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Abstract 

Prior studies have suggested a significant association between 25-hydroxyvitamin D (25(OH)D) concentrations 

with markers of inflammation and glucose and insulin homeostasis. However, it is unclear whether these 

associations are confounded or mediated by adiposity. We used an established mediation analysis to 

investigate the role of adiposity in the relation between serum 25(OH)D with markers of inflammation and 

glucose and insulin metabolism.  We used data from National Health and Nutrition Examination Survey (2005-

2010), to evaluate the associations between serum 25(OH)D and markers of insulin resistance or inflammation, 

and whether these associations are mediated by adiposity  factors  including body mass index (BMI, marker of 

body adiposity), waist circumference (WC, marker of central adiposity), anthropometrically predicted visceral 

adipose tissue (apVAT), and  Visceral Adiposity Index (VAI). Analysis of co-variance and conceptual causal 

mediation analysis were conducted taking into consideration the survey design and sample weights.  A total of 

16,621 individuals were included; 8607 (48.3%) participants were men and the mean age of the population 

was 47.1 years. Mean 25(OH)D serum concentration for the overall population was 57.9±0.1 nmol/L with 

minimal differences between men and women (57.5±0.2 nmol/L and 58.2±0.2 nmol/L, respectively). After 

adjustment for age, sex, season and race/ethnicity, mean levels of C-reactive protein (CRP), apolipoprotein B 

(apo-B), fasting blood glucose (FBG), insulin, homeostatic model assessment of IR (HOMA-IR) and β cell 

function (HOMA-β), haemoglobin A1c (HbA1c), and 2-h glucose were lower for the top quartile of serum 

25(OH)D (all p<0.001). Body mass index (BMI) was found to have significant mediation effects (to varied 

extent) on the associations between serum 25(OH)D and CRP, apo-B, fasting glucose, insulin, HOMA-IR, 

HOMA-B and HbA1c (all p<0.05). Both waist circumference and apVAT were also found to partly mediate the 

associations between serum 25(OH)D with CRP, FBG, HbA1c, triglycerides and HDL-cholesterol (all P < 0.05). 

VAI was found to have mediation effects on CRP only (p<0.001). Using a mediation model, our findings suggest 

that the relationship between serum 25(OH)D, insulin resistance and inflammation, may be in part mediated 

by adiposity. These findings support the importance of optimizing 25(OH)D status in conditions with abnormal 

adiposity (i.e., obesity) and treatments for the prevention of cardio-metabolic diseases affecting adipose tissue 

metabolism (i.e., weight loss).  
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Introduction: 

Vitamin D (25(OH)D) is a hormone associated with maintenance of skeletal integrity (1). 

Furthermore, low serum 25-hydroxyvitamin D [25(OH)D] concentrations are inversely associated 

with several diseases with known or putative inflammatory aetiology such as rheumatoid arthritis, 

metabolic syndrome, type 2 diabetes (T2D), cardiovascular diseases (CVD), and some types of cancer 

(2-4). 

Obesity has been inversely associated with 25(OH)D status in adults (5, 6) McGill et al. 

observed that serum 25(OH)D concentration was inversely related to body mass index (BMI) and 

waist circumference (WC) in overweight and obese adults(5). In a clinical-based sample, Hispanic 

adults with higher BMI, WC, and waist-to-hip ratio had a lower 25(OH)D status(7). As a steroid 

hormone, 25(OH)D is fat soluble, and thus deficiency of serum 25(OH)D levels associated with 

obesity is most likely due to the decreased bioavailability of 25(OH)D possibly related to the 

sequestration of 25(OH)D within the adipose tissue(8).  

With regard to T2D, it has been proposed that activated vitamin D (25(OH)D) reduces the 

risk of T2D by promoting insulin secretion and reducing insulin resistance (IR) (9). Population-based 

investigations have revealed that 25(OH)D is inversely associated with the homeostatic model 

assessment of insulin resistance (HOMA-IR), plasma insulin, and fasting blood glucose (FBG) levels 

(9-12). Furthermore, the Australian Diabetes, Obesity, and Lifestyle Study showed that serum 

25(OH)D3 concentrations were positively related with insulin sensitivity at the 5-years follow-up 

(13). However, in the CoLaus study, the risk of IR in healthy adults was not associated with serum 

concentrations of 25(OH)D3 and total 25(OH)D3 in Swiss adults (14). 

Low serum levels of 25(OH)D have been suggested to cause mild acute phase response 

resulting in elevated concentrations of C-reactive protein (CRP), several hemostatic factors and 

different pro-inflammatory cytokines such as interleukin-6 (15-17). Previous observational and 

intervention studies have suggested that supplemental 25(OH)D may reduce circulating CRP levels as 

well as other plasma inflammatory cytokines; however, inconsistent results are reported across 

completed randomized trials (18, 19).  

Mediation analysis is a statistical procedure that can be used to evaluate mechanisms 

underlying the relation between an exposure and outcome by quantifying the extent to which this 

relation is mediated by a third variable (20-22). The traditional approach to mediation analysis tends 

to produce a bias when there is an uncontrolled mediator outcome confounding or an interaction 

between the exposure and the mediator variables. In this study, by use of the “counterfactual 

framework” in “causal mediation analysis”, unbiased valid estimates of direct and indirect effects 

can be obtained (23, 24). 
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In general, it is unclear to what extent the association between serum 25(OH)D and cardio-

metabolic risk, particular inflammation and glucose and insulin metabolism, is confounded or 

mediated by excess adiposity. We hypothesized that lower serum 25(OH)D levels would be 

associated with higher concentrations of inflammatory and insulin resistance biomarkers among 

adults and that these associations would be in part mediated by adiposity markers.  

Hence, we evaluated the association between serum 25(OH)D, glucose/ insulin homeostasis 

and inflammation parameters, and assess  the  mediation effect of different adiposity indexes on the 

observed associations by  applying  on “causal mediation analysis”.  Specifically, mediation analysis 

could help clarifying the role of adiposity underlying the relation between serum 25(OH)D, markers 

of glucose/insulin homeostasis or inflammation (23). Furthermore, the degree of mediation may 

vary between different adiposity indexes (25). 

Methods: 

Population characteristics 

NHANES is a series of ongoing repeated cross-sectional surveys conducted by the US National Center 

for Health Statistics (NCHS) (26). The NCHS Research Ethics Review Board approved the NHANES 

protocol and consent was obtained from all participants (26). The current study was based on 

analysis of data for two 2-year NHANES survey cycles: 2005-2010. Participants in this study were 

aged 18 years and above. All methods were performed in accordance with the Declaration of 

Helsinki regarding ethical standards for research involving human subjects (26). NHANES uses a 

complex, multistage and stratified sampling design to select a sample representative of the civilian 

and non-institutionalized resident population of the US. The sampling procedure consists of four 

stages: primary sampling units (mostly counties), segments, households and individuals, 

respectively. Data collection on demographic, information occurs through in-home administered 

questionnaires, while anthropometrical, inflammation and biochemistry data are collected by 

trained personnel using mobile exam centers (MEC). More detailed information is available 

elsewhere (26, 27). All methods were carried out in accordance with relevant guidelines and 

regulations approved by the National Centre for Health Statistics (27-30).  

For the assessment of height and weight during the physical examination, participants were 

dressed in underwear, disposable paper gowns and foam slippers. A digital scale was used to 

measure weight to the nearest 100 g, a fixed stadiometer to measure height to the nearest 

millimetre. BMI was calculated as weight in kilograms divided by the square of height in metres. WC 

was measured at the iliac crest to the nearest millimetre, using a steel tape(27). 
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A blood specimen was drawn from the participant’s antecubital vein by a trained 

phlebotomist. Total serum 25(OH)D was measured at the National Center for Environmental Health, 

CDC, Atlanta, GA, USA using a RIA kit (DiaSorin, Stillwater, MN, USA)(31). The sensitivity of this assay 

has been shown to be 1·5 ng/ml and the coefficient of variance (CV) was 8% (31). From 2007–2008 

onwards, 25(OH)D was measured using a standardized liquid chromatography–tandem mass 

spectrometry (LC-MS/MS) method (32) and in October 2015, updated 25(OH)D values for 2005–2006 

were released, which had been converted from RIA to LC-MS/MS equivalents using ordinary least 

squares regression (31). As recommended by NHANES (31), these LC-MS/MS equivalents were used 

in the present study. The LC-MS/MS system consisted of an autosampler (PAL-CTC Analytics, 

Switzerland), a turbomolecular pump (1100 series, Agilent Technologies, USA) and a Triple 

Quadrupole mass spectrometer (PE-SCIEX API-3000, Applied Biosystems Division of MDS Health 

Group Ltd, Canada). Analyst software version 1.4.2 (AB SCIEX) was used for results acquisition and 

quantitation. 

Glycated haemoglobin (HbA1c) was measured using a Tosoh A1C 2.2 Plus Glycohemoglobin 

Analyzer. Fasting plasma glucose was measured by a hexokinase method using a Roche/Hitachi 911 

Analyzer and Roche Modular P Chemistry Analyzer (Boehringer Mannheim Diagnostics, Indianapolis, 

Indiana). Other laboratory-test details are available in the NHANES Laboratory/ Medical 

Technologists Procedures Manual (31). Insulin was measured using an ELISA immunoassay 

(Merocodia, Uppsala, Sweden). Details on Information  on C-reactive protein (CRP) concentrations 

measurement are available elsewhere (27). HOMA-IR and β-cell function (HOMA-B) were calculated 

as follows: the HOMA-IR = [glucose (nmol/L) * insulin (mU/mL)/22.5] using fasting values, and 

HOMA-B=[20 × fasting insulin (μU/ml)]/ [fasting glucose (mmol/l) − 3·5] (33). The anthropometrically 

predicted visceral adipose tissue (apVAT) was estimated with sex-specific validated equations that 

included age, BMI, and circumferences of the waist and thigh (34). The equation for men was: 6 

*waist circumference – 4.41 * proximal thigh circumference + 1.19 * age – 213.65; and the equation

for women was: 2.15 * waist circumference – 3.63 * proximal thigh + 1.46 * age + 6:22 * BMI -

92.713(34). Visceral Adiposity Index (VAI) was calculated using sex-specific formulas: men [WC/39.68 

+ (1.88 ×BMI)] × (TGs/1.03) × (1.31/HDL); Women: [WC/36.58 + (1.89 × BMI)] × (TGs/0.81) ×

(1.52/HDL), where both TGs and HDL-cholesterol levels are expressed in mmol/L(35). Smoking status 

indicates whether the participant is a current smoker or not. Smoking status determined by 

participants “self-report”. Metabolic equivalent of task (MET) is used to measure the intensity level 

of physical activity and indicated the rate of energy consumption for a specific activity. A MET is 
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defined as 1 kcal/kg/hour that is roughly equal to the energy cost of being at rest. Physical activity 

was categorized into three intensity levels upon MET score: light, moderate and vigorous (36).  

Statistical analysis 

Data were analysed using SPSS® complex sample module version 22.0 (IBM Corp, Armonk, NY). 

according to the CDC guidelines for analysis of complex NHANES datasets, accounting for the 

masked variance and using the proposed weighting methodology (37). We used means and standard 

deviations for continuous measures (analysis of variance) and percentages for categorical variables 

(chi-square). Kolmogorov-Smirnov test was used to evaluate the normality of data. We computed 

age, race/ethnicity, season, and sex-adjusted mean of markers of insulin resistance or inflammation 

across the quartiles of serum 25(OH)D, using analysis of covariance (ANCOVA). All tests were two 

sided, and p<0.05 was the level of statistical significance.  

In this study we assessed the total, direct, and indirect effects of serum 25(OH)D on markers of 

insulin resistance or inflammation with BMI, WC, apVAT and VAI as a mediator by using the 

counterfactual framework (21, 22, 38-44). In this approach, the total effect can be decomposed into 

a direct (not mediated by BMI, WC, apVAT, VAI) and indirect effect (mediated by BMI, WC, apVAT, 

VAI). The SPSS Macro developed by Preacher and Hayes (44-46) was used to evaluate the direct and 

indirect effects of serum 25(OH)D on markers of insulin resistance or inflammation with BMI, WC, 

apVAT, VAI as mediators. A product-of-coefficients test was used as it has the potential to detect 

significant mediation effects in the absence of a significant intervention (38, 39, 44). Utilizing single 

mediator models, the SPSS macro was used to calculate all regression coefficients which were 

adjusted for baseline values. In brief, the macro generates output that includes the following steps. 

Firstly, the total effect (C coefficient) of the intervention on the outcome variable (e.g., markers of 

insulin resistance or inflammation) is estimated by regression. The action theory test is then used to 

examine the effect of the serum 25(OH)D on the hypothesized mediators (α coefficient, BMI, WC, 

apVAT, VAI). The conceptual theory test examines the association between changes in the 

hypothesized mediators and changes in dependent variables (i.e., markers of insulin resistance or 

inflammation; β coefficient). The program also estimates the direct (£’ coefficient) and indirect (α#β 

product of coefficients) effects. The proportion of the mediation effect was calculated using the 

following equation [α#β /( α#β + £)]. Full or complete mediation is present when the total effect (the 

£-path) is significant, the direct effect (the £’-path) is non-significant and α#β is significant, whereas 

partly or incomplete mediation is present when the direct effect (the £’-path) is also significant. 

Inconsistent mediation is present when neither total nor direct effect is significant and α#β is 
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significant (22, 40-42, 44, 46). All estimates were adjusted for age, sex, race/ethnicity, level of 

education, smoking and level of physical activity. 

Results: 

General characteristics 

Characteristics of individuals (n=16,621) are summarised in Table 1. Overall 8607 (48.3%) 

participants were men and 9082 (51.7%) were women. The mean age of the total population was 

47.1 years. Non-Hispanic white (69.4%) was the largest racial group and other Hispanic (4.5%) the 

smallest racial group. Furthermore, 56.1% of the participants were married, while 56.4% had an 

educational level greater than high school (Table 1).  

Mean BMI, WC and apVAT were 28.7±0.05 kg/m2, 98.2±0.1 cm and 179.2±1.2, respectively. Mean 

25(OH)D concentrations for the overall population was 57.9±0.1 nmol/L, with minimal difference 

between men and women 57.5±0.2 nmol/L and 58.2±0.2 nmol/L, respectively. Totally, 20.2% were 

current smokers including 24.8% of men and 15.6% of women. The participants engaging in vigorous 

physical activity had the lowest percentage (5.3%) than those with little/none physical activity 

(24.1%). We used ANCOVA to calculate the age, sex, season and race-adjusted mean of markers of 

insulin resistance and inflammation across the quartiles of serum 25(OH)D (Table 2).  Levels of serum 

CRP, serum apolipoprotein (B), fasting blood glucose, plasma Insulin, HOMA_IR, HOMA_B, HbA1c (%) 

and 2-hour blood glucose decreased with increasing concentrations of serum 25(OH)D (all p<0.001). 

Association between serum 25(OH)D, BMI, WC, apVAT, VAI and markers of glucose/ insulin 

homeostasis and inflammation 

There was a significant association between BMI, WC, apVAT and VAI with serum 25(OH)D (BMI= β: -

3.10, p<0.001, WC= β: -5.59, p<0.001, apVAT= β: -22.14, p<0.001, VAI= β: -0.02, p=0.197, p<0.001, 

Table 3). 

Furthermore, we examined the association between serum 25(OH) D and markers of 

glucose/insulin homeostasis or inflammation in multivariate models adjusted for demographics, 

education, smoking, and physical activity but without adjusting for the potential adiposity  mediators 

(Table 3). The results showed that,  except  for serum apolipoprotein (β) (p=0.21), the  other  

markers  of    glucose/ insulin homeostasis or inflammation were inversely and significantly  

associated  with serum 25(OH)D. The 2-hour blood glucose (β: -13.76) concentrations showed the 

strongest association with serum 25(OH)D (all p<0.001, Table 3) . 

In Table 4 we tested the “conceptual theory” (Figure 1) by evaluating the multivariate-

adjusted associations between adiposity mediators (BMI, WC, apVAT and VAI) and markers of 
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glucose/insulin homeostasis or inflammation. We found that all potential mediators had significant, 

positive associations with markers of glucose/insulin homeostasis or inflammation (all p<0.001, 

Table 4). 

Direct and indirect effects of the serum 25(OH)D on markers of insulin resistance and 

inflammation with BMI, WC and apVAT as mediators.  

Table 5 shows the direct, indirect and proportion of mediation effects as well as the Sobel statistics 

for testing indirect effects.  

BMI was found to significantly mediate (to various extent) the associations between serum 

25(OH)D and CRP, serum apolipoprotein (B), fasting blood glucose, plasma insulin, HOMA_IR, 

HOMA_B, HbA1c and 2-hour blood glucose after full adjustment (all P < 0.001). Interestingly, WC, 

apVAT were also found to have mediating effects for the associations between serum 25(OH)D with 

the same markers of insulin resistance and inflammation including, CRP, serum apolipoprotein (B), 

fasting blood glucose, plasma insulin, HOMA_IR, HOMA_B, HbA1c and 2-hour blood glucose (all P < 

0.001). VAI had a different pattern of association with a significant mediating impact on CRP 

(p<0.001). 

Results of the direct effect estimates show that serum 25(OH)D are significantly associated 

with CRP, fasting blood glucose, serum apolipoprotein (B), plasma insulin, HOMA_IR, HbA1c and 2-

hour blood glucose even after adjustment for BMI or WC. apVAT showed similar trends  to BMI and  

WC but it did not have any direct effect on  CRP. VAI was found to have a direct effect on all the 

glucose/insulin homeostasis and inflammatory factors but it showed no direct effect on serum 

apolipoprotein (B) (p=0.40).  

Discussion: 

Using a large, representative sample of the U.S. Population, we have applied a causal mediation 

analysis to investigate the associations between serum 25(OH)D with inflammatory and 

glucose/insulin homeostasis markers and explored the  role  of  different adiposity  factors (central 

and  peripheral) as potential mediators of these associations. We  found  that individuals with  

higher  levels  of  serum  25(OH)D have a more favourable profile of inflammatory and glucose and 

insulin metabolic markers; moreover adiposity  factors  could  mediate (to a varied  extent) the  

association  between serum  25(OH)D and  inflammatory and glucose/insulin metabolic parameters. 

Our finding was in line with prior studies(47-49). The co-existence of low levels of 25(OH)D 

and abnormal glucose metabolism has also been reported in patients with type 2 diabetes mellitus 

(T2DM) compared to healthy controls (47). Also, a positive association between 25(OH)D and insulin 
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secretion has been reported in both glucose-intolerant Asian women (48) and healthy Caucasian 

elderly men (49). However, these studies were performed using an oral glucose tolerance test and 

findings have been supported by other studies using hyperglycaemic clamp technique (50, 51). A 

negative association between serum concentrations of 25(OH)D and future risk for hyperglycaemia 

and insulin resistance was found in a prospective study conducted over a 10-year follow up 

period(52). However, Orwoll et al. reported in a cross-sectional study a lack of association between 

serum 25(OH)D concentrations with fasting or post-challenge glucose and insulin secretion(53). A 

number of randomized controlled trials also reported non-significant effects 

of 25(OH)D supplementation on the risk of developing diabetes(54) and a recent meta-analysis 

demonstrated  that  25(OH)D supplementation was not associated with improved glucose control, 

beta cell secretion or insulin sensitivity in patients with type 2 diabetes (55). Our group has recently 

conducted a meta-analysis of randomized controlled trials showing that 25(OH)D supplementation 

significantly increased serum IL-6 concentrations but had no significant effect on serum CRP, IL-10, 

and TNF-α (56). Possible explanations for this contrasting results include differences in study design, 

subject characteristics, baseline levels of serum 25(OH)D, seasonality, geographical  place, study 

population, confounders and techniques used to assess glucose homeostasis and β-cell function.  

Several biological mechanisms have been suggested by which 25(OH)D may contribute to 

the development of T2DM. 25(OH)D acts on multiple pathways that regulate insulin and glucose 

homeostasis including 1) insulin synthesis, 2) insulin s ignaling, 3) systemic and adipose inflammation, 

and 4) adipose tissue homeostasis. This evidence includes the presence of Vitamin D receptors 

(VDRs) and the expression of 1α-hydroxylase enzymes in the pancreatic β cell along with the 

existence of a 25(OH)D response element in the human insulin gene promoter (57, 58). In this  

regard, a significant reduction in the insulin secretion in VDR mutant mice (VDR null mice)  has been 

observed (59) and the human insulin gene has been shown to be transcriptionally activated by 

1,25(OH) D3 (60). Pancreatic β-cells express CYP27B1 [the gene encoding the enzyme 25(OH)D3-1a-

hydroxylase], giving these cells the ability to synthesize active 1,25-dihydroxyvitamin D [1,25(OH)2D] 

from circulating 25(OH)D, which can then act locally in a paracrine fashion within the islets to 

regulate target genes (61). 1,25(OH)2D has also been shown to regulate insulin receptors in target 

cells(62). Thus, activated vitamin D (25(OH)D) exhibits the ability to stimulate both insulin synthesis 

and insulin signaling. Another possible mechanism explaining the involvement of 25(OH)D in the 

pathogenesis of T2DM is the role of hypovitaminosis D in enhancing insulin resistance in target 

tissues(63, 64). The presence of the VDR in extra skeletal target sites, such as skeletal muscle, 

together with the upregulation of insulin receptors (INS-R) after 1,25-hydroxyvitamin D3 treatment 

appears to support this hypothesis (65).  
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We  have  found  that  there  is an inverse association  between serum 25(OH)D and CRP 

levels in analyses adjusted for demographic, education, and lifestyle factors; however previous 

observational studies that investigated the relationship between 25(OH)D and inflammatory 

markers, such as CRP, have shown mixed results. In line with our results, Amer et al. found a 

significant inverse association between 25(OH)D and CRP in a cross-sectional setting in a population 

of 15,167 adults with a mean age of 46 years from the United States (66). Ngo et al. studied 253 

adults (aged 51 to 77 years) with mean CRP level of 3.6 ± 4.0 mg/mL and found that serum 25(OH)D 

was inversely associated with CRP level (67). This inverse association was also seen in 147 morbidly 

obese participants whose CRP levels ranged from 1.88 to 4.01 mg/L (68). In contrast, no significant 

association was found between 25(OH)D and CRP in the Framingham Offspring Study cohort 

(n=1,381) (69) and  Multi-Ethnic Study of Atherosclerosis (70-72). This heterogeneity of findings may 

be due to baseline CRP level, supplemental dose of 25(OH)D, seasonal change or geographical 

location and intervention duration. 

There are several possible mechanisms through which 25(OH)D may influence serum CRP. 

VDR are involved in the decreased activation of the pro-inflammatory transcription factor nuclear 

factor kappa B (NF-κB) (73, 74). This suggests that VDR plays an intrinsic inhibitory role in 

inflammation (73, 74). One important target of 25(OH)D is NF-κB, which is inhibited by 25(OH)D, and 

via NF-κβ downstream release of the pro-inflammatory cytokines. It is known that NF-κB activation 

participates in the endogenous induction of CRP (75). Studies have shown the active form of vitamin 

D (1,25-dihydroxyvitamin D3 [1,25(OH)2D]  inhibits NF-κB activation by upregulating the inhibitor of 

NF-κB (IκB-α) and reducing IkB-α phosphorylation in lipopolysaccharide-stimulated murine 

macrophage cells (76, 77). 25(OH)D also inhibits synthesis of IL-6 by monocytes, which is the primary 

stimulant of CRP production in the liver (19, 78).  

We  also found  an inverse  association  between  25(OH)D levels and adiposity factors after 

adjustment for demographic, SES, and lifestyle factors including physical activity. This inverse 

association between serum 25(OH)D concentration and adiposity could be explained by the 

increased storage of 25(OH)D in the adipose tissue of obese participants(79). Low 25(OH)D levels are 

associated with increased adiposity, possibly due to enhanced uptake by adipose tissue, thus 

decreasing the bioavailability of vitamin D3 from cutaneous and dietary sources because of its 

deposition in body fat compartments(8). Furthermore, evidence suggests that 1,25hydroxyvitamin D 

modulates adipogenesis through 25(OH)D receptor-dependent inhibition of critical molecular 

components of adipogenesis, such as peroxisome proliferator-activated receptor γ and C/EBP α(80). 

Therefore, depletion of 25(OH)D stores may lead to excess differentiation of pre-adipocytes to 
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adipocytes. However, it has been reported that serum concentrations and the expression of vitamin 

D dependent enzymes are not necessarily linked, especially in obese subjects (81). 

The main strength of the present study was that we examined for potential mediator effects 

using a variety of markers of adiposity - BMI, apVAT and VAI - in the associations between serum 

25(OH)D and markers of glucose/insulin metabolism and inflammation using causal mediation 

analyses. The analyses were conducted in a large sample size and nationally representative of 

population and were adjusted for key confounding variables.  

Limitations of our study include the cross-sectional study design and inability to ascertain a 

causal and temporal relation between a serum 25(OH)D, adiposity, and markers of glucose/ insulin 

homeostasis and inflammation. Hence, prospective studies with long-term follow-up are warranted 

to confirm our results. The mediated effect of WC may be affected by BMI, or vice versa, because of 

the high correlation between WC and BMI. This could be addressed by adding the two mediators 

(BMI and WC) simultaneously in the model (45). However, this was not feasible in the conventional 

or causal mediation models with the use of the complex survey design in the present study. To 

address  this  point  we  have  applied  on  another validated adiposity  factors  which is apVAT and 

VAI. Lastly, although BMI and WC are commonly used to estimate obesity, these indicators can be 

inaccurate and lead to bias in measuring adiposity. For example, BMI, an indirect measure of 

adiposity, is traditionally weaker than direct measures of adiposity such  as  DEXA,  because it does 

not take age, sex, bone structure, fat distribution or muscle mass into consideration(82). Thus the 

association between serum 25(OH)D and overall adiposity can be underestimated when BMI is used 

as an estimate of adiposity. To overcome, we  have  applied  for  apVAT which  is  sensitive  to  age 

and  sex and also for VAI which, given its calculations and parameters,  is not only an index  of  

adiposity but also more representative of both adiposity and  lipid  profile at the  same  time. The 

apVAT equation was derived using data collected in a white, European population and therefore 

estimates of visceral adiposity may be confounded by ethnicity. However, ethnicity was added to the 

models to account for the potential confounding effects on the association between vitamin D 

status, adiposity and markers of metabolic health.   

In conclusion, greater serum 25(OH)D is associated with favourable plasma concentrations of 

inflammatory and glucose/ insulin metabolic biomarkers. Adiposity statistically accounted for a 

significant proportion of the associations between serum 25(OH) D and glucose and insulin 

metabolism suggesting a key role of adiposity in modulating the metabolic effects of 25(OH)D. 

These findings support the importance of optimizing 25(OH)D status in conditions with abnormal 

adiposity (i.e., obesity) and treatments for the prevention of cardio-metabolic diseases affecting 

adipose tissue metabolism (i.e., weight loss). 
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Figure legend: 

FIGURE 1. Mediation model for the association between serum 25OHD with glucose/ insulin homeostasis and 

inflammation; with body mass index (BMI), waist circumference (WC) and anthropometrically-predicted 

visceral adipose tissue (apVAT) and Visceral Adiposity Index (VAI) as mediators. Path α represents the 

regression coefficient for the association of serum 25OHD with BMI, WC, apVAT and VAI. Path β represents the 

regression coefficient for the association of BMI, WC, apVAT and VAI with glucose/ insulin homeostasis and 

inflammation. The product of regression coefficients α and β represents the mediated effect (indirect effect) of 

BMI, WC, apVAT or VAI (α#β). Path £
, 

represents the direct effect of serum 25OHD with glucose/ insulin 

homeostasis and inflammation, after adjustment for BMI, WC, apVAT or VAI. Path £ represents the simple 

total effect of serum 25OHD on glucose/ insulin homeostasis and inflammation, without adjustment for BMI, 

WC, apVAT or VAI.  
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Table 1. Demographic and clinical characteristics of participants (N=16,621) 

Characteristics Overall P-
value 

Sex Men (%) 48.3% <0.001 

Women (%) 51.7% 

Age (Years) 47.1±1.1 

Race/Ethnicity White (non-Hispanic) (%) 69.4% <0.001 

Non-Hispanic Black   (%) 11.5% 

Mexican-American   (%) 8.4% 

Other Hispanic (%) 4.5% 

Other (%) 6.2% 

Marital Status Married (%) 56.1% <0.001 

Widowed (%) 61.1% 

Divorced (%) 10.1% 

Never married (%) 17.9% 

Education Status Less than high school (%) 19.1% <0.001 

Completed high school (%) 24.4% 

More than high school (%) 56.4% 

Body mass index (kg/m2) 28.7±0.1 

Waist circumference (cm) 98.2±0.1 

Anthropometrically predicted visceral adipose tissue 179.3±1.2 

Serum CRP (mg/dl) 0.432±0.001 

Serum Apolipoprotein (B) (mg/dL) 94.2±0.2 

Fasting blood glucose (mg/dl) 100.28±0.02 

Plasma Insulin (uU/mL) 2.318±0.008 

HOMA_IR 0.898±0.008 

HOMA_B 4.785±0.002 

HbA1c (%) 5.662±0.004 

2-hour blood glucose(mg/dL) 120.2±1.3 

Visceral Adiposity Index 2.53±0.02 

Lipid Accumulation Product 68.6±0.6 

Value expressed as a mean and SEM or percent. Abbreviation= Abbreviations: HOMA_IR, Homeostatic model assessment of insulin 
resistance ; HOMA_B, Homeostatic model assessment of β-cell function , CRP; C-reactive protein, ; HbA1c: Glycated haemoglobin,  
apVAT: anthropometrically predicted visceral adipose tissue. 
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Table 2. Age-, sex-,season and race-adjusted mean levels of markers of insulin resistance and inflammation across quartiles of serum 

25(OH)D 

Variables Quartiles of Serum 25OH 

p – value
 a

1 2 3 4 

N 4153 4158 4166 4144 

Median(25th–75th percentiles), 

25(OH)D, nmol/L 

30.6 (24.8-35.2) 47.4 (43.7-51.2) 63.2 (59.8-67.1) 85.2 (75.4-97.6) 

Serum CRP (mg/dl) 0.50±0.01 0.40±0.02 0.37±0.02 0.30±0.01 <0.001 

Serum Apolipoprotein (B) (mg/dL) 96.6±0.9 95.4±1.0 94.8±0.8 92.1±0.9 <0.001 

Fasting blood glucose (mg/dl) 104.2±0.8 102.2±0.6 100.6±0.3 97.7±0.1 <0.001 

Plasma Insulin (uU/mL) 2.48±0.01 2.38±0.02 2.12±0.03 1.86±0.04 <0.001 

HOMA_IR 1.07±0.02 1.01±0.01 0.83±0.01 0.65±0.05 <0.001 

HOMA_B 4.83±0.03 4.73±0.02 4.62±0.01 4.35±0.03 <0.001 

HbA1c (%) 5.77±0.02 5.70±0.01 5.63±0.01 5.49±0.02 <0.001 

2-hour blood glucose(mg/dL) 128.5±1.3 120.8±2.3 116.8±1.9 112.1±1.0 <0.001 

Abbreviations: HOMA_IR, Homeostatic model assessment of insulin resistance  ; HOMA_B, Homeostatic model 
assessment of β-cell function , CRP; C-reactive protein; HbA1c Glycated haemoglobin. Values expressed as 
estimated mean and standard error. 

. 
a  

p-values for linear trend across quartiles of hs-CRP. Variables were compared across quartiles of CRP 

using analysis of co-variance (ANCOVA) test. Value expressed as mean and standard error mean. 
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Table 3. Estimates of regression coefficients (95% CIs) for the association between serum 25(OH)D, BMI, WC, apVAT, VAI (action 
theory), and markers of insulin resistance and inflammation (total effect) among US adults in NHANES 
Mediator Estimate 95% CI P 

BMI -3.10 (-3.33 to -2.85) <0.001 

WC -5.59 ( -6.14 to -5.65) <0.001 

apVAT -22.14 ( -26.17 to -17.62) <0.001 

VAI -0.025 (-0.06- 0.01) 0.191 

LAP -0.10 (-0.15 – 0.05) <0.001 

Outcome 

Serum CRP (mg/dl) -0.31 (-0.35 to -0.26) <0.001 

Fasting blood glucose (mg/dl) -8.89 (-10.26 to -7.65) <0.001 

Plasma Insulin (uU/mL) -0.27 (-0.31 to -0.23) <0.001 

HOMA_IR -0.34 (-0.38 to -0.30) <0.001 

HOMA_B -0.09 (-0.13 to -0.54) <0.001 

HbA1c (%) -0.30 (-0.33 to -0.26) <0.001 

2-hour blood glucose(mg/dL) -13.76 (-16.10 to -10.32) <0.001 

Serum  apolipoprotein (B) 
(mg/dL) 

-0.83 (-0.47 to 2.15) 0.212 

Abbreviations: BMI: body  mass  index, WC, waist  circumference, apVAT, Anthropometrically-predicted visceral adipose 

tissue , HOMA_IR, Homeostatic model assessment of insulin resistance  ; HOMA_B, Homeostatic model assessment of β-cell 

function HOMA_S; Homeostatic model assessment of insulin sensitivity, CRP; C-reactive protein, HbA1c Glycated 

haemoglobin. All estimates were adjusted for age, sex, race/ethnicity, educational, smoking and level of physical activity. 

Estimates for mediator and outcomes correspond to the regression coefficients α and £, respectively, in Figure 1.  
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Table 4. Estimates of regression coefficients (95% CIs) for the association between BMI, WC, apVAT, VAI with markers of insulin 

resistance and inflammation (conceptual theory) among US adults 
Outcomes BMI WC apVAT VAI LAP 

Estima
te 

95% CI Estim
ate 

95% CI Estim
ate 

95% CI Estim
ate 

95% CI Estim
ate 

95% CI 

Serum CRP (mg/dl) 0.082 0.080-0.085 0.037 0.036-0.038 0.009
3 

0.0089-
0.0096 

0.402 0.38-0.42 0.561 0.52-0.56 

Serum Apolipoprotein (B) 
(mg/dL) 

0.552 0.423-0.623 0.232 0.212-0.332 0.092 0.074-0.106 14.25
6 

13.9-15.2 13.62

3 

12.5-14.6 

Fasting blood glucose (mg/dl) 0.722 0.625-0.832 0.332 0.301-0.492 0.073 0.06-0.09 8.232 7.6-9.1 7.423 6.352-

8.532 

Plasma Insulin(µU/mL) 0.056 0.054-0.059 0.025 0.024-0.026 0.006 0.005-0.007 0.402 0.38-0.42 0.442 0.4312-

0.4662 

HOMA_IR 0.063 0.061-0.065 0.029 0.028-0.030 0.007 0.006-0.008 0.471 0.44-0.49 0.512 0.491-

0.521 

HOMA_B 0.036 0.034-0.039 0.017 0.016-0.018 0.004 0.003-0.005 0.231 0.21-0.25 0.282 0.261-

0.303 

HbA1c (%) 0.025 0.023-0.027 0.011 0.010-0.012 0.002 0.001-0.003 0.212 0.19-0.23 0.203 0.195-

0.228 

2-hour blood glucose (mg/dL) 1.422 1.233-1.612 0.673 0.5932-
0.751 

0.192 0.164-0.233 17.45 15.62-18.32 15.26 14.32-

16.92 

Abbreviations: BMI: body  mass  index, WC, waist  circumference, apVAT, Anthropometrically-predicted visceral adipose 

tissue , HOMA_IR, Homeostatic model assessment of insulin resistance; HOMA_B, Homeostatic model assessment of β-cell 

function HOMA_S; Homeostatic model assessment of insulin sensitivity, , CRP; C-reactive protein.  All estimates were 

adjusted for age, sex, race/ethnicity, educational, smoking and level of physical activity. Regression coefficient β is shown in 

Figure 1. 
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Table5. Direct and indirect effects of serum 25OHD on markers of insulin resistance and inflammation with 

BMI, WC,  apVAT, VAI and LAP as mediators among US adults  

Mediator and 

outcomes 

Direct effect (£,) Indirect effect (α#β)3 Proportion of 

mediation, % 

Estimate P Estimate Sobel test 

statistic 

BMI 

Serum CRP (mg/dl) -0.054 0.012 -0.25 <0.001 82.1 

Serum Apolipoprotein (B) 

(mg/dL) 

2.54 <0.001 -1.73 <0.001 21.1% 

Fasting blood glucose 

(mg/dl) 

-6.47 <0.001 -2.41 <0.001 27.2% 

Plasma Insulin (uU/mL) -0.092 <0.001 -0.17 <0.001 66.9% 

HOMA_IR -0.14 <0.001 -0.20 <0.001 58.1% 

HOMA_B -0.023 0.211 -0.11 <0.001 12.3% 

HbA1c (%) -0.22 <0.001 -0.078 <0.001 26.1% 

2-hour blood 

glucose(mg/dL) 

-9.36 <0.001 -4.32 <0.001 31.1% 

WC 

Serum CRP (mg/dl) 0.093 <0.001 0.20 <0.001 69.1% 

Serum Apolipoprotein (B) 

(mg/dL) 

2.34 <0.001 1.64 <0.001 22.3% 

Fasting blood glucose 

(mg/dl) 

-6.81 <0.001 -2.05 <0.001 23.1% 

Plasma Insulin (uU/mL) -0.13 <0.001 -0.14 <0.001 52.1 
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HOMA_IR -0.18 <0.001 -0.16 <0.001 46.5% 

HOMA_B -0.003 0.84 -0.09 <0.001 4.2% 

HbA1c (%) -0.24 <0.001 -0.062 <0.001 20.4% 

2-hour blood 

glucose(mg/dL) 

-9.82 <0.001 -3.80 <0.001 27.4% 

apVAT 

Serum CRP (mg/dl) -0.009 0.838 -0.20 <0.001 95.1% 

Serum Apolipoprotein (B) 

(mg/dL) 

5.23 <0.001 -2.19 <0.001 72.1% 

Fasting blood glucose 

(mg/dl) 

-9.10 <0.001 -1.77 <0.001 16.3% 

Plasma Insulin (uU/mL) -0.22 <0.001 -0.15 <0.001 40.6% 

HOMA_IR -0.30 <0.001 -0.17 <0.001 36.1% 

HOMA_B 0.028 0.48 -0.11 <0.001 33.1% 

HbA1c (%) -0.36 <0.001 -0.051 <0.001 13.1% 

2-hour blood 

glucose(mg/dL) 

-12.25 <0.001 -5.45 <0.001 32.4% 

VAI 

Serum Hs-CRP (mg/dl) -0.30 <0.001 -0.001 <0.001 6.2% 

Serum Apolipoprotein (B) 

(mg/dL) 

1.23 0.402 -0.37 0.201 43.1% 

Fasting blood glucose 

(mg/dl) 

-8.86 <0.001 -0.036 0.772 4.1% 
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Plasma Insulin (uU/mL) -0.26 <0.001 -0.010 0.182 3.7% 

HOMA_IR -0.33 <0.001 -0.012 0.193 3.4% 

HOMA_B -0.085 <0.001 -0.006 0.185 6.2% 

HbA1c (%) -0.30 <0.001 -0.009 0.774 2.9% 

2-hour blood glucose 

(mg/dL) 

-12.82 <0.001 -0.67 0.092 4.9% 

LAP 

Serum CRP (mg/dl) -0.25 <0.001 -0.050 <0.001 16.2% 

Serum Apolipoprotein (B) 

(mg/dL) 

2.18 <0.001 -1.34 <0.001 16.2% 

Fasting blood glucose 

(mg/dl) 

-8.17 <0.001 -0.72 <0.001 8.2% 

Plasma Insulin (uU/mL) -0.23 <0.001 -0.045 <0.001 18.6% 

HOMA_IR -0.29 <0.001 -0.052 <0.001 14.8% 

HOMA_B -0.063 <0.001 -0.28 <0.001 31.2% 

HbA1c (%) -0.28 <0.001 -0.019 <0.001 6.3% 

2-hour blood glucose 

(mg/dL) 

-11.53 <0.001 -2.36 <0.001 15.6% 

Abbreviations: BMI: body  mass  index, WC, waist  circumference, apVAT, Anthropometrically-predicted visceral adipose tissue , 

HOMA_IR, Homeostatic model assessment of insulin resistance  ; HOMA_B, Homeostatic model assessment of β-cell function 

HOMA_S; Homeostatic model assessment of insulin sensitivity, CRP; C-reactive protein.  All estimates were adjusted for age, 

sex, race/ethnicity, educational, smoking and level of physical activity. Regression coefficients α, β, and £, are shown in Figure 

1.
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