CHALMERS

UNIVERSITY OF TECHNOLOGY

Guard extraction for modeling and control of a collabor ative
assembly station

Downloaded from: https://research.chalmers.se, 2021-08-31 12:32 UTC

Citation for the original published paper (version of record):

Dahl, M., Bengtsson, K., Fabian, M. et al (2020)

Guard extraction for modeling and control of a collaborative assembly station
| FAC-PapersOnLine, 53(4): 223-228
http://dx.doi.org/10.1016/j.ifacol.2021.04.053

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 53-4 (2020) 223228

Guard extraction for modeling and control

of a collaborative assembly station

*

Martin Dahl* Kristofer Bengtsson * Martin Fabian *
Petter Falkman *

* Department of Electrical Engineering, Chalmers University of
Technology, 412 96 Giteborg, Sweden (martin.dahl |
kristofer.bengtsson | fabian | petter.falkman)

@chalmers.se.

Abstract: A transition system represented by guards and actions can be amended by new
guards computed in order to satisfy some specification. If the transition system is the result
of composing smaller state machines, guard extraction can be used to put the new guards
onto the guards the original state machines. Planning and verification can then be performed
directly on the system with additional guards. In this paper we discuss the benefits of applying
guard extraction as part of the modeling work in a modular control architecture, where reusable
resources are composed using specifications. We show with an example from the development
of an industrial demonstrator that even if the specification language is limited to invariant
propositions, in practice many common safety specifications can be expressed when combined
with a notion of which transitions are allowed to be restricted.

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)

Keywords: Discrete event systems in manufacturing

1. INTRODUCTION

Automation systems are becoming increasingly complex,
with automated planning algorithms (Ghallab et al.,
2016), online robot motion planning (Alterovitz et al.,
2016; Perez et al., 2016), cyber-physical automation sys-
tems (Monostori et al., 2016) and collaborative robots
(Bauer et al., 2008).

Developing these systems with traditional engineering
methods also becomes highly complex (Dahl et al., 2016),
especially when developing online planning algorithms,
that not only needs to be reliable and fast, but also
adaptive and flexible. To aid in this trade-off, this paper
presents an automated design process using guard extrac-
tion (Miremadi et al., 2011), that support the engineering
work by simplifying control modeling, improving reusabil-
ity, as well as improving quality by ensuring correctness.

The control system developed by this process is using a
resource based control architecture defined in Dahl et al.
(2019). In this architecture, resources are modeled in iso-
lation in order to be reusable and guard extraction is one
of the tools used to ensure safe interaction between them.
The development of an industrial demonstrator is used as
an example to motivate why even the simplest kind of
control logic synthesis — automatically ensuring invariant
propositions — can be an important tool, especially for
modeling purposes. In practice, specifying behavior using
invariant propositions is a common use case which covers
a lot of safety requirements.

* This work has been supported by UNIFICATION, Vinnova, Pro-
duktion 2030, and UNICORN, Vinnova, Effektiva och uppkopplade
transportsystem.

In the applied control architecture, the decision of which
action to take next is based on the current valuations of the
variables of the involved resources (e.g. sensor readings).
As such, there are neither state nor event labels, instead
the control system is interested only in the combinations
of variable valuations that make up a certain state, and
under which conditions the system can transit between
these states.

The paper is structured as follows: starting with some
preliminaries in Section 2, we then give a brief introduction
to the control architecture our method is applied to in
Section 3. The guard extraction procedure is discussed in
Section 4. Section 5 details how the guard extraction pro-
cedure was used for modeling and control for an industrial
demonstrator using the control architecture. In Section 6
concluding remarks are made.

2. PRELIMINARIES

Definition 1. A transition system (TS) is a tuple (S, —, I),
where S is a set of states, - C S x S is the transition
relation and I C S is the nonempty set of initial states.

Definition 2. A state s € S is a unique valuation of each
variable in the system. E.g. s = (v1,v._, vp).

Variables have finite discrete domains, i.e. Boolean or
enumeration types.

The transition relation — can be created from transitions
that modify the system state:

Definition 8. A transition has a guard predicate function
and a set of action functions, which can update variables
making up a state. Formally we encode transitions by
explicitly writing the next values of each variable to primed

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2021.04.053

224 Martin Dahl et al. / [FAC PapersOnLine 53-4 (2020) 223-228

mirrors of them that we refer to as next-state variables, but
to save space we often write the guard as a partial function
over the system’s variables (the rest are “don’t cares”) and
any variables not included in the transitions’ set of action
functions keep their current value.

Example: a system with two Boolean variables x and y
has S = {(=z,~y), (-z,y), (z,~y), {z,y)}. A transition
with the guard predicate —z and the action function x
is encoded formally as ~x Az’ A (y < y'). In this example

— is thus {<<_"Ta _‘y>a <:177 _'y>>7 <<_‘:C’y>7 <l‘,y>>}

3. CONTROL ARCHITECTURE

In this control architecture, the resources making up the
automation system are controlled by a central planner
continuously deciding which transitions to take. Resources
are modeled independently of each other, and composed by
1) adding specifications that ensure various properties as
well as 2) adding new transitions that capture new state
that emerge from their composition. In this work the focus
is on using guard extraction, as described in Section 4,
to ensure invariant propositions. The remainder of this
section will briefly define how the control architecture used
in the demonstrator is structured, starting with models of
the individual resources.

3.1 Resources

Devices and software algorithms in the system are modeled
as resources, which group their local state and discrete
descriptions of the tasks they can perform. The resource
state is encoded into variables of three kinds: measured
state, command state, and estimated state. Measured and
command states correspond to inputs and outputs to/from
the control system, while estimated states are internal
memory, usually to keep track of something.

Definition 4. A resource r; is defined as r; = (V;M, VZC7
VE O, I;) where VM is a set of measured state variables,
VC is a set of command state variables, V;¥ is a set of
estimated state variables, and O; is a set of generalized
operations defining the resource’s abilities. I; is a set of
allowed initial states. Let V; = VM UV,C U VE.

3.2 Generalized operations

A generalized operation is defined to be able to express
both low-level ability operations and later on planning
operations, in a way that allows formal techniques for
verification and planning to be applied. Operations essen-
tially group predicates (Boolean functions) and transitions
that can update the local state of a resource, into logical
units that define the tasks that a resource can perform.
Predicates can, but do not need to, have names to clarify
their meaning. We write these as name : function where
name is an arbitrary name and function is the Boolean
function that defines the predicate.

Definition 5. A generalized operation o; is defined as
oj = (P;,G, T , T3, T%). Pj is a set of named predicates
over the state of the resource variables V;. G; is a set
of un-named guard predicates over the state of V;. The
sets T and T® define control transitions that update V;,
where T defines transitions that require (external from

the ability) deliberation and T'* defines transitions that
occur automatically whenever possible. T is a set of effect
transitions describing the possible consequences to V;*! of
being in certain states. A transition ¢; € T¢UT*UT® has a
guard predicate which can contain elements from P; and
G; and a set of actions that update the current state if
and only if the corresponding guard predicate evaluates to
true.

Tjd7 17, and T} have the same formal semantics, but
are separated due to their different uses: deliberation
transitions Td require external input in order to be taken
by the control system (e.g. input from an online planning
system). Automatic transitions T¢ are taken whenever
possible by the control system. Effect transitions 7°¢ define
how the measured state is updated, and as such they are
not used during control like the control transitions Td
and T7'. They are important to keep track of however, as
they are needed for online planning and formal verlﬁcatlon
algorithms, as well as for simulation based validation.

It is natural to define when to take certain actions in
terms of what state a resource is currently in. To ease both
modeling, planning algorithms, and later on online moni-
toring, the guard predicates of the generalized operations
are separated into one set of named (P;) and one set of
un-named (G;) predicates. The named predicates can be
used to define the current state of an operation in terms of
the set of local resource states defined by this predicate.

8.8 Ability operations

The behavior of the resources in the system is modeled by
ability operations (abilities for short). Instead of having
unique predicate names for the states of an ability (e.g.
“is closing”), it is useful to define a number of “standard”
predicate names for abilities to ease modeling, reuse,
and support for online monitoring. In this work common
meaning is introduced for the following predicates: enabled
(ability can start), starting (ability is starting, i.e. a
handshaking state), ezecuting (ability is executing, i.e.
waiting to be finished), finished (ability has finished), and
resetting (transitioning from finished back to enabled). For
most abilities, the transition between enabled and starting
will have an action in 7%, while the transition from finished
to enabled will have an action in 7.

3.4 Planning operations

Control of an automation system can be abstracted into
performing operations (Lennartson et al., 2010). While
ability operations define the low-level tasks that different
resources can perform, planning operations model how
to make the system do something useful. The planning
operation k is defined as the generalized operation Oy and
the estimated state variable Oy, with the domain {i, e, f}.
For the operation k, P, = {(init, Oy, = i), (ezecuting, Oy, =
e), (finished, Oy, = f)}. Py is used to keep track of the
current state of the operation, which is later used in
order to collect the current goal states of the system. The
operation has one deliberation transition tg € T,‘j7 with
the guard predicate init A g; (where init refers to init

in Py) and the action function Ok := e. This represents

Martin Dahl et al. / [FAC PapersOnLine 53-4 (2020) 223-228 225

starting the operation, where g; € G} is an unnamed
predicate defining the precondition of Oj. Finishing the
operation is defined by the automatic transition ¢, € T}
defined by the guard predicate executing A gi with the
action function Ok := f, where gy € Gy is a predicate
defining the postcondition of Oy. Operations do not have
effect transitions: T = 0.

4. GUARD EXTRACTION

Invariant properties can be ensured by making sure that
states where the properties do not hold cannot be reached,
however, when the environment is part of the model this
does not make much sense, as the environment cannot be
restricted arbitrarily. But by combining the restriction on
events with a notion of which control actions are allowed to
be restricted, a very natural way to model that the system
is waiting for something external to the controller (i.e.
some action) to happen, or that some action is important
and should always need to be allowed to happen emerges.
To model this, we borrow the concept of uncontrollability
from Supervisory Control Theory (SCT) (Ramadge and
Wonham, 1987). In SCT, the goal is to find a supervisor
that disables controllable events generated by a plant in
order to satisfy some specification, while uncontrollable
events should always be allowed. Furthermore, the result-
ing supervisor should be maximally permissive (Ramadge
and Wonham, 1987), i.e. it should restrict the system as
little as possible.

Consider a situation where a resource is shared between
two processes. Most likely it is the acquisition of the
resource that we want to restrict, i.e. under which cir-
cumstances should we be allowed to acquire the resource,
rather than controlling when to release the resource. As
such, the act of acquisition is naturally modeled as a con-
trollable event, while the release of it is uncontrollable — it
is in theory controllable but we want to design the system
to release the resource as soon as we are done with it. In
context of the control architecture defined in Section 3,
the acquisition would be a deliberation transition, and the
release would be an automatic transition.

Another situation is when we are waiting for an effect
that occurs due to the controller interacting with the
environment, for example, waiting for input from some
sensor. As it is the environment that produces the effect,
it cannot be controlled (by the control system). We would
like to capture that we are in a waiting state however,
and that from this state execution will continue, so we
model transitioning between the waiting and done state
as an uncontrollable event. This situation corresponds to
the effect transitions defined in Section 3.

4.1 Symbolic state representation

With a symbolic representation (Burch et al., 1992), sets
of states are represented as Boolean functions. If a system
is represented by the Boolean variables x and y, the set of
states (—zx, —y), (x, —y), (-, y) can be represented by the
Boolean function —=(z Ay). The functions representing sets
can then be manipulated by Boolean operations. Using
the representation of a transition defined in Definition 3, a
set of next states can be computed from a set of states

by taking the conjunction of the function representing
the set with the function representing the transition(s).
If the initial states of a T'S are represented by the Boolean
function ¢(s) and the transitions of the TS are represented
by the function v(z,z’) (e.g. t1(z,2") V ta(z,2’)... where
x,x’ represent the current-state and next-state variables
respectively), exploring the state space symbolically can
then be done by finding the fix-point of:
bo(s) = ¢(s)
div1(s) = ¢i(s) V Is".(¢i(s") A(s,)

Quantifying the source states out of the conjunction (i.e.
3s'.(¢i(s") Ay(s',s)) above) with the transitions, is com-
monly defined as the relational product (relprod below).
Naively, this fix-point computation can be implemented
as in Listing 1, where initial is a Boolean function
representing the initial states, trans is a Boolean function
representing the transitions, vs and vsn are the system
variables where vsn represent the next-state variables. The
replace function replaces each next-state variable with its
corresponding state variable.

fn reachable(initial, trans, vs, vsn) {
let mut r = initial;

loop {
let old = r;
let new = relprod(old, trans, vs, vsn);

let new = replace(new, vs, vsn);

r = logical_or(old, new);
if 0ld == r {
break;
}
}
return r;

}

Listing 1: Implementation of symbolic breadth first reach-
ability.

Let us give an example to illustrate both the symbolic
representation and how it automatically gives us guard
extraction, if the set S, of reachable and safe (safe as in not
violating some specification) states is already computed.

Consider a TS represented with the variables z,y, a
transition relation containing -z A 2’ A (y < 3') and
“y Ay A(x < 2'), and (—x A —y) as the initial state.
If =(x A y) is a specification and both transitions are
controllable, it is easy to see that all safe and reachable
states Sy can also be represented by —(x A y). Any new
guards for some transition ¢ constrained by S, can be
extracted by taking the relational product of ¢ and S,
where t is t applied backwards, i.e. with the current- and
next-states of ¢t swapped. The result of this computation is
the symbolic representation of all source states from where
taking ¢ ends up in the safe set S,. Thus, for the transition
that changes x, any new guard(s) can be extracted by
taking the transition —x A 2’ A (y < 3’) backwards, i.e.
z A -z’ A(y < y') from Sy by taking the conjunction of
the two formulas, x A =2’ A (y < y') A =(z A y) which
gives x A =2’ A (y < y') A —y. Quantify out = and y to
get —~z’ A —y/, which only contains the next-values z’ and
y', which in this case represents the source states of the
original transition (as it was taken backwards). Substitute
z’ with z, and 3’ with y, and we get the final guard —zA—vy,

226 Martin Dahl et al. / IFAC PapersOnLine 53-4 (2020) 223-228

of which —x was the original guard of the transition and —y
is the added guard that forbids the system from violating
the specification.

During implementation, ordered binary decision diagrams
(Bryant, 1992) are commonly used to efficiently manip-
ulate the Boolean expressions. In practice this results in
the function representing S, containing terms that make
no difference to the end result. For human understanding
it is important to post-process the generated guards. See
for example Miremadi et al. (2011).

What is left then is to find the set S; containing the
safe states. Ideally, S, should be maximally permissive, i.e.
contain as many states as possible, allowing for maximum
freedom for the planning system.

4.2 Finding the safe states S,

As stated, we want to find the maximally permissive set
Sy containing the states that are safe to be in (e.g. those
that do not violate a specification). The problem we want
to solve is called synthesis w.r.t. controllability in the
SCT literature. We can solve this by computing the set
of reachable states (S,.) and the set of forbidden states
(Sz). Then S, = S, N (S — S;) contain all safe states.
Listing 2, shows how to apply the symbolic reachability
function to compute S,, where trans is a Boolean function
representing all transitions of the system and buc is a
Boolean function representing the uncontrollable transi-
tions backwards.

fn safe_states(initial, forbidden, trans, buc, vs, vsn) {
let r = reachable(initial, trans, vs, vsn);
let f = reachable(forbidden, buc, vs, vsn);

return logical_and(r, logical_not(f));

}

Listing 2: Finding the safe states: safe_states returns
the set S, symbolically.

4.8 Algorithm for resource composition

Visiting all reachable states of course puts a hard limit on
the size of the systems that can be handled, even if they are
nowadays rather large (e.g. more than 10%° states (Burch
et al., 1992)). However, because the resources as defined
in Definition 4 are independent of each other, finding S,
can be done in a modular way.

For each specification, start by identifying which resources
it involves by looking at the state variables that are ref-
erenced in the specification. Always group resources that
share a variable. Construct a T'S containing the state vari-
ables and transitions contained in each involved resource.
Additionally, reverse (i.e. make them go backwards) all the
automatic and effect transitions and add them to the set
of backwards uncontrollable transitions (buc in Listing 2).

The generated guard expressions are valid only within the
states defined by S —S,.. As such, the allowed initial states
of each resource need to be updated to also reflect the new
forbidden states found for each specification. Updating of
the individual resources with new guards and initial states
is similar to the normalization procedure performed in
Mohajerani et al. (2016).

5. APPLICATION: ASSEMBLY STATION

Fig. 1 shows an assembly station where a human operator
and a collaborative robot work together to mount parts
on a diesel engine. The collaborative robot hangs from the
ceiling, together with some tools that can be attached via a
tool changer attached to the robot. This section highlights
how guard extraction was used as a modeling and control
tool during the implementation of this demonstrator by
showing how it was applied to model this changing of tools.

Al \““

“‘\ W‘ﬂ[mmun " THT
\\“"l Il \ v
l||||“ T “lll

\mun i “‘“.\ I

m\,,..L.L.,.. i
\vﬁfj

‘ ‘“I\ lllh] \\\

il

i i
i “"\.".'.‘.".\%s‘

‘:I;\:l\\‘“ﬂh\l \::“hl‘\“} '“n\i‘ﬁ

L .u‘ \“\“\H'“ 1

I I“Lll it |“

Fig. 1. Collaborative robot assembly station. Cutout at
the top right highlights the tool docking mechanism.
Video available at https://youtu.be/TK1Mb38x1Q8

The robot (from here, the ur10), the tool changer (rsp),
and a gripping tool (tool) are all modeled as individual
resources.

To ease notation, we use a notation in which measured
state variables are denoted with a subscript “?”, command
state variables are denoted with a subscript “!”, and
estimated state variables are denoted with a hat — see
Table 1.

Table 1.

V7 ‘ measured state variables

ol ‘ command state variables

0 ‘ estimated state variables

Table 1: Notation for the three different types of a resource state
variable v.

The tool can open and close based on a digital output, o,
which opens the gripper when high and closes it when low.
The tool has sensors for knowing whether its opened (o7)
or closed (c¢7). A resource t modeling the tool is defined as
re = {{c7,00}, {c1, 0}, 0,04, 1). The allowed initial states
I; are all states where the opened and closed sensors are
not active at the same time. Oy contains two abilities,
close and open. These are expressed in terms of the tool
resource state. Table 2 shows the transitions of the close
and open abilities respectively. The type column denotes
whether the predicate and action function make up a
deliberation (d), automatic (a), or effect (e) transition.
To save space, we allow to put named predicates in the

Martin Dahl et al. / [FAC PapersOnLine 53-4 (2020) 223-228 227

tables. These are denoted by rows with “-” for the action
functions and the type.

Table 2.
predicate ‘ action functions ‘ type
enabled : —o7 o) := true d
executing : oy A =07 07 := true,c? := false | e

finished : oy A 07

enabled : —co
executing : oy A —co
finished : —oy A ¢

o := false
07 := false,cy :==true | e

Table 2: The transitions and named predicates making up the open
(top), and close (bottom) abilities.

Next, the rsp resource is modeled. The rsp has two com-
mand variables, I} € {false,true} and w € {false,true},
requesting whether it should be locked or unlocked. The
rsp locking mechanism does not have a sensor, but it
keeps its state even if powered off so as not to drop
any currently held tools, and therefore the state of it
must be estimated. To keep track of whether it is locked
or not, the resource includes an estimated state variable
I e {unknown, false,true}. The rsp can be locked even
though it is already locked, to put it in a known state,
which also applies to unlocking.

The resource r defining the rsp can then be defined as
I— (@,{lg,ug},{i},Or,L>. I, contains all states where
[= unknown. Table 3 shows the abilities for locking and
unlocking the tool changer.

Table 3.
predicate ‘ actions functions ‘ type
enabled : i;é true ‘ ly := true,u) := false,i:: true ‘ d
finished : [= true ‘ - ‘ -
enabled : i;é false ‘ ly := false,uy := true,i:: false ‘ d

finished : [= false ‘ - ‘ -

Table 3: The transitions and named predicates making up the lock
and unlock abilities of the rsp resource.

The url0 can be in one of P € {pg,p1} predefined
poses. A resource u is defined for the uri0 as follows:
r = ({p2,m2},{gp},{lp}, Ou, L), where p; is the mea-
sured robot position, ms € {false,true} is a measure
of whether the robot is moving or stationary, gp is its
goal position and Ip is the last known observed position.
Table 4 shows the move_to_p0 ability of the ur10 resource.
Corresponding abilities exist for each target position of the
robot.

Table 4.
predicate ‘ actions functions ‘ type
enabled : p? # po A gp1 # po gpy i=po d
starting : p? # po A gpy = po A —"ms mo = true e
executing : gpy = po Apr # po Amz | p? :=po, m? := false | e
finished : gs? = po Ip :=po a

Table 4: The transitions and named predicates making up the
move_to_p0 ability of the url0 resource.

In order to model the interaction between the fool and
the ur10, an estimated state variable is introduced, t €

{home,robot}. t is updated by the transitions defined in
Table 5. When the robot is at pg and the rsp is unlocked,
the tool is considered to be at the home position and
when the robot is at py and the rsp is locked, the tool
is considered to be attached to the robot.

Table 5.
predicate ‘ action functions ‘ type
t = robot A pr = po A =l | £ := home a
t = home Ap> =po Al { := robot a

Table 5: Two automatic transitions for keeping track of the tool
position.

It is now possible to define two planning operations, one
for taking the tool and one for putting it back, while also
moving the robot to pl. We define TakeTool to have the
precondition ¢ = home and the goal state ¢ = robot A
p? = p1, as well as LeaveTool with the precondition
t = robot and the goal state £ = home A p, = p;. The
desired outcome is described in Fig. 2, which shows two
possible plans for executing the planning operations.

t = home t = robot

1. tool.open
;. lszr;-(I)c.’r;ﬁI:)ve_to_po 2. url0.move_to_p0
TakeTool |3, tool.open LeaveTool z tC'C‘|-C|<|)Sek
4. url0.move_to_pl - rsp.unioc
5. url0.move_to_pl

t=robot np, =p, t=home np,=p,

Fig. 2. Two plans arising from the intent of taking and
putting back the tool illustrated beside the respective
planning operation. In the TakeTool case, the rsp is
initially unlocked, the tool is closed (hanging at the
stand) and the robot is at p;. In the LeaveTool case,
the tool is initially closed and attached to the robot
(i.e. rsp is locked), the uri0 is in py, and the rsp is
locked.

While it is easy to model in the level of abstraction
provided by the planning operations, to get the behavior
shown in Fig. 2, additional specifications are needed in
order to ensure proper interaction between the resources.

5.1 Ensuring invariant propositions via additional guards

If the tool is attached to the robot, it should not be
possible to move the robot between poses py and p; unless
the tool is open. This can be expressed as specification
A: t = robot AP = po A url0.move_to_pl.executing =
tool.open.finished as well as specification B: ¢ = robot A
p = p1 A url0.move_to_p0.executing = tool.open.finished.

Similarly, if the tool is at the tool stand, it should not
be possible to move from pose p; to pg unless the rsp is
unlocked, or the tool changer will collide with the tool.
This can be expressed as specification C: ¢ = home A
url0.move_to_p0.executing = rsp.unlock.finished.

If the robot is holding the tool, the rsp is not allowed to
unlock to release the tool unless the robot is at py and
the gripper has closed (thus holding on to the tool stand).
This is specification D: = robot A rsp.unlock.finished =
p? = po A tool.close.finished.

Finally, if the tool is at the tool stand, the gripper must
not be allowed to open. E: t = home = tool.close.finished.

228 Martin Dahl et al. / [FAC PapersOnLine 53-4 (2020) 223-228

5.2 Guard extraction results

To perform guard extraction by reverse reachability from
forbidden states, the negation of each specification are
disjuncted to form a Boolean function representing all
forbidden state combinations. Then the guard extraction
algorithm described previously can be applied to the TS
created from the resources, their initial states and the set
of forbidden states. The generated guards can be seen in
Table 6.

Table 6.

ability new guard

=0y A =07 A=V oy Aoy Al
=01 A =07 A=l At = homeV oy Aoy ANl At = robot

ur10.move_to_p0
url0.move_to_p1l

rsp.lock pr=poAp=poVi=robotVpr=poAlp=p1Vpr=pi Ap =p1
rsp.unlock —0) At = homeV =0y A cy Ap? = po Ap = po
tool.open LN é = robot

tool.close pr=poAp=poVpr=poAlp=p1Vpr=p1 Alp=poVpr=p1 Ap =p

Table 6: Produced guards for the deliberation transitions of respec-
tive ability.

With the new guards (and the new initial states of the
resources, not shown here), the set of safe states Sy contain
1056 states. The computed guards, while certainly not
impossible to understand, are arguably more complex than
the specifications A-E provided above, which each solve
a distinct problematic interaction. With the computed
guards added back to the resource’s deliberation transi-
tions, the control system will now produce plans according
to Fig. 2. While the above example may seem trivial, it is
actually a quite tricky situation due to the interconnected
resources.

6. CONCLUSION

At the surface, some specifications seem very easy to get
rid of by simply modifying the involved resources. How-
ever, one needs to remember that the discrete descriptions
of the resources are just one part of a larger collection
of driver code, simulation representations etc. Ideally the
resource definitions should not need to be changed.

Additionally, it may seem limiting to only be able to
specify invariant propositions, however when combined
with the notion of uncontrollable transitions, we have
found that in practice, this comes a long way towards
expressing the most common safety specifications.

The method outlined here does not take into account
global specifications — each specification is handled only
for the involved resources (in the example above the
three resources are interconnected and treated as one).
This means that other types of verification need to be
performed after the guard extraction has been performed.
For example, it is essential to check that whenever a
precondition of a planning operation is satisfied, there
must exist at least one path leading to the goal state
of the operation. This highlights the fact that the guard
extraction is just one of many tools that can be used
to ensure high quality automation solutions. Perhaps the
biggest advantage to applying guard extraction lies in
its simplicity — because it only modifies the guards of
the original resources, it can easily coexist with both
traditional model checking and planning systems.

In this work the resources and specifications are grouped in
a very conservative way. Future work will involve looking
into better ways to create the sub-problems solved to find
the set of safe states by inspecting the transitions involved.

REFERENCES

Alterovitz, R., Koenig, S., and Likhachev, M. (2016).
Robot planning in the real world: Research challenges
and opportunities. AI Magazine, 37(2), 76-84.

Bauer, A., Wollherr, D., and Buss, M. (2008). Human-
robot collaboration: A survey. International Journal
of Humanoid Robotics, 05(01), 47-66. doi:10.1142/
S0219843608001303. URL https://doi.org/10.1142/
S50219843608001303.

Bryant, R.E. (1992). Symbolic boolean manipulation with
ordered binary-decision diagrams. ACM Computing
Surveys (CSUR), 24(3), 293-318.

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., and
Hwang, L.J. (1992). Symbolic model checking: 102°
states and beyond. Information and computation, 98(2),
142-170.

Dahl, M., Bengtsson, K., Bergagard, P., Fabian, M., and
Falkman, P. (2016). Integrated virtual preparation
and commissioning: supporting formal methods during
automation systems development. IFAC-PapersOnLine,
49(12), 1939-1944.

Dahl, M., Erés, E., Hanna, A., Bengtsson, K., Fabian,
M., and Falkman, P. (2019). Control components for
collaborative and intelligent automation systems. In
2019 24th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 378-
384. doi:10.1109/ETFA.2019.8869112.

Ghallab, M., Nau, D., and Traverso, P. (2016). Automated
planning and acting. Cambridge University Press.

Lennartson, B., Bengtsson, K., Yuan, C.Y., Andersson,
K., Fabian, M., Falkman, P., and Akesson, K. (2010).
Sequence planning for integrated product, process and
automation design. IEEE Transactions on Automation
Science and Engineering, 7, 791-802.

Miremadi, S., Akesson, K., and Lennartson, B. (2011).
Symbolic computation of reduced guards in supervisory
control. IEEE Transactions on Automation Science and
Engineering, 8(4), 754-765. doi:10.1109/TASE.2011.
2146249.

Mohajerani, S., Malik, R., and Fabian, M. (2016).
A framework for compositional nonblocking verifi-
cation of extended finite-state machines. Discrete
Event Dynamic Systems, 26(1), 33-84. doi:10.1007/
$10626-015-0217-y. URL https://doi.org/10.1007/
$10626-015-0217-7y.

Monostori, L., Kadar, B., Bauernhansl, T., Kondoh, S.,
Kumara, S., Reinhart, G., Sauer, O., Schuh, G., Sihn,
W., and Ueda, K. (2016). Cyber-physical systems in
manufacturing. CIRP Annals, 65(2), 621 — 641.

Perez, L., Rodriguez, E., Rodriguez, N., Usamentiaga,
R., and Garcia, D.F. (2016). Robot guidance using
machine vision techniques in industrial environments:
A comparative review. Sensors, 16(3). doi:10.3390/
s16030335. URL http://www.mdpi.com/1424-8220/
16/3/335.

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory
control of a class of discrete event processes. SIAM J.
Control Optim., 25(1), 206-230.

