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The generation of photons from the vacuum by means of the movement of a mirror is known as the dynamical
Casimir effect (DCE). In general, this phenomenon is effectively described by a field with time-dependent
boundary conditions. Alternatively, we introduce a microscopic model of the DCE capable of capturing the
essential features of the effect with no time-dependent boundary conditions. Besides the field, such a model
comprises a subsystem representing the mirror’s internal structure. In this work, we study one of the most
straightforward mirror systems: a qubit moving in a cavity and coupled to one of the bosonic modes. We find that
under certain conditions on the qubit’s movement that do not depend on its physical properties, a large number
of photons may be generated without changing the qubit state, as should be expected for a microscopic model of
the mirror.

DOI: 10.1103/PhysRevA.103.062201

I. INTRODUCTION

In his seminal paper of 1970, Moore [1] discovered that
relativistic movement of perfectly conducting mirrors could
produce radiation even if the state of the electromagnetic
field before the mirrors’ movement were the vacuum. In the
next years, the phenomenon was subsequently studied [2–4]
until the name dynamical Casimir effect (DCE) was coined
[5], joining the broad family of quantum vacuum fluctua-
tion effects that includes, among others, the Lamb shift [6],
the Casimir-Polder effect [7,8], and the Unruh [9–11] and
Hawking’s radiations [12], to name a few [13]. For a long
time, the realization of the DCE and most of these effects
remained out of reach due to the experimental requirements to
access the quantum and relativistic parameter regime needed
for a measurable signal [14]. This hurdle was overcome in
this century with the advent of circuit quantum electrody-
namics, as it allows experiments in the strong light-matter
coupling regime [15] and has led to a number of proposals
for experimental observations of the DCE [16,17]. In 2011,
Wilson et al. [18] carried out an experiment in which the rela-
tivistically moving mirror was reproduced using a modulated
magnetic flux threading a superconducting quantum interfer-
ence device, leading to a time-dependent boundary condition
in a microwave waveguide and a nonclassical DCE photon
production [19]. The DCE was also observed in a Josephson
metamaterial capable of modulating its refractive index [20],
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leading to an equivalent setting in which the effective length
of a cavity changes over time.

All the works cited so far model the moving mirrors as
time-dependent boundary conditions. However, this boundary
condition is an effective description that reproduces the ef-
fects of a more complex system, disregarding its microscopic
features. In this work, we are interested in formulating a
model that captures some of those microscopical features and
reproduces the DCE with no time-dependent boundary con-
ditions. The earliest application of this idea of an underlying
microscopic model dates back to the Ewald-Oseen extinction
theorem [21–24]. According to the theorem, transmission and
reflection of a plane wave at the interface between dielectric
media can be understood as the collective response of the
media’s dipoles. This approach was applied by de Souza et al.
[25] to model moving mirrors in a quantum field theory lead-
ing to the DCE.

Following those steps, the goal of this work is to find a
microscopic model for a moving mirror that reproduces the
DCE and employs the ever-growing tool set of present-day
quantum technologies. We study the most straightforward
system that may accommodate this phenomenon: a discrete
mirror corresponding to a qubit moving in a cavity and inter-
acting with one of its bosonic modes, as depicted in Fig. 1.
The interaction between a qubit and a cavity has been studied
extensively in the literature, especially in the case of a static
qubit with the well-known Rabi model [26,27], and in the
rotating wave approximation (RWA) regime with the Jaynes-
Cummings (JC) model [28]. Prior work has addressed the case
of a moving qubit [29], and in particular, the photon and qubit
excitation due to the so-called cavity-enhanced Unruh effect
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FIG. 1. (Upper panel) Diagram of the system proposed as a
microscopic model for the DCE. A qubit with frequency � and
in its ground state moves back and forth inside a cavity of length
L, producing photons in the fundamental mode of frequency ω if
the qubit speed is close to the speed of light in the medium while
staying in its ground state. Said photons are not produced by time-
dependent boundary conditions; the walls (dashed dark blocks) are
static. (Lower panel) Qubit-mode coupling g as a function of qubit
position for the fundamental mode, as defined in Eqs. (1) and (2).
Then the time-dependent coupling is due to its composition with the
trajectory and a small abuse in notation g(t ) = g[x(t )].

[30–33]. However, the parameter regime found to reproduce
the DCE, where both rotating and counter-rotating terms are
relevant, has not been explored before, to the authors’ knowl-
edge. In this article, we show that the qubit motion generates
photons without changing its internal state for speeds close
to the speed of light in the medium. This behavior provides a
microscopic model for the DCE.

The structure of this article is as follows: First, we recall
the conditions of a microscopic model for the DCE and an-
alyze the qubit-cavity system that fulfills the requirements.
Second, we numerically explore the system’s parameter space,
finding both the JC model and the cavity-Unruh regime, as
well as the novel microscopic DCE regime. Then we present
a perturbative analytical justification for this latter regime,
leading to the characterization of the microscopic DCE as a
second-order perturbation theory effect. Finally, we conclude
with a summary of the main results and our remarks about
possible experimental implementations.

II. MICROSCOPIC DCE WITH A QUBIT-CAVITY SYSTEM

The DCE consists in the generation of photons through the
relativistic movement of a perfect mirror. To identify a system
as a microscopic model of the time-dependent boundary pro-
ducing the DCE, we first need to consider what properties are
characteristic of the DCE. First, the movement of the mirror
triggers the generation of photons, and there is no generation
if the mirror is static. Second, a perfect mirror does not take
energy from the field; if anything the former will return any
energy to the latter in a short amount of time. Third, the pre-
dicted evolution of the DCE field is unitary [1], and because
of this, the global unitary must factor into two unitaries for
the field and the mirror, producing no entanglement. Last,
we find that, in all the DCE settings explored so far, few if
not none make assumptions on the internal structure of the
mirror, that is, its static Hamiltonian’s spectrum. Regardless

of how it compares to the field eigenenergies all settings
expect the mirror to behave as an inert boundary condition.
In order to propose a microscopic system that reproduces all
these characteristics we require the said model to follow three
requirements: (1) its movement must trigger the generation of
photons, (2) it must stay in its ground state so that it does
not take energy from the field and does not get entangled
with it, and (3) its static Hamiltonian’s spectrum must play
no role in the effect. In previous work [25], an oscillating
atom moving nonrelativistically in free space was proposed
as a microscopic model for the DCE. Such a model fulfills
our first two requirements but not the third one. In the case
of Ref. [25], the atom’s energy gap must be large compared
to the photon and movement frequencies. Other models treat
the mirror as a system rather than a boundary condition but do
not meet the above requirements [34–37]. These are valuable
generalizations of the DCE to new regimes, although they do
not fit our definition of a microscopic model.

The discrete mirror that we find to follow these require-
ments is a pointlike electric dipole qubit coupled to one
bosonic field mode. It is described by the Hamiltonian

Htotal = H0 + Hint,

H0 = �

2
σz + ωa†a,

Hint = g(t )σx(a† + a), (1)

with � and ω the qubit and mode frequencies, σx, σz the first
and third Pauli matrices, a† and a the creation and annihilation
operators for the bosonic mode, and g the time-dependent
coupling that varies due to the classical motion of the discrete
mirror qubit. The coupling to the fundamental bosonic mode
of a cavity with perfectly conducting and static edges takes
the form

g(t ) = g0 cos[kx(t )],

k = π/L, (2)

where L is the length of the cavity and x the trajectory of the
discrete mirror qubit. The coupling’s cosine dependence with
the qubit’s position x results from the cavity’s fundamental
mode field amplitude at different locations. Following the tra-
dition of DCE models, we will consider the movement of the
mirror x(t ) as externally prescribed and not a dynamical vari-
able. This way the system must be regarded as open and driven
from the outside so that energy conservation does not inhibit
photon production. In the context of superconducting circuits,
the coupling intensity, g0, is typically one or two orders of
magnitude smaller than the circuit frequencies [15,38]. Also,
coupling modulation usually lies in utilizing superconducting
quantum interference devices, instead of physically moving
circuit components. Following that approach, the Hamiltonian
of Eq. (1) can be engineered using tunable-coupling qubits
[38]. Alternatively, a promising candidate consists of film bulk
acoustic resonators, which could behave as an actual moving
discrete mirror [39,40].

Given the linearity of the Schrödinger equation, we expect
a coupling modulated with a cosine shape of constant fre-
quency to be the most appropriate for analytical calculations.
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FIG. 2. Number of photons 〈N〉 as a function of time t in units of
the mode frequency ω, and driving frequency ωd in units of the same
mode frequency ω, or equivalently, qubit velocity v in units of the
speed of light in the medium cn. The driving frequency was produced
by a qubit moving back and forth within the cavity, with constant
velocity v = L/πωd in one direction, and −v after bouncing in the
opposite direction. The qubit frequency is given by � = ω, and the
coupling intensity is g0 = 0.1ω.

Such cosine coupling modulation is produced by qubit trajec-
tories x = vt with constant velocity v, for which the coupling
oscillates with a driving frequency ωd = πv/L. To bound the
qubit trajectory to the cavity while keeping this pure cosine
coupling, we invert the direction of the qubit’s (otherwise con-
stant) velocity every time it reaches the cavity edges. In order
to relate the velocity with the rest of parameters of the system,
we will pay attention to it in adimensional units v/cn = ωd/ω,
with cn the speed of light in the medium. Moreover, we remind
the reader that typical values of cn in superconducting circuit
setups are cn/c ≈ 0.4 [18].

III. PARAMETER SPACE AND PHYSICAL REGIMES OF
THE SYSTEM

We numerically explore the parameter space of the Hamil-
tonian of Eq. (1) describing the qubit-cavity system and
identify three physical regimes: the JC regime, the cavity-
enhanced Unruh regime, and the microscopic DCE regime.
For the sake of simplicity, we consider the resonant case with
equal mode and qubit frequencies, ω = �, respectively, in the
following simulations. We show the average cavity photon
number 〈N〉 and the mean value of the qubit excited-state pop-
ulation Pe = 〈σ+σ−〉 as a function of time and qubit velocity
in Figs. 2 and 3, respectively. The qubit-cavity system evolves
from its ground state, for which 〈N〉 = 0 and 〈σ+σ−〉 = 0.

First, the case of a static qubit corresponds to the JC model.
Indeed, when the qubit velocity is zero (ωd = 0), the cou-
pling to the cavity is constant, g(t ) = g0, and for a coupling
intensity g0 = 0.1ω, the RWA and the JC model hold. The
counter-rotating terms a†σ+ and aσ− produce no dynamics
given their fast phase in the interaction picture. The rotating
terms a†σ− and aσ+ that compose the JC model do not
generate dynamics either, given the initial ground state of the
system, which remains unchanged as shown in Figs. 2 and 3.

FIG. 3. Qubits excited state population Pe, that is 〈σ+σ−〉, as a
function of time t in units of the mode frequency ω, and driving
frequency ωd in units of the same mode frequency ω in the same
conditions than Fig. 2.

Alternatively, the anti-RWA holds when the driving fre-
quency is the sum of the qubit and bosonic mode frequencies
ωd = ω + �. For the resonant case ω = � studied, it cor-
responds to a qubit velocity twice the speed of light in the
medium. In this case, we neglect the now fast-oscillating
rotating terms, leaving the constant counter-rotating ones to
generate the cavity-enhanced Unruh effect. The qubit is not
undergoing a uniform acceleration motion as in the canonical
Unruh effect [9–11]. Therefore, the radiation is not thermal,
as it happens with more general trajectories [41,42]. The
common feature to these phenomena is dominant counter-
rotating terms in the dynamics, as Scully et al. noticed and
exploited when developing the cavity-enhanced Unruh effect
[30]. This relativistic effect has been studied previously for a
qubit-cavity system [29]. There the ground state of the system
evolves towards the qubit excited state and one cavity photon
for this qubit velocity, v = 2cn, in a Rabi-like oscillation.
Consequently, both the photon number 〈N〉 (Fig. 2) and the
qubit excited-state population Pe (Fig. 3) increase up to one
for ωd/ω = 2 in our numerical simulations.

The third regime corresponds to the proposed microscopic
dynamic Casimir effect. We observe a photon generation in
the cavity (Fig. 2), while the qubit remains in its ground
state (Fig. 3) for � = ω = ωd . This nonoscillatory monotonic
photon production without qubit excitation occurs when the
qubit moves at the speed of light in the medium, ωd/ω =
v/cn = 1. As a final note on the numerical results, if the
system is evolved further in time, the increasing number of
photons requires a bigger subspace of the Hilbert space to be
considered in the simulations. See Appendix A for proof that
the said subspace was large enough.

IV. PERTURBATIVE ANALYSIS OF THE
MICROSCOPIC DCE MODEL

A perturbative approach can explain the microscopic DCE
regime parameters, as it happens with the Unruh effect or the
more widely known JC model. In order to make clear our
discussion let us briefly fix some notation. Let the state be
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written as a power series on the coupling:

ψ (t ; g0) = ψ (0) + ψ (1)(t )g0 + 1
2ψ (2)(t )g2

0 + · · · . (3)

Each of the terms ψ (n)(t ) corresponds to the nth partial deriva-
tive of the state with respect to g0, evaluated at g0 = 0,

ψ (n)(t ) = ∂n
g0

ψ (t ; g0 = 0). (4)

Although the functional dependence of ψ (t ; g0) is hardly
ever known, time-dependent perturbation theory enables us to
compute its derivatives recursively as

ψ (n+1)(t ) =
∫ t

0
dt ′ H

I
int(t

′)
g0

ψ (n)(t ′), (5)

where HI
int is the interaction Hamiltonian Hint in the interaction

picture with respect to the static Hamiltonian term H0.
Following this method, we approximate the state of the

system considering the Hamiltonian of Eq. (1) and the initial
ground state when computing the corrections from Eq. (5).
We remind the reader that for the static qubit case, the JC
model is a good approximation because the rotating terms
a†σ− and aσ+, that the JC model shares with Hamiltonian
Eq. (1), do not oscillate over time. Those terms produce per-
turbative corrections linear in time when integrated in Eq. (5).
We define a resonance as those integrals that result in linear
contributions. Alternatively, a superluminal qubit’s speed of
|v| = (1 + �/ω)cn makes the counter-rotating terms resonate
and the anti-RWA becomes a good approximation, leading to
the cavity-enhanced Unruh effect.

In our main case of study, the microscopic DCE, the qubit
moves at a relativistic velocity v ≈ cn, leading to a driving of
ωd ≈ ω. Then both rotating and counter-rotating terms oscil-
late and cannot dominate the dynamics. Therefore, it is not
straightforward to find a simplified Hamiltonian that behaves
as the complete Hamiltonian of Eq. (1). If we consider a qubit
moving at exactly the speed of light in the medium v = cn and
apply twice Eq. (5) we find the second-order correction

ψ (2)(t ) =
∫ t

0
dt ′

∫ t ′

0
dt ′′ H

I
int(t

′)
g0

HI
int(t

′′)
g0

|g, 0〉

=
∫ t

0
dt ′

∫ t ′

0
dt ′′e−iωt ′

σ−a†e−iωt ′′
ei2ωt ′′

σ+a†|g, 0〉

+ O(t0), (6)

where |g〉 is the qubit ground state and |n〉 is the n-photon state
in the cavity fundamental mode. With O(t0), we indicate that
we neglect any term bounded by a constant for long enough
times. In our case, we disregard constant terms and exponen-
tials with imaginary arguments. The oscillatory coupling leads
to the e−iωt terms, and the time-dependent counter-rotating
term σ+a† gives the ei2ωt term. After integrating, it results in

〈g, 2|∣∣ψ (2)(t )
〉 = g2

0

√
2it

4ω
+ O(t0). (7)

The 〈g, 2||ψ〉 state component grows linearly with time,
which indicates that the integral of Eq. (6) contains resonant
terms. Moreover, this resonance increases the 〈g, 2||ψ〉 state
component, but not the amplitudes associated with the qubit
excited state, 〈e, n||ψ〉. This result is compatible with the

FIG. 4. Maximum number of photons 〈N〉 in the time period t ∈
[0, 200/ω], maxt∈[0,200/ω]〈N (t )〉, for different values of the qubit’s
frequency � in units of the mode’s frequency ω and different driving
frequencies ωd in units of the mode frequency ω, or equivalently,
qubit velocity v in units of the speed of light in the medium cn.
Notice how the microscopic DCE regime does not depend on the
qubit frequency, only on its velocity, which, in turn, produces the
driving. On the other hand, whenever ωd − � = ω the Unruh effect
takes place, and one photon and qubit excitation are produced as in a
Rabi oscillation.

numerical results of Figs. 2 and 3, where the photon pro-
duction takes place without qubit excitation. We find higher
order resonances related to qubit ground state amplitudes
〈g, 2m||ψ (2n)〉 in even-order perturbation terms, whereas the
odd orders do not show new resonances (see Appendix B).
These formulas illustrate why there is an ever-increasing pho-
ton generation without appreciable qubit excitation. In fact,
there is always a pairwise photon production, which is con-
sidered the spectral signature of the DCE [13,43].

Additionally, we consider the case where the system’s fre-
quencies are no longer resonant, but the qubit frequency is
detuned by δ from the cavity mode frequency, � = ω + δ.
Following perturbation theory, one gets

ψ (2)(t ) =
∫ t

0
dt ′

∫ t ′

0
dt ′′e−iωd t ′

e−iδt ′
σ−a†e−iωd t ′′

× ei(2ω+δ)t ′′
σ+a†|g, 0〉. (8)

Here the first integral over t ′′ results in a term ei(−ωd +2ω+δ)t ′

that cancels the δ dependence for the second integral over
t ′. Hence, we conclude that the detuning is irrelevant in the
microscopic DCE photon generation. In contrast, the critical
parameter relation is the resonance between the driving fre-
quency and the mode frequency, ωd = ω. In terms of the qubit
velocity, the DCE is produced when the qubit’s speed ap-
proaches the speed of light in the medium, ωd/ω = v/cn ≈ 1.

The photon generation independence on detuning is ob-
served in Fig. 4. There we depict the maximum number of
photons over the time interval t ∈ [0, 200/ω] for different
values of the qubit and driving frequencies, � and ωd , respec-
tively. We consider a fixed mode frequency ω and a coupling
intensity of g0 = 0.1ω. We note that regardless of the qubit
frequency, the DCE phaoton generation occurs for parame-
ter regimes near ωd/ω = v/cn ≈ 1 as expected. Like in the
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original DCE, there is a transition between a nonrelativis-
tic mirror movement regime, with no photon production,
and a relativistic one featuring the effect. Moreover, increas-
ing the qubit frequency reduces the photon generation as
expected from analytical calculations, since � appears in
the denominator of the perturbative corrections. Finally, the
cavity-enhanced Unruh effect appears in the superluminal
regime, shown with the diagonal line ωd = � + ω of Fig. 4. In
this region of the parameter space, the photon number never
exceeds one, like in a Rabi oscillation. See Appendix A for
tests on the accuracy of the simulations.

V. EXPERIMENTAL POSSIBILITIES AND CONCLUSIONS

Regarding the experimental implementation, we remark
that it does not require any additional sophistication compared
to the measurement of acceleration radiation or the cavity-
enhanced Unruh effect, either by modulating the coupling
to mimic the qubit motion [29] or by actual mechanical os-
cillation [39,44]. See Appendix C for further discussion on
realistic experimental parameters that may accommodate both
effects and dissipation.

Summarizing, we have found that a discrete mirror com-
posed of a moving qubit reproduces features of the DCE, such
as photon generation from the vacuum. This photon gener-
ation takes place regardless of the qubit’s internal structure
and without changing its initial ground state, which supports
the hypothesis that the qubit captures the essential features
of a microscopic description for a moving mirror. This effect
is different from the already known cavity-enhanced Unruh
effect, where the excitation of the qubit always accompanies
the photon production. The microscopic DCE explored here
also differs from a more idealized proposal consisting of an
atom oscillating in free space [25]. In that case, the oscil-
lation frequency must match the sum of the frequencies of
two electromagnetic modes that, in turn, must be very small
compared to the atom’s internal frequency. If we translate
those requirements into our system, we find the scenario of
a largely detuned qubit oscillating at twice the frequency of
the cavity mode, a different regime than the one found to
produce the DCE in a cavity. We can relate our microscopic
DCE model to other scenarios in which the RW or anti-RW
approximations do not hold, joining a broad family of other
settings such as the Bloch-Siegert shift [45] or corrections
on the quantum Zeno effect [46]. Finally, our proposal for
observing both phenomena, the cavity-enhanced Unruh effect
and the microscopic DCE, could all be achieved in the same
experiment, with either superconducting circuits or mechani-
cal oscillators.
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APPENDIX A: NUMERICAL SIMULATION DETAILS

We consider a system composed of a qubit of fixed fre-
quency � moving within a cavity of length L and coupled
to its fundamental mode of frequency ω and wave number
k = π/L. Due to the said movement, the coupling oscillates
in time as g(t ) = g0 cos[kx(t )], with x(t ) the trajectory of the
qubit. The system is described by the Hamiltonian of Eq. (1)
that we rewrite here for convenience,

Htotal = H0 + Hint,

H0 = �

2
σz + ωa†a,

Hint = g(t )σx(a† + a). (A1)

We simulate the dynamics generated by the previous time-
dependent Hamiltonian with the QUTIP library (version 4.4.1)
in PYTHON [47]. We consider an idealized two-level qubit (that
is, we neglect higher energy level excitations) coupled to a
cavity fundamental mode, represented by a Hilbert space trun-
cated to dimension 8 that comprises the vacuum and photon
number states up to |7〉. Given the nature of the dynamical
Casimir effect, we expect a monotonic and unbounded para-
metric generation of photons [48]. Thus, first, we ensure that
the truncated state space used in our calculations is large
enough to describe the system’s dynamics for the analyzed
time interval. The Hamiltonian of Eq. (A1) produces one
photon per perturbation order (see details in Appendix B),
and the vacuum state cannot evolve to a high photon number
state directly. We limit the evolution time in the simulations
such that the system does not reach the cutoff photon number
state |7〉 from the initial low-energy states with one-photon

FIG. 5. Expectation value of the projector on the cutoff cavity
excited state, I2×2 ⊗ |7〉〈7|, as a function of time t in units of the
cavity frequency ω, for different qubit velocities related to the driving
frequency ωd , given as well in units of the cavity frequency ω.
We consider the same parameter domain as in Figs. 2 and 3. The
qubit frequency is given by � = ω, and the coupling intensity is
g0 = 0.1ω. The qubit moves back and forth within the cavity, with
constant velocity v = L/πωd in one direction, and −v after bouncing
in the opposite direction.

062201-5



A. AGUSTÍ et al. PHYSICAL REVIEW A 103, 062201 (2021)

FIG. 6. Maximum value over the time period 0 < t < 200/ω

of the cutoff cavity excited state expectation value,
maxt∈[0,200/ω)〈I2×2 ⊗ |7〉〈7|〉, as a function of the qubit and
driving frequencies, � and ωd , respectively, both in units of the
cavity frequency ω. We consider the same parameter domain as in
Fig. 4 and a coupling strength g0 = 0.1ω. The qubit moves back and
forth within the cavity at a constant speed |v| = L/πωd .

transitions. To verify the validity of the Hilbert space trunca-
tion, we numerically confirm that the probability of measuring
the cavity state |7〉 for the given time interval is negligible,
as we observe in Figs. 5 and 6. The expectation value of the
cutoff cavity state, 〈I2×2 ⊗ |7〉〈7|〉, begins acquiring signifi-
cant values for ωd = ω and ω > �, precisely the parameter
regimes expected to produce the DCE.

Second, we address the numerical results congruence with
the perturbative formulas in the main text. In principle, we

numerically compute the dynamics for times exceeding the
interval in which perturbation theory is valid. In every simula-
tion, we use a coupling strength of g0 = 0.1ω for time limits
of ωt ≈ 200, while perturbation theory provides an accurate
description of the state for gt ≈ 1, that is, for evolution times
differing by an order of magnitude ωt ≈ 10. We confirm the
agreement between the analytic predictions and our numerical
results in the regime perturbative regime ωt < 10. Moreover,
we observe the monotonic unbounded nature of DCE photon
generation beyond the perturbative regime for our ideal model
without dissipation. Further notes on decoherence and experi-
mental requirements can be found in Appendix C.

APPENDIX B: COMPLETE AND HIGHER ORDER
PERTURBATIVE CORRECTIONS

In the main text, we characterize the bosonic mode popula-
tion and conditions under which the dynamical Casimir effect
takes place by means of typical time-dependent perturbation
theory. However, given the extension of the second-order cor-
rections in the coupling’s magnitude g0, we considered only
those terms that become relevant to the DCE. In the following
we prove that no other terms produce noticeable dynamics,
even those of third order, by giving the full expressions of the
corrections in the series expansion of Eq. (3) in the main text
up to third order, for a system described by the Hamiltonian
of Eq. (1). We consider the case of resonant qubit and mode
frequencies ω = �, and the qubit moving back and forth in
the cavity with a speed |v| = ωL/π , which leads to a DCE
resonant driving ωd = ω. Explicitly, the perturbative terms of
Eq. (3) are given by Eqs. (B1)–(B3):

g0ψ
(1)(t ) =

(
−2g0

3ω
+ g0e3iωt

6ω
+ g0eiωt

2ω

)
|12〉 ⊗ |1〉, (B1)

g2
0

2
ψ (2)(t ) =

(
− 13g2

0

72ω2
− g2

0e−2iωt

16ω2
+ g2

0e2iωt

48ω2
+ g2

0e−3iωt

18ω2
+ g2

0e−iωt

6ω2
+ ig2

0t

6ω

)
|02〉 ⊗ |0〉

+
(

−
√

2g2
0eiωt

6ω2
− 3

√
2g2

0

32ω2
+

√
2g2

0e4iωt

96ω2
+

√
2g2

0e2iωt

12ω2
+

√
2g2

0e−iωt

6ω2
+

√
2ig2

0t

8ω

)
|02〉 ⊗ |2〉, (B2)

g3
0

6
ψ (3)(t ) =

(
−7

√
6g3

0eiωt

192ω3
−

√
6g3

0e4iωt

144ω3
− 5

√
6g3

0e3iωt

1728ω3
+

√
6g3

0e7iωt

4032ω3
+

√
6g3

0e5iωt

320ω3

+649
√

6g3
0

15 120ω3
+

√
6ig3

0te3iωt

144ω2
+

√
6ig3

0teiωt

48ω2
+

√
6ig3

0t

36ω2

)
|12〉 ⊗ |3〉 +

(
−49g3

0eiωt

432ω3
− 7g3

0e−2iωt

216ω3
− g3

0e2iωt

72ω3
− g3

0e3iωt

648ω3

+g3
0e5iωt

720ω3
+ 259g3

0

1620ω3
− ig3

0te−iωt

24ω2
+ ig3

0te3iωt

108ω2
+ ig3

0t

27ω2
+ 5ig3

0teiωt

72ω2

)
|12〉 ⊗ |1〉. (B3)

In Eqs. (B1)–(B3), |02〉 and |12〉 are the qubits ground
and excited state and |n〉 is a photon number state with n
photons. Notice that there is a resonance different to the one
described in Eq. (7) that we have not discussed. It enlarges
the projection of the state onto the ground state |02〉 ⊗ |0〉.
The presence of this resonance does not compromise the
conclusions of the main text, as it is compatible with a total
state composed of a relaxed qubit and an increasing number of
photons.

APPENDIX C: EXPERIMENTAL REQUIREMENTS

A detailed experimental proposal for the realization of the
DCE lies beyond the scope of this paper. Nevertheless, we
will briefly discuss experimental parameter regimes for which
an implementation of the microscopic DCE model studied in
the main text may be possible. We require a tunable coupling
between the qubit and the cavity of magnitude g0 = 0.1ω, that
is, only one order of magnitude less than the photon frequency.
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Moreover, we assume that the coupling can be modulated
in time with a frequency ωd comparable to the cavity fre-
quency ω. We analyze the parameter regimes achievable with
microwave-frequency superconducting circuits. Within this
technology, we consider two candidates: analog simulators
and FBAR-driven circuits.

First, we propose a modified superconducting qubit cou-
pled to a microwave cavity. If the photons have a typical
frequency of, for example, ω = 5 GHz then in order to pro-
duce the microscopic DCE one would have to design a qubit
with frequency preferably lower, as Fig. 4 shows that pho-
tons production is larger in that case. To continue with the
example we propose � = 2 GHz, and coupling intensity g0 =
500 MHz [38]. Then the system would have to evolve for
40 ns, a short enough time to make dissipation irrelevant since
photon lifetimes are typically in the hundreds of nanoseconds
[15]. On the other hand, if the coupling intensity is lower,
for example, g0 = 50 MHz, the time required to produce pho-
tons increases by one order of magnitude, making dissipation
relevant. That will be the case for our second experimental
proposal, and so we will discuss the effects of dissipation then.
For now, we discuss that the qubit will not actually move in
the cavity; instead, it will simulate its movement. As Eq. (1)
shows, the only effect movement has on the Hamiltonian is
changing the value of the coupling in time. Thus one could
argue that as long as an experiment manages to produce that
same Hamiltonian, the same phenomena will take place, even
if the qubit is static. In the latter case, the qubit could produce
the time-dependent coupling if its dipolar moment changed
over time. We remind the reader that this analog simulator
approach was taken to observe the DCE in [18,20]. We recall
that the qubit-field interaction Hamiltonian comes from

Hint = d̂ · Ê(xqubit(t ), t ) ∝ (σ+ + σ−)(a† + a), (C1)

where d̂ is the qubit’s dipolar moment operator and Ê(x, t )
is the electric field amplitude operator throughout the cavity.
On one hand, if the qubit is actually moving, its coupling will
change due to the different field amplitudes it will find during
its trajectory. Note that the trajectory may take the qubit over
length scales comparable to the field’s wavelength and the
dipolar approximation will still hold, as long as the qubit
charge distribution can be regarded as pointlike and, when
added together, neutral [49, Sec. AIV.1.b]. Superconducting
qubits in the microwave regime follow those premises: they
are neutrally charged circuits several orders of magnitude
smaller than microwave wavelengths [15]. On the other hand,
if the qubit is static but it can change its dipolar moment,

Hint = d̂(t ) · Ê(x0, t ), (C2)

the same Hamiltonian can be produced with an appropriate
d̂(t ). Proposals and experiments with such qubits already exist
[38] which prove their effectiveness and feasibility of the
experimental parameters mentioned before.

However, a few caveats may make this experiment chal-
lenging. We have been able to pinpoint four:

(1) Modulating coupling with no qubit frequency modula-
tion

(2) Modulating longitudinal coupling with no transversal
coupling

(3) Populating other cavity modes
(4) Populating the third or higher levels on the physical

system that models the qubit.
The first two points are related, so we discuss them jointly.

The most common way of introducing externally controlled
parameters in the system is by means of superconducting
interference devices (SQUIDs), which behave as nonlinear in-
ductors that can be tuned with the external magnetic flux that
passes through them. However, in our case, the circuit must
be designed such that those external parameters will modify
only the dipolar moment and not the two lowest levels energy
gap defining the qubit (first point). Moreover, the interaction
Hamiltonian must be designed to forbid transitions between
global states with the same qubit state. If the latter condition is
not met, a different two-level interaction Hamiltonian should
be taken into account (second point), as we explain in the
following. Suppose that the circuit is described by a static
Hamiltonian Hcircuit plus an interaction part of the form Hint =
ηO(a† + a). Both operators Hcircuit and O act on the degrees
of freedom of the circuit, and a and a† act on the cavity mode
state. The circuit-mode coupling η is proportional to g0. When
the circuit is operated as a qubit the state has to belong to
the span of the two lowest eigenvectors Hcircuit|g〉 = 0 and
Hcircuit|e〉 = �|e〉. Then one can consider a reduced, two-level
interaction Hamiltonian Hint,2×2 given by the matrix elements
〈g|Hint|g〉, 〈e|Hint|e〉 and 〈g|Hint|e〉, which will produce the
same dynamics as long as the circuit is operated as a qubit.
By expanding the reduced interaction Hamiltonian in the Pauli
basis one has

Hint,2×2 = η(|〈g|O|e〉|σx + |〈e|O|e〉|σz )(a† + a), (C3)

where the energies have been rescaled so that |〈g|O|g〉|σz does
not appear and the Pauli basis has been rotated to conveniently
remove σy. Then the time dependence of the coupling comes
from the time dependence of the eigenvectors |g〉, |e〉. In addi-
tion, it is now clear why the interaction must be engineered so
that no transitions between global states with the same qubit
state are allowed. If that were not the case, 〈e|O|e〉 would
not be zero and a longitudinal coupling would appear with
operator σz(a† + a).

For example, the tunable coupling transmon designed in
[38] addresses satisfactorily the first point, that is, it can
change the coupling intensity keeping static the qubit’s fre-
quency, but not the second. In other words, an experiment
using the said transmon would have to take into account a
longitudinal coupling gz(t )σz(a† + a). However, it stands to
reason that the said transmon is a step in the right direction,
and that simple modifications to its design could eliminate
that piece in the Hamiltonian. As we have seen, the parameter
space of the qubit comprises three parameters: frequency �,
transversal coupling gx, and longitudinal gz. The transmon
[38] takes as external parameters only two magnetic fluxes,
and so it can explore only a two-dimensional manifold of its
three-dimensional parameter space. Thus we conclude that a
similar circuit with three SQUIDs could, in principle, inde-
pendently tune every parameter.

The third point, populating other cavity modes, is not
a relevant issue for the microscopic DCE, but it certainly
is for the cavity-enhanced Unruh effect. If the mode struc-
ture is composed of equidistant modes, then producing the
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FIG. 7. Number of photons 〈N〉 as a function of both time t in
units of the mode’s frequency ω and driving frequency ωd in units
of the same mode’s frequency ω, or equivalently, qubit speed v in
units of the speed of light in the medium cn. The qubit frequency is
given by � = ω, and the coupling intensity is g0 = 0.025ω, to mimic
the parameter regime that the experimental proposal with an actual
mechanical oscillation would impose on the system. The driving
frequency was produced by a qubit moving back and forth within the
cavity, with constant velocity v = L/πωd in one direction, and −v

after bouncing in the opposite direction. We consider the collapse
operators 0.025ωa and 0.025ωσ− in the Lindblad master equation.

microscopic DCE for the fundamental mode would require a
driving frequency of ωd = ω0. We define ω0 as the frequency
of the fundamental mode, referred to as ω in the main text
for simplicity. Then the higher modes have frequencies ωn =
(n + 1)ω = (n + 1)ωd which do not resonate with the driv-
ing. However, producing the cavity-enhanced Unruh effect in
the fundamental mode would require a driving ωd = ω0 + �,
with � the frequency of the qubit. If in addition to this
� ≈ ω0, then that same driving would produce the DCE on
the next mode if frequency ω1 = 2ω ≈ � + ω = ωd , and both
phenomena would combine in a nontrivial way. This problem
can be addressed by detuning the qubit frequency �. In fact,
we find advantageous to reduce the said frequency, as the
velocity of the qubit required to produced the Unruh effect
is v/cn = 1 + �/ω. In other words, that velocity is always
superluminal in the medium, but is closer to the speed of light
the smaller the qubit frequency � is.

The last caveat of the first experiment we propose is popu-
lating higher levels of the qubit system. If the qubit’s complete
level structure is nearly harmonic the DCE will be combined
with a resonance at second order, in which two-photon and
higher-level qubit excitations take place with a magnitude
comparable to the DCE. We conclude the qubit’s complete
level structure must be anharmonic, at least with regard to the
third level, or the said level will have to be taken into account.

The second experiment we consider makes use of a film
bulk acoustic resonator (FBAR) in order to relate the modula-
tion of the coupling to an actual moving piece in the system.
Some recent literature has considered this experiment with
small variations; we encourage the reader to read Wang et al.
[39]. In that work the authors propose coupling two transmis-
sion lines by overlapping them over some of their lengths.
In that way they form a capacitor which, in turn, is filled

FIG. 8. Population of the qubit’s excited state Pe, that is 〈σ+σ−〉,
as a function of both time t in units of the mode’s frequency ω and
driving frequency ωd in units of the same mode’s frequency ω. The
qubit frequency is given by � = ω, and the coupling intensity is
g0 = 0.025ω, to mimic the parameter regime that the experimental
proposal with an actual mechanical oscillation would impose on the
system. The driving frequency was produced by a qubit moving
back and forth within the cavity, with constant velocity v = L/πωd

in one direction, and −v after bouncing in the opposite direction.
We consider the collapse operators 0.025ωa and 0.025ωσ− in the
Lindblad master equation.

with dielectric material and cooled to its ground mechanically
oscillating level of frequency in the 1–10 GHz regime, as
reported in [40]. The capacitor can be actuated upon by an
external piezo leading to the movement of the capacitor plates.
The point of [39] was to interpret one of the transmission lines
as a moving detector that would become excited as the other
transmission line would be populated by photons by an analog
Unruh effect.

FIG. 9. Expectation value of I2×2 ⊗ |7〉〈7| as a function of both
time t in units of the mode’s frequency ω and driving frequency ωd

in units of the same mode’s frequency ω. The qubit frequency is
given by � = ω, and the coupling intensity is g0 = 0.025ω, to mimic
the parameter regime that the experimental proposal with an actual
mechanical oscillation would impose on the system. The driving
frequency was produced by a qubit moving back and forth within the
cavity, with constant velocity v = L/πωd in one direction, and −v

after bouncing in the opposite direction. We consider the collapse
operators 0.025ωa and 0.025ωσ− in the Lindblad master equation.
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That experiment could be used for the implementation of
the microscopic DCE too. In that case, one of the transmission
lines should be substituted or reinterpreted as a qubit, that
instead of moving back and forth in the cavity would hover
up and down on top of it. The Hamiltonian of the system is
very similar to Eq. (1), with the difference being a coupling
directly proportional to the qubit position instead of the cosine
of its position. In that way the trajectory would not be one with
constant velocity, but a cosine with frequency ωd = ω. Note
that the value of ωd falls right into the microwave regime,
and so cavity modes and qubit frequencies ω and � can
be engineered in the context of microwave superconducting
circuits to match it. The coupling intensity g0 is connected to
the lengths of the parallel strips of the FBAR by a nontrivial
integral formula [39], but typical values of tens of μm lead to
couplings of g0 = 0.01–0.05ω, an order of magnitude weaker
than the one used in the main text. Then one must consider the

evolution of the system for longer times in order to produce
a measurable amount of photons. In that case, decoherence
will have time to become relevant and reduce the number of
photons, which raises the question of whether the DCE will be
observable or not. Figures 7–9 show that the DCE photon pro-
duction could be observed for the same simplified system of
previous simulations evolving under a Lindbladian composed
of Hamiltonian in Eq. (1) with resonant mode’s, qubit’s, and
driving frequencies’ ω = � = ωd with weak coupling g0 =
0.025ω plus the collapse operators 0.025ω a and 0.025ω σ−,
with a the photon annihilation operator and σ− the qubit
relaxation operator. Notice that a dissipation as intense as the
coupling puts the system in a parameter regime between the
strong and weak coupling regime. Such dissipation would be
an overestimation, as the quantum technologies we consider
have been designed to operate in the strong coupling regime
since 2004 [15].

[1] G. T. Moore, J. Math. Phys. 11, 2679 (1970).
[2] B. S. DeWitt, Phys. Rep. 19, 295 (1975).
[3] S. A. Fulling and P. C. W. Davies, Proc. R. Soc. London A 348,

393 (1976).
[4] P. C. W. Davies and S. A. Fulling, Proc. R. Soc. London A 356,

237 (1977).
[5] E. Yablonovitch, Phys. Rev. Lett. 62, 1742 (1989).
[6] W. E. Lamb and R. C. Retherford, Phys. Rev. 72, 241 (1947).
[7] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).
[8] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
[9] S. A. Fulling, Phys. Rev. D 7, 2850 (1973).

[10] P. C. W. Davies, J. Phys. A: Math. Gen. 8, 609 (1975).
[11] W. G. Unruh, Phys. Rev. D 14, 870 (1976).
[12] S. Hawking, Nature (London) 248, 30 (1974).
[13] P. D. Nation, J. R. Johansson, M. P. Blencowe, and F. Nori, Rev.

Mod. Phys. 84, 1 (2012).
[14] W.-J. Kim, J. H. Brownell, and R. Onofrio, Phys. Rev. Lett. 96,

200402 (2006).
[15] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-. S. Huang,

J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

[16] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys.
Rev. Lett. 103, 147003 (2009).

[17] J. R. Johansson, G. Johansson, C. M. Wilson, and F. Nori, Phys.
Rev. A 82, 052509 (2010).

[18] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R.
Johansson, T. Duty, F. Nori, and P. Delsing, Nature (London)
479, 376 (2011).

[19] J. R. Johansson, G. Johansson, C. M. Wilson, P. Delsing, and F.
Nori, Phys. Rev. A 87, 043804 (2013).

[20] P. Lähteenmäki, G. S. Paraoanu, J. Hassel, and P. J. Hakonen,
Proc. Natl. Acad. Sci. U. S. A. 110, 4234 (2013).

[21] P. P. Ewald, On the Foundations of Crystal Optics, translated by
Lowell Hollingsworth (Cambridge Research Laboratories, US
Air Force, 1970).

[22] C. W. Oseen, Ann. Phys. 353, 1 (1915).
[23] H. Fearn, D. F. V. James, and P. W. Milonni, Am. J. Phys. 64,

986 (1996).

[24] M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge
University Press, 2019).

[25] R. de Melo e Souza, F. Impens, and P. A. M. Neto, Phys. Rev.
A 97, 032514 (2018).

[26] J. M. B. Kellogg, I. I. Rabi, and J. R. Zacharias, Nature
(London) 137, 658 (1936).

[27] D. Braak, Phys. Rev. Lett. 107, 100401 (2011).
[28] E. T. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[29] S. Felicetti, C. Sabín, I. Fuentes, L. Lamata, G. Romero, and E.

Solano, Phys. Rev. B 92, 064501 (2015).
[30] M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F.

Capasso, Phys. Rev. Lett. 91, 243004 (2003).
[31] B. L. Hu and A. Roura, Phys. Rev. Lett. 93, 129301 (2004).
[32] M. O. Scully, V. V. Kocharovsky, A. Belyanin, E. Fry, and F.

Capasso, Phys. Rev. Lett. 93, 129302 (2004).
[33] A. Belyanin, V. V. Kocharovsky, F. Capasso, E. Fry, M. S.

Zubairy, and M. O. Scully, Phys. Rev. A 74, 023807 (2006).
[34] V. Macrì, A. Ridolfo, O. D. Stefano, A. F. Kockum, F. Nori, and

S. Savasta, Phys. Rev. X 8, 011031 (2018).
[35] O. D. Stefano, A. Settineri, V. Macrì, A. Ridolfo, R. Stassi, A. F.

Kockum, S. Savasta, and F. Nori, Phys. Rev. Lett. 122, 030402
(2019).

[36] L. Lo, P. T. Fong, and C. K. Law, Phys. Rev. A 102, 033703
(2020).

[37] A. V. Dodonov, B. Militello, A. Napoli, and A. Messina, Phys.
Rev. A 93, 052505 (2016).

[38] S. J. Srinivasan, A. J. Hoffman, J. M. Gambetta, and A. A.
Houck, Phys. Rev. Lett. 106, 083601 (2011).

[39] H. Wang, M. P. Blencowe, C. M. Wilson, and A. J. Rimberg,
Phys. Rev. A 99, 053833 (2019).

[40] A. D. O’Connell, M. Hofheinz, M. Ansmann, R. C. Bialczak,
M. Lenander, E. Lucero, M. Neeley, D. Sank, H. Wang, M.
Weides et al., Nature (London) 464, 697 (2010).

[41] N. Obadia and M. Milgrom, Phys. Rev. D 75, 065006
(2007).

[42] J. Doukas, S.-Y. Lin, B. L. Hu, and R. B. Mann, J. High Energy
Phys. 11 (2013) 119.

[43] C. K. Law, Phys. Rev. A 49, 433 (1994).

062201-9

https://doi.org/10.1063/1.1665432
https://doi.org/10.1016/0370-1573(75)90051-4
https://doi.org/10.1098/rspa.1976.0045
https://doi.org/10.1098/rspa.1977.0130
https://doi.org/10.1103/PhysRevLett.62.1742
https://doi.org/10.1103/PhysRev.72.241
https://doi.org/10.1103/PhysRev.73.360
https://doi.org/10.1103/PhysRevD.7.2850
https://doi.org/10.1088/0305-4470/8/4/022
https://doi.org/10.1103/PhysRevD.14.870
https://doi.org/10.1038/248030a0
https://doi.org/10.1103/RevModPhys.84.1
https://doi.org/10.1103/PhysRevLett.96.200402
https://doi.org/10.1038/nature02851
https://doi.org/10.1103/PhysRevLett.103.147003
https://doi.org/10.1103/PhysRevA.82.052509
https://doi.org/10.1038/nature10561
https://doi.org/10.1103/PhysRevA.87.043804
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.1002/andp.19153531702
https://doi.org/10.1119/1.18315
https://doi.org/10.1103/PhysRevA.97.032514
https://doi.org/10.1038/137658a0
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRevB.92.064501
https://doi.org/10.1103/PhysRevLett.91.243004
https://doi.org/10.1103/PhysRevLett.93.129301
https://doi.org/10.1103/PhysRevLett.93.129302
https://doi.org/10.1103/PhysRevA.74.023807
https://doi.org/10.1103/PhysRevX.8.011031
https://doi.org/10.1103/PhysRevLett.122.030402
https://doi.org/10.1103/PhysRevA.102.033703
https://doi.org/10.1103/PhysRevA.93.052505
https://doi.org/10.1103/PhysRevLett.106.083601
https://doi.org/10.1103/PhysRevA.99.053833
https://doi.org/10.1038/nature08967
https://doi.org/10.1103/PhysRevD.75.065006
https://doi.org/10.1007/JHEP11(2013)119
https://doi.org/10.1103/PhysRevA.49.433


A. AGUSTÍ et al. PHYSICAL REVIEW A 103, 062201 (2021)

[44] M. P. Blencowe and H. Wang, Philos. Trans. R. Soc. London A
378, 20190224 (2020).

[45] P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E.
Solano, C. J. P. M. Harmans, and J. E. Mooij, Phys. Rev. Lett.
105, 237001 (2010).

[46] H. Zheng, S. Y. Zhu, and M. S. Zubairy, Phys. Rev. Lett. 101,
200404 (2008).

[47] J. Johansson, P. Nation, and F. Nori, Comput. Phys. Commun.
184, 1234 (2013).

[48] M. Uhlmann, G. Plunien, R. Schützhold, and G. Soff, Phys.
Rev. Lett. 93, 193601 (2004).

[49] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons
and Atoms: Introduction to Quantum Electrodynamics (John
Wiley & Sons, Ltd, 1997)

062201-10

https://doi.org/10.1098/rsta.2019.0224
https://doi.org/10.1103/PhysRevLett.105.237001
https://doi.org/10.1103/PhysRevLett.101.200404
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevLett.93.193601

