
Thesis for The Degree of Doctor of Philosophy

Towards Accurate Estimation of Error Sensitivity in
Computer Systems

Fatemeh Ayatolahi

Department of Computer Science & Engineering
Chalmers University of Technology and Gothenburg University

Gothenburg, Sweden, 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chalmers Research

https://core.ac.uk/display/475663432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Errata

Towards Accurate Estimation of Error Sensitivity in Computer Systems

Fatemeh Ayatolahi
Department of Computer Science & Engineering
Chalmers University of Technology
Gothenburg, Sweden

This errata sheet lists the corrections for the doctoral thesis written by Fatemeh Ayatolahi,
titled Towards Accurate Estimation of Error Sensitivity in Computer Systems, ISBN 978-91-
7905-493-9.

 Location Original text Correction
1 Page ii Add: Technical report number 203D
2 Chapter 1, page 7 eld field
3 Chapter 1, page 9 dierent different
4 Chapter 1, page

15
how defers to use

The authors compared the use

5 Chapter 1, page
15

or satisfying the
margin of error.

For satisfying a given margin of error.

6 Paper E, page 4 are meaningful Are only meaningful
7 Paper E, page 4 implements implement
8 Paper E, page 7 hypothesis hypothesis testing
9 Paper E, page 10 section ?? section 5.3
10 Paper E, page 12 On the

other hand, BitCnt2
resulted in
significantly
different error
sensitivity according
to statistics.

On the other hand, the statistical test for
BitCnt2 suggests to reject the null
hypothesis.

11 Paper E, page 14 We we
12 Paper E, page 14 reveal result in
13 Paper E, page 16 approximately an approximately
14 Chapter 2, first

blue page
PAPER I PAPER A

Towards Accurate Estimation of Error Sensitivity in Computer Sys-
tems

Fatemeh Ayatolahi

Copyright ©2021 Fatemeh Ayatolahi
except where otherwise stated.
All rights reserved.

ISBN 978-91-7905-493-9
Doktorsavhandlingar vid Chalmers tekniska högskola, Ny serie nr 4960.
ISSN 0346-718X
Department of Computer Science & Engineering
Chalmers University of Technology and Gothenburg University
Gothenburg, Sweden

This thesis has been prepared using LATEX.
Printed by Chalmers Reproservice,
Gothenburg, Sweden 2021.

ii

“To those who, in spite of everything, still choose goodness”
- Marie Lu, The Midnight Star

iv

Towards Accurate Estimation of Error Sensitiv-
ity in Computer Systems

Fatemeh Ayatolahi
Department of Computer Science and Engineering
Chalmers University of Technology, Sweden

Abstract
Fault injection is an increasingly important method for assessing, measuring
and observing the system-level impact of hardware and software faults in
computer systems. This thesis presents the results of a series of experimental
studies in which fault injection was used to investigate the impact of bit-flip
errors on program execution. The studies were motivated by the fact that
transient hardware faults in microprocessors can cause bit-flip errors that can
propagate to the microprocessors instruction set architecture registers and
main memory. As the rate of such hardware faults is expected to increase with
technology scaling, there is a need to better understand how these errors (known
as ‘soft errors’) influence program execution, especially in safety-critical systems.

Using ISA-level fault injection, we investigate how five aspects, or factors,
influence the error sensitivity of a program. We define error sensitivity as the
conditional probability that a bit-flip error in live data in an ISA-register or
main-memory word will cause a program to produce silent data corruption
(SDC; i.e., an erroneous result). We also consider the estimation of a measure
called SDC count, which represents the number of ISA-level bit flips that cause
an SDC.

The five factors addressed are (a) the inputs processed by a program, (b) the
level of compiler optimization, (c) the implementation of the program in the
source code, (d) the fault model (single bit flips vs double bit flips) and (e)
the fault-injection technique (inject-on-write vs inject-on-read). Our results
show that these factors affect the error sensitivity in many ways; some factors
strongly impact the error sensitivity or SDC count whereas others show a
weaker impact. For example, our experiments show that single bit flips tend to
cause SDCs more than double bit flips; compiler optimization positively impacts
the SDC count but not necessarily the error sensitivity; the error sensitivity
varies between 20% and 50% among the programs we tested; and variations
in input affect the error sensitivity significantly for most of the tested programs.

Keywords
soft errors, fault injection, error sensitivity, silent data corruption

Acknowledgment

It is a great pleasure to express gratitude to all people supported and helped
me during my good and hard days in my studies and in my life.
I would like to express my deepest gratitude to my supervisor, Johan Karlsson,
for inspiring me to continue my studies in functional safety field. Thank you
for giving me this opportunity and encouraging me to pursue my research to
get my PhD. Thank you for all your supports and invaluable guidance.
Special thanks are due to Behrooz Sangchoolie, with whom I have the pleasure
to start this journey with joint work for master thesis and then we become a
great team to collaborate, to motivate each other through the way and exchange
insights.
Also special thanks to Domenico Di Leo for his great support and collaboration
in my master thesis which inspired me to continue my studies in fault injection
field. Indeed, special thanks to the countless support from Daniel Skarin and
Roger Johansson to know more about Goofi-2 and troubleshoot hardware and
compiler problems. I would also like to thank Raul Barbosa and Jonny Vinetr
for their valuable discussions about fault injection.
I would like take this opportunity to thank BeSafe project team Mafijul Md.
Islam1, Daniel Skarin, Jonny Vinter, Fredrik Törner, Andreas Käck, Mattias
Nyberg, Johan Haraldsson, Patrik Isaksson, Mats Olsson, for interesting dis-
cussions, valuable feedback, and joyful meetings on benchmarking of functional
safety in the automotive industry and ISO26262.
Many thanks to my friends and colleagues in department, administrative
supports in the department, professors and students. I would like to mention
all names but I’m afraid to miss some, my colleagues at 4th floor (computer
engineering division), PhD Council, PhD fika, persian fika, TA teams,... you
all made this department a great place to work and have fun!
Life is too short to be anything but happy, to be anything but you!
Special thanks definitely goes to friends and family. My dear friends from
childhood, school, university, master studies, summer schools, conferences, who
are now all around the world! thanks for being so kind, caring, encouraging
and understanding.
My dear wonderful mom, I am blessed to have been able to look up to you,
as a strong, independent, diligent woman. Thanks for constant inspiring and
being such an amazing hero in my life. My dear wonderful dad, thanks for all
your efforts, caring and being a constant support in every occasion in my life.
My lovely sister and brother, my cute nieces and nephews, thanks for all joy,
fun and support.

vii

viii

Dearest Sadegh, thanks for your love, your kindness and your amazing support,
not only in studies, but always... My lovely Shayan, you made me a mom and
I think that’s all! you boosted the meaning of life for me, and you give me joy
constantly. My lovely Daniel, you are pure joy! Everything seemed very sad
because of pandemic and you amazingly changed it for us! Thanks for being so
unbelievably helpful by coming to our life! You adorable and charming guys
make me find the joy in curiosity again and realize how life is more and more
beautiful ever day...

Fatemeh Ayatolahi
Göteborg, June 2021

List of Publications

Appended publications

This thesis is based on the following publications:

[A] Domenico Di Leo, Fatemeh Ayatolahi, Behrooz Sangchoolie, Johan Karls-
son, Roger Johansson “On the Impact of Hardware Faults — An Investi-
gation of the Relationship between Workload Inputs and Failure Mode
Distributions”
in Proceedings of the 31st International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), Magdeburg, Germany, 2012.

[B] Behrooz Sangchoolie, Fatemeh Ayatolahi, Raul Barbosa, Roger Johansson,
Johan Karlsson “A Study of the Impact of Bit-flip Errors on Programs
Compiled with Different Optimization Levels”
in Proceedings of the 10th European Dependable Computing Conference
(EDCC), Newcastle upon Tyne, UK, 2014.

[C] Fatemeh Ayatolahi, Behrooz Sangchoolie, Roger Johansson, Johan Karls-
son “A Study of the Impact of Single Bit-Flip and Double Bit-Flip Errors
on Program Execution”
in Proceedings of the 32nd International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), Toulouse, France, 2013.

[D] Behrooz Sangchoolie, Fatemeh Ayatolahi, Raul Barbosa, Roger Johansson,
Johan Karlsson “A Comparison of Inject-on-Read and Inject-on-Write in
ISA-Level Fault Injection”
in Proceedings of the 11th European Dependable Computing Conference
(EDCC), Paris, France, 2015.

[E] Fatemeh Ayatolahi, Johan Karlsson “Statistical Analysis of Fault-
Injection Data — A Case Study using Hypothesis Testing”
Technical report, 2021.

ix

x

Other publications

The following publications were published during my PhD studies. However,
they are not appended to this thesis, due to contents overlapping that of
appended publications or contents not related to the thesis.

[a] Peter Folkesson, Fatemeh Ayatolahi, Behrooz Sangchoolie, Jonny Vinter,
Mafijul Islam, Johan Karlsson “Back-to-Back Fault Injection Testing in
Model-Based Development”
in Proceedings of the 34th International Conference on Computer Safety,
Reliability, and Security (SAFECOMP), Toulouse, France, 2015.

[b] Mafijul Md. Islam, Behrooz Sangchoolie, Fatemeh Ayatolahi, Daniel
Skarin, Jonny Vinter, Fredrik Trner, Andreas Kck, Mattias Nyberg,
Emilia Villani, Johan Haraldsson, Patrik Isaksson, Johan Karlsson “To-
wards Benchmarking of Functional Safety in the Automotive Industry”
in the 14th European Workshop on Dependable Computing (EWDC),
Coimbra, Portugal, 2013.

[c] Behrooz Sangchoolie, Fatemeh Ayatolahi, Raul Barbosa, Roger Johansson
and Johan Karlsson “Benchmarking the Hardware Error Sensitivity of
Machine Instructions”
in the 9th IEEEWorkshop on Silicon Errors in Logic - System Effects
(SELSE), Stanford, USA, 2013.

[d] Behrooz Sangchoolie, Fatemeh Ayatolahi and Johan Karlsson “An Inves-
tigation of the Fault Sensitivity of Four Benchmark Workloads”
in the 1st Workshop on Software-Based Methods for Robust Embedded
Systems (SOBRES), Braunschweig, Germany, 2012.

Contents

Abstract v

Acknowledgement vii

List of Publications ix

1 Thesis Summary 1
1.1 Introduction . 1

1.1.1 Contributions . 3
1.1.2 Thesis Structure . 3

1.2 Dependability Measures and
Assessment Methods . 4
1.2.1 Dependability measures 4
1.2.2 Analytical methods . 6
1.2.3 Field failure data analysis 7
1.2.4 Fault injection . 8

1.3 Uncertainty vs factors of interest 10
1.4 Measuring Silent Data Corruptions 11
1.5 Statistical Analysis of Dependability Measurement 14
1.6 Papers and Contributions . 16
1.7 Concluding Remarks . 20
Bibliography . 31

2 Papers 31

xi

xii CONTENTS

Chapter 1

Thesis Summary

1.1 Introduction

Computer systems are used in a wide range of applications in which dependabil-
ity is a major concern. Self-driving cars, airplane auto-pilots, medical devices,
systems for railway signalling, power distribution and financial transactions
are a few examples of applications where computer failures could have serious
consequences.

Modern computer systems are complex artefacts that rely on billions of
transistors and millions of lines of code to operate correctly. Due to this
complexity, designing and validating dependable computer systems is a major
technical challenge.

A key challenge in developing computer systems for critical applications
is to define and obtain measures that can accurately describe the degree to
which a system is dependable. According to the widely cited taxonomy and
terminology presented in [1], dependability is a generic concept that spans a
variety of related attributes, such as availability, reliability, safety, integrity
and maintainability.

Thus, there is no single measure of dependability; instead, dependability
is described in terms of one or more of these attributes, or by other, more
specialised attributes, the choice of which depends on the application. For
example, safety may not be a relevant design objective in a business-oriented
system, in which availability and data integrity are.

Dependability attributes are often expressed in terms of probabilities (or
probability distributions) rather than deterministic values, as the occurrence,
activation and propagation of faults is primarily random.

To derive numerical values for a dependability attribute, then, computer
designers rely on various dependability modelling techniques, such as reliability
block diagrams, Markov chain models and Stochastic Petri-net models. These
models, in turn, rely on various input parameters that are often derived by
analysing field failure data, or data from fault-injection experiments. Examples
of such input parameters, which can themselves be regarded as (secondary)
dependability attributes, include failure rates, repair rates, coverage factors
and error-sensitivity factors.

This thesis addresses the use of fault-injection experiments to determine the

1

2 CHAPTER 1. THESIS SUMMARY

sensitivity of programs to bit-flip errors caused by transient hardware faults.
Modern integrated circuits are susceptible to bit-flip errors caused by ionising
particles, including high-energy neutrons and alpha particles [2, 3]. Such errors
are commonly referred to as ’soft errors’, as the ionising particles merely alter
the data stored in the affected circuit, without causing permanent damage.

Although the potential threats of soft errors are usually ignored in non-
critical applications, they are indeed an important potential source of system
failures that should be carefully considered by designers of safety-critical and
business-critical applications.

However, measuring soft-error sensitivity is a complex task. Although
techniques for such measurements have been a subject of academic research
since the 1980s, there are currently no standards for determining soft-error
sensitivity; most research has focused on evaluating the effectiveness of various
error-detection and fault-tolerance mechanisms, or on studying the failure
modes that a program exhibits in the presence of soft errors.

Measurements of soft-error sensitivity, as we discuss them in this thesis, are
built on the assumption that the program is an executable program (machine
code) for a given microprocessor equipped with a given set of memory and I/O
circuits. Thus, we consider measurements of soft-error sensitivity to be valid
only for a given hardware configuration.

A major challenge in measuring soft-error sensitivity by fault-injection
experiments is that the results are sensitive to variations in the experimental
setup related to the fault model and the workload input profile (the inputs
processed by the program during the experiments), as well as aspects of
implementing the program itself, such as the choice of programming language
and level of compiler optimizations.

This thesis presents the results of five studies that investigated how factors
related to program implementation and the setup of fault-injection experiments
affect estimations of soft-error sensitivity. We classify these factors into three
types:

Type I Related to the operation of the system, such as:

• Input profile of the system

• State of unused parts of the main memory

Type II Related to the design and implementation of the system, such as:

• Compiler optimizations

• Choice of algorithm for solving a problem

• Choice of source-code implementation, including programming lan-
guage and programming style

Type III Related to the assumption of the fault-injection experiments

• Fault model

• Time of injection

Specifically, our work addresses the following factors that can affect the
estimation of error sensitivity (the type of factor is stated in parentheses):

1.1. INTRODUCTION 3

• Workload input profile (Type I)

• Source-code implementation (Type II)

• Choice of compiler optimization (Type II)

• Fault model: single bit flips vs double bit flips (Type III)

• Time of injection: inject-on-read vs inject-on-write (Type III)

The results of these investigations have been published in four conference
papers. In addition, this thesis includes a technical report that provides
guidelines on how to employ hypothesis testing in analysing fault-injection
data; the report discusses how hypothesis testing can be used to determine
whether a certain factor has a statistically significant impact on error sensitivity.

1.1.1 Contributions

The contributions of this thesis are based on four conference papers and one
technical report, summarised in Section 1.6. The principle contributions are as
follows:

C1: A series of fault-injection experiments to study five factors that can
influence the error sensitivity of a program. These factors are (i) inputs
processed by a program, (ii) level of compiler optimization, (iii) source-
code implementation, (iv) fault model (single bit flips vs double bit flips)
and (v) fault-injection technique (inject-on-write vs inject-on-read).

C2: A classification that divides the five factors into three main types, related
to (i) the operation of the system, (ii) the design and implementation of
the system and (iii) the assumptions of the fault-injection experiments.

C3: A set of guidelines for using statistical inference techniques – specifically,
hypothesis testing, to draw conclusions from fault injection data.

C4: An analysis to reduce the fault space of fault-injection experiments.

1.1.2 Thesis Structure

This thesis consists of the present summary, four conference papers and one
technical report. In the next section of this summary, Section 1.2, we pro-
vide an overview of common dependability measures as well as an overview
of experimental and analytical techniques for assessing and ensuring the de-
pendability of computer systems. Section 1.3 discusses how uncertainty and
controllable factors affect estimates of error sensitivity and other dependability
measures. In Section 1.4, we define how we measure silent data corruptions
due to bit-flip errors and how we define our error-sensitivity measure. Section
1.5 discusses the use of statistical inference techniques for drawing conclusions
from fault-injection experiments. Section 1.6 summarises the contributions of
the papers and the report and provides statements of the contributions made
to each paper by the author of this thesis. Finally, conclusions and directions
for future research are given in Section 1.7.

4 CHAPTER 1. THESIS SUMMARY

1.2 Dependability Measures and
Assessment Methods

According to the taxonomy presented in [1], dependability is an umbrella
concept that encompasses several dependability attributes, such as reliability,
availability, safety, integrity and maintainability. Different analytical and
experimental methods, techniques and measures have been introduced over the
past decades to answer the difficult question of how to assess the dependability
of computer systems.

In this section, we provide an overview of common dependability measures
and analytical and experimental methods for assessing the dependability of
computer systems.

1.2.1 Dependability measures

The authors of [1] provide the following generic definitions of the five depend-
ability attributes:

• Availability: readiness for correct service.

• Reliability: continuity of correct service.

• Safety: absence of catastrophic consequences on the user(s) and the
environment.

• Integrity: absence of improper system alterations.

• Maintainability: ability to undergo modifications and repairs.

Due to the randomness associated with faults and failures, it is inappropriate
to express the degree to which a system possesses any of these attributes in
terms of an absolute or deterministic value; instead, the fulfilment of the
attributes should be described using a relative or probabilistic value [1]. To
this end, it is common practise to define four of the attributes more precisely
in terms of probabilities:

Availability is the probability that a system delivers a correct service at
any given time t.

Reliability is the probability that a system delivers a correct service
(without outages or interruptions) during a given period.

Safety is the probability that a system is not in a state that threatens
humans or the environment.

Maintainability is the probability that a system is operational at a given
time t, given that the system was faulty at time t0.

Integrity is slightly different from the other attributes in that it often relates
to complex fault situations, including authorised or non-authorised actions by
humans, that can lead to improper system alterations. Therefore, there are no
widely used, precise probabilistic definitions associated with integrity.

1.2. DEPENDABILITY MEASURES AND
ASSESSMENT METHODS 5

Table 1.1: Summary of dependability measures
Measure Notation Description Relation to other measures

Probability den-
sity function
(pdf) of failures

f(t) pdf of a random vari-
able X, where X is
the uptime or life-
time for a system

f(t) = d
dt
F (t)

Failure proba-
bility

F(t) Cumulative distribu-
tion function (CDF)
of a random variable
X, whereX is the up-
time or lifetime for a
system

F (t) = Prob(X < t)

F (t) =
t∫
0

f(x)dx

F (t) = 1−R(t)

Reliability R(t) Probability that a
system is operational
at time t given that
the system was oper-
ational at t = 0.

R(t) = Prob(X > t)

Availability A(t) Probability that a
system is operational
at time t.

limt→∞ A(t) = MTTF
MTTF+MTTR

=
MTTF
MTBF

Probability
density func-
tion (pdf) of
restoration
times

g(t) pdf of a random vari-
able X, where X is
the restoration time
for a system

g(t) = d
dt
M(t)

Maintainability M(t) Probability that a
repairable system is
operational at time
t given it was non-
operational (broken)
at time t=0.

M(t) =
t∫
0

g(x)dx

Failure rate λ(t) Instantaneous failure
rate or hazard rate

λ(t) =
f(t)
R(t)

=
f(t)

(1−F (t))

Repair rate µ(t) Instantaneous repair
rate

µ(t) =
g(t)

(1−M(t))

Mean Time To
Failure

MTTF The expected uptime
or lifetime of a sys-
tem

MTTF =
t∫
0

R(x)dx

Mean Time To
Repair

MTTR The expected repair
time for a broken sys-
tem

MTTR =
t∫
0

(1−M(x))dx

Mean Time Be-
tween Failures

MTBF The expected time
between system fail-
ures for a repairable
system

MTBF =MTTF +MTTR

Fault coverage c Conditional probabil-
ity that a system
maintains a correct
service given that a
fault has occurred.

c =
P (System recovers|Fault occurs)

Error sensitiv-
ity

es The probability that
a soft error (transient
hardware fault) re-
sults in a Silent Data
Corruption (SDC).

es = P (SDC|soft error occurs)

6 CHAPTER 1. THESIS SUMMARY

Of course, this does not prevent system designers from defining and using
probabilistic measures of integrity that are tailored to certain systems or use
cases; the probability of loss of data in a fault-tolerant database system is an
example of a specific measure of (data) integrity.

In addition to the five attributes, it is common to express dependability
in terms of expected values of significant events; examples include mean time
to failure (MTTF), mean time to repair (MTTR) and mean time between
failures (MTBF). The mathematical relations between these expected values
and availability, reliability, safety and maintainability are shown in Table 1.1.
limt→∞A(t) is commonly used as a measure of availability. The table also
shows the relationship between reliability and the failure-rate function; note
that the failure rate assumes a constant value, denoted as λ, when the life
time for a system or a component is exponentially distributed. For other life
time distributions, the failure rate is a function of time. In addition, the table
also includes definitions of several other commonly used measures of secondary
dependability attributes, including fault coverage and error sensitivity.

1.2.2 Analytical methods

Analytical methods used to assess and ensure the dependability of computer
systems can be categorised into two main groups: i) methods that estimate
probabilistic measures of dependability, and ii) methods that determine if a
system, component or algorithm is correctly designed or implemented with
respect to a formally expressed requirement.

The first category includes techniques such as reliability block diagrams [4],
fault trees [5], Markov chains [6], Stochastic Petri nets [7], and Stochastic
activity networks [8]. Reliability block diagrams and fault trees are basic
methods for estimating the reliability, safety and failure probability of systems
featuring redundant components and subsystems. And although they are useful
for modelling a variety of redundant systems, RBD’s and fault trees cannot be
used to model systems that employ dynamic reconfigurations in response to
component and subsystem failures.

Markov chains are powerful tools for modelling a wide variety of systems,
including those that employ static and dynamic redundancy. One limitation of
Markov chains, however, is that they suffer from the state explosion problem,
which makes it computationally demanding to solve a Markov chain model
of a system that contains many components. However, it is often possible to
circumvent the state explosion problem by dividing a complex system into
smaller subsystems.

Compared to Markov chains, Stochastic Petri nets provide a more compact
way for expressing reliability, availability and safety models. Petri nets are
dynamic, which makes them helpful in analysing the dependability of large-
scaled and dynamic systems. Stochastic activity networks (SANs) are also a
generalised version of Stochastic Petri nets which allows for representation of
the concurrency, timelines, degraded functionality, repair ability and dynamics
of the system.

It is also possible to conduct descriptive analysis using fault trees. Haz-
ard analysis and risk assessment (HARA), failure mode and effects analysis
(FMEA), and fault propagation and transformation calculus (FPTC) [9] are

1.2. DEPENDABILITY MEASURES AND
ASSESSMENT METHODS 7

other examples of techniques for descriptive analysis. These methods may
include elements of probabilistic analysis, but are often used to conduct purely
qualitative analysis of the behaviour of a system in the presence of component
failures. The authors of [10,11] introduced methods to automate the process
of generating fault trees. As manual analysis can be time-consuming and
error-prone for complex systems, these methods can effectively improve the
quality and reduce the cost of fault tree analyses. Further, systematically
reusing an artifact is discussed in [12] which is helpful in conducting safety
cases for safety analysis assurance in complex systems.

The second category of methods are formal methods. These rely on mathe-
matical formalisms to construct proofs of reasoning to precisely decide whether
an algorithm, program or hardware circuit satisfies a set of formally specified
requirements. Here, the result of the analysis is usually a yes/no answer rather
than a probabilistic measure of some dependability-related property, but there
are also variants of formal methods that enable probabilistic analysis of system
properties. Formal methods span a variety of mathematical theories, languages
and tools. Two important classes of formal techniques are model checking and
deductive verification.

Model checking uses finite state machines to concurrently describe and
verify a system and its temporal behaviour. The main challenge in this
method is dealing with state space explosion in defining complex sequential
systems. Probabilistic model checking extends model checking by automatically
verifying a system that shows probabilistic (stochastic) behaviour thus giving
a quantitative measurement of the system verification [13]. A well-known tool
for performing probabilistic model checking is PRISM [14].

Deductive verification is another approach to formal verification. It applies
classical specification and proof of higher order logic formalisation using interac-
tive theorem provers such as HOL. These provers can be used in dependability
analysis by direct probabilistic principles; therefore, no dependability modelling,
such as RBD or fault tree is needed [15]. In other approaches, RBD and fault
trees are formalised in higher order logic to perform formal failure analysis [16].

1.2.3 Field failure data analysis

Another important method for investigating the dependability of computer
systems is to collect and analyse eld failure data [17,18]. This type of studies
can provide valuable insights about the rate and types of failures that occur
during the operation of a computer system. In addition to identifying reliability
bottlenecks, analysis of field failure data can also be used to obtain estimates
of different dependability attributes, and for validating dependability models.

The results of a large-scale study of field failures in high-performance
computer systems is presented in [18]. In this study, the authors present
statistics on data such as root cause of failures, the mean time between failures,
and the mean time to repair. One interesting observation, is that the average
failure rates differ wildly across different systems, ranging from 20-1000 failures
per year.

Field failure data analysis is helpful in finding representative fault models
in that the representativeness of a simulation or prototype can be evaluated by
such data. For example, [19,20] used field failure analysis to find a representative

8 CHAPTER 1. THESIS SUMMARY

fault model to emulate software faults, using fault injection experiments.

1.2.4 Fault injection

Fault injection refers to inserting artificial faults in a computer system. Fault
injection is commonly used to test or evaluate a system’s ability to detect, mask
and mitigate faults; to determine the rate and severity of the failure modes a
system may exhibit; and to compare the effectiveness of different approaches
to implement fault-tolerant systems.

Fault injection tools are divided into three main categories: (i) tools that
inject physical faults, (ii) tools that use software or debugging and testing
features in microprocessors to inject faults, and (iii) tools for simulation-based
fault injection.

The first category includes tools that use pin-level fault injection [21,22],
heavy-ion radiation [23–25], electromagnetic interference [26, 27] and laser
beams [28,29]. These techniques, which were mainly developed and used in the
1990s, can emulate specific types of hardware faults with high accuracy, such as
stuck-at-faults affecting the pins of integrated circuits (pin-level injection) and
particle-induced soft errors (laser beams and heavy-ion radiation). However,
most of these techniques are too costly or otherwise infeasible to use with
modern, highly integrated and compact hardware systems.

Another way to inject physical faults into integrated circuits is to expose
circuits to neutron beams. This technique is commonly used by circuit manufac-
turers as well as independent researchers to estimate the soft error rate (SER)
of integrated circuits. However, these types of studies are usually not referred
to as fault injection experiments rather as neutron beam experiments [30].

The second category includes tools that rely on software or debugging and
testing features in microprocessors to inject faults. This type of tools has been
widely used in research projects over the last 25 years to assess the impact
of both hardware and software faults, and to evaluate the effectiveness of
fault tolerance mechanisms. This category of tools can be divided into three
subcategories: software-implemented fault injection (SWIFI) [31–36], test port-
based fault injection [37–40], and scan chain-implemented fault injection [41,42].

SWIFI tools use program code executed by the target system to insert
errors (state changes) in main memory locations and instruction set architecture
(ISA) registers. SWIFI is a versatile technique, as it can be used to mimic
the effects of many fault types, including transient and permanent hardware
faults [33,34,36], software faults [43–46] and security attacks [47].

Test port–based fault injection is similar to SWIFI in that it imitates the
effects of faults by inserting errors in main memory locations and ISA-registers.
However, unlike SWIFI, it injects faults without altering the software executed
by the target system; instead, it injects faults using an external debugger con-
nected to a test port, or a debug port, on the target system’s microprocessor.
By controlling the debugger with remote commands, the fault injection tool
can issue commands to the microprocessor to stop and start program execu-
tion, set breakpoints and alter the contents of main memory words and ISA
registers. The GOOFI-2 tool, which we used in our experiments, implements
test port–based fault injection on a Freescale MPC565 controller, using the
NEXUS debugger [48] and winIDEA integrated development environment from

1.2. DEPENDABILITY MEASURES AND
ASSESSMENT METHODS 9

iSYSTEM [49].

Scan-chain implemented fault injection works similarly to test port-based
fault injection; it injects faults via a test access port (TAP), which provides a
serial interface that makes it possible to write and read the data in any internal
register in the circuit included in the scan-chain. Modern microprocessors are
equipped with scan-chains and TAPs mainly for pre-shipment chip testing
by manufacturers. Since the users of a microprocessor usually do not have
access to information about how to operate the TAP, scan-chain—based fault
injection has been used in only a few research studies [41,42].

The third category includes tools that employ simulation models of com-
puters at dierent levels of abstraction [50,51], ranging from the transistor and
micro-architectural levels [51, 52] to high-level functional models of software
or hardware modules [53, 54] and even the system level [55]. For example,
simulation-based fault injection has been widely used to evaluate the vulnerabil-
ity of hardware architectures or software codes with respect to radiation-induced
soft errors [56,57]. To speed up fault injection experiments conducted at the
micro-architectural level, researchers have explored the possibility of injecting
faults into hardware models implemented in field-programmable gate arrays
(FPGAs) [58–63]. This technique is referred to as ‘hardware emulation–based
fault injection’; compared to regular software-based simulation, hardware emu-
lation can reduce the time of fault injection experiments by more than four
orders of magnitude [58,62].

As we have seen, fault injection experiments are conducted at different levels
of abstraction using a variety of tools. Thus, there is a need to conduct studies
that compare the results obtained with different tools or at different levels of
abstraction. In [64], the authors use simulation to compare the effects of bit-flip
faults injected into the internal state elements of microprocessors with the
effects observed when using pin-level fault injection and software-implemented
fault injection (SWIFI) on the same processor. The results showed that SWIFI
was able to mimic 98%–99% of the system-level error types observed for bit
flips in the internal state elements. The corresponding numbers for the pin-level
faults were only 9%–12%.

In [65], the authors compare the results of four fault injection techniques
employed in the evaluation of a distributed real-time system. The results
showed large variations in the impact of the fault manifestations observed
among the techniques.

In a more recent study [30], the authors investigate whether simulations can
provide accurate estimations of soft error rates (SER) for integrated circuits and
program code. To this end, the authors compared SER estimations obtained
by simulations and with results from neutron beam experiments. The study
showed that SER estimations obtained by the two techniques were similar,
which confirmed that simulations can indeed provide accurate estimations of
soft error rates.

Another important line of research is to investigate uncertainty in measure-
ments of dependability attributes. As pointed out by Bondavalli et al. [66],
fault injection tools can be regarded as measurement instruments since they are
used to measure dependability attributes. Another study related to uncertainty
is [67], in which the authors investigated the metrological compatibility between
results obtained with different fault injection techniques.

10 CHAPTER 1. THESIS SUMMARY

Recent work also includes the use of fault injection for emulating security
attacks [68] and for evaluating safety-critical applications developed using
articial intelligence and machine learning [69,70]. There are also recent studies
that utilise machine learning to assist in conducting fault injection experiments
[71, 72]. A comprehensive survey of the use of software fault injection (SFI) is
presented in [73].

1.3 Uncertainty vs factors of interest

Most types of measurements are affected by uncertainty. When we use mea-
surements in scientific investigations, it is therefore essential to identify sources
of uncertainty and, if possible, express quantitative bounds on the amount
of uncertainty we expect to have in a measured value. Uncertainty is a key
concept in the field of metrology, the science of measurement. General guide-
lines for dealing with and reporting uncertainty can be found in the Guide to
the Expression of Uncertainty in Measurements (GUM), published by JCGM
Joint committee for Guides in Metrology [74].

According to GUM, the word uncertainty can be used in two different senses:
first, as a general concept meaning ‘doubt about the validity of the results of
a measurement’, and second, as ‘specific quantities that provide quantitative
measures of the concept [sic: uncertainty]’. GUM provides examples of how
uncertainty can be expressed quantitatively for measurements of physical
quantities - for example, by calculating the mean and standard deviation for a
series of repeated measurements.

In [66], Bondavalli et al. provide suggestions for how foundations in mea-
surement theory can be applied in measurements of dependability attributes.
The authors conclude that ‘all sources of uncertainty should be clearly and
univocally defined.’ and that ‘measurement uncertainty should be evaluated
[according to the GUM].’

In the experiments presented in this thesis, we have identified two main
sources of uncertainty. First, most of our experiments rely on sampling-based
fault injections, as it would be too costly and time-consuming to perform
exhaustive injections for most of the programs we evaluate.

Second, we have chosen not to control (initialise) the unused parts of the
main memory of the target system. The reason for this decision is mainly
practical: by not initialising the unused memory, we were able to reduce the
time it took to conduct a fault-injection experiment. Further, we felt that
leaving the memory uninitialised would be more representative of real working
conditions than would be filling the unused areas with, for example, all 0s or
all 1s. Of course, we could have chosen to fill the unused areas with a random
pattern of 0s and 1s; however, the latter would resemble the situation we have
when we do not initialise unused memory.

To quantify the level of uncertainty imposed by sampling, we relied on well-
known statistical concepts, such as confidence intervals and hypothesis testing,
as described in Section 1.5. Unfortunately, we had no means of quantifying the
level of uncertainty that arose from choosing not to initialise unused memory.
The construction of probabilistic models for predicting how variations in the
content of unused memory influences measures of error sensitivity and other

1.4. MEASURING SILENT DATA CORRUPTIONS 11

dependability attributes is a research question that we were unable to address
within the scope of this thesis.

Beyond the two sources of uncertainty discussed so far, there could have
been other factors unknown to us that could have influenced the quality of
our measurements. Such factors could have been hidden within the hardware
or software units that were directly or indirectly involved in carrying out our
experiments. Examples of such factors could be design defects (bugs) in the
Goofi-2 software or the winIDEA debugger, which is used by Goofi-2.

Computer systems are in general complex systems; hence there are many
factors that can influence the outcome of a fault injection experiment. We
divide these factors into two categories: sources of uncertainty and factors of
interest. A source of uncertainty is one that contributes to uncertainty in a
measurement, as described above. A factor of interest is the object that we
want to characterise with our measurements. A given aspect of a computer
system can be either a source of uncertainty or a factor of interest depending
on the objective of the measurements. For example, in our experiments we
consider the content of unused memory a source of uncertainty. However, it
would be possible to conduct experiments to investigate how the content of
unused memory influences error sensitivity, in which case the content of unused
memory would be the factor of interest.

In the following, unless otherwise stated, we use factor to denote a factor of
interest. In general, we propose to divide such factors into three general types:

I Factors related to the operation of a system. Our study of the relationship
between workload inputs and failure mode distributions presented in paper
A belongs to this category. As previously mentioned, it would be of interest
to conduct a study on how the content of unused memory or memory used
by other programs, affects error sensitivity of a program. Such a study
would belong to this category.

II Factors related to the design and implementation of a system. We investi-
gate two factors in this category: compiler optimizations and source code
implementations, which are described in paper B. There are many studies
reported in the literature that belongs to this category. Most notably
studies that evaluates error detection and fault tolerance mechanisms.

III Factors related to the assumption of the fault injection experiments. In
this category, we investigate single vs double bit-flip errors in paper C,
and the inject-on-read vs the inject-on-write technique in paper D. This
category includes studies that address a fundamental problem in fault
injection: selection and validation of fault models and tools.

1.4 Measuring Silent Data Corruptions

The goal of this thesis is to provide insight into how bit-flip errors in ISA
registers and main memory words affect program execution. To this end, we
conducted fault injection experiments using the Goofi-2 fault injection tool [75]
with a collection of benchmark programs. The programs were executed on
a target system consisting of a Freescale MPC565 microcontroller equipped
with 512 KB of random-access memory. Goofi-2 uses test port—based fault

12 CHAPTER 1. THESIS SUMMARY

injection (i.e., the bit flips are injected using a hardware debugger connected
to the microcontroller’s test port).

The process of injecting a bit-flip error and recording the subsequent
behaviour of the target program is fully automated. The Goofi-2 software runs
on a PC that controls the operation of the target system and the hardware
debugger. Goofi-2 supports two types of fault injection techniques: inject-
on-write and inject-on-read. For inject-on-write, the bit-flip error is injected
just after the target register/memory word has been updated by a machine
instruction. For inject-on-read, the bit-flip error is injected just before the
target register or memory word is read by a machine instruction.

Inject-on-write models the effects of bit flips that propagate into a register
or memory word whereas inject-on-read models the effects of bit flips that
occur while data is stored in a register or memory word. Inject-on-write and
inject-on-read techniques ensure that bit flips are injected in locally live data.
Thus, Goofi-2 avoids injecting errors into locally dead data words; however, a
bit flip in a locally live data word will not necessarily cause the program to
fail, as most programs perform redundant calculations that do not affect the
output.

The impact of bit-flip errors in live data used by a program can be divided
into four main categories: (i) detection by a machine exception, (ii) program
hang, (iii) no effect and (iv) erroneous output with no error indication, also
known as SDC. We focus on the SDCs since they are more costly to tolerate
than program hangs, and errors detected by machine exceptions. Tolerating a
program-level SDC requires the use of system-level fault-tolerance techniques
that run programs redundantly.

Errors detected by machine instructions can be corrected by forward and
backward recovery techniques. Program hangs (or delayed delivery of the
output) can be detected by a watchdog timer and then corrected by a recovery
action. Bit flips in locally live data often have no effect on the output of a
program; thus, in addition to the three types of program failures, no effect is
also a common outcome of our fault-injection experiments.

To characterise a program’s tendency to exhibit an SDC due to a bit-flip
error, we measure the proportion of bit-flip errors leading to an SDC versus
all possible bit-flip errors that may occur in live data used by a program. We
call this proportion the program’s error sensitivity. Error sensitivity measures
the occurrence of bit-flip errors in live data, and hence depends on the inputs
processed by a program. (The number of live data items that a program creates
and uses during execution depends on the inputs processed by the program.)

For some of the smaller programs, we were able to inject all possible single
bit flips and thereby find the true value of the error sensitivity for the program
for any input. However, for most of the programs, the total number of bit flips
for any input were so large that we had to estimate the error sensitivity by
sampling the population of all possible bit flips.

Error sensitivity is related to fault coverage, as both can be viewed as
dependability measures; however, they serve different purposes. As mentioned
in Section 1.2.1, fault coverage is the conditional probability that a system
recovers and continues to deliver a correct service after a fault has occurred [76].
Thus, fault coverage is a measure of the effectiveness of a system’s fault-
tolerance capabilities. Fault coverage is therefore an important parameter when

1.4. MEASURING SILENT DATA CORRUPTIONS 13

estimating the reliability or availability of a fault-tolerant system.
In contrast, error sensitivity measures the tendency of a program to exhibit

silent data corruptions. Its primary goal is to provide system designers with
insights on how likely it is that a program will produce an SDC given the
occurrence of a bit-flip error in a live data item. Measures of error sensitivity
are therefore mainly aimed at guiding the system designer in selecting fault-
tolerance techniques; for example, they can be used as a basis for a trade-off
between software- and hardware-implemented fault-tolerance techniques.

We define error sensitivity as the proportion of test cases (bit-flip errors) in
a test population that causes a program to produce an SDC. Note that the
size of the test population depends on the inputs processed by the program.

We denote the error sensitivity of a given test population, Ti as esi. In
cases where we sample the test population, we use the following estimator for
esi:

êsi =
si
ni

(1.1)

where ni is the number of faults (test cases) injected in fault injection
campaign i, and si the number of faults that yielded an SDC.

As error sensitivity is a proportion, it may be problematic to use when
comparing two programs that provide the same function but one of them is
more efficient and has fewer machine instructions. Consider two programs a
and b that provide the same function, where program a is more efficient and
thus uses fewer machine instructions to implement the function than program
b. Let |Ta| and |Tb| denote the size of the test population for program a and b,
respectively, and let Sa and Sb denote the number of test cases that causes an
SDC. We have that |Ta| < |Tb|, since program a uses fewer machine instructions
than program b. However, it is possible that Sa < Sb while Sa/|Ta| > Sb/|Tb|
(Si/|Ti| is the true error sensitivity for program i.) In others words, program a
can have higher error sensitivity than program b, although the total number
of test cases that lead to an SDC is lower for program a than for program
b. Hence, comparing error sensitivities is not a good method for ranking the
soft error vulnerability of programs. We therefore introduce SDC count as a
suitable measure for comparing the reliability of programs with respect to soft
errors.

We define SDC count as the number of test cases in Ti that causes the
program to produce a silent data corruption (SDC). Let sci denote the SDC
count. An intuitive estimator for sci is

ŝci =
si
ni
|Ti| (1.2)

where |Ti| represents the cardinal (size) of Ti. Unfortunately, our fault
injection tool, GOOFI-2 [75], does not provide a function that allows us to
calculate |Ti|, although it would be technically feasible to implement such a
function. Therefore, we use the following equation as an estimator for |Ti|

|̂Ti| = di ·mi (1.3)

where mi is the number of machine instructions executed for ai, and di is
the average number of test cases per machine instruction in campaign i. If we

14 CHAPTER 1. THESIS SUMMARY

substitute |Ti| with |̂Ti| in equation (1.2), we obtain a less accurate estimator

for sci, which we denote as ŝc∗i

ŝc∗i =
si
ni
· di ·mi (1.4)

Since we have reason to believe that the average number of test cases per
machine instruction is fairly constant for similar programs, and indeed for
different activities of one program, we simply assume a constant value for di.
If we use ŝc∗a and ŝc∗b for ranking the reliability of programs a and b, then the
values assigned to da and db will have no effect on the ranking result if they
are assigned the same value. Hence, if we want to use SDC count estimates for
only ranking purposes, then we can set the value of di in Equation 1.4 to 1.
We can then view ŝc∗i as a strongly biased but consistent estimator of sci.

Considering our example with program a and b, where program a has a
lower SDC count than program b, it is reasonable to assume that a has a lower
failure probability but a higher error sensitivity than b. Hence, using the error
sensitivity as a basis for ranking the reliability of the two programs would lead
to an incorrect result. However, SDC count is an imperfect measure for ranking
the reliability of different programs, since it does not consider the probability
of occurrence for each test case t ∈ |T |. The problem associated with using
measures based on proportions for comparing the soft error vulnerability of
different programs has been addressed by Schirmeier et al. in [77].

So far, we have mainly discussed the estimation of the true values of es
and sc for a single activity a for an executable program, and we have briefly
compared different programs. To obtain a proper characterisation of the soft-
error vulnerability of an executable program, though, we need to estimate es
or sc for several activities (program inputs).

Aggregated measures of error sensitivity and SDC count can be achieved by
calculating a weighted average of estimates obtained for the activities, where
higher weights are given to activities that are expected to have a higher proba-
bility of occurrence. If data for determining the weight factors is unavailable, a
common approach is simply to select an arbitrary set of activities and assign
them equal weight factors. This is the approach we used in our experiments.

1.5 Statistical Analysis of Dependability Mea-
surement

When conducting sampling-based fault injection experiments, we need to use
statistical techniques for planning the experiments and assessing the uncertainty
of estimated measures. Experimental design is a branch of statistics that deals
with practical and theoretical aspects of experimental studies in three phases:
(i) problem formulation, (ii) design of the experiments and (iii) analysis of
the data collected [78]. In the first phase, the researcher states the problem
and the purpose of the study, considering relevant studies and information in
that field. In the second phase, the researcher chooses the response variables
and anticipates influencing factors. The constraints, randomness mechanism,
repeatability, number of samples and anticipated margin of error are aspects
that should be considered in this phase. If the second phase is well designed,

1.5. STATISTICAL ANALYSIS OF DEPENDABILITY MEASUREMENT 15

then the third phase, the analysis of the collected data, is easy; indeed, the
design phase determines which statistical method is to be used to analyse the
collected data.

A series of studies [79,80] were performed on stratified sampling for fault-
injection experiments. These studies evaluated the importance of optimising
the sampling method to increase the accuracy of the error-coverage estimation.
Also, how defers to use frequentist or Bayesian approaches to estimate the
measurand and identify the pros and cons of each approach.

Statistics also enable estimating the minimal number of experiments required
to achieve a certain level of confidence and margin of error in the estimated
measures. The authors of [81] show how to calculate the number of experiments
depending on the error and confidence expectations. It may be difficult to
determine the population size, or the possible fault space in a complex computer
system. However, the researchers show that, when the population size exceeds
10,000, it has a little impact on the number of experiments or satisfying the
margin of error.

The authors of [82] discussed a better approach to calculating sample size by
(a) iteratively updating the sample size with more accurate assumptions of the
population proportion by conducting few experiments (rather than considering
50% as a worst case assumption), and (b) considering the margin of error to be
less than 5% (1% and even 0.1%) which is more sensible for some safety-critical
applications.

In paper E, we provide a set of guidelines for selecting and applying statistical
inference techniques for the analysis of data obtained in sampling-based fault
injection experiments. We present methods for calculating confidence intervals
and rules for determining when the normal approximation is applicable.

In the studies reported in paper A to D, we used the same statistical
design of all fault injection campaigns. First, all our campaigns are designed
to investigate a single factor of interest. Second, we decided to conduct 12,000
fault injection experiments in each campaign. As shown in paper E, this yields
a worst case margin-of-error of 0.89 percentage points with a 95% confidence
level, and a margin-of-error of 1.18 percentage points with a 99% confidence
level. (The worst case margin-of-error occurs when the true value of the
estimated value is 50%.) The reason for using 12,000 experiments was that we
wanted to achieve confidence intervals of around ±1 percentage point in our
measurements.

In paper E, we also consider methods for hypothesis testing. We specifically
discuss hypothesis testing for proportions, since error sensitivity is defined as a
proportion. Hypothesis testing is especially useful when we want to compare
two or more estimates of a dependability attribute obtained in different fault
injection campaigns. We discuss various types of statistical tests for this
purpose, including parametric and non-parametric tests.

Table 1.2 shows several statistical tests that are appropriate for comparing
estimates obtained from two or more data sets. The choice of a test depends
on circumstances such as the distribution of the data, whether the comparison
is made for two or more data sets, and whether the data sets are paired or
independent.

16 CHAPTER 1. THESIS SUMMARY

Table 1.2: Statistical tests for comparison

2 data sets More than 2 data sets

Data
Distribution

Paired
data sets

Independent
data sets

Paired
data sets

Independent
data sets

Normal
Distribution

Paired Z-test
(or T-test)

Unpaired
Z-test

Repeated mea-
sures ANOVA

One-way
ANOVA

Non-Normal
Distribution

Wilcoxon
Signed Rank

Mann-
Whitney/
Wilcoxon rank
sum

Friedman test Kruskal-Wallis
test

Categorical
Distribution

McNemar’s
test

Chi-squared
test/Fisher’s
exact test

Cochran’s
Q test

Chi-squared
test

1.6 Papers and Contributions

Paper A. On the Impact of Hardware Faults — An Inves-
tigation of the Relationship between Workload Inputs and
Failure Mode Distributions

Summary. This paper discusses the impact of input profile on a program’s
error sensitivity, how significant the impact is and how error sensitivity is
correlated to input features. The variation of error sensitivity is application
dependent. We found a linear correlation between input length and SDCs
for some applications, while there were no correlations in other applications.
In this study, we perform fault-injection experiments on four programs from
MiBench suite. We selected nine inputs for each program. This study shows
significant variation in the error sensitivity of a program executed with different
inputs. For instance, in an extreme case, the error sensitivity of the CRC
application varies by 30% from one input with 0 characters to another input
with 99 characters.

In addition, we propose an approach to correlate the dynamic fault-free
behaviour of a program with the error sensitivity. We observed significant
variations in the error sensitivities among different workloads1. Hence, a
program should be evaluated by all possible inputs. We propose a way to
identify inputs that result in significantly different fault-injection outcomes. To
this end, we use assembly metrics defined based on the machine instructions of
a fault-free execution of a program. We cluster the workloads based on these
assembly metrics and compare these clusters with those generated based on
SDC outcomes. We discovered that workloads with similar SDC outcomes also
have similar assembly metric clusters. Thus, the workloads that end up in the
same cluster have similar SDC outcomes. In this way, we identify input sets
that are likely to cause significantly different error sensitivities, which enables
us to limit the number of necessary fault-injection campaigns to the number of
clusters and perform only campaigns that generate significantly different error
sensitivities.

1A workload is a program processing any input.

1.6. PAPERS AND CONTRIBUTIONS 17

In this paper, we also evaluate the error sensitivity of the programs equipped
with a software technique for tolerating hardware faults. This technique
performs triple time-redundant execution and majority voting, and it can
decrease the number of SDCs (on average, 13 times).

Statement of Contribution. This paper is co-authored with Domenico
Di Leo, Behrooz Sangchoolie, Roger Johansson and Johan Karlsson. Domenico
Di Leo had the original idea for the paper. Di Leo, Fatemeh Ayatolahi and
Behrooz Sangchoolie jointly implemented and conducted the experiments, per-
formed the data analysis and formulated the conclusions. They are also the
main contributors in writing the paper. Johan Karlsson contributed to the idea
and provided feedback during different phases of the study. Roger Johansson
helped solve technical issues regarding the fault-injection setup. All authors
contributed to the writing of the paper.

Paper B. A Study of the Impact of Bit-flip Errors on Pro-
grams Compiled with Different Optimization Levels

Summary. In Paper B, we investigate the impact of compiler optimizations
on the error sensitivity of twelve benchmark programs. We conducted extensive
fault-injection experiments in which bit-flip errors were injected in CPU registers
and main-memory locations. The results show that the error sensitivity of the
optimised programs is only marginally higher compared to that observed for
the non-optimised programs. This suggests that compiler optimizations can
be used in safety- and mission-critical systems without increasing the risk of
the system producing undetected erroneous outputs. Program execution time
reduces significantly by compiler optimization; therefore, the programs are also
less exposed to transient faults.

Paper B also investigates the impact of different source-code implemen-
tations on the error sensitivity of functionally equivalent programs. To this
end, we performed experiments on five bit-count programs included in the
MiBench suite [83]. These programs differ in data types used to store results,
using a look-up table for some pre-calculated values, and different ways of
implementing calculations. The results of the fault-injection experiments show
that source-code implementation significantly impacts error sensitivity. To
provide insights into the reasons for the variation in the error sensitivity, we
analysed the error sensitivity of different types of data stored in registers and
memory words (that were targeted for fault injection). This analysis was helpful
in identifying registers and memory sections with high error sensitivity, which
are thus candidates for being protected by fault-tolerance techniques.

Statement of Contribution. This paper is co-authored with Behrooz
Sangchoolie, Roger Johansson and Johan Karlsson. Fatemeh Ayatolahi and
Behrooz Sangchoolie contributed to the original idea of the paper, the design
and conduction of the fault injection experiments and the analysis of the results.
They are also the main contributors in writing the paper. Johan Karlsson con-
tributed to the idea and provided feedback during different phases of the study.
Roger Johansson helped solve technical issues regarding the fault-injection
setup. All authors contributed to the writing of the paper.

Paper C. A Study of the Impact of Single Bit-flip and
Double Bit-flip Errors on Program Execution

18 CHAPTER 1. THESIS SUMMARY

Summary. This paper presents the results of an extensive experimental
study of bit-flip errors in CPU registers and main-memory words. Comprising
more than two million fault-injection experiments conducted with thirteen
benchmark programs, the study provides insights on whether the double bit-flip
model provides optimistic or pessimistic estimates of error sensitivity compared
to the single bit-flip model. The results show that the proportion of errors that
cause SDCs is almost the same for single- and double-bit errors. However, for
some campaigns the single-bit errors resulted in a slightly higher proportion
of SDCs, suggesting that single-bit errors on average tend to cause SDC more
than double-bit errors.

In addition, we studied how error sensitivity varies for different bit positions
within a register or memory word. We present detailed statistics about the
variations in error sensitivity with respect to bit positions. The results show that
error sensitivity varies significantly for different bit positions. An important
observation is that injections in certain bit positions always have the same
outcome, regardless of when the error is injected. For instance, all injections in
more significant bit positions of the program counter register (PCR; e.g., bit
positions 17 – 32) are detected by hardware exceptions.

Statement of Contribution. The paper is co-authored with Behrooz
Sangchoolie, Roger Johansson and Johan Karlsson. Fatemeh Ayatolahi and
Behrooz Sangchoolie contributed in the original idea of the paper, the design
and conduction of the fault injection experiments and the analysis of the results.
They are also the main contributors in writing the paper. Johan Karlsson con-
tributed to the idea and provided feedback during different phases of the study.
Roger Johansson helped solve technical issues regarding the fault-injection
setup. All authors contributed to the writing of the paper.

Paper D. A Comparison of Inject-on-Read and Inject-on-
Write in ISA-Level Fault Injection

Summary. In this paper, we compare two ISA-level fault-injection tech-
niques to reduce the fault space and optimise the fault-injection experiments
to discover SDCs. These two techniques are inject-on-read and inject-on-write.
The inject-on-read technique injects bit flips into a data item just before it
is read by a machine instruction, and inject-on-write injects bit flips into a
data item just after it has been updated by a machine instruction. In other
words, inject-on-read corrupts the content of the source register (or memory
word) of a machine instruction, while inject-on-write corrupts the content of the
destination register (or memory word) of a machine instruction. One advantage
of these techniques is that the injections are made in conjunction with read
and write operations, which ensures that the injected faults are always injected
in (locally) live data items [84].

The inject-on-read and inject-on-write techniques can be used to emulate
the effects of both hardware and software faults. However, in this paper we
specifically consider the use of these techniques for assessing the hardware
error sensitivity of programs and systems with respect to soft errors (i.e.,
particle-induced single-event upsets).

In this context, inject-on-read and inject-on-write target two classes of
faults. Inject-on-read is well suited to model soft errors that occur in a data
item during the time the item resides in an ISA register or memory word, while

1.6. PAPERS AND CONTRIBUTIONS 19

inject-on-write is well suited for emulating errors that propagate into an ISA
register or memory word. The first type of error occurs when an ISA register
or memory word is hit directly by an ionising particle. The second type of
error originates from particle strikes in other hardware resources within the
microprocessor, such as ALUs, caches and internal pipeline registers. When
using the inject-on-read technique for emulating direct strikes in ISA registers
and main-memory words, a weight factor should be assigned to each injected
fault. This weight factor should correspond to the length of the time interval
during which a soft error can occur in reality.

This paper has two main objectives. The first is to compare the differences
in impact between the techniques – specifically, whether one of the techniques
is more likely to provoke SDCs than the other. The second objective is to
investigate the impact of using weight factors for the inject-on-read technique.
To this end, we compare the results of fault-injection experiments obtained
with and without the use of such weight factors.

Our results are based on more than 120,000 inject-on-read and inject-on-
write experiments with six programs from the automotive domain, including five
implementations of the bit-count program included in the MiBench benchmark
suite [83], and a prototype brake controller application.

Here, we observed that the error sensitivity obtained by the unweighted
inject-on-read was higher than that of the inject-on-write. This indicates
that, for the programs studied, it is unlikely that inject-on-write would expose
weaknesses that are not revealed by the unweighted inject-on-read. This
conclusion is drawn despite the significant differences between the source-code
implementation of the programs under test.

The impact of the weight factor was studied by focusing on only the inject-
on-read techniques. Here, we observed that, for all bit-count programs, the
percentage of SDCs for the unweighted inject-on-read was higher than or equal
to the percentage of SDCs for the weighted inject-on-read. However, this
was not the case for the brake controller application, which shows that the
weight factor influences the percentage of SDCs depending on the sensitivity of
registers and memory words with long lifetimes. The difference between the
SDC results obtained for these two techniques ranged from 0% to 20%.

Statement of Contribution. This paper is co-authored with Behrooz
Sangchoolie, Roger Johansson and Johan Karlsson. Behrooz Sangchoolie con-
tributed to the original idea of the paper, the design and conducting of the
fault-injection experiments and the analysis of the results for the bit-count
applications. Fatemeh Ayatolahi contributed to the design and implementa-
tion of the fault-injection experiments for the brake-by-wire application and
provided feedback on the results. Johan Karlsson contributed by providing
feedback during different phases of the study. Roger Johansson helped solve
technical issues around the fault-injection setup. All authors contributed to
the writing of the paper.

Paper E. Statistical Analysis of Fault-injection Data – A
Case Study using Hypothesis Testing

Summary. In this paper, we summarise the impact of factors that affect
error sensitivity estimation in fault-injection experiments. Such estimations are
subject to sampling errors since they are calculated from a sample of all possible

20 CHAPTER 1. THESIS SUMMARY

fault scenarios. Hence, statistical inference techniques must be employed when
drawing conclusions from such experiments. This paper presents a set of
practical guidelines for selecting and applying statistical inference techniques in
the analysis of data obtained from sampling-based fault-injection experiments.
We used point estimation and confidence intervals to evaluate the margin
of error for each measured proportion as the error sensitivity, and we used
statistical hypothesis testing to analyse the variation in the estimated error
sensitivities.

We considered three studies that use random sampling in fault-injection
experiments. We considered two measures to characterise the soft-error vulner-
ability of a program. The aim was to assess the significance of the variations
in the soft-error sensitivity and the SDC count for the executable programs in
relation to (a) the inputs processed by the program, (b) the use of different
levels of compiler optimization and (c) the injection of single bit-flip errors vs
double bit-flip errors.

Statement of Contribution. This paper is co-authored with Johan
Karlsson. Fatemeh Ayatolahi contributed to the original idea of the paper,
performing the statistical inference and data analysis of the results, and is
the main contributor in writing the paper. Johan Karlsson contributed to the
idea and provided feedback during different phases of the study. Both authors
contributed to the writing of the paper.

1.7 Concluding Remarks

This thesis presents the results of a series of fault injection experiments aimed
at estimating the probability that a program exhibits a silent data corruption
due to a bit-flip error in an ISA-register or main memory word holding live
data. We use such bit-flips as an approximate model to investigate the impact
transient hardware faults may have on program execution.

Our work is mainly motivated by the fact that modern integrated circuits
are susceptible to soft errors, i.e., bit-flip errors caused by ionizing particles such
as high-energy neutrons and alpha particles. However, bit-flips in ISA-registers
and main memory words may also be considered as an approximate model for
studying the impact of transistor failures caused by aging mechanisms such
as NBTI (Negative Bias Temperature Instability) [85] and HCD (Hot Carrier
Degradation) [86].

We introduce error sensitivity as a measure for the probability that a bit-flip
error in an ISA-register or main memory location holding live data will cause a
program to exhibit a silent data corruption. Our experiments show that the
error sensitivity of a program is affected by different aspects of the program’s
design and use, and the set-up of the fault injection experiments. We denote
these aspects as factors of variability and divide them into three groups: factors
related to (i) the operation of the system, (ii) the design and implementation
of the system, and (iii) the design of the fault injection experiments.

We have specifically conducted experiments to study variations in error
sensitivity related to (i) the inputs processed by a program, (ii) the use of
compiler optimization, (iii) source code implementation, (iv) single bit flips vs
double bit flips and (v) injection techniques (inject-on-read vs inject-on-write).

1.7. CONCLUDING REMARKS 21

Although our experiments provide valuable insights into how these factors
influence the error sensitivity of a program, we would like to highlight some
limitations of our work. Our fault models – single bit flips and double bit
flips within one data word, with a uniform probability for all data words to
be exposed to a soft error – are crude models of how soft errors occur in,
or propagate into, ISA registers and main-memory words. For example, we
have reason to believe that they do not accurately describe the true relative
frequency with which soft errors affect live data in a program; the obvious
reason for this is that a processor does not use the same hardware circuits to
create all data words. Therefore, the probability of being exposed to a soft
error varies for different data words.

It is also reasonable to assume that single bit flips occurring in the internals
of a processor may manifest as multiple bit errors in ISA registers and main
memory. For example, if a data word containing a single bit flip is used as
input to an arithmetic operation, then the result of this operation may contain
multiple bit flips. Another obvious limitation of our work is that some soft
errors are likely to cause behaviours of microprocessors that simply cannot be
modelled merely as bit flips in an ISA register or main-memory word.

An important task for future research is therefore to develop techniques that
can accurately estimate the probability that a program exhibits a silent data
corruption due to a soft error. However, the development of such techniques
comes with both scientific and practical challenges. One such challenge is
that this research would require full access to the hardware design of the
microprocessor that will run the program, as well as detailed knowledge about
the soft error rates of the integrated circuit technology used to produce the
processor.

The correlation between different factors can be another interesting direction
for future work. Researchers may investigate the correlations or dependencies
between different factors that affect the error sensitivity, such as correlation
that might be observed between input profile and different fault models. In
our experiment design, we focused on one factor in each study to evaluate the
impact of its variation on the estimated error sensitivities. These experiments
can be extended to include the variation of multiple factors at a time to examine
potential correlations between them. Consequently, careful experimental design
should be planned, and other statistical inference techniques that analyse
multiple factors should be considered. The authors of [87,88] have introduced
the usage of design of experiments and optimality methods in investigation
of this interaction between different factors and find an optimal combination
of them. The focus in these studies is on hardware synthesizing parameters
and their interaction which is another level in system design which can be also
applied in system implementation level.

Another aspect of our research is the comparison of the soft-error vulnera-
bility between different programs. Here, we propose to use SDC count, rather
than error sensitivity, as a measure for comparing the soft-error vulnerability
between different programs. As pointed out by other researchers, measures such
as error sensitivity, which are defined as proportions of outcomes of injected
errors, are not suitable for comparing the reliability among different programs.
This is because the execution time is a key factor in determining the probability
that a program will be affected by a soft error. We propose a biased estimator

22 CHAPTER 1. THESIS SUMMARY

for the SDC count, which uses the execution time of a program to estimate the
SDC count. A more accurate estimator could be achieved if the fault injection
tool were provided with a function that could count all possible bit-flip errors
in a program. We believe that implementing such a function would be easy,
but it would be much more demanding to implement a function that would
calculate the SDC count for a program. However, these are conjectures that
we leave to be addressed by future research.

Bibliography

[1] A. Avižienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan 2004.

[2] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” IEEE Micro, vol. 25,
no. 6, pp. 10–16, 2005.

[3] J. F. Ziegler and W. A. Lanford, “Effect of cosmic rays on computer
memories,” Science, vol. 206, no. 4420, pp. 776–788, 1979. [Online].
Available: https://science.sciencemag.org/content/206/4420/776

[4] M. Čepin, Reliability Block Diagram. London: Springer London, 2011, pp.
119–123. [Online]. Available: https://doi.org/10.1007/978-0-85729-688-7 9

[5] E. Ruijters and M. Stoelinga, “Fault tree analysis,” Comput. Sci.
Rev., vol. 15, no. C, pp. 29–62, Feb. 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.cosrev.2015.03.001

[6] J. R. Norris, Markov Chains, ser. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1997.

[7] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis,
“Modelling with generalized stochastic petri nets,” SIGMETRICS Perform.
Eval. Rev., vol. 26, no. 2, p. 2, Aug. 1998. [Online]. Available:
https://doi.org/10.1145/288197.581193

[8] W. H. Sanders and J. F. Meyer, Stochastic Activity Networks:
Formal Definitions and Concepts. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2001, pp. 315–343. [Online]. Available: https:
//doi.org/10.1007/3-540-44667-2 9

[9] M. Wallace, “Modular architectural representation and analysis of
fault propagation and transformation,” Electron. Notes Theor. Comput.
Sci., vol. 141, no. 3, p. 5371, Dec. 2005. [Online]. Available:
https://doi.org/10.1016/j.entcs.2005.02.051

[10] Z. Haider, B. Gallina, and E. Z. Moreno, “Fla2ft: Automatic generation of
fault tree from concertofla results,” in 2018 3rd International Conference
on System Reliability and Safety (ICSRS), 2018, pp. 176–181.

23

24 BIBLIOGRAPHY

[11] F. Mhenni, N. Nguyen, and J. Choley, “Automatic fault tree generation
from sysml system models,” in 2014 IEEE/ASME International Conference
on Advanced Intelligent Mechatronics, 2014, pp. 715–720.

[12] I. Šljivo, B. Gallina, J. Carlson, H. Hansson, and S. Puri, “A method
to generate reusable safety case argument-fragments from compositional
safety analysis,” Journal of Systems and Software, vol. 131, pp. 570–590,
2017. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0164121216301273

[13] M. Kwiatkowska, G. Norman, and D. Parker, Probabilistic Model
Checking: Advances and Applications. Cham: Springer International
Publishing, 2018, pp. 73–121. [Online]. Available: https://doi.org/10.
1007/978-3-319-57685-5 3

[14] E. M. Hart and K. Bell, prism: Download data from the Oregon
prism project, 2015, r package version 0.0.6. [Online]. Available:
http://github.com/ropensci/prism

[15] O. Hasan, S. Tahar, and N. Abbasi, “Formal reliability analysis using
theorem proving,” IEEE Transactions on Computers, vol. 59, no. 5, pp.
579–592, May 2010.

[16] W. Ahmad and O. Hasan, “Formalization of fault trees in higher-order
logic: A deep embedding approach,” in Dependable Software Engineering:
Theories, Tools, and Applications, M. Fränzle, D. Kapur, and N. Zhan,
Eds. Cham: Springer International Publishing, 2016, pp. 264–279.

[17] R. K. Sahoo, M. S. Squillante, A. Sivasubramaniam, and Y. Zhang, “Fail-
ure data analysis of a large-scale heterogeneous server environment,” in
International Conference on Dependable Systems and Networks, 2004,
June 2004, pp. 772–781.

[18] B. Schroeder and G. Gibson, “A large-scale study of failures in
high-performance computing systems,” IEEE Trans. Dependable Secur.
Comput., vol. 7, no. 4, pp. 337–351, Oct. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TDSC.2009.4

[19] J. A. Duraes and H. S. Madeira, “Emulation of software faults: A field
data study and a practical approach,” IEEE Transactions on Software
Engineering, vol. 32, no. 11, pp. 849–867, 2006.

[20] J. Christmansson and R. Chillarege, “Generation of an error set that
emulates software faults based on field data,” in Proceedings of Annual
Symposium on Fault Tolerant Computing, 1996, pp. 304–313.

[21] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. . Fabre, J. . Laprie, E. Martins,
and D. Powell, “Fault injection for dependability validation: a methodology
and some applications,” IEEE Transactions on Software Engineering,
vol. 16, no. 2, pp. 166–182, Feb 1990.

[22] H. Madeira, M. Rela, F. Moreira, and J. G. Silva, “Rifle: A general purpose
pin-level fault injector,” in Dependable Computing — EDCC-1, K. Echtle,

BIBLIOGRAPHY 25

D. Hammer, and D. Powell, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1994, pp. 197–216.

[23] U. Gunneflo, J. Karlsson, and J. Torin, “Evaluation of error detection
schemes using fault injection by heavy-ion radiation,” in [1989] The Nine-
teenth International Symposium on Fault-Tolerant Computing. Digest of
Papers, 1989, pp. 340–347.

[24] J. Arlat, Y. Crouzet, and J. . Laprie, “Fault injection for dependability
validation of fault-tolerant computing systems,” in [1989] The Nineteenth
International Symposium on Fault-Tolerant Computing. Digest of Papers,
1989, pp. 348–355.

[25] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, “Using
heavy-ion radiation to validate fault-handling mechanisms,” IEEE Micro,
vol. 14, no. 1, pp. 8–23, 1994.

[26] J. Karlsson, J. Arlat, and G. Leber, “Application of three physical fault in-
jection techniques to the experimental assessment of the mars architecture,”
in 1995, Proceeding, Fifth Ann. IEEE Int’l Working Conf. Dependable
Computing for Critical Applications, 1995, pp. 150–161.

[27] L. Claudepierre and P. Besnier, “Microcontroller sensitivity to fault-
injection induced by near-field electromagnetic interference,” in 2019 Joint
International Symposium on Electromagnetic Compatibility, Sapporo and
Asia-Pacific International Symposium on Electromagnetic Compatibility
(EMC Sapporo/APEMC), 2019, pp. 673–676.

[28] J. Samson, W. Moreno, and F. Falquez, “Validating fault tolerant designs
using laser fault injection (lfi),” in 1997 IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, 1997, pp. 175–183.

[29] D. H. Habing, “The use of lasers to simulate radiation-induced transients
in semiconductor devices and circuits,” IEEE Transactions on Nuclear
Science, vol. 12, no. 5, pp. 91–100, 1965.

[30] A. Chatzidimitriou, P. Bodmann, G. Papadimitriou, D. Gizopoulos, and
P. Rech, “Demystifying soft error assessment strategies on arm cpus:
Microarchitectural fault injection vs. neutron beam experiments,” in 2019
49th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2019, pp. 26–38.

[31] S. Han, K. Shin, and H. Rosenberg, “Doctor: an integrated software fault
injection environment for distributed real-time systems,” in Proceedings
of 1995 IEEE International Computer Performance and Dependability
Symposium, 1995, pp. 204–213.

[32] G. Kanawati, N. Kanawati, and J. Abraham, “Ferrari: a flexible software-
based fault and error injection system,” IEEE Transactions on Computers,
vol. 44, no. 2, pp. 248–260, 1995.

[33] H. Schirmeier, M. Hoffmann, R. Kapitza, D. Lohmann, and O. Spinczyk,
“Fail∗: Towards a versatile fault-injection experiment framework,” in ARCS
2012, 2012, pp. 1–5.

26 BIBLIOGRAPHY

[34] J. Carreira, H. Madeira, and J. G. Silva, “Xception: a technique for the
experimental evaluation of dependability in modern computers,” IEEE
Transactions on Software Engineering, vol. 24, no. 2, pp. 125–136, 1998.

[35] J. Barton, E. Czeck, Z. Segall, and D. Siewiorek, “Fault injection experi-
ments using fiat,” IEEE Transactions on Computers, vol. 39, no. 4, pp.
575–582, 1990.

[36] D. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer, “Nftape:
a framework for assessing dependability in distributed systems with
lightweight fault injectors,” in Proceedings IEEE International Computer
Performance and Dependability Symposium. IPDS 2000, 2000, pp. 91–100.

[37] P. Yuste, D. de Andres, L. Lemus, J. Serrano, and P. Gil, “Inerte: inte-
grated nexus-based real-time fault injection tool for embedded systems,”
in 2003 International Conference on Dependable Systems and Networks,
2003. Proceedings., 2003, pp. 669–669.

[38] P. Yuste, J. C. Ruiz, L. Lemus, and P. Gil, “Non-intrusive software-
implemented fault injection in embedded systems,” in Dependable Com-
puting, R. de Lemos, T. S. Weber, and J. B. Camargo, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2003, pp. 23–38.

[39] J.-C. Ruiz, J. Pardo, J.-C. Campelo, and P. Gil, “On-chip debugging-
based fault emulation for robustness evaluation of embedded software
components,” in 11th Pacific Rim International Symposium on Dependable
Computing (PRDC’05), 2005, pp. 8 pp.–.

[40] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson, “Goofi: generic
object-oriented fault injection tool,” in 2001 International Conference on
Dependable Systems and Networks, 2001, pp. 83–88.

[41] P. Folkesson, S. Svensson, and J. Karlsson, “A comparison of simulation
based and scan chain implemented fault injection,” in Digest of Papers.
Twenty-Eighth Annual International Symposium on Fault-Tolerant Com-
puting (Cat. No.98CB36224), 1998, pp. 284–293.

[42] M. Liu, Z. Zeng, F. Su, and J. Cai, “Research on fault injection technology
for embedded software based on jtag interface,” in 2016 11th International
Conference on Reliability, Maintainability and Safety (ICRMS), 2016, pp.
1–6.

[43] H. Madeira, D. Costa, and M. Vieira, “On the emulation of software faults
by software fault injection,” in Proceeding International Conference on
Dependable Systems and Networks. DSN 2000, 2000, pp. 417–426.

[44] J. Duraes and H. Madeira, “Emulation of software faults by educated
mutations at machine-code level,” in 13th International Symposium on
Software Reliability Engineering, 2002. Proceedings., 2002, pp. 329–340.

[45] R. Chillarege and N. Bowen, “Understanding large system failures-a fault
injection experiment,” in [1989] The Nineteenth International Symposium
on Fault-Tolerant Computing. Digest of Papers, 1989, pp. 356–363.

BIBLIOGRAPHY 27

[46] W.-L. Kao and R. Iyer, “Define: a distributed fault injection and moni-
toring environment,” in Proceedings of IEEE Workshop on Fault-Tolerant
Parallel and Distributed Systems, 1994, pp. 252–259.

[47] Z. Kazemi, A. Papadimitriou, I. Souvatzoglou, E. Aerabi, M. M. Ahmed,
D. Hely, and V. Beroulle, “On a low cost fault injection framework for
security assessment of cyber-physical systems: Clock glitch attacks,” in
2019 IEEE 4th International Verification and Security Workshop (IVSW),
2019, pp. 7–12.

[48] (2003) NEXUS debugger. [Online]. Available: http://nexus5001.org/
wp-content/uploads/2015/02/APB179-NexusBooklet-1.pdf

[49] (1995) winIDEA integrated development environment. [Online]. Available:
https://www.isystem.com/products/software/winidea.html

[50] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas, “Gemfi:
A fault injection tool for studying the behavior of applications on unreliable
substrates,” in 2014 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2014, pp. 622–629.

[51] E. Touloupis, J. A. Flint, V. A. Chouliaras, and D. D. Ward, “Study of
the effects of seu-induced faults on a pipeline protected microprocessor,”
IEEE Transactions on Computers, vol. 56, no. 12, pp. 1585–1596, 2007.

[52] G. Choi and R. Iyer, “Focus: an experimental environment for fault
sensitivity analysis,” IEEE Transactions on Computers, vol. 41, no. 12,
pp. 1515–1526, 1992.

[53] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “Modifi: A
model-implemented fault injection tool,” in Computer Safety, Reliability,
and Security, E. Schoitsch, Ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 210–222.

[54] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer:
Exploiting application-level fault equivalence to analyze application
resiliency to transient faults,” in Proceedings of the Seventeenth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XVII. New York, NY,
USA: Association for Computing Machinery, 2012, p. 123134. [Online].
Available: https://doi.org/10.1145/2150976.2150990

[55] K. Goswami, “Depend: a simulation-based environment for system level
dependability analysis,” IEEE Transactions on Computers, vol. 46, no. 1,
pp. 60–74, 1997.

[56] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injec-
tion into vhdl models: the mefisto tool,” in Proceedings of IEEE 24th
International Symposium on Fault- Tolerant Computing, 1994, pp. 66–75.

[57] G. Saggese, N. Wang, Z. Kalbarczyk, S. Patel, and R. Iyer, “An experi-
mental study of soft errors in microprocessors,” IEEE Micro, vol. 25, no. 6,
pp. 30–39, 2005.

28 BIBLIOGRAPHY

[58] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Reorda, and M. Violante,
“Exploiting circuit emulation for fast hardness evaluation,” IEEE Transac-
tions on Nuclear Science, vol. 48, no. 6, pp. 2210–2216, 2001.

[59] D. de Andres, J. C. Ruiz, D. Gil, and P. Gil, “Fault emulation for de-
pendability evaluation of vlsi systems,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 16, no. 4, pp. 422–431, 2008.

[60] ——, “Fades: a fault emulation tool for fast dependability assessment,” in
2006 IEEE International Conference on Field Programmable Technology,
2006, pp. 221–228.

[61] R. Leveugle and A. Prost-Boucle, “A new automated instrumentation
for emulation-based fault injection,” in 2010 First IEEE Latin American
Symposium on Circuits and Systems (LASCAS), 2010, pp. 200–203.

[62] A. Ejlali and S. G. Miremadi, “Error propagation analysis using
fpga-based seu-fault injection,” Microelectronics Reliability, vol. 48, no. 2,
pp. 319–328, 2008. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0026271407001746

[63] M. Ebrahimi, A. Mohammadi, A. Ejlali, and S. G. Miremadi, “A
fast, flexible, and easy-to-develop fpga-based fault injection technique,”
Microelectronics Reliability, vol. 54, no. 5, pp. 1000–1008, 2014.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0026271414000067

[64] M. Rimen, J. Ohlsson, and J. Torin, “On microprocessor error behavior
modeling,” in Proceedings of IEEE 24th International Symposium on Fault-
Tolerant Computing, 1994, pp. 76–85.

[65] J. Arlat, Y. Crouzet, J. Karlsson, P. Folkesson, E. Fuchs, and G. Leber,
“Comparison of physical and software-implemented fault injection tech-
niques,” IEEE Transactions on Computers, vol. 52, no. 9, pp. 1115–1133,
2003.

[66] A. Bondavalli, A. Ceccarelli, L. Falai, and M. Vadursi, “Foundations of
measurement theory applied to the evaluation of dependability attributes,”
in 37th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks (DSN’07), June 2007, pp. 522–533.

[67] D. Skarin, R. Barbosa, and J. Karlsson, “Comparing and validating
measurements of dependability attributes,” in 2010 European Dependable
Computing Conference, April 2010, pp. 3–12.

[68] B. Sangchoolie, P. Folkesson, P. Kleberger, and J. Vinter, “Analysis
of cybersecurity mechanisms with respect to dependability and security
attributes,” in 2020 50th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2020, pp. 94–101.

[69] K. Pattabiraman, G. Li, and Z. Chen, “Error resilient machine learning for
safety-critical systems: Position paper,” in 2020 IEEE 26th International
Symposium on On-Line Testing and Robust System Design (IOLTS), 2020,
pp. 1–4.

BIBLIOGRAPHY 29

[70] D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, “Fault injection
analytics: A novel approach to discover failure modes in cloud-computing
systems,” IEEE Transactions on Dependable and Secure Computing, 2020,
early access.

[71] M. Moradi, B. J. Oakes, and J. Denil, “Machine Learning-assisted Fault
Injection,” in 39th International Conference on Computer Safety, reliability
and Security (SAFECOMP), Position Paper, Lisbon, Portugal, Lisbon,
Portugal, Sep. 2020. [Online]. Available: https://hal.laas.fr/hal-02931709

[72] S. Jha, S. Banerjee, T. Tsai, S. K. S. Hari, M. B. Sullivan, Z. T. Kalbarczyk,
S. W. Keckler, and R. K. Iyer, “Ml-based fault injection for autonomous ve-
hicles: A case for bayesian fault injection,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
June 2019, pp. 112–124.

[73] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Comput. Surv., vol. 48,
no. 3, Feb. 2016. [Online]. Available: https://doi.org/10.1145/2841425

[74] J. C. for Guides in Metrology, “Jcgm 100: Evaluation of measurement
data guide to the expression of uncertainty in measurement,” JCGM,
Tech. Rep., 2008.

[75] D. Skarin, R. Barbosa, and J. Karlsson, “Goofi-2: A tool for experimental
dependability assessment,” in 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), 2010, pp. 557–562.

[76] W. G. Bouricius, W. C. Carter, and P. R. Schneider, “Reliability
modeling techniques for self-repairing computer systems,” in Proceedings
of the 1969 24th National Conference, ser. ACM ’69. New
York, NY, USA: ACM, 1969, pp. 295–309. [Online]. Available:
http://doi.acm.org/10.1145/800195.805940

[77] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, June 2015, pp. 319–330.

[78] J. S. Milton and J. C. Arnold, Introduction to Probability and Statistics:
Principles and Applications for Engineering and the Computing Sciences,
4th ed. USA: McGraw-Hill, Inc., 2002.

[79] M. Cukier, D. Powell, and J. Ariat, “Coverage estimation methods for
stratified fault-injection,” IEEE Transactions on Computers, vol. 48, no. 7,
pp. 707–723, July 1999.

[80] D. Powell, E. Martins, J. Arlat, and Y. Crouzet, “Estimators for fault tol-
erance coverage evaluation,” in FTCS-23 The Twenty-Third International
Symposium on Fault-Tolerant Computing, June 1993, pp. 228–237.

[81] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert, “Statistical fault
injection: Quantified error and confidence,” in 2009 Design, Automation
Test in Europe Conference Exhibition, April 2009, pp. 502–506.

30 BIBLIOGRAPHY

[82] I. Tuzov, D. de Andrs, and J. Ruiz, “Accurate robustness assessment
of hdl models through iterative statistical fault injection,” in 2018 14th
European Dependable Computing Conference (EDCC), 2018, pp. 1–8.

[83] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538),
Dec 2001, pp. 3–14.

[84] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson, “Assembly-level pre-
injection analysis for improving fault injection efficiency,” in Dependable
Computing - EDCC 5, M. Dal Cin, M. Kaâniche, and A. Pataricza, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 246–262.

[85] H. Hong, J. Lim, H. Lim, and S. Kang, “Lifetime reliability enhancement
of microprocessors: Mitigating the impact of negative bias temperature
instability,” ACM Comput. Surv., vol. 48, no. 1, Sep. 2015. [Online].
Available: https://doi.org/10.1145/2785988

[86] B. Ullmann, M. Jech, K. Puschkarsky, G. A. Rott, M. Waltl, Y. Illarionov,
H. Reisinger, and T. Grasser, “Impact of mixed negative bias temper-
ature instability and hot carrier stress on mosfet characteristicspart i:
Experimental,” IEEE Transactions on Electron Devices, vol. 66, no. 1, pp.
232–240, 2019.

[87] I. Tuzov, D. d. Andrs, and J.-C. Ruiz, “Dependability-aware design space
exploration for optimal synthesis parameters tuning,” in 2017 47th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), 2017, pp. 121–132.

[88] I. Tuzov, D. de Andrs, and J.-C. Ruiz, “Robustness-aware design space
exploration through iterative refinement of d-optimal designs,” in 2019 15th
European Dependable Computing Conference (EDCC), 2019, pp. 23–30.

