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Abstract—The reverse conduction capability of
MOSFETs is beneficial for the efficiency of a three-
phase inverter. In this paper analytical expressions in
closed form are presented which allow to quickly evaluate
the conduction losses, considering the effect of the reverse
conduction and blanking time for both sinusoidal PWM
operation with and without third harmonic injection. The
losses of a three-phase SiC MOSFET inverter suitable
for traction applications are estimated with the proposed
method and show good agreement of about 98.5 % with
measurements, performed with a calorimetric setup.

Index Terms—Analytical models, calorimetry, power
MOSFET, pulse width modulated inverters, traction motor
drives.

I. INTRODUCTION

The thermal capability and the low switching losses of
silicon carbide (SiC) MOSFETs can be beneficial in compar-
ison to classical silicon (Si) IGBTs when used in a three-
phase converter [1]–[4]. Available comparisons between SiC
MOSFET and Si IGBT based converters show that SiC
MOSFETs can achieve a more compact inverter design, while
improving the system efficiency [1], [2]. Especially at high
switching frequencies and high junction temperatures, the
converter efficiency can be increased using SiC MOSFETs
[2]–[6]. Furthermore, MOSFET based converters, as described
in [7]–[11], have also reduced conduction losses at partial load
operation. In [12]–[16], extensive work has been done to derive
analytical switching-loss models.

However, the available comparisons in [1]–[9] are mainly
based on analytical conduction-loss models in the literature
[17]–[20] or provided by semiconductor manufacturers’ appli-
cation manuals [21], [22] for different IGBT and MOSFET
converter topologies. These models do not include the effect of
the reverse conduction in the MOSFET inverter, also referred
to as third quadrant characteristic [23]–[25]. MOSFET devices
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typically have a body diode that allows for reverse conduction.
Additionally, when a negative drain-source voltage is present,
the MOSFET channel’s conduction can also be controlled by
applying a gate-source voltage above the threshold voltage
level [26]. In a three-phase inverter this results in parallel
conduction of the diode and MOSFET when output voltage
and current differ in sign.

The conventional way of controlling a two-level three-phase
inverter is to send a PWM signal to the top switch of the
inverter leg and the inverted PWM signal to the bottom one
with a blanking time in between to prevent a short circuit of the
leg [27]. This means that, typically, all MOSFET converters
use the reverse conduction capability. An analytical conduction
loss model for three-phase SiC MOSFET inverters, which
includes the reverse conduction, was first presented in [28].
However, this model is limited to an output PWM signal using
a pure sinusoidal reference and the effect of the blanking time
is not included. In [29] models are presented for different mod-
ulation strategies, however, they do not accurately consider the
effect of the current split between the diode and the MOSFET.
In [30] the authors have presented analytical expressions to
quickly evaluate the conduction losses, taking into account the
effect of the reverse conduction and the blanking time. Both
sinusoidal PWM operation with and without third harmonic
injection, which can also be used for space vector modulation
with small error, are derived in a closed form. Further, these
analytical expressions have been validated with numerical
simulations and it was shown that the loss reduction due
to the reverse conduction is significant over a driving cycle
[30]. However, all presented models [29]–[31] are lacking
experimental validation, which is quite challenging. Because
of the high efficiency, and hence low losses, the simple
subtraction of output power from input power involves a small
relative difference between these quantities, and is therefore
prone to large errors and low accuracy. Calorimetry is a
recognized means for the direct measurement of losses in
power electronics inverters, which can be used to overcome
these difficulties [32]–[35].

The contribution of this article is to experimentally verify
theoretically derived expressions regarding the impact of the
reverse conduction on the conduction losses of a MOSFET
three-phase inverter. Therefore, this paper derives and presents
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Fig. 1: (a) Single inverter leg (half-bridge) of a three-phase
inverter. (b) Equivalent circuit of parallel conduction of diode
and MOSFET channel in reverse direction [26]. During the
reverse conduction iT < 0, and, thus, the MOSFET current
flows in opposite direction of the red current arrow.

simplified analytical expressions, based on [30], to quickly
evaluate the conduction losses in a three-phase MOSFET
converter, including the effect of the reverse conduction and
the blanking time. A SiC MOSFET three-phase inverter is
tested in different operating conditions using a double jacketed
calorimeter with a water cooled circuit, resulting in high
accuracy of the loss measurements. Thus, the presented loss
models are experimentally validated.

II. CONDUCTION LOSSES CONSIDERING REVERSE
CONDUCTION OF MOSFET CHANNEL

The steady state conduction losses of a three-phase voltage
source inverter, utilizing MOSFETs, are evaluated in this
paper. It is assumed that all three-phase output currents are
sinusoidal and balanced. Under this assumption it is sufficient
to calculate the losses for a single inverter leg as shown in
Fig. 1(a). Consequently, the result can be extended to the
other two legs. The average MOSFET conduction losses can
be calculated, approximating the drain source characteristic to
an on-state resistance Ron, as

Pc,T =
1

2π

∫ 2π

0

D(α)Roni
2
T(α)dα , (1)

where α = 2π
T t and D is the duty cycle. Similarly, the

diode conduction losses can be obtained, approximating the
forward characteristic to mimic an on-state resistance Rd and
a constant voltage drop Vd, as

Pc,d =
1

2π

∫ 2π

0

D(α)(Rdi
2
d(α) + Vdid(α))dα . (2)

Assuming a naturally sampled PWM sine-triangle modulation,
the duty cycle as a function of α can be defined as

D(α) =
1

2
(1 +Msin(α)) , (3)

where M is the modulation index [17]. When current and
voltage in one leg are discordant, either the upper or the
lower diode is forward biased. If the corresponding MOSFET
gate-source voltage is above the threshold voltage level, the
MOSFET channel conducts in parallel with the diode. Due
to the constant voltage drop, the diode will only be forward

Fig. 2: Parallel conduction of diode and MOSFET channel,
starting at angle β relative to the zero current crossing.

biased, if the device current times the on-state resistance Ron is
above the diode’s threshold voltage Vd. Thus, it is convenient
to define the parallel conduction angle β as

sin(β) =
Vd

RonÎ
, (4)

shown in Fig. 2. For example, when the load current is positive
and MOSFET TAH in Fig. 1 is provided with a positive gate-
source voltage, the phase to neutral voltage will be positive
and TAH will conduct the current

iT,1(α) = Îsin(α−ϕ) for − β ≤ α−ϕ ≤ β + π , (5)

where ϕ is the angle of displacement power factor and Î is
the peak value of the phase current. On the other hand, when
MOSFET TAH is off, diode DAL will conduct in parallel with
MOSFET TAL. Therefore, the diode and MOSFET currents
during the parallel conduction of TAH and DAH, as schemat-
ically shown in Fig. 1(b), are calculated as

iT,2(α) =
RdÎsin(α− ϕ) − Vd

Rd +Ron
for π+β ≤ α−ϕ ≤ 2π−β

(6)
and

id(α) = −RonÎsin(α− ϕ) + Vd

Rd +Ron
for π+β ≤ α−ϕ ≤ 2π−β .

(7)
The integral in (1) can be calculated for the different intervals
by defining ϑ = α− ϕ as

Pc,T =
Ron

4π

(∫ π+β

−β
(1 +Msin(ϑ+ ϕ))i2T,1(α)dϑ +

∫ 2π−β

π+β

(1 +Msin(ϑ+ ϕ))i2T,2(α)dϑ

)
. (8)

Inserting (5) and (6) in (8), the conduction losses can be
expressed as

Pc,T =
Ron

4π

(∫ π+β

−β
(1 +Msin(ϑ+ ϕ))Î2sin2(ϑ)dϑ +

∫ 2π−β

π+β

(1 +Msin(ϑ+ ϕ))

(
RdÎsin(ϑ) − Vd

Rd +Ron

)2

dϑ

)
.

(9)
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Fig. 3: Effect of the blanking time on the diode and MOSFET
current.

Similarly, the integral in (2) can be expressed as

Pc,d =
1

4π

∫ 2π−β

π+β

(1+Msin(ϑ+ϕ))(Rdi
2
d(α)+Vdid(α))dϑ.

(10)
Inserting (7) in (10) yields

Pc,d =
1

4π

∫ 2π−β

π+β

(1 +Msin(ϑ+ ϕ))·[
Rd

(
RonÎsin(α− ϕ) + Vd

Rd +Ron

)2

−

Vd

(
RonÎsin(α− ϕ) + Vd

Rd +Ron

)]
dϑ . (11)

A third harmonic can be added to the reference voltage in
order to achieve a higher value of the fundamental output
voltage. Typically, the optimal value is 1/6 of M , allowing the
output voltage to be increased by up to 15 % without reaching
the over-modulation region. The duty cycle expression in the
integral to calculate the losses when a third harmonic is added
to the reference is

D(α) =
1

2
(1 +Msin(α) +

1

6
Msin(3α)) . (12)

The complete expressions with the integrals in (8), (11) and
considering the third harmonic injection (12) are reported in
the Appendix.

A. Effect of the Blanking Time
Because of the finite turn-on and turn-off times, associated

with any type of semiconductor switch, a delay time, often
referred to as blanking time, tbl, between the conduction of
the upper and lower switch of the same inverter leg must be
implemented in order to avoid a shoot-through. During the
blanking time only the diode is conducting the current. The
effect of the blanking time is shown in Fig. 3. Its effect on the
MOSFET conduction loss calculation can be accounted for by
defining an equivalent duty cycle

Deq(α) = D(α)−tblfsw =
1

2
(1−2tblfsw+Msin(α)) , (13)

where fsw is the switching frequency). Negative duty cycle
values are not to be considered, so the condition

1 − 2tblfsw +Msin(α) > 0 (14)

must be verified in the case of a sinusoidal reference voltage.
In the case with 1/6 third harmonic injection the condition to
fulfill is

1 − 2tblfsw +Msin(α) + 1/6Msin(3α) > 0 . (15)

For values of M close to the boundary of the over-modulation
region, the method of using an equivalent duty cycle should be
applied carefully. Negative duty cycle values are to be avoided.
Since the diode is conducting the whole current during the
blanking time, the average conduction losses in (11) must be
extended by the addition of

1

2π

∫ 2π

π

2tblfsw

(
RdÎ

2sin2(ϑ) − Îsin(ϑ)Vd

)
dϑ , (16)

which results in

tblfswÎ

(
1

2
ÎRd +

2

π
Vd

)
. (17)

While (9) and (11) have been derived without introducing any
approximation, the formulas including the blanking time have
some degree of approximation. Using an equivalent duty cycle
as in (13) means a reduction of the current conduction interval
with two times the blanking time. However, the blanking time
intervals are not specifically placed at the beginning or the
end of the reverse conduction, but are considered averaged
over the whole electrical period, introducing a small error.
Nevertheless, the entity of this error is still negligible and the
equivalent duty cycle is very accurate in estimating the losses
including the effect of blanking time as shown in [30].

Again the complete analytical expressions of the conduction
losses, including the effect of the blanking time, are reported
in the Appendix.

B. Switching Losses
In order to evaluate the overall efficiency of the three-phase

inverter, the switching losses need to be considered as well.
The device’s data sheet usually provides the switching losses
as a function of the device current for certain voltage levels.
Thus, the switching losses for one semiconductor switch can
be calculated, taking every switching event into account, by a
look-up table approach, as

Psw =

∑n=T1fsw
j=1 (Eon,j(iT(t)) + Eoff,j(iT(t)) + Err,j)

T1
,

(18)
where T1 is the fundamental period of the output voltage and
Err is the reverse recovery loss. The switching losses, Eon(iT)
and Eoff(iT), can be scaled according to the DC link voltage
as

Eon/off(iT) =

(
VDS

VDC,ref

)Kv,on/off

. (19)

The value of Kv,on/off is typically about 1.4 [36] and can be
obtained from the supplier’s data sheet through interpolation.
According to [22], the switching loss calculation can be
simplified by expressing the AC current through an equivalent
DC current as

IDC =
Î

π
= iT . (20)
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Fig. 4: Schematic operation of the inverter setup, using an
RL-load. The low switching frequency and the low DC-link
voltages reduce the switching losses.

I

III

Fig. 5: Measured MOSFET and diode characteristic of the
chosen SiC MOSFET inverter. Reverse conduction is also
shown.

Thus, the switching losses can be estimated as

Psw = fsw(Eon(IDC) + Eoff (IDC) + Err) . (21)

Having the MOSFET turning on and off during reverse
conduction would in theory increase the switching losses.
However, due to the fact that the diode is conducting in
parallel or is conducting during the blanking time, the
voltage across the MOSFET is forced to Vd + RdÎ during
the beginning of the switching transient, achieving quasi
zero-voltage-switching (ZVS) [12], [37]. Therefore, the
switching losses of the MOSFET during reverse conduction
are negligible.

III. EXPERIMENTAL VALIDATION

To experimentally validate the conduction-loss models de-
rived in Section II, a SiC MOSFET inverter was operated with
and without reverse conduction using a calorimetric box, as
schematically shown in Fig. 4. In this section the experimental
setup is described and the loss measurements are presented and
compared with the analytical models.

TABLE I: Equipment list

Device Manufacturer Model
SiC module 1.2 kV/50A Wolfspeed CCS050M12CM2 [38]

SiC gate driver board Wolfspeed CGD15FB45P1 [39]
2 DC link capacitors 5 µF Vishay MKP386M550125YT4

4W-PT100 RS PRO 25mm x 4mm Probe
Acquisition unit Fluke Hydra 2620A

Pump Shenchen LabN6

Fig. 6: Three-phase inverter prototype and calibration resistor
mounted on the water cooled heatsink.

Enable RC

≥ 

ithr

≤ -1

 

>0>0

>0>0

0

0
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DAH,ref
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TAH
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If Enable RC= =0      Out1=0; Out2=0

   

→If Enable RC= =0      Out1=0; Out2=0

   

→

Fig. 7: Schematic description to disable the reverse conduction
by keeping the gate switched off, if the phase current exceeds
the threshold value ithr.

A. Case Study and Setup Description
A SiC MOSFET inverter was built using one of Cree’s six-

pack three-phase modules, including the custom gate driver
board, listed in Table I. The MOSFETs’ and diodes’ voltage
drop, including the effect of the reverse conduction, were ex-
perimentally characterized at ambient temperature for different
drain-source current levels, as can be seen in Fig. 5. The mod-
ule, together with a 220 Ω calibration resistor with a maximum
power dissipation of 100 W, was mounted on a water cooled
heat sink as shown in Fig. 6. The PWM signals were generated
using a DSpace DS1006 processor board and DS5202 FPGA
Base Board. A program was implemented to be able to enable
the reverse conduction, With Reverse Conduction (W-RC), and
disable the reverse conduction, With-Out Reverse Conduction
(WO-RC), by either providing a high or a low gate signal to
the corresponding SiC MOSFET when voltage and current are
of opposite sign. A schematic description of the program is
presented in Fig. 7. The complete laboratory setup is shown
in Fig. 8. The double jacketed calorimetric box, as described
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Fig. 8: Actual test setup environment with calorimetric box,
water reservoir, data acquisition and control unit.

in [40], has an inner and an outer air chamber. Having two
chambers reduces the leakage heat through the box walls. The
inverter and heatsink were fitted inside the calorimetric box
with high resolution temperature sensors (4-wire PT100) at
the water inlet and outlet. The pump used in the setup is
a medical grade pump, see Table I, able to operate with a
high accuracy at very low flow rates. A low flow rate of
200 mL min−1 was chosen in order to increase the outlet to
inlet water temperature difference and have a good reading
accuracy of the temperature sensors. This is necessary when
measuring losses in the range of 10-30 W. The inverter’s
losses were measured using the thermal Steady Flow Energy
Equation (SFEE)

Ploss(1 − σth) = cpV̇ ρ∆T , (22)

where σth is the calorimetric box’s leakage factor, cp is
the heat capacity at constant pressure, V̇ is the volumetric
flow rate, ρ is the volumetric mass density and ∆T is the
temperature difference between the inlet and the outlet. To
determine the heat leakage conducted through the cables and
the walls, a specific loss was injected, using the calibration
resistor, and compared with the measured losses, derived from
the cooling circuit. Fig. 9 shows the calibration measurements
using an injected power dissipation in the resistor of about
25 W. After an initial transient, the absolute temperatures
inside the box were rising with a constant slope due to the fact
that the inlet water temperature comes from a water reservoir,
which was slowly warming up with time. Regardless, the
coolant outlet to inlet temperature difference becomes constant
after the first transient, which can be be considered as a quasi
steady state for the loss evaluation. The calibration results for
different levels of injected power dissipation are depicted in
Fig. 10. The leakage factor is fairly constant within the chosen
dissipated power range, thus the average value was applied to
the measurements on the inverter.

B. Loss Measurements
The setup, as presented in Figs. 4 and 8, was used to

evaluate the conduction losses for both cases, W-RC and
WO-RC. The switching frequency of 2 kHz and the DC-link

0 0.5 1 1.5 2 2.5 3 3.5 4
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23
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(a)
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1

1.5

(b)

Fig. 9: Transient temperature profiles using a flow rate of
200 mL min−1 for about 25 W of injected power. (a) Tem-
perature profiles of the water inlet, water outlet and the air
inside the box. (b) Water temperature difference between the
outlet and the inlet, both measured and estimated.

15 20 25 30 35
0.8

0.82

0.84

0.86

0.88

0.9

Measurements

Average

Fig. 10: Calorimetric box’s leakage factor measured for dif-
ferent power levels of injected DC power using the calibration
resistor.

voltage of 200 V were selected in order to focus on the
conduction losses by keeping the switching losses low, as the
conduction losses are not dependent on the DC-link voltage
as shown in (9) and (11). Furthermore, using a switching
frequency of 2 kHz and considering the proper modulation of
the injected third harmonic component, output fundamental
frequencies up to 66.67 Hz can be synthesized [27], while
generating some audible noise. In an actual application, it is
beneficial to use a switching frequency of at least 20 kHz,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2020.3003586, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

1

1.5

0 2 4 6 8 10 12 14 16 18 20

-40

-20

0

20

40

Unfiltered

Filtered

0 2 4 6 8 10 12 14 16 18 20

0

100

200

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

Fig. 11: Gate signals, output current, pole voltage and refer-
ence voltage with enabled reverse conduction (W-RC) for one
of the three phases (pole voltage signal is simulated, all other
signals are measured).

to avoid the audible noise. A fixed RL-load was applied
on the output and the power factor was varied by changing
the fundamental frequency. To adjust the three-phase output
current’s amplitude, a current controller using loop shaping,
as described in [27], [41], was implemented. The gate driver
board inside the calorimetric box was generating additional
losses, which were accounted by the measured supply power.

At first, the inverter’s output current amplitude was con-
trolled to about 20 A at a frequency of 50 Hz. The high side
and the low side gate signals together with the output current
and the voltage reference of the measurements for one of
the three phases are presented in Fig. 11 for the W-RC case
and in Fig. 12 for the WO-RC case. The corresponding
temperature difference between the outlet and the inlet of the
calorimetric box can be seen in Fig. 13. In time intervals
of about 1 h, the inverter was alternately operated with and
without reverse conduction. It can be noted that the effect
of the reverse conduction has a significant impact on the
inverter losses. The loss comparison between both cases,
W-RC and WO-RC, at thermal steady state are presented
in Fig. 14. The measured auxiliary losses of approximately
(2.8 W) are from the gate driver board. Theoretically, these are
dependent on the switching frequency (∆PAux ≈ 33 µW Hz−1

[39]). The difference of the effective gate driver switching
frequency between the cases W-RC and WO-RC was about
1 kHz, which should result in a theoretical, auxiliary loss
difference of about 33 mW. In practice, however, there was
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-0.5
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Fig. 12: Gate signals, output current, pole voltage and refer-
ence voltage with disabled reverse (WO-RC) conduction for
one of the three phases (pole voltage signal is simulated, all
other signals are measured).

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

Fig. 13: Measured water temperature difference between the
outlet and the inlet with alternately enabled and disabled
reverse conduction for a current amplitude of 20 A at 50 Hz.

no difference in the measured auxiliary power. The switching
losses were quantified to be approximately 0.2 W, for both
W-RC and WO-RC. The switching and the auxiliary losses are
added to the conduction losses calculated with the analytical
model and compared with the total losses from the calorimetric
measurement showing a very good agreement. Considering the
case with enabled reverse conduction, the presented analytical
expressions show an agreement of approximately 98.5 % in
comparison to the measured losses. Even when using a 1200 V
device with a high on-state resistance, Ron, and an anti-
parallel Schottky diode with a low forward drop, Vd, there is
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Fig. 14: Comparison of estimated losses, using the analytical
models, and measured losses for a current amplitude of 20 A
at 50 Hz.

Fig. 15: Comparison of estimated losses, using the analytical
model, and measured losses for different operating points with
enabled reverse conduction.

a significant difference between the cases W-RC and WO-RC
at partial load operation.

The same procedure was repeated for several operating
points (all W-RC), varying the frequency of the fundamental
(and consequently the power factor) and the amplitude of the
output current. The results are presented in Fig. 15. Similarly
as before, the losses measured with the calorimetric method
match very well with the ones estimated using the analytical
models presented in this paper.

IV. COMPARISON OF THE PROPOSED METHOD

As experimentally shown, the conduction-loss models de-
scribed in [17]–[20] and the semiconductor manufacturers’
applications manuals [21], [22] overestimate the conduction
losses of a three-phase inverter when using Si and SiC MOS-
FETs instead of IGBTs. Figure 16 depicts the overestimation
of the conduction losses proposed in [21] in comparison to
the model presented in equations (23) to (30) relative to
the modulation index M and the displacement power factor
(DPF) angle ϕ for different output current amplitudes. For
the calculations, the parameters of the SiC MOSFET power
module [38], determined from the measured characteristic in
section II, are used. As can be seen, the relative differences
become smaller for larger current amplitudes. For a fixed
current amplitude, the overestimation becomes the highest

Fig. 16: Overestimation of the conduction losses when using
the method described in Semikron’s application manual [21]
in comparison to the presented method for the SiC MOSFET
three-phase inverter of Cree [38].

at low modulation index and pure inductive DPF and the
lowest at a high modulation index and unity DPF. For the
depicted current amplitudes of 15 A and 50 A, the relative
overestimation varies from 13.5 % to 159.3 % and 4.9 % to
29.8 %, respectively.

A. Practical Selection of MOSFETs for Three-Phase in-
verters used for Drive Applications

When choosing a MOSFET for a drive application, its
rated blocking voltage should be sufficiently higher than
the voltage at which it will be actually used in order to
withstand the overvoltages caused by each switching event
[5], [42]. For example in electric vehicles (EVs), typical DC-
link voltages are either 400 V or even 800 V, which leads to
a blocking voltage selection of 600 V to 650 V or 1200 V,
respectively [43], [44]. This corresponds to a design factor
of about 1.5 (VBlock/VDC). Including a safety margin, the
MOSFET’s maximum drain current should comply with the
maximum operating current [5]. The switching frequency
should be selected in accordance with the application and
design optimization. For example, to ensure a proper current
control it is reasonable to select a switching frequency, which
is at least ten times higher than the maximum fundamental
frequency [27]. For an EV, the electric motor is typically
operated at fundamental frequencies up to about 1 kHz and,
thus, a switching frequency of 10 kHz is often selected [41]. If
the audible noise needs to be reduced as well, the switching
frequency could be increased above 20 kHz [45], [46]. For
example, when dealing with grid connected inverters, it might
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be more beneficial for the overall system design to choose
an even higher switching frequency (fsw >> 20 kHz) to
reduce passive components, as for example the grid filter [5],
[47]. This in turn would result in a higher portion of the
switching losses in relation to the total losses. Subsequently,
when considering different MOSFETs, it must be ensured
that the sum of the switching and conduction losses does
not exceed the maximum permissible power dissipation of
the MOSFET and the temperature rise due to the heating
should be kept within the specified temperature boundaries,
including the application of necessary cooling [42], [48]. The
switching losses can be estimated by (18) to (21) using a
lookup-table approach with data-sheet values or measurement
values obtained from double-pulse tests [49]. The conduction
losses can be estimated using (23) to (30). Simple thermal
models can be used to estimate the junction temperature of
the MOSFET [42], [48].

Since the rated operating point is usually used for the
MOSFET selection and circuit design, the difference between
the estimated conduction losses, exemplified in comparison to
[21] corresponds only to a few percent, as can be seen in
Fig. 16. However, the effect of the presented conduction loss
estimation becomes more beneficial when considering also the
actual operating range throughout the inverter’s lifetime, as
variable speed drives, e.g. pumps or air compressors, are often
operated at partial load [50]. In such cases, the properties of the
body (or the anti-parallel) diode are of less importance as the
MOSFET channel is mainly conducting the current in reverse
conduction mode. Hence, it might be beneficial to motivate
a higher investment cost for a SiC MOSFET inverter with a
low on-state resistance Ron in comparison to a cheap IGBT
inverter [5], [7], considering that the increased energy cost
savings throughout the lifetime and that the total energy and
acquisition costs typically correspond to about 80 % and 9 %
of the total costs, respectively [50].

V. CONCLUSION

This paper has presented analytical models to quickly
evaluate the conduction losses of a three-phase MOSFET
inverter including the effect of the reverse conduction. These
models can be used as a quick and accurate tool during the
inverter design process to evaluate the inverter efficiency and
to perform thermal evaluations.

The proposed equations have been experimentally validated.
A SiC MOSFET inverter for traction applications has been
tested for different operating conditions and the losses were
measured using a calorimetric setup. The measured losses have
been compared with the proposed analytical models showing
good agreement. A calculated comparison of the presented
method with [21] shows that the available methods for IGBT
inverters overestimate the conduction losses when used for
MOSFET inverters, especially at partial load operation.

This allows the conclusion that the negligence of the reverse
conduction can lead to significant errors in the conduction loss
estimation, which might result in an overdimensioned cooling
system.

APPENDIX

A =

{
1 for tbl = 0

1 − 2tblfsw for tbl > 0
(23)

B =
π

2
+ β − sin(2β)

2
(24)

C = cos(β) − cos3(β)

3
(25)

D = 2Mcos(ϕ) (26)

Average MOSFET conduction losses (one switch), using si-
nusoidal voltage reference:

Pc,T =
RonÎ

2

4π
(AB + CD)+

Ron

4π(Ron +Rd)2

(
Î2R2

d(A(π −B) − CD)+

V 2
d ((π−2β)A−Dcos(β))+ÎRdVd(4Acos(β)−(π−B)D)

)
(27)

Average Diode conduction losses (one diode), using sinusoidal
voltage reference:

Pc,d =
Rd

4π(Ron +Rd)2

(
R2

onÎ
2(π −B − CD)+

V 2
d (π − 2β −Dcos(β)) −RonÎVd(4cos(β) − (π −B)D)

)
−

Vd

4π(Ron +Rd)

(
1

2
RonÎ(π −B)D + 2RonÎcos(β)−

Vd(π − 2β) + VdDcos(β)

)
+ tblfswÎ

(
1

2
ÎRd +

2

π
Vd

)
(28)

Additional average MOSFET conduction losses (one switch),
using 1/6 third harmonic injection ( to be added to (27)):

MRonÎ
2

60π
cos(3ϕ)(4sin4(β)cos(β)+C)

(
R2

d

(Ron +Rd)2
−1

)
−

MV 2
d

36π(Ron +Rd)
cos(3ϕ)cos(3β)

(
Ron

(Ron +Rd)

)
−

MRonÎRdVd

24π(Ron +Rd)2
cos(3ϕ)

(
sin(4β)

2
− sin(2β)

)
(29)

Additional average Diode conduction losses (one diode), using
1/6 third harmonic injection ( to be added to (28)):

MÎ2Rd

60π
cos(3ϕ)(4sin4(β)cos(β) + C)

(
R2

on

(Ron +Rd)2

)
−

MRonÎVd

48π(Ron +Rd)

(
cos(ϕ)

[
sin(2ϕ)cos(2β)− sin(4ϕ)cos(4β)

2

]
−

sin(ϕ)
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2
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MV 2
d
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(Ron +Rd)

)
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MRonÎRdVd

24π(Ron +Rd)2
cos(3ϕ)

(
sin(4β)

2
− sin(2β)

)
(30)
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