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Chiral effective field theory (χEFT), as originally proposed by Weinberg, promises a theoretical connection
between low-energy nuclear interactions and quantum chromodynamics (QCD). However, the important prop-
erty of renormalization-group (RG) invariance is not fulfilled in current implementations and its consequences for
predicting atomic nuclei beyond two- and three-nucleon systems has remained unknown. In this work we present
a systematic study of recent RG-invariant formulations of χEFT and their predictions for the binding energies
and other observables of selected nuclear systems with mass numbers up to A = 16. Specifically, we have carried
out ab initio no-core shell-model and coupled cluster calculations of the ground-state energy of 3H, 3,4He, 6Li,
and 16O using several recent power-counting (PC) schemes at leading order (LO) and next-to-leading order,
where the subleading interactions are treated in perturbation theory. Our calculations indicate that RG-invariant
and realistic predictions can be obtained for nuclei with mass number A � 4. We find, however, that 16O is
either unbound with respect to the four α-particle threshold, or deformed, or both. Similarly, we find that
the 6Li ground-state resides above the α-deuteron separation threshold. These results are in stark contrast
with experimental data and point to either necessary fine-tuning of all relevant counterterms, or that current
state-of-the-art RG-invariant PC schemes at LO in χEFT lack necessary diagrams—such as three-nucleon
forces—to realistically describe nuclei with mass number A > 4.

DOI: 10.1103/PhysRevC.103.054304

I. INTRODUCTION

Effective field theory (EFT) [1] provides a theoretical
framework for predicting physical phenomena—normally
within some energy domain of interest—without knowing or
assuming the full details of the underlying physics. Indeed,
most physical systems exhibit many characteristic energy and
length scales, and with the tools of EFT we can exploit such
scale separations for analyzing physical processes. Although
it is not always obvious, this approach is used throughout
the physical sciences. For instance, not much is gained by
including the quark degrees of freedom in the quantum elec-
trodynamic description of the hydrogen atom.

The EFT philosophy appears particularly suitable for ap-
plication in low-energy nuclear physics calculations. Indeed,
computing nuclei directly from the Lagrangian of quan-
tum chromodynamics (QCD), via lattice QCD methods, is
extremely complicated, and in most cases computationally
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challenging or intractable, in particular within the nonpertur-
bative region of QCD.

Chiral effective field theory (χEFT) [2–15] promises a
viable method for deriving the low-energy description of the
pion-mediated nuclear interaction that is also constrained by
the symmetries of QCD, and in particular the spontaneous
breaking of the approximate chiral symmetry of quarks. This
approach could potentially connect the description of atomic
nuclei to the standard model of particle physics. Further-
more, an EFT offers a handle on estimating the impact of
omitted higher-order dynamics that also contribute to the epis-
temic uncertainty of the approach. If the χEFT description
of the nuclear interactions complies with all field-theoretical
requirements, in particular renormalization group (RG) in-
variance, it could significantly increase the predictive power
of ab initio computations of nuclear properties [16–25]. In
this paper we present a first study of the nuclear binding
mechanism in selected low-mass nuclei using RG-invariant
formulations of the strong nuclear interaction.

The overarching strategy in χEFT is to start from an effec-
tive Lagrangian including all interaction terms with the same
symmetries as QCD below the chiral symmetry-breaking
scale ≈1 GeV. Applying the methods of chiral perturbation
theory yields a potential description of the internucleon in-
teraction in terms of irreducible multipion exchanges and
zero-range contact interactions. In this sense, χEFT is of-
ten viewed as a low-energy expansion of QCD, dressed in
the relevant degrees of freedom—pions and nucleons—and
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sometimes the lowest excitation of the nucleon, i.e., the
�(1232)-isobar [5,26–28].

In EFT studies of nuclei, one aims at predicting low-energy
nuclear observables using an order-by-order improvable
potential-expansion in terms of a small parameter constructed
as a ratio between the physically relevant soft and hard scales.
In χEFT, the hard momentum-scale is �b ≈ 0.5–1 GeV, and
the soft scale is Q = max(q, mπ ), where q denotes the exter-
nal (initial or final state) momentum scale of the interacting
nucleons, and mπ ≈ 140 MeV denotes the pion mass. Up to a
certain order ν in the chiral expansion, only a finite number of
interaction terms, or diagrams, contribute. The organizational
scheme for assigning a diagram to a specific order in the EFT
according to its expected importance is referred to as power
counting (PC). Besides renormalizing the potential, the PC
should also ensure RG-invariant amplitudes, i.e., observables.
RG-invariance is a crucial requirement in any EFT. When
integrating out the pion degree of freedom, one can construct
a so-called pionless EFT, which is easier to deal with analyti-
cally and for which the path towards renormalizability is clear
[29]. This framework has been employed for successfully de-
scribing few-nucleon systems, predominantly helium isotopes
[30–33], and for extrapolating lattice QCD predictions [34].
However, pionless EFT appears inadequate for predicting re-
alistic properties of light- and medium-mass nuclei heavier
than 4He [35–38], and it remains an open question whether
subleading orders will provide a remedy.

In nuclei, the likely importance of internucleon inter-
actions with external momenta q � mπ suggests the need
for an explicit inclusion of pion physics and the use of
χEFT. Unfortunately, the presence of the pion propagator
typically complicates the Schrödinger equation to the extent
that analytical studies become intractable. One must there-
fore resort to numerical checks of RG-invariance at each
chiral order. For nuclear structure calculations—which are
always performed within a truncated Hilbert space—enlarging
the model space will determine whether all high-momentum
(short range) dynamics are properly accounted for as contact
interactions. In practice, this is typically done by increasing
the imposed momentum cutoff � that serves to regularize
the potential. In this procedure, additional high-momentum
details are explicitly exposed. RG invariance is destroyed if
the short-range couplings (counterterms)—typically referred
to as low-energy constants (LECs)—fail to run with the ad-
ditional high-momentum ingredients. The resulting lack of
RG invariance yields observable predictions that depend on
the regularization procedure. In contrast, an EFT is order-by-
order renormalizable if the predicted observables evaluated up
to order ν have residual cutoff dependence equal to or less
than ( Q

�
)ν+1.

Chiral perturbation theory provides an order-by-order
renormalizable framework for constructing a low-energy
EFT of QCD and has also been applied quite successfully
to the single-nucleon sector with explicit pions, see, e.g.,
Refs. [39,40]. Problems emerge, however, with the inclusion
of two or more nucleons. These difficulties were not entirely
clear in the early days of χEFT [2] because it was initially
assumed that the PC employed in the single-nucleon sector
would successfully carry over to renormalize also the mult-

inucleon sector. This approach is colloquially referred to as
Weinberg power counting (WPC) and is the de facto PC em-
ployed in quantitatively realistic descriptions of atomic nuclei.
Nevertheless, it is already well known that χEFT based on
WPC will not generate RG-invariant results for observables,
see, e.g., Ref. [41].

Nowadays, there exist several PCs for χEFT [42–53]
that produce RG-invariant nucleon-nucleon (NN) scattering
amplitudes. However, in the present paradigm of ab ini-
tio computations, such PCs remain unexplored in studies of
atomic nuclei with mass number A � 4. In fact, there are
merely two attempts to demonstrate RG invariance of nu-
clear structure calculations beyond the NN sector. These are
Faddeev-type calculations of the three-body systems 3H, 3He
[41,54].

In this work we significantly broaden the established field
of low-energy nuclear theory by applying RG-invariant χEFT
interactions to selected nuclei with mass numbers A � 16.
This constitutes an important leap forward in the exploration
of RG-invariant formulations of χEFT [44]. We consider
some of the most recent RG-invariant χEFT formulations
[42–44], and employ the no-core shell model (NCSM) [55,56]
and the coupled-cluster (CC) method [21,57–62] to calculate
the ground-state energy and nuclear charge radius of 3H, 3He,
4He, 6Li, and the ground-state energy of 16O, respectively.
Note that the total binding energy for the system is the nega-
tive of the ground-state energy. The NCSM gives, in principle,
an exact solution to the many-nucleon Schrödinger equation,
but is limited to light nuclei due to the exponential increase
in computing cost with the system size (a combined measure
of the number of basis states and nucleons). On the other
hand the CC method has a much softer (polynomial) scaling
with the system size, and it gives a controlled and systemat-
ically improvable approximation to the exact solution for the
wave function [21,62]. The access to consistently increasing
computational power and the development of similarity RG
techniques [18] enables computation of nuclei as heavy as
100Sn using ab initio CC and similar methods [63–66]. In
this work, however, we are focusing on RG invariance and
must therefore explore relatively large values for the regu-
lator cutoff in the interactions. In both NCSM and CC, the
size of the employed basis must go hand-in-hand with a
large cutoff to resolve the short-range part of the interaction
while also capturing the long-range part of the wave function.
It is therefore a big computational challenge to predict nu-
clear many-body observables using a nuclear interaction with
strong high-momentum details. Where possible, we employ
recent extrapolation techniques [67–71] to obtain reasonably
converged results for the ground-state energy of the nuclei
considered in this work.

In a renormalizable χEFT, the subleading contributions,
i.e., beyond leading order (LO), are treated in perturbation
theory. Indeed, in order to achieve RG invariance at the NN
level it has been shown that—due to a Wigner bound-like
effect [72,73]—one has to either treat all subleading con-
tributions perturbatively or promote at least two short-range
contact terms nonperturbatively at the same time [74–76].1

1There also exists a renormalization scheme which corresponds to
using infinitely many contact terms [77,78].
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In this work we will follow the strategy of perturbatively
including subleading contributions, and we also demonstrate
how a Hellmann-Feynman procedure can be used to achieve
this without modifying existing many-body solvers.

This paper is organized as follows: In Sec. II, we briefly
introduce the χEFTs used in this work and Weinberg’s initial
approach. Then, in Sec. III, we present ab initio predictions
for 3H and 3,4He up to NLO in a well-known RG-invariant
PC. Corresponding NCSM and CC calculations for 6Li and
16O, respectively, are presented in Sec. IV. In Sec. V we
describe some additional and relevant PC schemes based on
a dibaryon-field, a separable version of the dibaryon field
[45,79], and a perturbative treatment of most P waves [53].
In this section we also present the CC predictions for the
ground-state energy in 16O using such alternative PC schemes.
We summarize our findings and their implications in Sec. VI.

II. MODIFIED WEINBERG POWER COUNTING

Detailed properties of several nuclear systems can nowa-
days be successfully described by solving the nonrelativistic
Schrödinger equation using sophisticated potentials based on
Weinberg’s initial approach [2,3]; see, e.g., Refs. [64,80–90].
Such interactions also enable a description of low-energy NN
scattering data with an accuracy comparable to [9] and be-
yond [91–93] existing high-precision and phenomenological
potentials [94–96]. Despite the fact that WPC has enabled
successful ab initio models of the strong nuclear interaction,
there are several reasons for modifying Weinberg’s initial pre-
scription [2,3] for generating NN and three-nucleon (NNN)
potentials. In particular, the amplitude produced from Wein-
berg’s prescription for generating the potential is not RG
invariant [41,97–99]. We emphasize that WPC is important
for guiding experimental and theoretical analyses of nuclei
and nuclear systems, but it does not necessarily lead us closer
to analyzing nuclei from first principles, i.e., from QCD. We
should also point out that there exist arguments [77,78,100–
102] for an alternative view on renormalization in χEFT. See,
e.g., Refs. [15,103–110] for extensive discussions on oppos-
ing views regarding this topic. Besides the above problems,
Weinberg’s prescription also lacks a pion-mass-dependent
contact term—which is demanded by RG in the chiral extrap-
olation applications [111,112]. Although this is an important
aspect of the theory, it is not the focus of our present work.

The conventional implementation of χEFT proceeds
in two steps: First, one constructs the long-range (pion-
exchange) potential from the chiral Lagrangian. Then one
collects the necessary short-range diagrams into a contact
potential to cancel the divergences of the aforementioned
long-range pion potential, and subsequently iterates the sum
of all potential terms nonperturbatively in the Lippmann-
Schwinger or Schrödinger equation to obtain the amplitudes
for constructing, e.g., the scattering S matrix. The resulting
potentials are singular at short distances (large momenta),
and therefore require regularization using a regulator func-
tion fR with an ultraviolet cutoff �. In this work we use a
momentum-space representation and employ a standard, non-

local, regulator function

fR(p; �) = exp[(−p/�)2n], (1)

with n = 2. We denote the initial (final) relative momenta with
p (p′), and use q = p′ − p for the momentum transfer. Note
that local regulators can also be adopted, and this has been
explored in coordinate-space quantum Monte Carlo calcula-
tions up to NNLO in χEFT using WPC [113,114]. One can
also mix the local and nonlocal formalism [11,115]. See also
Ref. [116] for a detailed discussion of some of the observed
artifacts induced by different regulator functions.

Clearly, predictions of observables should not depend on
the chosen regulator or the value of the regulator cutoff �,
i.e., the LECs in the contact potential must act as counterterms
and run with � at each chiral order. To achieve RG-invariant
amplitudes we must modify WPC.

A. Leading order

At LO in WPC, the interaction potential consists of the
well-known one-pion-exchange potential (OPE) accompanied
by two NN contact terms acting in the singlet and triplet S
waves. In momentum space it is represented as

V WPC
LO (p, p′) = g2

A

4 f 2
π

τ1 · τ2
(σ1 · q)(σ2 · q)

m2
π + q2

+ C̃1S0
+ C̃3S1

.

(2)

Here, C̃1S0
, C̃3S1

denote the LO contact LECs acting in sepa-
rate partial waves. Above, and in the following, we suppress
the � dependence of the LECs. Also, we adopt the value gA =
1.27 for the axial coupling and fπ = 93 MeV for the pion-
decay constant, respectively, and employ mπ = 138 MeV and
mN = 938.9 MeV for the pion and nucleon mass, respectively.

It is well established that V WPC
LO produces nonrenormal-

izable amplitudes in the singular and attractive partial-wave
channels, e.g., 3P0 and 3P2 − 3F2 [41]. A remedy of this sit-
uation can be achieved by promoting two additional contact
terms at the potential level (otherwise subleading in WPC)
to the 3P0 and 3P2 channels (one for each), and by treating
all partial waves with angular-momentum quantum number

 > 12 perturbatively [53]. These modifications will lead to
RG-invariant NN amplitudes at LO. Due to its similarity with
WPC at LO, we refer to this RG-invariant PC as modified
Weinberg power counting (MWPC) throughout this work. The
corresponding momentum-space potential at LO is given by

V MWPC
LO (p, p′) = V WPC

LO (p, p′) + (
C̃3P0

+ C̃3P2

)
pp′. (3)

At this order we obtain the amplitudes nonperturbatively in
all partial waves with 
 � 1. Note that MWPC and WPC
coincide with each other in S waves. Furthermore, the S-wave
component of the nuclear interaction has a large impact on
nuclear binding energies, and the NN scattering phase shifts
from MWPC in the 1S0 partial wave show a sizable over-
attraction with respect to the Nijmegen partial-wave analysis

2In Sec. V C we explore a PC with a perturbative treatment of most
P waves.
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FIG. 1. The 1S0 NN scattering phase shifts at LO in MWPC as a
function of laboratory scattering energy TLab for several values of the
regulator cutoff �. Note that the over-attraction persists even for the
lowest cutoff value � = 450 MeV.

[96] even at very low scattering energies, see Fig. 1. To rem-
edy this unphysical over-attraction, it is motivated to consider
alternative PCs, which will be discussed further in Sec. V.
Throughout this work, we neglect any isospin-breaking con-
tributions in the PC schemes we employ. However, we do
include the Coulomb interaction ≈α/r (α is the fine-structure
constant) nonperturbatively at LO in all ab initio calculations
although it, in principle, requires special treatment due to a
renormalization issue. See, e.g., the discussion in Ref. [117].

For quantitative predictions we must infer numerical values
of the relevant LECs for every value of the regulator cutoff
� we employ. The primary goal of this work is to present
the first predictions of bulk properties, primarily the ground-
state energy, of selected atomic nuclei up to 16O using MWPC,
as well as some other RG-invariant NN interactions. Thus, to
proceed with a first analysis we straightforwardly determine
the numerical values for the contact LECs such that the chosen
theory reproduces the experimental values for a selected set
of calibration observables. A future procedure could entail a
more detailed statistical inference analysis of the underlying
EFT uncertainty as well as the LECs themselves [118–120].

Since we employ a pionful theory, we generally prefer to
renormalize the LECs at a relative NN momentum k cor-
responding to mπ where possible. This relative momentum
corresponds approximately to a laboratory scattering energy
TLab = 40 MeV. However, to accommodate the nearly bound
character of the 1S0 channel we had to pick a different kine-
matical calibration point for this channel. Indeed, matching
the only counterterm in this channel to reproduce the phase
shift at k ≈ mπ leads to a rather poor reproduction of the
phase shift at k < mπ . We therefore fit the LO LEC in the 1S0

channel to reproduce the S-wave scattering length a0 = −23.7
fm [121]. Also, in the 3S1 - 3D1 channel, we renormalize the

FIG. 2. Selected phase shifts at LO in MWPC as a function of
laboratory scattering energy TLab. Here, the C3S1

LEC is fitted to
reproduce the deuteron binding energy while the P-wave LECs are
fit to reproduce the phase shifts at TLab = 40 MeV.

C̃3S1
counterterm to reproduce the deuteron binding energy.

For 3P2 - 3F2, when calibrating to reproduce the phase shift at
k ≈ mπ , we observed a sizable over-attraction with respect
to the Nijmegen analysis for k > mπ . This is clearly visible
in Fig. 2. To study the impact of this over-attraction, we
alternatively fit the 3P2 - 3F2 phase shifts at TLab = 200 MeV.
We will refer to these different LO interactions as MWPC(40)
and MWPC(200). The latter fit yields a dramatically different
result for this coupled channel, see Fig. 3. As expected, and
as we will see in Sec. III, this has a negligible, percent-level

FIG. 3. 3P2 - 3F2 phase shift at LO in MWPC as a function of
laboratory kinetic energy TLab. Here the relevant LEC is fitted to
reproduce the phase shifts at TLab = 200 MeV.
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impact on the binding energy in few-nucleon systems. On
the other hand, the details of the fitting strategy appears to
have a significant effect on the ab initio description of the
ground-state energy in16O. This is a key finding of this work,
and we will return to this point in more detail in Sec. IV. In
MWPC, at the cutoff � = 750 (1050) MeV, deep spurious
bound states start to appear in the 3P0 (3S1 - 3D1) channel. We
follow the standard projection method as listed in Appendix
B of Ref. [41] to remove those states. Ideally, an associated
parameter λ, that is used to control the projection of the spu-
rious states, should be taken very large. However, this would
also result in extremely large values for the matrix elements in
the ab initio calculations and will induce numerical problems.
We find it sufficient to employ λ ≈ 10–15 GeV.

B. Next-to-leading order

According to the analyses in Refs. [42–45,51], the NLO
contribution in MWPC has to come one chiral order before
the appearance of the two-pion-exchange potential. In fact, the
entire NLO contribution to the amplitude only consists of 1S0

short-range interactions

V MWPC
NLO (p, p′) = C1S0

+ Ĉ1S0
(p2 + p′2). (4)

We treat subleading orders perturbatively and this 1S0 contri-
bution is evaluated in the distorted-wave Born approximation.
To be clear, there are three differences between the NLO in
MWPC and WPC:

(i) NLO in MWPC appears one chiral order earlier than
in WPC.

(ii) NLO in MWPC contains only short-range terms as
listed in Eq. (4).

(iii) The NLO interaction is treated perturbatively in
MWPC, rather than being iterated to all orders as in
WPC.

We note that the NLO contribution in Eq. (4) contains
two additional LECs at NLO, acting only in the 1S0 channel.
However, the LEC C1S0

is the NLO correction to C̃1S0
. Thus,

we effectively only have two LECs in the 1S0 channel up to,
and including, NLO. Still, this gives us plenty of freedom
to describe the corresponding phase shift. In this work we
choose to renormalize the 1S0 LEC to reproduce the scat-
tering length a0 = −23.7 fm and the Nijmegen phase shift
at TLab = 250 MeV. As expected, the resulting predictions
exhibits a very nice agreement with the Nijmegen analysis,
as shown in Fig. 4. Note also the very weak dependence on
the regulator cutoff � at this order (cf. Fig. 1). The LO and
NLO predictions for the effective range r0, as a function of
the regulator cutoff �, are shown in Fig. 5. Here, we employ
a larger range of momentum cutoffs just to demonstrate the
expected plateau behavior of a RG-invariant amplitude. In
NN calculations it is typically not challenging to take � to
even larger values, e.g., 10–20 GeV. However, most ab initio
methods for solving the many-body Schrödinger equation fail
to converge for � � 600 MeV due to strong induced wave
function correlations, and limitations on the employed model-
space sizes. Several examples of this will be encountered
below.

FIG. 4. The 1S0 phase shift up to NLO in MWPC as a function
of laboratory scattering energy TLab. The relevant LECs are fitted to
reproduce the scattering length a0 = −23.7 fm and and the Nijmegen
phase shift at TLab = 250 MeV.

III. PREDICTIONS FOR 3H AND 3,4He USING χEFT
POTENTIALS IN MODIFIED

WEINBERG POWER COUNTING

In this section we present the results from NCSM few-
nucleon calculations of the bulk properties of 3H and 3,4He
based on the χEFT potentials in MWPC at LO and NLO
presented above. For these calculations we employed the
MWPC(40) LO potential with the C̃3P2

LEC calibrated to
reproduce the Nijmegen phase shifts at relative momen-
tum k ∼ mπ (TLab = 40 MeV). For comparison we also
performed NCSM calculations using the MWPC(200) LO po-
tential where the 3P2 - 3F2 channel was renormalized at TLab =
200 MeV. However, since the two renormalized 3P2 - 3F2

partial-wave contributions are both small at lower energies
(e.g., Tlab < 100 MeV), these two different strategies for cali-
brating the C̃3P2

LEC produce at most 5% relative differences
in the energies and radii for A = 3, 4 nuclei.

FIG. 5. Predictions for the effective range r0 in the 1S0 channel
up to NLO in the MWPC. The MWPC NLO result is closest to the
Nijmegen value (dashed line).
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FIG. 6. Ground-state energies [panels (a)–(c)] and point-proton radii [panels (d)–(f)] for 3H, 3He, and 4He at different values of the
regulator-cutoff �. All results are obtained using IR extrapolations of NCSM results for oscillator frequencies h̄� ∈ [35, 75] MeV in 61(25)
major oscillator shells for A = 3(4) systems, respectively. The shaded bands indicate the order of magnitude in the uncertainties due to
subleading IR corrections. Note the plateaus—indicating RG invariance—with MPWC and the apparent lack thereof for energy results [panels
(a)–(c)] based on the WPC interactions, as manifested by the sharp jump around � ≈ 1000 MeV. See the text for details.

Ground-state energies at LO and NLO, and radii at LO,
are obtained using the translationally invariant Jacobi-NCSM
method [122] in a harmonic-oscillator basis. For all calcula-
tions we employ rather large oscillator frequencies h̄� such
that we can capture the high-energy components of the po-
tential for large values of the ultraviolet regulator cutoff �.
To estimate the values of the model-space converged results
we extrapolate in the infrared (IR) momentum scale [67–71]
using the formalism outlined in Ref. [123]. All extrapola-
tions are based on a set of NCSM calculations carried out
for h̄� ∈ [35, 75] MeV using 61(25) major oscillator shells
for A = 3(4), respectively. The extrapolation approach [123]
allows an order of magnitude estimate of the magnitude of
subleading IR corrections, which we will indicate with an
uncertainty band.

The MWPC potentials are known to generate RG-invariant
NN amplitudes. Thus, we expect the numerical values for
each observable in our NCSM calculations to exhibit a plateau
with respect to large values of the regulator cutoff �. Should
this plateau not manifest itself, it would be a clear signa-
ture of missing counterterms necessary to absorb the exposed
short-range physics at the present order. Such a deficit is
clearly visible in, e.g., LO predictions of the ground-state
energies in A = 3, 4 systems when using WPC, as shown
in the left panels of Fig. 6. For these calculations, the en-
ergies exhibit a clearly noticeable jump at � ≈ 1000 MeV
indicating a possible divergence. This behavior is due to the
well-known inconsistency in WPC that originates in the lack

of necessary P-wave counterterms [41]. Such artifacts are
remedied in MWPC, and we find that the binding energies
of 3H and 3He indeed exhibit convincing signs of plateaus as
� � 800 MeV at LO and NLO, see the left panels in Fig. 6.
This is in accordance with the known results of the Faddeev
calculations presented in Refs. [41,54], where the cutoff could
also be taken much larger. We have verified that our LO
(NLO) results agree with Song et al. [54,124] when the same
NN input and cutoff are used. It is challenging to converge
Jacobi-NCSM calculations for A = 3 nuclei when using � �
1.2 GeV. Using large oscillator frequencies we observe in-
creasing extrapolation uncertainties due to subleading IR
corrections.

For 4He, the model-space convergence of the NCSM cal-
culations, using interactions with larger cutoffs, are associated
with larger uncertainties in the IR extrapolation, see bottom
row of panels in Fig. 6. Still, we see the first signs of a
RG-invariant description of 4He in MWPC.

We note that the error bands presented in this work do
not include any estimate of the order-by-order EFT truncation
error. Here, we focus on the prerequisites, i.e., RG invari-
ance, for enabling an EFT-based analysis of the epistemic
uncertainty. Nevertheless, the cutoff variation of the results
presented in this work serve as a rough handle on the trun-
cation error. More detailed discussions regarding this subject
can be found in Refs. [119,120,125–131].

For point-proton radii, we make predictions at LO, as
shown in the right panels of Fig. 6. Again, IR extrapola-
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tions were employed following Ref. [123]. The bands indicate
rather larger uncertainties from subleading IR corrections,
which is consistent with the need to employ large oscillator
frequencies in the NCSM. Nevertheless, we observe a similar
plateau for radii as for the energies and observe signs of
RG-invariant predictions in this observable.

The MWPC results agree rather well with the experimental
values, and the size of subleading corrections to the ground-
state energy (as seen when going from LO to NLO) is very
promising. In fact, up to and including NLO, where additional
S-wave physics is included, the energies in 3H and 3He re-
produce experiment nearly exactly, which also indicates that
higher-order contributions should be rather small. The impact
of such corrections remains to be explicitly tested. For 4He,
the higher-order contributions must be slightly larger, which is
also expected already in dimensional counting [132]. Overall,
MWPC appears to make realistic energy and radius predic-
tions for few-nucleon systems with mass numbers A � 4.

Perturbative calculations in the no-core shell model

All LO calculations were carried out in a fully nonperturba-
tive fashion, while the NLO results in MWPC were obtained
perturbatively. In practice, using the Jacobi-coordinate NCSM
code we obtained the NLO results presented above using a
procedure based on the Hellmann-Feynman theorem. First, we
multiply the NLO interaction potential in Eq. (4) with a small
coefficient and subsequently solve the three- and four-body
Schrödinger equations nonperturbatively. By examining the
results as a function of the small coefficient, the perturbative
contribution can be reliably extracted. See, e.g., Sec. IV A in
Ref. [133] for the detailed procedure.

It is also possible to directly evaluate the expectation
value of first-order perturbation theory. In the NCSM this
can be done with minimal modifications by terminating the
iterative Lanczos diagonalization after a single matrix-vector
multiplication using the LO eigenstate as pivot vector. We
implemented this approach in the M-scheme code pANTOINE
[123] and verified that the different procedures agree for the
A = 3, 4 results. The ability to perform this kind of extraction
is a crucial step toward the implementation of any perturbative
scheme. Starting from second order in perturbation theory, it
is more involved to directly evaluate the perturbative correc-
tions. On the other hand, the Hellmann-Feynman procedure
can be carried out to extract the perturbative contribution at
arbitrary order without much modification of current NCSM
codes.

IV. PREDICTIONS FOR 6Li AND 16O USING χEFT
POTENTIALS IN MODIFIED

WEINBERG POWER COUNTING

In this section we present NCSM and CC predictions for
the ground-state energies of 6Li and 16O at LO and NLO using
MWPC. For 6Li we also compute the point-proton radius and
the ground-state quadrupole moment at LO. Potentials based
on RG-invariant formulations of χEFT, e.g., MWPC, have
never been employed for predicting nuclei in the p shell or
beyond. Our main focus here is to study the evolution of the

ground-state energy in selected A > 4 nuclei as we increase
the regulator cutoff �. The enlargement of the cutoff leads to
an enhanced ultraviolet part of the potential. In the NCSM
this ultraviolet physics must be captured by enlarging the
model space, which induces an exponential increase in basis
size. We find that it becomes very challenging to converge
the ground-state energy and wave function for A > 4 nuclei
with � � 600 MeV. The ultraviolet component also causes
difficulties in producing a reasonable reference state for the
CC calculations. In this work we obtained reliable results for
6Li and 16O up to � ≈ 650 and 600 MeV, respectively.

For nuclei with mass number A > 4, the effect of P waves
becomes more relevant. As outlined in Sec. II, we constructed
LO potentials, labeled MWPC(40) and MWPC(200), where
the LEC in the 3P2 wave was renormalized to reproduce
phase-shift data in two different ways, see Figs. 2 and 3. The
NLO potential in MWPC, see Eq. (4), only affects the 1S0

wave and is identical for MWPC(40) and MWPC(200). For
the MWPC(40) interaction, the phase shifts in the 3P2 - 3F2

channel are overly attractive. In contrast, the MWPC(200)
potential exhibit more repulsive phase shifts. A detailed study
of how the LO description of the 1S0 phase shifts in χEFT
impacts nuclear ground-state energies is presented in Sec. V.

A. No-core shell-model calculations of 6Li in modified Weinberg
power counting

As demonstrated in Sec. III, the bulk properties of
few-nucleon systems with mass number A � 4 can be de-
scribed reasonably well using MWPC. Furthermore, the
results exhibit signatures of RG-invariance which is a min-
imal requirement of an EFT. In some ways, 6Li constitutes
the simplest nucleus beyond 4He. It consists of only two
more nucleons, and with the additional proton and neutron
naively represented as harmonic oscillator P-wave single-
particle states. Here, we perform NCSM calculations of 6Li
using the M-scheme code pANTOINE [123] with oscillator
basis frequencies h̄� ∈ [30, 55] MeV in 20 major oscilla-
tor shells (Nmax = 18). The relatively large frequencies are
needed to improve the ultraviolet convergence for higher
values of the regulator cutoff. We study regulator cutoffs
� ∈ [450, 700] MeV and � ∈ [450, 650] MeV, in 50 MeV
increments, for MWPC(40) and MWPC(200) interactions,
respectively. Consequently, we again adopted the infrared ex-
trapolation scheme from Ref. [123]. It should also be noted
that the NLO corrections were computed perturbatively with
pANTOINE for 6Li.

The effects of relative P waves on the ground-state energy
of 6Li is obvious when comparing the results for MWPC(40)
and MWPC(200) in Fig. 7. Full convergence with respect to
� is not reached for 6Li due to the computational limitations.
However, our results indicate that the ground-state at LO is
less bound than 4He plus 2H (α + d threshold) obtained with
the same interaction once � � 550. This is a signature that
MWPC does not generate a physical description of the 6Li
state, which should be bound with respect to the α + d thresh-
old by nearly 2 MeV. We note that this unphysical behavior
has been observed also with WPC at LO [134]. Furthermore,
this unphysical description appears to persist at NLO. How-
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FIG. 7. Ground-state energies E for 6Li at LO and NLO using MWPC(40) [panel (a)] and MWPC(200) [panel (b)] as a function of the
regulator cutoff �. The MWPC NLO results exhibit a markedly weaker dependence on the cutoff � and lie closer to the experimental result
(dashed line). The bands indicate the estimated uncertainties from subleading IR corrections. The dotted lines show the α + d threshold (using
consistent interactions).

ever, some care is needed when interpreting our results. The
NCSM method includes all particle-hole excitations in the
model space, and within IR uncertainties, the ground-state en-
ergy should at least reside on the threshold. The difference be-
tween the envelope of the IR uncertainty band and the thresh-
old indicates that the extrapolation error is underestimated—at
least for larger values of the cutoff �. We also note
that the ground-state energies obtained with MWPC(40)
resides below the α + d threshold for � � 550 MeV,
and cross the threshold at ≈600 MeV, where we still consider
our NCSM results to be reasonably well-converged. In fact,
for both MWPC(40) and MWPC(200), the decreasing rate of
6Li binding against cutoff at LO appears to be linear (with
fixed slopes) before and right after crossing the threshold.
Thus, one could not infer any obvious shift in the wave
functions—which would be a signature of a sudden change
in the pole structure. As a result, rather than immediately
concluding that something is fundamentally wrong on the PC
side, we cannot rule out that the apparent failure of MWPC
is simply an effect of fine tuning in the LECs. Nevertheless,
the predicted LO ground-state energy for � � 600 (E � −15
MeV) is far from the experimental value −32 MeV. This
strong underbinding implies that the effect of higher orders in
MWPC must be sizable, and this points to the possible need
for some modification of the LO potential in MWPC.

Given our model-space restrictions, and the consequent
use of large oscillator frequencies, it is challenging to reach
converged predictions for the point-proton radius of 6Li. The
estimated uncertainties coming from the IR extrapolation are
sizable, see Fig. 8. We note that the radius results for � �
550 MeV are unphysical in the sense that we quote a finite
radius for an unbound system. Indeed, for � � 550 MeV
the obtained ground-state energy for 6Li is above the α + d
threshold and the NCSM basis truncation imposes an IR cutoff
that limits the radius prediction. For � � 550 MeV, with
MWPC(200) the radius is predicted slightly larger, and also
closer to experiment. This behavior is intuitively consistent
with the slightly lower binding generated by this interaction.
Overall, our results indicate that the predicted radius of 6Li
is too small compared with experiment. This corresponds to

a too large central density of 6Li. If this persists to other
nuclei, it implies a too large saturation density of nuclear
matter, which is a well-known problem [88,135] in nuclear
structure theory that seems to persist when using MWPC.
Recent analyses suggest that this problem might be resolved
by the explicit inclusion of the �(1232) degree of freedom in
χEFT [89,90,136].

Finally, we also studied the quadrupole moment of the
6Li ground state, which is experimentally known to be very
small and negative [137] Q = −0.0818(17)e fm2. This small
value results from a cancellation of wave-function compo-
nents and is consequently very sensitive to details of the
nuclear structure. The small quadrupole moment has been
successfully reproduced with ab initio NCSM calculations
using phenomenological, realistic NN interactions [138]. Us-
ing the MWPC(200) LO interaction from this work we find,
however, that we obtain a large positive quadrupole moment
for � = 450 MeV, a small one for � = 500 MeV, and a
negative one for � = 550 MeV. The evolution of the pre-
dicted quadrupole moment as a function of the regulator cutoff
points in the direction of varying single-particle structures.
This finding will also be verified with the 16O results in the
next section. We note that a full convergence study remains to
be performed, but that the observed trend is robust with the
respect to changes in the oscillator frequency and the size of
the model space.

B. 16O in modified Weinberg power counting

We now turn to the case of the doubly magic nucleus
16O and calculate its ground-state energy using interactions
from MWPC at LO and NLO. The oxygen isotopic chain
has been extensively studied with ab initio methods and chi-
ral potentials in WPC [87,88,139–145]. These calculations
have revealed that an accurate description of binding energies,
radii, and spectra is very sensitive to fine details of the em-
ployed chiral potential model. Furthermore, in Ref. [119] it
was found that simultaneously optimized chiral NN and NNN
interactions from WPC at NNLO predicts 16O to be unbound
with respect to decay into four α particles. Interestingly, recent
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FIG. 8. Point-proton radii Rpt-p for 6Li at LO using MWPC(40) [panel (a)] and MWPC(200) [panel (b)] as a function of the regulator cutoff
�. The bands indicate the estimated uncertainties from subleading IR corrections. The dashed line marks the point-proton radius corresponding
to the experimentally determined charge radius.

calculations [89,90] based on chiral potentials with explicit
inclusion of � isobars at NNLO found 16O to be bound.
This result might also indicate an important role of the finite
nucleon size for reproducing saturation properties in nuclei.

We will use single-reference ab initio CC theory to calcu-
late the ground state of 16O. The many-nucleon wave function
is represented via an exponential ansatz |
〉 = eT |�0〉, where
|�0〉 is an uncorrelated reference state commonly chosen as
the Hartree-Fock (HF) ground-state. Many-body correlations
are then included by acting with eT on the reference state,
where T = T1 + T2 + · · · is a linear expansion in particle-
hole excitations typically truncated at some low excitation
rank. In this work we truncate T at the singles-doubles ex-
citation level. When using spherical CC, we also include
triples excitations perturbatively in an approach known as
the �-CCSD(T) approximation [21,146,147]. For closed-shell
systems that can be well described using a single-reference
formalism, this approximation has been shown to account for
about 99% of the full correlation energy [62]. We remind
the reader that the CC method is nonvariational, and as a
consequence the Hellmann-Feynman theorem is strictly not
valid when evaluating expectation values when the cluster
operator T is truncated (see, e.g., Ref. [147] for more details).
We therefore compute the perturbative corrections at NLO as
an expectation value using the LO CC wave function.

With MWPC(40) at LO we find that the Hartree-Fock
(HF) single-particle orbitals exhibit an unconventional order-
ing with a 1d5/2 orbital below the 1p1/2 orbital and a very large
(�80 MeV) splitting between the 1p1/2 and 1p3/2 orbitals.
Although these single-particle orbitals are not observable
quantities [148], the observed ordering is in stark contrast with
the traditional single-particle shell-model picture of Mayer
[149], which usually provides a realistic starting point for
describing well-bound nuclei near the valley of beta stabil-
ity. This untraditional ordering is presumably caused by the
over-attractive 1S0 and 3P2 partial waves, as shown in Figs. 1
and 2. Furthermore, the inversion of the d5/2 and p1/2 orbitals
prevents us from a spherical single-reference CC description
of the ground state of 16O. To compute the ground state of 16O
using MWPC(40) we therefore performed CC calculations
starting from an axially deformed Hartree-Fock reference

state. Here the Hartree-Fock reference state was constructed
by assuming prolate deformation, see Ref. [150] for more
details. The ground-state energies are plotted as a function of
the cutoff � in Fig. 9. Being a doubly magic nucleus, 16O
should be spherical in its ground state. Thus we conclude that
the MWPC(40) LO interaction is highly unphysical. Also, at
lower cutoffs, the LO result yields a ground-state energy that
is two orders of magnitude from the experimental value. The
unphysical LO results do not motivate a further study of the
NLO corrections.

We performed the calculations using model-space sizes of
up to 11 major oscillator shells (Nmax = 10) and varied the os-
cillator frequencies over a wide range (h̄� ∈ [35, 60] MeV).
This allowed us to find the energy minimum for a given
model space and extract reasonably-well-converged ground-
state energies. For example, for the hardest interaction, � =
600 MeV, the CCSD energy at the h̄� minimum goes from

FIG. 9. The ground-state energy of 16O versus regulator cutoff �

at LO in MWPC(40). The ground state is axially deformed for all
values of the cutoff in this figure.
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−58 MeV to −61 MeV when increasing from Nmax = 8 to
Nmax = 10. We note that at � = 600 MeV, 16O becomes
unstable against decay into four α particles. A CC prediction
for the ground-state of 16O that is unbound with respect to the
four-α decay threshold requires some care in its interpretation.
Clearly, such an energy does not represent the true ground
state of the system. Indeed, four α particles very far apart
would yield an energy equal to the corresponding threshold
value. But this very exotic α-cluster configuration cannot be
described in the CC approach that we use. To describe a
state that is dominated by clusterization into α particles, one
would need to include at least 4p-4h excitations in the cluster
amplitude T . Such an approach is currently not possible due
to the orders of magnitude increase in computational cost.

We now move on to the MWPC(200) interaction, which
has a more repulsive 3P2 component with a better overall
agreement with the Nijmegen phase shifts analysis. We note
that there is still an over-attraction in the NN 1S0 channel as
shown in Fig. 1. With MWPC(200), we find a conventional
ordering of single-particle states. All CC calculations indicate
that the spherical states of 16O are always more bound than
their corresponding deformed counterparts throughout � =
450–600 MeV for this interaction. However, some patholog-
ical behavior is still present. Most importantly, we find that,
for cutoff values � > 450, the ground state in 16O is always
unstable with respect to decay into four α particles. Our spher-
ical CC calculations were carried out in a model space up to
17 major oscillator shells (Nmax = 16). The results are very
similar to those plotted later in the left panel of Fig. 12 (i.e.,
MWPC(200) with perturbative P waves).

There are most likely several possible origins that con-
tribute to the failures of MWPC(40) and MWPC(200) in
producing a physical 16O ground state. First, as already seen
in the case of 6Li, the effects due to different strategies for cal-
ibrating the LO LEC in the 3P2 - 3F2 partial waves are further
magnified in 16O. For example, at � = 450 MeV, MWPC(40)
and MWPC(200) yield vastly different shapes and energies
for the ground state; −264 MeV (deformed) and −150 MeV
(spherical), respectively. From the results presented above, we
have to conclude that MWPC cannot be employed for realistic
predictions of atomic nuclei beyond 4He. However, we would
like to point out that it is possible to obtain a remarkably good
descriptions of the ground-state energies of 4He as well as 16O
at LO in MWPC if one tunes the regulator cutoff � = 280
MeV. At this value, the LO description of the 1S0 phase shift
is qualitatively very similar to Nijmegen data and the NLO
correction is small, see Fig. 10. This particular LO interaction
yields 16O and 4He binding energies 127.3 and 29.5 MeV,
respectively. The 16O ground state is also spherical. Using
the regulator cutoff � as one of the fitting parameters in this
way eliminates the model-independent aspects of χEFT and
its fundamental connection with QCD will be lost. Of course,
an interaction with a tuned regulator cutoff could still be
useful for guiding experiment and phenomenology. However,
in a χEFT with a PC that yields RG-invariant observables,
no particular cutoff is preferred. One can choose any value
� � �b for a quantitative calculation, and then try to esti-
mate residual, i.e., higher-order, cutoff dependencies and EFT
errors [125,126]. Setting � = 280 MeV, which is most likely

FIG. 10. MWPC LO and NLO 1S0 phase shifts using a regulator
cutoff � = 280 MeV as a function of laboratory scattering energy
TLab. The MWPC LO interaction yields slightly more attractive phase
shifts.

much smaller than the breakdown scale �b of χEFT, removes
a large chunk of the relevant low-momentum dynamics from
the loops. As such, this model will probably extrapolate un-
reliably to larger mass numbers A and it will be difficult to
assign a physics-based EFT uncertainty to the results.

V. PREDICTIONS BASED ON OTHER
RENORMALIZATION-GROUP-INVARIANT

POWER-COUNTING SCHEMES

The results for 6Li and 16O presented in the previous sec-
tions most likely rule out the usefulness of MWPC for heavier
systems. Obviously, one needs to seek alternative PCs. In fact,
the large discrepancy between the Nijmegen analysis and the
LO 1S0 phase shift as shown in Fig. 1 has already motivated
research on several such alternative PCs.

A. The dibaryon field

Potentials in χEFT that employ the dibaryon (db) auxiliary
field [45,51,151] give a very good and RG-invariant descrip-
tion of the 1S0 phase shift at LO. However, in such approaches,
the resulting potential contains an energy-dependent short-
range term

V LO
db (E ) = 1

� + cE
, (5)

where the on-shell energy E = k2
0/mN , with k0 denoting the

on-shell center-of-mass momentum, and mN = 938.9 MeV
denoting the nucleon mass. The two parameters � and c are
LECs to be renormalized. Note that, in order to reproduce
the amplitude zero at TLab ≈ 250 MeV, the PC proposed in
Ref. [45] incorporates one more LEC which effectively has
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the same structure as the usual C1S0
contact term, i.e.,

VDBZ(E ) = C1S0
+ V LO

db (E ). (6)

We denote this PC as DBZ (dibaryon potential which repro-
duces the amplitude zero). The long-range part of the OPE
potential is then iterated nonperturbatively together with the
short-range VDBZ potential in the Lippmann-Schwinger or
Schrödinger equations.

In the NN sector, solutions of the Lippmann-Schwinger
or Schrödinger equations based on an energy-dependent po-
tential can be obtained straightforwardly. The only caveat
is that eigenfunctions are no longer necessarily orthogo-
nal [152,153]. On the other hand, it is very difficult to
solve a many-nucleon Schrödinger equation based on energy-
dependent potentials. To proceed, approximations are needed.
We studied the predictions from energy-dependent DBZ po-
tentials for describing A = 3, 4 systems, and tried to quantify
the uncertainties due to nonunique transformations of an
energy-dependent potential to a purely momentum-dependent
potential V (p, p′). We adopted the following procedure. First,
we solve the two-body Schrödinger equation

[H0 + V (E )]|ψ〉 = E |ψ〉, (7)

with H0 being the kinetic energy, ψ the eigenfunction, and
V (E ) the LO potential which contains both momentum and
energy dependencies. We represent the total Hamiltonian H
in a finite momentum basis with N ≈ 100 states that cover
momenta [0,�p] and where we also ensure that �p > �.
Thereafter, it is straightforward to solve Eq. (7) for N eigen-
vectors iteratively until the corresponding difference between
the on-shell energy E on both sides of the equation falls
below a convergence criterion εE = 10−16. The resulting self-
consistent eigenfunctions and eigenvalues are denoted as ψEi

and Ei. Due to the energy dependence, the span of eigen-
vectors {ψEi}N

i=1 does not form an orthogonal basis. Instead,
we choose to employ the Gram-Schmidt orthogonalization
method to form an orthogonal basis {ψGS

Ei
}N

i=1. This trans-
formation is not unique. Indeed, we can start from any of
the N vectors in the Gram-Schmidt procedure and generate a
different basis. However, equipped with any orthogonal basis
we can reconstruct an on-shell equivalent Hamiltonian

〈p|H |p′〉 =
∑∫

Ei

∑∫
E ′

i

〈
p
∣∣ψGS

Ei

〉〈
ψGS

Ei

∣∣H ∣∣ψGS
E ′

i

〉〈
ψGS

E ′
i

∣∣p′〉 (8)

=
∑∫

Ei

〈
p
∣∣ψGS

Ei

〉
Ei

〈
ψGS

Ei

∣∣p′〉. (9)

Subtracting the kinetic term yields a momentum-dependent
potential which preserves all of the original eigenvalues

V (p, p′) = 〈p|H |p′〉 − p2

mN
δpp′ , (10)

and which we then use in the many-body calculations. After
renormalization, the numerical value of c in Eq. (5) turns out
to be of order 10−4 smaller than � and C1S0

,3 which likely

3Here the three LECs are fit to reproduce a0 = −23.7 fm, r0 =
2.7 fm, and the Nijmegen phase shift analysis at TLab = 250 MeV.

correspond to a small nonorthogonality between the vectors
ψEi . On the other hand, we found that, without any Gram-
Schmidt re-orthogonalization, the resulting V (p, p′) potential
will generate phase shifts which deviate about 15% from the
original values, i.e., those given by V (E ). The nonunique-
ness of the re-orthogonalization procedure is manifested in
the momentum-dependent potential as off-shell modifications.
The size of this effect can be explored by selecting different
ψEi as the initial vector in the Gram-Schmidt procedure to
generate potentials V (p, p′) with differing off-shell behav-
ior. We have carried out this test and find that this effect
is propagated into many-body calculations and gives about
10% (20%) variation in the ground-state energies of 3H (4He).
Besides this variation due to the energy dependence of the
potential, we find that the reproduction of the corresponding
ground-state energies is comparable to the MWPC result,
i.e., a slight underbinding. The main difference is that the
NLO correction to the energy appears to be smaller, which
can be expected judging from the NLO correction at the NN
phase-shift level [45]. We also note that shuffling the order of
eigenvectors in the Gram-Schmidt procedure creates disconti-
nuities in the first derivative of V (p, p′) with respect to p and
p′. Although this is not forbidden in principle, it could create
artifacts of numerical origin in many-body calculations.

The evaluation of DBZ at NLO is even more involved com-
pared with LO because the NLO interactions again contain
additional energy dependencies, which read

CDBZ
2 + DDBZ

2 E + αV LO
DBZ(E ) + β

[
V LO

DBZ(E )
]2

, (11)

with CDBZ
2 , DDBZ

2 , α, and β denoting four new LECs, and
V LO

DBZ being the short-range LO potential as defined in Eq. (6)
(which is not refitted at NLO). A direct perturbative evaluation
in the NN sector is straightforward. However, the renormal-
ized interaction is energy dependent and cannot easily be
used in many-body calculations. To our knowledge, there is
no strict phase-shift equivalent transformation method to be
applied perturbatively, as in the NN case. There are several
approximate ways to transform the energy-dependent NLO
terms in the DBZ potential to a purely momentum-dependent
representation. The bottom line in all such methods is to treat
the energy-dependent terms in Eq. (11) as small perturba-
tions to the LO amplitude. Once all the energy-dependent
terms are transformed (either one by one individually or as
a whole) into purely momentum-dependent terms, one must
renormalize the LECs associated with those transformed (i.e.,
momentum-dependent) contact terms at NLO. One could also
test the possibility of approximating E by p2+p′2

mN
for the second

term of Eq. (11), inspired by the equation of motion. In all
our attempts to transform the energy dependence to a pure
momentum dependence, the four NLO LECs always yield
phase-shift-equivalent results, as expected. The off-shell dif-
ferences, however, manifest themselves in an uncontrollable
fashion in many-body calculations. Our analysis indicates
that the approximate and nonunique transformation of the
energy-dependent DBZ potential at LO yield sizable errors
that increase with mass number A. We do not present any
detailed CC results for 16O. We only summarize that, in all
our calculations based on the DBZ potential at LO and NLO,
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FIG. 11. LO and NLO 1S0 phase shifts obtained using the power
counting based on a separable potential (SEP) defined in Ref. [79]
as a function of laboratory scattering energy TLab. Darker line colors
correspond to larger values of the cutoff �. The SEP LO interaction
exhibits a stronger cutoff variation in the 1S0 phase shift compared
with the SEP NLO interaction. The latter interaction best reproduces
the Nijmegen result (dashed line). The LO LECs are renormalized to
the scattering length a0 = −23.7 fm and the effective range r0 = 2.7
fm. The NLO LECs are renormalized to the scattering length a0 =
−23.7 fm, the effective range r0 = 2.7 fm and a best fit to Nijmegen
phase shift up to TLab = 200 MeV.

we never recovered a 16O nucleus that was bound with re-
spect to four-α decay for any values of the regulator cutoff
� � 500 MeV.

B. A separable potential

In an effort to eliminate the energy dependence of the
dibaryon field while trying to maintain the good reproduction
of the 1S0 phase shift, one could transform the dibaryon struc-
ture in the Lagrangian to yield an energy-independent and
separable potential (SEP) [154]. The LO short-range structure
of this potential reads [79]

VSEP(p, p′) = ymN√
p2 + mN�

√
p′ 2 + mN�

. (12)

This reproduces the short-range physics of one dibaryon field.
There are two LECs, y and �, at LO. The full LO SEP
potential contains the above short-range part plus the Yukawa
potential. The resulting 1S0 phase shifts at LO and NLO are
given in Fig. 11.

To generate the NLO amplitude, one perturbatively inserts
the following NLO short-range terms in the 1S0 channel

C + y(1)VSEP + �(1)

(
1

p2 + mN�
+ 1

p′2 + mN�

)
VSEP, (13)

where C, y(1), and �(1) are additional LECs, renormalized
to provide a0 = −23.7 fm, r0 = 2.7 fm, and a best fit to the

Nijmegen phase shift up to TLab = 200 MeV. Note that VSEP

here is the short-range potential already renormalized at LO.
The LECs within VSEP are not refitted at NLO. The resulting
NLO phase shifts reproduce the Nijmegen 1S0 phase shifts
quite well for a wide range of cutoff values � as listed in
Fig. 11, which also shows a more reasonable LO to NLO
change comparing with MWPC.

As for MWPC and DBZ, the SEP potential yields a reason-
able LO prediction of the ground-state energies of 3H, 3He,
and 4He, with NLO corrections of expected sizes. In fact, this
seems to be a trend; most RG-invariant PCs yield LO and
NLO potentials in χEFT capable of describing A � 4 nuclei
rather well. As for DBZ, the small NLO correction to the
ground-state energy using the SEP PC can be inferred from the
fact that the space for improvement is tiny since the LO results
reproduce NN phase shifts in low partial waves quite well.
Note that our results for A = 3, 4 systems at lower cutoffs are
in agreement with a recent calculation [155], where the LO
treatment in the 1S0 channel is equivalent to our SEP potential
plus one constant contact term.

Having removed the energy dependence, via the separa-
ble formulation, we used the SEP potential in ab initio CC
calculations to predict the ground-state energy of 16O at LO
and NLO for cutoff values � � 600 MeV. We refer to the
potentials associated with the LEC in 3P2 - 3F2 channels fit up
to TLab = 40 and TLab = 200 MeV as SEP(40) and SEP(200),
respectively.

For SEP(40), we found that the over-attractive 3P2 partial
wave still generates an ordering of the HF single-particle
states that is in stark contrast to traditional shell-model in-
terpretations, or gives a very large splitting between the
1p1/2 and 1p3/2 states. On these grounds, we discard further
analyses of the SEP(40) interaction. For SEP(200), the single-
particle states exhibit a conventional ordering, which suggests
a spherical ground state. However, we are not able to obtain
ground-state energies of 16O below the corresponding four-α
threshold throughout the cutoff range � = 450–600 MeV.
Although this renders the NLO correction less meaningful, we
note that they are always repulsive—which makes the results
even more unphysical.

C. Perturbative P waves

It was shown recently [53] that all of the P-wave ampli-
tudes, with the exception of 3P0, can be reproduced rather well
in an order-by-order perturbative approach. This particular P
wave still requires a nonperturbative treatment.4 Thus, it is
possible that the LO amplitude in χEFT should only comprise
the 1S0, 3S1 - 3D1, and 3P0 waves. To explore the consequences
of this recent PC, we performed many-body calculations for
the ground-state energies in 3H, 3He, and 4He using the
Jacobi-NCSM method and 16O using the CC method based
on MWPC and SEP potentials with perturbative P waves. The
LEC in the 3P0 channel is renormalized to Nijmegen phase

4For the 3P0 channel, a further study [156] suggests that a perturba-
tive treatment is possible if an additional counterterm is promoted to
LO in addition to the long-range OPE in this channel.
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FIG. 12. Ground-state energy of 16O versus regulator cutoff � with perturbative P waves at LO and NLO using MWPC [panel (a)] and
SEP PC [panel (b)]. The respective LO four-α thresholds are indicated by the red dotted lines. The NLO results in both panels exhibit a weaker
dependence with respect to variations in the cutoff �.

shifts up to TLab = 40 MeV as before, and the interaction in
all remaining P waves (including channels coupled to 3P2)
vanish identically at LO. Since there can no longer be any dif-
ferences in the 3P2 - 3F2 channels due to alternative calibration
procedures, we can drop the (40) and (200) labels from such
interactions.

With perturbative P waves, the 3H and 3,4He binding en-
ergies reside between the MWPC(40) and MWPC(200), or
SEP(40) and SEP(200) if the SEP PC is adopted in the 1S0

channel. We also observe similar convergence patterns as
before when going from LO to NLO. This is expected since
nuclei with mass number A � 4 are quite insensitive to P
waves. Indeed, all our previous results based on the two dif-
ferent 3P2 - 3F2 calibrations differed at most 5% for the cutoff
values considered in this work.

Turning to 16O, we found that the Hartree-Fock solutions
starting from MWPC and SEP PC with perturbative P waves
give single-particle states with ordering that allows for a
spherical single-reference CC description. We therefore com-
puted the ground-state energies of 16O using the spherical
� CCSD(T) approximation, and the results are presented in
Fig. 12. We employed 17 major oscillator shells (Nmax = 16)
and extract a minimum CC energy for h̄� ∈ [16, 50] MeV for
all values of the cutoff � = 450–600 MeV. As one can see,
MWPC with perturbative P waves yields a 16O ground state
that decays into four α particles for � > 500 MeV. For SEP
with perturbative P waves, the CC results for the ground-state
energy borders the four-α threshold. Looking carefully, we
find that the ground-state of 16O becomes unbound with re-
spect to four-α decay starting at cutoff values � � 550 MeV.
However, without a comprehensive uncertainty analysis and
the inclusion of higher-order particle-hole excitations in the
CC method we cannot conclusively determine whether the
SEP yields a stable 16O ground state. We do note ≈5%
increase in the binding energies when employing, e.g., the
CCSD(T) approximation instead. This small shift makes 16O
bound with respect to four-α threshold throughout the cutoff
range � = 450–600 MeV.

The NLO correction to the PC with perturbative P waves
is not fully known. It consists of at least the NLO 1S0 contri-
bution in Eq. (4), which is what we employ here. In Ref. [53]
it is proposed that the long-range OPE contribution at 1P1, 3P1,

and 3P2 - 3F2 channels might belong to NLO as well, although
the relative importance between the NLO 1S0 contribution and
the long-range P-wave contributions is yet to be understood.
Unfortunately, even with the less-repulsive choice—where
only the NLO 1S0 contribution enters—the NLO shift is more
or less always repulsive for � = 450–600 MeV, see Fig. 12.
Thus, it appears that the NLO correction to a PC with per-
turbative P waves is unlikely to improve upon the results for
16O, at least within the cutoff range � = 450–550 MeV. In
summary, the success of this PC also appears to be limited to
lighter nuclei.

VI. SUMMARY AND IMPLICATIONS FOR FUTURE WORK

In this work we have performed ab initio NCSM and
CC calculations of 3H, 3,4He, 6Li, and 16O at LO and
NLO in χEFT using several PC schemes which all exhibit
RG-invariance in the NN sector. We include all sublead-
ing corrections perturbatively. We employed the MWPC of
Refs. [42–44], the dibaryon fields of Ref. [45], the separa-
ble PC of Ref. [79], and the recently proposed perturbative
treatment of P waves [53]. Our NCSM results indicate that
the predictions of ground-state energies and point-proton radii
in 3H and 3,4He exhibit signatures of RG invariance, and the
converged values are mainly sensitive to variations in the
two S-wave channels. Indeed, using different strategies for
generating the amplitude in the 1S0 partial wave, the converged
LO binding energies differ by ≈1 MeV in 3H and 3He, and
≈5 MeV in 4He. In addition, for the DBZ approach we find a
≈20% variance due to the nonunique potential redefinition to
handle the energy-dependent dibaryon structure.

The various RG-invariant NLO corrections to the ground-
state energies for 3H (4He) are as large as ≈2 (≈7) MeV
with MWPC (attractive shifts, i.e., toward the experimental
value). The corresponding shifts are smaller when using the
SEP and DBZ potentials. In summary, all of the NLO results
for A = 3, 4 nuclei are very reasonable and certainly agree
with experiment at the level expected of NLO calculations,
especially judging from the fact that no higher-body force has
been added yet. Overall, the various PC schemes yield similar
and realistic descriptions of A � 4 nuclei.
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However, this work has revealed a number of problems
when applying the RG-invariant PC schemes to the study of
nuclei with A > 4. Some of the flaws of the MWPC interac-
tions are seen already in the predictions of the ground-state
energy and radius of 6Li. Contrary to experiment, the ground
state of this nucleus was predicted slightly above the α + d
threshold, even when considering the estimated uncertainties
due to the IR extrapolation. Furthermore, we find too small
radii and a strong cutoff dependence in the quadrupole mo-
ment. These results also motivate the detailed study of 16O.

Based on the results of CC predictions for the ground-state
energy of 16O, we conclude that none of the PC schemes
employed in this work appear to yield a realistic description
of this nucleus. In fact, the most important observation is that
none of the RG-invariant PCs in χEFT successfully manages
to generate a realistic and spherical 16O ground state at LO,
which leaves small hope for a remedy from perturbative cor-
rections. Model-space limitations hinder us from explicitly
demonstrating renormalizability at large cutoffs for A � 6.
Still, our limited-cutoff results reveal fundamental flaws in
several of the recently developed PC schemes, which is a
significant and unexpected discovery. Of course, future anal-
yses of RG-invariant schemes deserve a more careful and
systematic parameter estimation of the LECs and adequate
handling of the model discrepancy due to neglected higher-
order diagrams in the χEFT expansion.

In summary, it appears that the essential nuclear-binding
mechanism fails in all present RG-invariant PC schemes for
χEFT. A remedy to this important finding will be critical for
the utilization of PC schemes that employ a perturbative inclu-
sion of subleading orders. We conclude that one (or several)
of the following scenarios must be true:

(i) We have failed to capture a very fine-tuned process
in the renormalization of the relevant LO LECs that
is responsible for generating realistic ground states in
16O and 6Li.

(ii) There is a scale critical to the physical description
of finite-size nuclei, which is not captured by the
contact terms at � → ∞. This conceivable scale was
discussed recently in Ref. [38] using pionless EFT,

although the possible implications in χEFT remain
unclear.

(iii) Something else is missing in the LO interaction for
describing 16O and 6Li, and most likely other nuclei.

Naturally, we cannot rule out scenarios (i) and (ii), but we
would like to speculate that it is quite possible that, due
to an increasing relative importance of many-body forces in
larger systems—as sketched also in Sec. 4.3 of Ref. [109]—a
NNN force, such as the �-full Fujita-Miyazawa NNN force
[157] or the �-less NNN force, must be promoted to LO
in a χEFT for many-nucleon systems. This would entail a
nucleon-number-dependent PC which in turn, unfortunately,
opens for the inclusion of four-body forces in larger-mass
nuclei and nuclear matter. Such nucleon-number-dependent
PC schemes will be explored in our future work.

ACKNOWLEDGMENTS

We thank U. van Kolck, B. Long, T. Papenbrock, J. Ro-
tureau, M.S. Sanchez, G. Rupak and Y.-H. Song for useful
discussions and suggestions. G.H. acknowledges the hos-
pitality of Chalmers University of Technology where most
of this work was carried out. This work was supported by
the European Research Council (ERC) under the European
Unions Horizon 2020 research and innovation programme
(Grant agreement No. 758027), the Swedish Research Coun-
cil (Swedish: Vetenskapsrådet) (Grant No. 2017-04234), the
Office of Nuclear Physics, U.S. Department of Energy, under
grants desc0018223 (NUCLEI SciDAC-4 collaboration) and
by the Field Work Proposal ERKBP72 at Oak Ridge Na-
tional Laboratory (ORNL). The computations were enabled
by resources provided by the Swedish National Infrastructure
for Computing (SNIC) at Chalmers Centre for Computational
Science and Engineering (C3SE), the National Supercom-
puter Centre (NSC) partially funded by the Swedish Research
Council, the Innovative and Novel Computational Impact on
Theory and Experiment (INCITE) program. This research
used resources of the Oak Ridge Leadership Computing Fa-
cility located at ORNL, which is supported by the Office
of Science of the Department of Energy under Contract No.
DE-AC05-00OR22725.

[1] S. Weinberg, Phys. A (Amsterdam, Neth.) 96, 327 (1979).
[2] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[3] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[4] C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. Lett. 72,

1982 (1994).
[5] C. Ordóñez, L. Ray, and U. van Kolck, Phys. Rev. C 53, 2086

(1996).
[6] E. Epelbaoum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

637, 107 (1998).
[7] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A

671, 295 (2000).
[8] D. Entem and R. Machleidt, Phys. Lett. B 524, 93 (2002).
[9] D. R. Entem and R. Machleidt, Phys. Rev. C 66, 014002

(2002).

[10] E. Epelbaum, W. Glöckle, and U.-G. Meißner, Nucl. Phys. A
747, 362 (2005).

[11] E. Epelbaum, H. Krebs, and U. G. Meißner, Eur. Phys. J. A
51, 53 (2015).

[12] U. V. Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999).
[13] P. F. Bedaque and U. V. Kolck, Annu. Rev. Nucl. Part. Sci. 52,

339 (2002).
[14] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
[15] H.-W. Hammer, S. König, and U. van Kolck, Rev. Mod. Phys.

92, 025004 (2020).
[16] W. H. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52,

377 (2004).
[17] D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009).

054304-14

https://doi.org/10.1016/0378-4371(79)90223-1
https://doi.org/10.1016/0370-2693(90)90938-3
https://doi.org/10.1016/0550-3213(91)90231-L
https://doi.org/10.1103/PhysRevLett.72.1982
https://doi.org/10.1103/PhysRevC.53.2086
https://doi.org/10.1016/S0375-9474(98)00220-6
https://doi.org/10.1016/S0375-9474(99)00821-0
https://doi.org/10.1016/S0370-2693(01)01363-6
https://doi.org/10.1103/PhysRevC.66.014002
https://doi.org/10.1016/j.nuclphysa.2004.09.107
https://doi.org/10.1140/epja/i2015-15053-8
https://doi.org/10.1016/S0146-6410(99)00097-6
https://doi.org/10.1146/annurev.nucl.52.050102.090637
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.92.025004
https://doi.org/10.1016/j.ppnp.2004.02.038
https://doi.org/10.1016/j.ppnp.2008.12.001


POWER COUNTING IN CHIRAL EFFECTIVE FIELD … PHYSICAL REVIEW C 103, 054304 (2021)

[18] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part.
Nucl. Phys. 65, 94 (2010).

[19] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys.
69, 131 (2013).

[20] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 87,
011303(R) (2013).

[21] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean,
Rep. Prog. Phys. 77, 096302 (2014).

[22] H. Hergert, S. Bogner, T. Morris, A. Schwenk, and K.
Tsukiyama, Phys. Rep. 621, 165 (2016).

[23] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. Schmidt, and R. B. Wiringa, Rev. Mod. Phys. 87, 1067
(2015).

[24] N. Barnea, W. Leidemann, and G. Orlandini, Nucl. Phys. A
650, 427 (1999).

[25] W. Glöckle, H. Witala, D. Hüber, H. Kamada, and J. Golak,
Phys. Rep. 274, 107 (1996).

[26] T. R. Hemmert, B. R. Holstein, and J. Kambor, J. Phys. G 24,
1831 (1998).

[27] N. Kaiser, S. Gerstendorfer, and W. Weise, Nucl. Phys. A 637,
395 (1998).

[28] H. Krebs, E. Epelbaum, and U.-G. Meißner, Eur. Phys. J. A
32, 127 (2007).

[29] U. van Kolck, Nucl. Phys. A 645, 273 (1999).
[30] L. Platter, H.-W. Hammer, and U.-G. Meißner, Phys. Lett. B

607, 254 (2005).
[31] J. Kirscher, H. W. Grießhammer, D. Shukla, and H. M.

Hofmann, Eur. Phys. J. A 44, 239 (2010).
[32] J. Kirscher, N. Barnea, D. Gazit, F. Pederiva, and U. van

Kolck, Phys. Rev. C 92, 054002 (2015).
[33] V. Lensky, M. C. Birse, and N. R. Walet, Phys. Rev. C 94,

034003 (2016).
[34] N. Barnea, L. Contessi, D. Gazit, F. Pederiva, and U. van

Kolck, Phys. Rev. Lett. 114, 052501 (2015).
[35] I. Stetcu, B. Barrett, and U. van Kolck, Phys. Lett. B 653, 358

(2007).
[36] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher,

and U. van Kolck, Phys. Lett. B 772, 839 (2017).
[37] A. Bansal, S. Binder, A. Ekström, G. Hagen, G. R. Jansen, and

T. Papenbrock, Phys. Rev. C 98, 054301 (2018).
[38] M. Schäfer, L. Contessi, J. Kirscher, and J. Mareš, Phys. Lett.

B 816, 136194 (2021).
[39] J. Gasser and H. Leutwyler, Ann. Phys. (NY) 158, 142 (1984).
[40] V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys.

E 4, 193 (1995).
[41] A. Nogga, R. G. E. Timmermans, and U. van Kolck, Phys. Rev.

C 72, 054006 (2005).
[42] B. Long and C.-J. Yang, Phys. Rev. C 84, 057001 (2011).
[43] B. Long and C.-J. Yang, Phys. Rev. C 85, 034002 (2012).
[44] B. Long and C.-J. Yang, Phys. Rev. C 86, 024001 (2012).
[45] M. S. Sanchez, C.-J. Yang, B. Long, and U. van Kolck, Phys.

Rev. C 97. 024001 (2018).
[46] M. C. Birse, Phys. Rev. C 74, 014003 (2006).
[47] M. C. Birse, Phys. Rev. C 76, 034002 (2007).
[48] M. Birse, PoS(CD09), 078 (2010).
[49] M. Pavon Valderrama, Phys. Rev. C 83, 024003 (2011).
[50] M. Pavon Valderrama, Phys. Rev. C 84, 064002 (2011).
[51] B. Long, Phys. Rev. C 88, 014002 (2013).
[52] M. P. Valderrama, M. S. Sánchez, C.-J. Yang, B. Long, J.

Carbonell, and U. van Kolck, Phys. Rev. C 95, 054001 (2017).
[53] S. Wu and B. Long, Phys. Rev. C 99, 024003 (2019).

[54] Y.-H. Song, R. Lazauskas, and U. V. Kolck, Phys. Rev. C 96,
024002 (2017).

[55] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. Lett. 84,
5728 (2000).

[56] P. Navrátil, J. P. Vary, and B. R. Barrett, Phys. Rev. C 62,
054311 (2000).

[57] F. Coester, Nucl. Phys. 7, 421 (1958).
[58] F. Coester and H. Kümmel, Nucl. Phys. 17, 477 (1960).
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