
applications software or to build his own. A proprietary software
vendor may even use whatever capabilities exist in his products
for easy modification as an aid in competing with other vendors
of direct services. It is easy to see that the provision of such
capabilities might be a determining factor in competition between
two proprietary software vendors.

A second consideration that often impacts the decision to
distribute source code to customers is the issue of the compati-
bility of a software package with the confusion of hardware in
the typical user community. Since the primary goal of a general
purpose software package is to be independent of any particular
computing system configuration, a careful design will segregate
a software product from any hardware dependency. Thus, in order
for a vendor to deliver a working software package for a given
computer system, the vendor would necessarily have had to
countenance every major combination of computer architecture and
operating system. Since such development efforts are prohibitive,
the normal course is for the vendor to insure contractually that
the software package being sold in source code format performs
accurately and as advertised. The problems that arise from hard-
ware and software incompatabilities often wind up as negotiable
contract items which are eventually resolved by relying on the
customer to correct the problems.

Even though software vendors often warrant their packages
against inaccuracies, large computer programs always have errors
In t.hem, and these errors are of varying degrees of severity.
Since as part of his warranty, the vendor must correct all source
code errors within a specific time frame, a method must be
established to easily communicate to the customer those corrections
that originate with the vendor. One possibility is that the
vendor may elect to send a representative to fix problems at
every installation of their package. When a vendor has thousands
of versions of his package installed at widely separated sites,
this is clearly cost prohitive. On the other hand, a client who
has access to source code, can receive from the vendor only those
changes to the package source code necessary to correct a specific
problem.

119

1

It may even be a concern to some customers that the vendor
will not continue as a successful, functioning organization. A

-customer who does not have access to the source code for the
package in his possession, may find himself with a useless pile
of code, should the vendor discontinue support of the product or
fail to adequately support the product. In such event, clearly
the customer would not have any viable solution that would allow
continued processing using the software. With the possession of
source code, if the vendor's support of the package every ceases
or fails, the vendor can still employ his own resources to fix
bugs and thus continue using the software.

The demands to provide customer software source code place
an additional burden on the proprietary software vendor. Not only
must the vendor provide source code, he must also provide it in
such a manner as to identify the inner workings of the program
through precise, technical documentation in explanatory program
notes. Obviously, with the current practice of distribution of
source code, a customer's user and data processing departments
must have full access to information on the package components in
order to derive full benefit from the package.

Trade Secrets. A key assumption in the definition of
proprietary software is that proprietary software is the result
of a creative engineering effort and is based in whole (or in
part) on the originality and the creative intellectual processes
of the vendor. With the creation of an idea, a process, or a
computer program comes the issue of the prOprietary rights of
ownership which are vested in the creator. In the case of comp-
uter software, the process of creation generally involves a non-
trivial expenditure of resources. These resources can take the
form of computer usage, research and development costs, personnel
costs, and overhead expenses, which taken together represent a
significant economic investment on the part of an individual or
an organization. Such investments are entered into with calcu-
lated risk. The justification for taking such a risk is an
ultimate or indirect economic benefit to the investor. A
responsible investor will not take such a risk unless he is
reasonably certain that what is to be developer' can be protected
as an investment.

A rapidly growing market, a highly-competitive environment,
and the market demands for complete disclosure of product details
will eventually be in direct confrontation with the risk aversion
goals of the software developer and his investors. Proprietary
software is the market segment most directly affected by the
issue of software protection. Indeed, it is the area most sus-
ceptable to the consequences of the lack of protection. However,
the goals of software protection must be defined prior to the
creation of improved protection methods.

120

The creation of proprietary software is an iterative process
by which expertise and knowledge are applied to achieve specific -
goals. The development cycle generates the concepts and features
of the package to be marketed. These in turn manifest themselves
in the algorithms and data structures which the package implements.
Physically, this logical structure is represented in program
source code and to a lesser extent in the documentation supporting
the package. It is this underlying structure that is the true
result of the investment of expertise and financial resources.
Accordingly, these items are the target of any useful protection
mechanisms, even though it is in their physical representation
where our protection mechanisms are to be found. As software
systems become more and more complex, the number of separately
identifiable algorithms increases quite rapidly. Ideally, a
vendor would like to protect his entire system. However, he will
usually admit that within the system, there are a few algorithms
or a series of related algorithms that may be considered to be
the heart of the system. These critical portions of the system
may consist of routines within a program or specific programs
themselves. Ex2mpls of such key components are the depreciation/
aging programs c.f a fixed asset system, the taxation routines in
a generalized pLyroll system, the polling strategy in an on-line
data management system, or a sorting heuristic to pre-process
data for a numerical software package. A key concept may even be
a unique data organization methodology which is included as part
of every program in the system.

The current protection methods for a vendor's proprietary
software do not rely on the underlying logical structure of the
package, but rather on its physical representation. It is from
this protection gap that software theft becomes a real threat.
On the one hand, patent laws are inteded to protect a physical
entity, such as a machine part, but the prevailing legal interpre-
tation is that ideas are not patentable, only the end result of
the thought processes. As a result, patent laws offer little
protection to proprietary software vendors. On the other hand,
copyright laws provide protection only from blatant reproduction
of program source code. Thus, copyright protection is limited
only to the physical aspects of a program, and so, it cannot be
stretched to encompass the algorithms and data structures on which
a program is based.

A third and most widely-used means of software protection
relies on the concept of "trade secret" protection. In essence,
trade secret protection derives from the fact that a software
vendor does not disseminate those key portions of his package to
the general public, but rather takes whatever means are required
to restrict this distribution. The legal framework within which
trade secret protection is applied varies from state to state and
at the federal level is only loosely unified. Tt is embarrasingly

121

difficult to even formulate a meaningful definition of what con-
stitutes a trade secret. A trade secret is variously defined as
a "feature" or "concept" embodied in the package or specifically
as any combination of algorithms and data structures that address
the specific goals or problems. This, however, makes many of a
vendor's trade secret tools useless since the variability of laws
creates a variety of opinion as to how to apply the notion of a
trade secret to a specific software product.

The tools available to protect a vendor's trade secrets
include such devices as the restrictive lease or sale contracts
that limit distribution and access by the customer, non-disclosure
agreements between the vendor and a prospective customer which in
a pre-sales environment clearly define the proprietary rights
involved, and employee contracts and agreements which stipulate
in some manner the ownership of items produced as a direct or
indirect result of the efforts of an employee of the vendor.

There are, of course, several weaknesses implicit in trade
secret protection mechanisms. The first and most obvious lies
in the notion of secrecy. In the current conduct of business in
the proprietary software market place, secrets are distributed
to N people, all of whom have specific rights to those secrets
by virtue of their purchase of software systems. A natural
question to ask is how large N must become before the secret is
no longer secret.

A second weakness is the assumption that trade secrets can be
isolated for a specific software package. Of course, a reason-
able goal is to define a trade secret as narrowly as possibel so
as to make it unique and distinguishable in both approach and
purpose from other trade secrets. There is a problem in the
deciding and composition of a trade secret; that is, the collect-
ion of algorithms and data structures into trade secret entities.
If one identifies a trade secret too broadly, it looses its
uniqueness. For example, every payroll system reads input,
edits, calculates payroll factors, and produces payroll checks.
So, these mechanisms cannot be construed as trade secrets. On
the other hand, too restrictive a definition causes a trade
secret's characteristics to be indistinguishable from others.
For instance, in a payroll system, the calculation "ADD A, B
GIVING C" applies to many functions throughout a payroll system.

A third weakness in trade secret protection is that vendors
lack real policing powers, making enforcement of contracts
difficult. Since policing powers apply directly to corporate
entities, the vendor is forced to review customer disclosure
policies from outside the customer's organization. Such review
may be based on questionable marketing intelligence information
Since the vendor is at the mercy of its customer's management

122

and their effectiveness in controlling distribution within their
organization. Furthermore, vendors have very little control over
what ex-employees of customers take with them upon termination;
similarly, employees of the vendor carry with them not only
physical representations of programs that they have written, but
also an accumulation of expertise gained at the expense of the
vendor. Of course, in the case of ex-employees of the vendor,
there is usually no doubt as to the ex-employees' intimacy with
trade secrets, but demonstrating theft by a former employee will
gain as a result of his direct experience in the industry. The
situation is further complicated by the elapsed time between the
act of theft and the discovery by the vendor that a trade secret
infringement has occurred. During this time lag, the original
vendor has no control of the distribution of the trade secret so
that the once secret idea may have been disseminated to the
general public. In this case, future enforcement is clouded
since it introduces the new concept of "public domain" at which
time the vendor clearly loses his trade secret, his investment,
and possible competitive advantage to public knowledge. In the
case of theft by a client's employees, a vendor will tend to be
cautious of distrupting relationships with his customers by
forcing the issue of distribution of proprietary software
materials within the clients' organization or the issue of the
disposition of proprietary software materials upon the termina-
tion of a customer's employees. Software vendors have marketing
concerns, and an undisturbed, satisfied client is a source of
sales references and future sales prospects. A vendor has clear-
ly much to gain by maintaining his distance from the internal
procedures of his clients.

A fourth weakness is that trade secret protection is contin-
uous and costly. An organization's overhead expenses rise to
match the administrative requirements of contract and non-disclo-
sure procedures. But these expenses only represent the continu-
ing fixed cost. Much larger variable expenses come from legal
actions taken when there is the possibility of a breech of an
agreement or a trade secret infringement. A single law suit
based on trade secret infringement can consume many man-years of
effort on the vendor's part and can result in high costs
associated with legal services.

As might he expected, no current protection mechanism totally
protects trade secrets from a calculating computer software
thief who employs "hybrid piracy". A hybrid pirate is someone
who intentionally steals the "heart" of a package (i.e., trade
secrets, but not the entire package), digests the logic knowledge
embodied in the trade secrets, and then reintroduces the trade
secrets as part of a "new", or in addition to an "old" package
through a transformation of its physical representation.

123

Lacking any strong legal alternatives due to the weaknesses
in copyright patent, and trade secret legislation, a proprietary-
software vendor must seek additional alternatives to gain
protection for his products and to protect his investment.
Although new legislation has been proposed that solidified and
clarifies federal laws on trade secrets and copyrights for
proprietary software, the uncertainty over the congressional
action that may be taken means that the proprietary software
industry can only look to a possible technological solution to
the problem.

Software Encryption. The protection problem for proprietary
software can be interpreted as either protective protection or
detective protection. An ideal solution should treat both inter-
pretations. A trade-secret thief is usually able to alter the
macro and micro structure of a software package: he may consoli-
date and re-order routines within programs and programs within
packages, he may alter (either manually or by use of a cross-
compiler) the coding of the system, and he may modify the
internal and external file organizations for systems whose data-
manipulating features are paramount.

Therefore, an appropriated program may appear quite different
from the original program in a variety of respects. The overall
conception of the program may be much changed, and direct
matching of corresponding lines of source code may not be
possible. Yet, if theft of trade secrets has really taken place,
then there should he aspects of the original program that have
been substantially reproduced in the appropriate version. In
fact, programmers who are able to examine appropriated versions
of their own work can frequently detect their unique design
concepts. Some of this is clearly based on transferral of
programming style, but a far greater component is attributable
to a thief's inability to recreate the grade secrets. Without
completely redesigning a program, it is very difficult to
mutilate all aspects of the original design. Therefore, a test
of similarity for programs is their "edit distance". If P and
P' are programs (say, P' has been obtained from P) then the
transformations used to create P' from P should be invertible.
That is, it should be possible to proceed from P' to P by undoing
the effects of the piracy. Let the distance from P' to P be the
minimal number of editing transformations needed to identify P
and P'. Such transformations will surely involve consolidating
blocks of source code into functionally identifiable units, and
rearrangement of routines or logically coherent portions of
routines which have no significance for the application. If the
shortest identification of P and P' is comparatively long, then
P and P' are of doubtful similarity. In particular, if P and P'
are payroll programs and if in order to identify P and P', we
must abstract from all internal structure beyond reading input,

124

editing, calculating payroll factors, and producing checks, then
P and P' have not been strongly correlated. If on the other hand
we find short distances - i.e., if we are able to expose nearly
identically implemented trade secrets - then, we have established
positive correlations between P and P'.

In order to protect P from theft and to detect theft when it
occurs, we would like to insure that the only way to infer the
implementation of trade secrets in P is to solve a problem that
is prohibitively expensive to solve. Therefore, since a potential
thief cannot understand the implementation of a trade secret, he
must either:

(1) redesign the solution to the problem solved by the trade
secret, or

(2) copy the implementation with minimal change.

Option (1) does not constitute theft, while option (2) leads
to detection by edit distance. Because the protection of
proprietary software is an economic problem, the thresholds for
what constitutes "prohibitive" expense can be set somewhat lower
than, say, the type of "prohibitive expense" required to crack a
military code. In particular, we need only insure that success-
fully appropriating the trade secrets of P is sufficiently more
expensive than developing independent solutions that a potential
thief will be inclined to spend his resources in original product
development. From a technical point of view, it is no longer
necessary to encode a protection problem into a problem that is
provably intractable. 	A secret with n = 1,000 characterizing
parameters can be encoded into a problem with a tractible

decision problem of time complexity 0(n
3.5

) to obtain a protected

secret which involves the analysis of 10
10

conditions.

This approach is consonant with distribution of source code
For P; we want only that P be confusing to a penetrator, not that
it be an unreadable program.

Given a program Q, in source form, we want to distribute to
customers an encrypted program P which has approximately the
same performance characteristics as Q so that clients will buy
and use it and which protects Q's trade secrets. "Approximately
the same performance characteristics" means that P and Q deliver
the same results to the same input and that the resources demand
of P and Q (e.g., execution time, storage requirements) are
comparable. It is not so easy to specify what we mean by pro-
tecting trade secrets. Again, any reasonably intuitive rendering
should require that the amount of effort required to unravel the
details of a trade secret will be so great that a potential thief
will be disposed to design his own system.

125

"

It is obviously not useful to consider Q to be a piece of
data (bit string) and encrypt it using a secure data encryption
scheme [4]. A program is a dynamic object, and there is nothing
to insure that data encryption will preserve its dynamic
characteristics; in particular, a naively encrypted version of Q
will not even be a well-formed program. This brings up an
essential difference between encrypting data and programs: since
data is static its encrypted form does not have to be useful, but
a program - in any form - is supposed to leak some information,
namely its output. The key problem is to balance the desired
information leakage with the undesired leakage.

Let us illustrate how such an ecryption scheme might work.

A frequently protected type of program logic consists of
relatively simple computations linked by many layers of decisions.
In the case of a general purpose taxing package, for instance,
tax computations for federal, state and local taxing authorities
may be driven by decision table logic which tests comparatively
few conditions; reducing the many taxing contingencies for two
thousand taxing authorities to 100 or so requires expert tax
knowledge and the investment of many man-years to verify that the
simplifications do not violate federal, state, or local laws and
to maintain the table to reflect recent changes in taxation leg-
islation. This, in fact, qualifies the table as a trade secret,
and makes it a likely candidate for encryption.

A decision rule for such a system may be expressed as follows.
Let us assume that we have N attributes of a given taxing

situation; the presence of the i
th

attribute is indicated by the
setting of a flag x i = 1 while its absence is indicated by setting

x. =0.1ftbei th attribliteisirrelevant,thenx.is a "don't

care" condition. Then a decision rule is completely determined
by a predicate P(xl ,...,xn) which holds exactly when some

specified attributes x
i
= 1 and some specified attributes x . = 0.

Nowlet.usrepresenteachbooleanflagx.by k-bit words w.,

wi in which m<< k-bits randomly chosen of w
I
are set high if

x. = 1 and m randomly chosen m-bits of w
2
are set high if x

1
= 0.

By using a technique known as "superimposed coding" [5], we then
form 2 k-bit words A,B by forming the "inclusive or" of each of

the positive and negative w., W.. Then, by associating a bit

pattern of each of A,B with P(x l ,...,xn), it is possible to

select a correct action based on the value of P(x l ,...,xn) with-

126

out ever revealing the method of evaluating the predicate.
(cf. Appendix).

Superimposed coding originated as a method of retrieving
information based on secondary keys; as a result of one choice
of m bits for wi , wi , we may find that unintended atttributes

are selected by some A,B. In the searching application, this
condition is called "false drop", and its occurrence cannot be
eliminated but it can be controlled statistically.

Returning now to our example taxation package, let us
imagine a potential penetrator observing tax computations
occurring in bit patterns A and B. In order to infer
P(x...,x

n
) from A,B, he must be able to identify the positive

and negative contributions of the attributes x. and for even

small choices of N, k this is prohibitive. The end user on the
other hand, has no trouble executing the decision table - indeed,
the superimposed coding scheme can be implemented using full-
word bit vector operations so that the running time is only
increased negligibly. The user also has the source code in plain
view, so that changes and updates can be sent directly to the
client; he will be able to determine that decisions are being
made properly but will not have access to the internal working
of the decision-making mechanisms.

Protection is finally achieved by "padding" the real rules
with a few false rules. The penetrator now must decide whether
to infer the proper taxing rules'by either static or dynamic
analysis. In dynamic analysis, the penetrator must be able to
distinguish real responses from false ones. A penetrator
sufficiently expert to make such distinctions will surely be
inclined to design his own solutions. Static analysis reduces
to a covering and partition problem as described in the
appendix. This problem is solvable in polynomial time, but the
superimposed coding scheme gives a decision table predicate

with -10
6
degrees of freedom; this is already the same order of

magnitude as the number of state, local and federal taxing
contingencies, so that the economic benefits of theft is doubt-
ful.

127

It is not clear how to extend this idea to other key
computational pieces of a software package, but the point of
these methods should be clear. We want to keep tight control
over the "clear" interpretation of trade secrets, so that a
potential thief will not be able to use hybrid methods without
leaving fingerprints. In the case above, he must insure that
the decision table operates correctly by copying it; since the
structure of the table is determined by a large number of random
choices, it may be demonstrated in a court of law that chance
duplication is statistically impossible.

REFERENCES

[1] ADAPSO Data, ADASSO, Vol. VI, No. 5.
[2] Bottomline, International Computer Programs, Inc.,

October 1975, Vol. 1, No. 1.
[3] Data Pro Directory of Software, Data Pro Research Corp.,

Vol. 1.
[4] Rivest, R., Adelman, L. and Shamir, A., "A Method for

Obtaining Digital Signatures and Public Key Cryptography
Systems", MIT Report, TM-82, Laboratory for Computer Science.

[5] Knuth, D. E., Sorting and Searching, Addison-Wesley, 1973.

128

and

APPENDIX. Superimposed Coding

Let xl ,...,xN be boolean variables and let P(x l ,...,xN) be

the predicate

	

x. = 1 	Vi E I, and
1

P(x
1".

.) 	iff

	

= 0 	Vj e J,

N .

Tien by superimposed coding, it is possible to construct

Al ,...,AN ,A,B l ,...,BN ,B

so that for i, j < N

A LC I"
length

 f= 1

BilL=
	<<

length of 1

P(xl,...,xN)
	iff V Ai

-2 A A 	
Bi 	B

x=1 	 x.=0
1

P(x
l'''''xN

) is thus encoded since in order to determine the

manner in which P depends on its arguments, it is required to

solve a set partition problem which is solvable in time 0(n
3.5

).
While this is not intractible, it may be sufficient for protect-
ing proprietary software as described in the text.

The statistics of false drops for this algorithm is
discussed in Knuth [5].

129

DISCUSSION

Rabin: The problem is really to make it possible for the
original vendor to prove in court, say, that theft really did
Occur.

DeMillo: The problem also is to insure that someone could
not take the protected program and directly sell it because it's
not a program that he could modify. It leaves hidden those parts
which you've protected, those parts which you consider the heart
or the critical inventions of the program.

Lipton: Just a follow-up on that point. What we're really
trying to say is that if you could recover the original program
which is a clear and understandable structure, you can then
modify it according to a number of techniques to come up with a
new program that you could then possibly argue that you built.
By putting dirty, strange fingerprints throughout the program,
we can then make it much more difficult for that to happen.

Millen: There is a story that I think is fairly well-known
and is relevant to this. It has to do with the days when books
of mathematical tables were produced manually with a calculator.
The method for protecting copyrights was to introduce some very
small error ... perhaps, one decimal place in ten digits. It
probably would not effect anyone who was using the table, but it
was a dead give-away to identify copies.

McNeil: I would prefer for a solution to be preventive. It
is costly to follow-up a theft. For instance, in one case which
we're involved with now, we are spending thousands and thousands
of dollars just in the follow-up. It would be much better for us
if we had access to a technology in which it was not possible to
successfully steal the protected components. That's a solution
that completely solves our problem from the beginning.

130

131

Minsky: I am intrigued by your remark about the dynamic
aspect of these things. Do you mean that one may reproduce the
protected program by simply observing how it behaves?

DeMillo: No. The purpose of the comment was to underline
the fact that one cannot directly apply data encryption techniques.
They may change drastically the dynamic behavior of the program.
In particular, the program may not in fact even be a program after
it is encrypted. So, you cannot treat the program as a bit
string and encrypt it.

Cohen: Not only must it work, but it must have almost the
same performance characteristics.

DeMillo: That's right. It has to be competitive with the
original. If we can close on a non-technical note, I think it is
important to emphasize that the world is just not structured to
handle these problems. Some commercial software people are very
much at a state of deciding whether or not to abandon traditional
ways of dealing with users and competitors.

ENCRYPTION PROTOCOLS, PUBLIC KEY ALGORITHMS
AND DIGITAL SIGNATURES IN COMPUTER NETWORKS*

Gerald J. Appel(
Charles S. Kline

University of California at Los Angeles
Los Angeles, California

T. INTRODUCTION

There has been considerable interest recently in the develop-
ment of encryption methods for computer networks. Activity
falls into two major but related areas: the development of strong
encryption algorithms, and the design of the rules or protocols
by which an algorithm is actually used in an operating network.
As an example of the relation between these two areas, public key
algorithms have been suggested as a superior solution to key
distribution and digital signatures; issues which, it is claimed,
would otherwise require additional protocols. Here we concentrate
on the protocol problems. We examine protocol questions which
arise at various levels of a system, from the low, detailed level
at which the various operating systems in a network communicate,
to the higher, user visible level involving such services as
digital mail. As a result a rather unique perspective is provided,
and we are led to some fairly surprising conclusions.

* This research was supported by the Advanced Research Projects
Agency of the Department of Defense under Contract MDA 903-77-
C-0211.

133

The paper is written basically in a bottom up fashion. The
first section considers questions of how encryption "channels"
interact with network software. The next section outlines a
basic protocol for the use of encryption in a network, independent
of the nature of the encryption algorithm (public key, convention-
al, etc). These two sections show how it is possible to build a
secure network base, on top of which many extensions are directly
possible. At that point attention turns to some of the higher
level, user visible issues, such as public key algorithms and
digital signatures. It is argued that none of the currently
proposed signature methods is satisfactory. We propose an
alternative which we believe satisfies the necessary requirements.
It is based on the existence of the secure lower level protocols
discussed in the earlier sections. Those readers willing to
accept the existence of secure lower level network protocols may
wish to skip to section six, where the discussion of public keys
and digital signatures can be found.

II. LEVELS OF INTEGRATION

Encryption forms the basis for solutions to computer network
security problems. Basically, a single communications channel can
be multiplexed into a large number of separately protected, secure
communication channels by assigning a separate encryption key
pair for each logical communication channel. When a user requests
the establishment of a new communication, protection policy checks
can be performed, and, if successful, a key can be distributed to
each end of the communication channel.

Several key distribution methods have been studied [Popek 78b].
One method utilizes a key distribution center which receives
requests for communications, and distributes keys accordingly.
The keys are transmitted using previously arranged secret keys
which change only rarely. Other methods allow distributed key
management, with several, or even all, sites participating in key
distribution. Recently, public key encryption algorithms [Rivest
77a] have become available. Originally, such algorithms were
thought to simplify the key distribution problem, but recent
research suggests that no savings result [Needham 77]. This issue
is discussed at length in section six.

One problem which must be resolved in designing a secure net-
work encryption mechanism, regardless of the nature of the
encryption algorithm or the key distribution method, is the level
of integration of the encryption facility. There are many
possible choices for the endpoints of the encryption channel in a
computer network, each with its own tradeoffs. In a packet
switched network, one could encrypt each line between two switches
separately from all other lines. This is a low level choice, and

134

is often called link encryption. Instead, the endpoints of the
encryption channels could be chosen at a higher architectural
level: at the computer systems, referred to as hosts, which are
connected to the network. Thus, the encryption system would
support host-host channels, and a message would be encrypted only
once as it was sent through the network rather than being decryp-
ted and reencrypted a number of times, as implied by the low level
choice. In fact, one could even choose a higher architectural
level. Endpoints could be individual processes within the
operating systems of the machines that are attached to the net-
work. If the user were employing an intelligent terminal, then
the terminal is a candidate for an endpoint, too. This view
envisions a single encryption channel from the user directly to
the program with which he is interacting, even though that program
might be running on a site other than the one to which the
terminal is connected. This high level choice is endpoints is
sometimes called end-end encryption.

The choice of architectural level in which the encryption is
to be integrated has many ramifications for the overall archi-
tecture. One of the more important is the combinatorics of key
control versus the amount of trusted software.

In general, as one considers higher and higher levels in most
systems, the number of identifiable and separately protected
entities in the system tends to increase, sometimes dramatically.
For example, while there are less than a hundred hosts attached
to the ARPANET, at a higher level there often are over a thousand
processes concurrently operating, each one separately protected
and controlled. The number of terminals and users is of course
also high. This numerical increase means that the number of
secure channels -- that is the number of separately distributed
matched key pairs required -- is correspondingly larger. Also,
the rate at which keys must be generated and distributed can be
dramatically increased.

In return for the additional cost and complexity which may
result, there can be significant reduction in the amount of soft-
ware whose correct functioning must be assured for the protection
of the communication channel. This issue is very important and
must•be carefully considered. It arises in the following way.
When the lowest level is chosen, the data being communicated
exists in cleartext form as it is passed from one encrypted link
to the next by the switch. Therefore, the software in the switch
must be trusted not to intermix packets of different channels.
If a•higher level is selected, from host to host for example, then
errors in the switches are of no consequence. However, operating
system failures are still serious, since the data exists as
cleartext while it is system resident.

135

In principle then, the highest level integration of
encryption is most secure. However, it is still the case that
the data must be maintained in clear form in the machine upon
which processing is done. Therefore, the more classical methods
of protection within individual machines are still quite necessary,
and the value of very high level end-end encryption may be some-
what lessened. A rather appealing choice of level that integrates
effectively with kernel structured operating system architectures
is outlined in section four.

Another small but nontrivial drawback to high level encryption
should be pointed out. Once the data is encrypted, it is diffi-
cult to perform meaningful operations on it. Many front end
systems provide such functions as packing, character erasures,
transmission on end of line or control character detect, etc. If
the data is encrypted before it reaches the front end, then these
functions cannot be performed. That is, any processing of data
flowing through the channel must be done above the level at which
encryption takes place.

III. ENCRYPTION PROTOCOLS

Network communication protocols concern the discipline
imposed on messages sent throughout the network to control
virtually all aspects of data traffic, both in amount and
direction. It is well recognized that choice of protocol has
dramatic impacts on the utility, flexibility and bandwidth
provided by the network. Since encryption facilities essentially
provide a potentially large set of logical channels, the protocols
by which the operation of those channels is managed also can have
significant impact.

There are several important questions which any encryption
protocol must answer:

(1) How is the initial cleartext/ciphertext/cleartext channel
from sender to receiver and back established?
(2) How are cleartext addresses passed by the sender around the
encryption facilities to the network without providing a path by
which cleartext data can be inadvertently or intentionally leaked
by the same means?
(3) What facilities are provided for error recovery and
resynchronization of the protocol?
(4) How is flow control performed?
(5) How are channels closed?
(6) How do the encryption protocols interact with the rest of the
network protocols?
(7) How much software is needed to implement the encryption
protocols? Does the security of the network depend on this
software?

136

One wishes a protocol which permits channels to be dynamically
opened and closed, allows the traffic flow rate to be controlled
(by the receiver presumably), provides reasonable error handling,
and all with a minimum of mechanism upon which the security of
the network depends. Clearly the more software is involved, the
more one must be concerned about the safety of the overall net-
work. The performance resulting from use of the protocol must
compare favorably with the attainable performance of the network
using other suitable protocols without encryption. Lastly, one
would prefer a general protocol which could also be added to
existing networks, disturbing the transmission mechanisms already
in place as little as possible. Each of these issues must be
settled independent of the level of integration of encryption
which is selected, the method of key distribution, or the nature
of the encryption algorithms employed.

To illustrate the ways in which these considerations interact,
in the next section we outline a complete protocol. The case
considered employs an end to end architecture in a way that can
be added to an existing network.

IV. NETWORK ENCRYPTION PROTOCOL CASE STUDY: PROCESS-PROCESS
ENCRYPTION

We outline here a general encryption protocol that operates
at the relatively high level of process to process communication.
A major goal is the minimization of the software on which the
security of the system depends. Network communication protocols
often involve fairly large and complex parts of the operating
system, sometimes the primary source of complexity and amount of
code. This fact results from the variety of tasks which the
network protocol must perform, such as connection establishment,
flow control, error detection and correction. Thus, this design
attempts to eliminate as much as possible the necessity of
trusting that software for secure operation.

The design presented here utilizes process-process encryption.
In process-process encryption, encoding is performed as data
moves from the source process to the system's network software.
This approach minimizes the points where data exists in cleartext
form, and thus the mechanism which needs to be trusted. While a
higher level choice could he made, for example allowing the
processes to perform their own encryption within themselves, such
a choice does not assure that all data sent over the network is
encrypted. Thus, process-process encryption seems to he the
highest safe 'choice. The details of the protocol are applicable
either to public key based or conventional algorithms. Any of
the key distribution methods discussed in [Popek 78b] can be
supported.

137

It is assumed that the reader is familiar with the ideas of
operating system security kernels [Popek 78c]. Briefly,
security kernel based systems attempt to isolate the security
relevant parts of the system and place them in a nucleus, running
on the bare hardware. In that way, the secure operation of the
system depends only on that software. By careful design and
implementation of a security kernel, it is possible to formally
verify the security properties of the system [Popek 78a].

Overview

In this protocol, when a user attempts to send data, a system
encrypt function encrypts that data and passes it to the network
management software, which is logically part of the local opera-
ting system. The network software then attaches headers or other
information required by the network protocols and sends the data
to the communications facility. Upon reception by the remote
network software, the headers and other protocol information are
removed from the data and the data is passed, via a system de-
crypt function, to the appropriate user process.

Initial establishment of the communication channel is also
provided in a secure way. When a user process attempts to
establish communication, the local network software is informer'
by the system. The network software then communicates with the
network software at the remote site. When the two network soft-
ware packages have arranged for the new communication, the system
at each site is informed. At this point in time, the system
software attempts to obtain encryption keys for this communication.
This key distribution is accomplished either with local key
management software, or via a key distribution center. If a
conventional encryption algorithm was employed, then new keys
would be chosen and distributed. If a public key encryption
algorithm was utilized, then the public key of the recipient and
the private key of the sender would be retrieved.

In the public key case, an additional authentication sequence
is required, since the public keys may have been used before.
This authentication sequence effectively establishes a sequence
number to be included in each message to guarantee that previous
messages cannot be recorded by an imposter and replayed. The
authentication sequence is not required in the conventional
encryption case since the new keys effectively form an authenti-
cation and prevent any prior messages from being useful.

After the keys have been chosen and distributed (using a
previously established secure key distribution channel), the
user processes are given capabilities to send and receive data.
The operating system calls employed should automatically encrypt
and decrypt the data with the appropriate keys. Thus, the

138

communication channel is established.

The above design allows existing network protocols in many
cases to be largely left undisturbed, and preserves much existing
network software. If desired, user processes can be blocked, in
a reliable way, from communicating with any other user processes
anywhere in the network unless the protection policy involved in
setting up the keys permits it. Each user's communication is
protected from every other user's communication. Perhaps most
important, the amount of trusted mechanism required in the system
nucleus, as we shall see, is quite limited.

The Encyption Connection Protocol

The details of secure communication establishment, briefly
described above, are now presented in more detail. To outline
this procedure, we first view the operation from the vantage
point of the operating system nucleus, or kernel, and then see
how host network protocol software operates making use of the
kernel facilities. For brevity, in this discussion, a logical
communication channel between two processes will be known as a
connection. The host network software will be referred to as
the network protocol manager (NPM). In general purpose networks,
the role of the NPM is quite sophisticated and requires consid-
erable code to implement the necessary protocols, an important
reason not to have security depend on the NPM.

In the discussion below, it will be understood that a pair of
matching encryption keys, one held by each of the two hosts
involved, defines a secure, one way (simplex) channel. A bi-
directional (duplex) channel between two hosts therefore employs
two pairs of keys [1]. Each kernel of each host in normal
operational mode has a secure full duplex channel established
with each other kernel in the network. How these channels are
established concerns the method by which hosts are intialized,
and is discussed later. The kernel-kernel channels are used for
exchanging keys that will be used for other channels between the
two hosts and for kernel-kernel control messages [2]. The need
for these will become apparent as the protocol is outlined. If
it is desired, the protocols can be trivially altered to keep the
cleartext form of keys only within the encryption units of the
hosts. For simplicity of explanation, that requirement is not
used here.

[1] The same key could be used for both directions in convention-
al encryption, but for conceptual clarity here it is not

[2] In a centralized key distribution version, these kernel-
kernel secure channels would be replaced by kernel-key
distribution center secure channels.

139

A connection will get established in the following way.
When hosts are initialized, their NPMs will establish connections
through a procedure analogous to the one we outline here, and
described in more detail later. Then, when a user process wishes
to connect to a foreign site, the process executes an "establish
connection" system call which informs the NPM of the request.
The NPM exchanges messages with the foreign NPM using their
already existing channel. This exchange will include any host-
host protocol for establishing communications in the network.
Presumably the NPMs eventually agree that a connection has been
established. At that point the user processes are still unable
to communicate, since so far as the kernel is concerned, nothing
has been done. The content of NPM exchanges is invisible to the
kernel. Rather, at this point, the NPMs must ask the kernel to
establish the channel for the processes. This action is performed
with kernel function calls. Those calls grant capabilities to
the user process so that subsequent requests can be made directly
by the process.

In order to explain in more detail, the following four proto-
type kernel calls are described. The first two are involved in
setting up the encryption channel, and presumably would be issued
only by the NPMs. The second two are the means by which user
processes send and receive data over the connection.

GID (foreign-host, connection-id, process-id, state) Give-id.
This call supplies to the kernel an id which the caller would
like to be used as the name of a channel to be established. The
kernel checks it for uniqueness before accepting it, and also
makes relevant protection checks. If state = "init", the kernel
chooses the encryption key to be associated with the id (or
queries key controller for key). The entry <connection-id, key,
process-id, state> is made in the kernel Key Table. Using its
secure channel, the kernel sends <connection-id, key, policy-info>
to the foreign host. The policy-info can be anything, but in the
military case, it should be the security level of the local
process identified by process-id. In a commercial case it might
he the organization by which the user was employed. It might
also be a network-wide global name of the user associated with
the process. If state = "complete", then there should already be
an entry in the Key Table (caused by the other host having
executed a GID) so a check for match is made before sending out
the kernel-kernel message and a key is not included. The NPM
process is notified when an id is received from a foreign kernel.

CID (connection-id) Close id. The NPM and the appropriate
process at the local site are both notified that the call has
been issued. The corresponding entry in the Key Table is deleted.
Over the secure kernel-kernel channel, a message is sent telling
the other kernel to delete its corresponding Key Table entry.
This call should be executable only by NPMs or by the process
whose Key Table entry indicates that it is the process associated
with this id, to block potential denial of service problems.

Encrypt (connection-id, data) Encrypt data and buffer for
NPM. This call adds integrity information, such as sequence
numbers, to the data, encrypts the data using the key correspond-
ing to the supplied id (fails unless the process-id associated
with the connection-id matches that of the caller) and places the
data in an internal buffer. The NPM is informed of the awaiting
data.

Decrypt (connection-id, user-buffer). Decrypt data. This call
decrypts the data from the system buffer belonging to the connec-
tion-id supplied using the appropriate key. The data is moved
into the user's buffer. The call fails unless the process-id
stored in the Key Table matches the caller and all data integrity
checks succeed (such as sequence numbers).

An important new kernel table is the Key Table [1]. It contains
some number of entries, each of which have the following
information:

<foreign-host, connection-id, key, sequence-no, local-process-id>

There is one additional kernel entry point besides the calls
listed above, namely the one caused by control messages from the
foreign kernel. There are two types of such messages: one
corresponding to the foreign GID call and the other corresponding
to a foreign CID. The first makes an incomplete entry in the
receiving kernel's Key Table, and the second deletes the
appropriate entry.

The following sequence of steps illustrates how a connection
would be established using the encryption connection protocol.
The host processors involved are numbered 1 and 2. Process A at
host 1 wishes to connect to process B at host 2.

[1] In some hardware encryption implementations, the keys are
kept internal to the hardware unit. In that case, the key
entry in the Key Table can merely be an index into the
encryption unit's key table.

141

(1) Process A executes an establish connection call which informs
NPM@1, saying "connect from A to B@2". This message can be sent
locally in the clear. If confinement is important, other methods
can be employed to limit the bandwidth between A and the NPM.
(2) NPW1 sends control messages to NPM@2 including whatever
Host-Host protocol required [2].
(3) NPM@2 receives an indication of message arrival, does an I/O
call to retrieve it, examines header, determines that it is
recipient and processes the message.
(4) NPM@2 initiates step 2 at site 2, leading to step 3 being
executed at site 1 in response. This exchange continues until
NPM@1 and NPM@2 open the connection, having established whatever
internal local name mappings are required.
(5) NPW1 executes GID (connection-id, process-id, "init"), where
connection-id is an agreed upon connection id between the two
NPMs, and process-id is the local name of the process that
requested the connection.
(6) In executing the GID, the kernel@l generates or obtains a -
key, makes an entry in its Key Table, and sends a message over
its secure channel to Kernel@2, who makes corresponding entry in
its table and interrupts NPM@2, giving it connection-id.
(7) NPM@2 issues corresponding GID (connection-id, process-id',
"complete") where connection-id is the same and process-id' is
the one local to host 2. This call interrupts process-id', and
eventually causes the appropriate entry to be made in the kernel
table at host 1. The making of that entry interrupts NPM@1 and
process-id@l.
(8) Process-id and process-id' can now use the channel by issu-
ing successive Encrypt and Decrypt calls.

There are a number of places in the mechanisms just described
where failure can occur. If the network software in either of the
hosts fails or decides not to open the connection, no kernel calls
are involved, and standard protocols operate. A GID may fail
because the id supplied was already in use, a protection policy
check was not successful or because the kernel table was full.
The caller is notified. He may try again. In the case of failure
of a GID, it may be necessary for the kernel to execute most of
the actions of CID to avoid race conditions that can result from
other methods of indicating failure to the foreign site.

[2] The host-host protocol messages would normally be sent
encrypted using the NPM-NPM key in most implementations.

142

Discussion

The encryption mechanism just outlined contains no error
correction facilities. If messages are lost, or sequence numbers
are out of order or duplicated, the kernel merely notifies the
user and network software of the error and renders the channel
unusable. This action is taken on all channels, including the
kernel-kernel channels. For every case but the last, CIDs must
be issued and a new channel created via GIDs. In the last case,
the procedures for bringing up the network must be used.

This simple minded view is acceptable in part because the
expected error rate on most networks is quite low. Otherwise, it
would be too expensive to reestablish the channel for each error.
However, it should be noted that any higher level protocol errors
are still handled by that protocol software, so that most
failures can be managed by the NPM without affecting the encryp-
tion channel. On highly error prone channels, additional protocol
at the encryption level may still be necessary. See Kent [Kent
76] for a discusion of resynchronization of the sequencing
supported by the encryption channel.

From the protection viewpoint, one can consider the collection
of NPMs across the network as forming a single (distributed)
domain. They may exchange information freely among them. No
user process can send or receive data directly to or from an NPM,
except via narrow bandwidth channels through which control infor-
mation is sent to the NPM and status and error information is
returned. These channels can be limited by adding parameterized
calls to the kernel to pass the minimum amount of data to the
NPMs, and having the kernel post, as much as possible, status
reports directly to the processes involved. The channel band-
width cannot be zero, however.

System Initialization Procedures

The task of bringing up the network software is composed of
two important parts. First, it is necessary to establish keys
for the secure kernel-kernel channels and the NPM-NPM channels.
Next, the NPM can initialize itself and its communications with
other NPMs. Finally, the kernel can initialize its communications
with other kernels. This latter problem is essentially one of
mutual authentication, of each kernel with the other member of
the pair, and appropriate solutions depend upon the expected
threats against which protection is desired.

The initialization of the kernel-kernel channel and NPM-NPM
channel key table entries will require that the kernel maintain
initial keys for this purpose. The kernel cannot obtain these
keys using the above mechanisms at initialization because they

143

require the prior existence of the NPM-NPM and kernel-kernel
channels. Thus, this circularity requires the kernel to maintain
at least two key pairs [1]. However, such keys could be kept in
read only memory of the encryption unit if desired.

The initialization of the NPM-NPM communications then proceeds
as it would if encryption were not present. In most networks,
some form of host-host reset command would be sent (encrypted
with the proper NPM-NPM key). Once this NPM-NPM initialization
is complete, the kernel-kernel connections could be established
by the NPM. At this point, the system would be ready for new
connection establishment. It should be noted that, if desired,
the kernels could then set up new keys for the kernel-kernel and
NPM-NPM channels, thus only using the initialization keys for a
short time. To avoid overhead at initialization time, and to
limit the sizes of kernel Key Tables, NPMs probably should only
establish channels with other NPMs when a user wants to connect
to that particular foreign site, and perhaps close the NPM-NPM
channel after all user channels are closed.

Symmetry

The case study just presented portrayed a basically symmetric
protocol suitable for use by intelligent nodes, a fairly general
case. However, in some instances, one of the pair lacks
algorithmic capacity, as illustrated by simple hardware terminals
or simple microprocessors. Then a strongly asymmetric protocol
is required, where the burden falls on the more powerful of the
pair.

A form of this problem might also occur if encryption is not
handled by the system, but rather by the user processes them-
selves. Then for certain operations, such as sending mail, the
receiving user process might not even be present. (Note that
such an approach may not guarantee the encryption of all network
traffic). Schroeder and Needham have sketched protocols that are
similar in spirit to those presented here to deal with such
cases.

[1] In a centralized key distribution version, the only keys
which would be needed would be those for the key distributor
NPM-host NPM channel and for the key distributor kernel-host
kernel channel. In a distributed key management system,
keys would be needed for each key manager.

144

V. DATAGRAMS

The case of electronic mail illustrates an important variation
to the protocols presented earlier. Assume that a user at one
site wishes to send mail to a user at another site.

Using conventional encryption algorithms, the first user
would request a connection to the second user, and a new key
would be chosen and distributed by the key controller for use•in
the communication. That key is sent using the secret keys of the
two users.

However, since the second user may not be signed on at the
time, a daemon process is used to receive the mail and deliver it
to the user's "mailbox" file for his later inspection. It is
desirable that the daemon process not need to access the
cleartext form of the mail, for that would require the mail
receiver mechanism to be trusted. This feat can be accomplished
by sending the mail to the daemon process in encrypted form and
having the daemon put that encrypted data directly into the
mailbox file. The user can decrypt it when he signs on to read
his mail. In that way, the daemon only needs the ability to
append to a user's mailbox file.

In order for the user to know the new key used for this mail,
however, the key distribution algorithm used earlier must be
modified. Rather than sending the key for this connection to both
the sender and the receiver, the key controller sends the key
twice to the sender, one copy encrypted with the sender's secret
key and one copy encrypted with the receiver's. The sender can
prepend the copy of the key encrypted in the receiver's secret key
to the mail before transmission. When the recipient signs on,
his own mail program will examine the mailbox file, find the key
message, decrypt it using his secret key, and then use the new
key to decrypt the remaining text.

In the case of the public key encryption algorithms, the mail
problem is somewhat simplified since the recipient knows what key
to use in decryption (his secret key). However, authentication
is not possible since the recipient is not present when the
message is received. Thus, it may be a replay of a previously
sent message. This problem can be prevented in the conventional
encryption algorithm case via various protocols with the key
managers, for example, by timestamping the mail and having the
recipient keep track of recently used mail keys.

Both mechanisms outlined above do guarantee that only the
desired recipient of a message will be able to read it. However,
as pointed out, they don't guarantee to the recipient the identity
of the sender. This problem is essentially that of digital

145

signatures, and is discussed in the next section.

VI. PUBLIC KEY ALGORITHMS AND DIGITAL SIGNATURES

The development of public key based encryption was greeted by
a great deal of interest, since the method appears to present
considerable advantages over conventional encryption methods,
especially with respect to key distribution and digital mail
signatures.

However, on closer examination, it seems that public key
algorithms possess no particular advantages over conventional
algorithms. The reasons for this conclusion are readily seen and
are outlined below.

Key Distribution

Let us examine each of the advantages claimed for public key
algorithms. The first is key distribution. Simply put, public
key advocates argue that an automated "telephone book" of public
keys can generally be made available, and therefore whenever user
x wishes to communicate with user y, x merely must look up y's
public key in the book, encrypt the message with that key, and
send it to y [Diffie 76]. Therefore, there is no key distribution
problem at all. Further, no central authority is required
initially to set up the channel between x and y.

Needham and Schroeder point out however that this viewpoint
is incorrect: some form of a central authority is needed and the
protocol involved is no simpler nor any more efficient than one
based on conventional algorithms [Needham 77]. Their argument may
be summarized as follows. First, the safety of the public key
scheme depends critically on the correct public key being
selected by the sender. If the key listed with a name in the
"telephone book" is the wrong one, then there is no security.
Furthermore, maintenance of the (by necessity machine supported)
book is non-trivial because keys will change; either because of
the natural desire to replace a key pair which has been used for
high amounts of data transmission, or because a key has been
compromised through a variety of ways. There must be some source
of carefully maintained "books" with the responsibility of care-
fully authenticating any changes and correctly sending out public
keys (or entire copies of the book) upon request.

146

Needham and Schroeder also exhibit protocols to provide the
desired properties for public key systems, and show that there
are equivalent protocols for conventional algorithms. The proto-
cols are equivalent both in terms of numbers of messages required
as well as in the mechanisms which must be trusted. The only
observable difference is that the central authority in the
conventional case, in addition to being trusted, must also keep
its collection of (conventional) keys secret. Based on the work
at UCLA on secure operating systems, it appears that the task of
constructing a secure central authority is no harder than
building the correct one needed for public key systems.

Digital Signatures

The second area in which public key methods are often thought
to be superior to conventional ones is digital message signatures.
The method, assuming a suitable public key algorithm, is for the
sender to encode the mail by "decrypting" it with his private key
and then send it. The receiver decodes the message by "encrypting"
with the sender's public key. The usual view is that this
procedure does not require a central authority, except to adjudi-
cate an authorship challenge. However, two points should be
noted. First, a central authority is needed by the recipient for
aid in deciphering the first message received from any given
author (to get the corresponding public key, as above). Second,
the central authority must keep all old values of public keys in
a reliable way to properly adjudicate conflicts over old signa-
tures (consider the relevant lifetime of a signature on a real
estate deed for example) [Needham 77].

Further, and more serious, the unadorned public key signature
protocol just described has an important flaw. The author of
signed messages can effectively disavow and repudiate his signa-
tures at any time, merely by causing his secret key to be made
public, or "compromised". When such an event occurs, either by
accident or intention, all messages previously "signed" using the
given private key are invalidated, since the only proof of
validity has been destroyed. Because the private key is now
known, anyone could have created any of the messages sent earlier
by the given author. None of the signatures can be relied upon.

Hence, the validity of a signature on a message is only as
safe as the entire future history of protection of the private
key. Further, the ability to remove the protection resides in
precisely the individual (the author) who should not hold that
right. That is, one important purpose of a signature is to
indicate responsibility for the content of the accompanying
message in z! way that cannot be later disavowed.

147

Some people may argue that this concern is overly conservative;
that existing signature methods are not very reliable, that
individuals have considerable incentive not to repudiate their
signatures, and so one is justified in constructing a flawed
solution. However, in our view this characteristic is clearly
unsatisfactory, especially if it is possible to devise suitable
digital signature methods which do not suffer from this problem.

The situation with respect to signatures using conventional
algorithms initially appears slightly better. Rabin [Rabin 78]
proposes elsewhere in this volume a method of digital signatures
based on any strong conventional algorithm. Like public key
methods, it too requires either a central authority or an explicit
agreement between the two parties involved to get matters going
[1]. Similarly, an adjudicator is required for challenges.
Rabin's method, however, uses a large number of keys, with keys
not being reused from message to message. As a result, if a few
keys are compromised, other signatures based on other keys are -
still safe. However, that is not a real advantage over public
key methods, since one could easily add a layer of protocol over
the public key method to change keys for each message as Rabin
does for conventional methods. One could even use a variant of
Rabin's scheme itself with public keys, although it is easy to
develop a simpler one.

However, all of the digital signature methods described or
suggested above suffer from the problem of repudiation of signa-
ture via key compromise. Rabin's protocol or analogoues to it
merely limit the damage (or, equivalently, provide selectivity!).
It appears that the problem is intrinsic to any approach in which
the validity of an author's signature depends on secret
information, which can potentially be revealed, either by the
author or other interested parties. Surely improvement would be
desirable.

[1] In his paper, Rabin describes an initialization method which
involves an explicit contract between each pair of parties
that wish to communicate with digitally signed messages.
One can easily instead add a central authority to play this
role, using suitable authentication protocols, thus'
obviating any need for two parties to make specific arrange-
ments prior to exchanging signed correspondence.

148

A Reliable Digital Signature Method

A simple, obvious solution is to interpose some trusted
interpretive layer between the author and his signature keys,
whatever their form. For example, suppose the list of keys in
Rabin's algorithm were not known to the author, but instead were
contained in a secure Unit (hardware or software). Whenever the
author wished to send a signed message, he merely submitted the
message to the Unit, which selected the appropriate keys and
then used the standard algorithm. Each author has access to such
a Unit.

The loading of each Unit requires some examination. In
particular, the means which are used to select keys and insert
them into each Unit must be correct if mail challenges are to be
handled satisfactorily. That is, there must be some trusted
Source of keys (and matching "standard message" in the Rabin
protocol), and the key list for each author/recipient pair must
be deliverable in a correct, secret way to the appropriate Units.
We will call the collection of Units and the Source(s), together
with their internal communication protocols, a Network Registry
(NR). Such an NR appears required to solve the problems raised
earlier. Note that some secure communication protocol among the
components of the Network Registry is required. However, it can
be very simple; low level link encryption would suffice.

For safety and efficiency, the NR functions presumably should
be decomposed and distributed throughout the network. In particu-
lar, the failure or compromise of a local NR would then only have
local consequences. One can even construct local NR components
of the Network Registry in a decentralized way so that compromise
of more than one component would be required before a message
signature was affected [1]. The NR architecture issue, while
important, is to some degree a digression here and so we put it
aside.

The Registry concept is quite common in the paper world. A
local government's real estate recorder's office is probably the
most commonly known example.

[1] See section 6.6.

149

Authentication

We now make an important observation. It is still necessary
that there exist a guaranteed authentication mechanism by which
an individual is authenticated to the NR (presumably directly to
the local Unit). Any reasonable communication system of course
ultimately requires such a facility, for if one user can
masquerade as another, all signature systems will fail. What is
required is some reliable way to identify a user sitting at a
terminal -- some method stronger than the password schemes used
today. Perhaps an unforgeable mechanism based on fingerprints
or other personal characteristics will emerge.

Simplification of the Proposed Signature Architecture:
Specialized Digital Signature Protocols Unnecessary

Once the necessity of a Network Registry is recognized,
including a guaranteed authentication mechanism, it appears that
simplifications in the mechanisms required for digital signatures
can be made that seem to remove the need for specialized digital
signature protocols. Instead, any of a collection of simple
methods will suffice.

In particular, in order for the Network Registry to operate
satisfactorily (including performing user authentication), it
clearly must be distributed, and clearly must be able to
communicate securely internally among the distributed components.
Given that such facilities exist, then the following is an example
of a simple implementation of digital signatures which does not
require a specialized protocol or encryption algorithm:

(1) The author authenticates with a local Network Registry
component, creates a message, and hands the message to the NR
together with the recipient identifier and an indication that a
registered signature is desired.
(2) A Network Registry (not necessarily the local component)
computes a simple characteristic function of the message, author,
recipient, and current time, encrypts the result with a key known
only to the Network Registry, and forwards the resulting
"signature block" to the recipient. The NR only retains the
encryption key employed.
(3) The recipient, when the message is received, can ask the NR
if the message was indeed signed by the claimed author by present-
ing the signature block and message. Subsequent challenges are
handled in the same way.

150

This simple protocol involves little additional mechanism
beyond that which was needed by the Network Registry anyway. It
does require that the Network Registry be involved in every
message signature and validation. However, recall that all of the
unadorned signature methods reviewed earlier require involvement
of some form of a Network Registry for at least the first message
between any two parties. Public key protocols must check the
"telephone book", and Rabin's method requires either a contract
or a Network Registry. Furthermore, when one adds a more complete
Network Registry on top of those other signature methods to
correct their repudiation problem, all methods involve the NR for
each message. Note that this protocol also does not require the
NR to maintain any significant storage for signature blocks.

Performance and Safety

Certain elementary precautions should be taken in the design
of the Network Registry to avoid unnecessary internal message
exchanges and to assure safety of the keys used to encrypt the
signature blocks. Performance enhancements presumably would
involve distributing the signature block calculation. Safety
enhancements could include the use of different keys at each
distributed site, replicating sites, and employing a signature
block computation which requires the cooperation of multiple sites.
Each of these facilities is straightforward to build and so they
are not discussed further here.

From the preceding discussion, we conclude that the digital
signature algorithms proposed heretofore are unsatisfactory, and
the improvements required to correct their inadequacies make the
use of a specialized digital signature algorithm unnecessary.

We note here that the safety of signatures in this proposal
also depends on the future history of protection of keys as
before, in this case those held by the Network Registry. However,
there are several crucial differences between this case and
previous proposals. First, the authors of messages do not retain
the ability to repudiate signatures at will. Second, the Network
Registry can be structured so that failure or compromise of
several of the components is necessary before signature validity
is lost. In the previous methods, a single failure could lead to
compromise.

151

VI. CONCLUSIONS

We draw a number of specific conclusions, as well as more
general perspectives from the preceding discussions. The
specifics are as follows. First, public key encryption systems,
viewed in the context of the network protocols by which they
must be used, do not seem to provide any significant advantages
over conventional encryption algorithms. Each important function
that has been recognized can be performed at least as easily by
conventional methods with, it appears, no more supporting
mechanism. Therefore, if strong conventional algorithms are
easier to develop, as has been speculated [Rivest 77b], research
would be better devoted to that area rather than public key
systems.

Second, it seems that the digital signature methods which
have been proposed, both public key and conventional algorithm
based, do not adequately protect recipients of signed documents -
from repudiation of signatures by the author revealing the secret
key(s) employed. The difficulty appears intrinsic to the
approaches being taken. An alternative is available which over-
comes this problem, however, that involves a small amount of
trusted software.

Third, the necessary underlying mechanism required to support
improved digital signature methods, as well as other user visible
secure network communication protocols, is relatively well under-
stood, and an example is presented in this paper. The example
takes account of the important requirements that the amount of
trusted mechanism involved be minimized for the sake of safety.

In more global terms, this discussion of network security has
been intended to illustrate the current state of the art. It
suggests the following general perspectives.

If one's view of security of data in networks is basically a
common carrier philosophy, then general principles by which
secure, common carrier based, point to point communication can be
provided are reasonably well in hand. Of course, as in any
sophisticated implementation, there will surely be considerable
careful engineering to be done.

However, this conclusion rests on one important assumption
that is not universally valid. Either there exist secure
operating systems to support the individual processes and the
required encryption protocol facilities, or each machine operates
as a single protection domain. A secure implementation of a Key
Distribution Center or Registry is necessary in any case.
Fortunately, reasonably secure operating systems are well on their
way, so that this intrinsic dependency of network security on an

152

appropriate operating system base should not seriously delay
common carrier security.

One could however take a rather different view of the nature
of the network security problem: the goal might be to provide a
high level extended machine for the user, in which no explicit
awareness of the network is required. The underlying facility is
trusted to securely move data from site to site as necessary to
support whatever data types and operations that are relevant to
the user. The facility operates securely and with integrity in
the face of unplanned crashes of any nodes in the network.
Synchronization of operations on user meaningful objects (such as
Withdrawal on Checking Account) is reliably maintained. If one
takes such a high level view of the goal of network security,
then the simple common carrier solutions respond only to part of
the network security problem and more work remains.

REFERENCES

[Diffie 76] Diffie, W. and M. Hellman, "New Directions in
Cryptography", IEEE Transactions on Information Theory,
November 1976, pp. 644 - 654.

[Kent 76] Kent, S., Encryption-Based Protection Protocols for
Interactive User-Computer Communication, Laboratory for
Computer Science, MIT, TR 162, 1976.

[Needham 77] Needham, R. and M. Schroeder, "Security and
Authentication in Large Networks of Computers", Xerox Palo
Alto Research Center Technical Report, September 1977.

[Popek 78a] Popek, G. J. and D. Farber, "A Model for Verification
of Data Security in Operating Systems", Communications of the
ACM (to appear).

[Popek 78b] Popek, G. J. and C. S. Kline, "Design Issues for
Secure Computer Networks", in Operating Systems, An Advanced
Course, R. Bayer, R. M. Graham, G. Seegmuller, ed., Springer-
Verlag, 1978.

[Popek 78c] Popek, G. J. and C. S. Kline, "Issues in Kernel
Design", Proceedings of the National Computer Conference,
AFIPS Press, 1978.

[Rabin 77] Rabin, M., "Digital Signatures Using Conventional
Encryption Algorithms", Proceedings of the Conference on
Foundations of Secure Computation, Atlanta, Georgia, October
3-5, 1977, Academic Press.

[Rivest 77a] Rivest, R. L., Shamir, A. and L. Adleman, A Method
for Obtaining Digital Signatures and Public -Key Cryptosystems,
MIT Laboratory for Computer Science Technical Memo, LCS/TM82
Cambridge, Massachusetts 02139, April 4, 1977 (revised in
August 1977)

[Rivest 77b] Rivest, R., private communications, 1977.

153

DIGITALIZED SIGNATURES*

Michael 0. Rabin

Hebrew University of Jerusalem
Massachusetts Institute of Technology

INTRODUCTION

In many business transactions an essential role is played by
signed messages and by cerification of messages received. A
party to a contract or the issuer of a binding document in
question. The signature, which is assumed to be unique to the
signatory or signer, serves as proof that he was a party to the
document, or that he was its sole originator. If the document
spells out certain obligations for the signer then his signature
signals his agreement to undertake these obligations. The
certification of receipt of a message is effected by the receiver
or some intermediary agent, signing a statement to the effect
that the message was in fact received by him.

Thus signature and certification nowadays involve the pro-
duction, transfer, and eventual storage of a physical document.

We are moving towards an era of electronic correspondence
when a large bulk of business correspondence will be conducted,
even when humanly generated, from computer to computer. When
corresponding in this mode, there arises the problem of how to
affix a binding signature to a message when this is deemed
necessary.

* This work was done while the author was visiting the IBM
Thomas J. Watson Laboratory during July of 1976, and prepared
for publication during a visit to MIT.

155

1

The problem of digitalized signatures is by no means simple.
For example, a telegram bearing somebody's name, cannot by it-
self serve as full legal proof that it originated with the named
sender. The alleged sender can disown the message, claiming
that somebody else, maybe even the recipient or his agent, has
sent it using a false name. The adjudication of such a dispute
is time consuming and costly.

The difficulty may be summed up by noting that in electronic
communications a message is just information, i.e., a string of
bits devoid of unique physical characteristics. Consequently
what will serve as signature must also be information.

In this paper we propose a signature system employing any
block-encoding device and based, in one essential aspect, on
probabilistic logic. A different signature system can be based
on the Diffie-Hellman proposal [1] of public-key cipher systems.
An algorithm for such a public key-system employing large prime
numbers was discovered by the author (unpublished) and indepen-
dently by Rivest, Adleman and Shamir [3].

The properties of the encoding function which are needed for
rendering the signature system secure are stated in Section 3 in
axiomatic form. This enables us to establish properties of the
system as provable consequences from the axioms. The advantage
of this approach is that in the absence of explicitly stated
assumptions and deductions, discussions concerning viability of
a security system tend to degenerate into hand waiving non-
convergent arguments.

The axioms themselves are assumptions about the intract-
ability of certain computations involving the encoding function.
The notion of intractability required for ensuring the soundness
of an encoding function is different from and stronger than the
existing concept in complexity theory. In Section 10 we briefly
touch on the methodological questions pertaining to secure
communications and signatures. We introduce the notion of uni-
versal intractability required for a sound theoretical founda-
tion of this field.

I. Signatures and Their Properties

Denote by .M a message such as a contract and by a p (M) the

signature on M by a person P (who may be signing on behalf of a
legal entity). This signature must have the following proper-
ties:

Property (a): Only P can produce any pairs, M, a (4).

156

Property (b): 	The recipient of a pair M, W claimed to be
signed by P, can check that indeed W = a (M).

Note that property (a) is stronger than the assumption that
only P can sign a given message. Property (a) entails that the
signature a (M) is characteristic not only of P but also of the

entire message M. If when given a signed message N, a (N) an

adversary could effectively find a message M # N such that

(M) = 	(N), then the adversary could produce a signed message

M, a (M) not authored by P. This would contradict (a). Ordinary

signatures do not enjoy this important property of immutability
of the message.

II. The Encoding Function

Let k be some fixed word length.

Definition 1: An encoding function is a mapping E:

{0,1} k x {0,1}k -+ {0,1} k . For x, w ci0,11 k denote the function
value E w and call it the encoding of w by use of the key x.

Such encoding functions are used in block-ciphers for secure
commercial communications. One existing commercial device uses
k = 64. To serve for encryption E must be supplemented by the
decoding function D which satisfies DxExw = w. For the con-

struction of our signature system, however, only the encoding
function is required.

A message is a sequence of words

M = wiw2 ...wm , i(wi) = k.

The encoding function E can be extended to a mapping

E:({0,1}
k
)* x {0,1} k 4- {0,1}

k employing messages as keys, by
defining

E
m
w = E E ...Ew w .

wl w2 	m

Note that we are using parenthesis-free notation. Thus
E
x E y

 u = E x (E y
 (u)) = E xyu.

157

III. Assumptions Concerning E

In the spirit of basing the development on a small number of
explicitly stated assumptions (axioms) from which subsequent
statements are logically derivable, we now proceed to list our
assumptions concerning E.

Assumption 1. The function E
x
w is rapidly calculable.

Assumption 2. For every key x, and any given list
(1) w 	Exw...,wn , E

x
wn ,

it is intractably hard to produce a pair w, u = Exw such that

w0w
i
; 1 < i < n .
 — —

The intractable computation is Assumption 2 has as input the
sequence (1) (but not x) and the required output is a new pair
w, Exw. Note that from these assumptions follows the intract-

ability of computing a key x from the sequence (1). For if it
were possible to compute x, then one could choose a
w # w1 , 1 < i < n, and by Assumption 1 compute u = E

x
w.

— —

Assumption 3. 	Given any word w it is intractable to compute
two messages N # M such that ENw = EMw.

For a fixed w the mapping M EMw is a hashing-function,

mapping messages into words (of length k). Counting arguments
imply that there must exist M N so that EMw = ENw. Assumption

3 just claims that it is computationally hard to find such pairs.
The reader can check for himself that even if there exists an
easy way to compute the decoding function D, the obvious
attempts at finding such a pair M, N, run afoul of Assumption 2.
But we need Assumption 3 to rule out all possible algorithms.

IV. Exchange of Keys

If A and B want to conduct digitalized signed correspondence
they get together once for exchanging keys by the following
procedure.

A chooses, say, 120 keys x1
,...,x120 which he does not

devulge. Similarly B chooses v
- 1''''' Y120'

Let M
0
 = 0

k
be the standard message which will be employed

by all users of the system. If i is an integer we shall under-
stand M0

 (i) to be the word obtained by writing i = c
e-1e-2

...e
0

158

in binary notation and setting MO (i) = 0
k-e

ce-1 ...c
0
' Thus if

i = 5 then MO (i) = 0
k-3

101, so that 12,(M
o
(0) = k.

Using the encoding function, A produces the ordered list

(2) 	a = E M (1) 	E 	M0 (120) = a
1'

a
120

. Ex 0 	
x120

Similarly for B:

(3) 	S = E M (1),...,E 	MO (1 20) = 131'—'13120. y1 0 Y120 u 	 1

A and B then sign (by ordinary legal procedure) an agreement
stating that a is an encoding of the standard message using A's
keys and similarly for B with respect to B.

V. Verification of Keys

Let B or any other party be presented with a word x claimed

to be the A's ith key x.. He can verify the claim by computing

E
x M0

 (i) and comparing with a
i
in the list a. Similarly for B's

keys.

VI. Production and Acceptance of Signatures

When signing a message M, A starts by compressing M. Namely,
he forms

(4) 	 C(M) =EMMO

The signature is defined as follows.

Definition 2. 	A's signature on message M using the first
block (of 40) keys is

aA
(M) = E C(M),...,E

x40
C(M).

x1

Each E
x
 C(M) = Ex

ri l0
 will be called a marking so that the

signature oA (M) is a sequence of 40 markings. Using 40 markings

is, of course, arbitrary. The number of markings employed in an
actual implementation depends on security considerations spelled
out in Section 8.

159

Signing the next message, A will employ the second block of
keys x41 ,...,x

80
, etc. Each block of 40 keys is used only once

and an onward moving marker is kept in the list of keys, or a
signature count is maintained, to ensure strict adherence to
this rule.

For a purely technical reason A checks, after compressing M,

whether C(M) = M
0
 (i) for some i < 10

7
, i.e., whether C(M) is

mostly zeros. In the unlikely event that this occurs, he
slightly modifies M before signing it. As a practical matter
this contingency never arises. But we impose this restriction
that C(M) # M

0
 (i) so that markings E

x
 C(M) will not unintention-
1

ally coincide with key encryptions Ex Mo (i). See Section 8.

When B receives the sequence M,u1" u40 from A he verifies

that indeed (u
1 , • '

. . u
40

) = a
A
 (M) by the following procedure.

(i) B randomly chooses 20 different numbers 1 < i. < 40,
J

1 < j < 20.

(ii) Upon request from B, A devulges to him the actual keys
x . ,...,x. 	.
1
1 	

120

(iii) B verifies by the method in Section 5 that these are
indeed the i

1
th,...,i

20
th keys of A.

(iv) B checks that u i. = Ex. C(M) 1 < j < 20.
1.

(v) B accepts the signed message if and only if all the tests
in (iii), (iv) resulted positively.

VII. Adjudication of Disputes

It is inevitable that occasionally a participant A in a
signature-system may want to challenge or disown a message
claimed to be signed by him. In this situation, B presents a
message (contract)

M,vv40'
claiming that A signed it

using, say, the first block of keys; A denies this claim.

Settlement of such a dispute requires the supervision of an
adjudicator or judge. Adjudication, however, is not a process
of examination of witnesses and evidence but rather the imple-
mentation of a certain algorithm.

160

The adjudicator requests A to reveal his keys x
1
,...,x

40
which allegedly were employed in producing the markings
v
1
,...,v

40 . He then proceeds to

(i) Verify these keys, i.e., check whether

M Ex 	M0(40) = a40.
(1) = al"." x40 ° x 0 1

If not all keys are verified, the adjudicator right away upholds
B's claim that the signature is valid.

(ii) After all keys are verified, the adjudicator tests for
each marking v i , 1 < i < 40, whether E

x
 C(M) = v..

— —

(iii) If 20 or fewer of these equalities are true the adjudica-
tor upholds A's challenge. If 21 or more equalities are true,
the adjudicator upholds B's claim.

The fact that A challenged the message M, v 1 ,...,v40 and in

doing so revealed keys x1 ,...,x40 is recorded. In the future,

if A's challenge was upheld then no message presented by B as
signed by use of the first block of keys will be accepted. If
B was upheld, then only the message M will be accepted as
signed by A using the first block of keys.

VIII. Validity of the System

We now proceed to show that this signature system does
satisfy Properties (a) - (b) of Section 1.

Consider the possibility of somebody other than A producing
a signed message N, v 1 ,...,v

40
employing the mth block of keys,

xi+1Xi+40
, i = 40(m-1). To make it easier on the counter-

feiter, assume that this block was already used to produce the
signed message

	

M,u1 ,...,u40 , uj 	
+j

= E
xi

C(M), 1 < j < 40.

Of course, M N for otherwise N is not a forgery. The counter-
feiter knows twenty of the keys x i+1 ,...,xi+40 , namely, those

revealed by A, so that he can correctly produce the markings v t
corresponding to these keys. To produce a signature which will
stand up when challenged by A, counterfeiter must produce one
correct marking v = E 	C(M) employing a key xi +p

not among
p 	xi+p

161

those revealed.

At this stage the only available information involving x
i+p

are the pairs M
0
 (i+p), E 	M

0
 (i+p)(=a

i+p) and C(M),
Ex

EC(M)(=u). For vp to be a proper marking on N we must have
x
i+p

 v = E C(N). By the stipulation about signatures,
p 	xi +p

C(N) # M0 (i+p). Now, if C(N) # C(M) then the counterfeiter was

able to compute a third pair C(N), E 	C(N) contrary to Assump-
xi+p

tion 2 in Section 3. If C(N) = C(M) the counterfeiter was able
to find an N # M with ENMO = C(N) = C(M) = EmMo , contrary to
Assumption 3.

Thus A is protected, nobody can forge messages signed by
him. Next we show that Property (b) of signatures holds, i.e.,
that B can verify that a message was signed by A in a way which
bars A from later on disowing his signature.

The only way for A to produce a seemingly signed message
M,u...,u

40
which B will accept and which A can later success-

fully challenge, is to produce exactly twenty markings
u. ,...,u, 	which are proper, i.e., u = E C(M). (We again

-320 	
xj

assume that A informs B that the first block of keys was used.)
For if fewer than 20 markings are proper, then by steps (iv) -
(v) of the acceptance procedure B, will never accept
M, u1" u40' And if 21 or more markings are proper then,

because of the rule (iii) of the adjudication procedure, A
cannot successfully challenge this signed message.

Thus assume that A has prepared M, u 1 ,...,u40 so that just

u 4 ,...,u, 	are proper. Now, B will accept the message only if
J 1 	3 20
in his random choice of 20 indices

1il'''''i20 	
40 he picks

exactly the indices i1"'"j20'
 The probability of this occur-

-

ring is 1/(20
40

) 	/201/2
40

< 10
-11

. Thus B can be cheated on the

average no more than once in 10
11

times that he accepts a signed
message. For all practical purposes this is an ample margin of
safety.

162

Actually the margin of safety is even larger because in
general the correspondents will not try to cheat. This is
especially true since it is almost certain

(probability > 1 - 10
-11

) that if A tries to cheat he will be
caught and there may be a penalty involved.

Assume that we use only 16 markings. In this case B will
ask for 8 randomly chosen keys. The probability of B accepting

an improperly signed message is 1/(16
) q, 13000

-1 . We may reason-
8

ably assume that even in extensive correspondence, attempts to
cheat B will be fewer than once a day. Consequently 13000 days,
i.e., 36 years, will pass on the average before B will acept an
improperly signed message. We see that the number of markings
in the signature depends on the desired level of confidence, and
as a partical matter can be chosen to be quite small.

IV. Implementation

The signature system is, of course, implemented by machine.
Thus when we say that A chooses keys x l , x2 ,..., or that B

randomly selects 20 indices 1
<"i20

 40 and A reveals to

, etc. we intend all these steps to be
1 1

120
executed by machine.

From a practical point of view the best arrangement may be
,1 combination of a signature-machine (SIM) completely controll-
able by A, with a general computer available to many users.

SIMA
will contain a random number generator (RNG) for pro-

ducing the keys x l , x2 ,..., used by A, and for the randomized

key requests when checking signatures on messages received. For
added security it may be preferable to use a physical device as
RNG rather than a pseudo-random number generator.

It is preferable not to allow A's keys xl , x2 ,..., to be

present in the general computer. To this end, assume that the
encoding function E is decodable by D. (Alternatively, if E is
not decodable, another pair E, D may be used for the purpose at
hand.) A uses a key a stored only in SIM A

. After the keys

x
1
, x2 ,..., are generated inside SIMA

, their coded version

E
a
(x

1) '
E
a
 (x

2)" .'
. 	is stored in the general computer. When

163

keys are needed by A, he calls into SIM
A

a block

E
a
 (xi

),...,E a (x.+40) and decodes it using D.

The initially exchanged lists a and (3 need not be short.
They can involve tens of thousands of keys x x

2' x
40p,

y
1,

...,y
40p

so that a = E M (1),...,E
x4Op

M
0
(40p) and similarly Ex 0

for B. Treating a and a as messages, C(a) and C(s) are formed.
A and B now exchange the lists a and P, computer to computer, and
sign (by ordinary legal procedure) an agreement identifying C(a)
and C(B) as the compressed forms of a and Q.

When the original lists a, R are about to be exhausted,
additional keys can be exchanged by the system itself in the
form of signed message using the now established protocol. In
order to avoid backtracking of challenged signatures, the
signatures on keylist extensions should involve only keys from
the lists orginally exchanged.

If the system is widely used within some commercial domain
such as banking or stock brokerage, then the bilateral agreement
can be replaced by establishing a central "trustee" with whom
each of the participants deposits lists of the form a.

The legal viability of such a digitalized signature system
does not depend on new laws pertaining to signatures. The
initial agreement between A and B (Section 4) will state that
the participants undertake to correspond and sign by the method
proposed in this paper, specify the dispute adjudication pro-
cedure and the (commercial) legal obligations and penalties
involved. Thus the initial agreement becomes a contract gover-
ning the digitalized signature procedure.

X. Universal Intractability

As explained in [2], the viability of a digitalized signa-
ture system requires that the relevant system-breaking computa-
tions be intractable in a sense stronger than the one usually
defined in complexity theory. Even if the problem were proved
to be exponentially complex (no such result was proved to date)
this would only be a worst case or average complexity result.
It does not preclude the possibility that for one key in a
thousand the system can be broken by an algorithm not known to
the user. This level of hazard is not acceptable in the context
of signatures.

164

We want the encoding function to have the necessary proper-
ties without exception. This is, of course, too much to ask for
becaule an algorithm (program) may, for example, list certain
keys x, y,..., which are tried as a guess. In rare cases the
key used for the signature happens to be the one guessed at in
the algorithm, and forgery becomes possible. We thus want to
capture the idea that the encoding function E is strongly
randomizing and that any conceivable attack works no better than
a random guess at keys.

Take n = 2 in Assumption 2. The problem to be solved for
signature forgery is: Given (u 1 , Exul), (u 2 , Exu2), find a

third pair (v, Exv), v # ul , u2 . The intractability of this

special n = 2 case of Assumption 2 suffices for the proof of

validity of the signature system. Denote by P ti 2
3k the total

number of instances of the problem (k is the key and word

length). A given key x is involved in 2 kP problem instances.
If AL is an algorithm for solving the problem then AL can list
at most Q(AL) keys. If AL runs N steps it can generate and try
at most N keys. Thus saying that given (u 1 , w1),) (u2

 ,w
2
), no

algorithm is better than "guessing" at keys x, trying if
w. = E

x
u
i
, i = 1, 2, and if yes encoding a word v to produce

v, E
x
v, is elucidated by

Definition 3. 	The list-extension problem of Assumption 2
is called universally intractable for an encoding function E if
any algorithm AL running N steps solves no more than

(2,(AL)+N)2 kP instances.

For example, if k = 100, we restrict ourselves to algorithms

of size at most 10
12 , and run on each instance at most 10

12

steps, the fraction of instances solved is 2-10
12

-2
-100 . Thus

the likelihood that for any given instance the problem will be
solvable in practical time is negligible. From the practical
point of view the problem can indeed be considered universally
intractable.

XI. Discussion

A comparison between the method proposed here and other
systems is in order.

One possibility which is considered is the digitalization,
by analogue to digital converstion, of paper and ink signatures.

165

This process is reported to have an about 95% reliability in
terms of reproducibility and resistence to forgery. Once a
physical signature was digitalized and affixed to a message, it
can be lifted off and affixed to any other message. Thus a
method employing physical signatures affords little protection
in digitalized correspondence.

Signatures based on public-key ciphers (PKC) have some
obvious advantages in terms of simplicity of protocol and
avodicence of storage of lists of keys. In detailed comparison,
the following points come up.

The signature protocol proposed here is implemented machine
to machine so that the "work" involved is not a serious issue.
In fact, the one-way functions used in PKC are considerably
slower to compute than the encoding functions which can serve in
this system.

Compared to the total volume of messages such as letters,
contracts, etc., the total length of keys used in signatures is
not large. Also, messages requiring signatures can often be
batched and signed together.

The one-time use of a block of keys in the SIM system has
advantages over the public-key. If the security of the public
key is breached through some error or accident, then an
avalanche of pre-dated counterfeit documents can ensue. The SIM
system is much more stable under the effect of inadvertent
disclosure of a block of keys.

Finally and most importantly, the PKC System is completely
dependent on two or three known one-way functions having very
special properties. If an algorithm for the decoding of the
function in question is found, then the users of signatures
based on PKC will have no substitute. The method proposed here
can employ any block-encoding function as soon as it satisfies
Assumptions 1 - 3. Thus unless a method is found to break all
block-encoding devices, which would mean that secure communica-
tions other than by one time pads is impossible, our signature
system is always implementable.

BIBLIOGRAPHY

[1] Diffie, W., and Hellman, M., New Directions in Cryptograph,
IEEE Trans. on Information Theory (November, 1976).

[2] Rabin, M.O., Complexity of Computations, Comm. ACM, Vol.
20 (1977), 625-633.

[3] Rivest, R.L., Shamir, A., and Adleman, L., A Method for
Obtaining Digital Signatures and Public-key Cryptosystems,
MIT Lab. for Comp. Sci. TM-82 (1977).

167

1

DISCUSSION

Shapiro: I'd like to comment on the simplicity and elegance
of your solution. The core of it is the idea to randomize. It's
not unlike a technique of probabilistic mathematical proof in
which you allow a receiver to select one of two cases.

Rabin: Yes, you're right. B is, in fact, proving that the
message came from A. And, in a way, similar to what occurs in my
algorithm for testing primality, the proof is not a complete
proof, but the residue of doubt is provably, negligibly small.
The adversary, A in this case, cannot arrange things so that B's
security is less than 1 - 1/2000. Or, if he wants to be safer,
he does a little more and gets even a smaller number. The real
assumption about these encoding systems is that they randomize in
a very complete way. That is supported by experimental evidence,
but only by experimental evidence. This sort of randomness says
that there is no discernable connection between the w's and the
u's, and that should really hold for all keys. One could try to
do it for a subset of the keys; but, however, the state of the
science here is that we really know nothing about this. We don't
even know whether P = NP is true, but of course, if it is solvable
then all of these keys are not good. A point I want to make is
that even if we know that NP is provably exponential, then we are
still not in the clear because we need a much stronger concept of
complexity.

Cohen: Do you have a name for it?

Rabin: No, but that is a good question. Maybe I'll try to
coin a name.

Rivest: I think it's worth pointing out that your system has
an advantage with respect to key lossage over public key systems.
In a public key system, if you've lost your key, you've lost it

168

with respect to everyone using the system; whereas, in this
system, if you lose your key, you've only lost it with respect to
the particular person that you are doing business with.

Rabin: Now, there are some final remarks on physical
security. This can be worked out by various obvious devices.
For example, keys are never stored in raw form; rathern encoded
forms of the keys are stored. Then, of course, you use another
key to discipher it, but you do that within the confines of a
secure area.

169

ON DATA BANKS AND PRIVACY HOMOMORPHISMS

Ronald L. Rivest
Len Adleman

Michael L. Dertouzos

Massachusetts Institute of Technology
Cambridge, Massachusetts

I. INTRODUCTION

Encryption is a well-known technique for preserving the
privacy of sensitive information. One of the basic, apparently
inherent, limitations of this technique is that an information
system working with encrypted data can at most store or retrieve
the data for the user; any more complicated operations seem to
require that the data he decrypted before being operated on.
This limitation follows from the choice of encryption functions
used, however, and although there are some truly inherent
limitations on what can be accomplished, we shall see that it
appears likely that there exist encryption functions which permit
encrypted data to be operated on without preliminary decryption
of the operands, for mny sets of interesting operations. These
special encryption functions we call "privacy homomorphisms";
they form an interesting subset of arbitrary encryption schemes
(called "privacy transformations").

As a sample application, consider a small loan company which
uses a commercial time-sharing service to store its records. The
loan company's "data bank" obviously contains sensitive informa-
tion which should be kept private. On the other hand, suppose
that the information protection techniques employed by the time-
sharing service are not considered adequate by the loan company.
In particular, the systems programmers would presumably have
access to the sensitive information. The loan company therefore
decides to encrypt all of its data kept in the data bank and to
maintain a policy of only decrypting data at the home office --
data will never be decrypted by the time-shared computer. The
situation is thus that of Figure 1, where the wavy line encircles
the physically secure premises of the loan company.

171

physically secure

user terminal

encoder-
decoder

computer system,

r

---,encodes
(----decodes

data bank files

Figure 1

This organization permits the loan company to utilize the
storage facilities of the time-sharing service, but generally
makes it difficult to utilize the computational facilities
without compromising the privacy of the stored data. The loan
company, however, wishes to be able to answer such questions as:

• What is the size of the average loan outstanding?

• How much income from loan payments is expected next month?

• How many loans over $5,000 have been granted?

These questions require computation for their answers.

There are four possibilities that the loan company may pursue:

(1) Give up the idea of using the time-shared service and
purchase an in-house computer system.

(2) Use the storage facilities of the time-sharing service
only to store the encrypted data, and use an "intelligent
terminal" at the loan company office to do the necessary decryp-
tion and computation.

(3) Persuade the time-sharing company to make hardware
modifications to its computer allowing the data to exist in
decrypted form for brief moments inside its CPU, but such that
the decrypted data is not externally accessable.

(4) Use a special privacy homomorphism to encrypt its data
so that the time-shared computer can operate on the data without
the necessity of decrypting it first.

Option (1) can be very expensive, and does not necessarily
solve the problem -- some form of encryption may be desired to
protect the stored information against theft or malicious tamper-
ing by the in-house systems programmers. Option (2) will work,
but entails rather large communications costs in general. Option
(3) is also workable, but requires the cooperation of the time-
sharing company. In section 2, we discuss this solution briefly.
Option (4) requires only that a suitable privacy homomorphism

172

user key K

C
[Secure Register Set'

t D

E

encoder-

decoder

exist and that the loan company obtain an encryption/decryption
device implementing this homomorphism. In sections 3 to 5, we
examine the mathematical requirements for such a solution, some
limitations on its applicability, and some potentially useful
privacy homomorphisms, respectively.

II. SOLUTION BY HARDWARE MODIFICATION

In figure 2, we present a sketch of how a computer system
might be modified to solve the problem of performing operations
on encrypted data securely. In addition to the standard register
set and ALU (A,B), a physically secure register set and ALU (C,D)
are added. All communication of data between main memory and the
physically secure register set passes through an encoder-decoder
(E) supplied with the user's key, so that unencrypted data can
exist only within the physically secure register set. All sensi-
tive data in main memory, in the data bank files, in the ordinary
register set, and on the communications channel will be encrypted.
Dr'ring operation, a load/store instruction between main memory
and the secure register set will automatically cause the appro-
priate decryption/encryption operations to be performed.

'Data Bank Files

A
I/O Main Memory)

Standard Register Set

B

Standard ALU

encrypted data
ES (K)

F

decoder system key S

unencrypted data

physically secure

Figure 2

Secure ALU

173

An obvious problem is getting the encoder/decoder (E) loaded
with the user's key K without compromising the security of the
user's key. One possible approach is to keep the user's key
encrypted under control of a system key S. The encrypted form of
K, Es (K), can be transmitted over the insecure channel to the
system, decrypted by the physically secure decoder (F), and
loaded into the encoder-decoder (E). The user knows K and E

S
 (K)-

	

. 	'
the latter is obtained during a visit to the time-shared services
manager, who is the only one who knows the system key S.

Besides the problems of key management, there are questions
of the speed degradation caused by invoking the encryption/
decryption with every load or store. However, it appears that
suitably secure encryption (e.g. DES) can be performed on a time
scale comparable to that of the instruction execution of many
machines (e.g. 10 m sec).

The most severe restriction on this solution, however, is one
that will turn out to be a restriction on any solution to the
problem (even privacy homomorphisms): it is not possible to
simultaneously preserve security and give the system the operation
of performing comparisons against known constants. That is, we
may not give the computer system a means of performing operations
sufficiently powerful to enable someone who knows only E s (K) to
decrypt the data. The ability to perform comparisons against
constants would allow someone to perform a simple binary search
procedure to determine the decoded value of any datum. We
examine this restriction in more detail in section 4.

III. PRIVACY HOMOMORPHISMS

One might prefer a solution which did not require decryption
of the user's data (except of course at the user's terminal).
That is, the hardware configuration will be that of Fi,:,,ure 1, but
the encryption function used will permit the computer system to
operate on the data without decrypting it.

The unencoded data and the operations to be performed on it,
we assume to be drawn from some algebraic system. An algebraic
system consists of a set S, some operations f l , f 2 , 	, some

predicates p 1 , p 2 , ..., and some distinguished constants s l , s 2 ,

. We denote this system by <S; fl , f 2 , 	; p l , p 2 , 	;

s l , s 2 , 	>. For example, the system consisting of the integers

under the usual set of operations might be denoted
<Z; +, 	x, 	<; 0, 1>; where Z is the set of integers..

174

In addition to the algebraic system of the user (let's call
it U), we shall need another algebraic system C to be used by
the computer system. Encoding and decoding shall then mean
mapping elements from U to C or vice versa, respectively. More
formally, if

U = <S; f
1 ' 	

f
k'
• p 	. ..

'P's 1 ' • 	' Sm>

then

C = <S ; f
1

, 	f'
k

; p1 1 ,P' • ,
	2

s
' 	1 ' 	

, s'
m
>

and we must have a decoding function 1: S' 	S and its inverse,

the encoding function it.
-1
: S 	S t .

In operation, the user gives the computer system a description
of the algebraic system C; in practice this means that the system
has a subroutine to compute each of the operations f.' and predi-

cates p i ', as well as representations of the distinguished

constants s'. The users actual data base we denote as the

sequence d i , d 2 , 	, each d1 is an element of S. However, the

user encodes each datum before giving it to the system;

the encoded data base 4
-1

(d
1), 4

-1
(d

2
),

In order for the system to be able to operate on the (encoded)
data base without decrypting it, the decoding function cp. must be
a homomorphism from C onto U. Formally, this means that

(Vi)(a,b,c,...) [f'(a,b,...) = c => 	f (4)(a)4(b),...)=4)(c)],

(Vi)(a,b,...) p l (a,b,...) E p(cp(a),

and

(Vi) cl)(s i ') = s i ;

4) carries each operation in C into the corresponding operation in
U. Suppose now that the user wants to know the value of

f 1 (d 1 , d
2
). He asks the system to compute f

1
'(4

-1
(d

1
), 4

-1
(d

2
)).

Since 4) is a homomorphism,

4)(f 1
'0)-1 (d

1
)

' 4
-1 (d

2
))) = f 1 (d1 , d

2
)

so that the system arrives at the encrypted form of the answer
without having to decrypt the intermediate results. In general,
an arbitrary computer program using the operations of U to compute
some function of the user's data base can be transformed into
another computer program suitable for operation on the encoded
data merely by changing all 	 . 	all p. 's to p'. 's,

175

and all s. 's to
1 	 1

The requirements on the choice of the algebraic system C and

the functions (p ., 4)
-I

are:

(1) 4) and 4)
-1

, the decoding and encoding functions, should
be easy to compute.

(2)Theoperationsr.and predicates p.' in C should be

efficiently computable.
(3)Arterlcodeciversionofaclatmd.,4) -4 (d.), should not

require much more space to represent than a representation of d..

-1 (4)Rnowledgeof4(d.)for many data d
i

should not be

sufficient to reveal 4. (Ciphertext only only attack).

(5) Knowledge of d. and (I)
-1

(d) for several values of d
i

should not reveal 4>. (Chosen plaintext attack).
(6) The operations and predicates in C should not be

sufficient to yield an efficient computation of 4. (This relates
primarily to the use of comparisons).

IV. SOME SIMPLE OBSERVATIONS

Some inherent restrictions limit the utility of privacy homo-
morphisms as we have described. The most severe is probably the
following.

Fact. If the operations available in C allow the computer system
to determine the encoded version of arbitrary constants, and a
predicate "<" for a total order is available, then there is no
secure privacy homomorphism from C to U.

This follows from a simple "binary search" strategy. For
example, for the system of natural numbers

U = <N; +; <; 0, 1>

and

C = <W; +'; <'; 0', 1'>

for some set W, the malicious systems programmer on the computer

system can decode 4,
-1

(d) by computing 4)
-1

(1) = 	4)
-1

(2) =

1' +'1', 4)
-1

(4) =4
-1

(2)+'
-1

(2), and so on until he finds a k

such that 95
-1

(2
k
) > '4)-1 (d

1
). Continuing, similar strategy

enables him to compute d i exactly.

176

Other facts about the ability of one system to simulate
another are not quite so easy to see, but can be found. For
example, we have the following.

Fact. If C is over the natural numbers and has the operations of
addition, multiplication, and a binary equality predicate and a
unary predicate "equal" to zero, then it has the capability to
test for equality to an arbitrary constant.

The proof follows from x=k <=> (x 	0) A (x
2

= x+•••+x) .

k times

Lynch [1] gives an excellent study of the relationships
between one algebraic system and another which simulates +.

V. SOME SAMPLE PRIVACY HOMOMORPHISMS

We give here four sample privacy homomorphisms. These are
intended primarily as examples to support the hypothesis that
useful privacy homomorphisms may exist for many applications.
Some of them are rather weak cryptographically; a "chosen plain-
text attack" may break them. We list them anyway to illustrate
the kinds of privacy homomorphisms that may exist.

Example 1. 	Suppose U = <Z
p-1

; +
p-1

, -
p-1

>, the system of

integers modulo p-1 with the operations of addition and subtrac-

tion, wliere p is a prime number. We may choose C = <Z
n
;x
n

, 4

n

>,

the integers modulo n where n = p•q, the product of p and a large
prime q. Let g be a generator modulo p. Then we choose

(P-1 (x) E gx (modulo n)

and the decoding function is the inverse "mod(p) logarithm, base
g" function. by the laws of exponents, (I) is a homomorphism. If
n is difficult to factor (both p and q are large) and the prime p
is such that logarithms modulo p can be efficiently computed
(see [2]), then the computer system can be given both g and n
without fear of compromising the security of the data.

Example 2. 	Suppose U = <Z P ; x P
	P
;E >, the integers modulo p

with multiplication and test for equality. Again, letting n=p•q,
where q is a large prime and supposing that n is difficult to
factor, we may take

(x) = x
e
(mod n).

177

Since (x
e
)(y

e
) = (xy)

e
, this is a homomorphism. This is, in fact,

the encoding function used by Rivest, Shamir, and Adleman in
their method of implementing public-key cryptosystems [3]. The
security of this system should be very good, even if the computer
system is given both e and n.

Example 3. 	U = <Z
n
; +

n
, -

n
, x

n
>, where n is again the product

of two large primes p and q such that n is difficult to factor.
We choose to represent each element of Z

n
by a pair of numbers:

4)
-1

(x) = (x mod p, x mod q).

The computer system forms the sum, difference, or product of two
encodings by performing the operations componentwise, modulo n.
Without knowing p and q, the system is not able to.decode any
numbers. Since there are several possible encodings of a given
number, test for equality is not possible.

Example 4. 	Suppose U = <Z; +, 	x>, the system of integers
under the usual operations of addition, subtraction, and multi-
plication. The user chooses an integer n and represents all of
his data in radix-n notation. The computer system can operate on
these values without knowing n (and thus without knowing the
unencoded data) by allowing individual coordinate positions to
exceed n. For example, if n = 17, we have

4)
-1

-1

(23)

(44)

=

=

(1,4)

(2,10)

-1 	 -1
4) (1012) = 	(23•44) = (2,18,40).

Again, test for equality are not possible since a given number
might have several representations. The computer system can also
find an encoding of any given constant by just using that constant
in the units position.

By combining two systems of the above sort, one can implement
the rational numbers using "fractions". This system is not
really secure against a "chosen plaintext attack", although it
has many good properties otherwise.

Example 5. 	Suppose we again have U = <Z; +, 	x>, the systm
of integers under the operations of addition, subtraction, and
multiplication. Let k be chosen so tha.k. all intermediate results
used in any calculation are less than 2 , and let a

0
, a

1
, 	,

a
k-1

be k randomly chosen integers. The encoding of the integer,

x, where x = x
k-1 	

x
1 x0

 inbillarynotation(eachx.As 0 or 1)

178

is the k-tuple (fx (a0), fx (a 1), 	.' f x (ak-1)) where

k-1

fx (Z) = E
	

x.'Z 1 .

i=0

The encoded representations can be operated upon componentwise.
Decoding means interpolating a polynomial through the given
values and then evaluating that polynomial at the point Z=2.
This privacy homomorphism is not very space efficient. The
security of the system, even against a chosen plaintext attack,
looks like it involves solving high-order nonlinear equations
for the ,a. 's, but there are possibly cryptanalytic shortcuts.

VI. CONCLUSIONS

Privacy homomorphisms provide a novel way of ensuring the
privacy of data which must be operated on. They are of
inherently limited applicability, since comparisons may not in
general be included in the set of operations to be used. In
addition, it remains to be seen whether it is possible to have
a privacy homomorphism with a large set of operations which is
highly secure. The results presented here give a basis for some
optimism about finding useful privacy homomorphisms; the examples
given here are suggestive if not very practical. The open
questions are

• Does this approach have enough utility to make it
worthwhile in practice?

• For what algebraic systems U does a useful privacy
homomorphism exist?

REFERENCES

[1] Lynch, N. and E. Blum, "Efficient Reducibility Between
Programming Systems", Proc. 9th Annual ACM Symposium on
Theory of Computing, (Boulder, May 1977), pp. 228-238.

[2] Pohlig, S. and M. Hellman, "An Improved Algorithm for
Computing Logarithms Over GF(p) and Its Cryptographic
Significance" (to appear IEEE Trans. Info. Theory).

[3] Rivest, R., A. Shamir, and L. Adleman, "A Method For
Obtaining Digital Signatures and Public-Key Crypto Systems",
Massachusetts Institute of Technology, Laboratory for
Computer Science, Technical Memo, TM-82, April 1977. (to
appear in CACM).

179

DISCUSSION

Rabin: I would like to mention an additional consideration
concerning safety. One of the most attractive proposals here was
really doing the arithmetic modulo. When n is the product of p
and q and when you do the component-wise modular arithmetic, you
don't do it modulo p and q separately, you do it in modulo n
arithmetic. That looks pretty good because we don't know how to
factor numbers. However, a possibility for cracking any of these
systems, is that the adversary has a special knowledge. Sometimes
the adversary has under his control, part of the input data. He
is the depositor in a bank which is manipulating his bank account.
So, he actually knows the values of A, B, C and so on which are
being encoded. Now, one would have to consider the possibility
of looking at the encoding, one might be able to find the factor-
ization of n in this particular case.

Rivest: It's quite plausible that one might be able to break
it, then.

Rabin: Yes, and there are similar considerations of challen-
ging the system by feeding it known information and following its
course within the encrypted version, feeding it encrypted infor-
mation and following its course must be taken into account when
we're evaluating its safety.

Gaines: Maybe I misunderstood, but I thought that p and q
would be chosen outside the system. Separately for each
individual. So that no one would have the opportunity to do
what you said.

180

Rabin: May I add a remark? If you then propose to have
different p and q for each customer, which is quite difficult and
impractical, sometimes a non-innocent by-stander has knowledge of
how much money you deposited. The other problem again exists.
You must assume at least spotty partial information about the
data which is going tc, be protected.

Rivest: All the systems I've presented, I think, are
susceptible to variations of that kind of attack. I do not
consider any of them very satisfactory for precisely those kinds
of reasons.

181

SECTION III. DESIGN-ORIENTED MODELS
OF OPERATING SYSTEM SECURITY

By its very nature, system software is mostly hidden from
users. This creates a special problem in security, for if the
"invisible" operating system of a computer system is not secure,
all of the remaining security measures may be of little use.
Operating system security is a world of authorization and access,
rights and privileges, a world where theoreticians and the
pragmatic designers are -- if they are not the same people -- in
constant dialog. They must be convinced that their theoretical
models are at least consistent with reality. On the other hand,
reality is so complex that frequently the only way to study a
security issue is to abstract away from the inessential detail,
to carry out a theoretical analysis. In this section and in
section IV, the interplay between the practical and the theoret-
ical is apparent.

In Robert Fabry's article, we see a designer struggling to
come to grips with the real-world implications of a theoretical
result: the Harrison-Ruzzo-Ullman decidability theorem. The
two-part paper by Frederick Furtek and Jonathan Millen attempts
a simplification of several design concepts; they represent a
system as "prime constraints", a concept similar to prime
implicants of switching theory. Stockton Gaines and Norman
Shapiro take a step back from detailed considerations to give us
an overview. They provide us with some general perspective on
the state of security research based on some fairly pragmatic
insights. The contribution by Anita Jones is indicative of the
fertile interplay of theory and practice in security research;
her article is the outcome of a designer assessing the usefulness
of the take-grant system which has been the object of extensive
theoretical analysis. In the final paper of this section,
Naftaly Minsky addresses Peter Denning's "principle of attenua-
tion of privilege" and presents an authorization scheme which
satisfies the principle.

ONE PERSPECTIVE ON THE RESULTS
ABOUT THE DECIDABILITY OF SYSTEM SAFETY

R. S. Fabry

University of California
Berkeley, California

On the one hand, we have the fact that we have produced
systems whose security properties are hard to understand. On the
other hand, we have the Harrison, Ruzzo, and Ullman decidability
result about system safety [1]. It would be useful to know how
these two things are related, if at all.

One refinement is that if the original six primitive
operations (enter right, delete right, create subject, destroy
subject, create object, and destroy object) are reduced to three
by eliminating the delete and destroy operations, the resulting
system, which is said to be monotonic, is still not decidable.
This result corresponds to my intuition concerning the difficul-
ties we have with real systems: leaving out the delete and
destroy operations in a real system would not simplify the job of
understanding the protection it provides. In fact, the opposite
is more likely; by leaving objects and rights which are no
longer required, we make it more difficult to understand the
protection situation.

The effect in real systems is related to the amount of
information in the protection matrix, however, and brings to mind
the result that if the protection matrix is constrained to be
finite the safety question is decidable.

185

Another refinement to the basic decidability result is that
if each command contains but a single primitive operation, the
resulting system, said to be mono-operational, has decidable
safety. This is an intriguing result because it might be taken
to be analogous to the generally believed notion that a system
composed of small modules is easier to understand than a system
composed of larger modules. It is often said that the fine
grained protection provided by capability systems such as Hydra
and Cap allows the construction of systems which are easier to
understand than a monolithic supervisor/user system.

These analogies are at best tenuous, and rather than suggest-
ing they are true, I suggest merely that such relationships would
make the decidability results useful to a designer of real
systems.

A second way to approach the question of the relevance of the
decidability results to real systems is to look at real systems
that are understood and to try to argue that various interesting
safety questions are decidable for those systems.

In fact, it is my hunch that in all well designed projection
systems, the simple safety questions are trivially decidable, at
least for users who follow certain reasonable and normal
conventions. This has happened because designers have intuitively
considered safety in choosing the set of commands they provide.

Two well understood cases which are often used as test cases
for modern protection systems are a file system and a type
manager.

Looking first at a file system, it is natural to ask about
the safety of some particular file. For example, suppose I trust
some of the users and do not trust the rest and I want to make
sure that none of the users I do not trust can ever get access
rights for a certain file. I must make sure that:

There are no access rights which will allow direct
access to the file by any user I do not trust.

There are no access rights which will allow any user
I do not trust to directly change the access rights
for the file.

There are no access rights which allow a trusted user
to directly change the access rights for the file
unless he or she has agreed to abide by the same
three constraints.

I believe one could easily show that these three constraints
imply safety. There is a simple linear algorithm for determining
whether or not the constraints hold for a given protection matrix.

Turning to the case of a type manager, a vital safety issue
is whether or not a subject other than the type manager can
access directly the implementation objects. Again, such a
question is clearly decidable so long as the type manager follows
certain reasonable guidelines: Never give away access rights for
implementation objects and never give away the right to give away
rights to implementation objects.

In considering the file system and a type manager, I have not
been specific about formal meaning, but I believe it would be
simple to fill in the formalism.

REFERENCES

[1] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D., "Protection
in Operating Systems", CACM 19, 8 (Aug 1976), pp. 461-470.

187

DISCUSSION

Ruzzo: I think you've made a fair statement of the results
to some extent, but I would like to amplify a few points. The
first concerns your comment about decidability in the finite
case. I think you said that systems, although they are finite,
tend to be so large and complex that you can't understand them
anyway. I would like to add that although the finite cases are
decidable, the computational complexity turns out to be enormous,
probably requiring exponential time for the types of things we
have looked at. Again, this supports the idea that you can't
understand things just because they are finite.

Fabry: Good point.

Ruzzo: The second point I wanted to make is about the
decidability of the mono-operation case and your comments about
that. You are right in stating that the decidability of these
systems stems from the fact that the commands we're using are
simple. However, the threshold between where those commands are
simple enough to be decidable, and where they slip over to being
undecidable, is very low. For instance, syst-ms with one
operation per command are decidable, but I think that allowing
two or three operations per command is enough to make the systems
undecidable. It is not that the modules be simple. Even though
they are simple and individually very transparent, they can
interact in complicated ways. I agree with modularization. You
do want modular systems with simple modules. But our results
show that having simple modules is not sufficient.

Lipton: I'd like to follow-up on both of these comments.
I think that all of the undecidability results point to danger
spots and, therefore, are interesting. I'd just like to know if
anybody has ever looked at the kinds of access mechanisms that
people actually use in real systems. I would be curious to know

188

if the dangers signaled by these results are real. If one runs
naive algorithms, does one unravel things well or do they fail
miserably? One is reminded of Knuth's analysis of Fortran
programs. He explained how he was always thinking about very
complicated arithmetic expressions and about parsing them, and
he was surprised to see that "a <- b" was the most common.

Gaines: I'd like to comment about that. I can think of two
kinds of exploitation of the results. One can exploit the un-
decidability to cause information to flow where because of the
initial state of control, you would hope that it would not. I
don't think that there's any evidence that anybody has ever
tried to do that. My point is it could easily happen by accident.
In the course of the normal functioning of the systems, somebody
will find suddenly that they have access where they didn't or
shouldn't. Through some complicated sequence of actions, some
user may find a path by which he can get access to data. The
manager of the system will have a hard time deciding whether he
is putting the system in a good initial state, or a bad one.

Jones: I have a number of observations. First, these access-
control mechansims are nothing but little databases with a set
of commands. Those commands were designed to be a protection
mechanism, and not a vehicle by which I could get an undecid-
ability result.. It's just not cler that real mechanisms are
undecidable. A second point is one that I made in my talk:
that for every new access right gained in a real system, there
is some subject that caused that to happen. You can build an
arc from a to b, so that a can perform an operation on b. That
takes the collusion of everybody in the system, and that's just
not realistic. So, when I look at the finiteness result, I say,
"that's neat", because most questions I want to answer only
involve a few users and lost of subjects. But, all of those
subjects were, in fact, programs invoked by just these couple of
users that were in collusion. In fact, the access matrix may be
not only finite, but small and finite. Maybe the only kinds of
questions in real systems that I want to answer involve only a
very restricted piece of protected database. And, you just
don't care whether the general problem is decidable or not.

Minsky: One may construct a system (set of commands) which
is decidable and easy to analyze even if it is not mono-
operational. On the other hand, mono-operational systems, which
by the HRU result are decidable, may be nevertheless very hard
to analyze. In short, I do not think that the HRU result has
much to say about the simplicity, or undecidability of any
specific system.

189

Fabry: If it turns out that all existing systems are
special cases, which are decidable, then I will lose interest in
all of this theory. The theory is useful for me as a practitioner
only if it helps me understand that there are some systems that I
can build that will get me into trouble, other systems I can
build that won't get me into trouble, and which are which.

Jones: Let me just comment on another sort of gulf between
theory and practitioners. I have difficulty in mapping the
theoretician's definitions of safety into things that I see in
real systems. I don't know whether or not the model is asking
the same question that I ask of a real system.

Gaines: One of the important things about this work is that
it points out a particular problem area which previously was
completely ignored: You could have a well-functioning access
control system and still have problems as to whether or not the
system was secure.

190

CONSTRAINTS

Frederick C. Furtek
Jonathan K. Millen

The Mitre Corporation
Bedford, Massachusetts

191

PART I

CONSTRAINTS AND COMPROMISE

Frederick C. Furtek

I. INTRODUCTION

A new concept is proposed for dealing with the logical
dependencies inherent in system behavior. The prime constraints
of a system are derived from, and provide an alternative to, the
traditional state-vector representation of a system. There are
several reasons for being interested in prime constraints.

1. They provide a compact and transparent representation for
a system.

2. They are especially well suited to systems exhibiting
either concurrency or nondeterminacy, or both.

3. They appear to be closely related to intuitive ideas of
information flow.

4. They have the potential of providing a practical repre-
sentation for the 'external behavior' of a system.

5. They provide a simple condition that is both necessary
and sufficient for the ability to make a deduction about
the values assumed by a collection of variables.

II. CONDITIONS, VARIABLES, STATES, AND SIMULATIONS

Although the concepts of 'value' and 'variable' are taken as
the basic elements of many theories, they do not quite suit our
purposes. We will instead be dealing with 'conditions'. A
condition may be viewed as the assignment of a value to a variable.
Thus, a condition is associated with a unique variable, a useful
property not shared by values.

Postulate. Associated with a system is a finite set of primi-
tive objects called conditions and a partition on t

 this set, the blocks of which are called variables.

t We have taken the liberty of referring to the set of conditions
associated with a variable as the variable itself.

193

(Distinct conditions belonging to the same
variables are said to be alternative.)

In the theory developed below, conditions are the only primitive
objects we deal with -- all other objects being constructed from
them.

Our requirement that each value belong to a unique variable
permits us to formalize the notion of state in a simple way.

Definition: A system state is any set of conditions containing
exactly one representative from each variable.

To obtain the condition that a state assigns to a variable it is
only necessary to intersect the state with the variable. Note
that because a condition never belongs to more than one variable
there is a one-to-one correspondence between the conditions in a
state and the system variables.

The behavior of a system is embodied in the set of allowable
state sequences for that system. In what follows, we shall
assume that these system 'simulations' can be characterized by a
finite set of 'state transitions'.

Postulate: 	A system has associated with it a set of ordered
state pairs called (state) transitions.

Definition: A system simulation is any finite state sequence in
which every ordered pair of consecutive states is a state transi-
tion.

These ideas are easier to visualize when the states and state
transitions are interpreted as the nodes and arcs, respectively,
of a graph. The set of simulations is then just the set of finite
paths (including the null path) in this 'state graph'. Note that
any state can serve as an 'initial state'. (The question of
initialization will be considered in a subsequent paper).

194

Example: Consider the following system. (Do not be put off by
its apparent complexity. As we shall see later, the system is
nothing more than a three-stage shift register).

conditions = fa
0'

a
l'

b
0'
bc

0'
c
1
}

variables = {{a 0 ,a 1 }, {b0 ,b 1 }, {c 0 ,c 1 }}

transitions = {<{a0,130,c0},{a0,b0,c0}>, <{a0,b0,c0}, {al,b0,c0}›,

<{a
0
,b 0 ,c 1 },{a0 ,b 0 ,c0 }>, <{a

0
,b 0 ,c 1 }, fa l ,b 0 ,c 0 l>,

<{ a0 b 1 c0 },{ a0 b 0 c l }>, <{a° b l c0}, Cal b0 cl l>,

<Lao b
1 c i l,fao b0 cd>, <{a0 b1 cd, {al b0 c l }›,

<Ca l bo c0},{a0 bl c0 }>, <{al b0 c0 }, {a l b 1 c0 }>,

<{a l b0 c i },{ao b l c0}>, <{al b0 c 1 }, Cal b l c0 }>,

<{al b l c0 },{ a0 b 1 cd>, <{a l b 1 c0 }, { al b 1 c 1)>,

<{ai_ bl ci },{a0 b l c 1 }>, <{al b l c 1 }, Cal b1 c 1 }>}

As a notational convenience we will often associate a lower
case letter with each variable and distinguish between alterna-
tive values with subscripts. It must be emphasized that there
is no formal significance to the fact that two values may share
the same letter or the same subscript.

195

i

The state-transition graph for this system is:

{a b c
l' 0' 0

fal' b l' c0

a ,b
0
,c

1
}

a ,b1 ,c1)

{a
l'

b
l' c 1 }

State Graph

196

Any path in this graph is a simulation. A few of these simula-
tions are represented here in a convenient tabular form:

a0

C o

a
l

b
0

c
l

a
l

b
l

c
0

a
0

b
1

c
1

a0 b
0

c
1

a
l

b
l

c
l

a
l

b
l

c
l

al b
1

c
1

Simulations

III. TERMS AND CLAUSES

An objective of this work is to develop mathematical tools
for characterizing and analyzing system behavior. So far, the
only finite characterization we have for system behavior is the
set of state transitions, from which we can generate the set of
system simulations. However, it is not practical to deal direct-
ly with transitions. Besides the obvious problem of complexity
(the number of states and the number of transitions are usually
astonomical), there is the problem of transparency. This is the
problem of presenting in as clear and as compact a way as possible
the principles governing a system's behavior. The set of state
transitions, unfortunately, tends to obscure these principles.
We shall describe an approach that offers a major improvement in
reducing complexity and increasing transparency -- without
sacrificing any generality.

Rather than dealing directly with states, transitions, and
simulations, we shall be dealing with 'terms' and 'clauses'. A
term will be used to represent a set of states, and a clause a
set of state sequences. (Note that a transition is a state
sequence).

Definition: A term is any set of conditions not containing an
• entire variable.

Example: Consider a system in which,

conditions = {a a b b b }
0' l' 0' l' 2

variables = {{a
0' a1 }, {b0'bb2 }}

The terms that we get are:

{0, {a0 }, {a l }, {bo}, {b 1 }, {b 2 }, {b0 ,13 1 }, {b 0 ,b 2 }, {b1 ,b 2 },

{a0 ,130 }, {a0 ,13 1 }, {a0 ,b 2 }, {a1 ,b0 }, {al ,b 1 }, {a1 ,b 2 }, {a0 ,b 0 , 13 1 },

{a b b }, { a 0 ,b 1, b }, {a b b }, {a b b }, {a b b }} 0' 0' 2 	0' l' 2 	l' 0' 1 	l' 0' 2 	l' l' 2

We now present a method for associating a set of states with
a term. It is this mapping that provides the bridge between the
constructs of our theory and system behavior.

Notation:
which

In what follows we shall be considering a system in

C denotes the set of conditions,
V denotes the set of variables,
S denotes the set of states,
T denotes the set of terms, and
S denotes the set of simulations.

Definition: For t E T,

7(0 = {s C S!VveV: (tnv#)=> (snvctnv)}

'7(t) consists of those states s such that every
variable having conditions in t is assigned one of
those conditions by s.'

We list here some of the basic properties of 7.

Property 3.1: 7(0 = S

Tr applied to the empty set yields the state set.'

Property 3.2: VseS: 7(s) = {s}

'7 applied to a state yields the singleton set containing
that state.'

Property 3.3: Vt1 ,t 2eT:

7(t1)c7- (t 2)
	<=> VveV: (t 2 nvOcp) =>(t i nvi¢, n t 1nvct 2 nv)

198

199

1

'7(t i)c7i(t 2) if and only if for each variable v with

conditions in t 2, t 1 nv is nonempty and t 1 nvct 2nv.'

Property 3.4: Vt 1 ,t 2ET: 7r(t 1)=71(t 2)=>t 1=t 2

'11 is one-to-one.'

Ekample: For a system in which,

conditions = {a
0'

a
1'

a
2'

b
0' b1) 2 }

variables = {{a
0 ,al' a

2
}, {h0'1 ,b

2
}

we have,

71 ({a0 }) = fseSlaoesl = ffao ,bo l, {a0 ,b 1 }, {a0 ,b 2 }}

7({b0 ,b 1 }) = IscsIb oes v b 1Es} = {{a0 ,b0 }, {a1 ,b0 }, {a 2 ,b0 }

fa0 ,13 1 1, fa l ,b i l, fa2 ,b 1 ll

71 ({a0 ,b 2 }) = {scSCa0Es A b 2cs} = ffa0 ,b 2 11

7T({a0 ,a 2 ,13 0 ,b 2 1) = fsEs1(a0Es v a les) n (b0cs 	b 2cs)}

= {{a0 ,b0 }, {a0 ,b 2 }, {a2,b0}, {a2 ,b 2 }}

Notice that Tr(fa0 ,b 2 1) c Tr({ao }) and 7r({a0 ,b 2 1)c7i({a0 ,av h0 ,b 2 }),

in accordance with Property 3.3.

We turn now to clauses.

Definition: A clause is a sequence of terms.

A clause is used to generate a set of state sequences by
first applying 71- to each of the terms in the clause and then
taking the Cartesian product of the resulting sets of states.

Notation: For a sequence a, we use Ill to denote the length of
a, and a(i) to denote the i'th component of a.

Definition: For acT*: t

lal
Tr(a) = X 	Tr(a(i))

i=1

Property 3.5: VwES4: n(w) = {w}

'n applied to a state sequence yields the singleton set
containing that state sequence.'

Property 3.6: For clauses a and R of the same length,

Tr(a) c 11- (R) <=> Vi: n(a(i)) c n(f3(i))

n(a) c n(R) if and only if for each pair of corresponding
terms a(i) and Ui), n(a(i)) c n([3(i)).

Property 3.7: Va,flET*:

ff(a)=7T(R) => a=f3

'The extension of n to clauses is also one-to-one.'

Example: Consider a system in which:

conditions = {a
0'

a
l'

b
0'
bb2 }

variables = {{a0' a1 }, {b0'bb2
}}

Let a = <{a b b } {a b } 	b }> l' 0' 2 ' 	0' 1 ' 	l' 2

	

Then n(a)={{a 1 ,b0 }, 	{a1 ,b 2 }} X {{a0 ,13 1 }}

	

{a 1 ,b 1 }, 	{a1 ,b 2 }}

X{{a0 ,13 1 }, 	{a0 ,b 2 },

={<fa 1 ,b 0 1, {a0 ,b 1 }, {a0 ,b 1 }>, <{a1 ,b 0},{a0 ,b 1 },{a0 ,b 2 }>,

‹{a 1 ,b0 }, {a0 ,b 1 }, {al ,b 1 }>, <{a 1 ,b 0 },{a0 ,b 1 },{a 1 ,13 2 }>,

<{a1 ,b 2 }, fa0 ,13 1 1, {a0 ,11 1 }>, <{a1 ,b 2 },{a 0 ,b 1 },{a0 ,b 2 }>,

<{a1 ,b 2 }, {a0 ,13 1 }, {a 1 ,b 1 }>, <{a 1 ,b 2 },{a0 ,b 1 },{a1 ,b 2 }>}

1- If A is a set, then A* denotes the set of finite sequences
over A.

200

1

IV. CONSTRAINTS

The function 7 introduced in the preceding section maps a
clause into a set of state sequences. We now focus our attention
on those clauses that map only into 'nonsimulations'.

Definition: C = fet c T* 1 7(a) n S =

'C is the set of those clauses a such that 7(a) contains no
simulations.'

C is the set of constraints. 	A constraint of length n is
called an n-place constraint.

Our choice for the definition of a constraint is motivated in
paft by a useful property of non-simulations.

Property 4.1: VRcS*:

RnS=q) => (S*RS*)n S --(/)

'Any extension of a nonsimulation is also a nonsimulation.'

Let us now introduce a relationship on the set of clauses.

Definition: For a, 	T*,

a<•f3 	(S*7(a)S*) c (S*7(0S*)

'a<.3 if and only if every extension of a state sequence in
Tr(a) is also an extension of a state sequence in Tr((3).'

The clause S is said to cover the clause a if and only if a<-13.

The next result follows from Property 4.1, and it provides us
with the justification for considering just a special subset of
constraints.

Property 4.2: VaCT*: vf3eC:

a<.13 => a E C

'Every clause covered by a constraint must itself be a
constraint.'

To help us better understand the nature of the relation <•,
we provide a formulation that is equivalent to the definition
above.

201

Property 4.3: Va,acT*:

<=> Yca: IY1=10 A 7T(Y) c 'IT(B) t

'a<.f3, if and only if a contains a subsequence y the same
length as S such that 71- (y) c 7(R). 1

From the definition of <• it follows immediately that <• is
reflexive and transitive. From Properties 3.7 and 4.3 it follows
that <• is also antisymmetric and, therefore, a partial order.

Now in order to take advantage of Property 4.2, we must first
establish that a clause has only a finite number of superiors
with respect to <•.

Property 4.4: 	c, 3 	a<.(3

'Every superior of the clause a is either shorter than or the
same length as a.'

This last result means that the set of 'maximal constraints' is
well-defined.

Definition: C T = max ‹• (C)

C' is the set of prime constraints.

From Property 4.2 we see that the set of prime constraints
determines the set of all constraints.

Example: Consider the system whose state graph is given in
Section II.

Although there are an infinite number of constraints for this
system (which is the usual case), there are just six prime
constraints.

C' = f<{a0}, fly>, <{a1 }, {b 0 }>,

<030 1, {c1}>, <{b 1}, { c0 }>,

<fad' (1),
{c1}>, <{a

l }, (1) ' fc
0
l>1

For sequences p
1
 and U2 , p

1
 cp

2
 indicates that p

1
is a

—
(consecutive) subsequence of p

2'
If < is a partial order on a set Q and if P c Q, then

max < (P) = rCPi7Pc P: P> r}

202

(A method for constructing prime constraints will be given in a
subsequent paper).

With these prime constraints, we now see that the state graph
describes nothing more than a three-stage shirt register. For
example, the prime constraint <{ao }, fly> tells us that if a

particular state in a simulation contains an a 0 , then the next

state -- if there is any -- cannot contain a b l . In other words,

the next state must contain a h 0 . (Otherwise, we would have a

nonsimulation). The prime constraint <{a 0 }, 0, {c
1
}> says that

if a state contains an a 0 , then two states later we cannot have

a c l -- we must have a c 0 . (We might note that the prime

constraint <{a0 }, 0, {c
1
}> is a direct consequence of the prime

constraints <{a0 }, fb
1
1> and <{b0 }, {c 1 }>). Although we're

discussing prime constraints in terms of their 'predicative'
abilities, it should be clear from symmetry that prime con-
straints can also be used for 'postdiction'. For example, the
prime constraint <{a0 }, } fb

1
1> tells us that if a particular

state in a simulation contains a b
1,

then the preceding state,

if any, cannot contain an a 0 and must, therefore, contain an al .

In the preceding example there were an infinite number of
constraints but only a finite number of prime constraints. So it
might be supposed that the number of prime constraints is always
finite. However, this is not the case as the next example shows.

Example: Consider this system,

values = { a0, a1 }

variables = {fa0' a
1
 1}

state graph: 	{a0}

In spite of its simplicity, this system has an infinite number
„L n 	r of prime constraints. Each one is of the form <{a 0}, w , {a1 }>

where n>0. There are two ways to interpret this set of prime
conbtraints,

1. Once we have an a0 , we will always have an a 0 .

2. If we have an a l , then we must always have had an al.

203

1

The following two results establish the equivalence of the
set of two-place prime constraints and the set of state transi-
tions.

Theorem 4.1: S 2 = fweS
2
RaeC 1

2
: w<•a} fi
 —

'A state transition is any ordered pair of states not covered
by a two-place prime constraint.'

Theorem 4.2: C2 = max <• (facr
2 Iff(c)nS

2 =

'A two-place prime constraint is a maximal clause of length
two that does not cover any state transitions.'

V. DEDUCTION

To illustrate the utility of prime constraints, we shall show
how they can be used to provide a necessary and sufficient
condition for the ability to access a set of variables.

Consider the following problem: We are given two disjoint
subset 	of variables for some system. We assume that an agent
knows the values taken on by the variables in one of those
subsets. We would like to know under what circumstances this
knowledge can be used to deduce something about the values taken
on by the variables in the other subset.

To help formulate the problem a littler better, let the two
subsets of variables be denoted A and B, with A the set of
variables to which our mythical agent has access. We shall assume
that this agent knows the constraints of the system. On the
basis of this particular knowledge, the agent is able to determine
a priori that only certain patterns of values are possible for
the variables in B. We shall say that the agent is able to deduce
something about Set B using Set A if and only if there exists a
simulation in which the pattern of values for the variables in A
can be used to further restrict the set of possible patterns in
that simulation for the variables in B. Thus, a deduction about
B based on A can occur if and only if there exist two patterns,
one restricted to A and the other to B, that are possible
separately, but not together. The presence of one pattern ex-
cludes the other. These ideas are formalized as follows.

If A is a set of sequence and n a non-negative integer, then
I
n

denotes the set of those sequences in A of length n.

204

Definition: A pattern is a clause in which each term contains
no more than one value per variable.

Notation: If a and a are sequences of sets of the same length,
then a.u3 is the componentwise union of a and a and a.nR the
componentwise intersection of a and 13.

Definition: Two patterns a and 13 are said to be mutually-
exclusive if and only if,

1. a and 13 are the same length
2. a.t.43 is a constraint
3. neither a nor a is a constraint by itself.

Definition: If a is a clause and A a set of variables, then a
A

,
the restriction of a to A, is the clause obtained by
deleting from each term of a all conditions not belonging to
a variable in A. We say that a is restricted to A if and
only if a=aisk .

Lemma 5.1: If a and R are clauses of the same length, then,

a<•13<=> n(a)cn(s)

Lemma 5.2: If a and a are clauses of the same length, then,
a<=• 	a‹• a. n R <• 3

Lemma 5.3: If a and R are clauses and A a set of variables, then,

ar=c1A
	

0.<•13 => 13=13A

Theorem 5.1: If A and B are disjoint sets of variables, then:
There exists two mutually-exclusive patterns, one restricted to
A and the other to B.

if and only if

There exists a prime constraint restricted to AuB that is not
restricted to either A or B individually.

Proof: 'If' Let 6 be a prime constraint satisfying the
indicated properties. From Properties 3.3 and 3.6 and Lemma 5.1
it follows that,

0<•0
A and

0<.0
— B

But because 0 is not restricted to either A or B individually, we
know that 0 ¢ 6

A
and 6

B
. Thus,

6<•0
A

and 0<•6
B

205

These two relationships together with the
constraint mean that neither 0

A
nor 0

B
is

must exist, therefore, two simulations wA

w
A
	7r(OA) and w

B c Tr(0B)

fact that 0 is a prime
a constraint. There

and w
B

such that,

(a)

Now let,

p
A

= w
A
.n0

A
and p

B
= w

B
.n0

B

Because wA and wB are both simulations, 	and ps are both

patterns. And because 0A is restricted to A and OB to B, pA is

restricted to A and p
B

to B. Now from Line (a) it follows that

w
A

0
A and wB B.

Applying Lemma 5.2 to these two relation-

ships and using the definitions of 	and p
B'

we get,

WA
—
<•

A
and w

B —<• uB
	

(b)

p
A

<•0
A

and p
B

•O
B
	 (c)

Line (b) tells us that neither p
A

nor p
B

is a constraint (since

wA and wB are simulations). From Line (c) and the fact that

0 =0A' uO
B
 we have (by Properties 3.3 and 3.6 and Lemma 5.1),

p
A'

u p
B 	

0

Since 0 is a constraint it follows that p
A'

u p
B

is also

(Property 4.2). Hence, 	and 	are mutually-exclusive patterns.

'Only If' Let a and 8 be two mutually-exclusive patterns, a
being restricted to A and 8 to B. Thus, a.u8 is a
constraint, and so there must exist a prime con-
straint 0 such that

a.u8 ‹• 0

This relationship means that there is a subsequence
6 of a.03 such that 161 = 101 and 6<•0 (Property
4.3). We then have 6 = 6

A .u6 B
 and,

6
A .u6B

206

Because A' u5
B

is restricted to AuB, it follows that

0 is also restricted to AuB (Lemma 5.3). Suppose

now that 0 is restricted to A. Then

(dA .uc.ne = dA .ne, and by Lemma 5.2.

d n0<.0 	Furthermore, since
A

is a pattern,

6
A

<•(S
A'

ne (Properties 3.3 and 3.6 and Lemma 5.1).

Thus,
A

-0, and by Property 4.2
A

must be a

constraint. And, so too must be 	since (5
A

is a

subsequence of pA . But this contradicts our

initial assumption that PA and PB are mutually-

exclusive patterns. We must conclude that 0 is

not restricted to A. A similar argument shows that

0 is not restricted to B. 	 0

Example: Consider the following system,

variables = {a, b, c}

where a = {a 0 ,a1 }, b = {b0 ,13 1 }, and c = {c0 ,c 1 }

two-place prime constraints = {<{a0 ,13 0 }, {c0}>,

‹{cb1} ' {a
l'

b
0
}>}

Now let A = {a} and B = {b}. Question: Can anything
ever be deduced about the values assumed by Variable b
by observing the values assumed by Variable a. Answer:
Yes, because there is a prime constraint restricted to
{a,b} but not to either {a} or {b} individually. That
prime constraint is,

<{a
0' b0'

} {b
1'

 } {a b0 }>

From Theorem 5.1 we know that there must exist two
mutually-exclusive patterns, one restricted to {a} and
the other to {b}. They are,

207

a a b

a0

al

b
0

b
l

b
0

With Theorem 5.1 we've attempted to show that prime
constraints can be used in formulating and answering an important
question about system behavior. We, of course, are not done
since we must now provide an effective (and efficient) procedure
for determining whether a prime constraint of the prescribed type
exists t. Work is now progressing in that area, and in other
areas related to answering a broad class of questions about
system behavior using prime constraints.

ACKNOWLEDGMENT

The work reported on in this paper is the result of a joint
effort by the author and Jonathan K. Millen. The work was
supported by the Electronic Systems Division of the Air Force
Systems Command under Contract F19628-78-C-0001.

t In subsequent work, the author has shown this problem to be
decidable by showing that the set of prime constraints for a
system is regular.

208

PART II

CONSTRAINTS AND MULTILEVEL SECURITY

Jonathan K. Millen

I. INTRODUCTION

In its early days, the theory of information security in
computer systems was regarded solely as a matter of access
control. Subjects had a natural interpretation in a manual data-
processing environment as people, and objects as documents. When
this philosophy was transferred to computer systems, subjects
became processes and objects became files. The process/file
level of granularity was acceptable for ordinary user programs,
but turned out to be too coarse for system programs where
efficiency is of great importance. The operating system software
that handles access requests, and changes in access authorization,
was found to be a prime source of the need to work at a finer-
grained level. The subject/object approach is awkward at this
level because there is no natural interpretation for subjects.

The reason that processes no longer suffice as subjects can
be illustrated with an example. Consider a program with the two
assignment statements:

U2 := Ul;
S2 := Sl;

and let us assume that information flow from SI to U2 is not
authorized. The process evidently needs read access to S1 and
write access to U2. From a subject-object-access point of view,
the situation is insecure. What makes the difference here is the
fact that we know what the program is, and we can see that it
causes no information flow from S1 to U2. How can we formalize
this argument?

One way is to introduce new, more abstract, subjects, and say
that the two statements could, in principle, be executed by two
distinct subjects. When subjects are reinterpreted, however,
access also has to be viewed differently, and there is less
intuitive assurance that read and write accesses are being inter-
preted appropriately in any but the simplest situations.

If the primary objective of the analysis is to detect un-
authorized disclosure of information, an appealing alternative
is to formalize the notion of information flow from one object
or variable to another.

Shannon's theory of communication does not seem to be direct-
ly applicable here, primarily because it deals with a single
communication channel. In a computer or computer program, there
is potentially a channel between any pair of variables, and the
usefulness of the channel often depends on the current values of
other variables. In this context, also, probability distributions
are usually not known.

There have recently been several papers that have taken infor-
mation flow approaches to computer security. Their common setting
is a deterministic abstract machine whose current state is
embodied in a set of state variables. Information flow from each
state variable to others may result from each transition of the
machine.

Jones and Lipton [1] consider a transition as the result of
invoking a program. A program is a function from its inputs --
which include global variables and data structures as well as
arguments -- to its outputs, which can be stored in global
variables or just viewed. If an output can be determined from
some proper subset of the inputs, then there is no information
flow from the inputs not in that subset to that output.

D. Denning and P. Denning [2] classify program statements
according to the information flows that can occur between the
variables that participate in the statement. An assignment
statement potentially transfers information from its right hand
variables to its left hand variable. A conditional statement
potentially transfers information from the condition variables
to any variables that can be modified in its sequel. The flow
characteristics or "certification semantics" of a wide variety of
statements are given.

Feiertag, et al [3] has a functional definition like Jones
and Lipton, but considers the flow only from the past succession
of external inputs to a given external output. This yields the
most immediate application to multilevel computer security, since
levels are known a priori only for external variables. It is
then shown that a per-transition policy based on assigning
security levels to internal state variables is sufficient to
protect against unauthorized disclosure.

Cohen [4] gives a sufficient as well as necessary condition
for information flow, suggested by Shannon's probabilistic theory.
A variable B is "strongly dependent" on a variable A over
execution of an operation if variety in the value of A beforehand
forces variety in the value of B afterward. This definition
satisfies the requirement of a functional approach: if an output
is determined by a certain set of variables, it is not strongly
dependent on any variables not in that set, with the exception
of those linked by some relation or invariant to a variable in
the set.

Our approach uses a particular static representation of a
system in terms of "prime constraints", which are analogous to
prime implicants in switching theory. A prime constraint
characterization:

1. describes the system as a whole, rather than single
operations, programs, or statements;

2. exhibits security compromises transparently;
3. exists for nondeterministic systems.

The prime constraints of a system are derivable from non-
procedural transition specifications such as those introduced by
Parnas and used by MITRE and SRI in security verifications. A
way to generate a set of prime constraints sufficient for
security analysis will be suggested.

The main result in this paper is the proof that a certain
condition on transitions, similar to the *-property, is sufficient
to guarantee security against unauthorized disclosure.

II. PRELIMINARIES

Notation. In what follows, we shall be dealing with only one
system at a time and we shall use fixed symbols for the state
set, variables, etc., as indicated in this section.

A is the finite set of variables (or objects). V(a) is the
finite set of possible values (or local states) for a variable a.
The set of all states is denoted by unity, 1. Each state is a
function q assigning a value to each variable. Thus, q(a) cv(a).

T is the set of transitions; it is a relation on 1. If
(q,q') c T, we write q -)-q' and say that there is a transition from
q to q', in which q is the old state and q' is the new state. We
require that every state must have at least one transition from
it.

F is the set of free variables, those whose value in the new
state after any transition is unconstrained by the old state. F
is determined from T by:

F = falif q -3- q' and e(b) = q"(b) for all b 	a then
q 	q"}.

X and Y are the input and output sets, respectively. They
are of no significance structurally, but they play a necessary
part in the definition of security. Inputs are required to be
free.*

A causal (discrete) system can be described completely by its
set of transitions. A sequence of states is a simulation if and
only if each state is followed by one to which there is a transi-
tion, except the last.

Constraints. The concept of "constraint" in this paper is
essentially the same as in the paper by F. C. Furtek in this
volume. There are some technical differences, however, of which
two stand out: the characterization of constraints as sets of
state sequences of a given length, and the limitation of one
value per variable per state position.

This section introduces some preliminary definitions in a
version of switching theory based on state sequences instead of
states, and which deals with variables that are not necessarily
binary. Constraints are like implicants, except that they are
sets of state sequences that are not simulations. '

Constraints are built up from conditions. A condition is the
set of states assigning the same value to a particular variable.
The condition fixing the value v for the variable a is denoted a

v
.

Thus, q E a
v

if and only if q(a) = v.

A term is a nonempty intersection of conditions. Terms are
written multiplicatively, like a 1b

1
c
0
. The set of all terms is

denoted P. By convention, the set 1 of all states is considered
a term.

* Free variables are unconstrained by even their own past values.
Hence, a free variable that is not an input must get its value
from some process that is unpredictable except perhaps prob-
abilistically. We assume that probability distributions of
such variables are not known to prospective penetrators.

212

So far, we have only been talking about sets of states. A
cartesian product of terms is a set of state sequences. These
are just called products. Let P

n
be the set of n-place products.

P
n

= {p
1 	

x p
n
 I p

i 	
P for all i}.

A constraint is a product that contains no simulations. Let
C
n be the set of n-place constraints. An n-place constraint is

prime if it is maximal in C
n

.

As an example, consider the system with two binary variables
whose transition set is described by the assignment statement

b := a

with the understanding that a is free. The system has four
possible states:

q0 E a0b
0 	0 0

a0b 1

q
2

a
l
b
°

q
3 	

a
l
b
l

1

Each of the terms above, because it has a condition from every
variable, contains exactly one state; it is often convenient to
use such terms to represent states.

The product
a
0
b
1

x a
l
b
l'

which contains just one state pair, is a constraint because
a0b 1 a

1
b
1
. It is not prime, however, because

a0 x b l

is also a constraint, and, being a product of a proper subset of
the conditions in each term of the former constraint, it properly
includes it. In fact

,
a
0

x b
1

is prime.

III. DEFINITION OF SECURITY

One can use a constraint, plus knowledge of the values of all
but one of the variables appearing in it, to deduce something
about the value of the remaining variable. For example, the
constraint

a
0
b
1

x c
0

together with the knowledge that q(b) = 1 in state q and q'(c) = 0
in the next state q', permits the deduction that q(a) 	O.

213

Knowledge about b and c has led to a conclusion about a.

If the constraint is prime, we can guarantee that the events
q(b) = 1, q 1 (c) = 0 are possible, since

b
1

x c0

cannot be a constraint. Thus, a prime constraint is sufficient
to make a deduction about any one of the variables occuring in
it, if one can control or observe the others.

Prime constraints are also necessary for a deduction of this
type. Suppose that one observes and/or causes a series of events
expressed by the product

p X
1

X pn .

We shall say that one can "deduce something about" a variable a
if he can exclude at least one possible value u for a at some
time i (relative to the series of events). If the deduction
about a concerns its value at some time before the first event or
after the last, one can extend the product with x l's to ensure
that i is between 1 and n. The conclusion that a cannot have
value u at time i implies that

p
1

x 	x p
i
a
u

x 	x P
n

is a constraint. This constraint might not be prime, but there
is some prime constraint covering it. Furthermore, any prime
constraint covering it still contains the occurence of au , since
p
1

x
	

x p
n

is not a constraint -- it expresses events that

have occured in some simulation.

In summary, a necessary and sufficient condition to deduce
something about the value of a variable on the basis of access to
other variables is the existence of a prime constraint with an
occurence of the variable in question, such that all other
variables occuring in it are accessible. (This statement would
have to be refined somewhat to take into consideration access
capabilities that change in time).

In defining security, we consider only those constraints
involving solely input and output variables. Any control or
observation of system variables by a user must be managed via
inputs and outputs, and those are the only variables for which
security levels are given.

214

Although a user can directly observe outputs only at his own
level or lower, he can sometimes control inputs at higher or
incomparable levels. One way to do so is by introducing a "Trojan
Horse" into the system software. This higher-level control
ability can be limited or eliminated in some environments, but
only the worst case of unlimited ability to control all inputs is
treated below.

Of course, it does not help a penetrator to control all the
inputs to a system, since he will learn nothing he did not already
know, but we do not exclude the possibility that he will control
all but one, or as many as he needs, to learn something about one
particular input still controlled by a high level user.

Security compromises are not limited to deductions involving
two consecutive states. A value entered in some input at the
"Secret" level should not predictably reappear as the value of an
"Unclassified" output at any later time. The definition of
security, therefore, involves n-place rather than just two-place
constraints.

Security levels are defined for inputs and outputs only, and,
in this paper, are assumed constant in time. Security levels do
change in real systems, but it is possible to regard a variable
as a collection of "virtual" variables of constant security
level, and then prove later that the virtual variables are multi-
plexed correctly into the single real one. The ability to
virtualize away certain complexities for purposes of security
analysis is one of the advantages of using a high level, formal
transition specification [5].

We define an external security level assignment as a function

A: XuY± L

where L is a finite lattice of security levels.

A system is secure against unauthorized disclosure in a
Trojan Horse environment if no user at level s e L can deduce
something about the value of an input of a higher or incomparable
level, on the basis of observations of external variables at
level s or lower and/or control of inputs at any level. By the
above arguments, a system is secure in this sense if and only if
the following situation is impossible:

1. p
1

x 	x p
i
a
u

x 	x p
n

is a prime constraint

2.pi cb
v
 implies b c X u Y

3. (pi c by
and b 4 X) implies A(b) < s

4. a E X
5. X(a) 	s.

215

IV. A SUFFICIENT CONDITION FOR SECURITY

Covers. In practice, it is desirable to draw conclusions
about security by analyzing some small-as-possible presentation
of a system, such as a program listing or a formal specification.
In more abstract terms, we wish to analyze the transition set of
a system without having to generate simulations (or constraints)
of greater length than two. Rather than look at the transition
set directly, we shall work with some set of two-place prime
constraints called a cover, whose union is the set of all non-
transitions. That is, R c C

2
is a cover if

(1 x I) - T = u R.

A cover consisting of prime constraints is called a prime
cover.

Covers, even prime covers, are not unique, but one can always
produce a cover simply by listing all state pairs that are not
transitions, representing each state by the intersection of the
conditions that contain it. Then a prime cover can be found by
replacing each constraint by a prime constraint that covers it.

The results in this paper apply to systems coverable by
constraints of a restricted form: those with single conditions
on the right. We call a constraint simple if it is of the form

p x a
y

.

A simple system is one possessing a simple cover (a cover con-
sisting of simple constraints). This category of systems includes
all systems that would be considered deterministic. Let us
define a system to be structurally deterministic if the value of
every non-free variable is determined by the previous state.
That is,

	

if q 	q' and q -4- q"

and q 1 (a) # q"(a)

then a c F.

The unqualified term "deterministic" should probably be
reserved, in a security context, for structurally deterministic
systems whose free variables are all inputs. A structurally
deterministic system has the following simple prime cover:

R = {p x av la 	F and p is maximal in {p' c Pip' c 1 --•av }}

where •a
v

is the inverse image of a
v
, namely,

	

-a
v

= {qi 	for some q', q -4- q' c a
v
}.

216

This cover works because, if (q,q') is not a transition, there
must be some non-input a such that q ft

-aq(a).
 Otherwise, any

state q" such that q 	q" would have to match q' on all non-
inputs, and hence q 	q' since inputs can be changed freely.

Further evidence that simple constraints are an "interesting"
category, is the fact that there is a close connection between
simple two-place constraints and strong dependency. To be precise,
the following two statements are equivalent:

1. There exist q,q' C 1 such that q(c) = e(c) for all c 	a
and {q"(b)I q 	q"} 	{q"(b)I q' 	q"};

2. There is a prime constraint p X b
y

C C
2

such that p c a
u

for some u E V(a).

Statement 1 is Cohen's definition of strong dependency of b
on a, modified somewhat to be applicable to nondeterministic
systems.

The Monotonicity Condition. The Bell-LaPadula *-property [6]
required that if a subject has read access to an object a and
write access to an object b in the same state, the security level
of a must be dominated by the level of b. The idea is that no
information could be transferred from a to b in a single transi-
tion without the accesses indicated.

The nearest equivalent in the present context is the following
monotonicity condition. Given an external security level assign-
ment X, an extension 	of X to A is monotone with respect to a
simple cover R if, for all generators a u and constraints
p x b

y
c R,

It is shown below that a system is secure if there exists a mono-
tone extension of the external level assignment.

The argument will proceed roughly as follows, in three steps.
First, it is shown easily that any prime constraint p 1 	pn

is generated by the two-place constraints in a cover. Second,
there is a major result, called the Factor Lemma, that there is
a chain of variables, joined by constraints in the generating set,
between any free variable in each p

i
and some non-free variable in

a LaterP i .. Finally, the monotonicity condition applied in a

trivial induction to the chain establishes the desired inequality
in security levels.

if p c au

then 1(a) < (b).

217

Generation of Prime Constraints from a Cover. If p is a
product, 1 x p and p x I are called extensions of p, as are

1 x 1 x p, 1 x p x 1, and in general l i x p x lj
. If R is a

cover, any n-place constraint is covered by extensions to length
n of elements of R. For, if p is a constraint, any state sequence
in p is a non-simulation, and must contain at least one non-
transition, which is included in some element of R. That element
can be extended to a constraint that contains the state sequence.

Given a prime constraint p, let Z be a minimal set of exten-
sions of a cover R such that

p c u Z.

The inclusion is irredundant on the right in the sense that Z is
minimal, and irredundant on the left in the sense that no
conditions can be removed from p because p is prime. In this
situation, p is called the extended consensus of Z, and we write

p c u Z (irr.)
after Tison [7]. Thus, any prime constraint is an extended con-
sensus of elements of a cover.

It can be shown that every condition in p appears, in the
corresponding state position, in some element of Z. In fact, p
is exactly the product of conditions whose variables appear only
once in each state position among the elements of Z. Other
variables appear with all possible values and get "cancelled" as
in this example, assuming b is binary:

ilao x b0c 1 x 1
lxbd xa

1 0 	0

p = a0 x c d x a 0 1 0 a0

The Factor Lemma. The two-place constraints in R are like
links that can be chained together to form any prime constraint.
There are, in general, several links in each position along such
a chain, as suggested below.

218

A link is coupled with a link in the following position by
sharing a variable. The right-hand variable in each "link"
appears as a left-hand variable in one of the links in the next
position, except when it "drops out" and appears in the final
prime constraint. This is stated formally and proved below as
the Factor Lemma. The Factor Lemma serves essentially the same
purpose as Cohen's Theorem 4-1 and Feiertag's proof of the
sufficiency of "strong security properties".

Consider an n-place prime constraint pl X 	X pn and a

classical prime cover R. There is, as we have seen, a collection
Z of constraints from R, which we shall exhibit in the form

f .. X g ..
13 	1 .3

for i = 1,...,n-1 and various j, such that the extensions

h 	li-1 x f x 	x 1n- i-1 ij 	
ij 	5ij

cover pi x . 	x pn irredundantly. See the accompanying figure.

Suppose that gij = av , and that p i +1 	an for any u.
.o o 	 0

•
In this situation, the Factor Lemma asserts that there exist j
and u such that

c a
u

f
i
o
+1, j

The proof will make repeated use of the argument that, if p
is a term that contains a state q but not q', then p c a

v
for

some condition a
v

such that q 6 a
v

but q' 4 av
. We say in this

case that p distinguishes q from q', and that p is a-dependent.
Thus,theFactorLemmasaysthatif_is a-dependent and

o o
pi +1 is not a-dependent then f i +1 j is a-dependent, for some j. ,

0 	 0

The proof begins by noting that, by irredundancy of the
inclusion p C u Z, there is a state sequence

s = (q1,...,q
n

)

such that

and

but

S e p 1 x

s c h .
i
0 0

x
pn

s 	h. j for any (i,j) 	(1 ,j 0
).

0

Since sCh
ij

, we have q
i +1

c g
1
 . . = a . That is,

 0 0 	 0 	 0
J
 0

qi +1 	 o
(a) = v. Now, let q'

i +1
be the state identical to q

i+1
o

except that q' i +1 (a) = u
	v, where u is found as follows.

Produce a state q" such that q i + q", and let u = q"(a). This

u# v because q 	6 f i j , and fi j x a
v

is a constraint.
0 0 	 0 0

Let s' be identical to s except that q i +1 is replaced by

q' 1.41. Since p
+1

is not a-dependent, it cannot distinguish 0

ql i+1 from q i +1 , so
o

s' c pl
x

pn

But s' 	h
i

, because q' i +1
I[a

v
, hence

0 0

s' cfor some (i,j) 	(1 ,j o). hij 	
0 0

sinces w hil doesdistinguish cC 14.1 froni qi in position o

+1,hencepositionio+lofh..ilmst be a-dependent; in fact,
1 J

it must be included in a
u

.

220

Factor Lemma Illustration. l's have been omitted
from h..'s for clarity. The box encloses the i +1

23 	 o
position.

If a
u
appears on the left, in, then i = i

o
+ 1 and we are fij

done.Ifall appearsintheright,in,then i = i
o

and
gij

.3
f..
ij x g1

.. = f
1
,. x 	au. 	But cl l. c f. . (since s'ell.

1
.)and

o
j

o 	
1
o 	

jj

qi
+ q" C au, so fi 	

x a
u

cannot be a constraint, yielding a
o 	 of

contradiction. This completes the proof.

Security Theorem. Now, consider a prime constraint p as in
the definition of security, in which a condition a

u
of some input

a appears. By using the Factor Lemma and the monotonicity condi-
tion, we shall find in p a condition of some non-input which
dominates a in level. Assume that p C u Z (irr.), where Z is a
subset of extensions of elements of R, a simple prime cover.

We know that a
u
appears in some element of Z. Inputs appear

only on the left (in the original two-place prime constraint). A
condition b

v
, which cannot be an input, appears on the right of

that constraint. Note that b dominates a in level, by the mono-
tonicity condition. If b appears in the final prime constraint,
we are done. Otherwise, by the Factor lemma, a condition of b
appears in the same state position on the left: of a constraint in
Z. Now apply the same argument to the condition on the right of
that constraint, etc. (See figure below). Eventually, a non-
input condition dominating a in level will be found in p. This
proves the sufficiency of the monotonicity condition when there
is a simple prime cover.

a f x b
u 	v

bf' x c
v 	w

• • •

= •
	x a x 	x c x

V. CONCLUSIONS

Application. To test a system for security using the mono-
tonicity condition, a simple prime cover must be found. While a
"constructive" proof of the existence of such a cover was given
for structurally deterministic systems, a practical technique for
producing them has not yet been developed. The prospects for
doing so are not bad, as this section will try to show.

222

Constraints can be viewed as a means of expressing the
semantics of other, more convenient, specification languages.
Formal transition specifications, like some of those suggested
by Parnas, lend themselves to this treatment.

A simple, but not untypical, transition specification for an
operation to copy one element of an array into another with a
greater or equal index is given below:

0-function copy (i,j)

exception

i > j

effect

m(j) := m(i)

The first step in translating this type of specification into
a simple prime cover is to identify the variables. First, the
arguments i and j are stored in some variables, say a and b. The
array m is composed of the variables m(1), m(2)

The assignment statement in the effect, considered in isola-
tion, suggests the constraints

m(i) u x m(i) v • (u # v) 	 (1)

where u E V(m(i)) and v E V(m(j)) is understood, and it is
assumed that m(k) exists for all k 6 V(a) = V(b).

The constraints specified by (1) apply only when i and j are
the argument values, and the exception condition does not hold.
Hence, the function as a whole has constraints

a.h.m(i) ii
x m(j) v 	(u 	v,i < j) 	 (2)

j

When the exception condition holds, m(j) is not modified.
Hence, we have also:

aib.m(j) u x m(j) v 	(u # v, i > j) 	 (3)

Finally, no element of m other than m(j) is ever modified;
this gives

b,m(k) x m(k)
v 	

(u 	v, k 	j) 	 (4)

There are no constraints with a or b on the right because a
and b, which hold arguments of the call, are inputs, and could
change arbitrarily for the next call.

The fact that a constraint cover is for a whole system, while
formal specifications are presented function by function, is not
an obstacle. Assume that we have a collection of covers
R
1,Rn

, each of which specifies one function. Let us intro-

duce a new variable e with values 1,...,n to "choose" the function.
Replace each constraint f x g in R, by e.f x g. The collection

of all of the new constraints is a cover for a system in which
any one of the n functions may be chosen freely.

The copy example above also provides an easy demonstration
of a security validation. Suppose that a and b are at the
minimum security level and that the level of m(k) is k. The
monotonicity condition can be verified by inspection of (2)-(4).

Summary. A system comprises variables, whose combined values
express the system state, and transitions. Systems are not
necessarily deterministic or even structurally deterministic.
Products have been defined as certain sets of state sequences.
A constraint is a product containing no simulations. The transi-
tion set of a system can be expressed with a cover, a set of two-
place constraints. A cover of simple prime constraints', which
express strong dependencies, can be found for structurally
deterministic systems. A prime constraint of any length is the
extended consensus of extensions of elements of a cover.

Security is defined in terms of prime constraints, regardless
of length, involving inputs and outputs, relative to a given
constant external security level assignment. A monotonicity
condition for any extension of the level assignment, applied to
a simple prime cover, is sufficient for security. The proof
rests mainly on the Factor Lemma.

A possible way of constructing simple prime covers in
practice starts with a formal transition specification.

Extensions. Three simplifying assumptions were made that
could be relaxed to extend the theory in natural directions.

Nothing was assumed known about the initial state of a system.
In practice, however, there are typically some "invariants" of
the system state that are guaranteed initially and preserved by
every transition. As Cohen points out, this additional knowledge
can affect information flow, and hence security, since it makes
certain observations unnecessary. Invariants could be expressed
as constraints of length one, i.e., boolean products containing

224

only "illegal" states. Such constraints would have to be
included in a cover, and the monotonicity condition would
probably have to insist that variables in the same one-place
constraint have the same level. Actual validations have not used
such invariants to estimate information flow, but have used them
in connection with non-constant security level assignments.

Non-constant security level assignments allow the security
level of a variable to be a function of the current state. They
can be handled by defining security in terms of simulations, and
expressing the monotonicity condition in terms of transitions.
High level specifications can be used to trade this complication
for a proof of correct implementation, but such proofs can be
very difficult if the system has not been designed to facilitate
them.

The worst-case assumption of complete control of arbitrarily
high level inputs by uncleared users can be relaxed by weakening
the definition of security. If there were no Trojan Horses, for
example, one could admit a compromise of an input variable only
when all other variables in a prime constraint, rather than just
all. non-inputs, are bounded by a lower or incomparable security
level. The monotonicity condition would then still be sufficient,
but one might look for a weaker condition of comparable simplicity.

ACKNOWLEDGMENT

The work reported in this paper is the joint effort of the
author and Frederick C. Furtek. The work was supported by the
U. S. Air Force under Contract F19628-77-C-0001.

REFERENCES

[1] A. K. Jones and R. J. Lipton, "The Enforcement of Security
Policies for Computation", Proc. of the Fifth Symposium on
Operating Systems Principles, November 1975, pp. 197 - 206.

[2] D. E. Denning and P. J. Denning, "Certification of Programs
for Secure Information Flow", Comm. ACM, Vol. 20, No. 7
(July 1977) pp. 504-513.

[3] P. G. Neumann, R. S. Boyer, R. J. Feiertag, K. N. Levitt and
L. Robinson, A Provably Secure Operating System: The System,
Its Applications, and Proofs, (Final Report), 11 Feb 1977,
Stanford Research Institute, Menlo Park, California (also see
Proc. Sixth ACM Symposium on 0. S. Principles, Nov. 1977).

[4] E. S. Cohen, Strong Dependency: A Formalism for Describing
Information Transmission in Computational Systems, Dept. of
Computer Science, Carnegie-Mellon Univ., Pittsburgh, Pa.,
August 1976.

[5] J. K. Millen, "Formal Specifications for Security", Proc. of
Trends and Applications 1977: Computer Security and Integrity,
May 1977, IEEE Computer Society.

[6] D. E. Bell and L. J. LaPadula, Secure Computer System:
Unified Exposition and Multics Interpretation, The MITRE
Corporation, July 1975, ESD-TR-75-306.

[7] P. Tison, "Generalization of Consensus Theory and Application
to the Minimization of Boolean Functions", IEEE Transactions
on Electronic Computers, Vol. EC-16, No. 4, Aug 1967, pp.
446-456.

SOME SECURITY PRINCIPLES
AND THEIR APPLICATION
TO COMPUTER SECURITY*

R. Stockton Gaines
Norman Z. Shapiro

The Rand Corporation
Santa Monica, California

I. INTRODUCTION

This study examines some of the general concepts which apply
to security. It is motivated by a desire to place ideas relevant
to the protection of information stored in a computer system in
the context of other concepts about the protection of physical
objects and of information. An examination of the literature on
protection and security reveals little other than ad hoc ideas
about how to provide protection in various contexts. We document
here our attempts to identify the underlying concepts of security
by generalizing from specific pragmatic ideas, and to relate
these concepts to each other. We then show how they synergisti-
cally combine to result in security greater than that of separate
specific techniques. Since our motivation is the application of
these ideas to computer security, we will emphasize those security
aspects that particularly pertain to it.

* This research was supported by the National Science Foundation
under Grant No. MCS76-00720.

227

As a preliminary matter, it is necessary to point out that
the notion of security is fundamentally one of judgment rather
then measurement. Security is achieved by means of procedures,
mechanisms and computer programs. While for some specific
techniques a "work factor" (a quantitative estimate of the effort
needed to defeat a protection mechanism or procedure) or some
other quantitative measure may be meaningful, many aspects of
security depend on qualitative judgments for which quantitative
measures probably cannot be obtained. For example, we do not
know how to estimate the likelihood that a new, clever attack
which defeats a particular security measure will be developed,
much less measure the amount of effort it would involve.

Generally, security is a system problem. That is, it is rare
to find that a single security mechanism or procedure is used in
isolation. Instead, several different elements working together
usually compose a security system to protect something. Any
judgment regarding the degree of protection or security afforded
by a particular security system involves a fairly complex set of
interrelated factors. These include the relations among the
security measures and procedures, consideration of factors con-
cerning the violator* of a security system, and the properties of
the thing being protected. First, we will discuss a number of
mechanisms and procedures for achieving security, identifying
what we believe to be some underlying principles concerning
security measures. We then show the interrelationship among
various elements in a security system when the violator and the
object being protected are taken into account.

II. GENERAL SECURITY CONCEPTS

The first notion that comes to most people's minds When they
think of security is a barrier, which is some sort of a physically
strong system that resists penetration. This can range from a
strongbox or a safe to a fortress and includes ideas such as
making automobiles with good locks. A comparable idea in computer
systems is that access control mechanisms can be built into
computer systems which cannot be defeated, thereby providing a
logical barrier which restricts access to information stored in
the computer. Both physical barriers and computer access control
mechanisms share two properties: they attempt to prevent some-
thing from happening directly, and they are passive.

* No single term satisfactorily describes the person who defeats
the security of a system; we will use the term "violator"
throughout this discussion and intend it to apply in the case of
accidental as well as deliberate actions.

228

The second central notion is that a violator may be detected
in his activities. Detection may be obtained by direct surveil-
lance, by the use of alarms, or by the use of accounting or
auditing procedures. Detection alone is often considered a
sufficient security measure. Sensitive papers may be left on a
desk if the office is under surveillance. The defense against a
person walking into a bank and taking money from a teller's drawer
is based on detection.

The value of detection depends on its consequences. In the
case of alarms and the forms of surveillance which provide
immediate evidence of a violation, one immediate consequence may
be apprehension. Other potential consequences are identification
of the violator, and, at the other end of the spectrum, initiation
of a search for the violator.

A concept having some overlap with the notions we have already
discussed is that of a guard. A guard is far more than just a
means of detection or apprehension, although a guard can carry out
these functions. Two other aspects of a guard are particularly
important. One is that he can use counterforce to actively resist
a violator. The other is that a guard has reasoning and deductive
powers and is an active observer. He may notice that something is
wrong (i.e., perform detection) in ways that may be difficult to
predict ahead of time. This aspect of the guard is what lead to
the detection of the Watergate burglars. The weaknesses of a
guard must also be considered. For example, he may be overcome
by force (as can a barrier), or be defeated by trickery.

The above concepts constitute what we may call direct protec-
tion mechanisms. In addition, there are some useful indirect
protection concepts. One of these is concealment, which applies
both to physical and abstract objects. One may hide money, or
encrypt data. The protection mechanisms themselves may be con-
cealed or kept secret. The object here is to keep information
needed by a violator from him, so that he will not know all he
needs to know to mount an attack.

In summary, we have introduced the notions of a barrier,
detection, concealment, and a guard to achieve security, and
mentioned the ancillary notions of identification, apprehension
and couterforce. There are a wide variety of techniques and
mechanisms which embody some or all of these principles. Further-
more, in many systems a degree of security can be achieved by
using several mechanisms, which provides much greater security
than that provided by the individual mechanisms used alone. One
of the best examples is that of a safe in an area that is under
surveillance. The combination of surveillance and a safe
provides a much greater degree of security than either alone would
provide. The opportunity for detection is greatly enhanced by the

229

presence of the safe since the time it takes to break into the
safe increases the opportunity for detection. On the other hand,
the fact that the safe is, or may be, under surveillance limits
the attacks that can be mounted on it since the violator no longer
has undisturbed access to it.

People are often an integral part of the protection mechanisms
in a security system. There is a class of vulnerabilities
associated with people; they are subject to physical attack by
the violator, and they can be subverted or deceived. In addition,
a person who is involved in security can himself become a violator
of the system. Special precautions are often taken to insure
that the people in the system will function correctly. A part-
icularly good example of this is the design of systems so that for
critical elements two people must be involved in any attempt to
defeat the system. Some vaults, for instance, require both a key
and a combination, both of which are not possessed by the same
individual. It is intended that a conspiracy be required to
defeat the system, on the grounds that a conspiracy is much less
likely than an attempted violation on the part of a single
individual.

It is important to consider security from the point of view
of the potential violator. He may seek to obtain information of
value to him or to modify information that somebody else will use
because there is some expected value to him as a consequence of
the modification. He may be dissuaded from doing so because he
estimates that the costs are unacceptable. The first cost is the
direct cost in time, effort, and money of carrying out his plans.
Both strong protection mechanisms and concealment mechanisms, such
as cryptography, may impose unacceptable costs in one or more of
these measures. In addition, detection and apprehension may have
costs associated with them that are uncertain to the violator but
whose deterrence value may be substantial. The violator may
be deterred by the social stigma associated with the detection
or by the penalties which may follow as a consequence of
detection.

Detection may occur while the violation of security is in
progress or afterwards. If detection does occur, it can cause
the violator to fail to achieve his objective even if he is not
identified. Because the penalties we mentioned above occur only
if the violator is correctly identified, identification itself
becomes an important topic. In addition, if the violation is
detected, it may have other consequences for the violator. For
example, the detection of a violation or attempted violation may
cause the security and protection measures to be increased so
that the violator will find it more costly to attempt future
violations of the system.

230

Another class of problems which the violator must take into
account under certain circumstances is detection involving an
immediate col,t, such as physical harm. For instance, if a person
tries to open a vault at an incorrect time, it may explode. The
idea behind this is that anybody opening the vault at that time
is attempting an unauthorized entry. The identification of a
particular violator is not important; the detection of the
violation is sufficient evidence to warrant harmful actions
directed at the violator.

The possible motivations of the violator are relevant, and
involve the incentives or disincentives which may affect human
behavior. Such issues as morale, patriotism, and loyalty play a
role. Banks, for example, do not normally allow tellers who have
recently received termination notices to handle money, even though
security procedures theoretically provide protection against dis-
honest tellers.

An important notion in security is that of premeditation.
The individual who, on the spur of the moment, decides to violate
the security of a system generally has far fewer such opportuni-
ties than the person who plans in advance to do it. The lead
time which the premeditating violator provides himself can be
very important. Suppose, for instance, that a building is to be
built with security alarms in it. A violator who knows at the
time the building is being built that he will want to penetrate
the security of the system may more easily interfere with the
alarms than he will be able to when the building is complete.
This does not erode our confidence in alarms in buildings because
th:'t degree of premeditation appears to be quite rare, and
correspondingly, the probability of loss associated with it
becomes very small.

The possibility of a premeditated attack involving a component
of a security system substantially decreases when that component
is designed and constructed before its use has been decided upon.
For instance, during construction it is very easy to plant bugs
in buildings. But if the use of that building has not been
decided upon until after it has been completed, it is extremely
unlikely to contain any listening devices. The only reason to
plant any would he the vague hope that the building might be
occupied by tenants against whom the bugs might be useful.

In forming a judgment concerning security, one must take into
account not only the protection mechanisms and the attributes of
the potential violator but also the attributes of the object being
protected. This may be a physical object or information.

231

The most important characteristic of an object is its value.
The value to the potential violator may come from possession of
the object (knowledge of the information), or because the violator
can use the object. It may be of value to the violator to modify
or destroy the object.

Value may be quantifiable, generally in monetary terms, or it
may be determined subjectively and thus be difficult to quantify.
If the value is well understood, then some sort of cost benefit
analysis may be made to decide what effort and expense is
warranted for protection. For objects of unquantifiable value,
only a subjective estimate of the required degree of protection
can be made.

The value of an object may be relatively constant or it may
be a function of time or other parameters. For instance, a theatre
ticket or information about the stock market is usually only
valuable for a short time. Value may be based on scarcity; the
value of a postage stamp printed in error is a function of the
number of such stamps which fall into public hands. Sometimes the
results of a violation are only valuable to the violator if it is
not known that he succeeded in violating the system. For instance,
if a violator obtains information through his violation it may
only be of value to him if it is not known that he has obtained
the information. When information is being protected, it may be
of more value to the violator to obtain only a portion of the
information or to find out something about the information.
Sometimes all of the information may be required before anything
of value is obtained.

The value of an object to its protector may be different from
its value to a potential violator.

In the foregoing, we have examined a number of security
concepts. The need for security and the effort one is willing to
expend to achieve it depend on several other factors as well.
Basically, security is a state of mind. The degree of security
that exists cannot be proved, although evidence of a breach of
security provides a kind of negative estimate of it. The measures
that one will take to provide security depend on a complex
balancing of judgments. These include effectiveness of the pro-
tection mechanisms, estimation of the value of what is being
protected, and judgments concerning the existence, intentions,
motives, values, and capabilities of violators.

232

TTI. COMPUTEk SECURITY

The main problem in computer security is that of controlling
access to data stored in a computer. Occasionally, it is of
interest to guarantee the reliable performance of the system and
to provide protection against sabotage and physical disaster;
these problems will not concern us here. One can, of course,
obtain security by limiting physical access to the computer, but
the difficult case arises when users who are not authorized access
to all the information in the computer are allowed direct access
to the computer. The problem is the control of access so that a
user or his programs only access authorized data.

One might hope that many of the same principles and techniques
(or analogs of the techniques) which apply to other areas would
also apply to computer security. Surprisingly, there is very
little use of most of these concepts. The main idea in computer
security has been the computer version of a barrier: logically
correct access control mechanisms in the operating system soft-
ware. This might be termed the Maginot Line approach to computer
security.

To understand the state of computer security today and how it
might be enhanced, we first analyze computer systems from a
system point of view. A person attempting to use a computer
system either by submitting a job or accessing the computer
through a terminal must identify himself to the computer and then
be authenticated. Once authenticated, the user or his program
may attempt to access data stored in the system. Such access must
be appropriately restricted by the access control mechanisms of
the operating system. The rights of the user or his programs are
determined by the security policies enforced in the computer and
the data describing the security aspects of users and objects
being protected. Other aspects of a computer system which are
relevant to security are the hardware itself and the operating
and management procedures for the computer.

This broad view of the nature of a computer system and the
security problems associated with it is not what has motivated
most of the research on computer security. Rather, this work was
motivated by the narrower question: Can a program access an
object in the system it is not supposed to have access to? In
this latter form, the question of computer security appears to be
a question of the correctness of the access control mechanismm in
the operating system. When the question of the security of
information stored in a computer system was first raised, over a
decade ago, it was immediately discovered that from a security
point of view operating systems were full of flaws (and many of
them still are today). In some systems, these flaws were so
serious that it was possible for a user to gain control of the

233

operating system, that is, to have code prepared by the user
executed as if it were the supervisor code. Furthermore, flaws
in the operating system, once discovered, turned out to be easy
to exploit. Given the power that resulted from exploitation of
flaws in the operating sytem and the ease of exploiting them once
they were discovered, it is easy to see why this became a prime
focus for computer security research.

The initial reaction to the discovery of the weakness of
computer system security was to try to correct the flaws. This
meant rewriting the access control code so that it would work
correctly and trying to rework those parts of systems for which
flaws were due to bad design. Such efforts did not work out well;
systems so enhanced were shown to have many flaws remaining.
Because these flaws were easy to exploit, covering up only a few
of them did not appear to be very advantageous. As a result of
these failures, recent research has been directed to finding new
operating system designs which take security into account in a
fundamental way during the design process (e.g., see [1-3]). It
seems likely that this research will have more success than
previous efforts to enhance systems by repairing flaws.

The current attempts to provide new operating system designs
which are secure will be helpful but will still leave many
substantial computer security problems. These problems remain
because (1) the correct functioning of the operating system it-
self takes care of only part of the problem of security in computer
systems and (2) most current and future systems will not be based
on these designs (at least for a considerable time), and thus
effective means for achieving security in systems not based on
such designs is still badly needed.

The first point above -- that even if the operating system
access control mechanisms work correctly, a high degree of
security is not necessarily achieved in the computer system -- is
worth further elaboration. We have mentioned that one aspect of
computer security is the authentication process. If this process
fails, and a violator manages to log into a system with incorrect
identity, the correct functioning of the access control mechanisms
cannot prevent a violation of the security of the system. We
have no means of detecting the activities of a violator under
these circumstances, or any way of making it difficult for him to
proceed with his violation. This points out how critical the
authentication process is. It also shows that even a good barrier
is not sufficient by itself.

234

A second difficulty concerns the hardware in the computer
system. Correct functioning of the access control software
depends on correct operation of the hardware. The exact charac-
teristics of the hardware must be taken into account in verifying
the correctness of the software composing the security kernel or
other access control mechanisms. No reasonable methods for
verifying that the computer system hardware is functioning
correctly are known. It appears to be a relatively straight-
forward matter to modify the hardware so as to invalidate the
access control mechanisms of a computer system. We are, there-
fore, dependent upon whatever restraints we may feel are in
operation that prevent a violator from modifying the computer.
Even the possibility of a violator or his programs systematically
searching for and awaiting hardware malfunctions cannot be ignored.

Another difficulty is that while the access control mechanisms
of the system may be correct, they may not be used properly. The
mechanisms depend, for their correct functioning, on access
control data in the system. The data may not define a correct
security policy. That is, when the access controls are applied,
certain sequences of requests for access to data may result in
information being accessible by a user who is not supposed to
access that information. (For example, see Harrison [4]). If
only very simple policies are embodied in the access control data
and these policies are followed rigorously, then the possibility
of this kind of flaw is minimized. For instance, if we suppose
that there are only four categories of information (let us say
unclassified, confidential, secret, and top secret) and that no
flow of information between these categories is ever possible,
then the access control mechanism might operate correctly. The
user would be required to log in at the appropriate security
level, do all his work at that level, and if he wishes to work at
another level, log off and log in again at the new security level.
If, however, the user is allowed to decide that some of the
information that is stored in the system as "confidential" is,
in fact, unclassified and mechanisms are provided by which he can
change the designation or copy that information into an unclassi-
fied file, then the opportunity exists for violations of the
security of the system in spite of the access control mechanisms.

Compared with the research which has gone into the problem of
constructing highly secure operating systems, relatively little
work has been done on most other aspects of computer security.
We want to mention two areas in particular. One is the assess-
ment of security in computer systems, and the other is the
enhancement of security.

235

It is difficult to assess security, whether we are talking
about computers, buildings, or other situations in which security
is required. The language used often implies that security is a
binary-valued attribute -- we say that something is secure or that
it is not. The fact that there are degrees of security is often
ignored, in part because it is hard to find meaningful measures.
The problem is particularly acute in the computer security area,
perhaps as a result of the common fixation on highly secure
operating systems. In the previous section, we pointed out that
security judgments are, or should be, a complex weighing of many
factors involving the protection mechanisms that apply, the
potential violator, and the assets being protected. Through long
(and often painful) experience some ad hoc ideas and rules of
thumb have been developed in a few areas, but it is fair to say
that the art of assessing the security of computer systems is in
its infancy.

The enchancement of security in computer systems has,
undeservingly, come to be viewed rather negatively by those
working in the field, probably because one particular way of
enhancing security failed rather badly in the early stages of
work in this area. These were the attempts, discussed above, to
find and remove flaws in operating systems. However, other
methods of enhancing security may produce better results. In
particular, we wish to recommend that efforts be made to enhance
security in computers in ways analogous to those used in other
areas. The concepts discussed in the previous section, and
others not mentioned, may be sources of ideas for enhancing
computer system security. It would seem worthwhile, for example,
to try and find security mechanisms which offer some opportunity
for detection of a violation, rather than depending exclusively
on the passive barriers of the access control mechanisms. It is
worth noting that in many situations detection seems to be
depended upon more heavily than barriers, especially where assets
of considerable value are being protected.

There are currently few examples of the use of detection in
computers. One that is frequently used in systems providing
remote access via terminals is to report to the user at each
log-in the time of his previous log-in. Thus providing him the
opportunity to notice if this report differs from what he
remembers. This technique may cause the detection of unauthorized
use of the account. There are some weaknesses. For instance,
users who repeatedly see the log-in message reporting time of
last use soon fail to read this information. Weak though this
technique may be, it is one of the best that can be found, thus
indicating the paucity of ideas that exist in this area.

236

We can give an example of the suggested approach that illu-
strates that there can be an advantage to security enhancements
which are theoretically easy to defeat, but which in practice can
cause difficulty for a violator. Some years ago Conway, Maxwell,
and Morgan [5] suggested the following approach to achieving
security in a database system. They designed a system which in-
corporated encryption and decryption routines. This system was
intended to run in a batch processing environment in which only
the data was stored in the computer between runs of the program.
Decks were submitted containing the program (including the
encryption and decryption routines) and jobs were flushed from the
system at the end of each run. Therefore, during normal operation
the encryption and decryption algorithms were not available
inside the system. In addition, the keys controlling the encryp-
tion and decryption routines were known only to the user and were
supplied as a parameter to the job. The idea was that data would
always be stored in encrypted form on the disk and information
about the encryption algorithm that would be useful to a violator
was not available to others using the system who might try to
access the data stored on the disk.

At the time the suggestion was made, it was vigorously
attacked by many working in the computer security area. It was
pointed out that given the extensive nature of flaws in computer
systems, it would be a relatively simple matter for somebody who
wished to defeat this defense to break into the operating sytem,
trap the database job when it ran, and then either remove the
decrypted data directly or pick up the encryption algorithm and
its keys from the job. This is, however, analogous to claiming
tliat a safe is completely insecure because somebody with the
proper tools can break into it with no trouble. In fact, it may
take some effort to carry out the plan described. The violator
must know when the program he is interested in is being run,
which may require adding something to the system that will check
for this (possibly exposing him to some risk of detection), and
he must be able to analyze the object form of the program
sufficiently well to pick out the information that he is
interested in. The point is not that it cannot be done, but that
in fact the amount of work is not negligible. Furthermore, if
the system were designed to have some capability of detecting
those who manage to get their own code executed in supervisor
mode, then there would be an additional deterrent to the
potential exploiter of this attack.

It seems likely that once some attention is devoted to the
subject, we may be able to develop a reasonable set of ideas
concerning how to enhance the security of systems and how to use
detection and its consequences to increase security. Such
methods need not be impossible to defeat; instead they must have
the property that even if they can be defeated, nevertheless they
serve, to some degree, as a deterrent to a potential violator.

We have already remarked that the notion of detection has
received very little attention. As an example of the kinds of
techniques that might be used, we will consider one idea -- that
a record be maintained of all accesses to a file owned by an
individual that are made by others, or of only those accesses
that are made by others when he is not logged into the system,
and that this information be reported to him. Ultimately, the
user may provide a list of those he expects to access his files
and the report may consist of information concerning all accesses
by those not on that list. If such information is stored in a
way that a violator cannot get at it, then the information can be
relied upon a great deal of the time. One way of recording
information so that it cannot be destroyed is to write it on a
tape that has no backspace provisions. The violator who wishes
to defeat this mechanism must do so by preventing the information
from being recorded, which may involve substantial effort on his
part and there may be opportunities to detect an attempt to do
so. It is not our purpose here to work such ideas out completely;
rather we intend only to illustrate the possibility of develop-
ments along this line.

REFERENCES

[1] Popek, Gerald J. and Charles S. Kline, "Issues in Kernel
Design", (to appear in the Proceedings of the 1978 NCC).

[2] Neumann, P. G., R. S. Boyer, R. J. Feiertag, K. N. Levitt,
and L. Robinson, "A Provably Secure Operating Systet: The
System, It's Applications and Proofs", SRI Final Report,
Project 4332, 11 Feb., 1977.

[3] Millen, J. K., "Security Kernel Validation in Practice",
Communications of the ACM, Vol. 19, No. 5, May 1976.

[4] Harrison, Michael A., Walter L. Ruzzo, and Jeffrey D.
Ullman, "Protection in Operating Systems", Communications of
the ACM, Vol. 19, No. 8, August 1976.

[5] Conway, R. W., W. L. Maxwell, and H. L. Morgan, "On the
Implementation of Security Measures in Information Systems",
Communications of the ACM, Vol. 15, No. 4, April 1972, pp.
211-220.

DISCUSSION

Fabry: One of the points that you made was that one need
not strive for perfect software since no system is ever perfect.
Is that a good characterization of what you are saying?

Gaines: Yes, I guess that is a good characterization.

Fabry: There is a difference between breaking into software
and breaking into a safe. In the case of the safe, you can look
at the safe and see how many ways there are to get in, how long
each of them will take, and what's involved: manipulate the
dial, blow up the safe, whatever the possibilities are: But,
when you are dealing with a program that is assumed to be
imperfect, you do not have any handle on the imperfections.
You cannot know how many ways there are to break in, how hard
each way is, and so on. It seems to me that we're driven to
make programs perfect.

Gaines: We want to use reasonable efforts to try to
make programs correct; there is no argument about that. But,
unreasonable efforts are another matter. You picked about the
only area where we can have enough detailed knowledge about how
successful penetration attepmts are. We know what tools are
avaiable to seomeone who wants to crack a safe, and through long
experience, we have some information about how to manipulate
combination locks. But, that knowledge is not available in
other areas. For instance, if we were worried about frauds in
a bank, we do not know how to go about looking for frauds that
have occurred before. We've no way of estimating the likelihood
that someone will discover a cleaver way of defrauding a bank.
The disadvantage of guards is that they are easily conned so
we do not necessarily try to cover all of the bets. So, the
question is not really whether or not you need perfect software,
but how far you go in getting correct software.

239

Shapiro: I'd question whether or not you can get perfect
software. It must function in the rea] world, not in a mere
model of perfect software. I'm sure your model would not
necessarily include magnetic tapes that fail or sleepers that
can be in programs waiting for magnetic tapes to fail.

Dobkin: I like to think back to college when people did not
buy bicycle chains that were big enough to protect their bikes,
but were big enough so that you would have to carry around a
pretty large set of wire cutters to break them. Michael Rabin
is talking about a set of wire cutters that would take many,
many lifetimes to build. How big are the wire cutters that you
plan on using? You're saying that it won't be perfect, so
presumably, there will be wire cutters, but will they be big?

Gaines: There have been two security kernels that have been
produced. One by Charlie Kline and the other by the Mitre
people. Contractors are looking at both these security kernels
to decide which, if either of these two, approaches to adopt.
They will proceed to reimplement if necessary those two kernels
and do the right things to prepare for generating assertions
about relevant security properties and have those verified. Or,
at least be verifiable. It's funny, but we have been reduced to
talk about terms like verifiable and that is supposed to mean
that we're supposed to have more confidence than if the program
wasn't produced to be verifiable. We're on shaky ground here,
hoping that all of this effort is a kind of good engineering
practice that makes it less likely that there will be exploitable
flaws in the software.

DeMillo: I'd just like to add that it might be the case
that being verified or verifiable actually indicates a lack of
good engineering practice and good sense. As Norman Shapiro
pointed out, correctness is not with respect to the real world,
but to a model. Being verified or even verifiable may
unreasonably raise your expectations about the performance of a
piece of software in the real world. As a result, you may fail
to include either in the software or in the physical protocols
the kinds of remedial security measures that it would take to
make sure that the system was really secure.

240

PROTECTION MECHANISM MODELS:
THEIR USEFULNESS

Anita K. Jones

Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania

I. INTRODUCTION

Attempts to formally and precisely express the notions of
security and protection are of recent vintage. Though designers
of programmed systems have been concerned with making their
systems impervious to misuse, it is only recently that researchers
have attempted to precisely define the phenomena of information
flow, security policies which govern how information can flow,
and the requisite protection mechanisms used to enforce security
policies.

There are two sources of knowledge being brought to bear in
the quest to understand security and protection in the context of
computer systems. The first source is the experience of pragmatic
system designers, who have experimented with the implementation
and the application of a range of protection mechanisms. The
second source is the experience of theoreticians, who have
developed tools and techniques for abstraction in an attempt to
understand the essence of many different kinds of phenomena.

The research reported in the paper was supported under
National Science Foundation grant MCS78-00717.

241

Knowledge from both sources is required to understand
information flow and to design both security policies and the
protection mechanisms to enforce them. One question is essential
to bridging the gulf between those interested primarily in
theoretical analysis, and those whose main objective is to design
and build programmed systems to solve the "real world" problems.
That question is, "Are the abstract models of security and
protection useful?". Do they accurately and productively
represent the problems it is necessary for computer science to
solve? An elegant, aesthetically pleasing theory can be beautiful
to behold; but, in the case of security, it should also be
accurate and consequently useful. In what follows, I ask this
question of usefulness about a particular, restricted model called
the Take-Grant system [4].

II. THE TAKE-GRANT SYSTEM

The Take-Grant system is interpreted to model a class of
access control protection mechanisms in which each entity is
protected independently of all others. The technical term for
such an entity is object. Objects are of interest because they
"contain information". Some objects are active (for example,
objects that are interpreted to represent a human beings or
executing computer programs). These objects are called subjects
and are notated with filled circles,40. Objects may be passive
(for example, objects interpreted only to contain information
such as a file). Passive objects are notated by unfilled
circles,(). Objects not known to be either active or passive are
notated with slashed circles,O. In the Take-Grant system a
nrotection state is the set of privileges, or rights, that each
object has. Graphically, a right is notated by a directed edge,
labeled with a name. It is interpreted to mean that the object
at the tail of the edge has the named right to the object at the
head of the edge. Passive, as well as active, objects may have
rights to objects. The protection state of a collection of
objects is represented as a finite graph constructed of objects
connected by labeled edges; the graph is called a protection
graph.

The following graph models a protection state in which subject
A has the right to perform operation a on subject B, which in
turn has the right to perform (3 on passive objects X and Y. In
addition, B has X right to Y.

A

242

1

Arcs can be labeled with multiple labels. The distinction
between a singleton label and a set of labels should be clear by
context. In particular, if a directed edge is to be added
between two objects for which an edge with the same direction
already exists, I use a single edge labeled with the union of
the existing label(s) and the new label(s).

The Take-Grant system is intended to model the access control
protection mechanisms that are found in existing programmed
systems. In such systems, the protection state changes only when
some subject invokes an operation that is defined as part of the
protection mechanism. In the Take-Grant system, these operations
are modeled by a set of rewriting rules for protection graph
transitions. Because the protection state changes only by action
of a subject, I will speak of a subject exercising its rights or
privileges. Consequently, in the model any graph rewriting rules
will always require at least the presence of a subject; usually a
subject must have a particular right to some object as a pre-
requisite for a graph transition.

Graph rewrite rules have the form r: 	where r is the
name of the rule. A graph transition is defined as follows. If
a matches some subgraph of a protection graph G, then rule r can
be applied to G, yielding a new graph G'. The shorthand for
applying rule r is G 1.-- G'.

Protection graphs are quite general, and could be used to
model many different access control mechanisms. The Take-Grant
system is made specific by its rewrite rules, but it is but
representative of mechanisms commonly found in operating systems
and file systems. For the purposes of defining the Take-Grant
rewriting rules, I distinguish two rights "take", denoted by the
label "t", and "grant", denoted by the label "g". The Take-Grant
system has four rewrite rules. For defining the rules, let A, X,
and Y be three distinct vertices in a protection graph, such that
A is a subject.

Take: Let there be an edge from A to X with at least a label
t and an edge from X to Y with any label or set of
labels a. Then applying the Take rule adds an edge
from A to Y having label a. Graphically,

----Net,
..‘,.._t,0 a ,0 	==> 	t >

--- 	a 's1 0)0
A 	X 	Y 	 A 	X 	Y

243

Intuitively, A takes the right to perform a to Y
from X.

Grant: Let there be an edge from A to X with at least a
label g, and an edge from A to Y labeled a. Then
applying the Grant rule adds an edge from X to Y
having label a. Graphically,

a 	 a

	

g „), 0 	0 =,e> • >0 a
A 	X 	Y 	A 	X

Intuitively, A grants the right to perform a to Y
to X.

Create: Let A be a subject and a be a subset of rights.
Applying the Create Rule adds a new vertex N such
that a labels the edge from A to N. Graphically,

	

•
	

r0

	

A
	

A

Intuitively, A creates the subject or object N with
a rights.

Remove: Let there be an edge labeled y from subject A to X.
Let a be any subset of rights. Applying the Remove
rule causes deletion of the a labels from y. If
y = a, then the edge itself is . deleted.
Graphically,

- -

A 	X
40-2:11-()
A 	.X

Intuitively, A removes its right to a X.

244

This concludes the basic definition of the Take-Grant system.
We have used the simplified formulation of the system exhibited
in [11]

The possibilities for rewriting a protection graph are amply
illustrated in [4], [11], so only a single illustration will be
presented here. The kind of question that one might ask about a
given protection state, modeled by a protection graph is the
following. Can some subject, A -- interpreted to be some user
or alternatively some program acting on behalf of a user or
class of users -- get access to a particular object. If A can do
so, it may compromise the information encoded in that object. In
the Take-Grant system such a question is modeled as: Given the
protection graph G:

4._eat

A

can a sequence of rewrite rules be applied to reach a new state
in which A can perform a on B? In this example, the answer is
"yes". Using dotted lines to indicate the most recently added
edge in a graph, the rewrite sequence is

t

G 1.272±-1L G 	 e t G
1 	1 .

A

t
14' G I Take G

G : t > 	4-*•-0 4-0
t (at 4

1 4 	2

g

/ 	N

G 3 : 40C) 	
A

Take

G I Grant G
3 1' 	4 	

G
4

:

245

t

G4
Take 	 G5

G
5
: A{1,

a /

In the final protection Graph G 5 subject A does, indeed, have a
access to object B.

Having a model that permits one to ask the question "given a
certain protection state, can a subject ever obtain a certain
access to an object" is useful. Using it one can ask whether a
change to the protection state yields a new state for which a
desired security policy still holds. For example, a system
manager might model his system. Then, before granting a right he
possesses, the manager consults his model to determine if giving
out the right will have some unexpected and undesirable
consequences. In particular, he can determine if there is a way
for some user to then gain a right to access an object that he
should not be able to access. Security policies are generally
formulated as predicates relating the subjects and passive objects
of a protection state. In contrast, most protection mechanisms,
and the Take-Grant system, are phrased in a procedural, not a .
predicate, form. Though procedural definitions make individual
system state transitions easy to understand and to implement,
they combine to form a system that exhibits complex behavior.
It is difficult to intuit and to express the behavior of a
procedurally defined system. Models, such as the Take-Grant
system, provide the basis for determining whether the procedurally
described system exhibits behavior defined by a predicate -- and
in this case the predicate defines a security policy. Thus, we
bridge the gap between mechanism and policy.

Now, I have defined the Take-Grant system and illustrated one
administrative use to which it may be put. Before exploring the
Take-Grant further, I will define some criteria for the usefulness
of a model.

246

247

III. A USEFUL MODEL

As an operating system designer and implementor, I am only
interested in a model if it helps me with the design, implementa-
tion or the administration of a system. I will define a model to
be useful if it

(1) accurately and concisely expresses the essence of the
phenomena of interest, and

(2) tells a system designer or user something he did not
know or understand without the model.

The first property ensures that phenomena of interest is captured
by the model. The second property ensures that modeling is not
just an empty exercise; it produces new information. Certainly,
subjective judgement is required to determine if the second use-
fulness property holds. So, there may be room for debate in some
cases; yet in other cases, the second property should eliminate
aesthetic, but useless models. In the remainder of this paper, I
will consider whether the Take-Grant System meets the criteria
for a useful model.

First, consider the accuracy with which the model represents
protection mechanisms found in extant systems. I have already
claimed that the Take-Grant system is accurate. Now, I want to
demonstrate that it is. The protection mechanisms in operating
and file systems such as those found in Multics [9], CAL-TSS [6],
Hydra [12], StarOS [3], SRI Secure System [8] and OS/370 [2] are
object-oriented. Protected entities are distinguishable, usually
separately nameable and assumed to have non-overlapping physical
representations. Protection of each object is performed
independently of other objects. These attributes are all reflect-
ed in the model. The distinction between active subjects (for
example, users, processes, or even programs executing on a user's
behalf) and passive objects (for example, files) is found in real
systems.

Information can flow between two objects as a result of an
operation. For example, information flows between two file
objects if a subject copies the data from one to the other.
Similarly, information flows from a file object to a subject if
the subject is a program that branches, depending on the value
of a datum read from the file. For the purpose of controlling
information flow, operations are partitioned into mutually
exclusive classes. In a simple case, there may only be two
classes; a "read" class and an "alter" class. Operations in the
" read" class only permit information to flow from the object that
is read to the reading subject; operations in the "alter" class
permit information flow in both directions. The writing subject
may acquire information from the object being written as well as
transmit information to it. A typical example is the file

1

system's update program. One might believe it only writes the
file to be updated. In reality, most file update programs first
read the most recent date-of-update, and perhaps even the
redundantly written file name that is placed in the file to
enhance file system reliability. Thus, information is transmitted
in both directions. If the security policy to be enforced is
confinement of information, even such seemingly innocuous
information transmissions are relevant.

Both the systems cited above and the Take-Grant system use
rights to control information flow. In addition, both use rights
to control what protection operations a particular subject can
exercise. In the Take-Grant system, only "take" and "grant"
rights have been used. Most systems use four or less such
rights. Some capability-based systems, such as Hydra, use many
more. Note that rewrite rules would have to be devised for each
different operating system to be modeled.

There are two types of protection mechanisms found in today's
systems. One is called an authority list or access control list
mechanism [9]; the other is a capability-based mechanism [5].
Both are used to control access to objects. The mechanisms differ
in where data that records permissible accesses is stored. For
the authority list mechanism, the access information is stored
with the object being protected. In contrast, the capability-
based protection mechanism relies on the protection information
being stored with the accessor, not the accessed object.
Theoretically, the two mechanisms have identical functionality.
Graph models, like the Take-Grant system, can be used to model
both.

In reality, the two mechanisms are used differently because
of cost considerations. 	For example, it is useful to know what
objects a subject can access so that memory can be managed in
such a way that the representation of these objects is readily
available, perhaps in primary memory. For this purpose, the
capability-based systems are convenient. In constrast, it is
sometimes useful to know if any subject can access a particular
object. The authority list mechanism is more convenient; in lieu
of interrogating the protection state of every subject, one need
only scan the protection data associated with the object. Graph
models may be used for computing the cost of certain protection
operations. I do not consider such issues here.

Hopefully, the above arguments are sufficient to convince the
reader that the Take-Grant system accurately reflects the basic
attributes of extant protection mechanisms. The next issue is to
determine whether the modeled phenomena is that which we want to
understand better. To investigate this, consider how security
models have been used to date.

248

IV. APPLICATION OF THE TAKE-GRANT MODEL

The original formulation of the Take-Grant system modeled
only active entities, say users, or the programs executing on the
behalf of users [7]. Actual systems designs do differ in how one
user or process may access or control another, but the variety of
possible relations is not rich. Said differently, there are very
few different security policies that can be investigated in a
subject-only model. Managers and users of computer installations
have used and understood such policies and their implementation
for a long time. For example, a system manager may decree a
policy that each user may

• create, read and write private files,
• read files created by others in the same project, and
• read system files.

In a subject-only graph model of this system each node would
represent a user; and each user would be associated with one or
more projects. The only operations defined would be CreateSubject
and DeleteSubject to introduce new subjects and remove them from
the systems. Only the system-subject would be able to perform
these two operations. Each user would have "read" access to the
system-subject and to other subjects in the same project. A user
would have no access to subjects outside his project(s). Such a
system is so simple, a model of it does not add to one's under-
standing.

It is distinguishing between passive, information-containing
objects and subjects that introduces a richer variety of
phenomena. Consequently, the Take-Grant system was extended [4].
For example, compare the model of a catalog system to the subject-
only model of the file system discussed above. A catalog is a
passive object containing name mapping information and rights to
access files and other catalogs. In contrast to the subject-only
file system, catalog system users have protection operations

. defined for them. They explicitly give access to individual
files or catalogs to other subjects in the system. It is such
contexts that questions like "Can subject A obtain a access to
object X?" become interesting. The ramifications of granting
access to a catalog may not be clear, because the catalog may in
turn contain rights to access yet other catalogs and files. Using
the model, the ramifications can be investigated. Indeed, the
question can be answered in linear time. Note that this linear
time result contrasts with the results of Harrison, Ruzzo and
Ullman [l]. They showed that a very general formulation of the
access control protection mechanisms is undecidable. In contrast,
by modeling a much less rich class of protection mechanisms, yet
yet mechanisms that accurately reflect those used in practice, we
have shown that some questions about security policy enforcement
can be answered in linear time.

249

250

Another application of the Take-Grant system appears in [11].
Snyder synthesizes a couple of example protection and communica-
tion structures:

(1) a supervisor that creates one communication object for
each user, grants that user "read" rights to the object,
but maintains "write" rights to the object and copies
data between pairs of communication objects as requested
by the users,

(2) a supervisor that creates a communication object for
each pair of communicating users (on demand or automat-
ically), and grants the pair of users "read" and "write"
rights to the communication object, then divests itself
of all rights to access the communication object.

His models satisfy the first usefulness criterion; they are
accurate and, indeed, they provide a terse expression of the
system protection and communication relations under consideration.
But, operating systems designers have been building such structures
into systems for many years. And teachers have successfully, and
easily I believe, conveyed such structures to their students
without benefit of abstract models. These commonly understood
examples of subject interconnections do not argue sufficiently
well that the Take-Grant system meets the second criterion for
usefulness.

V. A USEFUL EXTENSION

In this section I explore an extension to the Take-Grant
system that I believe is useful. It can be used to model system
behavior that was demonstrably not understood until many years
after the development of a particular system. The system was
Multics [9]. Its design contains a security flaw that is due to
the way a user was forced to use certain I/O devices, such as the
card reader. The flaw was first recognized by its designers [10].
To model the attributes of the Multics design with enough accuracy
to make the security flaw discernable, I first extend the Take-
Grant system.

The extension is based on the observation that subjects do not
act erratically. Users do not grant the right to destroy their
files to arbitrary other users, though they may have the right to
do so. Processes executing on behalf of a user follow their
programs. With the emergence of verification technology, one may
expect to see programs routinely characterized by properties that
describe actions taken at execution time. The accuracy with
which a model reflects the "real world" is enhanced if we can
state the properties that characterize a subject's actions. Of
course, if nothing is known about the actions of a subject, one
must assume that any permissible action might be taken.

Recall the first substantive example in which a subject A
could acquire a rights to an object. But, A could gain those
rights only with the assistance of another subject, C. We can
say that C acted in collusion with A. However, in some cases
programs and people will not act in collusion to achieve some
objective. We can often prove, or assume, that a subject will
not act in collusion to help a particular class of subjects gain
a new right. It is this restraint in the behavior of subjects
that I wish to express.

I will associate an (unordered) set of behavioral properties
with each subject. Properties are described by naming the
protection operations the subject may invoke together with some
indication of parameters, if any:

• Grant X --a--)Y

• Take X -- 	Y

• Remove X—a----?Y

• Create Y.

The associated semantics are (respectively);

• subject may grant to object X the a access to object Y

• subject may take from object X the a access to object Y

• subject may remove its a access to object Y

• subject may create a new object named Y such that subject
has all access to this new object

Note that to exercise a right a subject must have that right.
The property set does not contain rights; it specifies intended
behavior. The property set will be elided for subjects whose
activity is unknown. It must be assumed that such subjects may
perform any protection action for which they have appropriate
rights. I will use "?" in place of an object name when the name
is not bound to a particular object. An example use of the
property set is

X 	 read
{Grant?

append
--File F }

destroy
read
write
append

c) File F

251

This protection graph is to be interpreted to mean that subject
X may possibly grant "read" or "append" access to File F to any
object. The "?" notation is used because the receiver of a Grant
is unspecified. One observation that can be made from this
property set is that the subject, who may be thought of as owning
File F, will not give "write" or "destroy" rights to any other
object under any circumstances. Because subjects are assumed to
be autonomous, it is reasonable to expect the subject to exercise
only the protection operations as specified in their property
set, no matter what other subjects may be doing. Note that if a
system administrator, subject SA, can Take rights from X, then
SA might "forceably" wrest "destroy" rights to File F from X.

{....}

destroy 	 t 	SA
read
write
append

0 File F

The system administrator might do this if X is vastly over quota
in file space usage and stubbornly refuses to release file space.
If the system administrator has such powers, we would have to
consider both the above graph models of the situation.

Subjects that represent executing programs also do not act
arbitrarily; they are constrained by the programs they execute.
I introduce a passive object called a procedure, notated by D.
A procedure may have a single formal parameter. It is specified
within the procedure symbol in the following form:
where a is a set of rights and X is the formal name by which the
actual parameter can be named in the property set. By convention
the formal parameter names will never be names of graph nodes.
I introduce a new right called "fork", and notated as "f" that is
used for procedure invocation. To illustrate the use of proce-
dures, I define a procedure object, Sort. It accepts one argu-
ment to which "readfile" access is required, and whose property
set indicates that only "readfile" operations are performed on
the parameter object. The invoker of Sort should be wary,
because Sort may Grant "readfile" access to X to another object.

Sort

—readfile -+ X {Grant ? —readfile-4 X}

252

A P 	{C}
f

The Take-Grant system is augmented by extending the notion of
object creation to include procedure creating using the CreateP
operation and adding a new operation, Fork. For defining these
rewrite rules, let A, X and P be three distinct vertices in a
protection graph such that A is a subject and P is a procedure.

CreateP: Let A be a subject and C be a property set, and S
be a parameter specification. Applying the CreateP
rule adds a new procedure vertex N such that S is
N's parameter specification, C is its property set
and "f" labels the edge from A to N. Graphically,

• 	 S
	{C}

A 	 A
N

Fork: Let there be an edge from subject A to procedure P
that is labeled f, and an edge from A to X labeled
R. Let P have a property set C and a parameter
specification of the form —a-Y such that a is a
subset of R. Then, applying the Fork rule adds a
new vertex N with an edge from N to X labeled a.
N's property set is the same as C, except that the
formal parameter name Y is systematically replaced
by X. This is notated as GIX

Y

{c} P

0X

N V t
 {Cr}

Intuitively, A invokes a procedure P causing
creation of a subject N whose behavio is delimited
by properties specified in C with Y replaced by the
name X.

I will also extend the notion of removal of rights. Using
the RemoveI rewrite rule defined below, a subject can delete
rights from passive objects. The right "r" meaning "remove" is
used to control rights removal.

1 	 253

Removel: Let there be an edge from subject A to object X
that is labeled r, and an edge from X to Y labeled
13. Let a be any subset of rights. Applying the
Removel rule causes deletion of the a labels from
(. If a = (3, then the edge itself is deleted.
Graphically,

	

Lvo (3 ,0 	 4)__L), (3-c co
A 	X 	Y 	A 	X 	Y

Intuitively, A removes the right to a Y from X.

The Multics Card Reader Daemon Problem

Now I will use the property set extension to describe the
Multics security flaw. First, I describe the flaw intuitively:
The card reader device is permanently allocated to a process
called the Card Reader daemon. It is responsible for reading
card decks, creating files containing the read-in data and then
cataloging the files in the appropriate user catalog. To catalog
a file, the Card Reader daemon requires access to the user's
catalog. In particular, the Card Reader daemon needs "grant"
access to the user's catalog object. Herein lies the problem,
although it may not be obvious.

To render this scenario in the extended Take-Grant system,
let A be a (user) subject with f access to a (procedure) object
CD, as well as to A's catalog object, C. Note that C is the long-
term repository for all the rights to the files A can access.
Let procedure CD have a parameter specification --t,r--4Y and a'
property set {Grant Y--?-4, CreateP}.

If A invokes CD with its catalog C as a parameter, the
resulting protection state is modeled by the following graph,

CD
	{Grant Y--?--0?,CreateP}

--t,r

{Grant C

0 File 1

0 File n

?--*?,CreateP}

254

Consider what N might do. It might create a new procedure
with the name EDIT. That new procedure has one parameter
specified --t,r-4 Y, and the property set {Grant Y--?-->?,
Create, Remover Y--?-4 ?, CreateP}. Note that EDIT can Grant
and Removel rights from the parameter object formally known as Y.

Then, N completes execution by including the right to invoke
EDIT into the caller's catalog, C. Sometime later A invokes EDIT
with actual parameter —t,r-4 C, intending to invoke the system
editor. The parameter permitting "take" and "remove" rights to
the user's catalog is appropriate; an editor, of course, needs to
be able to obtain access to files in a user's catalog and to
remove temporary files built during an editing session. The
Multics name resolution algorithm first attempts to resolve the
name "EDIT" using the local catalog; only later is the system
catalog consulted. In this example, the invoked EDIT procedure
is found in the user catalog, C. The scene is complete. EDIT,
now has the ability to grant to others the content of the user
catalog, or to destroy user files at will. Meanwhile, the user
believes that the editing program is the system editor. Indeed,
it may appear to be the system editor because it invokes the
system editor after causing the havoc designed into it by its
creator.

Using an abstracted model of subject interactions, the power
invested in the Card Reader daemon is apparent. It gained control
over the user's catalog and thus his file naming space. Thus, it
could add programs at will to the user's catalog. These programs
might exhibit any behavior. For example, they may masquerade as
system utilities while acting with the full power of the user
(because of the rights to the user catalog).

VI. SUMMARY

In this paper, I have tried to place the abstract modeling of
protection mechanisms in a pragmatic light to ascertain whether
it is useful. My conclusion is that to date the Take-Grant model
has been used in too simple a fashion to produce any new informa-
tion that could affect the design, implementation or administra-
tion of actual systems. The model is accurate in that it is
faithful to the major attributes of extant protection mechanisms.
But, the model must be extended to be powerful enough to satisfy
the criteria of usefulness defined in this paper. I suggest one
extension to the Take-Grant model. It enables one to model a

security flaw that went unnoticed in the Multics system for a long
time after the system had been built. To model the desired
system behavior, I extended the Take-Grant model so that property
sets could be associated with subjects and with passive procedure
objects that act as templates for subject creation. These

255

property sets characterize the behavior of subjects. I believe
that this extension is only one of a number of extensions that
can be used to increase the sensitivity with which the Take-Grant
system models protection mechanisms.

ACKNOWLEDGMENTS

I would like to thank Ellis Cohen and Michael Rabin for
suggestions that led to simplifications of the extensions
described in this paper.

REFEREACES

[1] Harrison, M., L. Ruzzo and J. Ullman, "Protection in
Operating Systems,"Communications of the ACM, 19, 8 (1976).

[2] IBM, IBM System/370 Principles of Operation, GA22-7000-1.
[3] Jones, A. K., R. J. Chansler, Jr., I. Durham, P. Feiler and

K. Schwans, "Software Management of Cm* -- A Distributed
Multiprocessor, AFIPS Conference Proceedings, Vol.,46, (1977),
pp. 657-663.

[4] Jones, A. K., R. J. Lipton, L. Snyder, "A Linear Time
Algorithm for Deciding Security", Foundations of Computer
Science, November 1976.

[5] Lampson, B. W., "Protection", Proceedings Fifth Annual
Princeton Conference on Information Sciences and Systems.
1971, pp. 437-443, (reprinted in ACM Operating Systens Review,
January 1974.

[6] Lampson, B. and H. Sturgis, "Reflections on an Operating
System Design", Communications of the ACM, 19, 5 (May 1976),
pp. 251-265.

[7] Lipton, R. J. and L. Snyder, "A Linear Time Algorithm for
Deciding Subject Security", Journal of the ACM, 19:8 (1977).

[8] Neumann, P. S., R. S. Fabry, K. N. Levitt, L. Robinson and
J. H. Wensley, "On the Design of a Provably Secure Operating
System, Proceedings Workshop on Protection in Operating
Systems, IRIA, Rocquencourt, France (August 1974), pp. 161-
175.

[9] Organick, E., The Multics System: An Examination of Its
Structure, MIT Press (1972).

[10] Saltzer, J., Private communication.
[11] Snyder, L., "On the Synthesis and Analysis of Protection

Systems", Sixth Symposium on Operating System Principles,
November 1977.

[12] Wulf, Wm. A., E. Cohen, W. Corwin, A. Jones, R. Levin, C.
Pierson and R. Pollack, "HYDRA: The Kernel of a Multiprocessc
Operating System, Communications of the ACM, 17, 6, pp. 337-
345 (1974).

256

DISCUSSION

Budd: One nice feature about the Take/Grant system was that,
given an arbitrary graph, one could decide in linear time whether
or not a right can pass from any one of the vertices to any other.
It is not clear that this holds true when you add these new
rewriting rules. ,Does the same result apply to your system?

Jones: I do not know whether it's still linear. Certainly,
in the example I gave, I think that one can argue that it's still
very easy, but I haven't proven the extended system is linear.

Rabin: I have a question about the nature of the T and G
operators. They seem to be operators whereby a given node can
take any subsets of the sets of all privileges or capabilities
from another node, or grant any subset of the capabilities that a
given node may grant. Have you considered the possibility of
having restricted T and G operators so that a given node has,
for instance, a G operator, and that he himself is restricted to
granting a certain subset of all possible privileges; and
similarly, for the T operator? It may be that using the extended
model, you could simulate, or implement, any such restricted T
and G operator, matters may be simplified and you may eliminate
the need for using some of these predicates and procedures.

Jones: Using that extension, a subject or procedure cannot
differentiate between two different subjects that might be
recipients of a Grant, for example. With my extension using
property sets, I can.

Gaines: Anita, something I hope we all are thinking about as
we go through this conference is how accurately the models and
theories we develop affect "real world" situations. Can you say
in what respects you have tried to choose certain aspects of real
world situations?

257

Jones: I'd be very grateful if we could get anywhere near
the "real world". I think that introducing property sets in the
model takes it away from being a toy in which things are so
general that it's not possible to talk about real problems.

Gaines: When can we start believing real world conclusions
from abstract models? We would like to be able to make some
inferences about security in ' the real world based on observations
we make on our models.

Jones: That is the very issue I am addressing.

258

THE PRINCIPLE OF ATTENUATION
OF PRIVILEGES

AND ITS RAMIFICATIONS*

Naftaly Minsky

Rutgers University
The State University of New Jersey

1. INTRODUCTION

Authorization in computer systems is a discipline under which
it is possible to impose restrictions on the kind of action which
can be carried out by the various subjects (actors) of a system.
Such a discipline serves as the basis for any protection
mechanism, and is vital for our ability to produce large scale
reliable software. One can distinguish between the "statics" and
the "dynamics" of an authorization scheme. By the term statics
we mean the method used for the representation of the authority
of the various subjects, as well as the technique for the enforce-
ment of such authority. What we call the dynamics of an authori-
zation scheme is the technique used for the manipulation of the
"authority-state" of a system. It has to do with the flow of
"privileges" between the various components of a system.

One of the objectives of research in authorization . should be
to identify a type of dynamics which is restrictive enough to
allow for the verification of various properties of a given
authority-state, and yet is flexible enough to support a desired
class of policies and authority-structures. The need to restrict
the dynamics of authorization as much as possible has been
recently emphasized by the undecidability of the "Safety Problem"
in the context of the Harrison, Ruzzo and Ullman model of
protection [Har 76]. A step in this direction is the "principle
of attentuation of privileges" recently proposed by Peter Denning
[Den 76]. Informally speaking, this principle states that

* This work was partially supported by Grant DANCIS-73-G6 of the
Advanced Research Project Agency.

259

privileges should not be allowed to grow when they are transported
from one place in the system to another. In spite of the intuitive
appeal of this principle and the benefits which seem to accrue
from it, it is not widely accepted. In particular, the Hydra
system [Wul 74] allows for amplification of privileges, in direct
violation of the principle of attenuation. In responding to
Denning's proposal, Levin, who is one of the designers of Hydra,
writes [Lev 77]: "The existence of amplification in Hydra derives
....from a fundamental protection philosophy that happens to be in
conflict with the attenuation of privileges notion". What Levin
has in mind, in particular, is the important concept of type-
extension for which, he claims, amplification of privileges is
crucial.

In this paper we argue that the difficulty to satisfy the
principle of attenuation of privileges in Hydra (and in related
systems) is not due to a conflict between this principle and the
type of authority structures which Hydra wishes to support, but
due to a fundamental deficiency in the access-control (AC) scheme
on which Hydra is based. Indeed, we will show that the recently
proposed operation-control (0C) scheme for authorization [Min 77]
does satisfy the principle of attenuation without losing the
ability to represent extended-types. The new scheme is based on
an improved technique for representation of privileges which seems
to provide a better approximation to real-life authority structures.

In the next section, the capability-based version of the AC
scheme is described. The principle of attenuation is formally
defined, in the context of this scheme, and the inability to
satisfy it is demonstrated. The underlying reasons for the
incompatibility of the access-control scheme with the principle
of attenuation is discussed in Section 3. In Section 4, some
aspects of the OC (operation-control) scheme are introduced; just
enough to show its compatibility with the principle of attenuation.
A comparison between the OC scheme and the scheme used in the
Hydra system is made in Section 5, and the implementation of
"type extension" under the two schemes is discussed in Section 6.

2. THE ACCESS-CONTROL (AC) SCHEME

The access-control approach to authorization is well documented
in the literature. In particular, the reader is referred to the
work of Lampson [Lam 69, Lam 71], Graham and Denning [Gra 72], and
to recent review articles by Saltzer [Sal 75], and Linden [Lin 76].
Here we outline the main features of a class of AC schemes called
"capability-based", using a somewhat non-standard terminology
which is more suitable for the rest of the paper. (The scheme to
be described here differs in an essential way from the scheme
used in Hydra. Hydra itself is discussed in Section 5).

260

The objects to be protected by the AC scheme are classified
into types. An object of type T is called a T-object. (For the
moment, we assume that every object belongs to a unique type).
For every type T there is a fixed set of operators (procedures)

op(T) = Pi

called the T-operators. It is assumed that the T-operators are
the only subjects(*) in the system which can directly manipulate
and observe T-objects. For all other subjects, the only way to
manipulate or observe T-objects is indirectly, by applying to
them T-operators. (We will see later how this rule can be
enforced by the authorization scheme itself, for all but a fixed
set of primitive types).

Also, for every type T there is a fixed set of symbols

rt(T) = fril

called T-rights, or simply rights. Objects of type T (T-objects)
are addressed by special kind of objects called tickets(**) which
have the form

(b;R)

where b is the identifier of a T-object, and R is a subset of
rt(T). There may be several tickets in the system with the same
component b, they are called b-tickets. The right-symbols con-
tained in a b-ticket t serve to determine which T-operators can
be applied(***) to b, when the ticket t is used to address it.
It is in this sense that a ticket represents privileges with
respect to the object addressed by it. For example, one may have
the following one to one correspondence between T-rights and the
T-operators which they authorize:

The T-operator Pi can be applied to a ticket (b;R) of a
T-object b, only if R contains the right-symbol ri.

In such a case ri may be called "the right for Pi". Although, in
general, the correspondence between rights and operators may be
more complex than that, it is always monotone in the following
sense:

(*) Note that a subject may be either a procedure (operator)
built into the system, or a user of the system.
(**) We are using the term "ticket" for what is more commonly
called "capability". The reason for this deviation from the,
more or less, standard terminology will be clarified later.
(***) Since objects are always addressed by their tickets, we will
frequently use the phrase "application of an operator to a
ticket", to mean the application of the operator to the object
which is addressed by the ticket.

261

If an operator can be applied to a ticket t=(b;R), then
it can be applied to any ticket t'=(b;R') such that R'
includes R.

This monotone property suggests the following relation, which
defines a partial order, between tickets.

Definition: A ticket t=(b;R) is weaker than t=(b;R'), if R'
includes R.

Clearly, a weaker ticket carries fewer privileges.

Now, every subject (actor) in the system is associated with a
special kind of object which we call domain. The domain D of a
subject S contains tickets of various objects in the system, and
it is assumed that a subject can operate only on tickets in his
domain. In this way, the domain of a subject determines his
authority. The distribution of tickets throughout the system is
called the authority state of the system.

2.1: On the Dynamics of the AC Scheme. Although there is no
general agreement as to the ways in which the authority state of
the system is to be changed, the dynamics of most AC schemes is
governed by the following rules.

Rule 1: An existing ticket cannot be modified.
Rule 2: When a T-object b is created, a ticket (b;R) is

created with it, with all its possible rights.
(Namely R=rt(T)). We call it the primary b-ticket.

Rule 3: There is an operator, transport, which when applied
to a b-ticket t, creates another b-ticket t' in some
other place in the system. t' is called a direct
derivative of t. (We will use the term "derivative"
of a ticket t for a direct or indirect derivative of
t.)

To these, practically standard rules, we now add another rule
which is essentially Denning's principle of attenuation of
privileges:

Rule 4: The direct derivative of a ticket t cannot be
stronger than t.

262

A.s has already been pointed out this principle is not satis-
fied by a number of AC schemes, notably by Hydra [Wul 74, Coh 75].
One of the main features of Hydra is an operator amplify which
when applied to a ticket t, creates a ticket t' which is stronger
than t(*). Even Denning who was the first to suggest explicitly
the principle of attenuation, qualifies himself by requiring it
only "under normal circumstances" [Den 76, p. 372]. Indeed, it
turns out that the principle of attenuation is compatible with
the AC scheme. To see this consider the following example.

Example 1: Let P1, P2 be T-operators for a given type T, and
let rl, r2 be the corresponding rights. Namely, Pi can be applied
only to a ticket with the right ri, for i=1,2. Now, consider
Si, S2 and a T-object b.

Ul: The subject S1 is allowed to apply only P1 to b, and he
is the only one who has any privilege with respect to b.

U2: The subject S2 is allowed to apply P2 to b.

The question is, can there be a transition of the system from
state Ul to U2? In other words, can Si authorize S2 to apply the
operator P2 to b, which S1 himself is not allowed to do? As we
will see next, under the AC scheme the answer to this question is
negative, if this scheme is to satisfy the principle of attenua-
tion.

Indeed, in the state Ul, Si must have the ticket t = (b;rl)
in his domain. The ticket t cannot contain the right r2, because
this would enable S1 to apply P2 to b. Moreover, in Ul nobody
else has any right for b. In the state U2, on the other hand,
S2 must have a ticket t' = (b;r2) in his domain, but under the
rules 1 to 4 there is no way to generate such a ticket.

Since this kind of transition from one authority state to
another turns out to be essential for many applications (see
example 2 below) one may conclude that the AC scheme is incompat-
ible with the principle of attenuation of privileges. Hydra's
response to this situation has been to introduce the amplification
operator, which can add a right to a ticket, thus violating the
principle of attenuation. We take the opposite approach: using
the attenuation of privileges as a fundamental principle of
authorization, we conclude that the AC scheme itself is
unsatisfactory and should be replaced by a scheme which is
compatible with this principle. To see how this can be done we
must gain a deeper understanding of the reason for the incompati-
bility between the AC scheme and the principle of attenuation.

(*) Actually, Hydra allows only a restricted use of the operator
amplify. We will discuss Hydra specifically in a later section.

263

3. PRIVILEGES VERSUS ABILITIES

Authority transformations such as in Example 1 are very
common in the real world, and it would be instructive to see how
they are handled there. Let us consider one such real-life
example.

Example 2: When buying a car one automatically gets the
right to drive and to sell it. Suppose that these rights are
formally represented by a ticket-like structure (c;drive,sell)
which stands for the ownership document for the car c. Now,
consider a subject S1 who owns a car c, but who does not have a
driving license. This person cannot exercise his right to drive
his own car. However, Si can hire a driver, who does have a
driving license, authorizing him to drive the car c by granting
him his own right to drive it. Such authorization may be formally
represented by the ticket-like structure (c;drive) to be given to
S2. No process which even remotely resembles amplification is
taking place in this real-life situation. The driver S2 can
drive the car owned by S1 not because he has more privileges for
it than its owner, but because he has another independent
privilege, a driving license.

The crux of the matter is that in the real world, there is a
distinction between the concept of privilege, or right, and the
concept of ability. The ability to perform a certain action may
depend on the availability of several privileges(*). In this
case: the ability to drive a car is formed by the availability
of a driving license as well as of the right to drive this
particular car. The problem with the access-control scheme is its
failure to recognize this difference between privileges and
abilities. Under this scheme, the availability of a b-ticket
with the right rl in it is sufficient to give a subject the ability
to apply the operator P1 to b. Thus, rights are being equated
with abilities.

We maintain that to satisfy the principle of attenuation of
privileges one must distinguish between privileges and abilities.
Such a distinction is being made by the operation-control (0C)
scheme to be discussed next. In fact, the Hydra system [Wul 74]
also makes such a distinction, but in a less fundamental and not
quite satisfactory way, as we will see in Section 5.

(*) In the real world, the ability of a subject to perform a
certain action may also depend on such things as his skill and
stamina, which we have no intention to model.

264

4. THE OPERATION-CONTROL (OC) SCHEME

Under the OC scheme, [Min 77] the ability to perform an
operation P(q1,...,qk) is formed by the availability of two kinds
of privileges: a privilege with respect to the operator P, and
compatible privileges(*) with respect to the operands ql,...,qk.
Privileges with respect to operands are represented by means of
tickets, just as under the AC scheme. However, to represent
privileges with respect to operators, the OC scheme is using a
new device called activator. In this paper, only a simplified
version of the activator is described.

An activator is a (k+1) tuple

where P is an identifier of a k-ary operator, and ci, for
i = 1,...,k, is a condition defined on the i-th operand of P.
The conditions ci are called the operand-patterns of the activator.
The existence of such activator in a domain D(S) serves as a
permission for the subject S to apply operator P to a sequence of
objects ql,...,qk in D(S), which "match" the respective activation
patterns (or satisfy the conditions) cl,...,ck. As a notational
devise, we may give a name, say "A", to an activator by writing

A = CP,c1,...,ck>

When an activator A is used to authorize the operation
P(q1,...,qk) we say that the activator A is applied to the objects
ql,...,qk, denoting such an application by A(q1,...,qk).

An operand-pattern has the form(**)

[T;R]

where T is a type and R is a set of T-rights. This pattern
matches (is satisfied by) any ticket (b;Rl) where b is a T-object
and R1 includes R.

In order to illustrate the authorization role of the activa-
tors, and their relevance to our subject matter, we show next how
the authority structure of example 2 can be represented under the
OC scheme.

(*) The phrase "compatible privileges" will be clarified later.
(**)This is a simplified form of the operand-patterns introduced
in [Min 77].

265

Example 2': Consider a type CAR. Let op(CAR) be {SELL,DRIVE},
representing the action of selling and driving a car, and let
rt(CAR) = {sell,drive}. Let the primary activators of the CAR-
operators be:

< SELL, [CAR; sell],,)

(DRIVE , [CAR; drive]>

This means, in particular, that in order to drive a car (by
applying the operator DRIVE to it) one needs a ticket with the
"drive" right for it. Now, consider the subjects S1 and S2
whose domains Dl, D2 are described in Figure 1. Si who owns the
car bl has the ticket tl = (b1;sell,drive) for it. However, since
S1 has no DRIVE-activator in his domain he is unable to drive his
own car in spite of the fact that he has all the possible right-
symbols for it. The inability of S1 to drive his own car does
not make the "drive" right that he has for it useless. This
right can be used by S1 to authorize somebody else, S2 in this
case, to drive his car. This is done by giving S2 a derivative
tl' = (bl;drive) of his ticket tl. S2 who has the DRIVE-activator
<DRIVE,[CAR:drive]), representing a driving license, would now be
able to drive the car bl. Thus, the requirements of example 2
are satisfied, without amplification.

Note also that although both subjects have the SELL-activator
<SELL, [CAR;sell]>, which means that both are allowed in
principle to sell cars, the driver S2 is unable to sell the car
bl because his bl-ticket does not contain the "sell" right.
[End-of-example].

Just as there may be several different b-tickets which
represent different privileges with respect to a given object b,
we allow for several different P-activators which represent
different privileges with respect to a given operator P. In order
to compare different P-activators with each other, we introduce
the following concepts:

Let A be an activator of order k (with k operand-patterns).
We define range(A) to be the set of all possible k-tuples
(q1,...,qk) of objects, which can be matched with the correspond-
ing activation-patterns of A.

Let A and A' be two P-activators for a given operator P. We
say that A' is weaker than A (or, equivalently, A is stronger
than A') if range(A) includes range(A'). Such an A' is also
called a reduction of A.

1

D2=domain(S2) 	 D1=domain(S1)

<SELL,[CAR;sell])

<DRIVE, [CAR; drive]>

tl'=(b1;drive)

<SELL,[CAR;se11]>

t1=(b1;sell,drive)

(b1;drive)

Fig. 1

Clearly, the relation weaker between activators defines a
partial order, which is analogous to the partial order defined by
the relation weaker between tickets. Due to this and other
similarities between tickets and activators, we sometimes refer
to both kinds of objects by the common name "control-objects", or
"cobjects", for short. Every cobject represents privileges with
respect to the object addressed by it, which may be either an
operator (in the case of an activator) or a "passive object" (in
the case of a ticket).

Note that the two types of cobjects play complementary roles
in our scheme. Neither a ticket nor an activator alone represents
an ability to perform any action. Such an ability is formed by
the availability of an activator, and one or more matching tickets.
To emphasize this complementarity we will use the following
terminology.

Let D(S) be the domain of a given subject S. We will use the
phrase "ower of S" for the set of activators in D(S), and the
phrase "range of S" for the set of tickets in D(S).

Thus, the ability of a subject depends on its range, which
defines his access rights to various objects, as well as on his
power which defines the kind of operations which he can use.

In spite of the (hopefully) intuitive appeal of these terms,
they do not mean much without specifying the dynamic behavior of
the control objects. This issue is discussed next.

4.1: On the Dynamics of the Operation-Control Scheme. Here are
the rules which govern the transport of cobjects, which are a
generalization of the rules previously formulated for tickets.

Rule 1: An existing cobject cannot be modified.
Rule 2: Whenever an object o is created, a cobject is created

for it, to he called the primary o-cobject. (It
would be the primary b-ticket if o is a passive
object b, or the primary P-activator, if o is an
operator P).

Rule 3: There is an operator "transport" which, when applied
to a cobject c creates another cobject c' in some
other place in the system. c' is called a direct
derivative of c. (By the phrase "derivative of c"
we mean direct or indirect derivative of c).

Rule 4: The derivative c' of a cobject c is weaker than or
identical to c.

The last rule is the principle of attenuation of privileges, now
extended to activators. An important corollary of this principle
is that a cobject is stronger than, or identical to, every one of
its derivatives. In particular, the primary o-cobject is the

268

strongest o-cobject, for any object o.

Note that the above rules do not define completely the
dynamics of our authorization scheme. In particular, one must
define the operator "transport" and its activators. This is done
in [Min 77] but not repeated here. To facilitate the following
discussion, we will make the simplifying assumption that the set
of activators in a given domain is fixed. In other words: the
"power"of a subject is assumed to be fixed while its range may
vary. Although this assumption cannot be strictly correct for
all the domains in a aystem, it is likely to be correct in many
if not most cases (see [Min 77]). In particular, the "power" of
a procedure is likely to be fixed while its range varies from one
invocation to another.

4.2: The Privileges Carried by the Right-Symbols. The privileges
carried by a given right symbol r are best defined in terms of
the affect that the absence of r from a ticket t has on one's
ability to apply operators to the object addressed by t. We will
see in this section that this effect depends on the principle of
attenuation. To facilitate our discussion we start with an
example.

Example 3: Sharing Memoranda

Let MEMO by a type of objects which carry memoranda in an
information system. Let

op(MEMO) = {READ, UPDATE, DELETE}
rt(MEMO) = {d,rl,r2}

Let the following be the primary activators of the MEMO-operators:

(READ, [MEM0]>

(UPDATE, [MEMO], [TEXT]1(*)

<DELETE, [MEMO;d]>

Note that the rights rl and r2 are not used by any of these
activators. The significance of this will be clarified later.

Now, consider a group of subjects G = {S,S1,S2,S3} who are
working on the same project but have different responsibilities
and authority. They communicate with each other by means of a
pool of memoranda whose tickets are contained in a file f. A
ticket of a memo may be stored in f by members of the group G as
well as by other subjects in the system, such as S'. It is also
assumed that every member of G can transport tickets from the
file f to its own domain. Now all the subjects in G are to be

(*) The second operand of the operator UPDATE should be a TEXT-
object which serves to update the memo.

269

S '

(m)
(m1;r1)
(m2;r2)

(m3;rl,r2)
(m4;d,r1)

file f

D=domain(S)

Dl=domain(S1)

<READ, [MEMO])

< UPDATE, [MEMO] >
4 DELETE , [MEMO; d] >

<READ, [MEMO] >

< UPDATE , [MEMO ; rl]>

<READ, [MEMO]>

<UPDATE, [MEMO; r21)

< READ, [MEMO] >

(UPDATE, [MEMO ; rl , r2]>

D2=domain(S2)

D3=domain(S3)

allowed to read all the memos in f (namely, all the memos whose
tickets are stored in f). However, not every subject is to be
allowed to update all the memos, or to delete them. Figure 2
describes part(*) of the domains of the subjects in G as well as
a sample of the file f.

Now, note that all the subjects in G have a copy of the
primary READ-activator. This enables them to read all memos in f.
However, they have different versions of the UPDATE-activator:
The UPDATE-activator of S does not require any rights in the MEMO-
ticket it is applied to. thus, S can update all the memos in f.
On the other hand, the UPDATE-activator of S1 can be applied only
to tickets with the right rl, which means that, given the current
content of f, S1 can update only the memos ml,m3,m4. Similarly,
S2 can update only m2 and m3, for which the tickets in f have the
right r2. Finally, S3 whose UPDATE-activator requires the rights
rl and r2, can update only the memo m3.

Note also that only S has a DELETE-activator, so that he is
the only one who can delete memoranda. Not all of them, however.
Given the content of the file f described in Figure 2, S can
delete only m4 whose ticket has the d right.

Thus, the four subjects in group G have different "power"
with respect to the MEMO-tickets, due to the different activators
in their domains. Knowing about the power of the various subjects
in G, the originator S' of a memo can control its disposition, as
follows: When S' creates a new memo m', he gets the primary
ticket t = (m';d,rl,r2) for it. If, for example, he wants to
allow everybody in group G to update m' but he does not want them
to delete it, he would insert the reduction (m';r1,r2) of t in the
file f. If he wants only S and S1 to update m', then he would
insert (110;r1) into f, etc. [end-of-example].

Among other things, this example demonstrates that a right-
symbol might have different meaning for different subjects, which
allows our four subjects to share the same pool of MEMO-tickets
and still have different abilities with respect to the memos. In
order to formalize this phenomena, we will define the concept of
the "privilege content" of a right-symbol. In fact, two related
concepts of privilege-content will be defined.

(*) The description of the domain in Figure 2 is incomplete in
the following sense. We did not try to account for the assumed
ability of the four subjects in G to transport MEMO-tickets from
f into their own domains. (This ability can be properly formu-
lated only by means of the complete OC scheme [Min 77]).

271

Definition: The absolute privilege content of a given right-
symbol r, to be denoted by U(r), is the set of operators whose
primary-activators require r.

For instance, in Example 3 	U(d) = {DELETE}, while U(rl) and
U(r2) are empty.

The significance of U(r) is due to the principle of attenua-
tion: First, due to the attenuation of activators, if the
primary P-activator, for a given operator P, has a pattern which
requires r, then all P-activators in the system would require r.
Thus, the absence of r from a ticket t inhibits the application
of P to this ticket. Moreover, because of the attenuation of
tickets, if t does not contain r then no derivative of t would
contain r. Therefore, we can make the following statement, which
we introduce as a corollary of the principle of attenuation:

Corollary 1: The absence of a right r from a ticket t
inhibits the application of operators in U(r) to t itself as well
as to all its derivatives.

For example, consider a MEMO-object m and an m-ticket t which does
not have the right d. One can put t in the public domain and
remain confident that this ticket cannot be used to delete the
memo m, neither directly or indirectly. Such is not the case
under the AC scheme where there is the danger of somebody adding
a right to t by amplification.

Note that by the above definition, the MEMO-rights rl,r2 does
not carry any privileges. Indeed, the absence of R1 from a MEMO-
ticket t cannot inhibit the application of any MEMO-operator to
it. Yet, it is the existence of rl which allows S1 to apply
UPDATE to a ticket. In order to account for this phenomena, we
now introduce the concept of relative privilege content of a
right-symbol.

Definition: The privilege-content of a right symbol r,
relative to a domain D, to be denoted by U(r/D), is the set of
operators for which there is an activator in D which requires r.

For example, U(rl/Dl) = {UPDATE}, although U(rl) is empty. The
meaning of the concept of relative-privilege-content is summarized
by the following statement:

Corollary 2: The absence of r from a ticket t = (b;R) in
D = domain(S) inhibits S from applying the operators in the set
U(r/D) to t and to its derivatives.

To understand the significance of this statement, note the
following: First, suppose that P belongs to U(r/D) but not to
U(r). Let t = (b;R) be a ticket in D = domain(S) which does not
contain the right r. It is clear that S himself cannot apply P
to t. However, S may be able to cause the application of P to

272

the object b, by giving a derivative of t to some other domain D'
such that P is not contained in U(r/D').

Secondly, consider an operator P which belongs to U(r) but
not to U(r/D) (which, due to the attenuation of activators, can
happen only if D contains no P-activators). Obviously, the
absence of r from a ticket t = (b;R) in D = domain(S) has no
effect on the ability of S to apply P to object b, because anyway
D has no P-activators. However, this absence does prevent S from
causing the application of P to b by giving a derivative of t to
a subject which does have a P-activator. For example, suppose
that the domain D1 of Example 3 contains the tickets tl = (ml;d),
t2 = (m2). Since U(d/D1) is empty, the right d does not provide
S1 with any direct ability. Indeed, exactly the same set of
operators can be applied by Si to tl and t2. However, S1 can
enable S to delete ml, by placing tl in the file f, which he can
not do for m2.

In conclusion, the main benefit which accrues from the
principle of attenuation is that it provides us with a definite
measure for the privileges represented by a given control-object,
privileges which can never be increased. In particular, the
concept of the privilege-content of a right-symbol is of utmost
importance. Another, indirect, consequence of the principle and
of the scheme which we used to realize it, is the concept of
relative-privilege-content which allows for more economical
utilization of tickets. In Example 3, for instance, all the
subjects in G were able to use the same directory file. To im-
plement a similar authority structure under the AC scheme one
would need four separate directory files, one for each subject in
G, which would result in larger number of tickets and additional
complexity in their distribution (see also [Min 77, Section 4]).

5. AMPLIFICATION IN HYDRA

Although the authorization scheme of the Hydra system
[Wul 74, Coh 75] is usually considered to be an access-control
scheme, it differs from the AC-scheme outlined in Section 2 in
one important way: Under Hydra, the availability of a ticket
(capability) for an object is not, by itself, sufficient for the
application of an operator to it. One must also have the per-
mission to call the operator. In Hydra, this permission is
represented by a ticket for the operator with the "call" right in
it. In fact, a ticket (P;call) for the operator P, together with
the formal-parameter-specification (FPS) in P itself is equivalent
to the primary P-activator under the OC scheme. Thus, as under
the OC scheme, abilities in Hydra are formed by the availability
of privileges with respect to both operands and operators.
However, Hydra lacks the formal means to represent varying degree

273

of privileges with respect to one operator P, which, under the OC
scheme, can be represented by different P-activators. We maintain
that the ability to represent different privileges with respect to
one operator is necessary if an authorization scheme is to satisfy
the principle of attenuation. In particular, as we will see in
Section 6, it is crucial for the implementation of type-extensions
without the use of amplification.

It should be pointed out that in some sense the effect of
having different P-activators for the same operator P can be •
simulated in Hydra, as follows: Let Al...Ak be a set of P-
activators. One can form in Hydra a corresponding set of operators
Pl...Pk, which are identical to P in all but their formal-
parameter-specifications. The FPC of Pi should impose the same
condition on its arguments that are imposed by the corresponding
activator Ai. However, for this facility to be used as part of
an authorization scheme, one must impose a discipline on the
formation of the operators Pi from the original operator P,
similar to our rules concerning the generation of activators.
Since Hydra does not feature any such discipline, there is a
genuine need for amplification in it.

Recognizing the harmful effects of amplification, Hydra
restricted its use to the subsystems which implement type-exten-
sion [Coh 75]. Unfortunately, this restriction is not satisfac-
tory, on two accounts:

a) In the context of Hydra, amplification is necessary in
other circumstances besides type-extension. Thus, the restricted
use of amplification in Hydra leaves a class of policies
unsupported.

b) The Hydra's restriction on the use of amplification does
not eliminate all its harmful effects.

The second claim will be discussed in the next section where we
also show that under the OC scheme type-extension can be imple-
mented without amplifications. To substantiate our first claim,
let us return to Example 2. We will show that although the
authority structure of Example 2 can be supported in Hydra,
without amplification, a simple modification of it cannot be so
supported.

The owner-driver situation of Example 2 can be implemented in
Hydra simply by representing a driving license by a ticket
(DRIVE;call) for the operator DRIVE. This ticket should be given
to the driver S2 but not to Sl. What makes this case manageable
in Hydra is the fact that Sl is not allowed to drive at all. But
what about a situation where S1 is allowed to drive some car, but
not his own? For example, suppose that S1 is a disabled person
who needs a special permission to drive any specific car,
permission which may be based on the safety features of that car.

274

The Hydra solution for Example 2 would not work here because both
subjects must have the right to call the operator DRIVE.

Under the DC-scheme, this authority structure can be repre-
sented as follows: Supposed that S1 has the following DRIVE-
activator

<DRIVE, [CAR;drive,sd]),

which means that S1 can drive only such a car c' for which it has
a ticket (c';drive,sd...), "sd" being this special driving
permission. If S1 does not have the "sd" right for his own car c
he cannot drive it. The driver, S2, on the other hand, not being
disabled, has the more powerful DRIVE-activator(DRIVE,[CAR;drive]).
Thus, if Si gives a ticket (c;drive) to S2, the latter would be
able to drive the car c. A similar effect can be achieved in
Hydra only by amplification, unless one gives the two subjects two
different operators for driving cars.

6. THE ISSUE OF TYPE-EXTENSION

In this section, we show how type-extension can be achieved
under the DC-scheme, without violating the principle of attenua-
tion. ,Moreover, we will argue that the Hydra implementation of
type-extension has some drawbacks dur to the amplifications on
which it is based. But first, let us define the concept of type-
extension.

Definition: Consider a type T' such that op(T')--Nil and
rt(T')={si}. Let T be a type with op(T)={Pi}, T is called an
extension of T' if the following conditions are satisfied.

1) Every T-object is also a T'-object. (Note that this
partially removes the restriction made in Section 2 that every
object belongs to a unique type).

2) The only subjects which are able to apply T'-operators to
a T-object are the T-operators Pi. For any other subject, the only
way to manipulate and observe T-objects is indirectly by means of
the T-operators, which have the exclusive ability to "see the bare
representation of T-objects".

3) The set of T-rights is

rt(T)=rt(T')U{ri}

We refer to T' as the representation type of T, and to the set
op(T') as the representation -operators. Note that every T-ticket
may carry T'-rights, to be called representation-rights, as well
as the symbols ri which we call the intrinsic T-rights.

In Hydra [Coh 75], all extended types are extensions of a
single primitive type T'=SEGMENT. The SEGMENT-operators in Hydra
are called "generic operators", which include such operators as
GETDATA and PUTDATA. The rights rt(SEGMENT) are called "generic
rights". The module which contains the definition of op(T) and
rt(T), for a given type T, is called the T-subsystem.

The main difficulty in the implementation of type-extension
is requirement (2) of its definition. Here is how the designers
of Hydra see this problem ([Coh 75] p. 147).

"Hydra must somehow guarantee that ordinary users
cannot access or manipulate an object's represen-
tation...This implies that ordinary users do not
have capabilities [tickets] containing the various
generic rights...Yet a subsystem procedure must be
able to gain these rights when a capability for an
object of the type it supports is passed to it as
an argument".

Hydra's solution to this dilemma is an exclusive ability of the
representation-operators of a type T to amplify T-tickets (or
capabilities, in Hydra's terminology) by adding to them desired
representation-rights. Under the OC scheme this dilemma does not
arise in the first place, because rights are not identical to
abilities. Indeed, if the ordinary users do not have activators
for the representation operators, then they may have tickets which
contain representation-rights without being able to invoke the
corresponding operators. Moreover, we will see below that in most
cases, there is no need to carry representation-rights in the
tickets of extended-type objects.

6.1: The Implementation of Type-Extension Under the OC Scheme.
Consider a type T' which, like the type SEGMENT in Hydra, serves
as a representation-type for a number of extended types. Let

AQ =<Q,[T'])

be the primary Q-activator of an arbitrary T'-operators Q. AQ is
very powerful as it can be applied to any T'-object, regardless of
the extended type it hosts. We assume, however, that these
powerful primary Q-activators exist only in the module which
generates new type-subsystems. Appropriate reductions of these
activators are distributed among the various type-subsystems, as
follows:

Let T be an extension of T' and let P be a T-operator which
needs to apply a representation-operator Q to its argument. We
insert in the domain of P the following reduction of AQ:

AQT=<Q,[T],

276

AQT is weaker than AQ because it can be applied only to T-objects.
Namely, only to such a T'-object which hosts a T-object.

Now, since the activators AQT exist only in the domains of
T-operators, no other subject would be able to apply T-operators
to T-objects, as is required by the definition of type-extension.

Of course, the invocation of the T-operators themselves should
be controlled by their own activators, using the intrinsic T-rights
ri. For example, the primary P-activator for a T-operator P may
be:

(P,[T;r]>

where r is one of the T-rights. This means that one needs the
right r in a ticket in order to apply T to it.

Note that this suggests that there is no need to have the
representation rights {si} in T-tickets. Because, the only way
for ordinary users to cause the invocation of T
invoking T-operators, and such invocation is controlled by the
intrinsic T-rights. The representation operators, in turn, do not
need any representation-rights for their arguments, because the
representation-activators which they have, such as AQT, do not
require any. And yet, as we will see below, there is a role to be
played by the representation rights in T-tickets.

6.2: The Role of the Representation-Rights. Consider a T-operator
P whose primary activator is <P,[T;r]>. Suppose that P is
designed to use a certain T'-operator Q only on some of its invo-
cations. For example, let the type T be FILE and let P be the
operator DELETE, which deletes a record from a file. Suppose
that normally the operator DELETE only marks the record to be
deleted as an "inactive" record, without actually removing it from
the file. Occasionally, however, DELETE performs garbage
collection returning the space occupied by inactive records to the
free-storage pool. To do this, DELETE has to use the representa-
tion-operator RETURN-STORAGE. In this case, one may want to allow
a subject S to apply DELETE to a file f provided that such an
application does not cause physical loss of information which
would result from garbage collection. In general, one would like
to be able to restrict a T-operator, as to which representation-
operators it can apply to its arguments, once it is called. We
propose to use the representation-rights for this purpose, as is
explained below.

Recall that previously we assumed that a T-operator P would
have in its domain an activator <Q,[T]) for every T'-operator Q.
We now suggest that if an operator Q does not have to be used by
P on every invocation, then P should have the following activator
for it

277

<Q 1 [T;s]>

where s belongs to rt(T'). This means that P cannot apply Q to
its argument unless it has a ticket for it with the representation-
right s.

As before, the primary P-activator is

AP =<P,[T;r]>

so that the representation-right s is not required in the ticket
t=(b;R) in order to apply P to it. However, P itself cannot apply
Q to its argument unless R contains s as well.

In general, the T'-rights can be used in the tickets of T-
object as a means to control the internal operation of T-operators.
In the sense that the absence of such a right can prevent a T- --
operator from applying a certain T' operator to its argument.

Note that this important use of the representation-rights
would be disabled by amplification. If an operator P has the
ability to amplify its argument by adding representation-rights
to it, as is the case in Hydra, then it does not matter if the
operand ticket did not have such a right originally. It should
be pointed out that the designers of Hydra recognized this
problem, but only with respect to certain representation-
operators (see [Coh 75] p. 152). Indeed, their solution has been
to, effectively, cancel the amplificatoin for the representation-
rights which control these operators. However,, they failed to
see the more general nature of the problem which requires the
complete elimination of amplification.

7. CONCLUSION

The primary result of this paper is the demonstration that an
authorization scheme can be based on the principle of attenuation
of privileges. The obvious advantage of this principle is that
it makes it easier to foresee the consequences of the act of
granting somebody a certain privilege, due to the assurance given
by the principle of attenuation that this privilege cannot be
amplified. Moreover, the need to satisfy the principle of
attenuation gave as an insight into the general problem of
authorization, which may be more valuable than the original
principle itself.

First, the analysis of the incompatibility between the access-
control scheme and the principle of attenuation revealed a need
to make a distinction between "privileges" and "abilities". This
distinction has an intrinsic importance since it seems to be

278

essential for many real-life authority-structures that have to be
built into computer systems. Secondly, the fundamental difference
between privileges and abilities led us to the two complementary
types of control-objects which represent privileges with respect
to operators and their operands. This complementary of privileges
has a number of important implications which are farther discussed
in [Min 77, Min 77a]. Finally, it should be pointed out that the
operation-control scheme has been originally introduced for a
number of different reasons, including the principle of attenua-
tion, and that it is much more general than the version introduced
in this paper.

REFERENCES

[Coh 75] Cohen, E., and Jefferson, D. "Protection in the Hydra
Operating System," in Proc. Fifth ACM Symposium on Operating
Systems Principles; ACM Operating System Review 9,5, (Nov.
1975), pp. 141-160, ACM, New York, 1975.

[Den 76] Denning, P. J., "Fault-Tolerant Operating Systems",
Computing Surveys, Dec. 1976.

[Fab 68] Fabry, R. S. "Preliminary Description of a Supervisor
for a Machine-Oriented Around Capabilities", ICR Quarterly
Report 18, Univ. of Chicago, Chicago, Ill., 1968.

[Gra 72] Graham, G. S., and Denning, P. J., "Protection--
Principle and Practice", in Proc. 1972 AFIPS Spring Jt.
Computer Conf. Vol. 40, AFIPS Press, Montvale, N. J., 1972,
pp. 417-424.

[Jon 73] Jones, A. J., "Protection in Programmed Systems", Ph.D.
Thesis, Carnegie-Mellon Univ., Pittsburgh, Pa., June 1973.

[liar 76] Harrison, M. A., Ruzzo, W. L., Ullman, J. D, "Protec-
tion in Operating Systems", CACM, Aug. 1976.

[Lam 69] Lampson, B. W., "Dynamic Protection Structures", in
Proc. 1969 AFIPS Fall Jt. Computer Conf., Vol. 35, AFIPS
Press, Montvale, N. J., 1969, pp. 27-38.

[Lam 71] Lampson, B. W., "Protection", in Proc. Fifth Annual
Princton Conf. on Information Sciences and Systems 1971, pp.
437-443. Reprinted in ACM Operating Systems Review (Jan.
1974).

[Lam 76] Lampson, B. W., and Sturgis, H. E., "Reflections on An
Operating System Design", Comm. ACM 19, 5 (May 1976), pp.
251-266.

[Lev 77] Levin, R., A letter to Computing Surveys, June 77.
[Lip 77] Lipton, R. J., and Snyder, L., "A Linear Time

Algorithm for Deciding Subject Security", in J. of the ACM,
July 1977, pp. 455-469.

[Lis 75] Liskov, B., and Zilles, S., "Specification Techniques
for Data Abstractions", IEEE Trans. on Software Engineering
1, 1 (March 1975), pp. 7-18.

279

[Min 77] Minsky, N., "An Operation-Control Scheme for Authoriza-
tion in Computer Systems", to be published in the Int. J. of
Computer and Information Sci., 1978.

[Min 77a] Minsky, N., "Cooperative Authorization", Proc. of the
COMPSAC 77 (Computer Software & Applications Conference),
Nov. 77.

[Neu 75] Neumann, P. G., Robinson, L., Levitt, K. N., Boyer,
R. S., and Saxena, A. R., "A Provably Secure Operating
System", Stanford Research Inst. Final Report, Menlo Park,
Calif., June 1975.

[Red 74a] Redell, D. R., and Fabry, R. S., "Selective Revocation
of Capabilities", IRIA Internat. Workshop on Protection in
Operating Systems, Institut de Recherche d'Informatique et
D'Automatique, 1974 France, pp. 197-210.

[Sal 75] Saltzer, J. H., and Schroeder, M. D., "The Protection
of Information in Computer Systems", in Proc. of the IEEE 63,
9 (Sept. 1975), pp. 1278-1308.

[Wul 74a] Wulf, W. A.,; et al. "HYDRA: The Kernel of a Multi-
processor Operating System", Comm. ACM 17, 6 (June 1974),
pp. 337-345.

DISCUSSION

Lipton: I've always had very strong reservations about
Take/Grant Systems. If you formally change your words, substi-
tuting for example colors for the rights, then to the formal
machinery, it makes no difference. That clearly means that
something is missing in these theorems. We are reading in the
semantics of the situation. Do you think that is justified on
the basis of the model?

Minsky: I don't know. But maybe someone else has something
to add.

Rabin: Yes, my question is also concerned with semantics.
If you consider the system that was previously presented by Anita
Jones and now what you are doing, there is something which is
lacking. We are treating the alphas, betas and gammas as sets of
tokens of the sort. But, when Naftaly Minsky's presentation
came, we saw that the meaning of these tokens play a role. But
actually, I think that the basic issue is the issue of semantics.
Take, for example, the business of the right to drive and the
right to sell. Now the main problem there was the semantic
meaning of drive is not completely explicated. You really have
the right to drive and the right to grant the right to drive.
Now, I don't want to carry it on, but that is still different
from the right to grant the right to grant the right to drive;
and, these are entirely different situations. You must have
semantics for the token, semantics of which abilities and which
privileges of which these are special cases. For example, we
would have the ability to drive and the privilege of the right to
grant the right to drive. But, that is just an instance of
semantics, and I think that for full ramifications, they
necessarily would become much more complicated, as all real life
situations are.

281

Minsky: I first don't have any real hope that we can model
all real life situations. My own interest in this model comes
not from operating systems, but from information systems, which
are much more complex. However, I don't believe that you can
approximate very well that sort of complexity.

282

SECTION IV. THEORETICAL MODELS OF OPERATING
SYSTEM SECURITY

All of the issues addressed here can be traced to the
concepts discussed in section III. If the point of a design is
a system, the point of a theoretical study is insight; the kind
of insight that flows from answering questions that are very
carefully posed. In this section, there are four papers
treating theoretical issues; they pose questions concerning
security in computing systems and give some rigorous answers.
As we saw in section III, the theoretical answers are not always
what our practical intuitions say they should be. But then,
intuition is often faulty, and that's what helps to make the
theory so interesting.

In this final section, Richard Lipton and Timothy Budd open
the selection of theoretical contributions by showing us that
there is an efficient way to decide safety for a wide variety
of protection systems. The requirement is that the systems must
be related in certain ways. Ellis Cohen notes the various
'possibilities for information flow in sequential programs and
gives an elegant formal treatment of his ideas. Michael Harrison
and Larry Ruzzo extend their well-known investigations into a
particular security model by giving a characterization of the
relative "power" of different operations allowed in, the model.
In the final paper, Richard Lipton and Larry Snyder prove the
surprising equivalence of a well-studied security model and an
apparently unrelated model for synchronizing parallel processes.

I

ON CLASSES OF PROTECTION SYSTEMS

Richard J. Lipton
Timothy A. Budd

Yale University
New Haven, Connecticut

I. INTRODUCTION

Interest in the modeling and formal analysis of operating
system protection mechanisms has increased in the last few years
[2-7, 11-14]. In [7], it was shown that for arbitrary systems
the sort of questions we are interested in asking, such as whether
rights can be passed to unauthorized persons, are generally
undecidable. On the other hand, in [12] it was shown that for a
system which had previously been proposed in the literature
[4,11], such questions could be decided in linear time.

In this paper, we will show that the ability to decide the
safety question quickly can be proved for a very large class of
operating system protection models.

Ii. THE MODEL

Our paradigm of a protection system will he as follows:

We are given V objects in the system (X 1 ,...,Xv). In a

specific instantiation of the model each object could represent,
for example, a file or a process; however, we abstract this idea
by simply stating that each X. is of type T

i
, which is an element

of some finite alphabet T.

Between any two objects, there may be an arbitrary number
(possibly empty) of rights, where each right is indicated by an
element from some finite alphabet E.

285

At any time, we indicate the current status of the system by
a graph G where each object is represented by a vertex and each
right by a labeled directed arc.

The differences we will emphasize in classifying protection
systems will be in the rules they use for adding or deleting arcs
from an existing graph. These we will call the transition rules.

If starting from initial configuration by a finite number of
applications of the transition rules, we can connect a vertex X
to a vertex Y by an arc labeled a, we will say that in the initial
configuration X can a Y.

We will not consider systems which have rules roughly equiva-
lent to "If I have a right to something, I can give it to anyone
I choose", or graphically,

•

_> rAr

Such systems we can refer to as "loose". For these systems,
the safety question tends to be either trivial or nonsensical.
For example, if I can obtain the a right to Z, then anybody can
obtain the a right to Z.

The hazardous effects of having a loose protection system
have generally not been recognized; for instance, all the examples
given in [4,7] suffer from being loose.

Notice that there is a simple isomorphism between systems
represented in this graphical format and systems represented in
the access matrix format of [4,6,7].

III. SAFETY

There are two questions we can ask with respect to protection
system [7].

Question 1: The safety question.

Given a protection system G and two objects X i and X. in that
system, if we introduce the right of Xi to a X, what otter

objects can thereby obtain the rights to a Xj .

286

Question 2: The extended safety question.

Given a protection system G and two objects X. and X. in
1 	J

that system, if we introduce the right of X. to a X., what
i 	J

potential changes will this produce in the entire system.

In [7] it was shown that for arbitrary protection systems
these problems are undecidable. For certain restricted types of
systems they were able to give decision procedures for the safety
problem, however their procedures worked in exponential time.

On the other hand, in [12] a specific system is described for
which these questions can be decided very quickly.

The remainder of this paper will be devoted to the classifi-
cations of differing protection systems, indicating some classes
for which polynomial or linear time results can be shown for the
above-mentioned problems.

IV. GRAMMATICAL PROTECTION SYSTEMS

We will call a protection system grammatical if for each
right act, there is a grammar L and start symbol S such that
given two vertices X and Y, X can a Y iff X and Y are connected
by a path such that the concatenation of the right symbols on
that path form a word in L(S).

We will illustrate this concept by demonstrating a class of
protection and showing them to be grammatical, from this we can
obtain a polynomial time solution to the extended safety question.

Working within the model described previously, we will define
a General Arc Moving system to be a protection system with
transition rules of the following form.

a

—7;N\ .>)

Ti 	T. 	T
k 	

T
1 	

T. 	T
k

	

3 	 j

Figure 1

287

where the types of T
i
, T

j
and T

k
indicate the necessary types

for the vertices and a, 13 and y are rights. The directionality
on the arcs must be specified, but they are here omitted for
generality.

We obtain a grammar L by defining a new production for each
rewriting rule. For each rule such as that in figure 1, we define
a production of L as follows. If they do not already exist, we
introduce three nonterminals, A, B and C 6 TxRxT such that A
corresponds to an arc labeled a between vertices of type T i and

T
k , and in a similar fashion, B and C are defined. We then have

the production 	
A ± BC

Note that the nonterminals A, B and C encode both the nature
of the right and the type of vertices that the right connects.
For each nonterminal A, we create its terminal counterpart a and
add the production A a.

We then have the following lemma:

Lemma 1: Given two vertices P and Q of types T and T ,

respectively, P can a Q iff there exists a path between P and Q
in L((T ,a, T)).

Proof: If P and Q are connected by a path with word in
L((T ,a, T)), then the derivation of that word gives us a con-

struction method by which we can join P to Q by an arc labeled
a, hence P can a Q.

The proof the other way will be by induction on the number
of applications of the transition rules which lead to P being able
to a Q.

If this number is zero, that is, P had the rights to a Q in
the original graph, then we trivially have our result. Hence, we
assume P did not originally have the rights to Q, and that it
took n applications of the transition rules for P to obtain that
right.

The very last application of a transition rule must have been
for P to get the ability to a Q from some vertex X (see figure 2).
This must have been permitted in virtue of some right (3 between
P and X and some right y between X and Q and there being a tran-
sition rule as shown in figure 1.

288

a

S • 	• 	-> 	
P 	X 	Q 	P 	X 	Q

Figure 2

Now it took less than n applications of the transition to
form the arcs between Q and X and between X and P, hence by the
induction hypothesis there must have been a path between P and X
in L(T ,8, T

x
) and between X and Q in L(T ,y, T). But associated

with the transition rule shown in figure 2 is the production
(T ,a, T) 	(T

P'
 8, T

x
)(T

x
,y, T). Hence, it must be the case

that Q and P were connected by a path with word in (T ,a, T).

We can note the similarity between grammars in this form and
context-free grammars in Chomsky Normal Form [9]. In view of
this, and the relationship between parsing and protection systems
demonstrated by lemma 1, it is too much to expect the safety
question for arbitrary arc passing systems to be answered in
linear time. However, we can demonstrate a polynomial time
result as shown by the following theorem.

Theorem 1: The extended safety question can be answered for

a general arc moving protection system in 0(V
2.81

).

Proof: For this example, we assume the protection network is
kept in a V by V matrix (call it M), similar to the access matrix
of [3,6,5]. We then define a matrix "multiplication" operation
by substituting production reduction (BC = A iff A+BC) for scalar
multiplication and set union for scalar addition in the standard
matrix multiplication algorithm.

We next observe that since the lower triangular portion of M
is the inverse of the upper triangular part, by suitably adding
production rules, we can just work with the upper triangular part
of M. Hence, we have reduced the problem to that of finding the
transitive closure of an upper triangular matrix with respect to
our matrix multiplication operation. Valiant [15] has shown how

2.81
this can be accomplished in 0(V) operations.

To give a solution to the extended safety question, we
simply perform this operation twice, once with and once without
the additional arcs. Comparing the results then gives us our
answer.

289

Example 1: A non-regular Arc Passing System.

In this example, we are just concerned with the movement of
read privileges. Assume we have a right called the indirect
right to Y, and Y can read Z, then in effect X can read Z. Next,
there is the request right, which says that if X can request of
Y, and Y has indirect rights to Z, then X can obtain indirect
rights to Z. (Notice here, as in the take grant system [12], we
take the worst case approach by assuming requests are always
granted). Finally, if X has read rights to Y, and Y has request
rights to Z, X can obtain request rights to Z.

The transition rules are shown in Figure 3. If we let A
represent read, B indirect and C, we obtain the following grammar:

A BA

B CB

C AC

This obviously is an arc passing grammar, hence theorem 7
gives us a method for solving the safety question. Furthermore,
it can be shown [8] that this grammar is not regular, hence the
2.81

V 	is asymptotically the best upper bound we have on the
safety question for this system.

	 = a 	> 	•

• 	 q

	 • =>

Figure 3

290

V. REGULAR GRAMMATICAL SYSTEMS

If it happens that for each right the language generated by
the grammar associated with a grammatical protection system is
regular, we will say the system is a regular grammatical system.

Regular grammatical systems are important on account of the
following theorem.

Theorem 2: For regular grammatical systems, the safety
question can be answered in linear time in the size of the pro-
tection graph.

Proof: We prove this result by appealing to the fact that
regular grammars can be recognized by finite state automata.
Assume for a given G, we have an automata with U states that
recognize L(G). We then construct a new graph with UxV vertices,
where there is an arc from (X.,U.) to (Xk ,U) iff there was an

arc from X
i

to Xk in the original graph, and if we were in state

U.
3
 at the point X. that arc would carry us to state U .

Starting from the vertex X and using depth first search on
the original graph, we see we can construct this new graph in
0(E) operations. Again, using a depth first search on the new
graph, we mark those vertices we encounter which are in designated
final states for the automata. These are then the only vertices
which can obtain rights to X. Again, we have a complexity of
0(E) operations.

We wish then to characterize protection systems which have
regular languages.

A class of grammars which seem to arise quite frequently are
what we call non-discriminating grammars. Informally, we will
say a protection system is non-discriminating if all the transi-
tion rules are of the form "If X and Y are connected by an arc
With some right y, and Y has any right to Z, then X can obtain
that right to Z."

The name is meant to imply the fact that we don't discriminate
between rights in the second context.

Formally, we will say a protection system is non-discriminating
if it has a non-discriminating grammar. We define a non-
discriminating grammar as follows.

There are five types of nonterminals, A1 ,...,Aka ,B1 ,...,

B
kb'

C...,C
kc
,D...,D

kd
and Z. We allow productions of the

291

following forms (greek letters represent strings of terminal
symbols).

Any nonterminals of type A, B, C or D can produce a finite
string of terminal symbols.

	

Al-0- a .. 	B. -4- a 	. 	C. 	a .. 	D. 	a .. 1 	aij 	1 	bij 	1 	cij 	1 	dij

A's, B's, C's and D's are allowed productions of the follow-
ing forms:

Ai 	BA. 	B. -■ B.y

	

1 	 1 	3

C. 4 ZA. 	C. ± ZB.

	

1 	J 	1 	.3

C. ±A. 	C. 4 B.

	

1 	3 	i 	3

D. -0- A.Z 	D. ± B.Z

	

i 	3 	1 	3

D. -■ A. 	D. -■ B.

	

i 	3 	1 	j

For Z, we allow productions of the following form:

Z -0- A. 	Z -0- B.

Z 	C. 	Z 	D.
1

Z 	C
i
 D.

Z 	ZZ

A A

Theorem 3: Non-discriminating grammars are regular.

Proof: We wish to show that starting from any nonterminal,
the language produced from this grammar is a regular event. The
proof for nonterminal of the first four classes quickly reduces
to showing the language produced from Z is a regular event,
hence we show only this case.

Notice first, that the nonterminals A (B) form by themselves
a right linear (left linear) language and hence associated with
every nonterminal A. or B

i
, we have a regular event which repre-

292

sents the language that can be generated from that start symbol.

Let us consider first the set of sentential forms that can be
generated from Z using only productions of the type
Z 4 A., Z 4 B., Z 4 C. and Z 4 D..

1 	1 	1 	 1

Let us construct a regular event L as follows. If there are
productions Z -;

1
A
j
Z or 1

then both w and v are in L, and nothing else is in L. We can do
a similar trick with C. to form a regular event R; finally, we

can define a regular event F as follows: If there are productions
Z 4 A.

1 and Ai 	 1 ,
 => w then w is in F, similarly for B. C.
	1
and D..

It should be obvious that the set of sentential forms Z can

generate is L (Z!F)R . That is, everything in this form can be
generated from Z (using only the productions we have indicated)
and nothing else can.

Now assume we have a production Z 4 ZZ (the proof in the case
where we don't have this production is easier and won't be given
here). Consider what can happen with one application of this
rule.

* *
Z => L ZR

* *
=> L ZZR

* * 	* 	* 	* *
=> L (L (Z!F)R)(L (Z!F)R)R

* *
=> (L (Z!F)R)(L (Z!F)R)

A simple induction argument can be used to show that the set
of sentential forms Z can generate is then (L* (Z!F)R*) * .

We now wish to add the productions Z 4 C.B.
1

Let us look at what we can generate with one application of
this rule.

293

* * * * * 	* *
Z => (L (Z!F)R) L ZR (L (Z!F)R)

* * * 	* * 	* *
=> (L (Z!F)R) L C.Dj R (L (Z!F)R)

* * * 	* * 	* *
=> (L (Z!F)R) L ZN

1
N
2
ZR (L (Z!F)R)

* * * 	* * * * * 	* *
=> (L (Z!F)R) (L (Z!F)R) N

1
N
2
(L* (Z!F)R) (L (Z!F)R)

=> (L (Z!F)R*) *N
1
N
2
(L (Z!F)R*)*

Associated with each nonterminal pair N1N2 is a regular event.

Let us call the union of all such regular events W. Hence, we
have that the set of sentential forms Z can generate with one
application of a production Z + C iDj is simply

(L (Z!F)R
*

)
*
W(L

*
 (Z!F)R

*
) *

Let Ar be A repeated r times, with A0 = A. We now want to
show that the set of sentential forms generated by Z using n
applications of productions of the form Z + C.B. is

((L
*
(Z!F)R

*
)
*
W)

n
(L

*
(Z!F)R*)*

Which is equal to

= (L (Z!F)R*)* (W(L(Z!F)R
*

)
*

)
n

The proof is by induction. We have just shown it true for 1,
hence we assume it is true for n and show it is true for n+1.

First, we note that if P,Q <= n then the set of sentential
forms we can derive from

* * * *
(L ZR)(L ZR)

where the left Z is expanded using p applications of the rule
and question and the right Z using q, is just

* * 	* * 	* 	* * p * * * 	* * 	* 	* * *
L (L (Z!F)R) 	(Z!F)R)) R L (L (Z!F)R) (W(L (Z!F)R)) R

= ((L (Z!F)R*)* W)
p
 (L

*
 (ZIF)R*)* (W(L

*
 (Z!F)R*)

*
)'

= (L (Z!F)R*)* (W(L
*
 (Z!F)R*)

*
)r

294

From this we see that the set of sentential forms that can be
generated using n applications of the productions starting from

* * 	 * * * * (L (Z!F)R) is just (L (Z!F)R) (W(L (Z!F)R)) n

To show the induction step, we note that there must be a
first time a production Z + C.D. is applied. Following this, as

we previously observed, we will have a sentential form in

Z => (L (Z!F)R
*

)
*
W(L

*
 (Z!F)R

*
) *

Now let us assume there are p applications of the productions
in question to the left of the W and q to the right and p+q=n.
From what we have seen before, this means the set of sentential
forms we can generate is

* * 	* * 	* 	* * p * * 	* 	* * 	* 	* * n * *
L (L (Z!F)R) (W(L (Z!F)R)) R) W(L (Z!F)R) (W(L (Z!F)R))'R)

* 	* *n * 	* 	* 	* * 	* 	* * n
= ((L (Z!F)R) W)r(L (Z!F)R)W(L (Z!F)R) (W(L (Z!F)R))"

* * * 	 * * ,-, * 	* *
= ((L (Z!F)R)W)

p+1 	*
((L (Z!F)R) Wr(L (Z!F)R)

p+q+1, * 	* * (L (Z!F)R) = ((L
*
(Z!F)R*)* W)

Hence, the hypothesis holds.

Since we cannot bound the number of times productions of the
form Z + C.B. will be used, we replace the exponent by a star.

Adding the final production Z + A, we then have that the set of
words which Z can produce lie in the regular expression

((L (A!F)R*)* W)
*
 (L

*
 (A!F)R*)*

We note that L's, F's, R's and W's can be computed in any
quantity in any order, hence the regular event we derive is just

(L!F!R!W) *

Example 2: The grammar associated with the subject/object take
and grant system [12] is an example of a nondiscriminating grammar.
Given the definition of the nonterminals shown in figure 6, it can
be demonstrated that we have the grammar shown in figure 7. If
we assume A is our starting symbol, we can eliminate productions
3, 4, 6, 8, 11, 12, 14 and 16, thereby giving us a nondiscrimina-
ting grammar.

295

Following the mechanical transformations used in the proof
of the theorem, we see the regular expression associated with A
is as follows:

(bd p ! bd
*
 ph

*
 g ! jh g ! bd ih*g 	! 	e ! bd c 	! 	e 	! 	fh g 	! j 	!

* 	*
bd k ! m ! nh g) 	(a ! bd c)

These methods provide us with a means for giving an alterna-
tive proof of the theorem 2 in [12].

A = 	(S,r,S) B = 	(S,r,O) C = 	(O,r,S) D = (O,r,O)

E = 	(S,r,S) F = 	(S,r,O) G = 	(O,r,S) H = 	(O,r,O)

I = 	(S,w,S) J = 	(S,w,O) K = (0,w,S) L = (00,7,0)

M = 	(S,w,S) N = 	(S,w,O) 0 = 	(0,w,S) P = (0,w,0)

Figure 6

1. A 	ZR
a

R
a

4-a 	R
a

4- Rb c

2. B 	ZRb Rb 4- Rbd 	Rb 	b

3. C 4- OA

4. D -0- OB

5. E 	Le
Z L

e
4- e 	Le 	

fL
g

6. F 	EJ

7. G->L2
g

L' ->hL 	L 	g
g 	g 	g

8. H 	GJ

9. I -0- ZRi Ri 	i Ri 	Rbk

10-34-z11R-3--"-÷Rb t

11. K OT

12. L 	OJ

1

296

13. M4LZ L --m L
m

-4- nL

	

m 	m g

14. N 4 MJ

15. 0-4-LZ L 	L
o
4 pL

	

o 	o g

16. P 4 OJ

17. Z-4- ZZ 	Z+E 	Z÷M Z-4- JG Z--BO Z 4 A

Figure 7

Non-Grammatical Protection Systems

As useful as the concept of grammatical protection systems is
to obtain linear time results to the safety question, a great
many systems described in the literature fail to possess this
property [2,5,13].

In this section, we wish to show that certain systems, while
failing to be truly grammatical, are sufficiently close to
grammatical systems to enable us to utilize the results of the
last section.

We will say a protection systems is near-grammatical if for
each right a there is some regular expression E a such that a

necessary condition for a vertex X to a a vertex Y is that they
be connected by a path with word in E a ; furthermore, this condi-

tion becomes sufificient if at certain identifiable points in the
regular expression we check that certain more global conditions
are satisfied. We assume these conditions do not involve the
vertex X, and they can be verified in constant time (i.e.,
independent of the number of edges in the graph).

Theorem 4: The safety question for Near-Grammatical systems
can be answered in linear time in the size of the protection
graph.

Proof: This theorem is proved in a similar fashion to the
previous theorem 8. We place "finger" symbols in the places in
the regular expression where the conditions are to be verified.
Again, we assume to have a finite state automaton with T states
and a protection graph with B vertices. Again, we construct a
new graph with BxT vertices, only this time we connect an arc
from (G.,T.) to (G

k'
T) iff

J

297

1) there was an arc from G
i

to G
k

in the original graph, and if

we were in state T. at the point G that arc would carry us to
3

state T
2.,

or,

2) one of the "finger conditions" is true for G,. In this case,
k = i and T t is the state we would transfer to having accepted

that "finger" in the state T..

Again, having constructed the graph the result is then a
standard reachability argument from automata theory.

Example 3: In many current protection systems having a right to
an object does not, as we have been assuming, automatically allow
you to pass that right on to another individual. For instance,
in the Multics system an individual can have access to a file
only if his name is written on a list of individuals who are
permitted to have that right. Therefore, if X has certain access
privileges, another vertex Y, no matter what relationship it may
have with X, cannot obtain those privileges . without somehow
getting its name on the list of permitted individuals.

We model this situation by means of a special right called
control [2]. Having control rights over X could, for instance,
mean having the ability to write on the list of people who can
access X.

We will use the subject-only take and grant transition rules
of [12], only we include the concept of control. The control
privilege cannot be passed. The rules are shown in Figure 8.

That the system is not grammatical can be easily demonstrated.
In the first graph in Figure 9, X can obtain the read rights to
Z, but it cannot do so in either of the two following graphs,
thereby demonstrating that the ability to obtain rights does not
depend solely upon the nature of the path between the two vertices.

We can observe that for a c (r,w), X can obtain a rights to Y
iff
1) X and Y are connected by a path in (r!w) and
2) every vertex on that path has control rights to Y.

This system is obviously near-grammatical. Hence, the safety
question can be answered in linear time.

298

a

r,c 	a
=> 	

r,c 	a

a

w I c „ a 	 w c 	a K) =>

Figure 8

r 	r 	r,c
x •). z

r 	r 	r,c
x •

r
x 	 c 	z

Figure 9

CONCLUSIONS

The security of computer systems is a topic which appears will
be of increasing concern in the near future. We feel that true
understanding and trust in access privilege mechanisms which are
proposed can only be achieved by formal analysis of the capabili-
ties of these systems.

We have attempted to form a basis for the study of protection
systems by classifying transformation rules which allow for formal
analysis. In doing so, we are trying to fill in the gap between
a specific system for which linear time results can be demon-
strated [12], and very general systems for which problems are
known to be undecidable [7].

We hope that further research will bear out the utility of
these studies by allowing us to model protection systems which are
actually being used today. We feel the concept of a grammatical
or near-grammatical system is natural and justified, since,
disregarding those systems which we are labeling "loose", if I

299

have a right and I wish to give it to you, I can only do so in a
sense by passing it from hand to hand until it reaches you.
Hence, to a certain extent, my ability to pass rights must
depend upon the nature of the path between us.

It appears that further research along these lines will have
important consequences not only for the formal analysis of
abstract protection system models, but also for the practitioner
who must design and implement actual access privilege mechanisms.

REFERENCES

[1] Aho, A. V., Hoperoft, J. E. and Ullman, J. D., The Design
and Analysis of Computer Algorithms, Addison-Wesley, Reading,
Mass., 1974.

[2] Bell, D. E. and LaPadula, L. J., Secure Computer Systems,
Vol. I. Mathematical Foundations, Vol. II. A Mathematical
Model, MITRE Corporation Technical Report MTR-2547, 1973.

[3] Dennis, J. B. and Van Horne, E. C.,"Programming Semantics
for Multiprogrammed Computations", Comm. ACM 9, 3 (March
1966), pp. 143-155.

[4] Graham, G. S. and Denning, P. J., "Protection Principles and
Practice", AFIPS Conference Proceedings, 40:417 -429, 1972.

[5] Graham, R. M., "Protection in an Information Processing
Utility", Comm. ACM 11, 5 (May 1968) pp. 365-369.

[6] Harrison, M. A., "On Models of Protection in Operating
Systems", 4th Symposium on Mathematical Foundations of
Computer Science, (1975). Reprinted in Lecture Notes in
Comp. Science No. 32, Springer-Verlag.

[7] Harrison, M. A., Ruzzo, W. L. and Ullman, J. D., "Protection
in Operating Systems", Comm. ACM 19, 8, (August 1976), pp.
461-471.

[8] Harrison, M. A., Private communication.
[9] Hoperoft, J. E. and Ullman, J. D., Formal Languages and Their

Relation To Automata, Addison-Wesley, Reading, Mass., 1969.
[10] Johnson, D. B., Algorithms for Shortest Paths, Ph.D. Thesis,

Cornell University, 1973.
[11] Jones, A. K.', Protection in Programmed Systems, Ph.D.

Thesis, Carnegie-Mellon University, 1973.
[12] Jones, A. K., Lipton, R. J. and Snyder, L., "A Linear Time

Algorithm for Deciding Security", Proc. 17th FOCS (1976).
[13] Saltzer, J. H., "Protection and The Control of Information

Sharing in MULTICS", Comm. ACM 17, 7 (July 1974), pp. 388-402.
[14] Tsichritzis, D., "Protection in Operating Systems", Infor.

Proc. Letters 1 (1972), pp. 127-131.
[15] Valiant, Leslie G., "General Context-Free Recognition in

Less Than Cubic Time", JCSS 10 (1975), pp. 305-315.

300

INFORMATION TRANSMISSION
IN SEQUENTIAL PROGRAMS

Ellis Cohen

University of Newcastle upon Tyne
Newcastle upon Tyne

England

I. INTRODUCTION

As the result of exeuting a sequential program, information
can be transmitted from certain variables to other variables. A
number of authors have considered the problem of determining the
information paths in a program. Their methods have largely been
intuitionist. This paper provides a formal approach to informa-
tion transmission so that information paths can be determined
precisely given the formal semantics of a program.

More importantly, the formal approach permits us to answer
more selective questions about information transmission. For
example, we may not care if output variable b reflects whether
input variable a is odd or even. However, we might like to show
that b depends upon a in no other way. To show this, we assume
first that a is even - and then, that a is odd - and show that
under neither assumption is information transmitted from a to b.
This requires a formal method for describing information trans-
mission given an initial constraint (assumption) concerning the
value of the input.

Actually, this paper describes two such formal approaches.
The first, Strong Dependency, is based on classical information
theory, and has been used [Cohen 76, 78] to show that undesirable
information paths can be eliminated (e.g. enforcement of confine-
ment [Lampson 73]) in multi-access computer utilities.

The Strong Dependency approach considers whether variety can
be conveyed as the result of program execution. For example, in
executing the program P

P: b t a div 10 (integer division)

301

information is transmitted from a to b since variety (i.e.
possible different values) in a (e.g. 17 or 34) is conveyed
(i.e. resulting in different values) to b (e.g. 1 or 3, respect-
ively).

The second approach is a deductive one. To determine whether
P transmits information from a to b, we ask whether an observer
of b (seeing the resulting value) of b after P's execution can,
armed with a listing of P, deduce anything about the initial
value of a. In the example above, if b's result is observed to
be 3, it can be deduced that a initially lies between 30 and 39.
Given an appropriate definition of what it means to deduce some-
thing about a's initial value (a point to which I will return
below), strong dependency and the deductive approach can be shown
to be formally equivalent.

The appendix is concerned with proof rules for proving the
absence of information paths in sequential programs. Such rules
have previously been discussed by Denning and Denning [77],
however, as noted above, these have been derived intuitively.
Many of their ideas have impacted the development of the proof
rules in this paper. However, the proof ru1e4 discussed here
have been derived formally from the basic definition of strong
dependency. Moreover, the proof rules take into account the fact
that statements may be executed in contexts where certain con-
straints are known to hold.

Millen [76] has previously noted that assertions can eliminate
certain information paths. In particular, if an assertion
guarantees that the Boolean test in a conditional statement always
evaluates to the same truth value, then possible information
transmission corresponding to the branch that will never be taken
can safely be ignored. This rule is formally derived from strong
dependency in this paper, and in fact, can easily be incorporated
in the Dennings' system as well.

But, this paper shows that assertions may eliminate informa-
tion paths in a more general way. A variable, actually accessed,
may be ignored as an information source, if the constraint imposed
by the assertion ensures that its value will have no effect on
some result. For example, execution of [b 	a*m] cannot trans-
mit information from a to b if m is constrained to be zero. The
proof rules discussed in this paper allow such information sources .
to be eliminated.

302

The strong dependency formalism yields a theory that is
mathematically tractable and can be used to derive the intuition-
istic axioms used by Millen and Denning and Denning.
Unfortunately, the theory has a number of drawbacks. When certain
sorts of initial constraints are used (those formally described as
relatively non-autonomous) - strong dependency indicates an
absence of information transmission when our intuition indicates
that information is indeed transmitted. We'll find that the
difficulty is inherent in the information theoretic approach -
however, it is possible to produce an alternate deductive
approach based on projective logic that eliminates the difficulty.

A closer look at the deductive approach raises additional
questions and forces us to distinguish between definitive and
contingent information transmission. An observation of b may
permit a definitive deduction concerning a. In the example
above, the observation that b was 3 permitted the deduction that
30 < a < 39 which does indicate something definitive about a's
value. However, the program

P: if a = m then h -4-- 3 else b 	0 fi

the observation that b is 3 only allows the deduction that [a = m]
which does not give any definitive information about a, but it
only gives information about a's relationship to other variables
(in particular, m). Any information discovered about a alone
must be contingent on additional knowledge about other variables
(e.g. 30 < m < 39 would allow the definitive deduction that
30 < a < 39). This paper will formalize the notions of definitive
and contingent information transmission and will show that in
instances where strong dependency can be appropriately applied
(i.e. with relatively autonomous constraints), its definition is
equivalent to one based on contingent information transmission.

The paper closes by considering deductions based on partial or
incomplete information and by reflecting briefly on the diffi-

• culties of measuring information transmission.

II. SYNTAX AND SEMANTICS

This paper is concerned with defining information transmission
in sequential programs, based on formal semantic methods. The
semantics are based on a denotational model, following the style
to Scott and Strachey [71]. In particular, the entity a is used
to represent the entire data state; execution of a statement is
modelled by application of a function operating on a to yield a
new state.

303

A very simple programming language will be defined. It uses
integer variables only, though expressions may yield Boolean
values for use in Boolean tests. Constructs are provided for
assignment, sequencing, conditional evaluation and for while loops.
There are no procedures.

Since the naming context cannot change, variable names always
refer to the same object. As a result, the state may be divided
into components, each representing a variable. c.a represents the
value of variable a in state c, and we write of = c2 to mean that

a

states of and a2 are identical except possibly for the value of a
(a similar notation may be found in Hoare and Lauer [74]).

More generally, if A is a set of variables, then o.A is a
list of the values of each variable a e A, (according to some
fixed ordering - e.g. lexicographically by variable name) so that

al.A = a2.A iff (VasA)(al.a = c2.a)

Also of = A a2 indicates that of and c2 are identical except

possibly for the values of any number of the 'variables named in
the set A. Formally

Definition 2 - 1 	al x a2

(VaVA)(al.a = 02.a)

Given two states of and a2, we will find it useful to define a
state a*, very much like al, except that its value for variable
a (or more generally some set of variables A) is taken from a2.
Formally

Definition 2 -2 	al /R. a2

a* where a* = A of & a*.A = a2.A

We will ignore issues of handling exceptions such as overflow
(for example, by assuming modulo arithmetic). Their effects on
information transmission are discussed in Denning & Denning [77]
and Denning, Denning & Graham [74].

304

The syntax of our simple programming language is:

<program> ::= <sequence>

<sequence> ::= <statement>

<statement> ; <sequence>

<statement> ::= <assignment>

<conditional>

<loop>

<assignment> ::= <variable> 	<intexpr>

<conditional> ::= if <boolexpr> then <sequence> fi

if <boolexpr> then <sequence>else<sequence>fi

<loop> ::= while <boolexpr> do <sequence> od

We won't explain the semantics of evaluating integer and
Boolean expressions in detail. Their evaluation is presumed to
involve no side effects which alter the state. We write [E](a)
to mean the value of expression E in state a, so for example,

> a+3](a) = a.b > a.a + 3

If P is a program, the [P] is the corresponding function
whose application to an initial state a results in the final
state [P](a) resulting from P's execution. The brackets will be
elided where no confusion will result. P(a) may be determined by
the following rules:

[S1; S2] = [S2] o [S1]

("o" is ordinary function composition)

[v t E](a) = ar. [E](a)

[if t then S1 else S2 fi](a) =

[t](a) -4- [Sl](a), [S2](a)

[if t then S fi](a) =

[t](a) 	[S](0), a

Intuitively, execution of while t do S od is equivalent to
sequentially executing if t then S fi as long as t evaluates true.
Subsequent (even infinite) execution of if t then S fi will have
no further effect on the state. Thus, we can define while . t do S
od to be the optimal fixed point [Manna & Shamir 76] of

T(f) <= [if t then S Li] o f

305

306

(Note: The optimal fixed point is required since the least fixed
point is undefined. The more usual least fixed point definition
can be written as

r(f) <= A0.([0(0) 	(f0[S])(0), a) 	 •)

Finally, we note that if an assertion 0 (e.g.[b > a + 3]) is
to be satisfied after execution of statement S, then 00S must be
satisfied prior to execution of S. This follows since, for an
initial state a, 0(S(0)) (equivalently (00S)(0)) means that
holds after S is execution. OS is thus the corresponding con-
straint on the initial state and is the weakest precondition that
permits 0 to hold after execution of S. As a result, Hoare's
notation [Hoare 69], 01 {S} 62, may be written as 01 D 4)2oS.

III. STRONG DEPENDENCY

In information theory, information can be transmitted from a

source a to a destination b if variety can be conveyed from a to
b. If a may initially take on a number of different values,
resulting in a number of different values in b after execution of
P, then variety is conveyed from a to b as a result of P's
execution.

To show that information transmission is possible, we need
only find two different values of a that yield different values
for b after execution of P. We find the different values by
finding two states al and 02 that differ at a alone, that is,
al a = 02. If they differed elsewhere, we could not be sure that

any resulting difference in b after execution of P was due to a.

b takes on different values after execution of P if
P(a1).b # P(a2).b. Formally we say b strongly depends on a over
execution of P, writing it as

Definition 3- 1 	a >b

(401, 02)(01 : 02 	P(01)%b # P(02).b)

More generally, we may be concerned whether information can
be transmitted from a set of variables A to b. In this case, ws
will look for two states whose values may differ at one or more
of the variables in A. Formally

Definition 3- 2 	A El>

(R01, 02)(01 7 02 A P(o1) .b # P(ct2) .b)

Programs may be guaranteed to execute in an environment in
which some entry assertion is known to initially hold true. We
have noted that such a guarantee may eliminate certain informa-
tion paths. For example, consider the program

P: if al > a2 then b 	a fi

Information can be transmitted from a to b. However, if the entry
assertion [al < a2] is known to hold, the "then" part can never
be executed and information from a to b is prevented. Formally,
we define

Definition 3 - 3 al A u2

(al) A (c11 =
A

u2) 	0(u2)

0:5 Definition 3-4 	A 	b

ct'

(631, (12)(01 I u2 	P(a1).b # P(a2).b)

The difference between this definition and the previous one
is that in looking for two states that initially differ at A and
produce different results in b, we only consider states that
satisfy the entry assertion 0. •

In the example

P: if al > a2 then b a fi

0: al < a2

we can show al

even though

Adding an entry assertion reduced the information transmitted.
In general, any addition or strengthening of an entry assertion
may reduce (and can never increase) information transmission.

307

Formally

Theorem 3 -1:

If 41 D 4)2

Then A 0), b 	A

4>1

A. Selective Dependency

Often, we are not concerned if information can be transmitted
from one object to another as long as specific "portions" of the
information are protected. Consider the program

P: b f x + (a mod 4)

Note that b does depend on a (a b), but only upon the low

order two bits of a. We can prove that the rest of a is protected
from b by using strong dependency with a constraint.

Suppose we fix the value of the 2 low order bits of a, for
example, to 3. Formally, assert

4): (a mod 4) = 3

We can show that'—i a

4>

Even though P does convey variety from a to b, 4) eliminates all
the variety that is conveyed.

There are four possible values that may be taken by the 2

lower order bits of a - 0,1,2 and 3 - and this expresses the
total variety in these 2 low order bits. To show that this is
all the variety in a that is transmitted to b, we must show that
no matter how this variety is eliminated (i.e. by constraining
the two lower bits of a to be any one of these 4 values), no
information can be transmitted from a to b. The four possible
values correspond to four constraints

: 	(a mod 4) = i 	 (i - 0,1,2,3)

308

We have to show that

(Vi)(-lap" b)

4i

In general, {O} might represent a set of constraints that

cover the variety in some portion of a source a. Over execution
of P, b is selectively independent of A given {0

i
} if

-1A 	b for each O.. There are two requirements for

selective independence which can be formalized. First, the 4. 's

must cover all the variety in the selected portion of the source
(just as in the example above, (a mod 4) ranged from 0 to 3).
A way of guaranteeing this is to ensure that given any system
state, the value of the selected portion in that state must be
covered by one of the 4.'s. Formally

Definition 3 - 5 	{y is a cover

(Va g 1)0 i (u))

Second, if A is an information source, and if {4)
i
1 covers

the variety in some portion of A, then each of the O i 's must only

namevariablesinA.Intheexampleabove,theWs only con-

strained the value of a, not the value of any other variables.
Formally

Definition 3-6 	p is A-strict

(Val, 02)(al.A = 02.A 	p(al) = p(02))

That is, p is A-strict if changing the value of variables not in
A (ol.A = a2.A) has no effect on the truth value of p.

309

1

Finally we define

Definition 3-7 	b is selectively independent of
A over P wrt iy.

(1) 4.} is a cover

(2) (11i)(43. i. is A-strict)

(3) (Vi)(-1A l'■; b)

B. Separation of Variety

As the example above illustrated, b may be selectively
independent of A wrt {(1)} even though

A]2> b - in effect, because the (1) i 's eliminate the variety in

A. If the 4.'s did not eliminate any variety in A, then

(Vi)(-1A 112> b) should guarantee -1A 02> b. This argument is

11)i

made more forcefully in [Cohen 76] and is the basis of a tech-
nique called Separation of Variety.

If the 4 1 's do not eliminate any variety in A, then we can

say that they are A-independent. Formally

Definition 3- 8 	p is A-independent

(Val, a2)(al x a2 	p(al) = p(a2))

In other words, p is A-independent if changing the value of
A in any state (al x a2) has no effect on the truth value of p.

310

Now we can state

Theorem 3-2: (Separation of Variety)

If 10.1 is a cover

and (Vi)(0 i is A-independent)

then (Vi) ("1 A -1 A 	b

[A more general version of this theorem would replace the last
line with

(vi)(--1A 	 b) 	A 	b

This theorem will prove useful in analyzing information
transmission in programs with sequential control constructs
(Section 4b).

C. Relative Autonomy

The strong dependency formalism is not appropriate for certain
classes of constraints. In particular, consider the program

P: b<-al

constrained by the entry assertion

0: al = a2

Formally,-1(al 	b). By definition 3-3, two states of and o2

must be found which both satisfy 0, yet differ only at al. This
condition cannot be met since 0 requires that a difference in al
must be mirrored in a2 as well. Thus, b does not strongly depend
upon al. And yet, intuitively, information is transmitted from
al to b. What's the problem?

If we had constrained al to be a particular constant, for
example

0: al = 8

311

we would have similarly found that no information is transmitted
from al to b, that is,

P b). And with good reason. (Remembering our dis-

cussion about selective dependency). Once al has been constrained
to be 8, there is no other information that can be squeezed out
of al to be transmitted to b.

Now, in asking about al E> b, we are implicitly creating a

view of a system having al as a source and b as a destination.
a2 is wholly outside the system. So, constraining al to be the
same as a2 is, with respect to the system where al is sole source,
just like constraining al to be constant.

If we want to get the "intuitively" right answer about
information transmission, we had better include a2 in the system
as well, and in fact, we do find that

(al, a2}

More generally, we have to make sure in determining A
4)

that 0 does not relate the values of variables in A to the value
of variables outside of A. Formally, we tequirVe 0 to be
A-autonomous, defining

Definition 3- 9 	0 is A-autonomous

(Val, a2)(4)(al) 	N 	4)(o2) 	3 	gal/ Aa2))

It can be shown [Cohen 76] that this definition requires 	to be
of the form 01 n02 (either 01 or 02 may be absent) where 01 only
concerns variables in A (that is, 01 is A-strict), and 02 only
concerns variables outside of A (that is, 02 is A-independent).

By matching the sources autonomously to the initial
constraint, strong dependency can be used to accurately reflect
information transmission. However, in the latter part of the
paper, we will see how the insistance on relatively autonomous
constraints can be eliminated through use of a different
formalism.

312

1

IV. THE DEDUCTIVE VIEWPOINT

The last section concentrated on an information theoretic
(in the classical sense) approach to information transmission.
From this section on, the focus switches to a deductive view-
point. This section shows that a particular deductive approach
is equivalent to the approach based on strong dependency.

The deductive viewpoint argues that information can be
transmitted from A to b over execution of program P if a value
of b after execution of P can be used to deduce properties of
the initial values of variables in A. For example, if P is the
program

P: 	b "4- 	4

and b's final value is 12, then we can deduce that a's initial
value was 8. In effect, we have taken the exit assertion [b=12]
and have backsubstituted it through P to obtain the weakest
precondition

[b=12]oP = 	[a=8]

It is not the case that every final value of b must provide
information about a. Consider

P: if m > O'then b 	abs(a)

else 4 f -1fi

If b's final value is observed to be -1, then no information
can be deduced about a, only about m, since [b = -1]oP = [m < 0].
We only require that some final value of b yield information
about a in order to demonstrate the possibility of information
transmission from a to b. In this case

[b = 7]oP = 	> 0 n (a = 7 v a = -7)]

We may say that information can be transmitted from A to b
over execution of P if

(3v)([b = v]oP "says something about" A)

We shall find that different deductive approaches crucially
differ, depending upon the interpretation of: an assertion p
"says something about" A.

We might choose a syntactic definition - looking to see
whether any variable in A appears in p [or any equivalent pre-
dicate - which eliminates the problem of [a = a]]. Fortunately,
there is an equivalent semantic definition.

If variables in A are used in determining the truth value of
p, then some change in the values of A must affect the truth
value of p. Formally,

Definition 4 -1 	p is A-independent

(acrl, a2)(al x a2 A p(al) t p(a2))

Formally then, we can say that information can be transmitted
from A to b if

(av)([b = v]oP is A-dependedt)

Next, we consider the effect of an entry assertion. Consider
the example

P: b + b + a*m

with the assertion 0: [m = 0]. Clearly, no inforntation can be
transmitted from a to b since b's value never changes if 0 holds.

For any final value v to b,

[b = v]oP = [a*m = (b-v)]

which is a-dependent. However, if this precondition is evaluated
only for those states satisfying 0, then changing the value of a
has no effect on the resulting truth value (since a*m is always
0). Formally, [b =v]oP is a-independent given 0. We define

Definition 4 - 2 	p is A-dependent given •

0
001, a2) (al x a2 A p(al) # p(c2))

Thus, in the presence of an initial constraint 0, the
definition for deductive information transmission from A to b
over execution of P is

(av)([b = v]oP is A-dependent given 0)

It is very easy to prove that this definition is equivalent
to the one for strong dependency.

314

Theorem 4-1

A
	

b iff (av)([b=v]oP is A-dependent given 0)

Consider the example

P: b< al

0: al = 8

According to strong dependency, al b, for 0 eliminates

variety from al - none remains to be transmitted to b. This
situation is analyzed in terms of the deductive viewpoint in the
following way:

After execution of P, b will be observed to have the value 8.
The weakest precondition of [b=8] for P is, of course, [a1=8].
This is not al-dependent given 0. Essentially it provides no
more information about al than 0 already provides.

In essence, the deductive viewpoint argues, that if P is
executed in an environment known to be constrained by 0, then
information can be transmitted from A to b only if some observa-
tion of b permits a deduction that provides more information than
0 about A's initial value.

In discussing separation of variety, we noted that information
might be transmitted from a to b even though all but a portion of
a was protected. A similar phenomena is illustrated by the
following program

P: b 	abs(b)*sign(a)

(sign(x) <= if x < 0 then -1 else 1 fi)

Information from a is transmitted to b, a b, but only

a portion of b is affected - in this case, b's sign. Imagine if
an observer of b could only observe b's absolute value and not
b's sign. That is, after P's execution, one could only assert
[abs(b)=k]. Note that its precondition is the same.

[abs(b) = k]oP = [abs(b) = k]

which is certainly not a-dependent.

In general, suppose 7b is some post-condition that involves

b alone (that is, (T b is b-strict) which characterizes an observa-

315

tion of b - for example

abs(b) = k

The example above illustrates that A

ensure that

b does not necessarily

b
oP is A-dependent given 4

(71; b may need to be stricter to ensure that the precondition is

A-dependent. In particular, it may have to be of the form

(1)
b

: 	b = v

Theorem 4-1 guarantees that some such (1) 13 can always be found, if

information is transmitted from A to b.

V. PROJECTIVE INFERENCE

Since the deductive viewpoint (as described in the previous
section) is equivalent to the strong dependency formalism, it
naturally has the same difficulties when used with non-autonomous
constraints. This section shows how these difficulties can be
eliminated by basing the deductive definition of information
transmission on a formalism derived from projective logic.

Consider the program

P: b 	al

cl): 	al = a2

Suppose that execution of P results in a value of 8 for b.
Then we can deduce [b=8]oP = [a1=8]. Intuitively, this provides
us with more information about al than [al=a2] and yet, [a1=8] is
not al-dependent given [al=a2].

The reason is similar to that described in Section 3c - asking
about al-dependence is akin to treating the system as though a2
were outside of it - and therefore treats a2 as containing a value
that might as well be constant. In that case, the example reduces
to the one following theorem 4-1 (for if a2 is constant, it must
be 8) and no information is transmitted from al to b.

In this section, we will pursue another approach and find a
formal way of expressing the fact that [a1=8] is more informative
about al than [al=a2]. The formalism is based on projective logic.

316

a2

0

-
-
-
-
-1

,-_, 	1 2 3 4 5 ...

0

1

2 x x x x x x..

3 x

4

5

6

al

Pal

X

X

A. Projective Logic

In this section, we will answer the following question:
Given an arbitrary predicate p constraining the values of vari-
ables both in and out of the set A, what is the strongest
deduction that can be made constraining variables in A alone?
That deduction will be written as p

A
.

Consider the predicate

P: al = 2%,/ (al = 3 A a2 = 3)

The strongest thing that can be said about al is that

p
A
: al = 2 v al = 3

This can best be illustrated by the diagram below that graphs
possible values of al and a2.

In the left graph, the X's represent possible values of
<al, a2> pairs. A value of al can occur if some <al, a2> value
can occur. The strongest deduction that constrains al alone
describes the possible values of al. The diagram indicates that

317

1

it is just the projection of p onto al. Formally, it can be
defined as

Definition 5-1
	

PA (cr)

(ao')(p(a' 	a))

Similarly, it is possible to consider the strongest deduction,
given , that can be made about variables not in A. I write this
as p/

A. It can be defined as

Definition 5- 2 	p/A

(aa')(P(a /e a'))

The following table presents some examples.

P al 	 P/al

true 	 true 	 true

false 	 false 	 false

al = 9 	 al = 9 	 true

al = 9 A a2 = 4 	al = 9 	 a2 = 4

al = 9 v a2 = 4 	true 	 true

al = a2 	 true 	 true

2*al = 3*a2 	 al E 0 (mod 3) 	Even(a2)

(al,a2 are integers)

The fact that [al = a2] al is true follows from the fact that

[al = a2] constrains the particular value of al in no way. No
matter what value of al is chosen, a value of a2 can be chosen
(i.e. equal to al) that makes the predicate hold. The projection
of the graph of [al = a2] onto al illustrates this fact

318

0 X

1 x

2 X

3 X

4 X

5 X

p

X

X

X

X

X

X

a2
al ■
•■ 0 1 2 3 4 5 Pal

It should be clear that p A is always A-strict and that p/ A is

always A-independent. And, in fact

Theorem 5- 1

p 	p
A
A p/

A
iff p is A-autonomous as is illustrated by the

example of

[al = 9 h a2 = 4]

The use of projections allows an elegant alternate definition
of strong dependency based on the discussion at the end of

Section 4. It was noted that A

b-strict post-condition,

(if)
b
oP is A-dependent given 0

ensured that for some

In general, (1)
b

can be thought of as the projection onto b of

a broader post-condition q, and we can define strong dependency
as

Definition 5 - 3 	A
0

(30)aboP is A-dependent given 0)

319

B. Definitive Dependency

We can now return to the question of whether [al = 8] provides
more information about al than [al = a2] - or more generally,
whether p provides more information about A than 0.

Whether or not we know p, we know 0, thus, we really ask -
does p A (1) provide more information about A than 0 alone? The
last section indicates that a predicate provides information
about A if it (or more precisely, its projection onto A) determines
the values that A might have taken. The more precisely A's values
can be determined, the more information about A is provided.
P A 4 provides more information about A than 0 if (p A 0)

A

determines A's possible value more precisely than 0
A

- that is -
if

(p 	c (PA

(Interpret "C" as proper set inclusion, relating the sets
characterized by the predicates (p A OA and 0A).

In the example above, where p: [al = 8] and 0: [al = a2],

A: true

Therefore

(p 	()A 	(PA,

S O,

(p A 0) A : [al = 8].

p does provide more information about al than 0.

Before supplying a formal definition, there is one last
difficulty to be avoided - that of using preconditions, derived
from impossible observations.

Consider the system

P: bE a

0: a = 8

Obviously, no information can be transmitted from a to b.
However, suppose (ignoring for a moment the fact that 4, initially
is guaranteed to hold) that b is observed to be 37 after execu-
tion of P. The precondition p is [b = 37]oP = [a = 37].

320

Now, p A 4> is false, so

(p N4)a= false c 0 a = [a = 8]

Obviously, we have to exclude illegal observations by requiring
that (p A (0) A not be false. We formally define

Definition 5-4 	p is A-definitive given 0

false c (p A 0) A c (1)A.

If no initial constraint is given, 0 can be taken as true and
we define

Definition 5•5 	p is A-definitive

false c p
A

c true

We can now use A-definitive-ness to replace A-dependence (in
Definition 5-3) to produce a new formalism for information trans-
mission - definitive dependency.

Definition 5•6 	b definitively depends on A over P given

(HCI>)aboP is A-definitive given 0)

Definition 5-7 	b definitively depends on A over P

(3(T)ab oP is A-definitive)

VI. CONTINGENT DEPENDENCY

The previous section closed with a new definition of informa-
tion transmission - definitive dependency. This section will
show how it differs from strong dependency. In addition, a new
variant, contingent dependency, will be defined. For autonomous
constraints, it is shown to be equivalent to strong dependency.

Consider the program

P: 	if al 'I a2 then b 	0 else b 	1 fi

Is information transmitted from al to b? Strong dependency would
indicate that the answer is yes - it is easy to show that

al
	

b. Definitive dependency indicates that the answer is

no.

If b is observed to be 1, then we obtain the precondition

[b=l]oP = [al=a2]

But its projection onto al is true; [al=a2] is hardly al-
definitive. In effect, an observation of b can tell us whether
or not al equals a2, but indicates nothing definitive about the
value of al.

Consider another example

P: b<- (al + a2) mod 2
16

It is easy to see that al 17 b. However, the observation

[b=k] leads to the precondition [(al + a2) mod 2
16

= k]. Its
projection onto al is also true; it is not al-definitive. Given
any value of al, a value of a2 can be found such that the sum

(modulo 2 16) is k.

In both of the cases above, b does not definitively depend
upon either al or a2, though it does depend on the set {al, a2}.
That is

al does not definitively depend on b over P, though {al, a2}
does definitively depend on b over P.

Should b depend upon al or not? The hard line answer is no.
But let's pursue the alternative for a bit.

The predicate [al=a2], while not al-definitive does give some
information about al, but only contingent on some (perhaps fuzzy)
information about a2. For example, if we know something about the
distribution of values that a2 takes, [al = a2] provides the same
distribution information about al, and that can be considered to
be definitive information about al.

Consider another example: [a1=4 v a2=7] is not al-definitive
its projection onto al yields true. But given additional infor-
mation that implies that a2 is not 7, we can determine that al
must be 4. It is more likely that we might know that a2 is (only)
probably not 7, and thus that al is probably 4. In a sense,

322

contingency pushes the probability to the limit.

In general, we can say that a predicate is A-contingent if
given additional information, not concerning A (i.e. A-indepen-
dent), we can determine that the predicate is A-definitive.
0/A can indicate the additional information (it represents a

broader assertion 0 that has constraints concerning A removed
from it (Section 5A) - and is therefore A-independent) and we can
define

Definition 6-1 	p is A-contingent

(4)(p is A-definitive given 0/ A)

In the example above, p was [al = 4 	a2 = 7] and we chose
0 =

al
= [a2 0 7] to show that p was al-contingent.

Next, taking an initial constraint into account, define

Definition 6 - 2 	p is A-contingent given 0

(4)(p is A-definitive given /0% /A A lb

Using these definitions, we can define contingent dependency as

Definition 6- 3 	A
b

(4)(0
b
oP is A-contingent)

P

Definition 6- 4 	A b

(ai)(01, 013 is A-contingent given 0)

The good news is that in the absence of a constraint, or given a
relatively autonomous constraint, contingent dependency and strong
dependency are equivalent. The crucial theorem is

Theorem 6-1

If 	is A-autonomous
then

p is A-dependent given 0

iff p is A-contingent given

It follows directly that

Theorem 6-2

If 0 is A-autonomous

then A b iff A b

Contingent dependency thus has all of the advantages of
strong dependency yet it deals with non-autonomous constraints as
well. Consider a final example

P: b + al + a2

0: al = a3

Using either strong, definitive or contingent dependency, we
can show that execution of P given 4 transmits information from
{al, a2, a3} to b. We might, however, like to show that informa-
tion is transmitted from al (alone) to b. Only contingent
dependency indicates that such transmission takes place.

Strong dependency fails immediately, since in a system with
al as sole potential source, a3 is treated as a constant (Section
5), and 0 therefore effectively eliminates all variety from al.

An observation of b yields the precondition p: fal+a2=k] for
some observed value k. It provides no definitive information
about al, even given 0, and thus definitive dependency fails'as
well. However, p is al-contingent, and thus

al b.

In general, whenever information is transmitted from a set A
to b, information to b is transmitted from at least one object in
A. Formally

Theorem 6- 3

A
‘.2)3

b 	(3AcA)(a

0

No such theorem holds for either strong or definitive dependency
as past examples have indicated.

324

VII. CONCLUDING NOTES

Ordinarily, questions of information transmission are quanti-
tative rather than qualitative. This paper (and previous formal
work in this area) has concentrated on purely qualitative results
- has information been transmitted from a to b at all? This
section briefly touches on qualitative questions - how much infor-
mation is transmitted, and what is its value?

Consider the ;grogram

P: if a > 0 then b m else b f -m fi

According to definitive dependency, information cannot be trans-
mitted from a to b. If b is observed to be 27, a might be greater
than 0 (if m were 27), but might equally likely be less than or
equal to 0 (if m were -27). According to contingent dependency,
information can be transmitted from a to b, contingent, or course,
on information about m - its sign.

If m's sign is known with certainty, information can certainly
be transmitted from a to b; our conclusions are less certain if we
know less about m. If, we are only 70% certain that m is (say)
positive, then we can be 70% certain about the sign of a.

In information theoretic terms, we can argue that complete ,
uncertainty of m's sign means that zero bits of information are
transmitted from a to b; complete knowledge of m's sign allows one
bit of information (representing a's sign) to be transmitted;
partial or probabilistic knowledge permits an intermediate amount
of information transmission. More generally, by using the weakest
precondition derived from a final observation, in conjunction with
statistical information, an information theoretic measure of the
information transmitted can be determined. The presumption is
that arbitrary contingent information can be replaced by more
precise statistical information regarding what is already known.

Information theoretic computations will presumably be useful
in statistical data bases. For example, as part of a census, a
respondent may supply his/her sex. Presumably the information
will only be used for statistical purposes. However, the potential
for misuse is certainly present.

Legitimate use of the data should provide very little oppor-
tunity for information to be gained about the respondent's sex.
A secure system might only allow a history of queries that trans-
mitted at most .1 bits of information from data about any
respondent's sex. More interestingly, a respondent might have
the option of determining the level of information that could be
discovered about data he/she provided.

325

Except for very simple sorts of data, a strict information
theoretic measure may not be appropriate; all bits are not equal.
For example, the high order bits of a variable containing salary
information is likely to be more valuable than the low order bits,
and a suitable measure might be weighted accordingly.

REFERENCES

Cohen 76. E. Cohen, "Strong Dependency: A Formalism for
Describing Information Transmission in Computational Systems",
CMU-C.S.T.R. August 1976.

Cohen 77. E. Cohen, "Information Transmission in Computational
Systems" Proc. 6th Symp. on Op. Sys. Princ., November 1977.

Cohen 78. E. Cohen, "Proof of a Solution to the Confinement
Problem". (Available from author).

Denning & Denning 77. D. Denning, P. Denning, "Certification of
Programs for Secure Information Flow", CACM 20, 7 (July 1977).

Denning, Denning & Graham 74. D. Denning, P. Denning, G. S.
Graham, "Selectively Confined Subsystems", Proc. Intl. Work-
shop on Protection in Operating Systems, IRIA Laboria
(France), August 1974.

Hoare 69. C.A.R. Hoare, "An Axiomatic Basis for Computer
Programming", CACM 2, 10 (October 1969).

Hoare & Lauer 74. C.A.R. Hoare, P. Lauer, "Consistent and
Complementary Formal Theories of the Semantics of Programming
Languages", Acta Informatica 3 (1974).

Jones & Lipton 75. A. Jones, R. Lipton, "The Enforcement of
Security Policies for Computations", Proc. 5th Symp. on
Operating System Principles, November 1975.

Lampson 73. B. Lampson, "A Note on the Confinement Problem",
CACM 16, 10 (October 1973).

Manna & Shamir 76. Z. Manna, A. Shamir, "The Theoretical Aspects
of the Optimal Fixedpoint", Stanford AIM-277, March 1976.

Millen 76. J. Millen, "Security Kernel Validation in Practice",
CACM 19, 5 (May 1976).

Scott & Strachey 71. D. Scott, C. Strachey, "Towards a Mathe-
matical Semantics for Computer Languages", Oxford Univ.
PRG-6, August 1971.

326

A. Appendix. Proof Rules for Sequential Programs

Section 2 described a programming language with four constructs
- assignment, sequential execution, conditionals and loops. This
appendix will develop proof rules for each construct, derived from
the definition of strong dependency, so that absence of information
paths can be determined by incrementally considering each construct
of a program.

A. Assignment

In general, an assignment changes the value of its target
variable. As a result, information may be transmitted from
variables appearing in the source expression to the target
variable. However, entry assertions may eliminate information
paths. Consider the example

P: b 	a*m 	8

With the entry assertion [m=01, no information can be transmitted
from a to b. In fact, execution of P will always result in an
assignment of the value 8 to b. In general, if every execution
of a program P (satisfying an entry assertion 0 sets b to the
same constant value, then no information from any source is tran-
smitted to it.

Definition A-1 	P makes b constant given 11)

(avVa)(4)(a) D P(a).b = v)

Theorem A-1

If P makes b constant given cp

then (VA) (-1 A
(1)

b)

If a variable is not the target of an assignment, it retains
its original value. Its useful to think that the information it
contains is retransmitted to it so that in execution of

P: b 4- a

ITC 5)
m for every m, m # b.

Even the target of an assignment may have information
"retransmitted" to it if it appears in the source expression as
well, so that in

327

P: b t b + a*m

we find that b as well as a b.

Note that if the above program were executed in an environment
where [m=0], no information could be transmitted from a to b. No
matter what a's value were, b's value would not change as the
result of P's execution. In general, some execution of P
(satisfying an entry assertion (1)) must change the value of a
variable if information is to be transmitted to it from any other
variables. Formally

Definition A-2 	P changes b given 4)

(3b-)(4)(a) A a.b # P(a).b)

Theorem A-2

If Ab (b e A)
(1)

then P changes b given (1)

B. Sequential Execution

The proof fules for sequential execution are based on the
idea of accumulating the set of variables to which information
from some source may be transmitted after execution of the initial
part of a sequence of statements - and then determining whether
information can be transmitted from this set to some final target
as the result of executing the remainder of the sequence (whew -
an example illustrating this will be found below). Jones and
Lipton [75] used this idea as part of a dynamic mechanism for
preventing information transmission. In this section, a static
version is derived from the definition of strong dependency, and
which takes initial and intermediate assertions into account.

Consider the two programs

Pl: m 4- a; b 4-- m

P2: m -4- a; b 4- a

Both programs transmit information from a to b. In both cases,
the initial statement of the sequence is [m 	a], and its
execution results in transmission of information from a to m and
also in "retransmission of information" from a to a. Information
originally in a is now held in both a and m. If we define

328

Definition A-3 	A

{mIA 11:5 m}

>*

then, if S is [m 	a], a = {a, m }

Now, take S1 and S2 respectively, as

Si: 	b 4-- m

S2: bra

These are the respective remainders of the programs P1 and P2.
P1 or P2 transmits information from a to b if information from the
intermediate accumulated set {a, m} is transmitted to b by
execution of S1 or S2 respectively. And in fact, we do find that
both

{a, m} b and {a, m} fr\ b.

S2
More precisely, m 	b and a 	b. However, if infor-

mation is transmitted from a subset or element (e.g. m) of a set
(e.g. {a, m}), then information is transmitted from the whole set
as well. Formally

Theorem A - 3

If Al c A2

[1 then Al >3 b D A2 	b
(1) 	 (I)

The example above suggests the following rule: If P is [S;S']

and A lc), * = M, then

S'
M 	b iff A

329

Unfortunately, this does not hold. The forward implication
is not true - an example will be discussed below. The reverse
implication does hold, and is the more important part since we
are usually more concerned with showing the absence rather than
the presence of an information path. Formally

Theorem A-4

If P is [S, S t]

and M = A N
LK'

then -1 M rN b D .1A

Next we consider the effect of initial constraints. In
particular, initial constraints may give rise to intermediate
assertions which prevent information transmission in the remain-
der of a sequence as the next example indicates. Consider the
program P: [S; S'] where

S: if ml > 4 then m2 -4- ml fi

S': if ml # m2 then b -4- 1 fi

with the entry assertion

4: ml > 19

After execution of S, the intermediate assertion 41' holds, where

4: ml = m2

that is, cp D 4 9 OS, or in Hoare's notation, cP{S}cp'. Since S' is
executed in an environment in which 4' holds, then "then" part
of S' is not executed and

(a
S'

b). The earlier theorem can be extended in the

following way:

Definition A-4 	ADj *

{ m lA 	m }
45

Theorem A-5

If P is S; S'

and 0 	cj'oS

and M = A 11› *

then 0 1A

The use of intermediate assertions allows for some sloppiness
(overestimation) in determining

A
U//"-

* . Consider the program

P = [S; S'], where

S: ml 	a; m2 -4- ml; if a > 0 then ml F 0 fi

S': b 	ml 	and

0: a > 0

We might guess that A 	* is {a, ml, m2}. Actually, it is

just {a, m2} by theorem A-1, since 0 guarantees that ml is always
set to zero. However, picking 0' to be [m1=0](0 D (P I OS), we can
immediately show that

{a, ml, m2} 	b which also follows from theorem A-1

0'

since S' makes b constant (i.e. zero) given 0'.

I indicated earlier that the converse of theorem A-4 does not
hold. More generally, there exist programs P of the form [S; S']

S

b even though A

0'

S. if q 	0 then m a fi

S': if q = 0 then b 	m if

where M = A

b. For example, consider

, such that for any 0' such that 	D 0 1 0S,

331

with 0 taken as the always true predicate. The strictest possible
choice for 0' is

[q = 0 n m = a], yet

= {a, m) and {a, b even though -la

This example is discussed more fullyin [Cohen 76,77], where
it is shown that the technique of Separation of Variety
(Section 3B) can be used in conjunction with (the equivalent of)
theorem A-5 to prove the absence of an information path.

Define 01: [q = 0] and 02: [q # 0]. {01, 02) form a cover

and are both independent of a. By separation of variety

(theorem 3-2), -, a 	b follows from -taand --I a [1>P b .

Considering 01 first, note that

(a 	*) = {a} and -i{a}
Considering 02 then, pick 02': [q 	0] (note 02 n(1)2' oS)

*) = {a, m}, -1{a, m} 	b.
02 	 02'

In both cases, theorem A-5 can be applied to show

-la 	b (i = 1, 2). By Separation of Variety (Theorem A-5)
i>

P

n f>7' a 	b.

C. Conditionals

In earlier examples, we saw that an entry assertion 4 could
guarantee that the Boolean test t in the conditional

P: if t then 5' fl

might never be satisfied and as a result, S' would never be
executed. More generally, S' is executed only in states in
which 0 and t both hold. Information transmission due to P

(I) 1

and though (

332

(with entry assertion 4) can be determined by considering trans-
mission due to S' with entry conditions derived from both 4) and
t.

The general case is demonstrated by the program

P: if m = ml then b a*(ml = m2) fi

The "then" part is only executed when [m - ml] holds. If the
entry assertion 	is [m = m2], the "then" part is executed when
both [m - ml] and]m = m2] hold, thus [ml = m2] holds. In that
case, ml - m2 = 0, and b is always assigned the constant value 0,
so by theorem A-1 no information about a can be transmitted to b.

We might like to show that if P were

P: if t then S' fi

and 4) A t D

then n (A (A

However, as noted elsewhere [Cohen 76, Denning & Denning 77,
Jones & Lipton 75], information can be transmitted in other ways.
For example, in the program

P: if a > 0 then b 4- 8 fi

information can he transmitted from a to b.

The value in b resulting from execution of P does carry
information about a's initial value. Suppose b is initially 17.
If b remains 17 after P executes, then initially [a = 0], if
h is 8, initially [a 7 0]. to Prevent information transmission
from a to h, in executing

P: if t then S' fi

we must further guarantee that either t does not depend upon the
value of a or that S' does not make any assignment to b. In fact,
consideration of the relevant assertions allows a weakening of
these conditions.

First consider the program

P: if a = 0 v m = 4 then b f 8 fi

333

with entry assertion 0: [a = 9]. Even though the test does
depend upon a, the entry assertion effectively nullifies that
dependency. While [a = 0 v m = 4] is a-dependent, information
is not transmitted from a to b because the condition is not
a-dependent given [a = 9].

Formally define

Definition A - 5 	p is A-independent given

(Vol, a2)(al
1

o2 D 0(01) = p(02))

This definition is much like definition 3-8, except only those
states are considered which satisfy the entry assertion 0.

Next consider the program

P: if a = 0 then b + b + m fi

with the entry assertion

0: m = 0

Even though an assignment is made to b, the value of b does not
change and as a result, again no information can be transmitted
from a to b. Formally, we require that S does not change b
given 4)(the negation of definition A-2).

We can now state the theorem for conditionals as

Theorem A - 6

If P is if t then S' fi

and 0 A t D 4 1 then

(t is A-independent given 0

S' does not change b given 0 1)

('I (A ll S1
 b) D -1 (A 	b))

This theorem can be easily extended to handle conditionals
with two branches by simple noting that the "else" part is
executed only for states satisfying both 4, and -It. Formally

334

Theorem A-7

If P is if t then Si else S2 fi

and 4> A t D 01

and Nntp 02 	then

(t is A-independent given

(S1 does not change b given 01 v

S2 does not change b given 02))

Si (-1(A II> b v A b))

This proof rule cannot be guaranteed to demonstrate absence
of information transmission. For example, consider the program

P: if a > 0 then b 	8 else b m fi

with the entry assertion

0: m = 8

b is assigned the value 8 regardless of the value of a and it can
be shown directly (by Theorem A-1) that

-1 (A g› P (1) b). Yet Theorem A-7 cannot be usefully applied because
[a > 0] is not a-independent given ¢ and both assignments change
b.

As yther researchers have noted [Denning & Denning 77, Jones
& 	75], there is no way to generally resolve this difficulty
without transforming the program to an equivalent one - in this
case, the program

P: b 	8

D. Loops

Information transmission in the program

P: while t do S od

is analyzed by considering the equivalent program (in the sense
of Section 2), the infinite sequence of statements of the form

335

S*: if t then S fi

Let A = M
o

and define

M
i+1

= M
i

u (M
i

In effect, Mi is the set of variables to which information

initially in A could be transmitted after i or fewer iterations
of the loop. If the loop terminates after k iterations, then
McM.k+1 = kM.... +z =....Thus,theM:s converge to some M"

with the property. that

M* = M* u (M* 	S* *)

from which we can see that

(M*

In fact, M* is the smallest set that satisfies that formula
having the property (since Mo = A) that

A c M*

Now, to demonstrate that information cannot be transmitted to b
over execution of P, we need only show that b M*. Formally,

Theorem A- 8

If P is while t do S od
and S* is if t then S fi then

S* *) c 1,1* A b / m*) (aM*)(A c 	A (M*

b (A 	b)

If an entry assertion 0 holds, then there is some (perhaps
weaker) inductive assertion 0* which holds at the beginning of
each iteration of the loop - that is - on entry to S. Naturally,
this may restrict the growth of M*. Formally, we extend the
theorem to show

Theorem A-9

If P is while t do S od

and S* is if t then S fi

and D 0*

and 0* D 	o S 	then

(HM*)(A c M* A (M* *) c M.* A b e M*)

	

D 	(A 11 	b)>P (1)

As an example, consider the program P

P: 1±0;

b F 1;

mult 4- al;

while i < a2 do

b 	b* mult;

	

mult F mult 	a* a3;

i F i 1

od

with entry assertion

01: a2 = 0

11%.■

	

Now, we will prove -1 (a 	b) . First, represent P as

V01

P: Si; S2

	

Si: i 	0; b 	1; mult 4- al
S2: while i < a2 do S3 od
S3: b 	b*mult; tult 	mult 4. a* a3; i 	i 	1

337

(i = 0 D (mult = al A b = 1))]. Now,
S1

*) = a. So
1
S2

b).
02

by theorem A-5, we only need to show that —1(

P
b when

1

and

S2*: if i < a2 then S3 fi

First, take 02, where 01D02oS1, as [a2 = 0Ai<0A

Pick 02* = 02, noting that 02* D 02* o S2*. By theorem A-9,
we need to find an M* such that

a E M* N (M* S2*
) c M A b M*

02*

Such an M* is {a, mult}. Syntactically, it appears that

(M*
02*

*) might be {a, mult, b}. We need to show that
02*

(1471N 2* b).
11/12*

Take 03 as [mult = al A b = 1], noting that (1)2* A

[l. < a2] D 03, and that [i < a2] is M*-independent. By theorem

A-6, we need only show that -1 M* 	S3 b. II>
Well, by direct substitution of 03 in S3, it's easy to see

that 03(a) D S3(a).b = .al. So, for any al and a2 such that

1.3 al 	02, S3(a1).b = S3(a2).b. Thus, directly by the definition

of strong dependency, —IMIT›
3

b.

It is just as easy (sic) to show that -1

338

Ol: a3 = 0

For this proof, we can pick 03 = 02* = 02 = 01 and M* = {a}.

And, we have to prove that -1 a S2* mult. This follows
02*

directly from theorem A-2, since

03(o) D a.mult = S3(a).mult

MONOTONIC ,PROTECTION SYSTEMS*

M. A. Harrison'
W. L. Ruzzot

Computer Science Division.
University of California, Berkeley

I. INTRODUCTION

In recent years, it has become widely accepted that many of
the important issues concerning protection in operating systems
can best be viewed abstractly. A variety of different models
have been proposed for abstracting the essential features under
study. Cf. [Har 75, HRU 76, LiS 77, LiS 78, and Sny 77]. We
shall concentrate in this paper on the model introduced in
[HRU 76] because this model is very general and contains a
number of the other models as special cases. It is also true
that this model over-simplifies a number of important practical
considerations which are very hard to abstract mathematically.
Nonetheless, the theorems which will be proven here will also be
true in more elaborate models as the constructions that we shall
give will still work.

* This research was sponsored by the National Science Foundation
Grant GJ-43332 and MCS74-07636-A01.

t Present address: Department of Computer Science, University
of Washington, Seattle, WA 98195.

341

Our main concern in the present paper is the comparative
power of the operations which form part of the basic model of
[HRU 76]. Crudely speaking, a protection system is a set of
simple procedures for modifying an access matrix which records
who can get what access to which objects. The basic operations
are as follows:

enter r into (X ,X)

	

..... 	 s o

create subject X
_______ s

create object X0

delete r from (X ,X)

	

... 	 s o

destroy subject X

destroy object X
o

One might surmise that the last three operations are very
important and powerful. For example, destroying a subject means
that an entire row and column are lost from a protection matrix.
As the matrix can grow without limit, an unbounded amount of
information can be lost. In fact, we shall show that no loss of
computational power occurs if we have protection systems in
which these last three commands do not occur.

In preparation for the results to come, we recall the formal
definition of a protection system.

Definition. A protection system consists of the following
parts:
(1) a finite set of generic rights R,
(2) a finite set C of commands of the form:

command a(X1 ,X2 ,...,Xk)

if r
1
 in (X ,X) , r in (X

s
 ,X),..., and s

	
o
1
 ' 2

2 0 2

r
m
in (X ,X)

s 	o
m m

then ----

o P1

op
n

end

342

or if m is zero, simply

command a(X ... X.)
------- 	1"—k

°Pi

• • •

op
n

end

In our definition, a is a name and X 1 ,...,Xic are formal

parameters. Each opi is one of the primitive operations mentioned

earlier. By convention r,r 1 ,r 2 ,...,rk denote generic rights and

s,s 1 ,s 2 ,...,sm and 0,0 1 ,0 2 ,...,0m are integers between 1 and k.

The expression "r 1 in (X ,X), r in ..." will be
s
1 o1 	

2

referred to as the command's conditions, and "op
1

• • .op
n
" as the

command's body. The number of conditions is m. We also need to
discuss the "configurations" of a protection system.

Definition. A configuration of a protection system is a
triple (S,O,P), where S is the set of current subjects, 0 is the
set of current objects, S C 0, and P is an access matrix, which
has a row for each subject in S and a column for each object in
0. P[s,o] is a subset of R, the set of generic rights, and gives
the rights that s enjoys with respect to o. A number of examples
may be found in [HRU 76] which indicate the use of protection
systems. It is our contention that this type of formal system is
conceptually simple and natural. It can be used to describe
protection policies in real operating systems.t

Next, we need the rules for changing configurations in a
protection system.

t See the UNIX example in [HRU 76] or the work on MULTICS in
(ScA 77].

343

Definition. Let (S,O,P) and (S',0',P') be configurations of
a protection system, and let op be one of the six primitive
operations. We shall say that:

(S,O,P) =>
op
 (S',0 1 1")

(which is read (S,O,P) yields (S',0',1°) under op) if either:

(1) op = enter r into (s,o) and S = S', 0 = 0', s e S, o e 0,

P'[s 1 ,o 1] = P[s
1
,o

1
] if (so

1
) 	(s,o) and P'[s,o] = P[s,o]u{r},

or

(2) op = delete r from (s,o) and S = SI, 0 = 0', seS, oe0, ----

P t [s i ,o 1]=P[sv ol] if (s i ,o1)O(s,o) and P l [s,o]=P[s,o]-{r), or

(3) op = create subject s', where s' is a new symbol not in 0,

S'=Su{s'}, 0'=Ou{s 1 }, P'[s,o]=P[s,o] for all (s,o) in Sx0,

P v [s t ,o]=0 for all oe0', and P[s,s']=O for all seS', or

(4) op = create object o', where o' is a new symbol not in 0, ------

S'=S, 0'=0u{o'}, P'[s,o]=P[s,o] for all (s,o)ESx0 and

P'[s,o'] = 0 for all s E S, or

(5) op = destroy subject s', where seS, S'=S-{s'}, 0 1 =0-{s'}, _______ -------

and P'[s,o]=P[s,o] for all (s,o) E S'x0', or

(6) op=destroy object o', where o'e0-S, S 1 =S,0 1 =0-{o'},

and P'[s,o] = P[s,o] for all (s,o) e Slx0'.

Next, we need to recall how protection systems execute
commands.

Definition. Let Q = (S,O,P) be a configuration of a protect-
ion system containing:

344

command a(X1 ,...,X0

if r1 in (X ,X) and
S i 	1

• • 	•

r in (X ,X)
m s 	o

in 	m
then ----

op 1
• • •

op
n

end

Then we say that

777x 1 ,...,xk) Q1

where Q' is the configuration defined as follows:

(1) If a's conditions are not satisfied, i.e., if there is
some i, 1 < i < m such that r i is not P[xs ,x0], then Q = Q'.

	

i 	i
(2) Otherwise, i.e., if for all i between 1 and m,

r
i c P[xs

 ,x
o
], then if there exist configurations Q

0'
Q

'
Q
n

such that

= Qo => 01 	
0 => 	=>

op*'n opt 	op*
2

whereoptdenotestheprimitiveoperationop.1.7ith the actual

parameters xl ,...,xk replacing all occurences of the formal

parameters X1 ,...,Xk , respectively, then Q' = Q.

We simplify the notation by writing 	Q' if there exist

parameters xl ,...,xk such that

Q1-70[1,-- -ock)Q1

Also, we write Q1- Q' when there exists a command a such that

Qla Q'.

1* 	 ,*
It is also useful to write 	Q', where 	is the

*
reflexive-transitive closure of 	

r
That is 	represents some

finite number of occurrences of ft possibly none at all.

In [HRU 76], we devoted a great deal of our attention to
trying to find algorithms for deciding if a protection system is
"safe" or not in the following sense.

Definition. Given a protection system, we say command
a(X . . X_

k
) leaks generic right r from configuration Q = (S,O,P)

if a, when run on Q, can execute a primitive operation which
enters r into a cell of the access matrix which did not previously
contain r. More formally, there is some assignment of actual
parameters x

1
, ...,xk such that a(xl ,...,xk)

(1) has its conditions satisfied'in Q, i.e., for each clause

"r in (X.,X.)" in a's conditions we have r 6 P[xi ,xj], and

(2) if a's body is op i ,...,opn , then there exists an m,

1 < m < n, and configurations Q=Q0 ,Q1 ,...,Q 1.--(S',0',P'), and

gm = (S",0",P"), such that

Q0 	Q1 	. => 	
=> Qm 0 opt 1 oil 	op* m-1 op* m-1

where opt denotes op i after substitution of x l ,...,xk for

X1 ,...,Xk , and moreover, there exist some s and o such that

r Ft P'[s,o] but r 6 P"[s,o]

(Of course, opm must be enter r into (s,o)).

The term "leak" sounds pejorative. However, leaks are in
fact the way in which sharing takes place. The term assumes its
usual negative significance only when applied to some configura-
tion, most likely modified to eliminate "reliable" subjects, and
to some right which we hope cannot be passed around.

346

Definition. Given a particular protection system and generic
right r, we say that the initial configuration Q 0 is unsafe for r

(or leaks r) if there is a configuration Q and a command a such
that

(1) Q, and

(2) a leaks r from Q.

We say Q0 is safe for r if Q0 is not unsafe for r.

In [HRU 76), we investigated the decidability of the safety
question. In the special case of "mono-operational systems",
there is an algorithm to solve the safety problem. First, we
need the definition of such a system.

Definition. A protection system is mono-operational if each
command's body is a single primitive operation.

Theorem 1. There is an algorithm which decides whether or
not a given mono-operational protection system and initial
configuration is unsafe for a given generic right r.

If, on the other hand, there are no restrictions placed on a
protection system, we get the following result.

Theorem 2 (from [HRU 76]). It is undecidable whether a given
configuration of a given protection system is safe for a given
generic right.

Straightforward techniques show that this situation is
"robust" and the class of theorems one gets would not change under
different variations in the definition of safety.

Theorems 1 and 2 indicate that the power of these systems is
not completely clear. What other special cases are there which
are interesting? Exactly where is the line between decidability
and undecidability of the safety question?

One natural restriction would be to make certain that the systems
do not grow. In that case, a result of [HRU 76] tells us that
the safety problem is decidable but is not something we would
like to compute.

Theorem 3 (from [HRU 76]). The question of safety for
protection systems without create commands is complete in
polynomial space.

The proof techniques that were employed in [HRU 76] all make
use of the diagonal of the access matrix in an essential way.
What would happen if there were only a finite number of subjects?
Would the safety problem then become "tractable"? Lipton and
Snyder [LiS 78] have provided an answer.

Theorem 4 (from [LiS 78]). The safety problem for protection
systems with a finite number of subjects is decidable.

Moreover, it is shown that such protection systems are
recursively equivalent to vector addition systems and a connection
between the safety question for the former and the covering
problem for the latter is obtained. Although the safety question
is decidable, it is again not something one would care to compute.

These results have implications to proving systems to be safe
as well. Cf. [DDGHR 77].

II. MONOTONIC SYSTEMS

In an attempt to better understand wherein lies the
computational power of protection systems, we shall now consider
systems which can only increase in both size and in the entries
in the matrix.

Definition. A protection system is monotonic if no command
contains a primitive operation of the form

destroy subject s

destroy object o

delete r from (s,o)

A number of our colleagues who are familiar with operating
systems conjectured that monotonicity would reduce the computing
power of protection systems. We shall show that it does not do
so. It merely requires a different kind of proof which is more
intricate and hence more interesting.

Theorem 5. It is undecidable whether a given configuration
of a given monotonic protection system is safe for a given
generic right.

Proof. The idea of the proof would be to encode an instance
of the Post Correspondence Problem [Pos 46] on the main diagonal
of the access matrix. We would like to be able to grow an x-list
and a y-list and at a suitable point in time, to compare them.
Because of the monotonic restriction, the x and y lists must be
"interlaced" and the check for equality is done by "pointer-

348

chasing."

Formally, suppose we have an instance of the Post Correspond-
ence Problem given by

x = (x1 ,...,xn) and y = (y 1 ,...,yn)

where xi , y
i 	

{0,1} * . It is convenient to define

xi = 	 and yi = yii ,...,y im.
1 	 1

where
x1.,

 yik E 0,11 for all i, j, k such that 1 < i < n,

1 < j <
i'

and 1 < k < m..
— — 1

We shall construct a protection system which has the follow-
ing set of generic rights

R = f0,1,1ink,start,match,yx-end,leak)

and the following commands: For each i, 1 < i < n, we have a
procedure

command START (X ... X 	Y 	Y
mi

)
1

end

for j:=1 to Q. do create subject X.
-- 1 	 J

	

for j:=1 to Q do enter x 	into (X ,X)

	

ij 	j j
for j:=1 to R, -1 do enter link into (X.,X.)

	

----- 	 3 3+1
for j:=1 to m.1 do create subject Y. --
for j:=1 to m do enter y.. into (Y.,Y.)

	

i ----- 13 	j
for j:=1 to mi -1 do enter link into (Y.,Yj+1)

	

----- 	 3

	

enter yx-end into (Y m)
i 	i

ft enter match into (Y
m

,X
Z

) if y
m.

= x
Z

	

i 	i 	1 	
i

enter start into (Y 1 ,X1)

t This notation is a shorthand for create subject X 1

create subject X

fit The notation means that this primitive operation is included
in the command if ym = xt .

349

For each i, 1 < i < n, we have a procedure

command GROW (YEND,XEND X ,... X Y 	Y)
' 1 '' 1" m

i
if yx-end c (YEND,XEND)

then

for j:=1 to Z. do create subject X -- 1 	
for j:=1 to Z. do enter x.. into (X.,X.) -- 1 	_____ -13 	
for j:=1 to 2, i-1 do enter link into (X

j ,X. 3+1) -----
for j:=1 t 52 mi do create subject Y

j
for j :=1 Lc) mi 1? enter yij into (Yi,Yi)
for j:=1 to m.-1 do enter link into (Y ,Y +1) -- 1 	----- 	 3 j
enter yx-end into (Y ,X,)

mi ki

enter match into (Y ' X) if y = x -----

	

mi Zi 	mi 	Qi

enter link into (XEND,X1)

enter link into (YEND,Y
1

) -----
end

350

For each b e {0,1}, we have a procedure

command MATCH
b (Y"

X AY AX)

if

match E (Y,X) and -----
link 6 (AY,Y) and

link c (AX,X) and

b t (AX,AX) and

b 6 (AY,AY)

then

enter match into (AY,AX)

end

Lastly,

command LEAK(Y,X) -------
if

start c (Y,X) and

match E (Y,X)

then

enter leak into (Y,X)

end

Intuitively, this protection system "computes", starting with
an empty configuration, as follows: Each command START i encodes

strings of x. and y
i
into the protection matrix. The location of

the first pair of symbols, (x ii ,yil), is marked by start while

the last pair, (x. ,y), is marked by yx-end.
ik. im.

EachcommandGMNI.z1dds x. and y. to the end of some sequence

of x's and y's which have been previously entered into the matrix.
The locations of the ends of such a sequence are indicated by the
yx-end right. Similarly, GROW, marks the end of the new sequence

with yx-end-

Notice that GROW
i

is conditional only upon some yx-end, which

is never deleted. Thus, several different GROW
i

commands may be

applied to the same yx-end. Each GROW i may then be thought of as

growing a new branch on each of two trees -- one in which paths

from the root represent sequences of x's, the other representing
corresponding sequences of y's. The start right associates the
roots of the two trees while the lipellitts associate ancestors
and descendents, and finally the yx-end rights indicate ends of
corresponding paths. Moreover, the START

i
commands are uncondi-

tional so that we may actually get a forest of these pairs of
trees.

Before starting the formal proof, an intuitive example will
be worked. Suppose

x = (01,1) and y = (0,11)

Imagine that the following sequence of commands is executed.

START
1
(X

l'
X
2'

Y
1

)

GROW (Y X X X Y)
1 l' 2' 3' 4' 2

GROW 2 (Y1 ,X2 ,X5 ,Y 3 ,Y4)

MATCH
1
(Y

4'
X
5'
Y
3'
X
2

)

MATCH0 (Y 3 ,X 2 ,Y 1 ,X1)

LEAK(Y
1'

X
1
)

Figure 1 displays the matrix after this sequence has been
executed.

We attempt to match corresponding x and y sequences by working
from the bottom of the tree to the top. This seems easier than
working down from the root, since there is a unique chain of
links to follow from any node to the root in each tree, whereas
working down from the root, it is not clear how to arrange to
follow corresponding paths through the two trees. The START i and

GROW
i

commands start matching two corresponding sequences by

matching their last symbols. The MATCH
b

commands then compare

the two prececessors (i.e., ancestors in the tree) of any pair of
matched nodes.

352

X1
X2 Y 1 	X3 X4 Y 2 	X5 Y3 	Y4

i

o
r

link

?

.1

link

link

start
'6a-fa __-- 	
leak

yx-en ,

o
r

link

link

o
r

link

■-
■

 ?

yx-en

o
r

?

match

•-
■

 ?

link

yx-en6

r-1
? 	

1

Figure 1

353

The leak right can be entered if and only if matching proceeds

all the way up to the root nodes. Next, we show that this can
happen if and only if the Post Correspondence Problem has a
solution; this is known to be a recursively unsolvable problem
[Pos 46]. Thus, we will have shown that it is recursively
unsolvable whether or not this protection system is safe for the
right leak and the empty initial configuration.

Notation. Let 0 be the empty configuration (0,0,0). For any
configuration (S,O,P), and any X E S, let A(X) =
(Y e Sllink e P[Y,X]}. (In our tree interpretation, A(x) is the

parent of node (X,X).) We may extend this notation by defining

A
i+1

(X) = A(A 1 (X)). Let C(X) be the contents of P[X,X].

Lemma 1. If 	Q = (S,O,P), then for all X c S we have

(1) P[X,X] = CO} or {1}

(2) IA(X)1 < 1

(3) A(X) = 0 if and only if there is a Y such that start e P

(X,Y) or start sP(Y,X). Furthermore, any such Y is unique.

(4) For each Y e S, if yx-end cIo(Y,X) then there exist m > 1,

i l ,...,im eachbetweenlandnsuchthatx=x.... x.
1
 =

	

1 	
1 	

m

C(Alg(x)-1 (X))... C(A(X))C(X), t y = y ...y
i 	im

= C(Alg(Y)-1 (Y))... C(A(Y))C(Y), and start EP(A"'"
i
 g (

Y ' -- (Y),

Alg(x)-1 (x)).

(5) For each Y e S, if match EP(Y,X) then there exist m > 1,

X', Y' E S such that yx-end e (Y',X'), Y = Am-1 (Y'),

X = Am-1 (X'), and for each j, 0 < j < m, we have C(A3 (X')) =

C(Ai (Y')).

fi There is a natural identification taking place here. If we
concatenate the contents of the appropriate cells of the matrix,
this line becomes something like x = x ix2 = 011 = "0""1""1".

354

Q 	Qt

where Q' = (S',O',P') implies that Q' does also.

If a = START S , it is clear that all the rights entered are

placed into created entries so that thet "old portion" of P' is
unchanged. Moreover, the "new portion" of P' satisfies conditions
(1) through (5) by construction. There is no possible connection
between the old and new portions of P' because

This claim formalizes the discussion above. In (1), it is
shown how strings are encoded on the diagonal. In parts (2) and
(3) every node has a unique parent, except the root. In part (3),
the root and only the root of every tree is paired with some
other tree, and that tree is uniquely determined. yx-end joins

the ends of corresponding sequences in paired trees according to
part (1). Finally, in (5), matching proceeds along corresponding
sequences.

We are now ready to do the proof.

The argument is an induction on the length of the computation

of 44- Q.

Basis: The argument is trivial for

10 Or--

Induction Step: Assume that Q = (S,O,P) satisfies the
conditions. We will show that

P'[X,X'] = P'[x',x] 	0

14WIXES,VEV-S.Thusl
la
—TAThereot=STAR.T.preserves (1)

through (5).

We prefer to say "old portion" of P' rather than P'n(Sx0x2
R)

and "new portion" of P' instead of P'n(S'-S) x (0 1 -0) x 2
R

.

355

If a = GROW
i'

it is clear that one of 0 and 1 is entered in

each new diagonal element, and all other entries are made off the
diagonal, so condition (1), P[X,X] = {0} or {0, will still hold.

The link right is never entered in an old object, and only

entered once in each new object, so condition (2) (IA(X)! < 1)

still holds. The start right is not entered so (3) still holds.

If yx-end 6 P'[Y,X] with Y, X E S (not S'-S), then (4) holds in

P' since (1)-(3) hold in P' and (4) held in P. If yx-end c

P'[Y,X] witht Y, X E S' - S, then it is easy to see that (4) holds

with xi and y. continuing the sequence ending at (YEND,XEND).

That is, we have vx-end 6 (YEND, XEND) and there exist m > 1,
such that

(i) x = x 	x 	= C(Alg(x)-1 (XEND))•••C(XEND)
m 1

(ii) y = y, 	yi = C(A
18(y)-1 (YEND))...C(YE Nu

) 	and
±1

(iii) start E (A
lg(y)-1

(YEND), A
lg(x)-1(

XEND)).

Finally, (5) is not affected at all in the old portion of P' and
moreover it holds vacuously in the new portion of P' except
possibly for (Y

m
 ,X

k
) in the case where y

m i
= x

k i
. In that case

. 	.

itholdswithm=1.Thus,l—wherea=GROW.preserves proper- ,
ties (1) through (5).

If a is MATCHb, we see that the link right is not entered

anywhere so conditions (2) through (4) are not affected. The
other rights are entered by this command off the main diagonal so
property (1) is also unaffected. If 	is

MATCHb (Y,X,AY,AX)

then we must have had match in P[Y,X]. Then, by property (5),
there must have been m > 1, X', Y' c S such that

yx-end E P[Y',X 1]

Y = Am-1 (V), X = Am-1 (X')

t Assume that the command GROWi is called with actual parameters
(YEND,XEND); the Y and X here are formal parameters.

356

and
C(Ai (X')) = C(A 3 (Y 1))

for each j, 0 < j < m. It is clear that after the MATCH
b

command

is executed, similar conditions hold in P', since

AY = A(Y), 	AX = A(X),

C(AY) = C(AX) ,

and the other entries are unchanged, so (5) is satisfied by
1n+1, X', and Y I .

If a is LEAK, then no rights are entered on the diagonal so
property
(1) still holds and link, start and match are not entered, so

properties (2)-(5) are unaffected.

Thus, the induction is extended, and we see that Lemma 1 is
true.

We are now ready to prove Theorem 5. Suppose the Post
Correspondence Problem has a solution, say

m
). Then

commandsSTART.,GROL,... , GROW. could be executed with
1
1 	

1
2 	 1m

appropriate parameters so that the indicated solution is con-
structed. Since a solution ends with i

m
, we certainly must have

the"entermatch— n commandin"GROW.", so execution of ----- 	 1m
several "MATCHb" commands with appropriate parameters would

result in placing the match right in the same position as the

start right, thus allowing the LEAK command to enter the leak

right. Conversely, if leak is ever entered, it must be because

start and match appear in the same position of the matrix. By

property (5) of Lemma 1, we see that there must be some Y', X'

such that yx-end c P[Y',X'], and their predecessors match. But

then by property (4) for Y', X', we see that their predecessors

must be corresponding sequences of x
i
's and y's, i.e., the Post

Correspondence Problem must have a solution. Thus, the protection
system is safe for the right leak and the initial configuration

41. if and only if the Post Correspondence Problem has no solution,
and hence safety is recursively unsolvable. Q.E.D.

357

It is possible to improve this result somewhat.

Theorem 7. The safety question for monotonic protection
systems is undecidable even when each command has at most two
conditions.

Proof. The construction is similar to the one used in the
proof of the precedin theorem, except that a more complex
sequence of commands must be used for the matching. The set of
generic rights is

R = (0,1,1ink,start,match,yx-end,leak,my,myx,myx0,myx1)

ThesetofcommandsincludestheSTAn i ,GROW,and LEAK commands

of the previous proof. Note that these commands all have only
one or two conditions. The MATCHb commands, which had five

conditions, are replaced by the following six commands having two
conditions each.

command FOLLOWY (Y ,X,AY)

if match c (Y,X) and link c (AY,Y)
••■■ •••• _____
then

enter my into (AY,X)

end

command FOLLOWX(AY,X,AX)

if my c (AY,X) and link E (AX,X)

then

enter myx into (AY,AX)

end

For each b c {0,1}, we have

command GETYb ' (AY AX)

if myx c (AY,AX) and b c (AY,AY)

then

enter myxb into (AY,AX)t

end

t If b = 0 then myx0 is to be entered.

358

For each b E {0,1}, we have

command MATCHXb (AY,AX)

if myxb c (AY,AX) and b 6 (AX,AX)

then

enter match into (AY,AX)

end

Next, we need a result which characterizes computation in the
new system.

Lemma 2. If I— Q = (S,O,P), then for each X E S, we have

(1)-(5) of Lemma 1 as well as the following conditions.

(6) If my cP(Y,X) then there exists Y' c S such that

Y = A(Y') and match cP(Y',X).

(7) If myx cP(Y,X) then there exists X' c S such that ---

X = A(X') and my cP(Y,X').

(8) If myxb cP(Y,X) with b = 0, 1 then myx cP(Y,X) and

h cP(Y,Y).

Proof. Since (1) through (4) of Lemma 1 were unaffected by
the MATCH

b
command in the previous construction, the absence of

that command does not matter. Similarly, the six new commands

don't enter the start, link, or yx-end rights so (2)-(4) are not

affected. Since these commands don't enter rights on the
diagonal, they preserve property (1) also. Since the original
commands do not use any of the rights my, myx, myx0 or myxl, they

will not effect (6)-(8). Thus (6)-(8) just reflect the conditions
and actions of the commands FOLLOWY, FOLLOWX, and GETY

b
respectively, so they will hold. Finally, looking at the
MATCHXb commands, and combining its conditions with properties

(8), (7) and (6) we see that MATCHXb enters the match right in

(Y,X) just in case there exist Y', X' c S such that

Y = A(Y'), X = A(X'), C(Y) = C(X), and match c (Y',X'). These

are precisely the conditions which allow us to inductively extend
property (5). Hence the claim is proven.

359

Now to complete the proof of Theorem 6.

Proof of the Theorem. The argument parallels the proof of
Theorem 5 but uses Lemma 2 instead of Lemma 1.

III. MONOCONDITIONAL MONOTONIC SYSTEMS

Theorem 7 shows that the safety question for monotonic
protection systems is undecidable, even if each command has at
most two conditions. However, in many important practical situa-
tions, commands need only one condition. For example, a
procedure for updating a file may only need to check that the user
has the "update" right to the file. Similarly, to execute some
program, the user may only need to have the "call" right to the
program. Other examples abound. In contrast to the undecid-
ability of the cases discussed in the preceding section, the
safety question is decidable if each command of a monotonic
protection system has at most one condition. This result will
now be established.

Definition. A monoconditional protection system is one in
which each command has at most one condition.

Monoconditional protection systems are much more complicated
than one might anticipate. It is still not known whether or not
the safety problem is solvable for such systems.

Before stating our next result, there are some useful
observations which can be made.

In any protection system, if a command can execute in some
configuration Q, then it can execute similarly in any "super"
configuration Q' obtained from Q by adding rights and/or objects.
Also, objects in Q' may be renamed, so long as the pattern of
rights in the access matrix is not disturbed.

Definition. Let Q = (S,O,P) and Q' = (S',0',P') be configu-
rations of an arbitrary protection system. We say that Q'
covers Q (symbolically Q c Q') if there exists a one-to-one
mapping p from 0 into 0' which preserves subjects and objects
(i.e., p: S 	5' and p: (0-S) 4 (0'-S')) such that

P[s,o] c P'[ps, po]

for each s c S, o e 0.

Now we prove a simple lemma about covers.

Lemma 3. Let Q
1 , 1

Q', and Q
2
be configurations of an arbitrary

protection system such that Q1 c Qi. If Q1 h-- Q
2

then there

exists Q2 such that

(1) Q 2 E c 2

and 	(ii) Q1 	Q2-
In addition, if command a leaks right I= from Q 2 then a leaks is

 from Q.

Proof. 	A command sequence which demonstrates (ii) may be
easily obtained from one for

Q1 1:1- Q 2 	 (*)
by systematically renaming all actual parameters occurring in
(*) in accordance with the covering map p. The details are
omitted.

In a monotonic protection system, a similar result may be
proven for a weaker notion of covering. Here Q' may be formed
from Q as before, and/or by merging the rows and columns
corresponding to two or more objects (including subjects). More
precisely, we say Q' = (S', 0', P') weakly covers Q = (S,O,P)
(Q 	Q') if there is a many-to-one map p from 0 to 0' which

preserves subjects (i.e., p: S 	S'; although p may take
o 6 0- S into S') such that P[s,o] c P'[ps,po] for all s 6 S,
o C 0.

Lemma 4. Let Q1 , Q1, and Q 2 be configurations of a mono-
*

tonic protection system such that
Q1
 c wQ,

4
. If 	

. 	
Q 2 then

there exists Q2 such that Q 2 5_14 W2 and Q1 	Q. In addition,
if a leaks r from Q 2 , then a leaks i from Q.

Proof. The argument is quite similar to the proof of Lemma 3
and is omitted.

It will sharpen the reader's intuition if we explain why
Lemma 4 does not hold for general protection systems. Suppose at
some point in the computation sequence Q 1

FL- Q 2
a state is

reached where the right r occurs in two places in the access
matrix. Further, suppose a subsequent destroy or delete operation
removes one copy of r and that a still later command uses the
remaining r to help satisfy its condition. If Q' covers Q 1

then

361

of course a similar sequence of actions can take place in some
computation Q 1 1= Q2. However, suppose Q' only weakly covers

1
Q1 . In particular, suppose Q' is formed from Q

1
by merging rows/

1
columns so that both r's will end up in the same cell. Then the
delete or destroy operation will remove "both" r's, and the
subsequent command may not find any other r to satisfy its
condition. Thus the computation sequence starting from Q' may

"block" before reaching any configuration Q22 Q2 .

We are now ready to begin the argument that monoconditional
monotonic protection systems have a decidable safety problem.

Theorem 8. The safety question is decidable for monotonic
monoconditional protection systems.

Proof. Suppose we have a mcnoconditional monotonic protection
system. A computationt

0 	1 	a k 	
f

1 	 k
	

k+1

is called a chain from r E (x,y) if al 's condition is ift

r e (x,y) then, and for each i > 1, every command a i+1
has

its conditions satisfied by some right which was entered by a i'
That is, if Q. = (S0.,P.) and a i+1

has the condition "ift

r
i+1

E (X
1+1'

y
i+1

rthen r
1+1

E
P[xi+1,y1+11

 but

ri+1 	Pi-l lxi+l' Yi+1 1 '

t By convention, we denote the statement "a, leaks r from 0" by
Q E-- r. By the definition of a leak, this is not equivalent

to "there exists Q' such that QI-3- Q' and r is in Q".
ttHere x,y (respectively x

i+1 , yi+1
) represent the actual para-

meters passed to a
l

(respectively a) in the call which gives

0 h- 0 (respectively Q. 	0,).
'0 a

1
/ 	 / 	

1+1
II,/

(1)

362

sl
 s2

s l

({SV S 2 }JSV S 2 1 '

s
2

r

s
1

0
1

({s 1}{so1
}s

1 f r

Claim 1. If we have a chain of the form (1) and if Q; is any

configuration with r C P; [x,y] there is a similar chain starting

from

Proof. This is trivial since r C P;[x,y] implies that a l 's

condition is satisfied and hence a1 enters the right which

satisfies a2 's condition, etc. An obvious induction proof is

omitted.

Now, define for any configuration Q = (S,O,P) and any
s C S, o E 0 and generic right r a new configuration
Qrs°

as follows.

s
l

({s1},{s1 },
sl if s=o

) if s#o and oCS

if o e 0

Qrso

Note, for future reference, that there are only three possible

configurations Q
rso per generic right r. If g is the number of

generic rights, there is a total of 3g such configurations.

Claim 2. For each chain from r E (x,y) of the form (1),

there is a similar chain starting from Qrxy
0

Proof. From Q(') form Q0 by deleting all rights except

r E P[x,y]. By Claim 1, there is a similar chain from Q;, and

_ w 0 Q
0
 L Q

rxy
, so by Lemma 4 there is also a similar chain starting

-

from Q
o
rxy

•

363

We are now ready for the main claim.

Claim 3. Suppose that in our protection system, all commands
have one condition, and that Q0

 = (S
0' 00' P0

) with IS0 1 > 1.

Further, suppose that

Q 	Q 	Q 2 	• • •

	

0 a l 1 a 2 2 	 a
n

n a
n+1

(2)

is a computation of minimal length among all computations which

leaki- frortiQ0 .LetQ.=(Si3 Oi ,Pi) and suppose that a.'s

condition is "if r. e (x y
i
) then ...". Then

(1) Sequence (2) is a chain from r
1
c ().

(2) For all i, 1 < i < n+1,

rixiYi (a) Q i-1 	-w '1-1 ,

(b) but for each j < 	Qi_i
rixiyi iw

(3) We have n < 3g where g is the number of generic rights
in the system.

Proof. Clearly sequence (2) must be a chain because of the
minimality condition. If not, let i be the greatest integer

< n+1 such that a
i
is conditional upon the presence of a right

entered into Q j with j < i-l. Thus, Q. 	17- Q i
an+1

is a chain, so by Claim 1 we would have a shorter computation
equivalent to sequence (2) in which Q

j i-1
were

omitted, contradicting the minimality condition. This proves
part (1).

Next we consider (2a). Note that

(or Qn 	2.), where ai 's condition is if r i E (xi ,y i), so that
n+1

r x y.
ri Pi-1[xy]. Clearly then Q i Ew Q

i-1
for we may merge

364

all of Q i_ i 's objects (other than y i) into xi . Then (2a) holds.

Assume, for the sake of contradiction, that (2b) does not
hold. Let i, 1 < i < n+1 be the largest integer for which the
statement is false and let j be some integer < i-1 such that

rixiyi

Qi-1 	c —w Q j

We have that

Q 	Q I-- • 	1- Q 	 (3) i -1 a. i 	a n an+1

	

1 	 n

is a chain from r
i
e (x.,y.) by our assumption about sequence (2)

and part (1) of this claim. Moreover

r
i xi

 y.

	

Qi- 1 	cw Qj

from above so by Claim 2 and Lemma 4 there is a similar computa-
tion

Q 	Q , 	 F__ Q , 	2

	

a i i 	 an n an+1
(4)

Thus

Q 	Q 	• .. Q 	• • • 	Qn' 1—ct 	C' (5) 0 a 1
1 n+1

By assumption j < i-1, so (5) contradicts the minimality of (2)
which establishes all of part (2) of the claim.

Now (3) is easily obtained. From (2), each Q i , 1 < i < n,

covers some configuration Q
rso which isn't covered by any of

Q0 ,...,Q i_
1
. Since there are only 3g distinct configurations

Qrso ,
n must be < 3g. This completes the proof of Claim 4.

We will complete the proof of the theorem by arguing that
there was no loss of generality in Claim 3 by (a) assuming that
all commands had conditions or (b) that Q

0
 has one subject. For

(a) we note that we can make sure that all commands have
conditions by adding a new right r

0
 to the system, entering it at

some position in the initial configuration, and giving all
unconditional commands two new parameters X and Y and a condition
"if r

0
 c (X,Y) ...". There is an obvious one-to-one correspon-

dence between computations in the modified and unmodified systems.
For (b), when Q

0
has no subjects, simply test whether there is any

a such that Q0
a
E-- 	 0

or whether there is any Q' having at least

one subject such that Q0
a
E-- Q' where Q' is unsafe for r (which

0 	0
is decidable by Claim 3). Q.E.D.

We should remark that the decision procedure given in the

above theorem ist in NP, but it's not hard to see that a poly-
nomial time procedure is possible. Construct a (3g x 3g)

rso 	t S 0 	rso
relation "->" where Q

1
 -0-Q2
	

if Q
1 	

H Q
2
where

rs V 0 1

4 2 	c Q2
(note: not c

w
). The transitive closure of the

relation gives all necessary information about which rights may
be entered by some chain of commands. This will give a decision

procedure whose running time is 0(p + q
0
 + g

2.81
) where p is the

size of the protection system, q 0 is the size of the initial

configuration, and g is the number of generic rights.

This result can also be generalized to prove the following.

Theorem 9. Safety of monoconditional systems with create,
enter, and delete (but without destroy) commands is

decidable.

The proof is beyond the scope of this paper.

The decidability of safety for arbitrary monoconditional
systems (i.e., with destroy commands) is still open.

Details about basic concepts of modern complexity theory may be
found in PIHU 74].

366

REFERENCES

[AHU 74] Aho, A. V., Hoperoft, J. E., and Ullman, J. D., "The
Design and Analysis of Computer Algorithms," Addison-Wesley
Publishing Co., Reading, Mass., 1974.

[DDGHR 77] Denning, D. E., Denning, P. J., Garland, S. J.,
Harrison, M. A., and Ruzzo, W. L., "Proving Protection Systems
Safe," submitted for publication.

[Har 75] Harrison, M. A., "On Models of Protection in Operating
Systems," in Mathematical Foundations of Computer Science 1975
(J. Becval , editor), pp. 46-60, Springer-Verlag, Berlin,
1975.

[HRU 76] Harrison, M. A., Ruzzo, W. L., and Ullman, J. D.,
"Protection in Operating Systems," Communications of the
Association for Computing Machinery, 19, (Aug 1976), pp. 461-
471.

[LiS 77] Lipton, R. J. and Snyder, L., "A Linear Time Algorithm
for. Deciding Subject Security," Journal of the Association
for Computing Machinery, 24, (1977), pp. 455, 464.

[LiS 78] Lipton, R. J. and Snyder, L., "On Synchronization and
Security,"

[Pos 46] Post, E. L., "A Variant of a Recursively Unsolvable
Problem," Bulletin of the American Mathematical Society, 52,
(1946), pp. 264-268.

[ScA 77] Schneider, F. B. and Akkoyunln, E. A., "Use of a
Formalism for Modeling the Protection Aspects of Operating
Systems," Technical Report 74, Department of Computer Science,
State University of New York, Stony Brook, July 1977.

[Sny 77] Snyder, L., "On the Synthesis and Analysis of
Protection Systems," Proceedings of the 1977 SIGOPS Conference,
pp. 141-150, 1977.

367

DISCUSSION

Minsky: In the cOntext of you model, the principle of
attenuation of privileges means that rights can move only along
the subject rows. My question is how would you model this
discipline in your scheme?

Harrison: Let me comment on that. There are things in our
model which are not completely obvious. One of these things is
the parameter mechanism. Although types were considered in some
detail in Anita's thesis, it was our intention to omit them from
our model. Much to our surprise, we found out that we had some
type conventions and even a form of type checker built into the
model. The type checker appears in the formal description of the
"move relation". If you have a command which expects a certain
kind of parameter and a different type is provided, the command
does not execute. For example, the command

delete subject s

cannot execute if s is not a subject name. The principle of
attenuation could be implemented by augmenting the model to have
additional checking which controlled where rights were entered.

Cohen: A way of doing what Naftaly Minsky suggested is
putting some restrictions on the form of the commands themselves.
For example, the name of an object could not appear on one side
of the statement unless one of your conditions specified it. In
other words, you could not add something to a column unless you
checked to see that that right should be in the column, but in a
different row in that column. You could just switch rows in the
column.

368

Harrison: The present formalism is not set up for that sort
of condition but would be easy to modify. In my talk, I didn't
really discuss the use of the formalism to model protection in
real operating systems. In our original paper [1], we described
most (but not all) of the aspects of the protection mechansims
in UNIX. In [2], Schneider and Akkoyunlu indicate modifications
to the model which make it more useful for dealing with real
operating systems.

1. Harrison, M. A., Ruzzo, Walter L. and Ullman, J. D.,
"Protection in Operating Systems", Communications of the
ACM, Vol. 19, pp. 461-471, 1976.

2. Schneider, F. B. and Akkoyunlu, E. A., "Use of a Formal-
lism for Modeling the Protection Aspects of Operating
Systems", Technical Report 74, Dept. of Comp. Sci., State
Univ. of New York at Stony Brook, July 1977.

ON SYNCHRONIZATION AND SECURITY*

Richard J. Lipton
Lawrence Snyder

Department of Computer Science
Yale Universuty

New Haven, Connecticut

I. INTRODUCTION

In this paper, we will demonstrate that the synchronization
structure of systems of parallel processes, as represented by
Karp and Miller's vector addition systems [1], and the capability
maintenance structure of security systems, as represented by a
restricted form of the Harrison, Ruzzo and Ullman protection
system [2], are recursively equivalent. Our interest in this
unexpected similarity flows from several sources.

At the highest level, the discovery of a common structure
among a wide variety of problem areas usually suggests the
presence of a "fundamental" phenomenon. For example, the
recursively enumerable sets and the NP-complete problems are
phenomena that occur in a wide variety of circumstances and it is
this fact that accounts in large measure for the intensity of our
interest in them. Vector addition systems have previously been
shown to be equivalent to Petri nets [4], matrix grammars [5] and
other computational models, so our result can be seen as further
evidence of the importance of these elegant systems.

* This research was funded in part by the Office of Naval Research
under Grant N00014-75-C-0752.

371

Viewed at a different level, the equivalence provides insight
into the Harrison, Ruzzo, Ullman (HRU) security model. In their
original paper, the safety problem, i.e., the problem of deciding
whether a particular system leaked information, was shown to be
undecidable. In an effort to establish more positive results, we
have restricted their system in such a way that the safety
problem is recursively equivalent to the "covering" problem for
vector addition systems. The decidability of this problem, then
resolves the question and solves an open problem for subject
restricted HRU systems. However, complexity results indicate
that even for this restricted protection system, safety is an
intractable problem (see section 5).

On yet another level, we note that theoretical analysis of
protection systems is in its infancy and the Harrison, Ruzzo and
Ullman model is one of the first attempts at formalizing the
problem. We anticipate that other efforts will refine or
supplant their model. Our success at embedding vector addition
systems in the model suggests a paradigm for analyzing the
complexity of alternatives. Systems capable of simulating vector
addition systems are likely to have a complex safety problem.
Models incapable of such simulation might hold more promise.

The remainder of this paper is organized as follows: section
2 gives definitions and preliminaries. In section 3, we show how
the protection system simulates vector addition systems. Section
4 shows the opposite. In section 5 we combine these two results
with known facts from the literature to establish our main
results. The complexity issues are also discussed in section 5.

II. DEFINITIONS

In this section we introduce the formal models for protection
[2] and vector additions systems [1]. The reader who is not
familiar with these models is encouraged to consult the references
for motivation, and examples. The reader already familiar with
these models may skip this section.

A protection system P = (R,C) consists of finite set R of
generic rights and a finite set C of commands. Commands have
the form

command I:(X 1 , 	, X):

when r
1
E (X

s
, X

ol
) A ... A rq c (X

s
, X

o
)

l

do b • ... ; b
t

372

where D is the command name, X 	... , X are its formal para-

meters, the (X , X) are subject -object pairs (see below) and
S i 	

of

b l
,

b
t
 are operations chosen from the following set of

'
primitive operations:

enter r into (x , X) s 	o

delete r from (Xs , X0)

create subject X
s

create object X0

destroy subject Xs

 destroy object X0

and r,r 1 '...,r E R; 1 < s s
' 	

P.

A configuration of P = (R,C) is a triple (S,O,P) where S is
the set of current subjects, 0 is the set of current objects,
S c 0 and P is an access matrix with a row for every subject in

S and a column for every object in 0. For s e S and o C 0,
P[s,o] c R and defines the rights to object o possessed by
subject s.

Let (S,O,P) and (S',0 1 ,P I) be configurations and b be a
primitive operation, then

(S,O,P) => (S',0',P')
b

provided one of the following holds for actual parameters s and o:

(i) b is enter r into (s,o) and

s C S, o C 0, S = S I , 0 = 0 1 ,

P I [S,0] = P[s,o] U {r} ,

Pc[si,o 1] = P[s',o'] for (s',o') # (s,o)

(ii) b is delete r from (s,o) and

s E S, o C 0, S = S I , 0 = 0' ,

P I [S,0] = P[s,o] - {r} ,

P'[s',o'] = P[s',o'] for (s',o') # (s,o)

373

(iii)b is create subject s, and

s e 0, s , = S u {s}, 0' = 0 u {s}

P'[s,o'] = (I) for all o' c 0'

P'[s',s] = (I) for all s' c S'

P'[s',o'] = P[s',o'] for all (s',o') c Sx0

(iv) b is create object o, and

o f 0, S= S', 0' = 0 u {o}

P'[s',o] = 11) for all s' 6 S

P'[s',o'] = P[s',o'] for all (s',o') E Sx0

(v) b is destroy subject s, and

S E S, S' = S - {s}, 0' = 0 - fsl
Pits',o'l = P[s',o'] for all (s',o') c S'x0'

(vi) b is destroy object o, and

o e 0 - s, S' = s, 0' = 0 - {o}

1,1 [s',0"] = P[s',o'] for all (s,o) E S i x0 1

Let P = (R,C), Q = (S,O,P) be a configuration and

command D(X1 ,...,Xp):

when r c (X ,X)1\ ...A r q 	(Xs ,X)
1
	s

	431 	
0

q

do b
1" t

be a command in C, then

Q I 	 Q'
p(x)

p

whereWisaconfigurationprovidedforl<i<p,X.=x.and
either 	

1 	1

(i) r1 c (Xs ,X0) A ...A r q 6 (Xs ,X0) is false and Q'=Q
1 1 	 q q

Or

374

(ii) r 6 (X ,X) A ... A r 6 (X ,X 	is true or q = 0
1 	sl ol 	 s 	o

q

and there exist configurations Q 0 ,...,Qt such that

	

= Q0 => Q1 => 	=> Qt = Q' '
b
1 	

b2 	
b
t

*
I We write - for the reflexive transitive closure for 1- .

Given a protection system, we say that a command D(x 1
,...,xk)

leaks generic right r from configuration Q = (S,O,P) if D when
run on Q can execute a primitive operation which enters r into a
cell of the access matrix which did not previously contain r.
Further, we say that an initial configuration Q0 is unsafe for r

■ *
if there is a configuration Q with Q 0 I- Q and some command leaks
r from Q. Configuration Qois said to be safe if it is not
unsafe.

The model just defined is essentially that of Harrison, Ruzzo
and Ullman [2]. In [2] the safety problem (i.e., deciding for a
particular right r whether or not the system is safe for r) is
shown to be undecidable. The proof of this result involves
encoding the tape of a Turing Machine along the diagonal of the
matrix. Thus, the creation of subjects is essential to the
result. But what if subjects cannot be created? The resulting
system is not finite since the objects can grow. We will study
protection systems with this restriction throughout the remainder
of this paper.

A protection system P = (R,C) is said to be subject-restricted
(S-R protection system) if for no command D c C is it the case
that b

i
is create subject x

s
, 1 < i < t. (For simplicity and

without loss we assume that there are no destroy subject x
s

operations either.)

A v-dimensional vector addition system V = (I,W) consists of

an initial vector I c N il and a finite set of transition vectors

W = V1m where V
i
c Z

v
, 1 < i < m.t A computation is a set

of indices
i1"." ik

 defining the state S c N
v
where

t N is the sot of nonnegative integers, Z is the set of integers.
Superscripts index vectors, subscripts refer to coordinate
positions.

375

S = I + 	Vii
j =1

provided for all t < k,

0 < I + l Vii .

.1=1

A vector addition system V = (1,w) is called a binary vector

addition system provided for all i, 1 < i < 'WI, -1 < v
i

< 1.

Hence, each coordinate position is either 0 or + 1.

III. VECTOR ADDITION SYSTEMS REDUCE TO PROTECTION SYSTEMS

Our objective in this section is to show first that V.A.
systems can be simulated by S-R protection systems. Then we
demonstrate that the simulation has the property that the
coverability problem reduces to the safety problem. These two
lemmas will then be used later (section 5) to prove our main
results.

The problem at hand is to show how an S-R protection system
is to be interpreted as a vector addition system. The easiest
way to do this would be to dedicate one right per coordinate
position. Then the value of a coordinate of the state of the
VAS would be given by the number of occurences of the correspond-
ing right in the access matrix. This method solves the problem,
but we seek a more efficient encoding. Therefore, instead of
using single rights, we use sets of rights to correspond to a
coordinate position. The sets will be chosen to be incomparable
so that no collision will result.

A configuration Q = (S,O,P) of a S-R protection system

P = (R,C) is said to correspond to a vector V c NI) provided there

exists an injective function* f: 	 -4 2
R such that for

1 < j < v

V. = 1{(s,o) c Sx0 I P[s,o]=f(j)}1

* 2R R drinotes the set of all subsets of R.

376

Therefore, a configuration corresponds to a state vector V, when
the number of access matrix entries equal to f(j) equals the
value of the jth coordinate of V. If Q corresponds to V, by f,
we write Q >

f
V.

A S-R protection system P = (R,C) and configuration Q 0

simulates a vector addition system V = (I,W) provided there
exists an f such that

(i) Q0 > f

and

(ii)
n

is a computation for T
n 	

R(V) t if and only if

Q0 1- QI I- ...I- Qn and for all j, 1 < j < n, D
i 	Di 	

D.
1 	2n

Q. >
f
 T j .

We can now define f. For any position integer v let k be the

least integer such that v < (k/2)' Let R k be a finite set of k

generic rights. Define
f: 	 2 k

such that 1 < i, j < v and i # j implies f(i) 0 f(j). This fact

is referred to as "the incomparability of f."

R(V) is the reachability set of the VAS V and is the set of all
states definable by V.

377

378

Construction 3.1: Let V = (I,W) be a v-dimensional binary VAS

withlWi=m.ForeachVi eWdefineaconmiandEl.as follows.

If al ,...,at are coordinate indices such that V al = 1,

(1 < j < 2) and b l ,...,bn are coordinate indices such that

V. = -1, (-1 < j < n), then define

command Di (X0 ,X1 ,...,Xn):

when r E (X0 ,X0) 	El A ... AEn

do 13 1 ;...;Bn ;A1 ;...;At

where

r e Rk
Ej = (b.) E (X0' Xj) 	1 < j < n

B. is destroy object 3C.
3 	

1 < j < n

and

A. is create object Y.;

enter f(aj) into (X0 , 11j) 	1 < j < Q.

We abbreviate

by

and similarly,

means

r 1 E (Xi ,Xj) 	... It rt E (X ,X.)

{ri ,...,r t } E (Xi ,Xj)

enter {r 1 ,...,rt } into (Xi ,Xj)

enter r1 into (X i ,Xj)

enter r t into (Xi
 ,X,) j

(We remark that the access matrix position P[S i ,S i] will always

contain r and hence X
0
 will always be bound to S

1
by the first

term in the when portion of the command. We do this for technical
reasons -- first constants are not allowed and second since the
state vector T could have all coordinates equal to zero, the
corresponding access matrix could become null and thus introduce
complications.) Define C = {D . 11 < i < m}, R = {r} u Rk and the

-

S-R protection system Pv = (R,C). 	 ❑

Lemma 3.1: For any binary VAS V = (I,W) of v dimensions, there
is a 1-S-R protection system Pv = (R,C) of k+1 generic rights

such that Pv simulates V.

Proof: Define P
v
= (R,C) by construction 3.1. (Basis) Define

the initial configuration

Q0 = ({s 1 } ' {s l°1" . " °11) ' P)

where
v

U =

P[s i ,s 1] = r

and P[s 1 ,o 1],...,P[s 1 ,o u] are assigned such that

I. = y iff y = 1(o c 0-{s 1}1P[s i ,o]=f(j)11

Therefore Q0 > f I.

(Induction) We take as the hypothesis that T i c R(V),

01
0 -Qi > f T

i .moreover,werequirethatifQ.=(S,O,P) and

S = (s 1 }, then P[s 1 ,s 1] = r. We then establish

379

T
1+1

=Ti+Vj c R(V) implies 4i1- Qi4.1 and Qi+ef T
1+1

D.

in steps (i) - (iv) and

Q
i

1Q implies T1+1 = T i+Vj c R(V) and Qi+1> f
J

(3.1)

(3.2)

in steps (v) - (vii).

By hypothesis, T
i

c R(V), Q
0 ! Q1,

 Q. >
f T

i and is Qi = (S,O,P)

then r e P[s 1 ,s 1] where fs
1
1 = S. Let Vj e W be such that

T+V
j = Ti+1 	R(V).

(i) The when condition of D. is satisfied. Suppose not,

then because r e P[ss
1
] the failure is due to the

falsity of Eu for some u. But E u false implies

f(b
u

) 	P[s 1 ,o] for all o 6 0. By construction then,

T
i
b
 = 0 contradicting T

i+Vj
c R(V). Hence the when

u

conditionofThis satisfied.
J

(ii) Qi D.Qi+l by (i) and the construction since no
J

operations are delete, none fails to apply. Let

Qi

	

> QB => 	> Q => QA => 	=> = Q = Q B
2- 	

B
n

B
 n Al 1 A

2 B 1
	

A
t 	

At 	Q.

and Q. 	= (S',0',P'). Clearly S = S'.

380

(iii) Suppose it is not the case that Q
1+1

>
f

T
1+1

, and let z

be such that

T
i+1

0 1{P'[s i ,o] = f(z)lo E 0 7)1. (3.3)

If Vj = 0, then either not QB > f T i or not Q
A > f T i

u

for any u or w contradicting the incomparability of f.

If Vi = -I then not Q
B

>
f T

i
for b

u
< z or not

QB >
f Ti+1 for b

u > z or not QA > f T
i+1 contradicting

u f

the incomparability of f. If V! = 1 then not QB > f Ti

 for any u or not Q
A

>
f

T i for a
w

> z or not QA > f T
i+1

w

fora
w

> z contradicting the incomparability of f.

	

Hence (3.3) is false and Q 	> T
i+1

	

Q,
	f

(iv) It is immediate that P[ss
1
] is not changed and thus

P'[s i ,s 1.] = r.

Thus, (3.1) is established.

By hypothesis, Ti c R(V), Q
0

I- QQ > T and if Q = (S,O,P)

thenreP[sv ywherefy=S.Letrl.cC and Qi !B . Qi4.1 .
J

(v) T
1+1

= T
i
+V

j 	R(V). Suppose not and let z be such that

VZ = -1 and Ti = O. Since Q
i I5.Q1+1

the when condition

is satisfied and this implies by construction that for

some u, b
u
= z and E

u
is true. But this means f(b

u
) =

P[so] for some o 	0 contradicting Q. >
f T

i
.

(vi) Q
i+1 > f

T1+1 by an argument similar to (iii).

(vii) It is immediate that if Q i4.1 = (S,0',P') then

P'[ss
1
] = r.

Thus (3.2) is established and the lemma follows. 	 ❑

IV. ENCODING PROTECTION SYSTEMS INTO VAS

In this section we accomplish the encoding of protection
systems into VAS. First, we show that k-subject-restricted
protection systems can be encoded into 1-subject restricted.
Next, we show that 1-subject restricted protection systems can
be encoded in vector addition systems.

The following development is simplified considerably if we
observe that a bound of k > 1 on the number of subjects is
recursively equivalent to a bound of 1 on the number of subjects.
Specifically, there are only finitely many different entries in
any array position and there are only k positions in a column,
so by expanding the alphabet and modifying the instructions, a
one subject system can be found that is equivalent to the k
subject system.

Intuitively, the commands will be changed so that the SxS
portion of P can be represented by a single position and the
Sx(0-S) portion will have its columns represented by single calls:

• • • • • •

1 	

SxS
	

Sx(0-S)

1

1 	1 	1 • • •

The alphabet will use triples, (row, column, right), as "expanded"
rights for describing the SxS portion of P while pairs, (rows,
rights), will be used to specify the information in a column of
Sx(0-S).

Lemma 4.1: Let P = (R,C) be a k-subject protection system, then
there exists a 1-subject protection P' = (R',C') and a function
f: Qk > Q i mapping k-subject configurations to 1-subject config-

*
urations such that Q0 1p Q implies f(%) 	f(Qn).

Proof. To construct P' from P, follow the steps:

1. Define R' ={(i,j,r z)11<i,j<k,r 2,ER) u

{(1,y11<i<k,riER) u {(0,0)}

2. Find for each command D E C with formal parameters
X1 ,...,Xp , the subset of formal parameters X' 1 ,...,X'

x
that must be subjects, i.e., those parameters that occur
as the first term in a subject-object pair in the
definition. Denote the remaining parameters X' x+1" . "
X'

p
.

Remark: The must-be-subject parameters X' ,...,X'
x

may be

assigned subjects from s l ,...,sk in any manner while the may-be-

383

1

subjects-or-objects parameters
X'x+1"

 .. X'
p
 may be assigned

subjects or objects in any manner. From the viewpoint of the
construction all objects o c 0-S behave the same. Note that in
all but the most trivial systems, x 0.

3. For each D define D 1 ,...,Dn to be n = kx (k+1)
p-x
 copies

of D such that each one corresponds to a different
assignment of the formal parameters X 1 ,...,X : the

must-be-subject elements X' 1 ,...,X'
x

are assigned from

is
l'

s
k
} while X' 1 ,.. . X'

p
are chosen from

fs 1 ,..,sk ,ol, where o represents an arbitrary non-subject

object.

4. For each D 9, (1<k<k
x
(k+1) P- x) add, if p ¢ x, the predicate

(0,0) E (X v i ,X l i) to the when clause for x+1 < i < p.

In addition, effect the following replacements.

replace

r
ac(X' b' X' c)

by

(i,j,ra)E(V w X' 13)

if X' b corresponds to s.

and X'
c corresponds to.

sj

enter r into (X'
b'

X'
c

) 	enter (i,j,r) into (X' b ,X' h)

delete r from (X 1 17. ,X'd 	delete (i,j,r) from (X' b ,X' b)

r
a
c(X'

b'
X'

c
) 	 (i,r

a
)c(X'

b'
X'

c
)

if X' 10 corresponds to s i

 and X'c corresponds to o

384

enter r into (X'
b
,X 1

c
) enter (i,r) into (X'

b
,X'

c
)

delete r from (X' 1) ,X' d 	delete (i,r) from (X I I) ,X l c)

create object X' 	 create create object X'

enter (0,0) into (X' 1 ,X0)

Remark: 	The role of (0,0) is to mark all non-subject objects.
The proper definition of f is now clear. It maps configurations
from (ts l ,...,s

k
1

'
Is

'
s
k
1 u 0,P) into ({s},{s} u 0,P') such

that

= {(i,j,rdireP[s i ,si]}

P'[s,o.]

1<i,j<k

1<i<k

f(i,rdlreP[s i ,oi]}.

The result now follows by a laborious induction which is left to
the reader. 	 ❑

We will now show how to use a VAS to simulate a k-subject
protection system. By the previous result, it is sufficient to
consider the case when k = 1. Now, intuitively, the VAS V will
do this simulation by using its counters to keep track of the
contents of each cell. If R is the set of generic rights, then

there are m = 2 1R
possible cells. V will therefore have m

counters which will keep track of the number of each type of cell.

385

Let P = (R,C) be a 1-subject protection system. We will now
describe a VAS V = (I,W) by the following construction. (As in

[3] we will view V, as having a set of counters that it can
increment and decrement but cannot test for zero.)

Let V have counters (in the sense just described)

v ...,vm where m = 2
I R '

. Also let S
1" Sm

be the subsets of R

in some order. Initially, v i is set to the number of cells with

contentsexactlyequaltoS.(i=1,... ,m) . Now V operates as
follows:

(1) First it guesses a command D from C nondeterministically.

(2) It then simulates this command, say (s = only subject)

command D (xl ,...,xn):

whe
n

E
1 	

E
t

do A *...-A
1" .

as follows. First let us assume that x l ,...,xn are all

objects.Foreachcellx1 xi we can collect into T i
those

rights that must lie in x i in order for D to execute.

Now we nondeterministically guess a S. (1=1,...,n) such
J i

that T. c S. c R. Then V executes the instructions
1 — j t — P

v. 	v. 	- 1 	(i = 1,...,n)
J.
1 	

j i

and then

v. + v. + 1
J. 	J.

By induction, these will be successful if and only if
there are cells which contain S 	 . Now VP is

jl 	jn

ready to update the cell contents. It does this in a
similar manner. There are several cases.

386

(i) enter r into (s,Xi).

This is done by v. 4 v. 	- 1 and

	

J i 	J i

v. 4 v. 	+ 1

	

3 k 	Jk

where S 	u frl = S
jk

(ii) delete r from (s,X i).

This is done by v F v 	- 1 and

v + v. 	+1
ik 3 k

where S. - {r} = S.
ji 	Jk

(iii) destroy object Xi .

This is done by v. 4 v. 	- 1.

	

j i 	J i

(iv) create object Xi .

This is done by v 4 v. 	- 1
J i

where S. 	= c.
J i

It only remains to consider the case where some of the cells
X 	..,Xn are subjects. Since, however, there is only one

subject, we can handle this by having Vp encode into its finite

state control the contents of the cell (s,$), i.e. which of the

2 IRI values it has at any one time.

It follows that

1

Lemma 4.2: Let P = (R,C) be a 1-subject protection system and
let V

,
= (I,W) be the VAS that corresponds to the above construc-

tion. Then there is a recursive function f from vectors of VP to
configurations of P such that

{QlQo l Q} = f(R(Vp))

where Q
o

is the initial configuration used in the construction of
V P

Proof: This follows by an easy induction and is omitted. 	❑

V. MAIN RESULTS

In section 3 it was established that S-R protection systems
can simulate binary vector addition systems, and from the result
of Karp and Miller [1], that an arbitrary VAS can be "simulated"
by a binary VAS, we conclude,

Theorem 5.1: Every vector addition system can be simulated by a
binary vector addition system.

Corollary 5.3: Vector addition systems and subject-restricted
protection systems are recursively equivalent.

The primary consequence of these results can now be indicated.

For any vector T c N
v

and VAS V, the covering predicate C(T,V) is
true iff there exists T' E R(V) such that T < T'.

The task of determining whether or not the covering predicate
is true for given T and V is called the covering problem.
Another useful result from [1] is

Lemma 5.4: [1] The covering problem is decidable

We are now able to prove

Theorem 5.5: The safety problem for k-subject restricted
protection systems is decidable.

388

Proof: Let V be the v-dimensional vector addition system
(constructed in section 4) that simulates P = (R,C), the k-subject
restricted protection system for which safety is to be tested.
Let r be the right for which safety is to be tested, and let co-
ordinate i be the "counter" in V that keeps track of the
instances of r in any protection array. For every vector v of V
that was constructed to increment coordinate i to effect an
enter r into (s,X

o
) instruction (when r wasn't already in

(s,X
o
)), add an additional + 1 to a new coordinate v+1. All

other vectors of V should have 0 in coordinate v+1 and the
result will be V'. For any initial configuration Q

o'
then the

predicate C(0
v
1,V') is true iff Q

o
is unsafe for r with respect

to P.

REFERENCES

[1] R. M. Karp and R. E. Miller, Parallel Program Schemata,
JCSS, Vol. 3(2): pp. 147-195.

[2] M. A. Harrison, W. L. Ruzzo and J. D. Ullman, Protection in
Operating Systems, CACM, 19:8 (1976).

[31 R. J. Lipton, Vector Addition Systems are Exponential-Space
Hard, Yale Computer Science Dept., Technical Report (1975).

[4] M. Hack, "Decision Problems for Petri Nets and Vector
Addition Systems", Computation Structures Note, No. 10,
Project NAC, MIT, May 1973.

[5] S. Abraham, "On Matrix Grammars", TR3, Computer Science,
Technion, Haifa, Israel, 1970.

CONVERSATIONS ON SECURE COMPUTATION

On Tuesday afternoon, October 4, the authors of the papers
in this volume met for three hours to discuss issues that had
crystalized during the previous formal presentations and the
informal discussions.

The editors prepared the agenda of leading questions. The
conversations were taped and edited and appear on the following
pages in excerpted form.

Lipton: In protection, we've looked at a lot of different
problems and a lot of complicated mechanisms. Many interesting,
practical and mathematical problems have arisen. One question
that I would like to ask both the practitioners and theoreticians
is what is the utility of these problems? Do they correspond at
all to the kinds of things that people like to do? If I had a
UNIX system today that handled very complicated kinds of access
controls, would it be easier at all on the mini-UNIX system? Or,
is read/write protection sufficient for most real computation?
What kind of computing requires very complicated and sophisticat-
ed protection mechanisms?

Gaines: I'll start by remarking that simple read/write
conventions are just not sufficient. In using them now, we're
already up against certain kinds of limits. Just how far in the
other direction you should go, I just don't know.

Jones: I would like to comment. If you look at evolution
in programming languages, you will find that programming languages
are being designed so that a programmer builds his program by
defining objects, then defining the operations that are applicable
to those kinds of objects. The two together are what Fabry was
referring to as a type manager. One can make the argument that
in languages we use basically the same kinds of techniques that
we're using for the capability-based access-control systems.
The languages can do most of the checking statically. I think
that the issue is broader than just the dynamic protection
mechanisms that we spent most of our time on here. So, I think

391

that these protection mechanisms are going to have a fairly large
pay-off. But, I believe most of the pay-off comes not from
securing yourself against the malicious acts of an adversary, but
from building programs in which one program doesn't do something
that is inconsistent with respect to another program. You are,
in some sense, defending yourself against yourself.

Cohen: I'd like to second that. I like to think in terms
of what you might call the paranoia model versus what you might
call the reliability model. For example, a system like Hydra
guarantees that a particular capability cannot be passed out of
a certain domain, and that seems to be useful pragmatically.
But, in terms of a programming language, it is certainly import-
ant to guarantee that the particular capabilities will stay
within certain types of objects. That's starting to become a
widely applicable principle in programming languages. And, I
perceive that it's going to be even more useful later, just for
reliability.

Gaines: I'm not sure that either of these remarks answered
Lipton's question. The question was, "What is the need?" Not,
"How nice are they?" In other words, can we use them at all?

clones: i was giving you an answer to that, I thought. I
was making a point that I thought that the protection mechanisms
were extremely useful for complementing the programming method-
ology for building modular programs. And, in fact, that's just
how Hydra is being used at CMU right now. The way that people
tend to program is that they define a new type manager. Using
protection mechanisms, they ensure the integrity of the service
one program provides to another. This use of the protection
mechanism was not one of the motivations for the Hydra design.
During the design, we mainly thought about the ability to protect
data from malicious users. But, in fact, this other serendipidow
use of it has been tremendously productive. Can I give you an
example of the read/write kind of protection and why it doesn't
always work? I'd like to build an object containing data, and I
want to share that data with you. If what I do is to build a
type manager and the way that we share the object is by always
calling this type manager who in fact is the only one that can
read and write implementations, we have much more a controlled
and disciplined system. And we will also have a lot more pro-
tection.

Gaines: I think we're still avoiding the question. Are
there substantial cases where something of the complexity of the
bibliographic system in Hydra is actually needed?

Harrison: There is a computer application that nobody has
talked about so far. One estimate has suggested that its value
could exceed all other applications combined. This is the area
of office automation. One of the vital aspects of such systems
is protection and security. I'd like to give an example of this
type of application, but first, let me remind you that digital
computers do one operation absolutely perfectly. When they copy
a discrete object, it is a perfect copy down to the last bit.
For example, consider an automated office in which requests for
travel funds are processed. There must be sophisticated mechan-
isms built into such a system so that an employee's request is
processed by a superior with the proper authority. Moreover,
his "signature" should not be forgeable. In the absence of any
protection mechanisms, signatures could be copied perfectly,
employees can authorize their own travel, etc. The omission of
such protection features in current systems is quite striking.

Shapiro: Granted that the issue is "does that kind of
application require the complex kinds of methodologies"?, are
there much simpler strategies to accomplish the same task?

Harrison: There are certainly some simple and ingenious
solutions that go part of the way, but not all of the way. If an
inappropriate individual attempts to authorize a request for
which he does not have the proper authority, a "form" can destroy
itself or send an alarm, etc.

Fabry: Ultimately, I foresee a network of systems having
the complexity of all of society. The proper implementation of
such a network will require us to understand access-control much
better than we do today. If we had such a network in which the
protection were almost trivial, we could automate much of what
we do manually today. If each user had some information which
was private and if there were some way to make information public,
people could make information available to each other. Select-
ivity could be achieved by encryption. Access-control decisions
could be made by applications programs at the nodes.

Dobkin: The next thing we might consider is whether we should
pursue more database results than, say, that compromise is easy.
in general, what types of problems should we be working on?
What directions should we be going in terms of databases and

393

security in general?

Shapiro: There are two directives that contradict each
other. One is that privacy be protected database information.
This is a directive that has come down to us from institutions.
Another directive is that society has been managed in such a way
that databases will be maintained and accessed. The results
that we've seen about database compromise address themselves to
relatively simple extractions from the databases, such as means
or medians. These may be questions of the kind that are not
socially necessary to be able to ask. Asking very general
policy-type questions of a database doesn't necessarily involve
making available means or medians or any other type of summaries
or statistical information about the database. It means making
available far-higher order statistics. So that brings into
question what happens to results about database compromise when
the interrogations involved are not nearly as direct and as
simple.

Minsky: In addition to the question of how do we restrict
what one can get from the database, there is the problem of how
does one ensure the correctness of the contents of a database,
and by implication, the correctness of responses to user's
queries. Errors in data may be introduced either inadvertantly
or maliciously and it is the responsibility of the system to
protect itself against such errors. Failure to do this would
have grave consequences both to , the privacy of individuals about
whom misinformation is distributed, and to the society at large,
if wrong information serves as a basis for social decisions.

Gaines: The issue of databases of credit information and the
passing of that information around people who you don't want to
see it or who you haven't authorized to see it, seems to be
indicative of the larger social question. There just is
information that people can use to their own benefit and you may
want to keep that information away from them for that reason.

Minsky: But, there still is the question of how one ensures
the correctness of large masses of information for long periods
of time.

Gaines: But if somebody doesn't gain anything by modifying
it, they just won't bother. We know of more cases where somebody
gained just by learning the information.

Minsky: Then there's also the problem of people sneaking
into the system and deliberately making mistakes.

394

DeMillo: 	These are all public policy issues. They're not
necessarily security issues.

Dobkin: Yes, these things seem to be issues that do not
have so much to do with computers as with, let's say, collection
agencies.

Kline: I think that the issues are not going to be whether
information can be kept private, but whether or not it is kept
private. Will someone enforce the personnel policies in order
to secure the information? Since it takes statutes to do that,
I agree these are public policy issues and not technical issues.

Budd: Getting back to the original question about whether
or not we need any more papers on database security, it seems
theoretical computer scientists are always running up against
these situations. The problem cannot be modelled in it's full
generality, and so we abstract certain pieces of it and study
restricted kinds of database cracking. I think we are at the
point now where we should go back and look at these results we
have concerning these restricted classes and ask whether or not
they carry over into the real world. That is, can I go out and
obtain information about an individual from the Census Bureau
just using the Reiss median strategy? To cite an example of when
I think we are not being realistic, most models that are studied
only allow queries of fixed sign. There are other assumptions
made that I think cannot be justified in practice. I think
there is a need now for more empirical study, in which people
look at databases in the real world rather than at mathematical
database models.

Lipton: There are also questions that DeMillo, Dobkin and I
have called inference questions. There may be some very interes-
ting interplay between them and database questions. If I use
some of Ron Rivest's ideas for encrypting a file and give the
user only certain restricted operations, it may be quite diffi-
cult to see whether the user can put together restricted pre-
dicates to determine what he would really like to know. So, I'm
very positive that there are some directions that we should go.
It may not be exactly a database model, but it is related I think.

Gaines: First of all, I'd like to comment about this termi-
nology, "crack a database". It implies a binary choice and that
is one of the difficulties here. We're not just concerned that
you get or don't get one bit of information, but whether or not
useful information is transmitted; and if so, how much? A
secondary question is to study how information flows out of it.
The goal is to get far less than what you want up to certain
special circumstances.

395

Dobkin: You're saying that if I get some piece of informa-
tion, say the salary of some person that I don't know then that
is not a piece of useful information and who should care? But,
what about the person whose salary I got? He'll care. Even
if I can't use it today, I may be able to use it some day, and
that is certainly an issue.

Cohen: Yes, I am concerned about the kind of work that's
been done in compromising databases. It seems to me to be
concerned with the selling of security, and I think that that's
probably a dangerous thing to do -- both for technical reasons
and for realistic reasons. In terms of the kinds of things that
has happened technically, I think one thing that we have not
taken into account technically with any of these models is the
extent of a priori information. That's going to be very hard to
model. Realistically, it's clear that the most dangerous thing
about databases is not the security mechanism, but that there
are other ways of getting into the system. If we keep op doing
this kind of work, then we just have to be very clear that it's
just a game. We're really not protecting anything. What's
happening is that large databases still get built and it is
exceedingly dangerous for people to perceive these results as
saying that we can protect your database and that it's okay if
you stick that piece of sensitive information in it, because
nobody is going to be able to get it out with a certain prob-
ability. I think that what is important to consider is not the
techniques for guaranteeing that a compromise can't occur, but
to build systems that involve the dismantling of databases
instead.

DeMillo: I would tend to agree with you if the results that
we're talking about went that way, but they go the other way.
They say you can compromise; therefore, you should not assume
that something is secure. This might limit the kinds of things
that you try to do.

Cohen: Sure. I think that negative results are useful.
But keep in mind that it's always just a game. All of these
results have nothing to do with the security of information.
My discussion about the dismantling of databases is irrelevant
to the discussion of whether or not we should de research in the
area. In fact, what I'm saying is that the realities of data-
bases are totally distinct from the issues of mathematics basis.

DeMillo: Does anybody know of any human information process-
ing results that say that an expert who knows a good strategy
does well in actually getting information out of the databases?

396

Fabry: I can't answer that question. But, I think that what
I'm going to say is relevant. I came to this conference not
having looked at the question of whether or not you can get
sensitive information out of the databases by asking tricky
questions. I naively assumed that there were simple strategies
that would be fairly effective in keeping people from figuring
out specific information. I suspect that is a common misconcep-
tion. I think that it is going to fall to us over the next few
years to call the attention of the public to the fact that no
simple strategy works. This is particularly true, as Ellis Cohen
mentioned, when you cannot know what kinds of information a pene-
trator may have obtained outside the system. Over the next few
years, databases will become increasingly important. They will
be pushed by institutions for whom they will be extremely cost-
effective. Companies producing such systems will be under
pressure to make assurances to the public about the non-penetra-
bility of their systems. We may have quite a job on our hands
trying to keep making sure that the appropriate agencies and the
public are - aware of the limitations on such assurances. The
conclusion that I would draw is that there must be legal respons-
ibility and human judgement invoked on a fine-grained basis
wherever these systems are employed. And, that's not an obvious
conclusion. Many who install database systems will be hoping to
reduce such factors.

Minsky: I would like to try to correct what seems to me a
misconception about the nature of database systems and of the
interaction with them. People seem to consider a database system
as a mechanism which answers mostly statistical types of quest-
ions. The fact of the matter is that an information system,
which is based on a database, contains large numbers of programs
which have to navigate through the database, and update parts of
it. An important security problem is how to control the inter-
action of these programs with the database interaction that is
not "statistical".

Dobkin: It seems to me that what you are saying is that
there is first the issue of running a database then there is the
issue of security. I've been more interested in the security.
Assuming that the database is totally correct and totally perfect
and did what it was told in every way possible, then is it secure?

Minsky: But there is no sharp distinction between the
programs that are part of the database, and the "application
programs" that interact with it. I contend that for the sake of
security, we must control the interaction of every subject with
the database, be it a human user, one of his programs, or a
program built into the system itself.

397

Cohen: I have a general question. Even though we know that
it is going to be enormously difficult to protect the databases
against compromise, there are those of us here who still advocate
the building of large databases. How do we guarantee individuals
that databases are not going to be misused?

Gaines: A sobering thought for all of us might be there's a
whole legal question of who is liable when things are stolen.
(nervous laughter) It is entirely possible that those computer
scientists who have said that the system is secure may be liable
when the code is broken, even those of us who say here's the
probability .000002 that the system is secure. I was recently
at a meeting on computer security and was amazed because over
half of the people in the audience were lawyers. They were
getting their feet wet in this whole question of liability. And,
I think that it was brought up in that meeting that billions of
dollars are being transferred electronically all around the
country. And if that's stolen, who's responsible?

Kline: There aren't big incentives to crack a database for
the personal reason of reading somebody's file. There may be
institutions that would want to do that, but T think the average
person is not going to have that in mind. But the electronic
funds transfer is going to bring us into a whole new game. In
that case, there's going to be a big pay-off for being undetected.

Dobkin: One of the things about electronic funds transfer is
that someone can go into the system and see who bought an
electric lawnmower from Sears, so that he can knock on their door
to sell them grass seed. Presumably, Sears is going to protect
people from that. Suppose that I can go in and ask what was the
average purchase of people who spent over a hundred dollars at
Sears last month? What is the average address? (laughter) Now
maybe we can't compromise the census data, but maybe we can
compromise the electronic funds data. And that will start
being a nuisance to people.

Kline: I think that what you're talking about is at a very
different level. Most large corporations would rather go out
and buy your medical history than try to crack it in a large
database. I think the damage that's likely to occur in that way
is relatively small.

Fabry: I think that we're really underestimating the
problem. Information is power. The need for computer databases
is tremendous. It is too easy to underestimate the potential
for abuse, the potential for economic exploitation, and the
potential for invading people's privacy.

Kline: I just have to reemphasize that I do not think that
the statistical access is the way databases will be compromised.
I do not think that that's the place right now where we should
be spending alot of our resources.

Rivest: It seems that the models we have available for
authorization and access-control are still very simple in
comparison to what we might need. You can imagine in a large
corporation the complexity of the patterns of not just accessing
information, but who is authorized to authorize someone else to
access the information, etc. I'm thinking back to the comments_
such as those made by Rabin this morning about different kinds
of authorization. These patterns can become very complex, and
I suggest that we need to study more complicated ways of sharing
information and sharing authorization, particularly in passing
the ability to authorize an access. I would also like to
suggest that the objectives of creating systems that are decid-
able and modelling what really happens in a typical information
system may be contradictory.

****** *** *

Harrison: Just a question to the technologists among us.
Some years ago, all I heard about was the information utility.
Now with hardware costs dropping, the utility system's much less
interesting. Since we can now give people an 11/70 on a chip
in their own home, maybe we'll have safer computations because
we won't share. Does anybody have any comments on what this new
technology is likely to bring?

399

1

Rabin: Maybe I'll start with the last question first. I
think you will have computers within the home. But, at the same
time, you will also have very large data banks because there are
some things which you don't want to store in your home. Now,
since Ron Rivest has generalized the discussion to future
directions of research, I would just like to very briefly raise
one point. Namely, that all of the considerations here are
almost exclusively centered around software. We talked about
operating systems with certain take/grant features which make
them secure according to some definition. However, the consider-
ation of hardware has to enter somewhere. Suppose you were using
various keys, there arises the question as to where these keys
are stored. Unless you want to have some sort of circular
argument, you won't be able to solve it unless you stipulate that
the system will contain some hardware security features which are
going to be secure places in which you can construct everything
else. Let's consider other questions. We are talking about an__
operating system being constructed so that you can't gain access
to certain places. But, who's going to secure the cop? Nothing
was said about the possibility of just starting to introduce a
portion of the operating system which is different and alien and
which does what the interloper would like it to do. Who is going
to protect his operating system from that type of intrusion?
These questions of security are important because so much will
depend on computers. So if you have computers controlling some
critical systems, then even though the probability of some
malicious or stupid act will be small, the penalty would be so
enormous that the expectation of damage would still be large.
Thus, it is incumbent upon us to make provisions for secure
operation. We should not disregard the question of certain types
of secure hardware which in certain senses cannot be tampered
with. How can we minimize the danger of tampering with the
hardware? The answer lies in a strategy of duplication. These
components are small and inexpensive. By extensive duplication,
you can ensure that tampering with the system will require an
enormous amount of work, literally getting into remote corners,
and so on. So, there is really a potential for safety which
emenates from secure hardware. If we intend to explore this
direction, then our thinking should involve a merger of secure
hardware with secure software. For example, to create models
where you are talking not only about procedures and restrictions
on various operations, but along the way you postulate certain
hardware guards that are unalterable.

Jones: I don't think that the distinction is between hard-
ware and software. I think that there are a number of security
procedures and then there is implementation. Someone will see
that these are quite appropriately implemented in hardware or in
software. In some cases, software running on a stand-along
machine achieves the same effects as a hardware implementation.

400

Rabin: Can I add something to that? I think that the point
that 1 made was diametrically opposed to the point that you just
made. Namely, if you talk about safeguards which are implemented
in software, then we have to realize that computers operate with
enormous speed. One approximately placed instruction may change
things in a very radical way. You can wipe out, for instance, a
whole memory. What I was talking about was the design of hard-
ware which has certain built-in features rendering it immutable.
So it is not some program which behaves like hardware, but
certain pieces of machinery which are there and which cannot be
altered. We even consider components having the property that
any attempt to fool with them will result in some sort of self-
destruct wipeout. The idea is that hardware is hard and cannot
be changed, while programs are soft and can be easily altered.

Jones: I think there is still a spectrum and we can build
software with some of the properties that you outlined.

Snyder: Let me just add a point to what Michael Rabin said.
We still much grapple with problems like machines going down
from time to time. The operator can put up a program that is not
one that you wrote and he can do what he wants to do regardless
of how clever you have been in your program. In Rabin's view,
you would have had the machine operating with some kind of hard-
wired protection to avoid that. We still have the problem that
one has a very direct route to the machine simply by bribing the
operator.

Dobkin: Well, I still think that he would have the same
problem in hardware. What about the guy who interchanges boards?
What kind of system are you going to have to monitor the guy who
has his hands on the hardwware?

Snyder: Sure, you're pushing the problem a little further
along. There you get into the situation that we were talking
about earlier today. How long an interval do you have to ob-
serve the system? That is perhaps a different time frame.

Furtek: I do agree that these hardware traps are extremely
desirable, and I agree that hardware is essentially different
than software, but there's one regard in which hardware is very
similar to software. And that is that it needs to be verified
for security properties in the same way that software has to be
verified. As far as I can tell, at least at this conference,
nobody is addressing that problem.

DeMillo: I think that the case can be made that neither
hardware nor software should or could be verified. If you are
thinking of processes like verification and security together
then there is something inconsistent. If you have a verified
piece of software and you are certain that it is correct and
secure, then you are going to abandon all of those safeguards
that you would have built in if you had not been quite so sure
that it wasn't going to fail. There is a tongue and cheek
phenomenon called the Titantic Effect which says simply that
the severity with which a system fails is directly proportional
to the degree of confidence with which you believe the s,stem
won't fail. So, I think there is by no means any concensus in
this group that verification is desirable.

Furtek: I thought that that's what you did in order to gain
some confidence that your system is secure. What is the process
that you go through to make your systems secure? Ar-n

DeMillo: It's not verification.

Davida: Yes, DeMillo was getting into what I wanted to get
into later. I noticed that there is a distinct lack of work in
what I call testing rather than verification. If you go back to
look at what hardware people do, they don't bother proving that
their chips work, they just test them. And what they do is run
diagnostic routines which tend to run in the background. And,
they report any errors that they find so that someone can go in
later and fix them. By the same token, I don't think we should
be running some kind of background diagnostics continuously
challenging and testing the systems and perhaps reporting the
compromise whenever it does occur. Just because the finite
access-matrix is decidable doesn't mean that security can be
proven in practice. It may just be too complex and you might
have to resort to adhoc methods.

DeMillo: I think all too often we apologize for adhoc
techniques. Often times, adhoc techniques are the only ones that
we know work.

Davida: I don't mean that adhoc means necessarily badly
chosen. We can have very carefully chosen heuristics.

Kline: I think that there's some chip designs that are
proven by verification.

Lipton: What chip design?

402

Kline: Certain kinds of gates, but most chips done by
testing. In many cases, they completely exhaustively test. You
get a thorough verification by exhaustion. That is a form of
verification. There are alot of cases in chips where you can get
it by induction of some sort. But, I'm not convinced that adhoc
testing methods are adequate.

Jones: I'd like to get back to the issues of what kinds of
research we should see in the areas of secure computation. If
you look back five years, the action was in designing protection
mechanisms for operating systems. Looking ahead, what I see is
an "information revolution". And I don't see ways of building
mechanisms that guarantee privacy. I suspect that what we will
see are what might be called "threshold mechanisms". They are
the same kinds of checks that we build into society: different
semi-autonomous entities that check each other. The reason that
a guard happens to be a very good protection mechanism is that
he has all kinds of threshold tests that he's constantly per-
forming, because he's a human being. He will notice that certain
things are out of the ordinary. There is no absolute mechanism
that prevents failure - in our case the leakage of information.
Instead, you have all these scattered mechanisms that raise ,

 warnings. That is, what we do in society. We do not have any
guarantees that information doesn't leak; we just have a lot of
mechanisms that check thresholds.

Millen: I think that there is an assumption there that you
can put your fingers on something like the granting of a certain
capability which would be the only time a compromise could occur.
That idea is based on using a model that may or may not apply.
There are questions about whether or not access control models
really address all of the questions about software channels for
compromising information.

Ruzzo: I'd like to make a comment about that approach to
systems security. That was used in an earlier version of 0S360
and when the operating system itself violated those security
constraints, the system crashed.

403

Kline: Every security system I know of that's been built
has reasonable checks to see whether or not what we are doing is
something that should be done. And, you could prove a priori
that nothing bad will ever be done or you can do the run-time
check, if there is a reasonably short definition of security.
Now, the issue therefore becomes how complex are your safety
criteria?

Fabry: There is some implication in the way that we got
started on this conversation that because of the HRU t results,
we should be scared away from our present protection systems.
I have unsuccessfully tried to find any practical implication of
the HRU results. I think it would be premature for people to
be scared away from conventional approaches to systems security,
or to feel that such systems were in some way inadequate, based
on the HRU results. One avenue for future research is to
understand the relationship of those results to real systems.
I am convinced that all interesting safety questions are decid-
able for the protection systems which I use and design.

Cohen: One of the things that I said earlier was that un-
decidability is only a relative issue. Theoretical results
assume a particular arbitrary configuration. The problem is to
determine whether or not a particular security violation can
occur. No real problem I've seen has had that flavor to it.
I'd be interested if anybody could generate one. Real problems
generally have the flavor of writing a specification for the set
of safety configurations to guarantee that you could never have
a security violation. Does anybody have any ideas when you have
arbitrary configuration?

Lipton: I didn't understand your question. It seems that if
you have an ongoing system in which people are being added and
deleted in arbitrarily complicated mechanisms, then it would
seem that you are coming in the middle of something very compli-
cated.

Cohen: I do not think that I buy that completely. It seems
to me what happens is that you initiate some request for service
with another user. What is really going on is that you set up
the initial configuration. You set up communication, and all
you have to do is to guarantee that communication is set up
properly. Then, you guarantee that if your system has perfect
mechanisms, you'll never get into the situation where the
policy you want to enforce will ever be violated. There are

t i.e., the Harrison-Ruzzo -Ullman decidability theorem (eds.)

404

alot of instances where that happens. For example, if you want
to guarantee that confinement is enforced, you begin by calling
the program in a certain way. Then you have to guarantee that
no matter what happens afterwards, e.g., the program that's
supposed to be confined goes off and calls another program, that
transitivity holds and the other program is going to be confined
also. So, the point is that as long as you set up the initial
configuration properly, you guarantee that the program that you
are calling cannot act maliciously. So, it seems to me that to
ask that given an arbitrary configuration, whether or not it can
be violated is really a moot issue. What you are really asking

. is can you set up an initial configuration or is there a class
of initial configurations that guarantee that confinement will
be enforced? And, the answer to that.is our mechanisms are
exactly an embodiment of that idea. It would be surprising if
these mechanisms would allow violation in that way. So, the
undecidability results are really unrelated.

Lipton: I think there are really two questions. One is
that you can set up a policy and then check to see whether or
not that policy is ever violated. Another is to have lots of
commands that have to ask "may I" at many places. In the latter
case, I'll prove a little theorem to myself to see if the
sequence of "may I"'s will ever get me in trouble. There is
probably a whole spectrum of tradeoffs in which you could prove
smaller and simpler theorems, and those would be tractible.
I'm just suggesting that there must be a very wide spectrum
and that we not lock ourselves in.

Tittaw: Let me make another point about the relevance of
the initial configuration. Given a particular system such as
Hydra, it may or may not be trivial to decide whether there is
some configuration from which confinement can be guaranteed.
But, given .:11 arbitrary protection system - that's undecidable.
I think that this is an example of a kind of tradeoff we have
between our general results and results about any particular
operating system.

:_;nyde .v?: Let me try to just reiterate in a different
language Larry Ruzzo's results. When you look at results
referring to any formal model, you must be very careful about
the quantifiers. That is, you must be very careful about what
is allowed to vary and what remains fixed. In particular, what
things are you allowed to choose a priori and what things once
chosen are allowed to be modified over time? I think that the
controversy we are having here over the undecidability results
is a matter of quantification. You're saying that for Hydra, a
particular choice was made, including a particular choice of
initial states. And the Harrison-Ruzzo-Ullman result is
quantified differently. There is no inconsistency here. The

405

Take/Grant system, for example, is restrictive, it has a particu-
lar set of commands, too.

Jones: I have just been told, in effect, that the HRU
results are irrelevant.

Lipton: You've misquantified the statement (laughter).

Jones: Not at all. We produce ten operating systems a
year in the world. Therefore, it is uninteresting to me to
quantify across all possible operating system protection
mechanisms. There are only ten new ones of interest every year,
so I'll just go out and check those ten.

DeMillo: I have a final question. What shall we tell the
reader of this book who wants to know what's happened in security
in the last five years and what is likely to happen next year?

Kline: There are approaches to network security. Encryption
chips are being developed, as are public key systems and signa-
ture systems. These all have happened in the last five years
and are going to have significant impact.

Fabry: Be careful not to equate encryption chips, public
key systems and signature systems to security. These are merely
tools which are available for implementing desired security
policies. At best, their existence allows us to focus on the
remaining issues more clearly.

Lipton: It's interesting that Kline said "secure" and not
usable and secure.

Cohen: I'd like Bob Fabry to relate some things that he
thinks will result in open problems in operating systems.

Fabry: Security, at the operating level, with a realistic
definition of security. We ignored confinement at this workshop;
the hard part of confinement is the treatment of covert channels.

406

Lipton: Secure will presumably mean that you will have
reasonable confidence that your operating system will do certain
things and won't do others. But, it will simply be an information
processing tool. It will be used with a lot of applications on
top of it and that are subject to mistakes and errors. I think
that calling it "secure" is very misleading. Really, what we're
saying is that we'll have some very nice property, though it is
not even clear that it will. You can't legislate that people
don't use a general purpose operating system incorrectly. As
long as you call it secure, it sounds very dangerous.

Kline: But the point is that the security mechanisms that
you enforce will, in fact, work.

Lipton: So, in some sense, you have passed the buck. In
another ten years, we will have things built called security
applications kernels and then we'll say, let's pass the buck to
x.

Kline: That's right. And at each point, we'll hopefully
have gained something.

Lipton: The point is now that you cannot write an applica-
tion program that's safe. Why should we believe that it is any
easier in principle using take/grant, when before we had to do
it in machine language? You are doing everything at'a higher
level, but you are more ambitious today than you were five years
ago, anyway. People are going to become increasingly ambitious
and you will probably be lagging just that far behind all the
time.

Kline: You are saying you can never achieve security.

Lipton: I think that what's happening in the secure kernel
area and related areas, is that you're looking at systems as
they were many years ago. So that by looking at the same system
many, many times and resolving the same problem over and over
again, you will be able to say something. What you get may have
a much higher chance of being correct. But I'm still skeptical
about whether or not it will be right. But, that's not what we
want. What we want is, as Mike Harrison points out, office
information systems and other systems of very complicated types
that weren't being built ten years ago. And, those systems are
so much more ambitious than compared to the very simple kinds of
services that you're going to apply, that it's not clear that
you really will help. And, indeed, it may mean that we will
have to go to other techniques.

407

Jones: Let me make an analogy. You're saying that if the
office automation system is the moon and the operating system is
the tree, then climbing it is not going to help. But, both of
those things are software products. And, if you understand one,
you will hopefully glean a few things that will help you under-
stand the other.

Harrison: I'm optimistic. Systems are getting better and
theoretical techniques have exposed some fundamental concepts
and limitations. It concerns me that some of the more theoretical
results such as our undecidability theorems appear to be mis-
understood and misinterpreted. It would be very unfortunate if
such results inhibited a designer from making some improvements
in a future system. Such theorems should rather be a guide to
which problems can be realistically attempted.

Cohen: I'd like to raise an issue that we haven't looked at
at all. And, that is that as we allow people more freedom with
these systems, they are going to want to build their own policies
and their own ways of using the system securely. They're going
to be inevitable conflicts between users. We don't know how to
deal with that. I suspect that within the next five years, as
larger systems with multiple policies get built, that there will
be more and more work on this.

Fabry: You are getting to the root of my discomfort with
Charlie Kline's point of view. The definition of the security
policies we will be called upon to implement, will ultimately
derive from our social and legal systems. We cannot choose
policies. We know how to implement, and then equate those
policies with security. Not only will security policies evolve
over time, in response to our increasing ability to process
information, but the ground rules for expressing security
policies will change as our society and our legal system become
more attuned to the increasing potential for abuse. From this
prespective, what we know how to do today is surely very crude.

DeMillo: I think that's a challenging note on which to
close the discussion. Thank you, all.

LIST OF PARTICIPANTS

Timothy A. Budd
Department of Computer Science
Yale University
New Haven, Connecticut 06520

James E. Burns
School of Information & Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Ellis Cohen
Computing Lab
University of Newcastle upon Tyne
Newcastle upon Tyne, England NEI 7RU

George I. Davida
Department of Electrical Engineering

& Computer Science
University of Wisconsin-Milwaukee
Milwaukee, Wisconsin 53201

Richard A. DeMillo
School of Information & Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Dorothy Denning
Computer Sciences Department
Purdue University
Lafayette, Indiana 47906

David P. Dobkin
Department of Computer Science
University of Arizona
Tucson, Arizona 85721

Robert S. Fabry
Electrical Engineering & Computer Science Department
University of California-Berkeley
Berkeley, California 94705

Frederick C. Furtek
Mitre Corporation
Bedford, Massachusetts 01730

Robert Grafton
ONR-New York
715 Broadway
New York, New York 10003

Patricia P. Griffiths
IBM Research
San Jose, California 95193

Leonard Haines
Office of Naval Research
Arlington, Virginia 22217

Michael A. Harrison
Computer Science Division
University of California-Berkeley
Berkeley, California 94720

Anita K. Jones
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

John B. Kam
Department of Computer Science
Columbia University
New York, New York 10027

Charles S. Kline
Department of Computer Science
University of California-Los Angeles
Los Angeles, California 90024

Richard J. Lipton
Department of Computer Science
Yale University
New Haven, Connecticut 06520

Nancy A. Lynch
School of Information & Computer Science
Georgia Institute of Technology
Atlanta, Georgia 30332

Larry McNeil
Management Science America, Inc.
3445 Peachtree Road, N. E.
Atlanta, Georgia 30326

410

Jonathan K. Millen
Mitre Corporation
Bedford, Massachusetts 01730

Naftaly Minsky
Rutgers State University
New Brunswick, New Jersey 08903

Michael 0. Rabin
Department of Mathematics
The Hebrew University
Jerusalem, Israel .

Steven P. Reiss
Department of Applied Mathematics
Brown University
Providence, Rhode Island 02912

Ronald Rivest
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Wailer L. Ruzzo
1371 Shattuck Avenue, #3
University of California-Berkeley
Berkeley, California 94709

Norman Z. Shapiro
The Rand Corporation
1700 Main Street
Santa Monica, California 90406

Lawrence Snyder
Department of Computer Science
Yale University
New Haven, Connecticut 06520

411

Unclassified
SECURITY CLASSIF:(.ATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 	REPORT NUMBER 2. GOVT ACCESSION NO. 3. 	RECIPIENT'S CATALOG NUMBER

4. 	TITLE (and Subtitle)

Foundations of Secure Computation
5. TYPE OF REPORT & PERIOD COVERED

Conference Proceedings

6. PERFORMING ORG. REPORT NUMBER

7. AU THOR(s)

Richard A. DeMillo, David P. Dobkin, Anita K. Jones,
Richard J. Lipton

8. CONTRACT OR GRANT NUMBER(s)

DAAG29-77-M-0086
N00014-77-G-0030

9. PERFORMING ORGANIZATION NAME AND ADDRESS
School of Information and Computer Science
Gerogia Tech
Atlanta, Georgia 	30332

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

II. 	CONTROLLING OFFICE NAME AND ADDRESS

U.S. Army Research Office
Box 12211
Research Triangle Park, NC 	27709

	

. 	. 	. 	.)

12. REPORT DATE

December 1, 1978
13. NUMBER OF PAGES

411
15. 	SECURITY CLASS. (of this report)

Unclassified

aud
Office of Naval Research
Arlington, VA 	22217

15a. 	DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

16. 	SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official opinion
of either the Departments of the Army or Navy

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer security, databases, operating systems, cryptography

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This document summarizes the workshop on "Foundations of Secure Computation"
held October 3, 4, 5, 1978 in Atlanta, Georgia.

DD FOR " 1473 1 JAN 73 	 EDITION OF 1 NOV 65 IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Final Report

CONFERENCE ON FOUNDATIONS OF SECURE COMPUTATION

ONR GRANT N00014-77—G-0030

Dr. Richard A. DeMillo
Project Director

December 1978

This work relates to Department of the Navy
Research Grant N00014-77—G-0030 issued by
the Office of Naval Research. The United
States Government has a royalty-free license
throughout the world in all copyrightable
material contained herein.

Reproduction in whole or in part is permitted
for any purpose of the United States government.

Final Report on ONR Grant #N00014-76-0030

The point of the meetings funded under this grant was to collect
together the major researchers in the theoretical and practical areas of
computer security. It was our initial hope that a dialogue between
theoreticians and practitioners would result, that many results would
flow from the meeting. It was also our hope that the papers resulting
from the meeting would receive the widest possible dissemination. A
collection of new research contributions from the major researchers in
computer security should be influential as a textbook and as a reference
work in the area. As I will discuss below, the meeting exceeded our
expectations in the areas cited in our proposal, and provided a number
of unexpected dividends.

On October 3, 4, and 5, 1977 the "Foundations of Secure Computation"
workshop was held at the Atlanta Townhouse Hotel across from the Georgia
Tech campus. In attendance were the following invited participants:

Timothy Budd, Yale University
James Burns, Georgia Tech
Ellis Cohen, University of Newcastle
George Davida, University of Wisconsin
Richard DeMillo, Georgia Tech
Dorothy Denning, Purdue University
David Dobkin, University of Arizona
Robert Fabry, University of California, Berkeley
Fredrick Furtek, Mitre Corporation
Stockton Gaines, Rand Corporation
Robert Grafton, ONR
Leonard Haines, ONR
Michael Harrison, University of California, Berkeley
Anita Jones, Carnegie-Mellon University
John Kam, Columbia University
Charles Kline, University of California, L.A.
Richard Lipton, Yale University
Nancy Lynch, Georgia Tech
Leonard McNeil, Management Science America
Jonathan Millen, Mitre Corporation
Naftaly Minsky, Rutgers University
Michael Rabin, Hebrew University and MIT
Steven Reiss, Brown University
Ronald Rivest, MIT
Walter Ruzzo, University of Washington
Norman Shapiro, Rand Corporation
Lawrence Snyder, Yale University

All attendees who requested travel funds were supplied with grants
which at least partially subsidized their expenses in attending the
meeting. No additional honoraria were given to the attendees.

-2

Workshop participants were asked to distribute preliminary drafts
of their contributions prior to the meeting. At the time of the
workshop, we had the opportunity to review the written summaries pro-
vided by the attendees.

The logistics of the meeting's technical sessions proved to be
remarkably simple to arrange. Although the papers fall naturally into
four categories -- we will use these natural divisions in discussing
the papers -- we made an early decision not to segregate the papers at
the workshop. Since a major point of the meetings was to have been
the cross fertilization between adjacent fields, we thought that a
random interleaving of the papers would help promote this attitude.
This technique seemed to work very well. The common situation in a
conference or a workshop in which topics are segregated is that an
attendee who does not perceive himself as having a specific research
interest in a particular topic elects to not attend that session or
attends as a mere observer. With our technique, attendees are kept
"off guard". The topics shift as the session goes on and there is a
tendency to participate uniformly throughout the sessions. The struc-
ture of the workshop was that attendees would be allocated each a half
hour for informal presentation of his paper. Following these presen-
tations was a fifteen minute discussion session. The responsibility
of the session chairperson was to record the text of the discussion
and attempt to guide its course. During the three days of the
meeting, ample time was allowed for informal discussion groups, each
devoted to specialized topics, and this aspect appeared to be enormously
successful.

The afternoon of October 4th was devoted to a round table discussion
covering topics raised in informal and formal discussion sessions. This
round table lasted approximately three hours and was also recorded. All
discussion topics were edited, condensed, reviewed by the attendees,
and appear in the conference volume. The response of the attendees
appears to be that the discussion sessions and their subsequent record-
ing was the most successful aspect of the meeting.

The papers presented at the meeting fall naturally into those
dealing with database security, encryption, practical aspects of oper-
ating systems security, and theoretical aspects of operating systems
security. I will give a brief description of what resulted in each of
these four areas.

I. Database Security

1. "A View of Research and Statistical Database Security" by
Dorothy Denning

2. "Combinatorial Inference" by Richard DeMillo, David Dobkin
and Richard Lipton

3. "Database System Authorization" by Don Chamberlain, Jim Graves
Patricia Griffiths, Moishe Miesse, Iry Traiger, Bradford Wade

-3

4. "Mediams in Database Security" by Steven Reiss

The four papers concerning database security addressed tradeoffs
between usability and security. Dorothy Denn -ing's survey of statis-
tical database security reminds us how far we have come in realizing
the limits of the notion of database security. The usual methods of
compromising large statistical databases almost always involve trans-
parent uses of information delivered in responses to queries. The
article by Richard DeMillo, David Dobkin and Richard Lipton discusses
the more subtle kinds of combinatorial inferences which can be formed
out of query responses. Compromising the statistical sense is not the
only security problem in database design. The pragmatic issues stemming
from the authorization of access to database and database communication
systems are outlined in the contribution by Chamberlain, Gray, Griffeths,
Mresse, Traiger and Wade. The final paper of this section by Steven
Reiss returns to statistical compromise with a detailed study of the
insecurity inherent in databases which allow a certain statistical query
strategy.

II. Encryption as a Security Mechanism

1. "A Structure Design of Substitution Permutation Encryption
Networks" by John Kam and George Davida

2. "Proprietory Software Protection" by Richard DeMillo, Richard
Lipton and Leonard McNeil

3. "Encryption Protocols, Public Key Algorithms and Digital
Signatures in Computer Networks" by Gerald Popek and Charles
Kline

4. "Digital Signatures" by Michael Rabin

5. "On Data Banks and Privacy Homomorphisms" by Ronald Rivest,
Leonard Adleman and Michael Dertouzos

The five papers presented here are truly representative of current
research in data encryption. George Davida and John Kam proposed the
type of substitution-permutation encryption design. Their intent is
to provide a variant of the NBS Data Encryption standard which obviate
several of the difficulties raised by Hellman and Diffie and others.
Richard DeMillo, Leonard McNeil and Richard Lipton raised a novel
application for encryption research: the protection by encryption of
commercial software from overt theft. Gerald Popek and Charles Kline
correctly point out that oftentimes the protocol through which
encryption algorithms are made available have significant impact on
their effectiveness. They examine several encryption methods from this
perspective. A surprising probabilistic method for creating secure
digital signatures is the subject of Michael Rabin's article. He pre-
sents a method which can be based upon any block encoding function
that satisfies two simple axioms. Ronald Rivest, Len Adleman and
Michael Dertouzos address the serious defect of current methods for

encrypting data: coded information must be decoded before it can be
manipulated. Out of all possible privacy transformations, the
authors select the privacy homomorphisms which allow data to be operated
upon in its encrypted form.

III. Design Oriented Models of Operating Systems Security

1. "One Perspective on the Results About the Decidibility of
Systems Security" by Robert Fabry

2. "Constraints" by F. Furtek and J. Millen

3. "Some Security Principles in the Application of Computer
Security" by Stockton Gaines and Norman Shapiro

4. "Protection Mechanism Models: Their Usefulness" by Anita Jones

5. "The Principle of the Attenuation of Privilege and Its Ram-
ifications" by Naftaly Minsky

In Robert Fabry's article we see a designer struggling to come to
grips with the real world implications and with theoretical results:
the Harrison, Ruzzo, Ullman Decidibility Theorem. The two part paper
by F. Furtek and J. Millen attempts a simplification of several design
concepts; they represent a system of "prime constraints", a concept
similar to prime implicants of switching theory. Stockton Gaines and
Norman Shapiro take a step back from detailed considerations to give
us an overview. They provide us with some general perspectives and
the state of security research based on some fairly pragmatic insights.
The contribution by Anita Jones is indicative of the fertile interplay
of theory and practice in security research; her article was the out-
come of a designer assessing the usefulness of the take-grant system
which has been the subject of extensive theoretical analysis. In the
final paper of this section, Naftaly Minsky addresses Peter Denning's
principle of "Attenuation of Privilege" and presents an authorization
scheme which satisfies the principle.

IV. Theoretical Models of Operating Systems Security

1. "On Classes of Protection Systems" by R. Lipton and T. Budd

2. "Information Transmission in Sequential Programs" by Ellis Cohen

3. "Monotonic Protection Systems" by Michael Harrison and Walter
Ruzzo

4. "On Synchronization and Security" by Richard Lipton and L.
Snyder

In this final section, Richard Lipton and Timothy Budd open the
selection in theoretical contributions by showing us that there is an

efficient way to decide safety for a wide variety of protection systems.
The requirement is that the systems must be related in certain ways.
Ellis Cohen notes that the various possibilities for information flow
in sequential programs and gives an elegant form of treatment of his
ideas. Michael Harrison and Walter Ruzzo extend their well-known
investigation into a particular security model by giving a character-
ization of the relative "power" of different operations allowed in the
model. In the final paper, Richard Lipton and Larry Snyder proved the
surprising equivalent of a well studied security model with an apparently
unrelated model for synchronizing parallel processes.

The papers described above and the edited text of the panel dis-
cussions and informal discussions appear in a volume entitled "Foundations
of Secure Computation" edited by Richard DeMillo, David Dobkin, Anita
Jones and Richard Lipton which was published in late 1978 by Academic
Press.

The attendees and other reviewers of the book have been enthusiastic
about the outcome. Not only did we obtain a collection of first rate
contributions to security research, but upon reviewing the contents of
the contributions we found an unexpectedly large number of survey papers.
Therefore, with minimal supplement by an instructor, the book could
make an excellent text for a graduate course in security.

Meetings of this sort are rare. We had an advantage in that
security was being covered rather heavily by the National Press at the
time of our meeting and this lent an air of excitement to the gathering,
but a meeting of active researchers in an area in which there is grow-
ing interest clearly can have beneficial impact upon the future develop-
ment of the area. Therefore, as a final personal note I should like to
add not only my thanks to the Office of Naval Research and the U.S.
Army Research Office for their generaous support of our meeting but
would like to strongly recommend that similar projects be funded in the
future. As Michael Rabin told me at the close of our meeting, such
gatherings can be a "great service to science."

s 	 unciassiri,-

SECURITY CLASSIFICA11:)N CF THIL (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER 2. GOVT ACCESSION NO.1 3 	RECIPIENT'S CATALOG NUMBER

4. TITLE (end Subtitle)

Final Report for
ONR Grant N00014-77-G-0030 Final

5. 	TYPE OF REPORT & PERIOD COVERED

6 	PERFORMING ORG. REPORT NUMBER

7. AU THOR(s)

Richard A. DeMillo

B. 	CONTRACT OR GRANT NUMBER(s)

N00014-77-G-0030

9. PERFORMING ORGANIZATION NAME AND ADDRESS

School of Information and Computer Science
Georgia Tech
Atlanta, Georgia 	30332

10. 	PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11 CONTROLLING OFFICE NAME AND ADDRESS

U.S. Army Research Office
Box 12211
Research Triangle Park, NC 	27709

12. REPORT DATE

December 1, 1978
13. NUMBER OF PAGES

4 _.•
14. MONITORING AGENCY NAME & ADDRESS(11 different from Controlling Office) 15. SECURITY CLASS. (of this report)

Unclassified
15a. 	DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official
department of the Navy opinion.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Computer security, databases, operating systems, cryptography

20 ABSTRACT (Continue on reverse side If necessary and identify by block number)

This report summarizes the workshop on "Foundations of Secure Computation"
held October 3, 4, 5, 	1978 in Atlanta, Georgia.

Dm
 FORM 1473 DD 1 JAN 73 14 	EDITION OF I NOV 65 IS OBSOLETE 	 Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

4'

SECURITY CLASSIFICATION OF r 	RAGE(When Data Entered)

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339
	Page 340
	Page 341
	Page 342
	Page 343
	Page 344
	Page 345
	Page 346
	Page 347
	Page 348
	Page 349
	Page 350
	Page 351
	Page 352
	Page 353
	Page 354
	Page 355
	Page 356
	Page 357
	Page 358
	Page 359
	Page 360
	Page 361
	Page 362
	Page 363
	Page 364
	Page 365
	Page 366
	Page 367
	Page 368
	Page 369
	Page 370
	Page 371
	Page 372
	Page 373
	Page 374
	Page 375
	Page 376
	Page 377
	Page 378
	Page 379
	Page 380
	Page 381
	Page 382
	Page 383
	Page 384
	Page 385
	Page 386
	Page 387
	Page 388
	Page 389
	Page 390
	Page 391
	Page 392
	Page 393
	Page 394
	Page 395
	Page 396
	Page 397
	Page 398
	Page 399
	Page 400
	Page 401
	Page 402
	Page 403
	Page 404
	Page 405
	Page 406
	Page 407
	Page 408
	Page 409
	Page 410
	Page 411
	Page 412
	Page 413
	Page 414
	Page 415
	Page 416
	Page 417
	Page 418
	Page 419
	Page 420
	Page 421
	Page 422
	Page 423
	Page 424
	Page 425
	Page 426
	Page 427
	Page 428
	Page 429
	Page 430
	Page 431

