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P H Y S I C S

Critical slowing down in circuit 
quantum electrodynamics
Paul Brookes1*†, Giovanna Tancredi2,3†, Andrew D. Patterson3‡, Joseph Rahamim3, 
Martina Esposito3, Themistoklis K. Mavrogordatos4, Peter J. Leek3,  
Eran Ginossar5, Marzena H. Szymanska1

Critical slowing down of the time it takes a system to reach equilibrium is a key signature of bistability in dissi-
pative first-order phase transitions. Understanding and characterizing this process can shed light on the underly-
ing many-body dynamics that occur close to such a transition. Here, we explore the rich quantum activation 
dynamics and the appearance of critical slowing down in an engineered superconducting quantum circuit. 
Specifically, we investigate the intermediate bistable regime of the generalized Jaynes-Cummings Hamiltonian 
(GJC), realized by a circuit quantum electrodynamics (cQED) system consisting of a transmon qubit coupled to a 
microwave cavity. We find a previously unidentified regime of quantum activation in which the critical slowing 
down reaches saturation and, by comparing our experimental results with a range of models, we shed light on the 
fundamental role played by the qubit in this regime.

INTRODUCTION
The study of dissipative phase transitions has a long and interesting 
history not only due to their technological applications, such as in 
the construction of the laser (1–3), quantum limited amplifiers (4, 5), 
and optical switches (6–8) but also due to their theoretical interest 
since these phase transitions cannot be described by standard tech-
niques such as mean-field theory (9). A key characteristic of first-order 
dissipative phase transitions is bistability (10–13): close to the tran-
sition the two phases are metastable (14) and the dynamics of the 
system are highly sensitive to both its parameters and its initial state 
(15–18). The steady state is reached via rare switching events during 
which the system transitions from one phase to the other (19, 20). 
This can be modeled using the theory of quantum activation in the 
case of dispersive optical bistability (21). Since the metastable states 
may be very long lived, this leads to critical slowing down in the 
equilibration time of the system. Critical slowing down has already 
been observed in a circuit quantum electrodynamics (cQED) lattice 
(22) and in an ensemble of nitrogen-vacancy centers coupled to a
superconducting cavity (23) and has been modeled in the context of
the Bose-Hubbard lattice (24).

Here, we observe critical slowing down in a cQED system with 
only two degrees of freedom: a transmon qubit (25) coupled to a 
three-dimensional (3D) microwave cavity (26). The nonlinearity 
introduced by the qubit causes the cavity to display bistability when 
a sufficiently strong microwave drive is applied. Within the bistable 
regime, the system divides its time between two metastable states, 
which are known as the bright and dim states according to the number 
of photons occupying the cavity. While the inherent nonlinearity of 
such a system has been exploited in (15) to achieve high-fidelity 

readout of the qubit state using high drive powers, here, we are in-
terested in exploring and understanding the rich quantum dynamics 
happening at intermediate powers, close to the onset of bistability. 
We show that, at these powers, the cavity exhibits critical slowing 
down, reaching its steady state in a time much longer than the life-
times of both the qubit and the cavity. We characterize the time 
scale of this slowdown as a function of driving frequency and power. 
We find a new regime of quantum activation in which the slow-
down displays a saturation, which can only be explained by taking 
into account the full quantum description of the transmon. We 
demonstrate that even a simple superconducting circuit, consisting 
of only a qubit and a cavity, can be used to explore the rich physics 
of quantum phase transitions.

The device consists of a transmon qubit embedded in a super-
conducting aluminum 3D microwave cavity. Measurements of the 
transmitted signal through the cavity are performed using a stan-
dard cQED microwave setup described in Materials and Methods. 
This system can be described by the generalized Jaynes-Cummings 
(GJC) model, and its Hamiltonian can be written as

        H = ħ ∑ 
n
        n  ∣n〉〈n∣ +  ħ   c    a   †  a + ħ  ∑ 

m,n
     g  m,n  ∣m〉〈n∣(a +  a   † )          

+ ħϵ ( a   †   e   − i  d  t  +  ae    i  d  t )
(1)

a cavity mode of frequency c is coupled with strength gm,n to a 
transmon qubit whose unperturbed eigenstates can be written in terms 
of Mathieu functions (25). Here, we simply denote them by ∣n⟩ and 
their eigenenergies by ħn. The cavity is represented using the anni-
hilation(creation) operator a(a†) and is driven by a monochromatic 
field of strength ϵ and frequency d. To model environmental noise, 
we use the Lindblad master equation (27)

 
 ∂  t   ρ = −   i ─ ħ   [H, ρ] + ( n  c   + 1) κ D(a) ρ +  n  c   κ D( a   †  ) ρ

    
+  γ  ϕ   D( b   †  b) ρ + ( n  t   + 1) γ D(b) ρ +  n  t   γ D( b   † ) ρ

  (2)

where b is the ladder operator acting on the transmon and is defined
by  b =  ∑ n=0  ∞     √ 

_
 n + 1   ∣ n⟩ ⟨n + 1 ∣ . The thermal occupations of the

transmon and cavity baths are denoted by nt and nc, respectively, while 
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 and  are the intrinsic transmon and cavity relaxation rates, and 
 is the intrinsic transmon dephasing rate.

At sufficiently low drive powers, the transmon is confined to its 
ground state. The system can be treated as a single Duffing oscillator 
with a Kerr nonlinearity (28) whose Hamiltonian and master equa-
tion can be written as (note S1)

    ̃  H   = ħ    ~ ω   c    a   † a +  1 _ 2  ħ Ka   †  a   † aa + ħ  ̃  ϵ  (   a   †  e   −i ω  d  t  +  ae   i ω  d  t  )     (3)

   ∂  t   ρ = −   i _ ħ  [    ̃  H  , ρ ]   + (   ~ n    c   + 1 )   ~ κ  D(a)ρ +     ~ n    c    ~ κ D( a   † ) ρ +    ~ κ   ϕ   D( a   † a)ρ  (4)

In this simplified model, the dispersive coupling with the transmon 
shifts the cavity frequency to     ~    c    and introduces a Kerr nonlinearity 
K. The thermal occupation of the cavity bath is denoted by     ~ n    c   , and 
the cavity relaxation and dephasing rates are represented by    ~    and     ~       , 
respectively.

A further simplification can be made with the mean-field approxi-
mation, i.e. we assume the cavity to be in a coherent state  = ∣⟩
⟨∣ and substitute this into ∂t = Tr (a ∂t). We obtain the classical 
equation of motion in a frame rotating with the drive

  ∂  t    = − (  ̃    + i(   ̃     c   −    d   ) + iK  ∣  ∣   2  )  − i  ̃  ϵ   (5)

and find the steady-state cavity amplitude

  = −   i  ̃  ϵ   ─────────────    ̃    + i(K  ∣  ∣   2  +   ̃     c    −    d  )    (6)

At weak drive powers, the occupation of the cavity is low, so the 
nonlinear term K∣∣2 in Eq. 6 vanishes, and the standard Lorentzian 
response is obtained. However, when the number of photons in the 
cavity approaches the saturation number nsat = ∣c − d∣/K ∼ ∣∣2, 
the nonlinearity becomes substantial, and the equation of motion 
may admit two stable steady-state solutions. The system enters the 
bistable regime.

In the mean-field approximation, the lifetimes of these states are 
infinitely long, but if fluctuations are taken into account, these states 
become metastable and the system may undergo rare escape events, 
switching from one state to the other. Both metastable states may 
coexist with each other over a range of drive amplitudes, and the 
time taken for the system to reach a steady state will be determined 
by their lifetimes. These lifetimes can be much greater than the life-
time of the cavity, and this gives rise to the phenomenon of critical 
slowing down. If an appropriate thermodynamic limit is taken, this 
time diverges and the model produces a first-order dissipative phase 
transition in which the two phases may coexist only at a single drive 
amplitude (13, 14, 29).

RESULTS
Cavity response in the bistable regime
We now show evidence of such a first-order phase transition in our 
system, containing only two degrees of freedom. We measure the sig-
nal transmitted through the cavity as a function of driving frequency 
(d) and power (Prf), as shown in Fig. 1A. We find that at low power, 
the cavity line is dispersively shifted to r/2 = 10.4960 GHz and has 
the Lorentzian shape that is typical of linear response. As the driv-
ing power increases, the lineshape shifts to lower frequencies and 

nonlinear features appear. The effective Kerr nonlinearity of the cavity 
is found to be K = −0.4221 MHz, and its relaxation rate is    ~   / 2 = 
1.040 MHz . Above Prf = −29 dBm, a dip in the transmitted signal is 
observed. This indicates the presence of the bistable regime and is 
due to destructive interference between the two metastable states of 
the cavity (11, 12). The boundaries of this regime are modeled using 
the mean-field equations of motion derived from the Duffing approxi-
mation and are shown by the red lines. The bistable regime emerges 
just below the resonance frequency at a drive power of Prf = −35 dBm 
and opens up over a wider range of frequencies as the drive power 
increases.

Figure 1B shows the signal transmitted through the cavity (black 
crosses) as a function of the drive power at d/2 = 10.4925 GHz. At 
this drive frequency, we calculate a saturation photon number of nsat = 
8.4. We observe a sudden change in transmission at Prf = − 25 dBm 
in which the cavity switches from a low-amplitude (dim) state to a 
high-amplitude (bright) state. This transition is accurately modeled 
by the Duffing master equation (Eq. 4), the results of which are dis-
played by the green line.

We can make a connection between this behavior and the theory 
of phase transitions by defining the thermodynamic limit in which 
the saturation photon number nsat goes to infinity. This is achieved
by rescaling the drive and nonlinearity according to  ϵ →  √ 

_
    ϵ  and 

K → K/, which, in turn, gives nsat → nsat (9, 13, 30). The simulated 
cavity amplitude is displayed for a range of values of nsat, and, as 
expected, we observe that the transition becomes sharper as the sys-
tem moves toward the thermodynamic limit, which is typical of 
first-order phase transitions.

We are interested in exploring the system dynamics within this 
bistable regime, where the steady state consists of a mixture of bright 
and dim states. We can form an effective master equation by writing 
the state of the system as

 (t ) =  p  b  (t )    b   +  p  d  (t )    d    (7)

where b and d are the bright and dim states, and pb and pd are their 
occupation probabilities. We can then write a simple rate equation for 
evolution of the state

   (    ∂  t    p  b     ∂  t    p  d    )   =  (   −    b→d       d→b        b→d    −    d→b    )   (    p  b     p  d    )     (8)

in which occasional fluctuations allow the system to switch be-
tween states at the rates b → d and d → b (12, 20). The system reaches 
a steady state when the occupation probabilities have reached equi-
librium. The approach to this steady state is governed by

   (   
 p  b  

   p  d    )   =   1 ─  Γ  ad     (    Γ  d→b     Γ  b→d    )   + A  e   − Γ  ad  t  (    1  − 1  )     (9)

where the coefficient A is determined by the initial system condi-
tions. ad is referred to as the asymptotic decay rate and it is given by

    ad   =    d→b   +    b→d    (10)

ad is calculated by extracting the gap in the Liouvillian superop-
erator (14, 22), derived from the Duffing master equation (Eq. 4). 
Figure 1C shows the asymptotic decay rate as a function of drive powers 
for different photon saturation numbers. We find that, within the 
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bistable regime, the asymptotic decay rate drops far below the cavi-
ty decay rate (22). This effect is known as critical slowing down and 
is characteristic of the phase transition. Furthermore, the asymp-
totic decay rate is exponentially suppressed as nsat increases, indi-
cating that ever larger fluctuations are required to cause switching 
between the states.

Critical slowing down
Measurements of critical slowing down are performed by recording 
the transient response of the cavity when a step function drive pulse 
is applied. Figure 2 shows the average cavity response outside (A) 
and inside (B) the bistable regime. Figure 2A shows the response at 
the cavity resonance at Prf = −40 dBm with the transmon initialized in 
either the ground state (blue line) or the first excited state (brown line). 

The time scale over which the cavity responds shows a clear depen-
dence on the transmon state. When the transmon starts in the ground 
state, the cavity reaches equilibrium over a time scale 2 T = 2/ = 
0.29 s, set by the cavity relaxation rate , whereas when the trans-
mon is initialized in the first excited state, the drive is initially off 
resonant with the cavity and the transmon must relax over a time T1 
before the system can reach equilibrium.

Figure 2B shows that the dynamics changes significantly if the sys-
tem is driven at higher powers. The cavity is now driven at d/2 = 
10.4898 GHz and Prf = −21 dBm. The inset displays the spectrum at 
this drive power and the dashed line indicates the drive frequency, 
which is chosen such that the system is in the bistable regime as signaled 
by the dip in transmission. The cavity response is now governed by 
multiple time scales. Initially, there is a fast rise in the cavity transmission 

Fig. 1. Phase transition in a system with two degrees of freedom. (A) Transmission spectroscopy of the cavity for a range of drive powers and frequencies. At low drive 
powers, we observe a resonance at d/2 = 10.4960 GHz. Nonlinearity causes the resonance to shift as power increases. The boundaries of the bistable regime are mod-
eled using the mean-field equations of motion of the Duffing oscillator (red lines). (B) Transmitted signal as a function of drive power at      d   _ 2   = 10.4925 GHz  [vertical dashed 
line in (A)]. The measured transmission (black dashed line) is compared with the results of a Duffing model in green, for which we plot the cavity amplitude divided by the 
root of the photon saturation number  (∣ 〈a〉 ∣ /  √ 

_
  n  sat    ) . Insets I, II, and III show the Wigner function of the steady state of the cavity according to the Duffing model at the 

marked power, confirming that the transition is associated with a transfer of probability between two regions in phase space: the bright and dim states.  ∣ 〈a〉 ∣ /  √ 
_

  n  sat      is also 
displayed for a range of saturation photon numbers: The transition becomes sharper as nsat increases toward the thermodynamic limit. (C) Asymptotic decay rate as a 
function of power for different values of nsat. The rate at which the system approaches the steady state drops orders of magnitude below its natural relaxation 
time    ̃   , showing that the bistable regime is associated with critical slowing down. The inset shows that this slowdown increases exponentially as the thermodynamic 
limit is approached.
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over a time ranging from T to T1 depending on the initial state of 
the qubit. However, after this fast response, we observe critical slowing 
down: a gradual decay toward equilibrium over a time much longer 
than both the cavity and qubit lifetimes. We label the time constant 
over which the system reaches equilibrium as Ts = 1/ad. By initial-
izing the transmon in a range of initial states, we show that the cav-
ity retains a memory of the initial transmon state for over 100 s, 
indicating our proximity to a phase transition.

Next, we characterize the dependence of the critical slowing down 
Ts on both driving frequency and power within the bistable regime, 
and we model our findings using a range of approaches. We can 
either exploit the analytical theory of quantum activation for a Duff-
ing oscillator, as provided in (21), or we can use the master equations 
for the Duffing and GJC models. In this latter approach, we rewrite 
the GJC master equation as ∂t = ℒ where ℒ is the Liouvillian 

superoperator. The eigenbasis of ℒ can be used to express the state 
of the system as

 (t ) =  ∑ 
n
      c  n    e   −(   n  +i   n  )t     n    (11)

where ℒn = −(n + in)n. At long times, the state will be dominated 
by the steady-state ss and the asymptotically decaying state ad. In 
this limit, we write the state as

 (t ) =    ss   +  c  ad    e   −   ad  t     ad    (12)

Fig. 2. Averaged transient response of the cavity outside and inside the bistable 
regime. The inset in (A) shows transmission spectroscopy of the cavity for a range 
of drive powers and frequencies during the first cooldown. The mean-field Duffing 
limits of the bistable regime are displayed in red, and the locations at which the data 
in (A) and (B) were taken are indicated by the white dots. (A) The cavity is driven at 
the low-power resonance d/2 = 10.4960 GHz and Prf = −40 dBm. The signal in 
blue (brown) is the transient response measured with the qubit initialized in its 
ground (first excited) state. The transient response is governed by the time scale 
2T = 0.29 s if the transmon is in the ground state, whereas it is governed by T1 = 
2.89 s if the transmon is in the first excited state. (B) Transient responses for different 
initial qubit states in the bistable regime at Prf = −21 dBm. The inset shows spec-
troscopy of the cavity at this drive power with the drive frequency d/2 = 10.4898 GHz 
indicated by the dashed line. The transient response is divided into two parts. 
There is an initial fast response with a time scale ranging from T to T1 depending 
on the initial transmon state, followed by a slow decay toward steady state over a 
time scale Ts = 73.2 s, obtained from an exponential fit, which is much longer than 
both the transmon and cavity lifetimes. This critical slowing down allows us to dis-
tinguish the transients for different transmon states for more than 100 s.

Fig. 3. Measuring and modeling the critical slowing down time. (A) Critical slowing 
down time Ts in the bistable regime as a function of driving frequency at Prf = − 17 dBm 
during the second cooldown, during which the qubit frequency had shifted to 
8.7965 GHz and the low-power resonance of the cavity had shifted to 10.4761 GHz. 
The red points represent the experimental data, which we compare with the re-
sults of master equation calculations applied to the Duffing oscillator (blue line) 
and the GJC model with transmon dephasing (green line) and without (purple 
line). We also display the results of previous analytical theory of switching rates for 
the Duffing oscillator (orange line) (21). At this power, both the master equation 
and the analytical calculations qualitatively reproduce the experimental values of 
Ts. The horizontal dashed line in the inset shows the location of our measurements 
within the overall cavity spectrum. (B) Maximum value of Ts for different drive am-
plitudes (red points). These data were collected along the diagonal dashed line in 
the inset of (A). As the drive power increases beyond −17 dBm, Ts reaches a satura-
tion at a value of ≈100 s, which is consistent with the simulations based on the GJC 
model with transmon dephasing (green line). Removing the dephasing by setting 
 = 0 (purple line) does not change the power at which saturation occurs but it does 
raise the upper limit on Ts. Meanwhile, analytical (orange line) and master equation 
(blue line) calculations with the Duffing approximation predict that Ts rises expo-
nentially with drive amplitude, as can be seen using the logarithmic scale of the inset.
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While for the Duffing model, it is possible to extract ad by diag-
onalizing the Liouvillian, due to the larger Hilbert space size of the 
GJC model, ad is extracted by integrating the master equation (Eq. 2) 
for a sufficiently long time. We are hence able to compare the exper-
imentally attained values of critical slowing down time with simu-
lated values. Figure 3A shows the measured valued of Ts (red circles) 
as a function of the drive frequency d along the dashed line in the 
spectroscopy inset, which is located at a drive power of Prf = −17 dBm. 
We find that Ts reaches a maximum close to the dip in the cavity 
spectrum. This is expected, since the dip is a key signature of the 
coexistence of the two phases in our transition.

We compare our measurements with master equation simulations 
applied to a Duffing oscillator model (blue line) and to the GJC model 
with (green line) and without transmon dephasing (purple line). We 
also compare our data to results attained from the analytical theory 
of quantum activation for a Duffing oscillator (orange line) (21). At 
this drive power, we find that all of our models give at least qualita-
tive agreement with the measured dependence of critical slowing 
down on frequency, but only the GJC model is able to model this 
effect quantitatively.

However, if we plot how the maximum value of Ts varies with the 
amplitude of the drive, as shown in Fig. 3B, we observe a significant 
divergence between our data and the values attained using the Duffing 
model. Whereas the theory of the Duffing oscillator predicts that Ts 
should increase exponentially with the drive, we instead observe that, 
at sufficiently strong drive amplitudes, Ts saturates. To account for 
this difference, we require the full GJC model. We find that the master 

equation predicts the same saturation in Ts as found in experiment 
when we explicitly include the transmon in the simulation.

DISCUSSION
The system of two strongly coupled oscillators is governed by essen-
tially different activation dynamics. To shed light on the dissimilarity 
between the Duffing model and the GJC model, we examine the switch-
ing rates b → d and d → b more closely. To obtain these rates, it is 
necessary to first find the steady state and extract the occupation 
probabilities pb(t → ∞ ) and pd(t → ∞ ). We can then calculate the 
switching rates d → b and b → d according to

    d(b)→b(d)   =  p  d(b)  (t → ∞ )    ad    (13)

The occupation probabilities can be extracted using the asymp-
totically decaying and steady states (note S2). The resulting rates are 
displayed in Fig. 4B, which shows d → b and b → d as a function of 
frequency at a driving power of Prf = −14 dBm for both the Duffing 
and the GJC model. Whereas d → b is in close agreement between 
the two models, b → d is significantly greater in the GJC model. This 
limits the critical slowing down time according to Eq. 10 and leads 
to the saturation seen in Fig. 3B. It also indicates that the bright state 
has a shorter lifetime in the GJC model. Prior work suggests that the 
instability of the bright state increases with the nonlinearity of the 
ladder of states in the vicinity of the wave packet (17). The instability 

Fig. 4. Relating the steady-state Wigner to the switching rates. (A) Steady-state cavity Wigner functions produced using the GJC model at Prf = −14 dBm. At d/2 = 
10.4709 GHz the steady state consists mainly of the dim state, which corresponds to the peak near the origin. However, as we increase the drive frequency, the occupation 
of the bright state increases as well. At d/2 = 10.4720 GHz, the occupations of the bistable states are approximately equal, and, at d/2 = 10.4723 GHz, the bright state 
is dominant. (B) Switching rates between metastable states as a function of driving frequency. Whereas d → b is similar in both the Duffing and the GJC models, b → d is 
significantly different. In the GJC model, b → d is much greater compared to the Duffing model. This explains the saturation we observe in Ts.
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of the bright state in the GJC model may be due to extra nonlinearity 
that is present when the transmon becomes excited.

The Wigner function for three cavity steady states using the GJC 
model is shown in Fig. 4A. We observe that, at low drive frequencies, 
the dim state is the main contributor to the overall state of the sys-
tem; this is consistent with b → d dominating over d → b. At higher 
drive frequencies, the reverse is true, while at some intermediate 
drive, frequency the two bistable states are equally occupied and the 
switching rates are balanced.

In summary, we have explored the rich quantum activation dy-
namics happening at an intermediate driving regime in cQED. We 
have observed a phase transition in our system, which contains only 
two degrees of freedom: a transmon qubit coupled to a microwave 
cavity. A key signature of this transition is critical slowing down, in 
which the time taken for the system to reach a steady state can extend 
far beyond the natural lifetime of the qubit or cavity. We have measured 
the slowdown time for a wide range of powers and frequencies, and 
we have compared our results with simulations. We found that the 
transition and its associated critical slowing down are well modeled 
by the Duffing approximation at low drive powers. However, at 
higher drive powers, we observed a saturation in the critical slowing 
down time, which can only be captured by the full GJC model.

It is known that in this regime the transmon becomes highly ex-
cited and starts to participate in the dynamics (31) so it is no longer 
valid to apply the Duffing approximation. An accurate model must 
include the quantum fluctuations of the qubit and the resulting de-
stabilization of the bright state that this causes. Currently, there ex-
ists no analytical theory for the switching rates in the bistable regime 
of a cavity coupled to spins or multilevel systems, and this suggests 
that one avenue of future work could focus on extending the exist-
ing theory for the Duffing oscillator to these models. Moreover, we 
link the critical slowing down to the switching rates between the two 
metastable states and show how these differ for the GJC and Duffing 
models. This experiment is a powerful demonstration of the versa-
tility of superconducting circuits, showing that even with few de-
grees of freedom, it is possible to explore rich nonlinear physics and 
phenomena such as dissipative phase transitions.

MATERIALS AND METHODS
A two-port Al microwave cavity holds a lithographically patterned 
Al transmon qubit, which is fabricated on a sapphire substrate. The 
transmon qubit consists of two Al pads of dimensions 350 m by 
450 m connected by an Al/AlOx/Al Josephson junction, which is 
patterned using standard e-beam lithography and double-shadow 
evaporation techniques. The cavity is thermally anchored to the 10 mK 
plate of a dilution refrigerator. Input signals are heavily cryogenically 
attenuated to reduce thermal noise, and measurements of the 
signal transmitted through the cavity are made via cryogenic circu-
lators and a low-noise high-electron-mobility transistor amplifier, 
with the signal lastly being recorded as a voltage with an analog-to- 
digital converter.

Measurements were collected during two successive cooldowns. 
During the first cooldown (C1), spectroscopy of the transmon re-
veals its lowest transition to be 01/2 = 9.1932 GHz with anharmo-
nicity /2 = −203.6  MHz. The bare resonance frequency of the 
cavity is c/2 = 10.4263 GHz and its quality factor is found to be Q = 
7900. The relaxation and dephasing times of the transmon are T1 = 
2.89 s and T2 = 2.37 s, respectively. During the second cooldown 

(C2), the system is described by a GJC model with the following 
parameters: c/2 = 10.423 GHz, g0/2 = 295 MHz,  = 1.432 MHz, 
 = 33 kHz,  = 1 kHz, nc = 0.01, and nt = 0.02. The eigenstates of the 
transmon were produced using a Josephson energy of EJ/2 = 46.7 GHz 
and a charging energy of EC/2 = 221 MHz (25). Applying the Duffing 
approximation to this system, we find     ~    c   / 2 = 10.4761 GHz , 
K/2 = − 0.152 MHz,    ~   / 2 = 1.387 MHz ,     ~       / 2 = 1.02 Hz , and     ~ n    c   = 0.0100 .

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/21/eabe9492/DC1
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