
Convolutional neural networks for segmentation of FIB-SEM
nanotomography data from porous polymer films for controlled drug
release

Downloaded from: https://research.chalmers.se, 2021-08-31 12:19 UTC

Citation for the original published paper (version of record):
Skärberg, F., Fager, C., Mendoza-Lara, F. et al (2021)
Convolutional neural networks for segmentation of FIB-SEM nanotomography data from porous
polymer films for controlled drug release
Journal of Microscopy, 283(1): 51-63
http://dx.doi.org/10.1111/jmi.13007

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

Received: 2 February 2021 Revised: 12 March 2021 Accepted: 21 March 2021

DOI: 10.1111/jmi.13007

ORIG INAL ARTICLE

Convolutional neural networks for segmentation
of FIB-SEM nanotomography data from porous polymer
films for controlled drug release

Fredrik Skärberg1 Cecilia Fager2,3 Francisco Mendoza-Lara4 Mats Josefson4

Eva Olsson2 Niklas Lorén1,2 Magnus Röding1,5

1 Bioeconomy and Health, Agriculture
and Food, RISE Research Institutes of
Sweden, Göteborg, Sweden
2 Department of Physics, Chalmers
University of Technology, Göteborg,
Sweden
3 Department of Fibre and Polymer
Technology, KTH Royal Institute of
Technology, Stockholm, Sweden
4 Oral Product Development,
Pharmaceutical Technology &
Development, Operations, AstraZeneca
Gothenburg, Mölndal, Sweden
5 Department of Mathematical Sciences,
Chalmers University of Technology and
University of Gothenburg, Göteborg,
Sweden

Correspondence
MagnusRöding,RISEResearch Institutes
of Sweden, FransPerssons väg 6, 41276
Göteborg, Sweden.
Email:magnus.roding@ri.se

Funding information
TheSwedishResearchCouncil,Grant
number 2016-03809; TheSwedish
ResearchCouncil for SustainableDevelop-
ment,Grant number 2019-01295

Abstract
Phase-separated polymer films are commonly used as coatings around pharma-
ceutical oral dosage forms (tablets or pellets) to facilitate controlled drug release.
A typical choice is to use ethyl cellulose and hydroxypropyl cellulose (EC/HPC)
polymer blends. When an EC/HPC film is in contact with water, the leaching
out of the water-soluble HPC phase produces an EC film with a porous net-
work through which the drug is transported. The drug release can be tailored
by controlling the structure of this porous network. Imaging and characteriza-
tion of such EC porous films facilitates understanding of how to control and tai-
lor film formation and ultimately drug release. Combined focused ion beam and
scanning electronmicroscope (FIB-SEM) tomography is a well-established tech-
nique for high-resolution imaging, and suitable for this application. However,
for segmenting image data, in this case to correctly identify the porous network,
FIB-SEM is a challenging technique to work with. In this work, we implement
convolutional neural networks for segmentation of FIB-SEM image data. The
data are acquired from three EC porous films where the HPC phases have been
leached out. The three data sets have varying porosities in a range of interest
for controlled drug release applications. We demonstrate very good agreement
with manual segmentations. In particular, we demonstrate an improvement in
comparison to previous work on the same data sets that utilized a random forest
classifier trained on Gaussian scale-space features. Finally, we facilitate further
development of FIB-SEM segmentation methods by making the data and soft-
ware used open access.

KEYWORDS
controlled drug release, convolutional neural networks, deep learning, focused ion beam scan-
ning electron microscopy, image analysis, machine learning, microstructure, polymer films,
porous materials, semantic segmentation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Journal of Microscopy published by John Wiley & Sons Ltd on behalf of Royal Microscopical Society

J. Microsc. 2021;1–13. wileyonlinelibrary.com/journal/jmi 1

https://orcid.org/0000-0002-5956-9934
mailto:magnus.roding@ri.se
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/jmi

2 SKÄRBERG et al.

1 INTRODUCTION

A common means of controlling the release of active
pharmaceutical ingredients is to coat oral dosage forms
(tablets or pellets) with phase-separated polymer films.
Frequently, the two cellulose derivatives ethyl cellulose
(EC) and hydroxypropyl cellulose (HPC) polymer blends
are used. When an oral dosage form is swallowed and
the EC/HPC film comes in contact with water, the water-
soluble HPC phase is leached out. The resulting material
is a film consisting of a water-insoluble EC matrix with a
porous network through which the drug is transported by
diffusion. The drug release can be efficiently controlled by
tailoring the structure of such a porous network, as studied
both in experiments and simulations.1–5
A detailed understanding of how to control and tailor

film formation and ultimately drug release requires high
spatial resolution imaging and accurate characterization of
suchECporous films.Whereasmany pores are too small to
be resolved to a satisfactory degree even with state-of-the-
art X-ray computed tomography (X-ray CT) systems, com-
bined focused ion beam and scanning electronmicroscope
(FIB-SEM) nanotomography6 has proven highly useful for
imaging such materials. Using FIB-SEM, a 3D region of
interest is imaged using a slice and image procedure. First,
an initial planar cross-section is created using the FIB.
Then, the planar cross-section surface is imaged using the
SEM. The iterative slice and image procedure continues
until the full volume of interest has been acquired. A FIB-
SEM tomography data set typically consists of a few hun-
dred 2D SEM images acquired in this fashion.
There are numerous challenges associated with using

FIB-SEM on soft, poorly conducting and porous materials
such as porous polymer films. Some examples are accu-
mulation of charges at the surface, seen as very bright or
very dark areas in the images,7 so-called curtaining effects
due to local thickness or hardness variations, seen as alter-
nating bright and dark lines parallel to the ion beam,8 and
non-constant path lengths of electrons from the beam to
the detector, seen as an artificial intensity gradient in the
images.9 For a comprehensive review of how to address the
challenges mentioned above, we refer the reader to Fager
et al.10 formore details. Finally, themost pronounced chal-
lenge regarding FIB-SEM tomography data from porous
materials is the occurrence of subsurface information: that
a 2D SEM image of a porous cross-section will contain
information about the structure not only of the current pla-
nar cross-section surface but also deeper inside the pores.
Therefore, the supposedly 2D SEM images become 2.5D
in a sense, which clearly distinguishes FIB-SEM from, for
example X-ray CT. This is themain reasonwhy image anal-
ysis of FIB-SEM data from porous materials is demanding.

Many segmentation approaches tailored for FIB-SEM
have been proposed, such as adaptive thresholding,11
level sets,12 morphological image processing,13 local
threshold backpropagation,14,15 watershed segmentation16
and optical flow-based segmentation.17 More to the point,
in Fend et al.,18 convolutional neural networks (CNNs)
were used, specifically fully convolutional networks of
the U-net type Ronneberger et al.19 Briefly, for the U-net
architecture, the input constitutes a patch of image data
(of arbitrary size, in principle) and the output is a patch
of classification scores of the same size as the input. Once
trained, an entire image patch can thus be segmented at
once which provides for fast inference. In contrast, other
CNN segmentation methods rely on a sliding-window
approach in which a 2D or 3D neighbourhood surround-
ing a single voxel is used to predict the class membership
of that voxel. This approach demands explicit looping over
all voxels of a data set and making as many independent
predictions as there are voxels. This approach is much
slower than the fully convolutional networks for infer-
ence. Since their conception in 2015, U-net type CNNs
have been established as the best segmentation paradigm
for a range of problems. Finally, of particular relevance
for this work is Röding et al.20 There, a random forest
algorithm combined with Gaussian scale-space features
was applied to the same data set used herein, providing
good agreement with manual segmentations in terms
of, for example accuracy and estimated porosity of the
material.
In this work, we implement CNNs for segmentation of

FIB-SEM image data. The data are acquired from three
EC porous films where the HPC phases have been leached
out. Before leaching, the films had different HPC fractions.
Hence, the three data sets have varying porosities, in a
range of interest for controlled drug release applications. In
contrast to some other applications, we have obtained bet-
ter performance with sliding-window CNNs than with U-
net type CNNs,21,22); hence, we herein implement sliding-
window CNNs with different neighbourhood dimensions
and architectures. We demonstrate very good agreement
withmanual segmentations carried out by an expert and in
particular,we demonstrate an improvement in comparison
to previouswork on the samedata sets inRöding et al.20 We
make all the data and software used herein open access23
to facilitate further development of FIB-SEM segmenta-
tion methods.

2 MATERIALS ANDMETHODS

Phase-separated films are produced as follows. Three
solutions of EC (Ethocel Standard premium, viscosity

SKÄRBERG et al. 3

10 cP, Dow Wolff Cellulosics GmbH) and HPC (Klucel
Pharm HPC, viscosity grade LF) with 95% ethanol as
solvent24–26 are prepared. All have 6% (w/w) polymer
(total polymer concentration for EC and HPC combined),
and the weight fractions of HPC are 22%, 30% and 45%.
The solutions are sprayed onto a rotating drum. At low
polymer concentration, EC and HPC form a homoge-
neous, one-phase polymer blend. However, as the ethanol
evaporates, the mixture becomes incompatible, phase
separation starts and continues until enough ethanol
has evaporated such that the polymer structure becomes
kinetically trapped. Then, the films are removed from the
rotating drum and stored in a desiccator. By subjecting the
dried films to stirred deionized water at ambient condi-
tions for 24 h, the water-soluble HPC phases are leached
out, producing porous EC films which are then air-dried.
Because the molecular weights of these EC and HPC
grades are close, the weight fractions reflect the volume
fractions of HPC very closely. Therefore, the porosities
of these films will be approximately 22%, 30%, and 45%,
assuming that the HPC phases are fully leached out (the
22% sample will be close to the percolation threshold27
and hence the HPC phase might not be entirely leached
out). The samples are denoted HPC22, HPC30 and HPC45
below.
A TESCAN GAIA3 (TESCAN), equipped with a gas

injection system for platinum and carbon, is used for FIB-
SEM tomography. Prior to insertion into the FIB-SEM,
the samples are coated with palladium to reduce charg-
ing effects. A platinum layer is deposited on the surface to
reduce curtaining effects. Furthermore, a U-shaped trench
is milled around the cross-section to reduce shadowing
effects, followed by polishing of the cross-section. Imag-
ing is carried out using the backscattered electron detec-
tor (BSE) and the electron beam scan speed is 2 𝜇s/pixel.
The pixel size is 10 nm. Serial sectioning is done with a
slice thickness of 50 nm, acquiring 200 slices per sample.
Imaging took approximately 24 h for each data set. We
refer the reader to Fager et al.10 for more experimental
details.

3 RESULTS AND DISCUSSION

First, we perform data pre-processing, followed bymanual
segmentation of a subset of the data set and extraction of
data for training of the CNNmodels. Secondly, we describe
the CNN network architecture, followed by data augmen-
tation and the procedure for training and hyperparameter
optimization. Finally, the best identified model is used to
segment the full data sets, followed by post-processing to
improve the results further.

3.1 Pre-processing

First, the 2D cross-section images are aligned using
ImageJ28 with the StackReg plug-in and the Rigid Body
method. In this manner, the images are aligned based
on finding translations and rotations for optimal align-
ment. After alignment, equal sized volumes from all
three samples are extracted, with resolution 2247 × 3372 ×

200 voxels, where each voxel is 10 nm × 10 nm ×

50 nm. This comprises regions of interest of approximately
22.5 𝜇m × 33.7 𝜇m × 10.0 𝜇m. Secondly, the 16-bit data
are converted to [0, 1] range. Thirdly, as in Röding et al.,20
intensity gradients present in the 𝑥 direction of the images
are removed in the following fashion: we fit linear func-
tions to the mean intensities of each data set as a function
of the 𝑥-coordinate, using least squares. This function is
subtracted, and its mean value is added again to retain the
original intensity range.

3.2 Manual segmentation

The manual segmentation used is the one produced in
Röding et al.20 Because of the size of the data sets, man-
ual segmentation is carried out only on a small subset of
the full data. In each data set, 100 regions (of size 256 ×

256 voxels, and placed in the 𝑥-𝑦 plane, that is within a
single planar cross-section) are randomly selected, corre-
sponding to ∼0.43% of the full data set. Neighbourhoods
of size 384 × 384 × 7 voxels centred around these regions
are presented to the expert that performs manual segmen-
tation, using MITKWorkbench (Medical Imaging Interac-
tion Toolkit, www.mitk.org) for careful manual tracing of
the edges of the pores.

3.3 Data extraction

The number of annotated samples available equals the
number of voxels in the manually segmented regions com-
bined, that is 256 × 256 × 100 × 3 = 19, 660, 800, although
some of them are strongly correlated. To split the data
into training, validation and test data, we use the same
procedure as in Röding et al.20 Although the regions are
already randomly selected from the beginning, they are
randomly shuffled again to minimize the effect of mis-
takes and fatigue during manual segmentation. Of the 100
regions in each data set, 60 are used for training, 20 for val-
idation and 20 for testing. Thereby, in total, 180 regions are
used for training, 60 for validation and 60 for testing. To
facilitate comparison, we use the same regions (same ran-
dom seed) as in the earlier work.

http://www.mitk.org

4 SKÄRBERG et al.

Once the regions have been divided into training, vali-
dation and test sets, individual samples are extracted. For
training, stratified random sampling is used such that a
50/50 class balance between pore (leached HPC) and solid
(EC) is obtained. For each of the training, validation and
test data sets, 1% of the available data (voxels) are extracted,
that is 117,964 samples for the training set and 39,320 sam-
ples each for the validation and test sets. Multiple sizes
of the neighbourhoods used as input to the CNNs will be
investigated as elaborated upon below.

3.4 Network architecture

The aim for the investigated CNN architectures is to learn
the task of predicting the class membership (pore or solid)
of a single voxel using a neighbourhood centred around
that voxel, that is an array of greyscale intensities, of size
𝑛𝑥𝑦 × 𝑛𝑥𝑦 × 𝑛𝑧 voxels, as input data.
An artificial neural network is essentially a composi-

tion of operations that together form an arbitrarily com-
plex non-linear mapping from input to output. In a clas-
sical artificial neural network (here denoted ANN), the
main building blocks are the so-called dense or fully con-
nected layers, each consisting of a number of nodes (neu-
rons) and a bias. For each node, its input is a vector 𝑥,
and its scalar output 𝑦 is a function of the sum of the
elements of 𝑥 weighted by 𝑤 (i.e. a dot product) plus a
bias 𝑏, 𝑦 = 𝑓(𝑤 ⋅ 𝑥 + 𝑏), where𝑓 is a (non-linear) so-called
activation function. Conventionally, all elements of the
input data provide input to all nodes of the first layer,
the outputs of all nodes of the first layer provide input
to all nodes of the second layer, and so on (thereby, fully
connected). Finally, after a number of layers, a scalar or
vector output is obtained. By optimizing the weights 𝑤

and biases 𝑏 (both weights and biases are jointly referred
to as weights from here on) of all nodes with respect
to a loss function that measures the deviation between
the target output and the output obtained from the net-
work, that is training the network, a highly non-linear
function approximation is obtained. However, in an ANN,
a high-dimensional input such as the image data used
in this work would result in a vast number of parame-
ters, and ANNs are generally not efficient for such input
data.29
In contrast, in a CNN, the main building blocks are

the convolutional layers. In such layers, the input is con-
volved with filters or convolution kernels. CNNs are gen-
erallymore efficient thanANNswhenworkingwith image
data due to the properties of the convolution kernels; the
weights of a convolution layer are the elements of the rel-
atively small convolution kernels, and the same convolu-
tion is applied over the entire input, radically reducing

the number of weights.30 In practice, a CNN architecture
is typically formed by a set of convolutional layers, pool-
ing layers and fully connected layers. In a convolutional
layer, the input is convolved with one or several convolu-
tion kernels (typically of size 3 × 3, or occasionally 5 × 5),
producing outputs known as feature maps. Although con-
volutions are linear, a non-linear activation function 𝑓 is
applied to the result to produce an output. In a pooling
layer, typically placed after one or more convolutional lay-
ers, the feature maps are downsampled. A pooling layer
does not have any tuneable weights, but rather performs a
simple operation on small, non-overlapping patches (typ-
ically windows of size 2 × 2) of the feature maps from
the preceding convolutional layer, such as computing the
mean or the maximum. The effect is a reduction in resolu-
tion, and the succeeding convolutional layer(s) can be used
to produce featuremaps at another spatial scale. Fully con-
nected layers are often used as the final layers of a CNN
to produce an output. Whereas the combination of convo-
lutional layers and pooling layers can be thought of as a
feature extraction procedure, the fully connected layers act
as a classifier of these features. In these final layers of the
CNN, the input and output dimensions are far lower than
in the beginning, making the use of fully connected layers
more suitable.
In this work, we explore 2D multi-channel CNNs.

Assuming that the input is an 𝑛𝑥𝑦 × 𝑛𝑥𝑦 × 𝑛𝑧 array,
the CNNs will consider the data as 2D images of size
𝑛𝑥𝑦 × 𝑛𝑥𝑦 with 𝑛𝑧 channels. In other settings, channels
might correspond to colours (e.g. red, green and blue)
but here, they correspond to image slices in the 𝑥-𝑦
plane. The input sizes that will be considered are 𝑛𝑥𝑦 ∈

{33, 49, 65, 81, 97, 113} (i.e. 16𝑛 + 1 for 𝑛 ∈ {2, 3, 4, 5, 6, 7})
and 𝑛𝑧 ∈ {1, 3, 5, 7, 9, 11}. The fact that 𝑛𝑧 is considerably
smaller than 𝑛𝑥𝑦 is motivated by the fact that the voxel size
in the image data is 10 nm× 10 nm× 50 nmand hence non-
isotropic. In Figure 1, the different neighbourhood sizes
are illustrated.
The CNN architecture used is in principle the same for

all combinations of 𝑛𝑥𝑦 and 𝑛𝑧. The convolutional part of
the network consists of four blocks, each comprising two
convolutional layers and one max-pooling layer. The con-
volutional layers use 3 × 3 kernels and the max-pooling
layers use 2 × 2 windows. The number of filters, i.e. ker-
nels applied in each convolutional layer is 16, 32, 64 and 80,
respectively, in the four blocks. After each convolutional
layer, exponential linear unit (Elu) activation,

𝑓(𝑥) =

{
𝑥, 𝑥 > 0

𝛾(𝑒𝑥 − 1), 𝑥 ≤ 0
(1)

is used,31 with 𝛾 = 1. The output from the convolutional
part is used as input to two fully connected layers with 128

SKÄRBERG et al. 5

(A)(A)

(H)

(B) (C) (D) (E)

(F) (G)

(I) (J) (K) (L)

F IGURE 1 Illustration of the different neighbourhood sizes 𝑛𝑥𝑦 and 𝑛𝑧 used. In (A–E), the five slices before the slice of interest are
shown, and in (H–L), the five slices after the slice of interest are shown. In (F), the slice of interest is shown, complemented by the
corresponding manual segmentation mask in (G). In each slice, squares indicating the values 𝑛𝑥𝑦 = 33, 49, 65, 81, 97 and 113 are shown. For
𝑛𝑧 = 1, only (F) is used, for 𝑛𝑧 = 3, (E), (F) and (H) are used and so on. In (F–G), the voxel of interest to be classified is indicated (red). The
images constitute crops of the corresponding full 2D SEM images and the field of view is 1.6 𝜇m × 1.6 𝜇m (160 × 160 voxels)

and 64nodes, both also usingElu activation. The final layer
is an output layer with a single node. The output layer is
intended to produce a score in [0, 1] that can be thresh-
olded to yield a classification. Therefore, sigmoid activa-
tion,

𝑓(𝑥) =
1

1 + 𝑒−𝑥
, (2)

for which 𝑓(𝑥) ∈ (0, 1) for all 𝑥 ∈ (−∞,∞), is used. In
Figure 2, the architecture is illustrated. The number of
weights in the network depends on the neighbourhood
size. Primarily, the number depends on 𝑛𝑥𝑦 , because its
value greatly influences the number of connections from
the convolutional part into the fully connected part, which
constitutes a large fraction of the overall number ofweights
(we reiterate that the crucial, main advantage of the con-
volutional part is that it does not have so many weights).
In contrast, 𝑛𝑧 only influences the number of weights in
the first convolutional layer. The number of weights as a
function of neighbourhood size is shown in Table 1.
The choice of architecture is a result of a previous

investigation,22 and it was found that the selected number
of blocks of convolutional and pooling layers, the kernel

sizes and the number of filters, the number of fully con-
nected layers and the number of nodes were appropriate
for all the neighbourhood sizes investigated herein.

3.5 Data augmentation

The purpose of data augmentation is to increase the
amount of available data by adding modified versions of
the original elements of the training data, which can help
regularize the training of the CNNs and lead to better
generalization of the performance to the validation and
test sets. We investigate different data augmentation
schemes (for the training data) such as adding noise and
blur, random anisotropic scaling and rotations with arbi-
trary angles, but find only two augmentations that yield
noticeable improvement: (i) random rescaling of the mean
and standard deviation of the input intensity, and (ii) ran-
dom flips and rotations bymultiples of 90◦ in the𝑥-𝑦 plane.
Specifically, random rescaling of the intensities is carried
out in the following fashion. For each sample to be aug-
mented, let the mean and standard deviation of the inten-
sities of the input neighbourhood of size 𝑛𝑥𝑦 × 𝑛𝑥𝑦 × 𝑛𝑧

6 SKÄRBERG et al.

F IGURE 2 Illustration of the CNN architecture. The input, regarded as an 𝑛𝑥𝑦 × 𝑛𝑥𝑦 image with 𝑛𝑧 channels, is fed into the
convolutional part of the network. The convolutional part of the network comprises four blocks, each with two convolutional layers and one
max-pooling layer and with increasing numbers of convolutional filters, 16, 32, 64 and 80. The feature maps produced from the convolutional
part are fed into fully connected layers with 128 and 64 nodes, which are followed by the final output layer with a single node that produces
the score

TABLE 1 The number of weights in the CNNs as a function of neighbourhood size

𝒏𝒛

1 3 5 7 9 11
nxy 33 225,041 225,329 225,617 225,905 226,193 226,481

49 276,241 276,529 276,817 277,105 277,393 277,681
65 347,921 348,209 348,497 348,785 349,073 349,361
81 440,081 440,369 440,657 440,945 441,233 441,521
97 552,721 553,009 553,297 553,585 553,873 554,161
113 685,841 686,129 686,417 686,705 686,993 687,281

voxels be 𝜇 and 𝜎. Sample a new mean 𝜇aug and new stan-
dard deviation 𝜎aug such that

𝜇aug∕𝜇 ∼  (1, 𝑎) (3)

and

𝜎aug∕𝜎 ∼  (1, 𝑏), (4)

where 𝑎 and 𝑏 are arbitrary standard deviation parameters
that control the amount of augmentation. Each sample is
augmented with respect to intensity with probability 0.5.
The flips and rotations by multiples of 90◦ in the 𝑥-𝑦 plane
are randomly selected such that each of the eight pos-
sible transformations (including the original) occur with
equal probability.

3.6 Performance metrics

For assessing classification performance, we use two met-
rics. First, we use accuracy, which is simply equal to the

ratio of the number of correct classifications and the num-
ber of total classifications. Second, we use the (volume of
the) intersection over (the volume of the) union, abbrevi-
ated IoU and also known as the Jaccard index. Generally,
it is defined by

IoU =
∣ 𝐿 ∩ 𝑃 ∣

∣ 𝐿 ∪ 𝑃 ∣
, (5)

where 𝐿 is the set of labels (manual segmentation) and
𝑃 is the set of predictions (automatic segmentation). In
this work, 𝑃 is obtained by thresholding the raw outputs
(scores) of aCNN. Ideally,𝑃 = 𝐿 and IoU = 1, and it always
holds that IoU ∈ [0, 1]. The IoU can be generalized to a
class-symmetric metric by averaging the IoUs computed
with respect to both classes. The mean intersection over
union becomes

mIoU =
1

2

(
∣ 𝐿0 ∩ 𝑃0 ∣

∣ 𝐿0 ∪ 𝑃0 ∣
+

∣ 𝐿1 ∩ 𝑃1 ∣

∣ 𝐿1 ∪ 𝑃1 ∣

)
. (6)

Here, 𝐿0 is the set of samples manually labelled 0 (pores)
and 𝐿1 is the set of samples manually labelled 1 (solid)

SKÄRBERG et al. 7

and analogously for 𝑃0 and 𝑃1 Rahman andWang.32 Given
that the full data sets do not have a 50/50 class balance,
it can be argued that the class-symmetric mIoU is a more
fair metric than IoU and takes pores and solid equally well
into account.

3.7 Training and hyperparameter
optimization

We train CNNs for neighbourhood sizes 𝑛𝑥𝑦 × 𝑛𝑥𝑦 × 𝑛𝑧

voxels, considering 𝑛𝑥𝑦 ∈ {33, 49, 65, 81, 97, 113} and 𝑛𝑧 ∈

{1, 3, 5, 7, 9, 11} as discussed above. The networks are
implemented in Tensorflow 2.4.0.33 The conventional
stochastic gradient descent (SGD) with momentum34,35 is
used to optimize the weights of the networks with respect
to the binary cross-entropy loss, defined for 𝑁 training
samples as

(𝑦𝑖, 𝑓(𝑥𝑖)) = −
1

𝑁

𝑁∑
𝑖=1

𝑦𝑖 log(𝑓(𝑥𝑖))

+ (1 − 𝑦𝑖) log(1 − 𝑓(𝑥𝑖)), (7)

where 𝑦𝑖 ∈ {0, 1} is the label and 𝑓(𝑥𝑖) ∈ [0, 1] is the pre-
diction score from the model for training sample 𝑖. The
prediction score can be interpreted as a probability of the
label belonging to class 1. Because the loss decreases the
more confident the predictions are (i.e. the closer to 0 or 1
they are) and because it is differentiable with respect to the
weights of the CNN, it is a more appropriate optimization
target than, for example accuracy or mIoU. Binary cross-
entropy loss is the most common loss function for binary
classification problems.36
Here, we explore multiple hyperparameters. The

momentum of the SGD optimizer is found to have little
impact on the result, and its value is set to 0.99. Likewise,
the batch size is set to 128, although 64 and 256 provides
similar performance. The remaining hyperparameters, the
ones for which optimizing their values appears to yield the
largest performance benefits, are studied in more detail in
a random search optimization,37 executed independently
for all architectures: The data augmentation parameters,
the learning rate schedule and regularization parameters.
The ranges for the hyperparameters in the random search
were selected after an initial investigation.
For the data augmentation, the parameters 𝑎 and 𝑏

are sampled uniformly in [0.025, 0.10]. The learning rate
schedule implemented is a step-wise decay learning rate
schedule defined as follows: Let log10(LR) initially be ran-
domly selected in {−2.5, −2.25, −2}, and let it decrease
by 0.25 every 𝑘th iteration, for a 𝑘 randomly selected in
{4, 6, 8, 10, 12, 14, 16, 18, 20}.

Furthermore, we consider several varieties of regu-
larization. First, we implement weight decay, that is 𝑙2
regularization, where a regularization term 𝑐‖|𝑤‖|2 is
added to the loss function to be minimized. In effect,
the weights 𝑤 are forced to decay towards zero, which
has a regularizing effect because small weights that can
be considered noise contributions are reduced, leading
to a higher priority of large-amplitude weights.38,39 The
weight decay parameter 𝑐 is sampled log-uniformly in
[10−7, 10−5] (i.e. log10 𝑐 is sampled uniformly in [−7, −5]).
Second, we consider dropout regularization, both regular
dropout and spatial dropout. Regular dropout is a com-
monly used means of regularization applied after a fully
connected layer. During training, outputs are randomly
dropped by a probability 𝑝d, which reduces overfitting
by encouraging individual nodes to rely less on other
nodes.40 In contrast, spatial dropout is applied after a
convolutional (or pooling) layer. During training, entire
feature maps are randomly dropped by a probability 𝑝sd,
which encourages individual kernels to rely less on other
kernels.41 Here, regular dropout is applied twice, after
each of the two fully connected layers, and spatial dropout
is applied once, after the final block of convolutional
and pooling layers. We randomly sample 𝑝d and 𝑝sd in
[0, 0.6]. (It is worth mentioning briefly here that another
common regularization method, batch normalization,42
is not investigated because it has been found to not
be useful in combination with the Elu activation
function.31
To reduce the effect of the random seed, which controls

not only the parameter values in the random search opti-
mization but also random weight initialization and shuf-
fling of data, 100 separate training instances with unique
random seeds are run for all neighbourhood sizes. For all
the weights, Glorot/Xavier uniform initialization is used,
meaning that the initial values are sampled from a zero-
centred uniform distribution, the bounds of which are
determined by the input and output dimensions of each
layer.43 Each training instance is run for 40 epochs (iter-
ations over the whole data set). For each neighbourhood
size, the best model (over all runs and epochs) with respect
to the binary cross-entropy loss of the validation data is
selected. In Figure 3, the lowest obtained validation loss
obtained for each neighbourhood size is shown. As can be
seen, the decrease in loss for increasing 𝑛𝑥𝑦 is the most
monotonic for small values of 𝑛𝑧. This is not surprising,
as it reflects the increasing difficulty of attaining good con-
vergence for larger input dimensions. The best-performing
model is found for 𝑛𝑥𝑦 = 113 and 𝑛𝑧 = 3. This result does
not imply that more information along the 𝑧-direction
is not in principle beneficial; indeed, with a more com-
prehensive hyperparameter search, the best-performing
model might very well be found for 𝑛𝑧 > 3. In Figure 4, the

8 SKÄRBERG et al.

F IGURE 3 Binary cross-entropy loss of the validation data as a
function of 𝑛𝑥𝑦 for different values of 𝑛𝑧

F IGURE 4 mIoU of the validation data as a function of 𝑛𝑥𝑦 for
different values of 𝑛𝑧

mIoU of the samemodels (i.e. chosenwith respect tomini-
mizing the loss, not with respect to maximizing themIoU)
is shown. Of these models, the best-performing model in
terms of mIoU is found for the same neighbourhood size.
For that particular model, 𝑎 ≈ 0.048 and 𝑏 ≈ 0.056. The
initial learning rate is log10(LR0) = −2, decreasing every
8th epoch. Furthermore, 𝑐 ≈ 4.16 × 10−6, 𝑝d ≈ 0.401 and
𝑝sd ≈ 0.195. Training is executed in a cluster environment
using a single NVIDIA V100 GPU for each run. In Fig-
ure 5, the mean execution time for training as a function
of neighbourhood size is shown. The execution time is
greatly influenced by the number of weights as provided in
Table 1, and not surprisingly, it is monotonically increasing
with both 𝑛𝑥𝑦 and 𝑛𝑧. In Figure 6, the training and valida-
tion loss curves and training and validation accuracy for
the best-performing model are shown. As can be seen, the
validation loss and accuracy have reached a plateau. Fur-
thermore, the training loss and accuracy do not deviate
strongly from the validation curves, indicating that over-
fitting is not severe.

F IGURE 5 Mean execution time for training as a function of
neighbourhood size

F IGURE 6 Training and validation loss curves and training
and validation accuracy for the best-performing model

3.8 Segmentation of the full data sets

The best identified model is used for segmentation of the
full data sets. Because of the substantial amounts of data
required to be processed (the combined size of all input
neighbourhoods for all three data sets is >600 TB in 32-bit
precision), neighbourhoods are extracted in batches of 216

(such a batch of neighbourhoods for 𝑛𝑥𝑦 = 113 and 𝑛𝑧 = 3

constitutes approximately 9 GB in 32-bit precision). Near
the edges, the data sets are mirrored. The actual prediction
is done in batches of 211. To facilitate parallel execution in
a cluster environment, the code is configured to run the
prediction on a single random slice in a random data set;
hence, the work is divided into 600 independent runs. The
neighbourhoods are extracted while looping sequentially
over the slice in a sliding-window approach, illustrated in
Figure 7. Prediction of a single slice took on average 30min
on a single NVIDIA V100 GPU, yielding a combined exe-
cution time of 100 h per data set. The prediction yields a
score array which is then post-processed to produce the

SKÄRBERG et al. 9

F IGURE 7 Illustration of the sliding window technique
utilized when extracting neighbourhoods for voxel-wise
classification, depicting full 2D SEM image slices with field of view
approximately 22.5 𝜇m × 33.7 𝜇m

final segmentation. If the class balance in the full data
sets were 50/50, it would make sense to produce a final
segmentation from the raw score array by thresholding at
𝑇 = 0.5. However, we make two observations that lead us
to introducing some post-processing steps. First, although
adjacent neighbourhoods are overlapping considerably,
leading to spatial correlation in the score array, the predic-
tion of each voxel is in principle independent of all other
voxels. To make better use of the inherent spatial correla-
tion, we regularize the score array by Gaussian smoothing
in the 𝑥-𝑦 plane with a standard deviation 𝜎. Second,
because of the class imbalance, we consider using a
threshold 𝑇 ≠ 0.5, and it is intuitively clear that 𝑇 < 0.5

is sensible because of the average porosity being consider-
ably lower than 50%.More precisely, we do a first Gaussian
smoothing, followed by a first thresholding, followed by
a second Gaussian smoothing (of the produced binary
array), followed by a second and final thresholding. The
parameters 𝜎 and 𝑇 are optimized with respect tomIoU of
the validation set (the full, manually segmented regions, as
opposed to the subsets previously used for training of the
CNNs). (It is worth mentioning here that we also investi-
gate 3D Gaussian smoothing as well as using independent
values of 𝜎 and 𝑇 for the two iterations, but that no benefit
is found from doing so.) The obtained values are 𝜎 ≈ 2.63

pixels and 𝑇 ≈ 0.402. Finally, small connected objects
(<100 voxels) are removed from both the pores and the
solid parts. The results before and after post-processing
in terms of mIoU, accuracy and porosity are shown in
Tables 2 and 3, respectively. It is worth noting that the
porosities in the training, validation and test sets differ
more for HPC45 than for the other two data sets. The rea-
son is that the structure gets increasingly heterogeneous
with increasing porosity, leading to a larger variance in the
porosity of the manually segmented regions. It is evident

TABLE 2 Results before post-processing for the individual data
sets as well as combined

Train Val Test
HPC22
mIoU 0.7601 0.7523 0.7530
Accuracy 0.8951 0.8911 0.8962
Porosity (%), manual 22.07 22.00 20.42
Porosity (%), automatic 27.43 27.57 25.65
HPC30
mIoU 0.8425 0.8303 0.8085
Accuracy 0.9253 0.9197 0.9075
Porosity (%), manual 29.76 29.14 29.27
Porosity (%), automatic 33.32 32.80 33.65
HPC45
mIoU 0.7707 0.7597 0.7491
Accuracy 0.8706 0.8638 0.8573
Porosity (%), manual 44.17 49.62 42.20
Porosity (%), automatic 53.22 55.31 49.84
Combined
mIoU 0.7983 0.7911 0.7774
Accuracy 0.8970 0.8915 0.8870

Note: The results are based on the full, manually segmented regions, as
opposed to the training of the CNNs that is carried out on a subset of the man-
ually segmented data

TABLE 3 Results after post-processing for the individual data
sets as well as combined

Train Val Test
HPC22
mIoU 0.7820 0.7723 0.7757
Accuracy 0.9129 0.9084 0.9141
Porosity (%), manual 22.07 22.00 20.42
Porosity (%), automatic 22.01 22.06 20.62
HPC30
mIoU 0.8537 0.8422 0.8204
Accuracy 0.9335 0.9285 0.9170
Porosity (%), manual 29.76 29.14 29.27
Porosity (%), automatic 29.23 28.76 29.32
HPC45
mIoU 0.8057 0.7750 0.7761
Accuracy 0.8930 0.8732 0.8760
Porosity (%), manual 44.17 49.62 42.20
Porosity (%), automatic 47.81 49.71 44.34
Combined
mIoU 0.8217 0.8063 0.7980
Accuracy 0.9131 0.9034 0.9024

Note: The results are based on the full, manually segmented regions, as
opposed to the training of the CNNs that is carried out on a subset of the man-
ually segmented data

10 SKÄRBERG et al.

(A)

(F)

(K)

(B)

(G)

(L)

(C)

(H)

(M)

(D)

(I)

(N)

(E)

(J)

(O)

F IGURE 8 Comparison of the manual and automatic segmentations for one region each of the test data from the HPC22 (first row),
HPC30 (second row) and HPC45 (third row) data sets. For HPC22, in (A), the image data is shown. In (B), the manual segmentation is
superimposed on top of the data, showing pores (green) and solid (red). In (C), the raw score output from the CNN is shown. The raw score
can be interpreted as the probability of a voxel of belonging to the solid phase (black ≈ 0, green ≈ 0.5, white ≈ 1). In (D), the automatic
segmentation is superimposed on top of the data, showing pores (green) and solid (red). In (E), an overlay of the manual and automatic
segmentations is shown, with correctly classified pores (black), correctly classified solid (white), pores incorrectly classified as solid (green)
and solid incorrectly classified as pores (orange). The same is shown for HPC30 in (F–J) and for HPC45 in (K–O). The field of view is 2.56 𝜇m
× 2.56 𝜇m

that the post-processing substantially improves bothmIoU

and accuracy for all data sets, and that the post-processing
brings the automatic segmentations closer to their manual
counterparts in terms of porosity. Because the data split is
identical, the results of Table 3 can be directly compared
to those of tab. 3 in Röding et al.20 Compared to the pre-
viously obtained results, allmIoU and accuracy values for
the validation and test sets are improved, whereas for the
training data set, they are improved for theHPC22 data but
not for the others. Most notably, for the HPC45 data set the
test mIoU is increased from 0.7089 to 0.7761 and the test
accuracy is increased from 0.8329 to 0.8760. However, in
contrast to the HPC22 and HPC30 data sets where the test
porosity is improved compared to Röding et al.,20 for the
HPC45 it actually gets worse with an increase from 42.80%
to 44.34%. This is to some extent likely to be an effect of the
limited data set size, but also illustrates that the correlation
between on the one hand mIoU and accuracy and on the
other hand the fraction of samples assigned to the differ-
ent classes is not always direct. By computing individual

porosities from the 100 square regions, merging training,
validation and test data, and assuming that the values
are independent, we can investigate differences between
the porosities by means of two-sample 𝑡-tests. The results
indicate that there are no significant differences between
the porosities from the manual and automatic segmenta-
tions (𝑝 ≈ 0.98, 0.77 and 0.14). Nevertheless, given that the
manually segmented regions cover∼0.43 % of the full data
sets, we cannot know that the same would hold for the full
data sets.
In Figure 8, one example region from each of the test

sets are shown, including a comparison between the man-
ual and automatic segmentations. Finally, in Figure 9, a
single full slice from each of the three data sets is shown,
comparing the data and the automatic segmentation.
Whereas this figure does not facilitate quantitative assess-
ment of the results, it demonstrates that the segmentations
appear reasonable also outside the manually segmented
regions. The full data sets and segmentations are available
online.23

SKÄRBERG et al. 11

(A) (B)

(C) (D)

(E) (F)

F IGURE 9 The data and the corresponding segmentation for
one slice from each of the three data sets, showing (A–B) HPC22,
(C–D) HPC30 and (E–F) HPC45. The field of view is approximately
22.5 𝜇m × 33.7 𝜇m

4 CONCLUSION

We have developed a segmentation method based on
CNNs for FIB-SEM data. The CNNs are trained on data
acquired from three samples of porous films produced
from EC/HPC polymer blends used for controlled release
applications. The CNNs are conventional multi-channel
2D CNNs using a sliding window-type approach, where
each voxel is classified as solid or pore using a neighbour-
hood centred around the voxel of interest as input. A large
number of neighbourhood sizes were explored together
with other parameters such as size and degree of regu-
larization of the model, and the best-performing model
was selected for final segmentation of the entire data sets.
The results are in good agreement with manual segmen-
tations. In particular, in terms of the two performance
metrics used, accuracy and mIoU, for the validation and
test data, the results are superior to earlier results pro-
duced using a random forest classifier on the same data.20
Furthermore, the porosities of the identified porous struc-
tures are in good agreement with the expected porosities.
Segmentation using the proposed method is rather time-
consuming, but this should be acceptable given that the
experiments are also very time-consuming. But indeed,
there is a trade-off between mainly the neighbourhood
size, but also other parameters such as the model size,

and computational speed. Nevertheless, we judge that
improved performance compared to, for example random
forest classifiers should still be preferred as the precise
characterization and understanding of these materials is
very important for the application. It is worth noting that
the network architectures, hyperparameters and weights
(and also the post-processing) could in principle be opti-
mized with respect to each individual data set HPC22,
HPC30 and HPC45 (and hence to the individual porosi-
ties). This would likely improve the results somewhat for
each of the data sets, considering that the geometry of the
pores and the amount of subsurface information changes
with changing porosity. However, this would have to be
done at the expense of obtaining less robust CNNs, trained
on less data and not having learned to cope with changes
in porosity.
There are several promising avenues for further work.

First, segmentation by multiple experts could be used to
quantify the degree of uncertainty in the manual segmen-
tation. Second, semi-supervised approaches could be used
to make better use of the very large part of the data set
that is not manually segmented. Third, more neighbour-
hood sizes could be considered, as the investigation indi-
cates that larger sizes could be beneficial. Fourth, other
losses, such as mIoU-based losses and losses that take the
estimated porosity into account, could further improve the
result. Fifth, using sample weighting to emphasize the bor-
der between pores and solid could put additional focus on
regions that are difficult to segment. Sixth, more sophisti-
cated data augmentation could be utilized to obtain more
variation in the data set. Seventh, ensembles of CNNs
might be able to produce more accurate segmentations
than a single CNN. Eighth, more complex geometrical fea-
tures than porosity could be used for assessment of seg-
mentation quality, such as pore size distributions, although
this would not be possible without more extensive manual
segmentation of larger, three-dimensional regions.
Finally, we provide the data and software open access23

to facilitate development of new FIB-SEM segmenta-
tion methods.

ACKNOWLEDGEMENTS
We acknowledge Anna Olsson and Christian von
Corswant at AstraZeneca Gothenburg for discussions
and for providing the samples and Chalmers Material
Analysis Laboratory for their support of microscopes.
We acknowledge the financial support of the Swedish
Research Council (Grant number 2016-03809), the
Swedish Research Council for Sustainable Development
(Grant number 2019-01295), the Swedish Foundation for
Strategic Research (the project ‘Material structures seen
through microscopes and statistics’), and Chalmers Area
of Advance Materials Science. A GPU used for part of

12 SKÄRBERG et al.

this research was donated by the NVIDIA Corporation.
The computations were in part performed on resources
at Chalmers Centre for Computational Science and
Engineering (C3SE) provided by the Swedish National
Infrastructure for Computing (SNIC).

ORCID
MagnusRöding https://orcid.org/0000-0002-5956-9934

REFERENCES
1. Barman, S., Rootzén, H., & Bolin, D. (2019). Prediction of diffu-

sive transport through polymer films from characteristics of the
pore geometry. AIChE Journal, 65, 446–457.

2. Gebäck, T., Marucci, M., Boissier, C., Arnehed, J., & Heintz, A.
(2015). Investigation of the effect of the tortuous pore structure
on water diffusion through a polymer film using lattice Boltz-
mann simulations. Journal of Physical Chemistry B, 119, 5220–
5227.

3. Marucci, M., Ragnarsson, G., von Corswant, C., Welinder, A.,
Jarke, A., Iselau, F., & Axelsson, A. (2011). Polymer leaching
from film coating: Effects on the coating transport properties.
International Journal of Pharmaceutics, 411, 43–48.

4. Tiwari, G., Tiwari, R., Sriwastawa, B., Bhati, L., Pandey, S.,
Pandey, P., & Bannerjee, S. K. (2012). Drug delivery systems: An
updated review. International Journal of Pharmaceutical Inves-
tigation, 2, 2–11.

5. Wassén, S., Bordes, R., Gebäck, T., Bernin, D., Schuster, E.,
Lorén, N., & Hermansson, A.-M. (2014). Probe diffusion in
phase-separated bicontinuous biopolymer gels. Soft Matter, 10,
8276–8287.

6. Inkson, B. J., Mulvihill, M., & Möbus, G. (2001). 3D determina-
tion of grain shape in a FeAl-based nanocomposite by 3D FIB
tomography. Scripta Materialia, 45, 753–758.

7. Holzer, L., Indutnyi, F., Gasser, P. H., Münch, B., & Wegmann,
M. (2004). Three-dimensional analysis of porous BaTiO3 ceram-
ics using FIB nanotomography. Journal of Microscopy, 216, 84–
95.

8. Giannuzzi, L. A., & Stevie, F. A. (2005). Introduction to focused
ion beams: Instrumentation, theory, techniques and practice.
Springer.

9. Joos, J., Carraro, T., Weber, A., & Ivers-Tiffée, E. (2011).
Reconstruction of porous electrodes by FIB/SEM for detailed
microstructure modeling. Journal of Power Sources, 196, 7302–
7307.

10. Fager, C., Röding, M., Olsson, A., Lorén, N., von Corswant,
C., Särkkä, A., & Olsson, E. (2020). Optimization of FIB-SEM
tomography and reconstruction for soft, porous, and poorly con-
ducting materials.Microscopy and Microanalysis, 26, 837–845.

11. Blayvas, I., Bruckstein, A., & Kimmel, R. (2006). Efficient com-
putation of adaptive threshold surfaces for image binarization.
Pattern Recognition, 39, 89–101.

12. Jørgensen, P. S., Hansen, K. V., Larsen, R., & Bowen, J. R. (2010).
A framework for automatic segmentation in three dimensions of
microstructural tomography data.Ultramicroscopy, 110, 216–228.

13. Prill, T., Schladitz, K., Jeulin, D., Faessel,M., &Wieser, C. (2013).
Morphological segmentation of FIB-SEM data of highly porous
media. Journal of Microscopy, 250, 77–87.

14. Salzer, M., Spettl, A., Stenzel, O., Smått, J.-H., Lindén, M.,
Manke, I., & Schmidt, V. (2012). A two-stage approach to the seg-
mentation of FIB-SEM images of highly porousmaterials.Mate-
rials Characterization, 69, 115–126.

15. Salzer, M., Thiele, S., Zengerle, R., & Schmidt, V. (2014). On the
importance of FIB-SEM specific segmentation algorithms for
porous media.Materials Characterization, 95, 36–43.

16. Taillon, J. A., Pellegrinelli, C., Huang, Y.-L., Wachsman, E. D., &
Salamanca-Riba, L. G. (2018). Improving microstructural quan-
tification in FIB/SEM nanotomography. Ultramicroscopy, 184,
24–38.

17. Moroni, R., & Thiele, S. (2020). FIB/SEM tomography segmen-
tation by optical flow estimation. Ultramicroscopy, 219, 113090.

18. Fend, C., Moghiseh, A., Redenbach, C., & Schladitz, K. (2021).
Reconstruction of highly porous structures fromFIB-SEMusing
a deep neural network trained on synthetic images. Journal of
Microscopy, 281, 16–27.

19. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolu-
tional networks for biomedical image segmentation. In Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention (pp. 234–241).

20. Röding, M., Fager, C., Olsson, A., von Corswant, C., Olsson, E.,
& Lorén, N. (2021). Three-dimensional reconstruction of porous
polymer films from FIB-SEM nanotomography data using ran-
dom forests. Journal of Microscopy, 281, 76–86.

21. Lennefors, M., & Visuri, W. J. (2020). Deep learning for semantic
segmentation of FIB-SEM volumetric image data (Master’s the-
sis). Chalmers University of Technology.

22. Skärberg, F. (2020). Convolutional neural networks for semantic
segmentation of FIB-SEM volumetric image data (Master’s the-
sis). University of Gothenburg.

23. Skärberg, F., Fager, C., Olsson, A., von Corswant, C., Olsson, E.,
Lorén, N., & Röding,M. (2020). Zenodo. https://doi.org/10.5281/
zenodo.4317170.

24. Fager, C., & Olsson, E. (2018). Soft materials and coatings for
controlled drug release. In V. Uskokovic & D. P. Uskokovic
(Eds.), Nanotechnologies in preventive and regenerative medicine
(pp. 244–259). Elsevier.

25. Jansson, A., Boissier, C., Marucci, M., Nicholas, M., Gustafs-
son, S., Hermansson, A.-M., & Olsson, E. (2014). Novel method
for visualizing water transport through phase-separated poly-
mer films.Microscopy and Microanalysis, 20, 394–406.

26. Siepmann, F., Hoffmann, A., Leclercq, B., Carlin, B., & Siep-
mann, J. (2007). How to adjust desired drug release patterns
from ethylcellulose-coated dosage forms. Journal of Controlled
Release, 119, 182–189.

27. Marucci, M., Hjärtstam, J., Ragnarsson, G., Iselau, F., & Axels-
son, A. (2009). Coated formulations: New insights into the
release mechanism and changes in the film properties with a
novel release cell. Journal of Controlled Release, 136, 206–212.

28. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH
Image to ImageJ: 25 years of image analysis. Nature Methods, 9,
671–675.

29. Schmidhuber, J. (2015). Deep learning in neural networks: An
overview. Neural Networks, 61, 85–117.

30. Rawat, W., & Wang, Z. (2017). Deep convolutional neural net-
works for image classification: A comprehensive review.Neural
Computation, 29, 2352–2449.

https://orcid.org/0000-0002-5956-9934
https://orcid.org/0000-0002-5956-9934
https://doi.org/10.5281/zenodo.4317170
https://doi.org/10.5281/zenodo.4317170

SKÄRBERG et al. 13

31. Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2016). Fast
and accurate deep network learning by exponential linear units
(ELUs). arXiv preprint arXiv:1511.07289.

32. Rahman, M. A., & Wang, Y. (2016). Optimizing intersection-
over-union in deep neural networks for image segmentation. In
International symposium on visual computing (pp. 234–244).

33. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro,
C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefow-
icz, R., Kaiser, L., Kudlur, M., & Zheng, X. (2015). TensorFlow:
Large-scale machine learning on heterogeneous systems. Software
Retrieved from https://www.tensorflow.org/

34. Bottou, L. (2010). Large-scale machine learning with stochastic
gradient descent. In Proceedings of COMPSTAT ’2010 (pp. 177–
186). Springer.

35. Qian, N. (1999). On the momentum term in gradient descent
learning algorithms. Neural Networks, 12, 145–151.

36. Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018).
Convolutional neural networks: An overview and application in
radiology. Insights into Imaging, 9, 611–629.

37. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-
parameter optimization. Journal of Machine Learning Research,
13, 281–305.

38. Krogh, A., & Hertz, J. A. (1992). A simple weight decay can
improve generalization. In Advances in neural information pro-
cessing systems (pp. 950–957).

39. van Laarhoven, T. (2017). L2 regularization versus batch and
weight normalization. CoRR, abs/1706.05350.

40. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine Learning
Research, 15, 1929–1958.

41. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C.
(2015). Efficient object localization using convolutional net-
works. InProceedings of the IEEEConference onComputerVision
and Pattern Recognition (pp. 648–656).

42. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167.

43. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the
Thirteenth International Conference onArtificial Intelligence and
Statistics (pp. 249–256).

How to cite this article: Skärberg F, Fager C,
Mendoza-Lara F, et al. Convolutional neural
networks for segmentation of FIB-SEM
nanotomography data from porous polymer films
for controlled drug release. Journal of Microscopy.
2021;1-13. https://doi.org/10.1111/jmi.13007

https://www.tensorflow.org/
https://doi.org/10.1111/jmi.13007

	Convolutional neural networks for segmentation of FIB-SEM nanotomography data from porous polymer films for controlled drug release
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	3 | RESULTS AND DISCUSSION
	3.1 | Pre-processing
	3.2 | Manual segmentation
	3.3 | Data extraction
	3.4 | Network architecture
	3.5 | Data augmentation
	3.6 | Performance metrics
	3.7 | Training and hyperparameter optimization
	3.8 | Segmentation of the full data sets

	4 | CONCLUSION
	ACKNOWLEDGEMENTS
	ORCID
	REFERENCES

