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Abstract

Letm : X — M be a holomorphic fibration with compact fibers and L a relatively ample line
bundle over X. We obtain the asymptotic of the curvature of LZ-metric and Qullien metric on
the direct image bundle T (LF ® K /m) up to the lower order terms than k"L for large k.
As an application we prove that the analytic torsion ¢ (9) satisfies 99 log(tx @)% = o(k"~ 1,
where 7 is the dimension of fibers.
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Mathematics Subject Classification 32G08 - 53C55

1 Introduction

Let m : X — M be a holomorphic fibration with compact fibers and L a relatively ample
line bundle over X, i.e. there is a smooth metric (weight) ¢ on L such that the first Chern

form g dd¢ is positive (1, 1)-form along each fiber. One may consider the following direct
image bundle

EF = m (L ® Kx/m).

Here Kx/y = Kx @ n*K A_/Il denotes the relative canonical line bundle. The bundle E¥ is
equipped with the canonical L?-metric

= [ WPt weEh yen (L.1)
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see [6-8]. Here |u|?e~? is defined as follows: u can be written locally as u = u'dv A e, where
e is a local holomorphic frame for L|x,, X, = 77 1(y), and

lu)2e=® = (V=) |t )|e|Pdv A di = (V=1)" |u/Pe~%dv A dF,

where dv = dv! A -+ Adv".
In [8, Theorem 1.2] Berndtsson computed the curvature ©Fk of the L2-metric and conse-
quently proved Nagano positivity. More precisely,

(V=10 y, u) =/

ke(@)|ul?e ™ + k(A + k) iy u, ipyu)V/—1dz" A dzP,
X/M

(1.2)

where the definitions of ¢(¢), e and A’ are given in Theorem 2.2.

In particular, if 7 : X — M is a trivial fibration, Berndtsson [7, Theorem 4.1, 4.2]
obtained an asymptotic of tr@Ex /dy up to o(1), dy = rankEy. In view of the relation of the
L?-curvature with analytic torsion and Quillen metric it is a natural and interesting problem
to find the lower order terms in the asymptotic of rr@%* for a general fibration. We solve the
problem up to reminder term of order o(k" ).

Theorem 1.1 For any vector ¢ € TyM, we have

— V=l (EX, o 1), ©)

e e [ (o)

= Gy X, —=Dc@) (¢, ¢ o y, <2|M| -5V c(¢) ;,;) —
=1 _ 1 1 2 . 5 ) P 5\ o

+ W/Xy ((—\/j)c(ff’)({,{) (—EA/O-F ﬂﬂRl —4|Ric|” +3p )) - ZWl ) —
=1 1 2 1 PR N el

T ot (B”””Ric + IVl = 2197wl )+0(k ),

(1.3)

We refer to the Sect. 3.1 for the definitions and notation.

We note that the first two terms in the expansion above were proved by Ma—Zhang [22].
The leading terms of the first summand in (1.2) is studied by Sun [24] and the second by
Berndtsson [7] (in the different setup of trivial fibration with variation of Kihler metrics).

We shall then compare our expansion for the Z2-curvature with the Quillen curvature. So
let Dy = E_)y + E_);f be the Dirac operator acting on AO'*(X),, LF® K x/m) of (0, x)-forms,
where X), is endowed with the restricted Hermitian metric =T 85¢) | Xy Forany0 < b < c,
denote by Dl.(b’c) the restriction of D on the sum of eigenspaces of A% (Xy, L* ® Kx/um)
for eigenvalues in (b, c¢), K x/u being equipped a natural Hermitian metic

(det¢)™" = (det(ddgp|x,)) "
Then the (Ray—Singer) analytic torsion is defined by
% (@) = 7 (@)
B 1/2
= (et(D{" D) et(DY N 2 (der(DY )

and is a positive smooth function on the base manifold M. Here b is a constant less than all
positive eigenvalues of D (see Definition 2.6).
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The Quillen metric || o || o on the determinant line A (see Definition 2.5) is patched by the
L2-metric | o |? on A? (see (2.13)) and the analytic torsion 7% (d), i.e.

lello=1e"t(d), (1.4)

where b > 0 is a sufficiently small constant.

In their papers [11-13], J.-M. Bismut, H. Gillet and C. Soulé computed the curvature
of Quillen metric for a locally Kéhler family and obtained the differential form version of
Grothendieck-Riemann-Roch Theorem. More precisely, they proved that as holomorphic
bundles,

. i+1
by = ) det H (X, LF ® Kaya) ™D
i=0

and the curvature is

_RTxm _ RLE®K 2/ (1,1
ci(A, llellg) =— / Td o Tr|exp| ————— . (1.5
X/M Tl 2mi

Since L is a relatively ample line bundle over X, by Kodaira vanishing theorem,
H(Xy, Kxy @ L) =0
for all i > 1. Therefore,
A= (det EHTL (1.6)
We expand also the Quillen curvature ¢y (A, || ® || ¢) and compare it with (1.3). We prove

Theorem 1.2 Up to terms of order o(k"~") the Quillen curvature —ci(x, || o o) has the
same expansion (1.3) as for the L*-curvature.

As application we shall find the asymptotics of the variation of the analytic torsion. From
(3.56) we have

det o [If = ((| o))" (1.7
for b > 0 a sufficiently small constant, where det || e || denotes the natural induced L2-metric

on line bundle det EX and ((| o |)?)* denotes the dual metric of (| e [?)2. Using (1.4) and
(1.7) we have furthermore

gaé log(ti (3)* = —c1 (-, | o 1) — c1 (EX, || o [l2). (1.8)
As an immediate consequence of Theorem 1.1 and Theorem 1.2 we have
Corollary 1.3 As k — oo, we have
39 log(t(3))* = o(k" 1. (1.9)
Here the asymptotic (1.9) is understood as ICE log(rk(é))z)(g, 2) = o(k*1) for any
vector; € TM.

Remark 1.4 The asymptotic of analytic torsion has been studied by [5,10]. It is proved in [10,
Theorem 8] the coefficients of k", k" log k are topological invariants. After a preliminary
version of this paper was finished, we were informed by Xiaonan Ma of the paper [19, The-
orem 1.1, 1.2] by Finski where the coefficients of k"', k"~ ! log k in the analytic torsion 7%
have also been computed, which implies then (1.9). However, our method here is completely
different from the methods in [10,19].
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Remark 1.5 For the case of M is the Teichmiiller space of compact Riemann surfaces of
genus g > 2 and L is the relative canonical line bundle, Corollary 1.3 was proved in [18]; in
this case the analytic torsion 7; actually decays exponentially in k.

We proceed to explain briefly our method for the expansion in Theorem 1.1. By the
formula (1.2), the first Chern form ¢ (EX, || e ||¢) is the trace of an integral operator, and in
the paper [22] X. Ma and W. Zhang found the expansion of the diagonal of the kernel of the
operators, proving a local index formula. To find the third order term, i.e. the coefficient of
k"1, seems a difficult task and requires much more effort. The trace of first summand in
(1.2) is relatively easy to handle, however the second summand involves Toeplitz operators
with symbols being differential operators. A major ingredient of our method is the following
expansion (see Lemma 3.1),

(k= A — R+ —R* 4 (A" + )k — AYR*

A -
&+ T 2%k 6k2 4k? 4k?
2k — Ak — A —R* 2k — A)(k—A"—R*) (1.10
18k3< ) )+ 6k4( ( ) (1.10)
36k4 (A 4+ k)7 k= A2k — A (k— A = RY),
where R* = R/ o dvi AdV A I l,- = —0; 8,(1)” +¢”¢ ¢51} is the Chern curvature

ov/
component of (75, (¢'7)). The correspondmg contribution of each term above to the L2-
curvature ¢; (EX, || o ||x) will be effectively treated by using further the asymptotic expansion
of Bergman Kernel for bundles [26, Theorem 4.2].

We note that generally it is always interesting to study variations of complex or Kéhler
structures and connections on bundles of cohomology spaces over moduli spaces. The most
well-known case might be the Siegel moduli space parametrising polarized Abelian varieties.
This aspect has been very much studied in mathematical physics; see e.g. [1-3] and references
therein.

This article is organized as follows. In Sect. 2, we fix notation and recall some basic
facts on Berndtsson’s curvature formula of Z?-metric, the asymptotic expansion of Bergman
kernel for bundles, analytic torsion and Quillen metric. In Sect. 3, we find the expansion of
c1(E¥, | o |lx) and prove Theorem 1.1. We also give the expansion of —c(4, || e ||p) and
prove Theorem 1.2. By comparing with their expansions, we prove Corollary 1.3.

2 Preliminaries

We shall fix notation and recall some necessary background material.

2.1 Berndtsson’s curvature formula of L2-metric

We refer [6-8] and references therein.

Letr : X — M be a holomorphic fibration with compact fibres and L a relatively ample
line bundle over X. We denote by (z;v) = L. 2l L v a local admissible
holomorphic coordinate system of X’ with 7 (z; v) = z, where m = dim¢c M, n = dim¢c X —
dimc M.

@ Springer
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For any smooth function ¢ on X', we denote

0 ._0¢ 9, .00
g BT NS 7= 5

v’
where 1 <i,j <n,l <a,B <m.
Let FT(L) be the space of smooth metrics ¢ on L with

(vV=133¢)|x, > 0

Qo =

’

for any point y € M. For any ¢ € F (L), set

8 ol

L =" _ k2 2.1
8z¢ az% Paj® Bv" @D

By a routine computation, one can show that {&%}1 <a<m spans a well-defined horizontal
subbundle of T X.

Let {dz%; 8v*} denote the dual frame of { } Then

8z% ; vl
k k kl o
Sv" =dv" + 9% ¢, dz".

Moreover, the differential operators

3V

s
W@@v ol = @e;dz (2.2)

are well-defined.
For any ¢ € F* (L), the geodesic curvature c(¢) is defined by

c(p) = (%5 - ¢a~;¢i‘;¢,~,§) V=1dz* A dZP,

which is a horizontal real (1, 1)-form on X'. The following lemma confirms that the geodesic
curvature c(¢) of ¢ is indeed well-defined.

Lemma 2.1 [17] The following decomposition holds,
V=100¢ = c(@) + v/ —1¢, 760" A 807
Proof This is a direct computation,
(@) + V138" A 8T = =1y — Gt by )z A dZP
V1V + ¢y, dz) A (dD + ¢y 5d7P)
= V=1(¢,5dz* NdZP + ¢, 5dz" A dDT + ¢ gdv' A dZP + ¢ 5dv' A di))
= V—133¢.
]

Following Berndtsson (cf. [6-8]) we consider the direct image bundle E := w4 (Kx/m ®
L), and define the following L2%-metric on E: for yeM, X, = rr_l(y), andu € Ey =
HO(Xy, (L ® Kx/m)y)s

llull? := / lul?e™?. (2.3)

x,
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Note that u can be written locally as u = u’dv A e, where e is a local holomorphic frame for
L|x, and so locally

lu)2e™® = (V=1 |’ )Ple)Pdv A db = (V=1)" |u/Pe 0 dv A d,

where dv = dvi A --- A dv" is the fiber volume.
By the definition of 3V, we have

_ § B - d
_ 3V _ _ =1
oo =0 (&"‘) T (¢“j¢]l> v ® i’

which is in the Kodaira-Spencer class p(%b) € Hl(Xy, Tx,).
The following theorem was proved by Berndtsson in [8, Theorem 1.2], its proof also can
be found in [17, Theorem 3.1].

Theorem 2.2 [8] Foranyy € M the curvature (@E(u, u)), u € Ey, of the Chern connection
on E with the L? metric is given by

(vV=10Fu, u) =/ c@ulPe™® + (1 + A) igguipyu)V=1dz* AdZP. (2.4)
X,

Here A' = V'V + V™V is the Laplacian on L|x,-valued forms on X\ defined by the
(1, 0)-part of the Chern connection on L| Xy

We replace now the Hermitian line bundle (L, e by its powers (L¥, e*®), and consider
the corresponding direct image bundle Ek = n*(Lk ® Kx/m)- Let V,’(* (resp. V'*) be
the adjoint operator of V' with respect to (L, e %) and (X, ko = k«/—100¢) (resp.
(X, w = +/—139¢)). We have

1 1
V* = V=1[Aro, V'] = F/—l[Aw, V'] = ;V’*, (2.5)

acting on sections of Ej with V’* corresponding the fixed background metric (X,w =
v/ —100¢). It implies that

1
A, = ViV 4 V'V = £A/. (2.6)

From Theorem 2.2 and (2.6), the curvature of L2-metric (see (2.3)) on EX is given by

(V=10F" u, u) = / clk)|ul*e ™ + (1 + A iy u, ipgu)kov/—1dz" A dZP
H .7)
= / ke@)|ul?e ™ + k(tk + A iygu, ipyu)v/—1dz% A d7P
Xy

for any element u of E ;‘,

2.2 The Bergman kernels

Let (X, w) be a compact Kihler manifold of n-dimension, (L, e~ %) be a Hermitian line
bundle over X satisfying

V—IRt = /=130¢ = w. (2.8)

We shall eventually replace (X, w) by the fibers of the fibration in the previous section.
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Let (E, H) be a Hermitian vector bundle over X . There is a natural L>-metric on the space
HO(X, L*QE) of holomorphic forms of LFQE,k > 0.Let {uj};vil be an orthonormal basis
of HO(X, L* ® E), where dy = dim H°(X, L* @ E). The k-th Bergman kernel By (H) €
End(E) is defined by

dy.
Bu(H) =) u®uj. 2.9)
j=1

Recall the following Tian—Yau—Zelditch expansion of Bergman kernel for bundles. We
use the version in [14] and refer [4,16,20,25-28] for different variations and proofs.

Theorem 2.3 For a fixed metric H, there is an asymptotic expansion as k — 00,

1
By(H) = W(Aok” + AT ),

where A; € End(E) are determined by the geometry of w and H. The expansion is in the
sense that for any integerl, R > 0,

Q)" Bi(H) = Y AjK" | < Cpruk" %,
J<R c!

where the norm is computed in the space c! (X, End(E)) of End(E)-valued sections and
Ci.r.H dependsonl, R, wand H.

The first three coefficients Ag, A and A, have been computed in [26, Theorem 4.2].

Theorem 2.4 [26]

0) Ao =14,
(1) Ay =/=1AFy + 1pla,
2

Ay = Sap+ LR = 41Ric]? +3p7)
3 24

1
+3 (A”RicE + pRicE + RicERicE — RERE — (RE, Ric)) .
Here R, Ric and p represent the curvature tensor, the Ricci curvature and the scalar curvature

of w, and A = (]b;i au?;a./” RicE = /=1AFy and Fy represents the curvature of (E, H),
A = /=1Add.

When E = Ky is the canonical bundle there is a natural metric (det(¢, jf))’l on Ky

induced from (L, e~?). In this case, Ricf = —p, RE = —Ric, so
Ao=1. A =-L Ay 1A LRE - 4RicP +307). (2.10)
2 6 24
The Bergman kernel is
dy dy
Be(H) =Y wi®uj= Y |ujl},. 2.11)
=1 =1
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From (2.10), (2.11) and Theorem 2.3, the asymptotic expansion of Bergman kernel for
the bundle L* ® Ky is

di
1 oo 1 1 . e
DIl = o (k" L (—EA”ﬂJrﬁ(lR\z—4|Rw|2+3p2)>k’ 2+---).
Jj=1

(2.12)

2.3 Analytic torsion and Quillen metric

The definitions and results in this subsection can be found in [9,11-13,21,23].

Letw : X — M be a proper holomorphic mapping between complex manifolds X and
M, (F,hFr) a holomorphic Hermitian vector bundle on X, VF the corresponding Chern
connection, and RF = (V)2 its curvature. For any y € M, let Xy = a! (y) be the fiber
over y with Kihler metric g depending smoothly on y. The fibers are assumed to be
compact.

Forany 0 < p < n := dim¢ &) we put

Ef =A% (x,,F), Ey=DE}.
p=0
The operator Dy, = 5y + 5;‘ acts on the fiber E.

For every y € M, the spectrum of D% is discrete. For b > 0, let K ﬁ’p be the sum of the

eigenspaces of the operator D% acting on E {” for eigenvalues < b. Let U be the open set:

U” ={y e M;b ¢ SpecD}}.
On each open set U b Kb.P is a smooth finite dimensional vector bundle. Set
Kbt = EB Kbr, kb = @ KPP Kb = Kbt @ KD
peven podd
Define the following line bundle Al on U?,
AP = (et K0! @ (det K @ (det K2 '@ - . (2.13)

For0 < b < c,ify € UP N U, let K)(,b’c)’p be the sum of eigenspaces of D§ in Ef for
eigenvalues p such thatb < pu < c. Set

(b,0),+ _ (b,c),p (b,e),— _ (b,c),p (b,c) _ g (b,o),+ (b,c),—
K, = @K . Ky _@K . Ky =Ky Ky .
peven podd

Define A) accordingly as before. Let 3 and D) be the restriction of 8 and D to
K©®9)_ DP9 s the restriction of D to K-,
Since the chain complex

jbo) N 1) o)
0 K 01 .

0— KO s KOO 0 (2.14)

is acyclic, A9 has a canonical non-zero section 7 (3-)) which is smooth on U’ N U* (see
[11, Definition 1.1]). For 0 < b < ¢, over U? N U¢, we have the C* identifications

A= @ a9,
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We identify A? and A€ over U” N U¢ by the C* map
serl i s®@TO%9) e’ (2.15)

Definition 2.5 [13, Def. 1.1] The C® line bundle A over M is {(U?, 17)} with the transition
functions (2.15) on U? N U*.

The analytic torsion of the chain complex (2.14) was introduced by Ray and Singer [23].

Definition 2.6 The analytic torsion 7(3*-¢)) associated to the acyclic chain complex (2.14)
is defined as the positive real number

r(349) = ((det(ng,c))2)(det(D§b,6))2)—2(det(D§b,c))2)3 ... )1/2 ,

where Dg,b‘c) is the restriction of D to K®)-r 1 < p < n.If b is a small constant less than
all positive eigenvalues of D2, then we denote

7() 1= (31,

Since K” and K®¢) are orthogonal subspaces of K¢, by [11, Proposition 1.5], we find
that if s € A2,

Is ® TAPN) = Is/P1 (@),

where | - |b is the induced metric by (X, ng) and (F, hp).
Now let Ny be the number operator on E such that Nyn = pn for n € EP. Set Qb =
I — P’ where P? is the orthogonal projection operator from E yon K ;’.

Fory e U?, Re(s) > [, set
-1 +00
00(s) = —Tr[Ny[D*]* Q"1 = — / u* ' Tr [Ny exp(—uD*) Q)du.
Y ['(s) Jo
Similarif 0 < b < ¢ < +o0,fory € U’ N U, set
: . —1 [t .
079 (s) = =Tr[Ny[D*|* P")] = ™ / u "' Trg[Ny exp(—uD?) P du.
s) Jo

The functions 6;’ and G;b’c) extend into a meromorphic function which is holomorphic at
s =0.Alsoon U’ N U¢,
6> =69 1 o°.
and by [13, Equation 1.32],
log(t2(3?9)) = -4 (0).

Fory e U b denote
_ 1y
7, (3T°)) = exp (—595 (0)) :

Let || o ||? denote the metric on the line bundle (17, U?),
oll” =1elPr, @0+, (2.16)
Then the definition of Quillen metric || o || and Chern form c{ (A, || e ||o) of the Quillen

metric are given by the following theorem.
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Theorem 2.7 [11-13] The metrics || o |° on (AP, U?) patch into a smooth Hermitian metric
|l || o on the holomorphic line bundle X. The Chern form of Hermitian line bundle (X, || e | o)

is
—RTx/m _RF ¢.h
cix, lellg) =— [/X/M Td (27”, ) Tr |:exp< 7 )i” . (2.17)

The Knudsen-Mumford determinant is defined by

AEM — (det R, F)~ .
The fiber A 5 M is by definition given by
WM = Q) det H (x,, F)DT
i>0
We assume that 7 is locally Kihler, i.e. there is an open covering %7 of M such that if

U € %, n~"(U) admits a Kihler metric.

Theorem 2.8 [11-13] Assume that 7 is locally Kéihler. Then the identification of the fibers
Ay = A§M defines a holomorphic isomorphism of line bundles A = \X™ . The Chern form

of the Quillen metric on . = MXM is given by (2.17).

3 The asymptotic of the curvature of direct image bundle

We shall give the expansion of ¢ (EX, || o |lx) and —c1 (M, || @ llo) up to o(k" 1.
Letm : X — M be a holomorphic fibration with compact fibers and L a relatively ample
line bundle over X as in the Sect. 2.1. Denote

w=~/—133¢. (3.1)

3.1 The asymptotic of the curvature of L2-metric

The curvature of direct image bundle EF =7, (Lk ® Kx/m) is, by (2.7),

(V=10 u,u) = / ke@)|ul*e ™ + k((k + A iy u, igyu)v/—1dz" A d7P
y

for any element u € E f For any vector { = ¢“ % of TM,

(O©F U, u)(¢,7) = —/=1 ( / kc<¢)|u|2e—"¢’> @0

X, (3.2)
+ k(4 A Vigu, i),
where
o 9 . 7
o=l @ o= =059 (33)

The following technical expansion of (A’ +k)~! will be critical to find the asymptotics of
the L2-curvature; the main point of this expansion is that the leading term of the contribution
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to the L2-curvature of each term below is effectively found. (Composed with the operators
iy and i}, it gives an expansion of the Toeplitz operator with symbol i} (A" + k)~'i, on the

cohomology space HO(Xy, LF® Kx,).)

Lemma 3.1 The resolvent operator (A' + k)~! has the following 7-term-expansion,
AN+ =T1+11+- +VI+VII, (3.4)

where

1 1 1 1
I=—, II=—(k—A—R", IIl =—R* IV=—(A+k ' (k— A)R",
2k Tl ) 4k2 g2 & R )

1
= — (k- A)k— A — R* I:—Zk—A’zk—A’—R*
Vv 18k3( )( ), V 36k4( ) ( ),
1
II= — (A + k) Lk = AYQk — AV (k — A — R*).
Vv 36k4( +k)( )( )7 ( )

Proof The RHS of (3.4), by elementary computations, is

i+i(k_A/_R*>+LR*+—<A’+k> 'k — AR
2k k2 4k?

k3(2k Ak = A = RY) + 5o 2k~ AN (k — A" — R*)

1 i Al px
36k4(A + k)7 k — A2k — A (k— A — RY)
= (k=A"=R)+ 5 1 7 (4607 "tk — A')+1d) R*
_2k 6k2

18k3 2k — A')(k — A" — RY)

t+ 3o (A + 07 k= &)+ 1d) @k = A)(k — &'~ RY)
1 1

= k—A —R")+ —(A" + k)~ 'R*

2k 6k2( A

18k3 2k — A')(k — A" — R")

18k3 (A + k) 2k — AH2(k — A — R™)
1 1
- 6k2 (k— A —R" + —(A’+k)’1R*

6k2 (A + k)1 2k — Ay (k — A" — R¥)

1
=ﬁ+—<A +) k- A~ R+ o (A/+k)*‘R*

1 -
ﬁ+—(A +h)~ k= A"

=@+

which completes the proof. Here the second and last equalities follow from

(A + k)" "k — A+ Id =2k(A" + k)~
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while the third and fourth equalities follow from
(A + 572k — Ay +1d =3k(A + k).
]

We shall treat each term in the expansion using the following lemmas. We refer [15,
Chapter VII] for the calculus on Kihler manifolds.

Lemma3.2 Ler (X, w) be a compact Kihler manifold and (L¥, %) be a Hermitian line
bundle over X with /—100¢ = w. For any o € AL (X LK) it holds

(k — V™*V' — R")a = (dv')*V'(V_s a),
"

where V'* is the adjoint operator of the (1, 0)-part V' of Chern connection, (dv')* = ¢'i s
Jvs

R* = Rfl!i o dvi AdY A ii, R;J = —8‘81115;] + ¢5_‘T¢k!¢ﬂ; is the Chern curvature com-
dv/ ot
9
ponent of (T, (d)”)) andV 3 = % — Fl dvi Ni s, Fl = ((,;z’," ¢kl
ol 75l

Proof By [15, Chapter VII, Theorem (1.1)], V* = /—1[A, ], where A is the adjoint of
multiplication operator w A e by the Kéhler form. Thus

V' *V'a = V/=1[A, 3]V«

_ _ (3.5)
=V/=1AV'a — V/=10AV a.
We expand the second term and find
V=TiAVa =3 (¢s;i%i%v’a)
d
(8¢s’)Az%'%ch+¢ laq ia av’a+¢” Va (3.6)

=(5¢”)/\i% Vi a+v—1AVa +¢%i

5 s 8t

where the first equality holds since (9, i a ] = U, and [,i o ] = 0, the second equality
ol

follows from [av, , V'] = —kd¢; and [i o , ] = [i_s , V'] = 0. Combining (3.5) with
i aut
(3.6) we obtain
3 St /- St / 301
(k — V*V)a = (3¢ )/\zi s o+ ¢ ll —. 3.7
LS ' W 9v!

Furthermore the action on « of the second term in the RHS of (3.7), by the definition of V s
b}

:.,
S|

is the operator

=¢"i s V'V +¢is V (Ffldﬁl A ii>
B ool e auk

(3.8)
= (dV')*V'V s + ¢ (3,~Ffl)iidvi AT AP+ ¢ TR A o Vi
Ebl vk

ok

= (dv’)*V’Vi’ +R*— (3 ANi V/i%.
v v

7T
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Substituting (3.8) into (3.7) we have

(k —V*V' — RMa = (dv)*V' (Vs «a).
avl

Lemma 3.3 The following identity holds,

(= &igan i) = [l = Vi PluPe ™,

where we have introduced |5, = M[R u which need not to be nonnegative, |Vu|* =

Vint Vkuq%(ﬁ”’d) Viph = gt — T5 .
Proof By a direct computation, we find

igu=(— 8l(¢>”¢w)§ Ydvl Ai s (Wdv ® €F)

vl
= (P by ) u'dT A (~1) dv A dvT - AV @ €
= V™ (@, ;¢“u'dv! Adv @ ")
= V’*(qba]r{"‘dﬁj At).

It follows that
A’iuu = (V*V' 4+ V’V’*)iﬂu = V’*V/iuu. 3.9)
Thus, using Lemma 3.2 and (3.9), we obtain

(tk — ANigu,iu) = ((k — V"™*V)iu,i,u)
= ((dv’)*V’(V%iMu) + R¥iju,i,u) (3.10)
= (R*i u, iu) + (V%iuu, V(v Aidyu)).

In terms of local coordinates the first term is

(R¥iju,iju) = (Rll—l R dvi AdVt A 2 MG Ldv? A i, iy ut)
v

= (Rf!ut—dﬁ /\iiu,u%dﬁ INERD,
j S

3.11
/(R S s Pe GAD

/ (R uiub)lule *k"’—/ |l lule ™
X,
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where the fourth equality follows from the definition of « (3.3) and
Mk¢lk s = — %0 (Paid' o™ s
= —C%(aikd™ + ¢6¢i¢lij)¢lk¢j§
= —C%aird” " bjs + T paid" dujsd’

= 0% 9" — T7¢ai! 5o 12
=% ji(b[_i - 4“7“%1'47}1—
= —(%9; (¢&i¢l—i) = /7]
The second term in the RHS of (3.10) is
<Vaa7iuu, VI (o' Adg)
- <(vm3) dil A i -3 (qf’,ﬁ) ia u>
= ((3("ut) s, ) (V) a0 i)
<¢’”ak (‘bd t)‘f”k( )””) (3.13)
= /X — Vil VintulPe ™t

= [ Ve Vudlupe e

y

=/X Vo gl e = [ Tulupet,

Yy y

where in the second equality, (e)* denotes the adjoint operator of e, the fifth equality follows
from

Vit = Vi(0; (@96 = 005, 9")E" = Tjj b = Yk,

The sixth equality holds by (3.12) and ij(qbsg) = ij(cp‘?") = 0. Substituting (3.11) and
(3.13) into (3.10) we have

((k — Aiju,iyu) = / ()% — Vi) ule*?
Xy
O

In the subsequent text we shall write O(k/) for any term that is of the order k/ and is
independent of u.

Lemma 3.4 We have the following expansion

((k — ANZiju, iyu) / k|Vl> + O()|ul?e ™.
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Proof Writing k — A’ = (k — A’ — R*) + R* and using Lemma 3.2 we have

((k — A/)ziﬂu, igu) = ||k — Ayigul?

= <v’ (Viiuu> cdvi A gtti V! (Viiuu>> + IR*i u)?
j v vl

vt

2
) v’(v ) iyl )+R*aH
3

vt

i 0 V' (v o i )H + IR i) +2Re(¢”t ) (v ) lﬂu) R*iuu>
31!5

+ 2Re<V/ (V.o iuu) dv' A R*i#u>
a0l
— <Viiuu, v ((pffv/ (Viiﬂu)>> F IR iu]® + 2Re<ViiMu, v (dv' A R*iﬂu)>.
aoJ vl vl
(3.14)

For the first term in the RHS of (3.14), we have

<Vf v (oY (Va%"ﬂ”>>>
- <Vi.iu”’ (¢ij/* ~¢"9]'i 4 )V/ <v 5 )>

v/

= —<V/* (q&ljtdvl /\Vi_i,tu> , Va%iuu>+<v o iult, VAV (V a tﬂu)>

v/ v/
(3.15)
For the second term in RHS of (3.15), using Lemma 3.2, we obtain
<V 0 gt IV (V 2 zﬂu)>
ao/
<V o iy, ¢]’ <k (ﬁSlli V'Vy —R ) (V 9 lﬂu>>
o/ ov* il at
(3.16)

:/ k¢”¢“¢klv A7 V,M u|?e” <V/* (dvl /\V%iuu> V. Vs lﬂu>
)(_V v 95) ol

<V 2 igu, ¢ R (V ) i )>
a0
We substitute (3.15) and (3.16) into (3.14),
((k — A2, i) = | R*iu])* + 2Re (v%iuu, v (dv' A R*iuu)>
—<v’* (¢>{‘dv’ Aviiuu) Voo igu > < v <dvl/\VL‘i,Lu>,VL‘ViiMu>
avJ i vl avl Ebd
—<V%iuu,¢j’_R* (V%iuu»—l—/ k¢f’¢“¢k,v 1 5V, i julPe
=/ K|Vl + O)|ulPe™™?
Xy
This completes the proof. O
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Lemma 3.5 The quadratic form ((k — A/)3iﬂu, iyu) has the following expansion

(k= AY3iju,iyu) / (=K Vul> + 0 (k) jul>e*.

Proof Denote V; = V_5 . We have, using Lemma 3.2, that
vl

((k — AYiju,iyu)
= (((dV')*V'V; + R)((@V')*V'V; + R*)((dv*)*V'Vs + R¥)iyu, iyu)
= 0(k) + ((dv")*V'Vi(dv)* V' Vi(dv*)*V'Vsiyu, iyu)
= 0 (k) + ((dv")*V'(dv")* V; V' (dv*)* ViV Vsiyu, iyyu)
= 0 (k) + k> ((dv")* V' (dv') a7 A (dv*)*dep; A Vsiyu, iyu) (3.17)
= O(k) + K*(d¢7 A (dv*)*d¢; A Vsiyu, dv' A V(@' Aiyu))
= 0(0) + K (=7 (Vip)dd u, 39" )u)

_ / (Rl + 0k u2e ™
X,

where the second equality holds because all the terms in
(((dv")*V'V; + R*)((dvl)*V’V,- + R*)((dv*)*V'Vs + R")iyu, iyu)

containing the factor R* are treated similarly as ((k — A’ )2i plt, iu), which are in O (k), the
third equality holds since [ V7, (dvH*] = o; (¢>l’)z a , and so its adjoint operator is in O (1),

the fourth equality follows from [V;, V'] = k8¢t O

Lemma 3.6 The following expansion holds
((k = A iu,iyu) = / K Vul® + 0k ) |ulPe ™
y

Proof Similar to the proof in Lemma 3.5 for estimating reminder terms we have

(G — Ay, iyu)
= ((dv))*V'Vz + R*)((dv')*V'V; + R*)((dv))*V'V; + R*)((dv*)*V' Vs + R )iy, iu)
= O(K*) + ((dv!)* V'V (dv')* V' Vi(dv')* V' Vi(dv*)* V' Vsiyu, i yu)
=0k + ((dvq)*V'(dU’)*V,;V’(dv[)*V;V'(dvs)*Vl-V'VgiMu, iyu)
= O(K?) — K> ((dv?)* V' (dv')*dgg A (dv') a7 A (dv®) g7 A Vsiyu, iyu)
= O(k*) — k(37 A Vsiyu, dvs A V*(@dv' Aiyu))
= O(K*) + K> (¢, (Vs d v/ u, 3@ iy )u)

/ (Tl + O lule ™.
(3.18)
We prove now Theorem 1.1.
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Proof The curvature formula in (2.7) contains two quadratic forms in u, the first one invovles
only |u|?> and will be treated using Bergman kernel expansion later, the second one involves
(A’ + k)~ ! and will be treated first. We have, by the expansion (3.4)

(A + &) g, iyu) = Tu) + 1) + -+ VII(u)
I(u) = (Iiu,iu), IT(w) = ITigu,igu), -, VIIu) =(VIIigu,iu).

We shall treat each term using the lemmas above. First we have

1 1 — s _ 1 _
I(u) = < it ’u> E/X (Winsgise™) lule ¢ZE/X uPlul’e™?. (3.19)
y y

where [u|* = M Wi sl
By Lemma 3. 3 and (3.11), the second term is

1 2
1w = 6sz Vi lul2e (320)
Likewise, by (3.11)
1 2,~k¢
I111(u) = m/ IulR*lul 3.21)
The fourth term is

1 . _ .
IV(u) < m||R*1Mu|| A+ k)T e — Aigul|

1
= @”R*iuull (k= AV, iyu)
(3.22)
4k3(0(1)llull) (OK2)|ull)

=0 <klz> lue])?,

where the third equality follows from Lemma 3.4.
By Lemmas 3.2, 3.3 and 3.4, the fifth term

1 .. 1 nN2. o
V() = s (k= A = R i) + 5o (k= Ay, i)
—((k — A/)R*iﬂuy i;/.”))

1 _
__ V2o
e [XV| wPlulPe™ +

1 .. . .
- e (((R*)zlﬂu, i) + <Vﬁ R*i,u, V*(dv' A zﬂu)>)

—0< )IIMII

/ kIVul* + O(1)|ul>e*?

18Kk3 (3.23)
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By (3.20), (3.23), Lemmas 3.5 and 3.4, the sixth term becomes

VI = <36k4 (k* +2k(k — A) + (k — AN (k — A — R")iyu, i#u>
—L((k—A’—R*)' i u) + ! ((k = A"Y(k — A" — R®)iju, iju)
= 36k2 R T 7S] ettt
+ ——(k — A iu,iu) — L((k — AY2R*i,u, iu)
36k4 we 36k4 wE
= —L«k — N = Riju, iu) + L((zk — Ak = A = R)iyu, iyu)
T 36k? we 18k3 R
o 1 L
+ W((k — A’)Szuu, iu) — W«k — A’)ZR*zMu, iy u)

1
=0 (k3> llu .

Here we have used Lemmas 3.3 and 3.5 to conclude

(3.24)

1 1
36k2 36k*

_ 1 _
= 36k2/ (—IVul)lule k¢+36k4/ (—k*[Vul* + 0 (k) |ul>e™*?

1 1
= ot | otmPe = 0 () ik
36k [, k

Finally the last term is

((k — A — Riyqu, i, u) + ((k — A'Yiyu,iju)

VII(u) = (A 4+ &)k — A2k — Aiju, (k— A2k — A')iyu)

I
i
36k (3.25)

~ 3 (k- AN R iju, (A 4+ k)" (k= A)iju).

Note that

<36k4 (A + k) k= A2k — Aiju, (k— A2k — A’)iuu>

_36k5((k ANk — Niyu, (k— A2k — A)iyu)

1 1
T 36k3 18k4

+#<(k—A’)2' u,iyu) =0 1 llue||?
363 b it =2\ 43 ’

(3.26)

((k = Ay, i) + ((k — AY i, iu)

where the last equality follows from Lemmas 3.4, 3.5 and 3.6.
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We estimate the second term in the RHS of (3.26) as

| — W((Zk — AR iju, (A + 1)k — Aigu)]

1 _ .
a2k - AR iqull - (A + k) (k — Aigul

= 36510k - ANV R iqull - ((k — AN igu, igu)'/? (3.27)

1 1
= 367(0("2)”””) (OK2)|lull)

1
=0 (—) fluel|?;
k2

indeed the third equality follows from Lemma 3.4 and the following equality
2k — A2 R*ijul = [((2k — AV R*i,u, R*i,u)|'/?
= [((k* +4K> (k — A) + 6k* (k — A)? + dk(k — A + (k — A iqu, igu)|'?

= Ok lul,

(3.28)

where the last equality is obtained from Lemmas 3.3, 3.4,3.5 and 3.6, with i = R/ uﬁ-d '®

l
% being the contraction of p agains the curvature tensor R.

Substituting (3.26) and (3.27) into (3.25) results in

1 1
<@(A’ + k)7 k= A2k = A2 (k — A — R)i,u, iﬂu> =0 (k;> lull>. (3.29)

Putting the quantities (3.19), (3.20), (3.21), (3.22), (3.23), (3.24), (3.29) into (3.4), we
obtain

(A" + 1) i, i)

— i 2 _l* 2 1 2 i ) 2 ko (3.30)
_/Xy <2k|ﬂ| +< 6|VM| +4|M|R*) k2+0(k )) lu|“e .
Finally substituting (3.30) into (3.2) we get
(©F u,u)(¢, &) = —v/=1 (/ kc<¢>|u|2e—’<¢> (3!
" 3.31)

Lo o o 15 \1 -1 2 —ké
- _7V - * o k .
+/va<2|/¢| +< 6| Ml +4|M|R>k+0( ) ) lul“e

Denote dy = dim HO(Xy, LK + Kx/m), and let {uj}‘;"zl be an orthogonal basis of
HO(Xy, L* + K x/m). From (2.12) and (3.56), we have

dy. dy "
2 ,—k 2

> lujlPe™ = i —

j=1 j=l1 )

1 1 L, o)

— (K = L (=2 Ap + — (RIZ — 4[Ric]> +3p2) ) K2 + o (k") ol "”),
2 6 24 n!

(3.32)
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where c(L, ¢) = ﬁw is the Chern form of the Hermitian line bundle (L, e~%).
We take the trace to both sides of (3.31) and use the Bergman kernel expansion (3.32),

—V=TIei(E*, | o 1), 0) = zroEk@ )

1

T om

s Aol e (te,ee e\l
x,( V=Tke()(z, ¢)+2W| +< g Vul +4|M|R*>k

+ o(k’l))

1 1 L.g)
: (k” L (—pr + 55 (R = 4|Ric + 3,02)) K2y o(k"_z)) « nfj)

6
_ fntl ., s, N
— (277)"“./ (- F)C(¢)(§ C) W/ <§|M| _E(—\/?l)C@)(QC))F
+L/ (—«/j)c(qb)({ E) —*A +—(|R|2_4|Ric‘2+3 2) _B‘ |2 ail
@myr! Xy ' 6" T P e n!
knil L\v B ! 2 n—1
+ Qm)ntt (—EIIVMII + ZIIMIIR*) +o(k" ™,

(3.33)

where we have denoted |Vu||> = fX (V|22 2, lpell%e = fx)_ Wﬁe*%};' We rewrite the

integrals || /L||%e* and ||V || (of the anti- -holomorphic connection V) in terms of 3*u and
the holomorphic connection V' . By Akizuki-Nakano identity [15, Chapter VII, Corollary
(1.3)], we have

0% 1l* = (A", 1)
= (A, w) + ([V=1R, Alu, )

=IV'ul? = (V=1ARp, 1)
. d
=|IV’MIIZ—<(¢‘” REdv) — ¢ uiRE dvf>®w,u>

isj

4 _ 9
= V']l = <(M’vRii¢lkdv" — ¢ UiR) div)) ® —M>

isj

isj

= Ve / (L7 R0 97 9u5) - / O RE kT i

= IV 1l = e ki = Nialie

where we have denoted ||4]|%;.. := f (,u “t ll¢lk¢jt¢kv - which again needs not to be
nonnegative. Therefore,

Il g = IV @ll® = Naelise — 18l (3.34)
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By its definition we find also

— ST fw” LT 7-(0"
IVil? = f Vinbp! V! — = — / ViVin'p' ul —
X, n! X, J i pn!

y y
T
= f (ViVik = ViVpute' ud — — / ViV { ,
j nl o Jx, n! (3.35)
n . ‘7'6()"
/ O + 0Ty b w2 f Vil Vi —
X, "

= 2| uligic + IV ull?.

Substituting (3.34) and (3.35) into (3.33) we obtain finally

n+1
_ e
VT E e 10, ©) = G
n 1 ) o _ '
/ (VD@ D (2ﬂ),,/ (5'“' ‘5““‘”“““’“)?

knfl "
+ 1/ (( VD@, 4)( S804 S ORI —4iRicl + 3p )) 2ul )—
Q@+ !
s L+ L - L)+ ow .
@myntl 12" Rie T ) 4
(3.36)
This completes the proof of Theorem 1.1. O

Remark 3.7 1t is a general fact [22] that the L?-curvature cl(Ek) above has an expansion
in the integer powers of k, so that the lower order term o(k"~!) in our statement can be
written as O (k" 2). Indeed observe that the fractional order O(k”’l’%)-terms in the proof
of Theorem 1.1 are all due to the estimate [|(A" + k)~ (k — A)ijull < Ck~? |lue||. However
we can use again Lemma 3.1 and prove that the traces of the quadratic forms involving
(A" +k)~!(k — A’) are actually of integer order instead of fractional order, e.g. the trace of
the quadratic form IV (i) in the estimate (3.22) has an expansion of order k37", It might be
interesting to find a recursive formula for the coefficients of the expansion ¢ (E¥) following
our proof and using the Bergman kernel expansion.

3.2 The asymptotic of the curvature of Quillen metric

We compute now the asymptotic of the curvature of Qullien metric and prove Theorem 1.2.
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By Theorems 2.7 and 2.8, we have
~ L oK m (1, 1)
—ci(A, [lellg) = {/ td(X/M, (V=133)y))e s kotv= )}
X/M

1 1
= {/ 1+ ECI(TX/M» ) + E(CI(TX/M» ) + a(Tx/m,P) +--+)
X/M

i 2m) (ko + V=TR¥x/m)i ](1’1)

‘ i!
i=0 (3.37)

knJrl n+1 k" 1 n
f Y 4 f ~(V=IRKxmy A 2
X X n!

TRyt Ja i+ ! Qo Jy g 2

k1 1 w
- — (V=IRKxm2 A

- Q2m)ynt! fX/M 12 ) (n—1)!
Ve

kn—l 1 w 1
+ — / —c2(Tx/m, ®) A + O®K"™2),
Q1 Sy 12 n—1)!

n—1

where td is the Todd character forms, which has an expansion,
1 1 2 1
td(F,h) =1+ ECI(F’ h) + E(cl(F’h) +cy(F, h)) + ﬁcl(F,h)cz(F, h)+---

for any Hermitian vector bundle (F, &), the second equality follows from c{(Tx/m, ¢) =
— Y195 logdet ¢ = — L RKx/m.
Now we consider the last term in the RHS of (3.37),

n—1

w
/ co2(Tx m, d) A
X/M 12

n—1)!
2
B 1 2 =1 gt
_/;(/MZ c1(Kx/m, 9)” — (27[ ) tr(RAR) /\712(’1_1)!
i (3.38)

_(L L Y SOOI

Ly’ L V120 (R AR o
_<E> /X/Mzét( DI RARIA G

where the curvature operator R is defined by
R=Riov @i
avi

_(pi g0 n g3 4 i g A sil 4 pi sk A a2B 1 pi sk A sol) s oo i
_<Rjaﬂdz AdFP 4 RE dz A ST+ RE 00F A dZP 4 R o /\8v>8v @i

(3.39)

Here the second and third curvature term is

R;ai = V.;' (“a)j” Rijkg = W&j%i. (3.40)
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In fact, one can prove them in terms of normal coordinates, i.e. ¢;; = 8, ¢; 5, = 0 at a fix
point, so

—(05 — $59" ) ($79™)
~®ijip + PpiPijii

= V(= uii®" + boituid

=V, (— 3 (0oi8")) = V) ()i

while second identity in (3.40) holds similarly.
We compute the second term in the RHS of (3.38),

n—1

(V=1)? tr(R A R)—2—

X/M (n—1)!
= i pi gkl o pi ,(17
_A/M(ZRJaﬂR d) 2Rja[ lkﬁ¢ ) Fdz /\dz
n—l
3.41
+fX/M RO/ Tork A58 A (T ABT A L B4

. —
= 2/ R. R o9Y /Tdz® Ad7P — 2(V e, V' ug)/—1dz® A dzP
XM ]a/fi tkl n!
2 2 "
+/ (IRic|” = |R|)c(P) —,
X/M n.

where the second equality follows from the fact
nn—DaABAD 2= (Aa-AB — (a, B) o (3.42)

for two real (1, 1)-forms « and S.

Lemma 3.8 The following identities hold

/ (W —1RKx/my A © - —f pc((]ﬁ)wf + (s )V —1dz* A dz? (3.43)
xX/M n! X/M n!

and
o' i i@
[ e %= (= [RGB~ i) VT A,
X/M n! x/m P n!
(3.44)
where (tta. 1tp) Ric = [y (1) 5(1p) R;i0™ ¢7' dis) 2, which satisfies
(laos 1B RicC¥EP = Nl ic- (3.45)

Proof For any fixed point p € X}, y € M, we take normal coordinates near p such that
¢:7(p) = 8ij, ¢;7:(p) = 0. Recall that (1e)f = —3;(d,7¢"") and denote c(¢)g5 = P45 —
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¢>a;¢k5¢ki. Evaluating at p we see that

ka)[C((ﬁ)ag = 3](31‘((1)0[3 - ¢o(]_¢]—l¢l/§)
= Puiop ~ Pujki®jp ~ PajPipii T PujPuijifip
—= Gk ® g1 — Paji®)pi

) (3.46)
_ E_’ b= is _ 8 8 ! s _
= (—0(0¢y;p )¢S1) g, ﬁ) — (Mo ; (M/S)Jffﬁks
= _R}iaﬁ‘/’xi - (Ma);(ﬂﬂ)jﬂskia
where the last equality follows from (3.39). Consequently using (3.12) we get
Ac(p)yp = ¢™ kde(d) 5
— k J l
= _RkaB - (Ma)l- (Mﬁ)]v (3.47)
- ) ) . o
= (39 log det ¢) (@ @> = (1) ()59 i,
We perform the integration using Stoke’s theorem on (3.43),
n _ 8 8 n
/ (\/—1RKX/M)/\Q)— :/ 8810gdet¢<f,f> wf«/—ldzo‘/\diﬁ
X/M I’l‘ X/M 5Za 82/3 I’l‘
+/ adtogdets (> ) VTTsu A 5D A cld) o
(0] (& e Sy — 10V v C S E—
I vl 90 -1

= [, (@ ig /712 n a2 — pe@))

n!

wl‘l B
=—/ pC(d))ﬁ+(Ma,/tﬁ)\/—1dz“Adzﬁ,
X/M n!

which proves (3.43).
On the other hand we have also by (3.46) that

@ Ry¢™)hdre@),5 = 9" Rid™ (=R, 70,7 — (e} 1))
= —Ri¢™ R} 5 — " Rir(na)j(1p)"

- _R;aBRi]kl_qskl - (MG)ZTWRJW]{W%M-

@ Springer



Geometriae Dedicata

By using Stoke’s theorem again and noticing Vi, ; = 0, we have

f (Ap)e(@) 2 = / o7 0,3 (Rii ™) (9)
X/M n: X /M n
-/ TR )
= /X » o" (ViViRD9 @)
= [, ¢ Rt e o
-/ PR 5 VT A
i ikl i ok i )@ o =
= /X » (=Rl R0 = (1) up)iRirg™ 7' i ) = v/—1d2” ndZF

. . = ol B
= <— / W& R = <ua,u,s>mc) V=ldz* AP,
X/M :

jap
which proves (3.44). O

The first term in the RHS of (3.37) is, by (3.1) and Lemma 2.1,

/ s / (c(@) + v/=Ig;580" A su/)"*!
o D S (n+ D!
_ / (n+ De(@)(V=1¢; 580" A sv))" (3.48)
xX/M

(n+ 1!
o
2/ c(@)—-
X/M n.

We evaluate the Quillen curvature (3.37) at the vector { = (%575 € T, M. Itis, by (3.38),
(3.41), (3.43), (3.44), (3.45) and (3.48),

W=Ter (1o D)@, ©)
kn+l k" 1 ) P , _ o
/ N N P /X (flul —5(—¢—1)c<¢><c,;)>;

(27t)”+1

11—

+ (= F)(z )M/ —(V=1RKxm)2 A (3]

-1

knfl 1 _ . 5 "
_Wﬁ/ (—V=De@)@. D280 + [Ricl = |RD) 2
knfl .
+ Gy 12(||v I+ o) + OG"2).

(3.49)
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Note that
RXxm = 55 logdet ¢
8 8 P 8 0 o _:
= (99 logdet ¢) dz% A dzP + (39 logdet ) — | dz* A S0/
"8z §zP 8z ovJ
8 3 8 ad ; _
+(8610gdet¢) 52 =5 svl A d7P +(8810gdet¢) > 357 Sv' A S0/
V-
(3.50)

and

a* 39 logd LI PV 351
He = (00 logdet ¢) 320 907 e (3.5D)

In fact, one can prove (3.51) in terms of normal coordinates, at a fixed point, one has

— ‘ . ’
5 1o = —/=1[A, V'] <(Ma)l;d_ a:ﬂ‘)

= =7 (3 (o) + i)

Ii

avl
= ;05 (¢

— (‘pafjf - ¢al_¢j.l_'1’7> %

= (39 log det ¢) ) I
oxders) (7707 ) 07 50

By (3.50), (3.51), (3.42) and (3.47), the integral in the third term in the RHS of (3.49) can
be computed as

n—1

(n—D!
) ) il
:2/ (E)Blogdetd))( >(3310gdet¢) (— f> V=180 A 8o/
X /M 8z¢ vt avJ

/ (VIR /)2 A
X /M

\/ 1dz* A d7P

_2 (aalogdetd))( >(3c)logdet¢)(8 P33 /3>\/ 180! /\81)/ ./ 1dz* A d7P
X/M
- a9 9 -
+/ (E)Blogdetd))( )(aﬁlogdetqb)( o >\/ 180" A 89 A /=180F A 87 c(¢)
XM dvi’ avk’ 9al Y
=2 [ psc@)s+ (m}(uﬂ);zpﬁzpn)‘"—,ﬁmza N
XM n!
20 e P AP+ [ (0 RieP)e) 2
X/M n:
Evaluated at the vector ¢ = ¢% Bz"‘ € Ty M it is, by Stoke’s theorem,
(V=D [ /=IRFxXM)? A ,(; 5
X/M (n— 1!
(3.52)

n

= [ (Ve =200+ 2 = IRicl) = 20l) % =20

y

Substituting (3.52) into (3.49) we have proved
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Proposition 3.9 The curvature of the Quillen metric has the following expansion in k,

=Te1G, e 1D)(C, ©)

—k"+1f(v)<>< )—+ ’ f L = 2 v e . H) %

= G De(@) (¢, ¢ @yt XV(ZIMI -5 (V= c(é LC) P
k=t = 1 2 .2 2 AN

+W/Xy (<7¢71)c<¢)(;,;> (ngp+i<|R| —4|Ric|* +3p ))fzwm );
k-l 1 1 1 -

+ Gy (ﬁnun%ﬁ-c + IVl - ZIIB*MIIZ) + 0K,

(3.53)

From above Proposition, we proved Theorem 1.2.

3.3 An application

In this subsection, we will prove Corollary 1.3.
For any positive integer k write temporarily

F=LF®K X/M,
where K xu is the relative canonical line bundle endowed with the following metric,
(det ¢)~" := (det(e; 7). (3.54)

As in Sect. 2.3, the operator Dy = 5}, + 5;‘ acts on @ngAO”'(Xy, F). Take a small
constant b > 0 that is smaller than the all positive eigenvalues of Dy. Then

K)P = HP(X,y, F) = HP(Xy, Kx,) ® LF).
By Kodaira vanishing theorem,
K20 = HOXy, L ® Kx,) = m(LF @ Kaym)y KyP =0, for p=>1.
So
= (detm,(L* ® Kx,)) . (3.55)
By (2.3) and (3.54), we have

7

l’l
[ulPe ™ = (V=D)*u'|Pe *dv A dv = |u')Pe* (det ¢)— |u|L2°"' (3.56)

that is, the L2-metric || o ||z on 74 (L* @ K » /M) given by (2.3) coincides with the standard L2
metric on 7, (L¥ ® K x/m) induced by (Xy, wly), (K x,, (det @)~V and (L, e~?). Therefore,
the L2-metric (| o |?)2 is dual to the determinant of the metric || o ||2. By (2.16), we have

(e 1)) = (1 o ") (e (@3 F2))% = (det || o I1)* (4 (3)), (3.57)

for b > 0 small enough, where 7 (9) = 7 (3®T9) is the analytic torsion associated with
(X, w = +/—183¢)) and (L¥, e *®). Therefore,

—1 - _
gaalogm(anz =—ci(r, [ ellg) —ci(EX | o). (3.58)
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Proof of Corollary 1.3
Substituting (3.36) and (3.53) into (3.58), we obtain

%aélog(n{(é)f@, 0) = (—V/=D(=c1(h, [ o ll) — c1(EX, [ o I))(Z, ¢)
=o(k"7").
Therefore,
39 log 7 (3) = o(k" ).
O
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